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Abstract 

Some of the biggest problems tackling Higher Education Institutions are students’ drop-

out and academic disengagement. Physical or psychological disabilities, social-economic or 

academic marginalization, and emotional and affective problems, are some of the factors that 

can lead to it. 

This problematic is worsened by the shortage of educational resources, that can bridge the 

communication gap between the faculty staff and the affective needs of these students. 

This dissertation focus in the development of a framework, capable of collecting analytic 

data, from an array of emotions, affects and behaviours, acquired either by human observations, 

like a teacher in a classroom or a psychologist, or by electronic sensors and automatic analysis 

software, such as eye tracking devices, emotion detection through facial expression recognition 

software, automatic gait and posture detection, and others. 

The framework establishes the guidance to compile the gathered data in an ontology, to 

enable the extraction of patterns outliers via machine learning, which assist the profiling of 

students in critical situations, like disengagement, attention deficit, drop-out, and other 

sociological issues. 

Consequently, it is possible to set real-time alerts when these profiles conditions are 

detected, so that appropriate experts could verify the situation and employ effective procedures. 

The goal is that, by providing insightful real-time cognitive data and facilitating the 

profiling of the students’ problems, a faster personalized response to help the student is enabled, 

allowing academic performance improvements. 

Keywords: Student Engagement; Automatic Emotion Detection; Affective Computing; 

Eye Tracking; Facial Expression Recognition; 
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Resumo 

Alguns dos maiores problemas que assolam as Instituições de Ensino Superior são as 

desistências e a falta de motivação por parte dos estudantes. As incapacidades físicas ou 

psicológicas, marginalização académica ou socioeconómica, e problemas emocionais e 

afectivos, são alguns factores que podem contribuir para esses problemas. 

Esta problemática é agravada pela falta de recursos educacionais, que consigam ligar as 

falhas na relação entre os professores e as necessidades afectivas destes estudantes. 

Esta dissertação centra-se no desenvolvimento de uma plataforma, capaz de capturar 

dados analíticos, de uma selecção de emoções, afectos e comportamentos, adquiridos por 

observação humana, como por exemplo por um professor numa sala de aula ou por um 

psicólogo, ou por sensores electrónicos e software de análise automática, tais como dispositivos 

de eye tracking, software de detecção de emoções através de reconhecimento de expressões 

faciais, detecção automática do andar e da postura, entre outros. 

A plataforma estabelece uma orientação para compilar a informação recolhida numa 

ontologia, para permitir a detecção de outliers dos padrões, através de técnicas de machine 

learning, para assistir à identificação de perfis de estudantes em situações críticas, tais como 

falta de motivação, falta de atenção, desistências e outros problemas sociológicos. 

Consequentemente, é possível despoletar alertas em tempo real, quando estas condições 

dos perfis forem detectadas, para que os especialistas adequados possam verificar a situação e 

utilizar procedimentos eficientes. 

O objectivo é, através da disponibilização de dados cognitivos em tempo real e da 

facilitação da detecção dos problemas dos estudantes, que seja possível uma resposta rápida e 

personalizada na ajuda ao estudante, possibilitando melhorias no desempenho escolar. 

Palavras-chave: Motivação Académica; Detecção Automática de Emoções; Computação 

Afectiva; Eye Tracking; Reconhecimento de Expressões Faciais; 
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1 Introduction 

A growing problem in Higher Education Institutions (HEI) is the amount of student 

dropouts due to disabilities, emotional factors, and economic, social or academic 

marginalization. This is worsened by the lack of educational resources, among faculty staff, to 

meet the requirements affecting vulnerable students, and by the gap in communication among 

staff, educators and administrators. 

The students’ cultural and social background is a strong influence in their educational 

process, and can often lead to social exclusion and marginalization, in learning activities and 

community life, further reducing students’ will to learn and self-grow. 

An adapted educational system which makes use of technology to aid teachers and 

students, allied with inclusive educational planning and policy-making, may help mitigate these 

problems. 

