
Easy Authoring of Intelligent Tutoring Systems for Synthetic Environments

Stephen B. Gilbert
Shrenik Devasani
Sateesh Kodavali

Virtual Reality Applications Center
Iowa State University

1620 Howe Hall, Ames, IA 50011.
515-294-3092

gilbert@iastate.edu, shrenik@iastate.edu, skodaval@iastate.edu

Stephen B. Blessing
University of Tampa

401 W. Kennedy Blvd.
Tampa, FL 33606

813-257-3461
sblessing@ut.edu

Keywords:
Intelligent tutoring system, Game engine, LVC training, physiology

ABSTRACT: We describe how the Extensible Problem Specific Tutor (xPST), an open source engine for intelligent
tutoring systems, has been adapted to provide training within game-engine based synthetic environments. We have
designed a web-based tutor-authoring tool and have conducted a study that shows that xPST can be used by authors
with minimal programming experience to create tutors for 3D game environments. As a proof of concept, we also
describe how xPST has been extended to provide support to tutor based on real-time physiological data. We suggest
that xPST could be a key component of the future of real-time personalized and adaptive live, virtual, and constructive
training.

1. Introduction

The military has used simulated environments and
computer assisted instruction since the 1950s. Most
recently, warfighters participate in live, virtual, and
constructive training missions, which means the some
fighters are in a field or urban practice site with BB
guns or laser rifles ("live"), some are in simulators of
Humvees or aircraft cockpits ("virtual") and some are
playing serious games with virtual environments
against computer-generated enemies ("constructive")
(Gorman, 1991).

There has been much study of how much simulation
fidelity is required for good training transfer (Andrews,
Carroll, & Bell, 1995; Castner et al., 2007), and
whether the simulation can induce a sense of presence,
or immersion (Dede, 2009; Lessiter, Freeman, Koegh,
& Davidoff, 2001; Stanney, 2002). Clark Aldrich
continues to be enthusiastic about their potential for
training (Aldrich, 2009). In some domains, simulation
games may be the only possible means of simulating
and practicing real world problems. Simulations are
being used extensively in the military for teaching
pilots to fly as well as for training on combat scenarios

that would otherwise be extremely dangerous and
expensive to train in the field (Stottler, 2000).

However, we suggest that the future of effective
training lies not in the fidelity of the synthetic
environment and virtual entities, but in the relevance of
the feedback received by the learner. The ideal training
environment (see Figure 1) will offer real-time
adaptive training that offers personalized feedback and
scenario customization based not only on trainees'
behavior in the scenario but also on their skill sets upon
entering the training and on their personal profiles, e.g.,
information about their personalities and their
physiological responsiveness to stress, both of which
affect performance (Beilock, 2010). Adapting training
based on both performance and the trainee's stress
response is critical to accurate personalized feedback.

1.1 Personalized Adaptive Training

The idea of personalized adaptive training embodies
two concepts from the learning sciences. The first is
adaptive testing or tailored testing, used, for example,
by the Educational Testing Service on standardized
tests such as the GRE to offer students harder questions
when they answer correctly and easier questions when
they choose incorrectly (Thissen & Mislevy, 2000).

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

192

The key principle is that the system adapts itself based
on the learner's performance.

A system that not only tracks a learner's performance
but also attempts to offer the learner useful feedback
based on his or her mistakes is called an intelligent
tutoring system (ITS). This is the second characteristic
of the personalized adaptive training approach. ITSs
have a cognitive model of an expert's domain
knowledge that is used to identify patterns of learner
behavior (model tracing) and give appropriate hints or
corrective feedback. A cognitive model of algebra, for
example, would know that students frequently forget
the negative sign when solving equations, and would
be able to say appropriately, "You might check to see if
you've forgotten a negative sign somewhere…"
Similarly, the Nintendo Wii Fit game system could be
considered a simplistic ITS, since it tracks your skills
and offers feedback such as "You're leaning too far to
the left."

