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Abstract An approach for capturing and modeling individual entertainment (“fun”)
preferences is applied to users of the innovative Playware playground, an interactive
physical playground inspired by computer games, in this study. The goal is to con-
struct, using representative statistics computed from children’s physiological signals,
an estimator of the degree to which games provided by the playground engage the
players. For this purpose children’s heart rate (HR) signals, and their expressed pref-
erences of how much “fun” particular game variants are, are obtained from experiments
using games implemented on the Playware playground. A comprehensive statistical
analysis shows that children’s reported entertainment preferences correlate well with
specific features of the HR signal. Neuro-evolution techniques combined with feature
set selection methods permit the construction of user models that predict reported
entertainment preferences given HR features. These models are expressed as artificial
neural networks and are demonstrated and evaluated on two Playware games and two
control tasks requiring physical activity. The best network is able to correctly match
expressed preferences in 64% of cases on previously unseen data (p-value 6 · 10−5).
The generality of the methodology, its limitations, its usability as a real-time feedback
mechanism for entertainment augmentation and as a validation tool are discussed.
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1 Introduction

Cognitive modeling within human–computer interactive systems is a prominent area
of research. Computer games, as examples of such systems, provide an ideal environ-
ment for research in artificial intelligence (AI), because they are based on simulations
of highly complex and dynamic multi-agent worlds (Champandard 2004; Funge; Laird
and van Lent 2000). Moreover, computer games offer a promising ground for cog-
nitive modeling since they embed rich forms of interactivity between humans and
non-player characters (NPCs). Being able to estimate the quantitative level of user
(gamer) engagement or satisfaction in real-time can grant insights to the appropriate
AI methodology for enhancing the quality of playing experience (Yannakakis and
Hallam 2005) and furthermore be used to adjust digital entertainment environments
according to individual user preferences.

Features of computer games that keep children (among others) engaged more than
other digital media include their high degree of interactivity and the freedom for
the child to develop and play a role within a fantasy world which is created during
play (Malone 1981). On the other hand, traditional playgrounds offer the advantage
of physical play, which furthermore improves the child’s health condition, augments
children’s ability to engage in social and fantasy play (Kline 1993; Postman 1983)
and provides the freedom for children to generate their own rules for their own devel-
oped games. The ‘Playware’ intelligent interactive physical playground introduced in
Lund et al. (2005) attempts to combine the aforementioned features of both worlds:
computer games and traditional playgrounds. This innovative platform is described
and experiments on developed Playware games with children will be presented in this
paper.

Motivated by the lack of quantitative affective models of entertainment in physical
play, an approach for estimating expressed player satisfaction in real-time through
physiological signals measured during gameplay is introduced in the work presented
here. We define “entertainment” primarily as the level of satisfaction generated by the
real-time player-game opponent interaction—by ‘opponent’ we mean any controllable
interactive feature of the game. This approach is based on the notion (Yannakakis and
Hallam 2004; Koster 2005) that a game is primarily a learning process and the level of
entertainment is kept high when game opponents enable new learning patterns (‘not
too easy a game’) for the player that can be perceived and learned by the player (‘not
too difficult a game’). On the same basis, according to Kapoor et al. (2001)—within the
axis of emotions varying from boredom to fascination—learning is highly correlated
to interest, curiosity and intrigue perceived. We define the collection of these emotions
as “entertainment” (or “fun,” which is used synonymously in this paper). The word
“fun” is used extensively hereafter since it captures best, in our view, children’s notion
of the term “entertainment” (Read et al. 2002) and is the term used by the children
when making their experimental self-reports.
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Our principal goal in the reported work is to construct a user model of the player of
a game—in this case a child playing a Playware game—that can predict the answers
to which variants of the game are more or less “fun.” In this work the model is con-
structed using machine learning techniques applied to statistical features derived from
physiological signals measured during play. The output of the constructed model is a
real number in the range [0, 1] such that more enjoyable games receive higher numer-
ical output. This basic approach, defined as entertainment modeling, is applicable
to a variety of games, both computer (Yannakakis and Hallam 2006) and physical
(Yannakakis et al. 2006a), using features derived from physiological data or from the
interaction of player and opponent measured through game parameters.

Even though entertainment is a highly complicated mental state it is correlated with
sympathetic arousal (Mandryk et al. 2006a,b) which can be captured through specific
physiological signals such as heart rate and skin conductivity, as reported by research-
ers in the psychophysiological research field (Critchley et al. 2005; Zuckerman 2006).
In this paper, we investigate the impact of entertainment on heart rate (HR) signals and
attempt to capture HR signal features that correlate with children’s expressed enter-
tainment preferences. HR signal data and children’s reported preferences between
variants of Playware games are obtained through gaming experiments using the Play-
ware playground. HR dynamics are represented by calculating several statistics and
regression model parameters from gameplay experimental data, to serve as features
for the construction of a user model as described above.

Statistical correlations between HR signal features and player reported entertain-
ment preferences are first computed. Results demonstrate that the average HR, the
maximum HR, the difference between the maximum and the minimum HR and the
approximate entropy (Pincus 1991) are highly rank-correlated with children’s reported
preferences between Playware game variants.

Using the statistical representation of HR dynamics as features, neuro-evolution
models are trained and validated on those HR features and children’s self-report pref-
erence data to yield Artificial Neural Networks (ANNs) which function as efficient
predictors of reported entertainment preferences given suitable specific HR signal fea-
tures. Suitable input feature sets are constructed using two alternative feature selection
schemes, the performances of which are compared.

The HR dynamics features found to correlate with self-reported entertainment pref-
erences are ones that also correlate with physical activity. (This is unsurprising, since
one would expect a more enjoyable game to induce greater physical effort from the
player.) However, it is then unclear whether the constructed models distinguish more
and less enjoyable games on the degree rather than the kind of physical activity they
engender. To control for this, two kinds of non-entertaining physical activity were also
tested.

The first exploratory experiment is focused on the distinction between HR signals
corresponding to reported entertainment preferences in a gaming activity (entertain-
ing or not) and HR signals corresponding to pure (non-game, and non-entertaining)
physical activity. Obtained results show that HR dynamics can be used to construct
models (of the kind described above) that discriminate well between entertaining game
activities and physical exercise. However, the question of whether there is anything
in the type of physical activity that is characteristic of an entertaining game remains
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since the particular control physical activity employed (running in circles), while not
entertaining, is also quite different in character to the more variable exertion of a
typical Playware game.

A second experiment was therefore designed, following a suggestion from an anon-
ymous reviewer, in which the control physical activity matched game activity more
closely while nevertheless being non-entertaining, and in which children expressed
preferences both between game variants and between game and control activity. ANN
models trained on game-play data obtained from the first set of experimentation were
then evaluated using unseen data from this second game-play and control experiment
set. The results indicate that user models able to predict children’s preferred game vari-
ants given suitable HR dynamics feature representations can indeed be constructed
and that such models not only distinguish game-play from game-like non-entertain-
ing physical activity but also generalize (to some extent) over children’s individual
preferences.

The limitations of the proposed methodology and its extensibility to other genres of
digital entertainment are discussed. Its generic use as an efficient baseline for capturing
reported entertainment in physical interactive games in real-time is also outlined.

2 Capturing entertainment

There have been several psychological studies to identify what is “fun” in a game
and what engages people playing computer games. Theoretical approaches include
Malone’s principles of intrinsic qualitative factors for engaging gameplay (Malone
1981), namely challenge (i.e. ‘provide a goal whose attainment is uncertain’), curi-
osity (i.e. ‘what will happen next in the game?’) and fantasy (i.e. ‘show or evoke
images of physical objects or social situations not actually present’) as well as the
well-known concepts of the theory of flow (‘flow is the mental state in which play-
ers are so involved in the game that nothing else matters’) (Csikszentmihalyi 1990)
incorporated in computer games as a model for evaluating player enjoyment, namely
GameFlow (Sweetser and Wyeth 2005) and captured through automatic speech rec-
ognition in a tutoring systems (D’Mello et al. 2008). Other studies include Lazzaro’s
“fun” clustering into four entertainment factors based on facial expressions and data
obtained from game surveys on players (Lazzaro 2004). According to Lazzaro, the
four components of entertainment are: hard fun (related to the challenge factor of
Malone), easy fun (related to the curiosity factor of Malone), altered states (i.e. ‘the
way in which perception, behavior, and thought combine in a collective context to
produce emotions and other internal sensations’—closely related to Malone’s fantasy
factor) and socialization (the people factor). Koster’s (2005) theory of fun, which is
primarily inspired by Lazzaro’s four factors, defines “fun” as the act of mastering the
game mentally.

An alternative approach to “fun” measure is presented in Read et al. (2002) where
“fun” is composed of three dimensions: endurability, engagement and expectations.
Questionnaire tools and methodologies are proposed in order to empirically capture
the level of “fun” for evaluating the usability of novel interfaces with children.

The current state-of-the-art in intelligent game design by the use of AI techniques
is mainly focused on generating human-like (Laird and van Lent 2000) and intelligent

123



Entertainment capture through heart rate activity

(Nareyek 2002) characters. Even though complex opponent behaviors emerge through
various machine learning techniques, there is no further analysis of whether or what
these behaviors contribute to player experience. The implicit hypothesis motivating
this research is that intelligent opponent behaviors enable the player to gain more sat-
isfaction from the game. According to Taatgen et al. (2003), believability of computer
game opponents, which are generated through cognitive models, is strongly correlated
with enjoyable games. These hypotheses may well be true; however, since no notion
of entertainment or enjoyment has been explicitly defined, there is no evidence that
a specific opponent behavior generates enjoyable games. This statement is the core
of Iida’s innovative work on quantitative entertainment metrics for variants of chess
games (Iida et al. 2003).