In the recent decades, society shifted from a passive consumerism of information to an 

active producer and gatherer of knowledge, mainly due to the globalization of the Information 

and Communication Technologies (ICT). This shift in paradigm is more so evident in our 

education systems, where the integration and use of new technologies has been stimulated by 

governments worldwide [1]. 

In the United States, the National Education Technology Plan sets a series of 

recommendations for teachers, educators, faculty staff, researchers, policymakers, technology 

developers, community members and organizations, and learners and their families, in order to 

create a collaborative environment for technology enabled learning [2]. 

A report to the European Commission on new modes of learning and teaching in higher 

education sets the recommendation to personalize individual ways of learning, centered in the 

student, using technology in the classroom to combine all the different needs and to offer a 

personalized experience for each student, which improves the effectiveness of learning and can 

also have significant effect in reducing drop-outs [3]. 
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Technology-enabled environments can help improve the students learning procedure, 

facilitating the access to information and knowledge, adapting its content to the individual needs 

of each student, increasing the stimulus for learning, and easing the communication between the 

teacher and the learner, providing a scenario of equal opportunity for every student, open to a 

collaborative process. 

This ICT integration in the learning environment has been accomplished in many ways, 

the most recognized being the virtual or online learning platforms, where numerous courses and 

degrees are available. Other examples are the use of electronic grade books, real-time feedback 

on teacher and student performance and learning games [4]. 

1.1 Dissertation Integration – ACACIA 

The project ACACIA stands for Apoyo, Refugio, Comunicación, Adaptación, Innovación 

y Enriquecimiento (Support, Refuge, Communication, Adaption, Innovation and Enrichment) 

and is designed around the integration of experiences, resources, teams, problems and solutions 

in HEI. 

The main goals of the project are the detection, prevention and eradication of several 

education problems in the HEI in South and Central America, such as school dropouts due to 

emotional factors, discrimination and marginalization by disparity or inequality, learning 

disabilities or communication gaps between involved members. 

In order to achieve such goals, the intra- and inter-institutional cooperation in the 

development and production of educational and technological resources is needed. Using 

innovative technologies to complement educational processes, the development of social and 

emotional strategies for the population risking academic exclusion, is required. This is 

accomplished with new institutional organizations: the Professional Educational Development 

and Supporting Centers, named CADEP. 

CADEP centers make use of an integrated system of 5 modules (Empodera, Innova, 

Cultiva, Apoya and Convoca), in order to articulate with the educational community for 

comprehensive support with an individual approach to each student. The CADEP modules 

function together to track students at risk, to support and train technical, academic and 
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administrative staff of the institution, explore new teaching strategies and to utilize innovative 

information and communication technologies in didactic classes, stimulating the 

entrepreneurship between students and professors. 

This dissertation work is integrated in the ACACIA project, more specifically in the 

Apoya module. This module has two components, the first one is technological and the second 

one is human. 

The goal of the technological component is to implement an automated emotion detection 

system that allows to monitor and support students by providing automatic recommendations. 

The human component seeks to educate, inform and divulge throughout the academic 

community, guidelines for the recognition and handling of persons in situations of exclusion 

(attention disorder, including disability, cultural differences, extreme emotional situations, etc.). 

This module directly relates to all other development modules, providing valuable 

information to Empodera, Innova, Cultiva and Convoca. In the final design the module will be 

integrated in CADEP, and will communicate with Disemina. Disemina provides guidelines for 

the detection and execution of situations that may generate social exclusion attending the 

broadcasting actions to raise awareness, for apprehension and for the action. 

Apoya has a set of tasks that are described as follows: 

Task 1 – Automatic detection of affective states. The work focuses on the implementation 

of a system for detecting emotions, also defining a methodology for data collection and 

methodology for emotional labeling and system management. 

Task 2 – Tracking and recommendations automation. This work deals with the 

automation of monitoring the student and the system that generates recommendations to help 

improve their academic level. 