ITSs have been demonstrated to have effective in a
variety of school knowledge domains, such as algebra,
geometry, and economics (Anderson, Conrad, &
Corbett, 1989; Koedinger, Anderson, Hadley, & Mark,
1997; Ritter, Kulikowich, Lei, McGuire, & Morgan,
2007; VanLehn et al., 2005), resulting in up to a 30%
improvement in standardized test scores (Franklin &
Graesser, 1996) and learning time reductions (Corbett,
2001).

1.2 Challenge: Easily Creating an ITS for a

Synthetic Environment

ITSs have also been created and customized for a
variety of military synthetic environments (SEs) (W. R.
Murray, 2006; Remolina, Ramachandran, Stottler, &
Howse, 2004; Stottler, 2000; Stottler, Fu,
Ramachandran, & Jackson, 2001) and Livak, et al
created a more generalized tutoring approach using
Unreal Tournament (2004). But what is still missing is
1) a more generic ITS authoring tool that could easily
create ITSs for multiple SEs using modular abstraction
from the SEs themselves, 2) an ITS protocol that
leverages physiological data, and 3) an easy-to-use
authoring tool for ITSs that could be used by military
trainers with no programming experience. We suggest
that xPST, an open source intelligent tutoring system
engine, has the potential to address these gaps
(http://code.google.com/p/xpst/).

2. Extensible Problem-Specific Tutor API

The Extensible Problem-Specific Tutor (xPST)
application programming interface (API) has been
developed to enable teachers or trainers without a
technical background to build ITSs on existing third-
party interfaces such as websites or software clients, or
networked applications such as game-engine based
synthetic environments. Research studies on xPST
have demonstrated that it is a relatively easy tool to use
for non-programmers with some training (Gilbert,
Blessing, & Kodavali, 2009).
A variety of ITS authoring tools have been developed
(T. Murray, Blessing, & Ainsworth, 2003), and there is
always a tradeoff between the expressive power of the

Figure 1: The vision for the future of personalized adaptive training. The live, virtual and constructive
training experience is determined by the training objectives, the soldier's previous skills, and the

soldier's personality and stress resilience profile. In real-time, soldier information is updated based on
performance, and the training experience is updated and personalized for the soldier.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

193

tool and the ease of use. The choice with xPST is to
limit the power in favor of usability, which means that
the trainer creates a new tutor for each specific problem
or training scenario. The Carnegie Mellon Cognitive
Tutor Authoring Tools (CTAT) suite for authoring
ITSs shares some of the features and goals of xPST
while also focusing more providing a graphical
authoring interface. Both CTAT and xPST can create
example-based tutors (Aleven, McLaren, Sewall, &
Koedinger, 2009).

The xPST architecture is shown in Figure 2. Using
drivers that are developed for each third-party software
client, xPST can eavesdrop on learner events and state
variables (Listener) and give feedback messages within
the client (Presenter). These drivers are usually simple
to develop if the third-party client has a scripting API
that will allow event logging and messaging functions.
xPST uses a cognitive modeling language that can
provide tutoring on an arbitrary number of interfaces.
This language has been kept as simple as possible, to
promote authoring by non-programmers. It requires the
author to list the sequence of steps to be performed by
the learner, linked with the operators "then," "and", and
"or," e.g., FindTarget then (WalkToTarget or
JumpToTarget) then CaptureTarget. For each step, the
author then adds hints and just-in-time error messages
associated with each step.

This simpler approach to modeling feedback means
that xPST does not represent a true "cognitive model"
with the cognitive complexity and fidelity of ACT-R,
for example. However, the expressive power of the
xPST modeling language, while not yet a context-free
grammar, is strong, e.g. able to use variables within
feedback strings and condition feedback on learner
input. We suggest that this approach supports tutoring
behavior similar to that of the model-tracing ACT
Cognitive Tutors.

It is also worth noting that currently, xPST does not
maintain a learner knowledge model (tracking the skills
across multiple tasks), but that that feature will be
added shortly.

The xPST communications occur over TCP/IP sockets,
so that the tutoring engine can reside on a separate
machine from the client. So far, in using xPST with
over 60 learners, no known network lags have been
noted. For more detailed information about xPST, see
(Blessing, Gilbert, Blankenship, & Sanghvi, 2009;
Gilbert et al., 2009).