Recognition of emotion, such as entertainment, is considered, in general, a hard
problem mainly because understanding emotion is hard (Picard et al. 2001). Previ-
ous work in the field of quantitative estimation of entertainment in digital interactive
entertainment systems is based on the hypothesis that the player–opponent interac-
tion—rather than the audiovisual features, the context or the genre of the game—is
the property that contributes the majority of the quality features of entertainment in a
computer game (Yannakakis and Hallam 2004). Based on this fundamental assump-
tion, a quantitative metric for measuring the real time entertainment value of preda-
tor/prey games using statistics of the player–game interaction was proposed and was
established as an efficient and reliable entertainment (‘interest’) metric by validation
against human judgment (Yannakakis 2005). Further studies by Yannakakis and Hal-
lam (2006) have shown that ANNs and fuzzy neural networks can extract a better
estimator of player entertainment than a custom-designed one, given appropriate esti-
mators of the challenge and curiosity of the game (Malone 1981) and data on human
players’ reported preferences. Such estimators constitute models of the player, in so
far as they correctly predict the player’s expressed preferences for games with respect
to variations of game parameters that determine the player–opponent interaction.

Similar work addressing adjusting a game’s difficulty to alter player satisfaction
include endeavors through reinforcement learning (Andrade et al. 2005), genetic algo-
rithms (Verma and McOwan 2005), probabilistic models (Hunicke and Chapman 2004)
and dynamic scripting (Spronck et al. 2004). However, these attempts assume that
challenge is the only factor contributing to enjoyable gaming experiences, and the
results reported have not been cross-verified against human players. Moreover, within
the edutainment and web design framework, heuristic evaluation methods have been
proposed for usability testing of entertainment web sites (Wiberg 2003) and game
design guidelines have been discussed for the enhancement of game experience and
learnability in edutainment games (Wiberg and Jegers 2003). The level of student inter-
est has also been captured through machine learning in educational tutoring systems
(Porayska-Pomsta et al. 2008).

Following the theoretical principles reported from Malone (1981), Lazzarro (2004),
Koster (2005) and Yannakakis (2005), this paper examines the contribution to enter-
tainment of game opponents’ behavior. We argue that, of the three dimensions of
“fun” (endurability, engagement, expectations) defined in Read et al. (2002), it is only
engagement that is affected by the opponent since both endurability and expectations
are primarily based on the game design per se. Given a successful interactive game

123



G. N. Yannakakis et al.

design that yields expectations and endurability (such as the Playware platform—see
Sect. 5) we only focus on the level of engagement that generates “fun” (entertainment).

Moreover, rather than being based on empirical or visual observations of children’s
engagement, the work presented here attempts to model the relationship between
physiological signals (i.e. HR signals) and the degree to which children are enjoying a
game, measured by experimental data from surveys with children playing variants of
two dissimilar games with the Playware playground (see Sect. 3). Previous work
(Yannakakis et al. 2006b) has already shown a significant correlation between the aver-
age HR and reported entertainment preference in a Playware action game
(Bug-Smasher). This paper expands this research in that an additional Playware game
(Space-Invaders) is used for data collection and reported entertainment preferences
are captured through an ANN modeling approach evolved on HR signal features.

2.1 Physiology of entertainment

Philosophical discussion of the interplay between emotions and their respective bodily
changes was initiated by Aristotle, who introduced the concept of physiology as an
affect of emotional experience (see (Aristotle 2004) among others). As a variant of this
view, James (1992) proposed the idea that emotions are feelings specifically caused
by changes in physiological conditions relating to autonomic and motor functions.

Following from these fundamental concepts, heart physiological condition mea-
sures have been used extensively for emotion recognition in children and adults within
the affective computing research area. More specifically, use of HR and HR variabil-
ity (HRV) have resulted in effective discrimination between children’s exploration,
problem-solving and play tasks (Hutt 1979). Experiments with two-year old children
further showed suppression of HRV during exploration, and solution of a puzzle, sug-
gesting that the task demands for these two activities were greater than those during
play (Hughes and Hutt 1979).

Picard et al. (2001) recorded the physiological state of a single adult subject over
six weeks during which period the subject was asked to express several emotions
(joy included). Picard et al. observed day-dependence in the subject’s physiology,
mainly due to day-to-day variations of caffeine and sugar concentrations in blood,
sleep, hormones and mood. The main weakness of that approach lies in generalizing
obtained affect recognition results to other subjects. Nevertheless, the study reveals
that substantial changes in the relationship between affect and physiological state can
occur from day to day.

Day-dependence and methodological conditions in capturing and classifying emo-
tions when using physiological signal data raised by that study are satisfied in the work
described in this paper. Specifically, the second control experiment described satis-
fies the day-dependence conditions and all experiments described meet the majority
of the five factors for eliciting genuine emotion as presented in Picard et al. (2001):
reported entertainment was subject-elicited, the experiments took place in a setup close
to the real-world since children played in their school classroom, our emphasis was
on internal feelings, subjects were implicitly aware that their physiology was being
recorded (open-recording) and subjects were not aware of the purpose of the experi-
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ment (other-purpose). The study presented here is not focused on the investigation of
the long-term realistic physiology of children with regards to entertainment but rather
the construction of a predictor of reported entertainment based on individual HR signal
features. Moreover, children cannot be asked to express emotions in the same way as
adults and therefore physiological effects on the emotion of, for instance, joy (Picard
et al. 2001) cannot be compared straightforwardly with findings presented here.

Mandryk et al. (2006b) examine the correlations between physiological signals (gal-
vanic skin response (GSR), electromyography (EMG) in jaw, respiration and cardio-
vascular measures) in reported adult user experiences (emotions) in computer games.
The experiences examined include boredom, challenge, frustration and “fun.” Statis-
tical analysis yields a significant correlation only between GSR and reported “fun” in
video games. The study also demonstrates the advantage of social play versus play-
ing against computer-designed opponents. In Mandryk et al. (2006a), a fuzzy model
with rules grounded in psychophysiology theory shows that high arousal and positive
valence (a combination corresponding to “fun” and excitement) is present when HR
and GSR are high and the EMG corresponds to a smiling player. In that study, playing
condition (vs. computer, friend or a stranger) demonstrates an additional effect on
“fun” and excitement. The model is validated against subjects’ reported “fun” through
correlation statistical tests; however, it provides an objective notion of “fun” based on
the relations of the data obtained to subjects’ expressed preferences.

The preliminary experiments of Rani et al. (2005) for appropriately adjusting the
level of challenge in the game of ‘Pong’ based on recorded physiological signals in
real-time and subject’s self-reports of their emotional experiences during gameplay
is closely related to our work. That study, however, is primarily focused on anxiety
level detection in real-time and is limited by the number of human participants. Phys-
iological state (HR, GSR) prediction models have also been proposed for potential
entertainment augmentation in computer games (McQuiggan et al. 2006).

Working on the same basis as Mandryk et al. (2006a,b), Ravaja et al. (2006) exam-
ined whether the nature of the game opponent (computer vs. human and friend vs.
stranger) influences the physiological state of players. In that study, self-report rat-
ings, cardiac inter-beat intervals and facial EMG were measured to index physiological
arousal and emotional valence. In addition, Hazlett’s (2006) work is focused on the
use of facial EMG to distinguish positive and negative emotional valence during inter-
action with a racing video game. Within the edutainment framework, a community
of researchers has been using physiological signals to model engagement of children
playing educational games ((Conati 2002; Conati et al. 2003) among others).

All aforementioned studies are focused on the use of physiology for capturing user
experiences (e.g. “fun,” engagement or excitement) applied within the computer and
edutainment games framework. The work reported here is novel in that it examines
the physiological state (HR signal) correlates of reported “fun” in physical activity
games, isolates HR signal features attributed to reported entertainment in such physi-
cally demanding games and demonstrates a way of constructing a subjective model (a
predictor of user preferences) of reported “fun” grounded in statistical features of HR
signal dynamics. While in general one might expect entertaining games to increase
arousal, the more specific effect investigated here is that entertaining physical games
motivate one to play more energetically with consequent increase in HR activity.
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3 Playware playground

Children’s and youth’s play has seen major changes during the last two decades. New
emerging playing technologies, such as computer games, have been more attractive to
children than traditional play partly because of the interactivity and fantasy enhance-
ment capabilities they offer (Malone 1981). These technologies have contributed to
transforming the way children spend their leisure time: from outdoor or street play
to play sitting in front of a screen (Lindstrom and Seybold 1994; Turkle 1984). This
sedentary style of play may have health implications (Lund and Jessen 2005).

A new generation of playgrounds that adopt technology met in computer games
may address this issue. More specifically, intelligent interactive playgrounds with
the ability to adapt the game according to each child’s personal preferences provide
properties that can keep children engaged in entertaining physical activity. Measuring
the child’s level of entertainment and adjusting the game in order to increase it, in
such a situation, can only have positive effects on the child’s physical condition. The
Playware playground adopts these primary concepts.

The Playware (Lund and Jessen 2005) mixed-reality prototype playground consists
of a set of identical tiles that allow the game designer (e.g. the child) to develop a sig-
nificant number of different games within the same platform. For instance, tiles can be
placed on the floor or on the wall in different topologies to create a new game (Lund
et al. 2005). Tiles incorporate processing power, communication, input and output,
and function as a distributed multi-agent system. They are 21 cm × 21 cm by 6 cm
deep, with four Light Emitting Diodes (LEDs) and a Force Sensing Resistor (FSR)
sensor through which the tile and child interact. A rubber shell, that covers and protects
the electronics, includes a “bump” indicating the location of the FSR sensor (i.e. the
interaction point) and a plexiglass window for the LEDs (see Figs. 1 and 2).