Task 3 – Promotion of multiculturalism and diversity. The objective of this task is to 

generate guidelines for the detection and recognition of people at risk of social exclusion, a 

guide for action (treatment, activities, visibility) and a system of courses to train university and 

technical personnel (teachers, administrative staff and technical supporters included). 

Task 4 – Integration strategies. The objective of this task is to define the protocol 

operation and the internal articulation of Apoya module, define the operation of the laboratory 

module, define the diffusion and disclosure system and the system of internal evaluation of the 

module itself. 
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1.2 Objectives of the Dissertation 

The work presented in this dissertation focused in the creation and development of tasks 

1 and 2. It begins with a study of the human emotions and their role in education systems, 

followed by possible application scenarios, the design, development and implementation of a 

framework, and respective aiding tools, that allow the gathering of students’ emotions and 

behaviours, and analyses the collected data to extrapolate suggestions and alerts, of problematic 

student profiles. 

1.3 Research Method 

The research method used in this dissertation follows the Classical Method, detailed in 

[5], with the resulting Research Question and Hypothesis: 

1.3.1 Research Question 

Can a technological solution capable of identifying users’ emotional state, which then 

through the help of the teachers be used to promote student’s motivation and consequently 

prevent school dropouts? 

1.3.2 Hypothesis 

If a platform that integrates a set of automatic emotion detection systems, with real-time 

alerts to the teachers, is developed, then the identification of student’s behaviour changes is 

facilitated, leading to the potential prevention of dropout intentions. 
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1.4 Dissertation Outline 

The outline of this dissertation document tries to follow the steps of the classical research 

method, beginning with a more theoretical overview and then shifting to a more practical one. 

 Chapter 1 – Introduction: In this introductory section, the motivation background 

and framework of the dissertation is presented, as well as the underlying 

Research Question and the formulated Hypothesis; 

 Chapter 2 – State of the Art: In this section, a summary is made of the theory and 

technology available in the same research area, starting with an overview of the 

theories of Emotion and methods of observation, followed by an analysis of the 

eye tracking, gait recognition and facial expression detection technologies; 

 Chapter 3 –Students’ Monitoring Knowledge Base: This section presents the 

application scenario proposed, consisting of four case studies, and details the 

proposed ontology model, to serve as a knowledge base for the management of 

the students’ data; 

 Chapter 4 –Framework for Students’ Profile Detection: In this section, a 

framework for monitoring and managing the students affects is proposed, and the 

architecture developed, for the implementation of such framework, is presented; 

 Chapter 5 – Proof-of-Concept Experiment: This section describes the method 

deployed and the implementation of the experiment, used to test the hypothesis. 

An analysis of the results is provided as well as the validation of the implemented 

work; 

 Chapter 6 – Conclusions: To finalize this document, the concluding remarks of 

the dissertation work are made, and the future work proposals are anticipated; 

1.5 Original Contributions 

The ontology model, the framework for student’s profile detection and its architecture, 

the software implementation of the ontology, user interfaces and processors, presented in 

section 3.2 and chapter 4, are all original contributions from this dissertation. 
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Additionally, the application scenario, described in section 3.1, was developed in a 

collaborative process with the ACACIA project. 

The device technologies used in the architecture implementation, such as the GP3 Eye 

Tracker, which includes the GazePoint Control software and Application Programming 

Interface (API), and the Affectiva emotion recognition Software Development Kit (SDK), were 

developed respectively by Gazepoint and Affectiva. However, the data treatment process was an 

original contribution as well. 
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2 State of the Art 

In this chapter, a review of the state of the art is made, regarding the main topics analysed 

in this dissertation. A general overview of the current understanding of emotions, and how 

influential they can be, is presented first, followed by a review of available contactless emotion 

detection systems and their usage, namely eye tracking, skeleton tracking and facial expression 

recognition. 

2.1 Emotions 

In our everyday life, emotions play a very important role in every action we make: in 

nonverbal communication, in the way we process information, in our attention, and our biases 

towards information [6]. This can all be influenced by our affective state, consciously or 

unconsciously [7]. 