The remainder of this paper describes in further detail
how xPST addresses the gaps described above: using
xPST to tutor on a synthetic environment, working
with physiological input, and using a web-based
authoring tool to create tutors.

Figure 2: xPST architecture

3. Developing ITSs in Synthetic
Environments

Most of the ITS authoring tools described in (T.
Murray et al., 2003) focus on creating ITSs for
relatively slow-moving interfaces, e.g., for a
spreadsheet or for a web-form-like interfaces with
radio buttons and text boxes. Few, if any, ITS
authoring tools exist for developing tutors for game
engines like VBS2, Second Life, or other synthetic
environments. It is worth noting the conceptual
differences between tutoring a typical graphic learner
interface (GUI) vs. in a multiplayer fast-moving game.

3.1. Synthetic Environment vs. Traditional GUI

In a traditional GUI application or website, there are
usually a set of controls (e.g. buttons, menus) that
correspond one-to-one with a set of features. Some of
these controls typically remain on screen while the
learner works. The system typically features a two-part
architecture consisting of an application (e.g.,
Microsoft Word, Adobe Photoshop, Amazon.com, or
Google Docs) that has a particular state (e.g. "current
color choice is red") while learner-created content (e.g.,
a document, an image, or a query) is shaped by the
learner.

In a GUI, a learner's actions will typically evoke
similar responses if done repetitively. In a game or SE,
on the other hand, a learner's actions are frequently
dependent on the context of other entities and the time
course within the SE. Rather than the learner changing
a file or a query within an application that maintains a
state, the gamer is focused on changing the
application's state within the game state space. The
states can be discretely defined, and they then act as
subgoals within the tutor: the learner's goal is not to
complete a textbox with a certain correct answer but
rather to reach a specific state. The granularity at which

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

194

these states need to be defined depends on the author
and the complexity of the task. The traditional GUI
software and websites are typically a static system
where all the events are triggered by the learner
(player). But SEs are more like a dynamic system
where interactions can happen between various entities
in the game apart from the player and the events can be
triggered by different entities in the game (e.g. by
constructive forces). It is thus useful to categorize the
events as player events and non-player events.

Unlike the traditional GUI software or websites, 3D
games require the student to navigate through a
simulated environment, the map, and sometimes
communicate with the other entities in the game. This
calls for the authoring system to provide tools to
support tutoring on communication-based and location-
based subtasks, e.g., "Identify yourself to the guard" or
"Return to mission headquarters to give a report."

Synthetic environments and traditional GUI software
also differ in the kinds of feedback required for
tutoring. In GUI-based tutors, many researchers have
concluded that two broad types of feedback are
sufficient: Hints (information requested by the learner
if needed) and Just-In-Time error messages, or JITs,
that appear when the learner makes mistakes. In SEs,
because the subgoals within a task can represent a
much broader range of activities than simply typing an
answer in a box or choosing a drop down menu option,
and because it is sometimes not visually apparent
whether the subgoal has been completed ("Did I reach
the location?"), it is sometimes important for the
learner to have feedback from the tutor that is neither
requested, like a Hint, or based on an incorrect event
(like a JIT). We call these "prompts." For example,
"You are now in a high risk zone, potentially
surrounded by mines."

The xPST platform has been recently extended to
accommodate these requirements for SEs in the tutor
authoring system. More details can be found in
(Kodavali, Gilbert, & Blessing, 2010).

3.2. Simulation Engine: Torque

To create an example of tutoring on a synthetic
environment, we have used Torque Game Engine
Advanced (TGEA) as our simulation engine. It is a
commercial off-the-shelf game engine from Garage
Games. It provides various core functionalities required
for game development like the rendering engine,
physics engine, 3D graphs, collision detection etc.
Instead of starting from scratch, using an off-the-shelf
game engine drastically reduces the game development
time and helps the author concentrate more on the
tutoring task.