Fig. 1 A child playing Bug-Smasher
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Fig. 2 A child playing Space-Invaders

3.1 Systems related to playware

The Smart Floor (Orr and Abowd 2000) and the KidsRoom (Bobick et al. 1996) are
among the few systems that are conceptually similar to the Playware tiles. The first is
developed for transparent user identification and tracking based on a person’s footstep
force features and the latter is a perceptually-based, multi-person, fully automated,
interactive, narrative play room that adjusts its behavior (story-line) by analyzing the
children’s behavior through computer vision. As far as the concept of intelligent floors
consisting of multiple building blocks is concerned, the Z tiles (Richardson et al. 2004)
are closely related to Playware. However, the Z tiles are mainly used as input devices
only whereas Playware incorporates both input and output devices. Finally, the Scor-
piodome game system (Metaxas et al. 2005) is consistent with the Playware mixed
(virtual and physical) reality and grid/tiles concept; however, it is primarily designed
for investigating social, non-physical gaming—being a platform for deploying
augmented reality games with remote controlled toy vehicles—and outside the prin-
ciples of embedded AI within its Active Landscape Grid components/tiles.

Digiwall (Liljedahl and Lindberg 2006) and Age Invaders (http://www.mixed
reality.nus.edu.sg) are mixed-reality systems closely related to the Playware play-
ground. The first features a rock climbing wall with several hand grips that can be
lit and sensors that indicate when each grip is grabbed. The latter is a mixed-reality
game that uses a fusion of technology and art to make a new form from the traditional
arcade game space invaders in a tile-based floor with which children and elderly can
interact. Age Invaders is designed as a social physical game which promotes the el-
derly’s mental and physical vitality. Similarities within the interactive physical game
(Exertion Interface) field can also be found with the physically exhausting ball game
by Mueller et al. (2003).

Other examples of digitally augmented platforms include the STARS platform for
tabletop games (Magerkurth et al. 2003) and PingPongplus (Ishii et al. 1999) which
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is a digitally enhanced ping-pong game using a table that incorporates sensing, sound
and visual projection. However, the first lacks the physical activity context and the
latter lacks the rich interactivity and adaptivity offered by Playware games.

Exergaming products such as QMotions and Konami’s (http://www.konami.com)
Dance Dance Revolution and Kick & Kick series of games constitute examples of
entertainment media that mix physical activity with computer game playing. How-
ever, Playware offers the concept of building block game development to users as well
as to game designers, providing a much higher degree of freedom and flexibility in
game design. On that basis, the aforementioned games could be regarded as a sub-class
of the games that can be designed with Playware.

4 Playware games

This section presents the two games designed with Playware tiles for our experiments
and concludes with a comparison of their main features which collectively cover a
large proportion of action interactive games designable within Playware.

4.1 Bug-Smasher

The first test-bed game used for the experiments presented here is called ‘Bug-
Smasher.’ The game is implemented on a 6×6 square tile topology (see Fig. 1). During
the game, different ‘bugs’—colored lights—appear and disappear sequentially on the
game surface, each ‘bug’ being visible for a short period of time. A bug’s position
is picked within a radius of three tiles of the previous bug’s position. The new bug’s
position, among the candidate tiles of this radius, is selected according to a predefined
level of the bugs’ spatial diversity defined through a probability distribution of the bug
visits on these tiles. Spatial diversity is measured by the entropy of the bug-visited
tiles which is calculated and normalized into [0, 1] via (1):

H =
[
− 1

log 36

∑
i

vi

V
log

(vi

V

)]
(1)

where vi is the number of bug-visits to tile i and V is the total number of visits to all
visited tiles (i.e. V = ∑

i vi ). If the bug visits all tiles equally then vi = V/36 for all
36 tiles and H will be 1; if the bug visits exactly one tile during the game, H is zero.

The child’s goal is to smash as many bugs as possible by stepping on the lighted
tiles. Different (animal/bug) sounds and colors represent different bugs appearing and
being smashed in order to increase the fantasy entertainment factor (Malone 1981).
Previous studies have shown that fantasy in Bug-Smasher has an objectively positive
impact on reported “fun” (Yannakakis et al. 2006c). Feedback to the player, which
is essential for a successful game design (Malone 1981), is provided through differ-
ent characteristic sounds that represent good or bad performance. The Bug-Smasher
game has already been used as a test-bed for obtaining HR signal correlates of reported
“fun” in children (Yannakakis et al. 2006b), for investigating the impact of fantasy on
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reported “fun” (Yannakakis et al. 2006c) and for modeling reported “fun” according to
individual playing features obtained through the child–game interaction (Yannakakis
et al. 2006a).

4.2 Space-Invaders

Given the available degrees of freedom when designing new games within the Play-
ware playground, we designed a game that would differ from the Bug-Smasher game
in its conceptual content while still being an action game. The second test-bed game
used for the experiments presented here is called ‘Space-Invaders,’ its main concept
being based on the classical arcade game released by Taito in 1978.

The game is implemented on a 5 × 10 tile topology (see Fig. 2). During the game,
different alien spaceships (colored lights) appear on the top side of the game topology
and move towards the bottom row of the game where the player’s loaded ‘guns’ are
placed. The child’s goal is to shoot the alien spaceships down by firing at them. A shot
is fired by pressing the lighted tiles indicating the guns. If the child is unsuccessful in
that task and a spaceship reaches the bottom row of the game then a particular sound
is heard indicating that the child’s “base” is hit.

A spaceship’s initial position is picked according to a predefined level of position
spatial diversity, given by the entropy of the spaceship-visited tiles calculated and
normalized into [0, 1] via (1). Having 10 tiles as initial spaceship positions, the nor-
malization parameter in (1) for this game is 1/log10 instead of 1/log36. The movement
strategy of the spaceships is based on a probabilistic choice among the three neighbor
tiles (forward/down, left, right) at each step, with fixed probabilities.

4.3 Properties: Bug-Smasher vs. Space-Invaders

These two Playware action games used differ in several respects. Based on the games’
main features, we believe that these two test-beds cover a large portion of the prop-
erties met in playground action games that can be designed within Playware or other
interactive physical game systems.

The primary dissimilarities between Bug-Smasher and Space-Invaders are
found in:

– The child’s objectives and learned skills: In Bug-Smasher the child has to react fast
by killing (stepping on) bugs that appear in the game in unknown patterns. There-
fore, pattern recognition and reaction time are the primary skills that are enhanced
by this game. On the other hand, in Space-Invaders, the child has to develop both
fast reaction and timing (prediction) skills for shooting the spaceships down.

– The type of opponent (bug or spaceship) motion: While bugs appear given a spe-
cific predefined pattern based on their spatial diversity, spaceships move based on
a probability estimation of their neighbor tiles. Therefore, it is interaction points
(game opponents) that appear and disappear (bugs) versus interaction points that
move within the game platform (spaceships).
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– The topology: Different tile topologies are used for game design: square against
rectangle topology in Bug-Smasher and Space-Invaders respectively.

– The playing style: The different game designs generate diverse playing styles.
More specifically, Bug-Smasher allows free movement within the game plat-
form whereas Space-Invaders constrains the child’s play to one side of the game
platform.

– The concept: Space-Invaders’ concept is arcade games inspired and based on shoot-
ing enemies in a virtual space world. On the other hand, Bug-Smasher projects a
virtual animal world where children have to interact with its virtual bugs.

5 Experimental setup

Both Bug-Smasher and Space-Invaders test-beds have been used to acquire HR phys-
iological data and data on children’s judgment of entertainment. Each game uses two
different states (‘Low’ and ‘High’) of Malone’s (1981) three entertainment factors to
generate a pool of 8 dissimilar games for children to play.

We consider the speed (S—in s−1) that the bugs appear and disappear from the
game and their spatial diversity (H ) in the game field as appropriate measures of the
level of challenge and the level of curiosity (unpredictability) respectively (Malone
1981) during gameplay for the Bug-Smasher game. Likewise, for the Space-Invaders
game, challenge and curiosity are represented by the speed that the spaceships move
from tile to tile and the probability p of moving to left or right from their current
position, respectively. For both games, the former provides a notion of a goal whose
attainment is uncertain—the higher the S value, the higher the goal uncertainty and
furthermore the higher the challenge—and the latter effectively portrays a notion of
unpredictability in the subsequent events of the game—the higher the H or p value
the less predictable is the bug’s or spaceship’s behavior and therefore the higher the
curiosity. Finally, the level of fantasy corresponds to the number of different types of
bugs/spaceships (different colors and sounds) appearing in the game.

Fifty six normal-weighted (based on their body mass index) children whose ages
covered a range between 8 and 10 years participated in an experiment. The 56 chil-
dren were split into two groups of 28 children and each group was assigned to play
either Bug-Smasher or Space-Invaders. The Bug-Smasher experiment has already
been reported in previous work (Yannakakis et al. 2006a,b,c) while the Space-Invaders
experiment is first reported here.

By experimental design, each subject plays against two of the selected game states
of either Bug-Smasher or Space-Invaders in all permutations of pairs, thus, C8

2 = 28 is
the required number of children to cover all combinations of 2 out of 8 game variants
for each game. More specifically, each subject plays two games (A and B) of either
Bug-Smasher or Space-Invaders—differing in the levels of one or more entertainment
factors of challenge, curiosity and fantasy—for 90 s each. Each time a pair of games
(‘game pair’) is finished, the child is asked whether the first game was more “fun” than
the second game (see (Read et al. 2002) for the word terminology used for compara-
tive “fun” experiments with children). Children are not interviewed but are asked to
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fill in a questionnaire, minimizing the interviewing effects reported in Mandryk et al.
(2006b).

In order to minimize any potential order effects we let each subject play the afore-
mentioned games in the inverse order too. Statistical analysis of the effect of order of
game playing on children’s judgment of entertainment is presented in Sect. 5.1.