Emotions are also one of the central keys in ensuring our survival, fear being one of the 

most common and recognizable emotion among us human and many other animals. 

There is no scientific consensus on a single, clear definition of emotion, as many different 

theories use the term, either in a broader or narrower sense. 

Sometimes the concepts of emotions, moods and feelings are confused and used 

interchangeably with no regard to their meaning variances. 

In the narrow sense, an emotion is more commonly observed as a short, intensive, mental 

activity [8]. 

According to [9] emotions arise from internal or external events, as cognitive data, and 

are attributed to concepts and states, feelings are the subjective experience of an emotion or set 

of emotions, and moods are an overall state of emotion, which is sustained over longer periods 
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of time, is less intense, and is more consistent than emotions themselves, who can change 

rapidly. 

It seems there is consensus, however, that some emotions (Anger, Fear, Sadness, Disgust 

and Enjoyment) are universal to all humans, despite the sociological or environmental 

background [10]. 

2.1.1 Components of Emotions 

Scherer defines a core set of emotion components [11] that are commonly accepted, 

despite the lack of consensus on a model for what causes emotions, how they are classified, and 

how they are described (categorically or dimensionally). 

Appraisals are the cognitive component that causes cognitive processes to evaluate events 

and situations in the genesis of emotions. 

The physiological component accounts for the variation responses in the central and 

peripheral systems, and is responsible in the modulation of expressive features and in 

appearance changes (posture, skin colour). 

Action tendencies are the behavioural component associated with the motor responses 

caused by appraisals. 

The expression component covers the facial and vocal expressions, as well as body 

posture and gestures, generated by emotional responses. 

Feelings are the subjective component, which are part of the complex phenomenon of the 

emotion. 

Emotions Dimensions 

Several models concur in defining emotions in different dimensions [12]–[14], as an 

attempt to conceptualize graphical representations of emotions’ taxonomies. 

One of the more recent studies, proposes a factor structure with four dimensions, namely: 

- Valance, that ranges from Joy to Sadness (pleasant to unpleasant); 

- Arousal, that ranges from Attention/Love to Anger/Hostile (passive to active 

energy); 

- Dominance, that ranges from Interest/Self-Assurance to Fear/Anxiety (in control 

to lack of control); 

- Unpredictability, that ranges from Surprise to Disgust (preference for to aversion 

for unpredictable) 



9 

2.1.2 Emotion’s Recognition Devices 

There are multiple platforms that make use of different bio-sensors, in order to analyse 

and determine a person emotional state. This is usually accomplished via invasive sensors like 

Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyography (EMG), Galvanic 

Skin Response (GSR), Temperature and Respiration sensors. 

Alternatively, some tools use facial recognition software to analyse basic and complex 

emotions. For example, the iMotions Platform (which also integrates other sensors data) uses 

two similar modules to achieve this. The first uses Affectiva’s AFFDEX algorithm, the second 

uses Emotient’s FACET algorithm, and both analyse facial expressions to determine human 

emotional reactions [15]. 

However, regarding an analysis environment, like a classroom, one fundamental problem 

can arise: If the student is aware that he/she is being monitored, his behaviour is going to reflect 

that, possibly leading to anxiety, insecurity, pretence or other states that disguise his regular 

emotional state, leading to inaccurate readings. 

Thus, the need to conceal the measuring device from the student’s attention, or at least 

cause the smallest amount of discomfort and distraction, is desirable. 

This means that, sensors that require contact with the user, can contribute to undesired 

disturbances in the measured emotions, as well as disrupt the performed activity, thus the choice 

of non-invasive technologies for this type of application. 

2.1.3 Human Observation and Coding of Emotions 

Usually two methods are used when assessing emotions analogically: either the person 

being analysed self-reports their belief of their current emotional state, or an independent 

trained observer reports the emotional changes observed. 