TGEA supports scripting using TorqueScript.
TorqueScript is similar in syntax to JavaScript and
allows the developer to create modifications (mods) of
existing games. We have used TorqueScript to create
the xPST Torque driver which contains the two major
modules shown in Figure 2 above, the Listener module
and the Presenter module. The Listener module listens
to the various events happening in the game and sends
them to the xPST engine over the network. The xPST
engine then sends the appropriate tutoring feedback to
the Listener module. This feedback is then presented to
the learner through the Presenter module.

The framework of the xPST driver can be leveraged to
various other game engines by making syntactical
changes to the script, as required, in order to be
compatible with a particular game engine. Our research
team has done significant work with scripting the
VBS2 game engine, and plans to create a VBS2 driver
for xPST next.

3.3 Torque Example: Evacuate the Buildings

We developed several demonstration tasks called
DemoTutor and Evacuate to show that xPST can be
used to create ITSs in a game environment. Evacuate
teaches the learner (player) how to evacuate the
civilians from all the buildings in the scenario. The
scenario has three buildings, each with one civilian
inside. The player enters each building, checks for
civilians present in it, issues the Evacuate command,
and waits for the civilian to come out. When the learner
does this for all the buildings in the scenario, then the
task is complete. This is a simple task, but illustrates
the ease of creating subgoals and feedback for them
within Torque. Figure 3 shows a scene in the Torque
DemoTutor scenario with a hint of what to do next. See
below for a study evaluating non-programmers'
abilities to develop tutors using Torque.

4. Tutoring with Physiological Data

xPST has recently been extended to provide support for
tutoring based on physiological signals. The xPST
author can offer customized just-in-time feedback
based on the values of physiological signals related to
stress and arousal. We used a physiological monitoring
device called the FlexComp that returns the
electrocardiogram signal (EKG), the heart rate signal
(the heart rate in beats per minute) and the heart rate
variability signal (measures how the heart rate varies
over time). When combined with blood pressure, these
data can be useful for identifying trainee stress, e.g.,
when approaching of the end of the completion time of
a time-based test. When a trainee is attempting to
complete a scenario, tasks that cause high stress could
be identified, and the trainee could be asked to practice

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

195

Figure 3: A screen from a Torque scenario showing a

user-requested hint from the xPST tutor.

such tasks further. Also, trainees who are noted as
high-responders to stress might be assigned to less
stressful duties longer term.

While this extension of xPST for physiology is still in
its early stages, we have demonstrated the use of heart
rate while tutoring on a timed web-based college
statistics assignment, giving different feedback
depending on whether time is running out, and
depending on whether stress levels were higher when
learners made mistakes (Figure 5). This extension work
will continue for an ongoing project at Iowa State led
by Nir Keren and Warren Franke analyzing the effect
of stress on firefighters during immersive CAVE (Cave
Automatic Virtual Environment)-based training.

5. The Web-based Authoring Tool (WAT)

A web-based authoring tool is essential for any ITS
authoring tool that is meant to be used by non-
programmers, since the management and deployment
of tutors can be a laborious task. With game-based
scenarios, this task can get even more complex due to
the wide range of resources, both hardware and
software are required. An efficient web-based
authoring tool can take care of these issues by
managing all the resources and dependent files at a
single location, thereby allowing the learner to
concentrate on the task of building tutors.

To allow easy creation of ITSs and their deployment on
the web, we have created a Web-based Authoring Tool
(WAT). The WAT (see Figure 6) supports both learner
management and tutor management on a single
platform.

Learners can create their own accounts to use the Web-
based Authoring Tool and, once registered, develop
tutors there (http://xpst.vrac.iastate.edu/home.html).
Authors may edit tutors using the built-in xPST editor,
which checks syntax. The Authoring Tool supports
version control, so that previous versions of the tutor
files are not lost. The tutor files, including the xPST
file and any scenario or external files associated with
each tutor can be downloaded, so that the learner can
deploy the tutor on his local machine for testing
purposes if needed. This authoring tool has been used
successfully by five people with no programming
experience to develop tutors for webpages with college
statistics homework problems (Maass & Blessing,
Submitted).