The playing time window chosen (90 s) is a compromise between effective data
collection (long enough child–game interaction to support a relative fun judgment)
and not overstretching children. Note that children’s time is a valuable commodity and
we attempt to exploit this to the maximum. Moreover, Playware games are physical
activity games and children playing are asked to play four games in a row (6 min in
total of energetic physical play with short rest breaks) which is a significant period of
energetic physical play.

All subjects are given the same instructions by an experimenter who is unaware of
the purpose of the experiment. No further oral or eye-contact communication during
experiment tasks and questionnaire is present, minimizing experimenter expectancy
effects (Rosenthal 2003). For the design of the children’s self-reports we
follow the principles of comparative “fun” analysis presented in Read et al. (2002) and
Yannakakis (2005). The endurability and expectations for the majority of children who
played both Playware games were very high, indicating that the game design used for
both games was successful. Specifically, all children were excited to play with Play-
ware as soon as they were informed about the rules of the games (determined using
a Funometer tool application [Read et al. 2002]) and the majority of children were
enthusiastic to play the game again (assessed using an Again-Again table [Read et al.
2002]).

To capture the children’s preferences for the game variants played, we use a
2-alternative forced choice (2-AFC) approach since it offers several advantages for
a subjective entertainment capture: it minimizes the assumptions made about chil-
dren’s notions of “fun” and allows a fair comparison between the answers of different
children. Since our focus is to construct a model relating reported entertainment pref-
erences to HR dynamics that generalizes over the reports of different children a pair-
wise preference approach (2-AFC) is preferred to a ranking approach (Mandryk et al.
2006b). Forcing the choice of children generates experimental noise, in that the child
may have no significant preference for one or other of the game variants played yet
must nevertheless express a preference; however, insignificant order effects provide
evidence that the experimental noise generated in this way is random (see Sect. 5.1).

The HR of the children is recorded in real-time using a wireless ElectroCardioGram
(ECG) device (POLAR s610i) consisting of pulse sensors placed on the chest of the
child. The RR intervals (time duration between two consecutive R waves) recorded
are automatically converted into HR with an accuracy of ±1 heart beat per minute
(bpm). Heart rates are calculated and stored every 5 s. Out of the total number of 224
games played in this experiment, in 82 games (41 game pairs) and 96 games (48 game
pairs) for the Bug-Smasher and the Space-Invaders respectively the HR signal was
properly recorded. In the remaining 46 games, HR data was lost because of hardware
failure. Malfunction of the device’s features (electrodes and data transmission) during
the game was the main cause of the recording failure. While a loss of data from 20% of
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Fig. 3 Difference of the initial heart rates for the two games played by each child (178 games in total, 89
game pairs)

the experimental games is substantial, there is no reason to suppose that the hardware
failure has any particular bias with respect to experimental hypothesis.

The set of HR time series collected from the 89 correctly recorded pair of games
underlies the analysis presented in this paper (see Fig. 3). Note that children played
all their assigned games on the same day, mitigating day-dependence effects on their
physiology (Picard et al. 2001). Cultural differences in the impact of affect on physi-
ology may also be present but are not examined here.

5.1 Order effects

To avoid any order effect of playing on the HR signal we allow each child 1 min to rest
in between the two games. Figure 3 shows that the resting time has a positive impact
on minimizing the percent difference between the initial heart rates in the two games
played dI . More specifically, the majority (60 out of 89) of dI values lie between
±10%. However there are 12 cases (out of 89) where dI < −10%, that is where child
is less aroused at the start of the second game than the first, and 17 cases where the
period of 1 min in between the games was not enough for the child’s arousal to drop
to the level it was just before the first game started (i.e. dI > 10%). A t-test for means
of paired samples demonstrates no significant difference in the initial HR between the
two games of the pair (t = −0.5691, p-value=0.2853).

To check whether the order of playing Playware games affects the children’s judg-
ment of entertainment, we hypothesize that there is no order effect and proceed as
follows. For each subject that played a pair of games in both orders, we count the
times K and J that the subject chooses the first and the second game respectively as
more entertaining in both pairs. In the case where the subject chooses the same game
in both pairs played, we take no action. The test statistic used to assess the truth of
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the hypothesis that there is no order effect is given by z(K , J ) = (K − J )/N, where
N = 56. The greater the absolute value of z(K , J ), the more the order of play ap-
pears to affect the subjects’ reported entertainment preference. The obtained z value
equals −0.1607 and its corresponding (Trinomial distribution) p-value equals 0.1058.
Therefore, the order effect null hypothesis is not rejected and we conclude that the
order of play does not significantly affect the children’s judgment of entertainment.
(While a 10% probability is not especially high, this result is consistent with a number
of other similar studies we have conducted that show no significant order effect
(Yannakakis 2005; Yannakakis et al. 2006c; Yannakakis and Hallam 2007a); see also
the second set of experiments reported in Sect. 9.1.2 where the order effect null hypoth-
esis probability is approximately 20%.)

6 Entertainment within Playware games

In this section, the HR signals obtained from the experiment for both Playware games
(see Sect. 5) are presented and analyzed. Specifically, an approach to processing the
HR signal and a statistical analysis of the correlation between the HR signal’s features
and reported entertainment preferences is outlined.

6.1 HR signal processing

Given the HR time series over 90 s for each game played, the following statistical
parameters are computed in order to represent features of the HR dynamics that may
correlate with expressed entertainment preferences of the child while playing a game.

– The average HR E{h}.
– The variance of the HR signal σ 2{h}.
– The maximum HR max{h}.
– The minimum HR min{h}.
– The difference D between the maximum and the minimum HR.
– The correlation coefficient R between HR recordings and the time t in which data

were recorded. This parameter provides a notion of the linearity of the signal (HR
data) over time.

– The autocorrelation ρ1 (lag equals 1) of the signal, which is used to detect the level
of non-randomness in the HR data.

– The approximate entropy (ApEnm,r ) (Pincus 1991) of the signal which quantifies
the unpredictability of fluctuations in the HR time series.

ApEn is a standard cardiovascular metric, which is closely related to the HRV metric
since HRV represents the variability in the fluctuation between successive heart beats
(Pincus and Goldberger 1994). A more regular heart beat will result in a lower HRV
than an irregular heart beat. Likewise, high regularity in HR signals results in low
ApEn values while low HR signal regularity yields high ApEn values. ApEn is based
on the natural logarithm of the conditional probability that two patterns that are similar
for m points will still be similar within a tolerance r at the next point. On that basis,
HR signals that demonstrate repetitive similar patterns tend to have relatively small
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ApEn values whereas more complicated and less structured signals tend to have higher
ApEn values.

According to Pincus (1991), to compute the approximate entropy, ApEn, of a
HR time series h(q), q = 1, 2, . . . , Nq , the series of vectors of length m, v(q) =
[h(q), h(q + 1), . . . , h(q + m − 1)]T is derived. The distance d(i, j) between two
vectors v(i) and v( j) is defined as the maximum difference in the scalar components
of v(i) and v( j). Then the number (N m,r

v (i)) of vectors j such that the distance be-
tween vectors v( j) and the vector v(i) is lower than r (d(i, j) < r ) is computed. The
probability to find a vector which differs from v(i) less than the distance (tolerance) r ,
Cm,r (i) is defined as Cm,r (i) = N m,r

v (i)/(Nq − m + 1) and the logarithmic average
over all vectors of the Cm,r (i) probability is given by (2).

Fm,r =
∑(Nq−m+1)

i=1 ln(Cm,r (i))

Nq − m + 1
(2)

ApEn is given by (3).

ApEnm,r = Fm,r − Fm+1,r (3)

Thus ApEn of a time series h(t) measures the logarithmic likelihood that runs of pat-
terns of length m that are close to each other will remain close in the next incremental
comparisons, m + 1. The ApEn fixed parameter values m = 2 and r = 0.2σ {h(t)}
used in this paper are recommended by the literature (Pincus and Goldberger 1994).

As mentioned in Sect. 2.1, the use of HRV as a cardiovascular metric has been
extensive in affective computing. The use of HRV in this paper might have revealed
changes in the frequency bands of the RR interval time series which would corre-
spond to changes attributed to entertainment versus changes attributed to physical
activity. However, HRV could not be calculated given the data provided by the avail-
able recording apparatus since the detected RR intervals are opaquely converted into
HR estimates by the wireless POLAR s610i ECG device used.

In addition, three different regression models were used to fit (in a least square
sense) the HR signal: linear, quadratic and exponential. The regression model param-
eters under investigation are:

– The slope s of the linear regression (hL(t) = st + α) on the signal. Linear least
squares fitting is used.

– The parameters β and γ of the quadratic regression (hQ(t) = βt2 + γ t + δ) on
the signal which respectively quantify the curvature and the rotation angle with
respect to the x-axis of the quadratic curve. QR factorization is used to fit the data.

– The parameters A, B and b of the exponential regression hE (t) = A(1−ebt )+ B.
A quantifies a notion of difference between initial and maximum HR; b portrays
the slope of this difference over time and B corresponds to an estimate of the ini-
tial HR. A trust-region reflective Newton optimization algorithm is used to fit the
data.

The disadvantage of the aforementioned regression model parameters against the HR
signal statistics is that they cannot be computed in real-time. The choice of the specific
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Fig. 4 Example of the HR signals and their corresponding regression lines in two pairs of game: A subject
(subject no. 18) plays a game of High challenge and curiosity (a) and then a game of Low challenge and
curiosity (b). Another subject (subject no. 21) plays a game of High challenge and Low curiosity (c) and
then a game of Low challenge and High curiosity (d)

regression models was made in order to cover a decent amount of the HR dynamics
which, in their majority, seem to follow the exponential function. The hE (t) function
gave the smallest standard error of fitting in 95.55% of HR signal samples (see Fig. 4(a)
and (d)). On the other hand Fig. 4(b) and (c) correspond to examples of HR signals
where exponential regression failed compared to the other regression models. Linear
and quadratic regression were applied so as to obtain additional features such as the
average slope and the curvature of the signal.