While the self-evaluation of one’s current emotional state is subjective to the time it is 

made and by the emotional state itself, a biased observation can occur. On the other hand, an 

external observer can only register significant emotional changes, portrayed by the student, thus 

missing any internal feelings not expressed or possibly misread. 

Baker Rodrigo Ocumpaugh Monitoring Protocol 

An example of a quantifiable observation method is the Baker Rodrigo Ocumpaugh 

Monitoring Protocol (BROMP) [16], where different coding schemes can be programed in order 

to record students behaviour and affect in a classroom. 
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The observations recorded using this method are often used to obtain ground truth labels 

for Educational Data Mining research. 

Emotional Markup Language 

Similar to BROMP observation method, an Emotional Markup Language (EmotionML or 

EML) [17] has been defined by the W3C Emotion Incubator Group, to serve as a general 

emotion representation language, usable in three different setups: the manual annotation of 

observed emotion data; automatic recognition of emotions; and in the generation of emotion 

related system responses. 

2.2 Eye Tracking 

An eye tracker is a device that measures the activity of a person’s eyes (position and 

movement), and is usually comprised of a head-mounted or a remote (desk mounted) apparatus. 

Eye trackers are commonly composed by a light source (usually infrared or near-infrared) 

and one or more cameras pointed at the person eyes. 

The use of an infrared light source is preferred due to the fact that it helps reduce the 

negative effects of ambient lighting conditions. 

The light reflection on the cornea is then used to extrapolate the direction of the gaze, as 

it is the brightest spot in the pupil [18]. 

Other biometrics can also be measured by the eye tracker, such as: 

- gaze fixation: the location where the gaze is maintained, for necessary amount of 

time for the eye to focus, when the visual input occurs; 

- gaze duration: the amount of time for which a gaze is maintained; 

- scan path: the vectors set that represent the path of gaze; 

- areas of interest: refers to designated gaze locations and the collected gaze statistics 

for each area; 

- pupil size: variations occurring in the shape and diameter of the pupil; 

And various types of eye movements as well: 

- saccades: the quick eye movement between two fixations; 
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- smooth pursuit: the eye movement while following a moving object; 

- vergence: the simultaneous movement of both eyes in opposite directions to obtain or 

maintain single binocular vision; 

- vestibulo-ocular movements: reflex eye movement, in the opposing direction of the 

head movement, that preserves the image in the centre of the visual field. 

2.2.1 Commercial Eye Tracking Devices 

As eye tracking technology becomes cheaper over the years, solving acquisitions costs in 

under-developed markets, more applications are now possible as a result. 

There are now many low-cost devices, such as the Visual Interaction’s myGaze tracker 

(499€) [19], GazePoint’s GP3 tracker (461€) [20], The Eye Tribe’s Pro tracker (185€) [21], or 

the Tobii’s EyeX controller (119€) [22]. These products announced features and specifications 

are presented in Table 2-1. 

Table 2-1 Low-cost eye trackers technical specifications and features 

Company 
Visual Interaction 
myGaze 

Gazepoint The Eye Tribe Tobbi Tech 

Product myGaze Eye Tracker GP3 Eye Tracker 
EYE TRIBE TRACKER 
PRO 

Tobii EyeX 

Website 
http://www.mygaze
.com/products/myg
aze-eye-tracker/  

http://www.gazept.
com/product/gazep
oint-gp3-eye-
tracker/ 

https://theeyetribe.
com/products/  

http://www.tobii.co
m/xperience/produc
ts/ 

Prices €645.41 €461 €185 €119 

Main Technical Specifications: 

Sampling Rate 30Hz 60Hz 30Hz to 75Hz 60Hz 

Gaze position 
accuracy 

0.5° 0.5° – 1° 0.5° – 1° N.A. 

Precision 0.1° N.A. N.A. N.A. 

Operating Distance 50cm - 75cm  N.A. 45cm – 75cm 45-100cm 

Tracking 
Range/Head motion 
(Width X Height at 
Distance): 

32cm x 21cm at 
60cm  

25cm x 11cm at 
65cm 

50cm x 30cm at 
65cm 

40cm x 30cm at 
65cm 

Latency < 50ms N.A. < 16ms 15ms +/- 5ms 

Tracking Technique Binocular N.A. Binocular N.A. 