The Authoring Tool also supports logging of events for
the purposes of data mining and research studies such
as described below. It records tutor creation time, tutor
opened time, tutor saved time (both manual save and
auto-save which happens every 20 seconds), and tutor
edit time. The details of these events allow researchers
to identify how long it takes to create tutors for a
particular problem domain.

The following process would be used to create a tutor
with a new game engine or synthetic environment (SE)
that xPST did not work with yet. Note that Steps 1 and
2 require programming skills, but must be done only
once. Thereafter, non-programming trainers can create
tutors on their own for the SE (Steps 3 and 4).

Figure 5: Screenshot of xPST prototype giving
feedback based on heart rate during a statistics

problem. "Stress" in this prototype is used loosely.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

196

1. Write xPST driver for a new SE
2. Create list of SE events likely to be used

within the tutor for the xpst authors
3. Create the scenario within the SE
4. Design the tutor using xPST.

a. Login to WAT
b. Draft xPST file using built-in editor
c. WAT creates the necessary files,

links and deploys them for testing
d. Test the tutor by clicking "Run"

6. Research Study on Using xPST to Build
Tutors for Torque

We conducted a study to ensure that xPST can be used
by tutor authors with minimal programming experience
to create tutors for 3D game environments with little
training. We also wanted to examine the learning curve
of novice xPST users.

We had 10 participants who were selected based on a
pre-survey that included them only if they had a
minimal amount of programming experience, e.g.
editing HTML or using SPSS, a statistics application
with an interpreted language. They were asked to build
tutors for two tasks within Torque using xPST. The
participants were shown a 15-minute video tutorial that
demonstrated how to create a tutor for a demo task, and
were given access to other online resources that
included five documentation-style wiki pages, a
commented sample xPST file, and an optional 45-
minute video on detailed use of xPST. In sum, we
estimate the typical training time to be 1-2 hours.
Participants completed the models at their own pace
over a 2-week time period.

The first task, Task A, was titled "Target Acquisition"
and was meant to teach soldiers how to locate an
enemy target. The "Target Acquisition" task required 3
subgoals to be described by the participant in the xPST
file using a highly simplified coding language, e.g., the
sequence of subgoals might be described as "Step1
then Step2 then (Step3a or Step3b)." Task B was titled
"Evacuate" and was aimed at teaching soldiers how to
evacuate cottages in a threatened village. The
"Evacuate" task required 7 subgoals to be coded by the
participant.

One of us scored each of the models using an
evaluation rubric to quantitatively evaluate the data. A
total of 20 models were created by the 10 participants.
The models were classified into one of five categories.
Table 1 shows how they were scored.

Score Description No. of models
5 A very good model that is beyond

being just sufficient
8

4 A sufficient model where a trainee
can complete the task

8

3 Model provides hints but does not
provide enough guidance to a
novice

2

2 Model runs but provides
nonsensical help

0

1 Model has the required feedback
but does not run due to syntax
errors

2

Table 1: Scoring of the cognitive models

Figure 6: A screenshot of the Web-based Authoring Tool (WAT) that can be used by anyone to create an xPST tutor.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

197

The average time to complete Task A was 19.74
minutes with a standard deviation of 9.16 minutes, and
the average time to complete Task B was 13.81
minutes with a standard deviation of 6.24 minutes (The
completion-time data refers to only the time spent in
writing the xPST file, and not testing the tutor).

Figure 7 shows a bar graph of the completion-time data
for Task A and Task B for the eight participants who
built models without any syntax errors.

Figure 7: Bar graph of the completion-time data

All participants first completed Task A and then moved
on to Task B. It is worth noting that that Task B
required less time to complete, on average, when
compared to Task A, though Task B was more
complicated and required a higher number of subgoals.
The bar graph shows that all participants except one
required less time to complete Task B, when compared
to Task A. The results demonstrate that users with
minimal programming experience with less than 2
hours of training can use xPST to create tutors for 3D
game environments.