Figure 4 illustrates an example of the HR data recorded from two different children
playing a pair of Bug-Smasher games and the lines produced by the three regression
models. The left graphs of Fig. 4 correspond to the game selected by the child as more
entertaining of the two. For reasons of space, we present the HR dynamics of only two
game pairs. Note that the qualitative features of the signals are similar for all children
that played both Bug-Smasher and Space-Invaders: an initial rapid increase of HR
during the first seconds of the game followed by a stable, but noisy, condition of high
HR values.
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6.2 Statistical analysis

The aim of the statistical analysis presented here is to identify statistically significant
correlations between children’s notions of entertainment and any of the aforemen-
tioned HR signal features. For this purpose the following null hypothesis is formed:
the correlation between children’s reported judgment of entertainment and the exam-
ined parameters obtained from the recorded HR signal of the child, as far as the
different games played are concerned, is a result of randomness. The test statistic is
obtained through

c(−→z ) = 1

N

N∑
i=1

zi (4)

where N (89, in this paper) is the total number of game pairs where HR signals were
properly recorded, zi = 1 if the subject chooses as the more entertaining game the one
with the larger value of the examined HR signal feature and zi = −1 if the subject
chooses the other game in game pair i .

Table 1 presents the c(−→z ) values and their corresponding p-values for all above-
mentioned HR signal features for each of the two games independently and combined.
Average HR (E{h}), maximum HR (max{h}), D and ApEn appear to be the features
examined that are significantly—significance equals 5%, high significance equals 1%
in this paper—correlated to reported entertainment preferences. The obtained effects
of E{h}, max{h}, D appear to be commonsensical since both Playware games belong
to the genre of action physical games where the level of engagement of the user tends
to have a significant effect on physical activity. The significant correlation of E{h}
with entertainment preferences for the Bug-Smasher experiment alone has already
been reported in previous work (Yannakakis et al. 2006b).

In addition, Table 1 shows that the only feature correlated with entertainment pref-
erences in both games and in their combined HR data is E{h}. Space-Invaders seems
to have a greater impact on the combined significant effects of max{h} and D which
are due to the different type of physical effort demanded by the dissimilar games.
Bug-Smasher appears to be a demanding physical game that may in some variants
be too hard for some children at the end of 90-s time window. This may account for
why children’s maximum HR (max{h}) and the difference between their minimum
and maximum HR (D) appear less correlated with entertainment preferences in Bug-
Smasher than the respective HR signal features generated through the Space-Invaders
game.

On the other hand, Space-Invaders demands lower physical effort because of the
longer time interval in which the game’s main goal is to be accomplished. For instance,
if a bug appears for t seconds in Bug-Smasher, a spaceship appears for 4t seconds
in Space-Invaders while randomly moving from the top row of the game down to its
base (4 tiles of translation). As previously mentioned in Sect. 4.3, in the first case the
child has to learn to react fast (greater physical effort) whereas in the latter case, the
child has to learn to plan and predict fast (greater mental effort).
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Table 1 Correlation coefficients and their corresponding p-values between reported entertainment prefer-
ences and HR signal features

Feature Bug-Smasher Space-Invaders Total

c(−→z ) p-value c(−→z ) p-value c(−→z ) p-value

Statistics E{h} 0.41 0.0057 0.29 0.0297 0.34 0.0006

σ 2{h} −0.02 0.5000 0.20 0.0967 0.10 0.1982

max{h} 0.17 0.1744 0.37 0.0066 0.28 0.0052

min{h} −0.02 0.5000 −0.12 0.2354 −0.07 0.2625

D −0.02 0.5000 0.50 0.0003 0.28 0.0052

R −0.02 0.5000 −0.08 0.3327 −0.05 0.3359

ρ1 0.12 0.2663 0.20 0.0967 0.16 0.0686

ApEn 0.12 0.2663 0.25 0.0557 0.19 0.0446

hL (h) s 0.07 0.3776 0.16 0.1561 0.12 0.1445

hQ(h) β 0.07 0.3776 −0.25 0.0557 −0.16 0.0686

γ −0.12 0.2663 0.33 0.0146 0.12 0.1445

hE (h) A 0.07 0.3776 0.20 0.0967 0.14 0.1015

B −0.07 0.3776 −0.25 0.0557 −0.16 0.0686

b 0.02 0.5000 0.00 0.5572 0.01 0.5000

Significant p-values (at 5% or better) are tabulated in underlined bold, thus 0.01. The column named ‘Total’
corresponds to the combined data of both games

If we hypothesize that in such games the level of engagement has a linear mono-
tonic relation with average HR (E{h}) and/or the maximum HR (max{h}) and/or the
difference between the maximum and the minimum HR (D) it appears that the higher
these features’ values during a game the higher the child’s perceived entertainment
and the higher his/her physical activity. Moreover, the significant effect of the ApEn
value demonstrates that games that generate more complicated and less structured HR
signals tend to generate higher entertainment for the child.

The reported significant correlation between the average response time of children
interacting with Playware games and entertainment preferences (Yannakakis et al.
2006a) is consistent with the interplay between engagement, physical activity and
reported entertainment preferences demonstrated here. Moreover, it has been shown
(see Yannakakis et al. 2006a) that the challenge and curiosity entertainment factors
are not rank correlated with reported entertainment and only ‘average’ levels of game
speed and opponents’ spatial diversity appear to generate entertaining games. This
projects the personalization of “fun” for children and the individual requirements
(neither too small nor too large) they have on entertainment features such as challenge
and curiosity for a game to be appealing.

A further analysis of the only statistically significant correlation between HR sig-
nal features and reported entertainment obtained from both games and in total—that is
E{h},c(−→z ) = 0.3483—ispresentedhere.A t-test formeansofpairedsamplesbetween
E{h} values corresponding to preferred (entertaining) games and non-preferred (non-
entertaining) games demonstrates significant difference (t = −2.6417, P(T ≤ t) =
0.0048).
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7 Learning entertainment preferences

The statistical analysis presented in Sect. 6.2 demonstrated a significant rank correla-
tion only between E{h} and reported entertainment preferences for both Bug-Smasher
and Space-Invaders games. This section examines the hypothesis that a non-linear
approach (ANN) can yield a better predictor of children’s entertainment preferences.

The proposed approach to entertainment modeling is based on selecting a minimal
subset (see Sect. 7.1) of HR signal features and constructing a quantitative user model
that predicts the children’s entertainment preferences. For this purpose, a fully-con-
nected feedforward ANN for learning the relation between the selected HR signal
features (ANN inputs) and the “entertainment value” (ANN output) of a game is
presented. The assumption is that the entertainment value y of a given game, which
models the child’s internal response to playing the game, that is, how much fun it
is, is an unknown function of HR signal features which the ANN will learn. The
children’s expressed preferences constrain but do not specify the values of y for indi-
vidual games but we assume that the child’s expressed preferences are consistent.
Since there is no differentiable output error function for the learning problem, ANN
training algorithms such as back-propagation are inapplicable. Learning is achieved
through artificial evolution (Yao 1999) and is described in Sect. 7.2.

The sigmoid function is employed at each neuron, the connection weights take
values from −5 to 5 and all input values are normalized into [0, 1] before they are
entered into the ANN. In an attempt to minimize the controller’s size, it was determined
that ANN architectures with two hidden layers, containing five hidden neurons each,
are capable of successfully obtaining solutions of high fitness. This was determined
by considering the performance of ANN architectures with up to two hidden layers
containing up to 30 hidden neurons each.

7.1 Feature selection

Two different input feature set selection schemes are used and compared in this paper.
Given the HR signal features presented in Sect. 6.1, the n Best Features Selection
(nBest) and the Sequential Forward Selection (SFS) methods are applied. The nBest
selection method picks the n individually best features (with regards to a performance
function) from the feature subset. The SFS method, by contrast, is a bottom-up search
procedure where one feature is added at a time to the current feature set. The feature
to be added is selected from the subset of the remaining features so that the new fea-
ture set generates the maximum value of the performance function over all candidate
features for addition (Devijver and Kittler 1982).

The SFS method is used since it has been successfully applied in a wide variety
of feature selection problems yielding high performance values with minimal feature
subsets: see Haapalainen et al. (2005), for example, for further discussion and applica-
tion to the classification problem of process identification in resistance spot welding.
On the other hand, the nBest method is used for comparative purposes, being the most
popular technique for feature selection. Features selected by each method constitute
the input vector of the evolving ANN. The feature selection procedure followed here
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evaluates the usability of each one of the features available and obtains the minimal
feature subset approximation to the feature subset that performs best in the classifica-
tion between preferred games, non-preferred games and physical (non-game) exercise
control tasks (see Sect. 7.2).

In order to evaluate the performance of each feature subset the available data is
randomly divided into training and validation data sets consisting of 2/3 and 1/3 of the
data respectively. The performance of an ANN model is measured through the average
classification accuracy of the ANN in three independent runs using the leave-one-out
cross-validation technique on the training and validation data sets. Since we are inter-
ested in the minimal feature subset that yields the highest performance we terminate
the feature selection procedure (nBest or SFS) when an added feature yields equal or
lower validation performance than the performance obtained without it.

7.2 Genetic algorithm

A generational genetic algorithm (GA) (Holland 1975) is implemented, which uses
an evaluation function that measures the difference between the children’s reported
preferences of entertainment (assuming that pure physical exercise generates lower
levels of entertainment than the games classified by children as entertaining) and the
model output value y. In the algorithm presented here, the ANN topology is fixed and
the GA chromosome is a vector of ANN connection weights.

The evolutionary procedure used can be described as follows. A population of N
(1000, in this paper) networks is initialized randomly. Initial real values that lie within
[−5, 5] are picked randomly, from a uniform distribution, for their connection weights.
Then, at each generation:

Step 1 Each member (neural network) of the population is given three ni -tuple (where
ni is the number of selected HR signal features) values one for A, one for B and
one for E and returns three output values, namely y j,A (entertainment value of
the preferred game), y j,B (entertainment value of the non-preferred game) and
y j,E (entertainment value of the physical activity control task—see Sect. 8)
for each triple j (two games played and one exercise task) available. When
the y j,A, y j,B ANN output values are consistent with the reported preference
of subject j (i.e. y j,A > y j,B) or when the y j,A and y j,E values are consistent
with our assumption that the physical activity control task yields lower levels
of entertainment than the preferred game (i.e. y j,A > y j,E ) then we state that:
‘the values agree with the subject’ or that there is ‘agreement’ with the subject.
In the opposite case, we state that: ‘the values disagree with the subject’ or there
is ‘disagreement.’ Note that no ordering is assumed between the less-preferred
game and the physical control task.

Step 2 Each member i of the population is evaluated via the fitness function fi :

fi = 1

2Ns

Ns∑
j=1

{
g(d AB

j , ε) + g(d AE
j , ε)

}
(5)
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where d AB
j = y j,A − y j,B , d AE

j = y j,A − y j,E , Ns is the number of training

game pairs, g(d j , p) = 1/(1 + e−pd j ) is the sigmoid function and ε = 30 if
there is agreement and ε = 5 if there is disagreement. Both the sigmoidal shape
of the fitness function and its selected ε values are inspired by its successful
application in previous classification attempts of reported entertainment pref-
erences of children playing with Playware (Yannakakis et al. 2006a).

Step 3 A fitness-proportional scheme is used as the selection method.
Step 4 Selected parents clone an equal number of offspring or reproduce offspring by

crossover so that the total population reaches N members. The Montana and
Davis (1989) crossover operator is applied with a probability 0.4.

Step 5 Gaussian mutation occurs in each gene (connection weight) of each offspring’s
genome with a small probability pm = 1/n, where n is the number of genes.

The algorithm is terminated when either a good solution ( f > 0.9), a large number of
generations g has been completed (g = 10, 000) or when the classification accuracy
on a randomly selected data set consisting of 10% of the training data begins to drop.
The last termination condition is equivalent to the early stopping technique used in
conjunction with backpropagation training for over-fitting avoidance.

8 Preliminary physical activity experiment

Results presented in Sect. 6.2 have shown that E{h}, max{h} and D are HR signal
features that correlate with reported entertainment. Indeed, these are features that
also correspond to physical activity and therefore the main conclusion to be drawn
is that the more engaging the gameplay, the higher the physical activity (through the
aforementioned HR features) and the higher the perceived entertainment for a child.

This raises the question of whether the statistical effects observed genuinely reflect
entertainment value or merely the tendency of more engaging games to elicit more
physical activity. That is, is there anything in the type of physical activity that is char-
acteristic of an enjoyable game or is the analysis just comparing amount of physical
activity?

This section presents a preliminary set of physical control experiments and results
obtained through the proposed learning methodology in brief. Detailed analysis of this
set of experiments can be found in Yannakakis and Hallam (2007b).

8.1 Experiment description

To investigate the interplay between entertainment and physical activity we asked all
children that played Playware games to participate in an additional experiment: each
child was asked to run around a 3 m × 3 m space for 90 s. HR signal recordings were
obtained during this exercise task. The assumption here is that this exercise (physical
activity control) task is a non-entertaining activity for the child. This assumption was
supported by most children asking for the time remaining during the task, suggesting
a certain level of boredom for the activity. However, children were not asked whether
the running task was “fun” or not and it was not compared to any physical game task.
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Further details on the experimental protocol used can be found in (Yannakakis and
Hallam 2007b).

Children conscientiously followed the rules set by the experimenter and ran con-
tinuously for 90 s. Running generated higher E{h}, max{h}, and D values than the
corresponding values for Playware gameplay since it required more demanding phys-
ical activity from the child (Yannakakis and Hallam 2007b).

8.2 Feature selection

Given the selected features (ANN input) and the 150 pairs of comparisons (75 pairs of
preferred/non-preferred game and 75 pairs of preferred game/exercise task) ANNs are
evolved by following the approach presented in Sect. 7.2 and evaluated using leave-
one-out cross-validation (see Sect. 7.1). The two feature selection methods described
in Sect. 7.1 are applied and compared. The initial subset (ANN input) for both meth-
ods includes the feature that performs best in the single feature experiment: ApEn
(Yannakakis and Hallam 2007b).

The best cross-validation performance (80.66%; average of 88%, 78% and 76%)
is achieved when the ANN input contains ApEn and E{h}. More HR signal features
added in the feature subset do not yield significantly higher classification accuracy
(Yannakakis and Hallam 2007b).

The obtained classification accuracy demonstrates the existence of an ANN model
that successfully predicts the children’s reported entertainment preferences given a
child’s individual HR signal features: ApEn and E{h}. However, difficulties in obtain-
ing higher classification accuracy are found because of experimental noise in both the
recorded features and the children’s answers in self-reports. Even though comparative
“fun” analysis is a reliable and established method for capturing entertainment pref-
erences in computer (Yannakakis and Hallam 2007a) and mixed-reality (Yannakakis
et al. 2006a) games, it generates a certain amount of uncertainty in subjects’ reported
answers. Uncertainty appears when the two games played are not significantly differ-
ent with regards to the entertainment value they generate for the player and therefore
cannot be distinguished. In this circumstance, players appear to express a random
preference. This ‘dilutes’ the data in which genuine preferences are expressed from
the point of view of the machine learning algorithm.

HR signals obtained through this preliminary control experiment show that the
running task appears to involve much more physical effort (high E{h} values) than
the physical effort required in a Playware game, and further that the physical effort
involved is different in kind (low ApEn values; high regularity of the HR signal). It
follows that the exercise control experiment may generate HR dynamics rather easy
to separate from game-play HR dynamics, and allows one to distinguish entertaining
game-play from exercise purely on the artificial basis of the kind of physical activ-
ity taking place. It is therefore, in retrospect, not a good control for physical activity
effects. Detailed experiment analysis can be found in Yannakakis and Hallam (2007b).

Consider, though, that one cannot control completely for physical activity effects,
since the games being played are physical games whose differing enjoyability may nat-
urally be expected to result in different degrees of physical engagement by the player.
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A better control, therefore, would provide game-like—but non-entertaining—physi-
cal activity. Section 9 proposes a more appropriate experiment, based on a suggestion
from one of the anonymous reviewers, for controlling and isolating the elements of
physical activity from an HR signal so that features of HR signal corresponding to
entertainment become more apparent.

9 Controlled physical activity experiment

The question of whether there is anything in the type of physical activity that is char-
acteristic of an entertaining game remains since the first (exploratory) experiment for
controlling for physical activity effects through recorded HR signals suffered from
the fact that the required physical activity in game and non-game tasks was artificially
different. Therefore, we designed a new experiment where the physical activity control
is achieved through a non-entertaining variant of the Bug-Smasher game named the
“Stomping game.”

This section describes the experimental protocol used and presents a neuro-evo-
lution model for classifying between entertaining and not entertaining game phys-
ical activity through HR signal features. The new ANN model is trained on data
obtained from the previously described experiment (data set 1)—excluding HR signal
data obtained from the running task—exactly as described in the foregoing text. The
model is then evaluated using unseen data from the physical activity control experi-
ment described here, to determine the extent to which the constructed ANN user model
generalizes. Data from this experiment is referred to as “data set 2” in the sequel.

9.1 Experiment description

For the new experimental protocol, we asked 18 naïve normal-weighted children (9
boys and 9 girls) aged 8–10 years to play five games each on the Playware platform.
The games were played on the same day, satisfying the day-dependence condition of
the physiological state (Picard et al. 2001). The set of five games played comprised
four games of Bug-Smasher, in two pairs as in the experiment described in Sect. 5, and
a physical activity control game. As in the previous experiment, two game variants
of different levels of entertainment features (challenge and curiosity) were played in
both orders, giving four Bug-Smasher variant games plus the control game.

Bug-Smasher was used for two reasons. First, the new control game is derived
(following Malone’s methodology) by eliminating putative entertaining features from
Bug-Smasher which makes the latter an appropriate comparison for the new control.
Second, while an analogous control for the Space Invaders game could have been
devised, making a between-game comparison possible in addition to a within-game
comparison, available experimental time limited the complexity of the protocol that
could be completed.

The control game played is the “Stomping game” mentioned above. For this game
children were asked to stomp on a different 1 of 4 constantly lighted tiles of different
color each time they heard a sound coming from the platform, rather than to run around
a closed square space. The four tiles are placed at the corners of a 3 × 3 square in
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the center of the 6 × 6 platform; two tiles equals the average distance between bugs
appearing in the Bug-Smasher game. The sound representing the frequency of child–
game interaction was emitted at a rate equal to the average of the bug appearance rates
of the two different levels of challenge used in the Bug-Smasher game.

The devised control game is designed on the basis of Malone’s studies where fea-
tures of the game are subtracted and the effect of such changes on children’s entertain-
ment is investigated (Malone 1981). The “Stomping” control game lacks an essential
element for successful game design, which is the provision of an apparent goal for
the user (Malone 1981). Moreover, the curiosity entertainment feature is minimal
since there is complete information of the game’s future states and game interaction
is absent given that the playground does not react to the child’s actions. That is, bugs
are not smashed (turn red and disappear) when pressed. Given these changes, the pro-
posed control game should not be entertaining for children; and children’s self-reports
confirm that in the majority of cases this is so.