7. Conclusion and Future Work

We have described a vision for a personalized adaptive
training using synthetic environments. A key
component of this approach is an intelligent tutoring
engine that can communicate with game engines,
physiological systems, and be easy to use for authors.
xPST is a good candidate for such an engine. We
described the xPST Web-based Authoring Tool that
enables easy development of tutors for 3D games based
on the game engine Torque, and potentially for other
game engines such as VBS2, Unity, and BigWorld.
Our research study shows that non-programmers can
use xPST with minimal training.

xPST’s ability to do physiological tutoring on web
interfaces can be extended to 3D games as well, where
stress is a major factor that affects a player’s
performance. The goal will then be to provide military
trainers, as well as others who author scenarios in 3D

environments, the ability to create in-scenario tutoring
and personalized After Action Review in an
appropriate and easy-to-author manner.

Future work for xPST includes completing a natural
language processing extension that's underway so that
we can tutor on typed or spoken words, and
implementation of a networked learner model, so that
the system can track trainee skills across multiple
platforms and multiple training scenarios. We also plan
on a learning management system (LMS) that will
offer scenarios according to trainees' performance and
personalized needs and skill deficits.

7. References

Aldrich, C. (2009). The Complete Guide to Simulations

and Serious Games. San Franscisco: Pfeiffer.
Aleven, V., McLaren, B., Sewall, J., & Koedinger, K.

(2009). A new paradigm for intelligent
tutoring systems: Example-tracing tutors.
International Journal of Artificial Intelligence
in Education, 19, 105-154.

Anderson, J. R., Conrad, F. G., & Corbett, A. T.
(1989). Skill acquisition and the LISP tutor.
Cognitive Science, 13, 467–505.

Andrews, D. H., Carroll, L. A., & Bell, H. H. (1995).
The Future of Selective Fidelity in Training
Devices. Educational Technology, 35(6), 32-
36.

Beilock, S. (2010). Choke: What the Secrets of the
Brain Reveal about Getting It Right When You
Have To. NY, NY: Free Press.

Blessing, S., Gilbert, S., Blankenship, L., & Sanghvi,
B. (2009). From SDK to XPST: A New Way
To Overlay a Tutor on Existing Software.
Paper presented at the Twenty-Second
International FLAIRS Conference.

Castner, A. K., Chukhman, I. A., Colbert, E. J., Dale,
M. E., Lewis, B. Y., & Zaret, D. R. (2007). An
agent-supported simulation framework for
metric-aware dynamic fidelity modeling.
Paper presented at the Proceedings of the
2007 spring simulation multiconference -
Volume 2.

Corbett, A. T. (2001). Cognitive computer tutors:
Solving the two-sigma problem. Paper
presented at the Conference of User
Modeling, Sonthofen, Germany.

Dede, C. (2009). Immersive Interfaces for Engagement
and Learning. Science, 323(5910), 66-69.

Franklin, S., & Graesser, A. (1996). Is it an agent, or
just a program? A taxonomy for au-tonomous
agents Paper presented at the Third
International Workshop on Agent Theories,
Architectures, and Languages.

Gilbert, S. B., Blessing, S. B., & Kodavali, S. (2009).
The Extensible Problem-Specific Tutor

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

198

(xPST): Evaluation of an API for Tutoring on
Existing Interfaces. Paper presented at the
14th International Conference on Artificial
Intelligence in Education.

Gorman, P. F. (1991). The Future of Tactical
Engagement Simulation. In D. Pace (Ed.),
Proceedings of the 1991 Summer Computer
Simulation Conference (pp. 1181-1186).
Baltimore, MD: Society for Computer
Simulation.

Kodavali, S., Gilbert, S. B., & Blessing, S. (2010).
Expansion of the xPST framework to enable
non-programmers to create intelligent tutoring
systems in 3D game environments. In the
Proceedings of the 10th International
Conference on Intelligent Tutoring Systems

Koedinger, K. R., Anderson, J. R., Hadley, W. H., &
Mark, M. A. (1997). Intelligent Tutoring Goes
to School in the Big City. 30-43.