All details regarding the protocol of the experiment follow the principles of the
previous experiment described in Sect. 5. The only difference lies in that, unlike
the previous experiment, children are asked for their preference between the control
Stomping game and the variants of Bug-Smasher played and they were given addi-
tional instructions for it. To minimize order effects of the control game, the Stomping
game is placed either first in the sequence of five games played, after the first pair of
Bug-Smasher games played (third in the sequence), or after both pairs of Bug-Smasher
games played (fifth in the sequence) with equal probability. Having five tasks (games)
in total for each child leaves four fun comparisons (expressed preferences) for each
child to report: 24 “fun” comparisons between the Bug-Smasher game variants and
the Stomping game and 38 “fun” comparisons between different variants of the Bug-
Smasher game.

In the “fun” comparison between the Bug-Smasher game and the Stomping game
22 out of 24 preferences expressed by the children preferred the Bug-Smasher game—
confirming the assumption that the Stomping game is a comparatively non-entertaining
physical game. Some indicative graphs from children’s real-time HR recordings dur-
ing control experiment 2 are presented in Fig. 5. The clear observation derived from
Fig. 5 is that children appear to be engaged more in the preferred (reported as more
entertaining) game than either the Stomping game or the non-preferred (reported as
less entertaining) game. This is reflected in their higher E{h} values, among other
things. These observed effects are valid for the majority of children that participated
in this experiment. Please note that E{h} values generated from the preferred game
are greater than the respective E{h} values generated from the Stomping and the
non-preferred game in 44 out of 62 instances in total.

9.1.1 Statistical analysis

The HR signal features presented in Sect. 6.1 are used and the statistical analysis
described in Sect. 6.2 is followed for data set 2. The only features that demonstrate
highly significant effects on reported preferences of entertainment are the E{h} (c(−→z )

= 0.392, p-value = 0.003) and max{h}(c(−→z ) = 0.357, p-value = 0.007). The
obtained effect of E{h} values are consistent with the ones derived from data set 1
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Fig. 5 Comparative HR signal graphs of four children: Stomping, preferred and non-preferred
Bug-Smasher games. All four children preferred the game (preferred or not) to the stomping game. In
subfigures (a), (b) and (d) even the non-preferred game is preferred to the stomping game. In subfigure
(c) there is no information for the child’s preference between the game reported as non-preferred and the
stomping game since the first is played two games after the second

verifying the rank-correlation relationship of average HR with entertainment prefer-
ences of the Bug-Smasher game.

9.1.2 Order effects

As in the first experiment, presented in Sect. 5, we allow each child one minute to rest
in between two games in order to avoid any order effect of playing on the HR signal.
Given the initial HR of data set 2, the majority (51 out of 62) of the percentage differ-
ences between the initial heart rates in the two games played (dI ) lie within ±10%.
There are seven cases where dI < −10% and 4 where dI > 10%. A t-test for means
of paired samples demonstrates no significant difference in the initial HR between the
two games of the pair (t = 0.6896, p-value = 0.4926).

To check whether the order of playing the games of experiment 2 affects the chil-
dren’s expressed entertainment preferences, we used the test statistic z presented in
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Sect. 5.1. The obtained z value is −0.1666 with corresponding p-value is 0.2025,
demonstrating that the order of play does not significantly affect children’s reports.

9.2 Feature selection

Training attempts presented in Sect. 8.2 included HR signal data obtained from the
exercise (running) task since the latter was used there as a control experiment for phys-
ical activity. The purpose of the second experiment is to determine whether game-like
physical activity can be discriminated effectively by an ANN user model constructed
using the obtained HR signals. Thus, this time, HR signal data from experiment 1 (data
set 1) are used for training, but HR data obtained from the running task is excluded. Fea-
ture selection is again used as in Sect. 8.2 to find a new minimal feature set that yields
the highest measured consistency between the ANN output and the children’s reported
entertainment preferences on the validation data. Then, data set 2 is used unseen for
evaluating the highest performing ANNs evolved on data set 1 (see Sect. 9.4).

As in Sect. 8.2, nBest and SFS described in Sect. 7.1 are applied and compared.
The only difference between the GA described in Sect. 7.2 and the one used here is the
omission of the g(d AE

j , ε) component in Eq. 5 since there is no need for comparison
between exercise E and game A physical activities. Given the 75 pairs of preferred/non-
preferred game comparisons, ANNs are evolved by following the approach presented
in Sect. 7.2. As in the previous experiment, the data is partitioned into 2/3 training and
1/3 validation data subsets and the leave-one-out cross-validation technique is used to
obtain the average classification performance of the ANNs.

The initial subset (ANN input) for both methods includes the feature that performs
best in the single feature experiment. This feature is the correlation coefficient R
between HR recordings and the time t in which data were recorded with a cross-vali-
dation performance of 72.00%. The difference in the best feature obtained (ApEn was
the best feature in the previous experiment) is evidently due to the different nature
of the running HR signal data included in the data set from that experiment. The
success of ApEn in that experiment appears to be due to its usefulness for discrimi-
nating between game and non-game activities rather than preferred (entertaining) and
non-preferred (less-entertaining) games.

Applying feature selection for more than a single feature, the SFS method generates
feature subsets that yield higher validation performance than feature subsets gener-
ated by nBest, as presented in Table 2. The best cross-validation performance (76.00%;
average of 80.00%, 76.00% and 72.00%) is achieved with the feature subset {R, E{h}}
while adding more HR signal features to the subset do not yield significantly higher
performance (see bottom row of Table 2).

Results show the difficulty in distinguishing HR signals between games in terms of
the reported preferences of entertainment. This is demonstrated through the lower per-
formance obtained without HR signals from the running task (76%) compared to the
respective performance on training including those HR signals (80.66%). Since HR
signals obtained from the running task apparently have quite different dynamics from
game activity HR signals, the overall classification task appears to be easier when run-
ning HR signal data are included in the data set. The binomial-distributed probability
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Table 2 Classification accuracy (%) of random network, nBest and SFS feature selection methods

Random network P nBest SFS

Feature subset P Feature subset P

{R} 72.00 {R} 72.00

45.86 {R, s} 70.66 {R, E{h}} 76.00

{R, s, E{h}} 72.00 {R, E{h}, D} 74.66

Random network performance is the average performance of ten random weight value initializations of the
network. The random network’s input vector consists of the best feature subset that generates the highest
cross-validation performance (i.e. {R, E{h}})

of the 76.00% cross-validation performance occurring at random is 0.0014, demon-
strating statistical significance and providing evidence for this solution’s robustness.

9.3 Evolved ANN: {R, E{h}} feature subset

A more detailed analysis of the best classifier obtained from experiment 2 is presented
here. Given the {R, E{h}} feature subset as inputs, the evolved ANNs correctly match
70.66 % (average of the three training trials; σ = 1.15%) of children’s answers on
entertainment while achieving a classification performance of 76.00% (σ = 6.42%)
on unknown validation data. Low training performances are due to the early stopping
mechanism applied as described in section 7.2. The function between R, E{h} and the
game’s predicted entertainment value (y) given by the highest performing ANN found
is illustrated in Fig. 6. As in results presented in Yannakakis and Hallam (2007b), all
three fittest ANNs generated, each trained on different sets comprising 2/3 of total
data, exhibit similar qualitative features of the surface illustrated in Fig. 6.

The general trend appearing in Fig. 6 is that higher E{h} values, independently
of the HR signal’s linearity (R), tend to correspond to games of higher entertain-
ment, which is the observation made early in the statistical analysis of the data (see
Sect. 6.2). Another clear observation is that the combination of low R and E{h} values
(R < 0.3, E{h} < 0.3) corresponds to games of low entertainment values. Further-
more, high degree of linearity in the HR signal (R > 0.8) combined with low average
HR (E{h} < 0.3) results in high entertainment preference (y > 0.9). This suggests
that even though E{h} is kept low, the game is still entertaining if HR increases linearly
with respect to time. In this case, the child is highly engaged in the game through-
out the 90-s time window and reports the game as entertaining. Non-preferred games
appear to generate a stable (or even decreased) HR in particular at the end of the
game which reflects low R values. This corresponds to a rather static playing behavior
demonstrating the low level of the child’s engagement. Thus, in a sense, conclusions
derived from Fig. 6 are consistent with previous studies (Yannakakis et al. 2006a)
on the correlates between child–game interaction features and entertainment prefer-
ences in the Bug-Smasher game where a significant correlation between the number
of interactions with the game platform and reported entertainment is demonstrated.
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Fig. 6 Evolved ANN that yields the best classification accuracy on unknown data (80.00%): ANN output
y (entertainment; the darker the higher) with regards to R and E{h}. Points plotted correspond to the 50
data of the validation set including 25 preferred games (squares) and 25 non-preferred games (circles).
Game pairs are connected with lines

A t-test for means of paired samples of the E{h} values between the games chosen
by the subjects as more entertaining and the games chosen as less entertaining shows
a significant difference (t = 2.71, p-value = 0.0041) while the respective t-test for
the R values shows that the examined HR signal feature values are not significantly
different (t = 0.25, p-value = 0.7962). The non-correlation with R values combined
with the statistically significant binomial-distributed probability (0.0014) indicate that
the non-linear combination of R and E{h} is necessary for a successful predictor of
reported entertainment for these Playware games.

9.4 Validation on data set 2

To investigate the extent to which the predictive model of entertainment preference
computed using the data from set 1 (excluding the running task) generalizes to new
experimental data, the best performing evolved ANNs presented in Sect. 9.3 are pre-
sented with and evaluated on the unseen game and control task data of experiment 2.

Table 3 shows the average total classification accuracy (fourth column) and the
sub-classification performance for the comparisons between the Bug-Smasher game
played and the Stomping game (second column) as well between the Bug-Smasher
game chosen as more entertaining and the Bug-Smasher game chosen as less enter-
taining (third column) of all three evolved ANN.
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Table 3 Evolved ANNs (feature subset: {R, E{h}}) trained on data set 1: classification accuracy (%) on
unseen data set 2

Bug-Smasher game vs. Preferred game vs. Total
Stomping game non-preferred game

Random network 39.13 33.33 35.59

{r, E{h}} 69.56 61.11 64.40

The average classification performance of 10 networks with random weights is given for comparison

The performance obtained equals 64.40%, which appears rather low compared to
76% of correct matching on the validation data of set 1. However, the reported com-
plexity of classifying emotions through physiological state (Picard et al. 2001) and the
binomial-distributed probability of this performance to occur at random (6.03 · 10−5)
suggest that the evolved ANNs are successful predictors of children’s reported enter-
tainment preferences based on their physiological state. The average performance of
10 ANNs identical in structure to the evolved ones, but with random weights, is given
for comparison.

10 Discussion and conclusions

This paper explored the interplay between physiological signals and children’s enter-
tainment preferences in physical playgrounds. More specifically, the quantitative im-
pact of HR signal statistics and regression model parameters on children’s reported
entertainment was investigated through two dissimilar action games (Bug-Smasher
and Space-Invaders) played on the Playware playground. The principal focus of this
paper was on the construction of a user model of a child playing a Playware game
that can predict the child’s answers to which variants of the game are more or less
“fun.” The model is constructed using neuro-evolution applied to statistical HR signal
(measured during play) features. The output of the constructed model is a real number
in the range [0, 1] such that more enjoyable games receive higher numerical output.
This work is novel in that it examines the physiological state (HR signal) correlates
of reported “fun” in physical activity games, isolates HR signal features attributed to
entertainment preferences in such physically demanding games and provides a sub-
jective model (predictor) of reported “fun” grounded in HR signal features obtained
through the comparative “fun” experiments proposed.

Among the HR signal features examined, the average HR (E{h}), the maximum
HR, the difference between maximum and minimum HR and the approximate entropy
(ApEn) of the HR signal of the child were found to be the statistics that correlate
significantly with the child’s expressed entertainment preference. However, only the
average HR was correlated significantly with children’s entertainment preferences
in both Bug-Smasher and Space-Invaders games played. While it is perhaps techni-
cally inappropriate to combine data from both Playware games for statistical analysis
we, nevertheless, argue that it is appropriate to combine these data for training user
models because we explicitly want to examine a model that performs well on both
games. Building a separate model for each game would result in two easier machine
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learning problems. Thus, the classification performances presented in this paper are
underestimates of what might be possible with separate training.

HR signal features provide a means for distinguishing between entertaining games
and non-entertaining games as well as between gaming activities and both game-like
and non-game-like non-entertaining physical activities (stomping and running). This
paper examined the hypothesis that physical activity through games reported as enter-
taining has a quantitatively dissimilar impact on HR dynamics than a non-entertaining
form of physical activity. The first experiment designed to control physical activity
was based on children’s HR signals during a running task. HR signal feature selection
on these HR signal data extracted the feature subset {E{h}, ApEn}. These inputs feed
ANNs which correctly predict the reported entertainment preferences of children with
a cross-validation accuracy of 80.66% on unseen data. Even though the ANN model is
an effective discriminator of physical game activity and running, its good performance
is partly due to running’s being a qualitatively different type of physical activity.

A more suitable experiment for controlling and isolating the elements of physical
activity from an HR signal was therefore designed. The hypothesis under investiga-
tion here is whether there is some kind of physical activity that an entertaining game
elicits and a non-entertaining game does not. The second control experiment designed
is based on a comparative “fun” analysis between variants of the Bug-Smasher game
and the Stomping game which is objectively reported by children as less entertaining
than the Bug-Smasher game. A new ANN model trained on data obtained from the
first experiment—excluding HR signal data obtained from the running task—and val-
idated on unknown data of the same set yield a cross-validation performance of 76%.
Feature selection is repeated generating a new feature subset including the average
HR (E{h}) and the correlation coefficient R between HR samples and the time in
which samples were recorded. A cross-validation performance of 64.40% is obtained
when evaluating the ANN trained on data from the first experiment using unseen data
from the second experiment. Even though the obtained performance appears low one
has to consider the difficulty of classifying accurately emotions through physiological
state (Picard et al. 2001) and the binomial-distributed probability of this performance
to occur at random (6.03 · 10−5). These provide evidence that the evolved ANNs are
successful predictors of children’s reported entertainment grounded on their physio-
logical state and validate the hypothesis that there are HR signal features (E{h} and R)
corresponding to physical activity that can capture entertainment in physical games.

The statistics and regression models (linear, quadratic, exponential) used cover a
large portion of the HR signal’s qualitative features. However, more HR signal statis-
tics could have been used (e.g. HRV, HR gradient statistics proposed by Picard et al.
2001) if the equipment used stored RR intervals as well as the HR signals obtained.
Specifically, the use of HRV measures would allow observing the frequency bands
attributed to physical activity separately from those attributed to entertainment. Even
though the approximate entropy of HR signals is somewhat correlated with HRV, the
latter is of great importance for this work for the above-mentioned reasons. Note also
that one cannot control completely for the features of physical activity because the
phenomenon measured is physical activity. The Stomping game used is a game-like
control task which is objectively less entertaining than the Bug-Smasher game; thus,
being a suitable control of physical activity. The use of HRV measures combined with
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suitable control tasks like the Stomping game could lead to a more reliable control
of the relationship between entertainment, arousal and physical activity. Thus, future
experiment plans include the use of more advanced ECG apparatus for HRV calcu-
lation as well measurements of other biosignals (e.g. GSR). Alternatively, the use of
accelerometers, or the computation of game action measures (e.g. number of inter-
actions/stomps on the playground) and their embedding in the model would further
enhance the control of physical activity.

However, the enhanced model is still unlikely to recognize positive or negative
valence of the affect—e.g. pleasurable excitement from anger. Children irritated by
playing Playware games in general may show signs of arousal without increased phys-
ical activity, while children motivated to play harder by anger with competitors will
exhibit arousal and physical activity but may not be having “fun.” To the extent that
their physical activity is typical of the Playware game, the ANN model presented here
will nevertheless assert that they are enjoying themselves.

The proposed entertainment model, in its current state, demonstrates strong evi-
dence that when children are having “fun” during physical play they are engaged
more which is reflected through increased physical activity. On the other hand, there
is little evidence about the inverse relation between affect and physical activity in this
study due to the aforementioned limitations. Measures obtained through future exper-
iments (e.g. using HRV) and additional valence control experiments will throw more
light on the relation in physical games between arousal, physiology, physical activity
and excitement; whether that is “fun,” anger or other.

As far as the experiment protocol is concerned, a 4-alternative forced choice
(4-AFC) approach will be adopted for future protocol design. Children will be able
to choose among the following alternatives: one game is more “fun” than the other
(2-AFC), both games are equally “fun,” neither game was “fun.” This protocol pro-
vides similar information for the machine learning process while eliminating the noise
generated by 2-AFC. The idea of implementing the 4-AFC approach was suggested
by an anonymous reviewer and was considered during the design of the second re-
ported experiment; however, the 2-AFC approach was kept for consistency with data
obtained from the initial exploratory experiment.

We believe that the entertainment modeling approach through HR dynamics pre-
sented here is general over the majority of action games that could be created with
Playware since Bug-Smasher and Space-Invaders between them represent a large pro-
portion of the features met in Playware action games. Moreover, it is our belief that
the entertainment models proposed here may very well be applied to other interactive
entertainment systems that include physical activity. However, each game demon-
strates individual entertainment features which may have an impact on the child’s HR
signal and therefore, new games need to be tested to confirm the generality of the
approach.

Individual differences in children’s physiology, preferences and playing behavior
generate difficulties in generalization over subjects. This is a fundamental limita-
tion of attempting to construct a model based on combined data from multiple sub-
jects: a game that to one child is exciting and fun may to another be too fast, or too
slow. Nevertheless the results presented show that some generalization across indi-
viduals is possible, in that the evolved ANNs do predict children’s preferences with

123



Entertainment capture through heart rate activity

reasonable performance. With further work it may be possible to improve performance,
for example by clustering individual players into classes depending on observed play-
ing style. Each class could then have its own model, simplifying the machine learning
problem.

The proposed approach can be used for adapting the game’s entertainment features
according to the player’s individual HR signal dynamics in “real-time”(i.e. at regular
intervals or using a sliding window). The key to this is the observation that the models
(ANNs) relate HR signal features to an estimated value (y) of entertainment prefer-
ence which is a continuous differentiable function of the feature signals. It is therefore
possible in principle to infer what changes to game features and furthermore to HR
signal features will cause an increase in the interestingness of the game, and to adjust
game parameters to make those changes. (This may seem surprising since the model
inputs consist of rank-preferences at particular points; however, the machine learning
process interpolates a consistent function between these data.)

Thus, the partial derivatives of ϑy/ϑ E{h} and ϑy/ϑ R indicate the change in enter-
tainment preference for a small change in an individual HR signal feature. One of the
advantages of the feature subset {E{h}, R} found is that both its feature values can be
easily computed from windowed data. Given knowledge of the relationship between
game features (i.e. challenge, curiosity and fantasy) and HR signals, one might then
determine which game features need to be adjusted and to which levels in order for
the HR signals to change in the directions required by the aforementioned partial
derivatives.

Physiological signals are of great importance for the investigation of the interplay
between physiology and reported entertainment and could be combined with player-
game interaction data for the effective construction of user models. However, the
long-term goal of this study is not on the use of physiology, but rather on the use of
data obtained from the player–game interaction for the construction of entertainment
models within the Playware playground. Given that the current state of commercial
bio-sensing technology is too intrusive, in the real-world scenario, any Playware phys-
ical game could not easily incorporate such biosignal equipment—though of course
future and emerging technologies in this area may make access to biosignals natural
in future versions of the system.
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