Lessiter, J., Freeman, J., Koegh, E., & Davidoff, J.
(2001). A Cross-Media Presence
Questionnaire: The ITC-Sense of Presence
Inventory. Presence: Teleoperators and
Virtual Environments, 10(3), 282-297.

Livak, T., Heffernan, N. T., & Mover, D. (2004). Using
Cognitive Models for Computer Generated
Forces and Human Tutoring. Paper presented
at the 13th Annual Conference on (BRIMS)
Behavior Representation in Modeling and
SImulation, Arlington, VA.

Maass, J., & Blessing, S. (Submitted). XSTAT: An
intelligent homework helper for students.
Paper presented at the 2011 Convention of the
Southeast Psychological Association,
Jacksonville, FL.

Murray, T., Blessing, S., & Ainsworth, S. (Eds.).
(2003). Authoring Tools for Advanced
Technology Educational Software. Dordrecht,
The Netherlands: Kluwer Academic
Publishers.

Murray, W. R. (2006). Intelligent Tutoring Systems for
Commercial Games: The Virtual Combat
Training Center Tutor and Simulation. Paper
presented at the The Second Artificial
Intelligence for Interactive Digital
Entertainment Conference (AIIDE), Marina
del Rey, California.

Remolina, E., Ramachandran, S., Stottler, R. H., &
Howse, W. R. (2004). Intelligent Simulation-
Based Tutor for Flight Training. Paper
presented at the Industry/Interservice,
Training, Simulation & Education Conference
(I/ITSEC), Orlando, FL.

Ritter, S., Kulikowich, J., Lei, P., McGuire, C. L., &
Morgan, P. (2007). What Evidence Matters?
A Randomized Field Trial of Cognitive Tutor
Algebra I, pp. 13-20.

Stanney, K. M. (2002). Handbook of Virtual
Environments. Mahwah, NJ: Erlbaum.

Stottler, R. H. (2000). Tactical Action Officer
Intelligent Tutoring System. Paper presented at
the Industry/Interservice, Training, Simulation
& Education Conference (I/ITSEC), Orlando,
FL.

Stottler, R. H., Fu, D., Ramachandran, S., & Jackson,
T. (2001). Applying a Generic Intelligent
Tutoring System Authoring Tool to Specific
Military Domains. Paper presented at the
Industry/Interservice, Training, Simulation &
Education Conference (I/ITSEC), Orlando,
FL.

Thissen, D., & Mislevy, R. J. (2000). Testing
algorithms. In H. Wainer (Ed.), Computerized
adaptive testing: A primer. Mahway, NJ:
Lawrence Erlbaum Associates.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A.,
Shelby, R., Taylor, L., et al. (2005). The
Andes physics tutoring system: Lessons
learned. International Journal of Artificial
Intelligence in Education, 15(3), 147-204.

Author Biographies

STEPHEN GILBERT is Associate Director of the
Virtual Reality Applications Center at Iowa State
University. His background includes cognitive science
and engineering, and he supervises Iowa State's
graduate program in Human Computer Interaction. He
is PI on a Live, Virtual and Constructive training
contract for the U.S. Army RDECOM STTC.

SHRENIK DEVASANI is a Graduate Research
Assistant at Iowa State University’s Virtual Reality
Applications Center. He is pursuing his Masters in
Human Computer Interaction. His research interests are
in the fields of intelligent tutoring systems and
technology in education.

SATEESH KODAVALI, recently graduated with his
MS in Human Computer Interaction and Computer
Science and is now a Software Development Engineer
(SDE) at Microsoft in the Microsoft Business Division
(MBD). His work focuses on designing, implementing
and/or testing Microsoft Dynamics ERP software
applications.

STEPHEN BLESSING is an Associate Professor of
Psychology at the University of Tampa. His main
research interest is in authoring tools for intelligent
tutoring systems, and he has co-edited a book on the
topic.

20th Behavior Representation in Modeling & Simulation (BRIMS) Conference 2011 - Sundance, Utah 11-BRIMS-028

199

	Brims Proceedings TOC- Rev20110305
	11-BRIMS-028