Calibration Mode 0/1/5 points 5 or 9 points 6, 9 or 12 points N.A. 

The main differences between these low-cost sensors and the high-end tier ones (which 

usually sell for around 10000€ and upwards) is the frequency of the frame rate, the accuracy 

and the precision of the measurements, as would be expected. While the lower tier trackers 

usually announce an average accuracy and precision, respectively of 1º and 0,1º, the high-end 

tier provides values at least 10 times better. 

http://www.mygaze.com/products/mygaze-eye-tracker/
http://www.mygaze.com/products/mygaze-eye-tracker/
http://www.mygaze.com/products/mygaze-eye-tracker/
http://www.gazept.com/product/gazepoint-gp3-eye-tracker/
http://www.gazept.com/product/gazepoint-gp3-eye-tracker/
http://www.gazept.com/product/gazepoint-gp3-eye-tracker/
http://www.gazept.com/product/gazepoint-gp3-eye-tracker/
https://theeyetribe.com/products/
https://theeyetribe.com/products/
http://www.tobii.com/xperience/products/
http://www.tobii.com/xperience/products/
http://www.tobii.com/xperience/products/
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Each tracker provides its own software and/or an API or SDK, to help analyse the metrics 

given by the trackers raw data. 

The basic metrics include the 3D position of the eye and the Point of Gaze (POG). 

However, some trackers like the Eye Tribe don’t yet support the measurement of the pupil 

diameter due to the impossibility to evaluate the person distance to the sensor. 

A pre-print, comparing the EyeLink 1000 with the Eye Tribe tracker, concluded that the 

velocity and trajectory of the saccadic movement cannot be accurately measured by the Eye 

Tribe tracker due to its lower frequency sampling [23]. 

Other devices like the myGaze (and possibly others) are not optimized for high resolution 

quantitative measurements of saccadic movements and fixations due to the camera’s low frame 

rate (30Hz). 

In [24] the GazePoint GP3 proved to be unreliable in some users wearing glasses, also 

with small eye size persons, persons with glossy hair, or even direct sunlight. It was also 

concluded that the GP3 was not good for detecting character reading, but otherwise well suited 

for eye tracking studies. 

The Gazepoint GP3 eye tracker was chosen to be used in this dissertation, because of the 

reported frame rate value of 60Hz, and because it was one of the few low-cost devices to report 

the pupil size. 

2.2.2 Emotion and Affect Analysis 

In the last decade, the potential of eye tracking has also been employed to detect 

emotional state and cognitive activity. 

The EyeTracking, Inc. Workload Software uses a patented algorithm, the Index of 

Cognitive Activity (ICA), to analyse the pupillometry data and extract the cognitive activity 

signal. 

The ICA measures pupil changes, filtering light reflexes that cause circular muscle 

activity, thus inferring the mental effort, thru radial muscles activity [25]. 

These two methods benefit from being non-invasive and allowing the person to have 

more freedom of movements and less discomfort while being tested. 
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2.3 Skeleton Biometrics Using Kinect and Emotional State 

Correlation 

It is well known that human emotions can affect the person’s gait and locomotion [26]–

[28]. 

In [29], 4 emotions were studied (anger, sadness, fear, happiness), and the resulting 

impact in locomotion was evaluated in intersegmental coordination patterns, amplitude of thigh 

elevation angles compared from those in neutral locomotion, intersegmental plane different 

orientations, and speed gait, concluding that emotions can be successfully recognized from the 

changes in locomotion. 

In the recent years, the 3D mapping of the human body has been widely improved with 

the availability of low cost tracking devices (e.g. Microsoft Kinect). 

Traditionally in computer vision, two distinct approaches can be used in the analysis of a 

person skeleton key points: marker-based and marker-less tracking. 

While the use of markers, attached to the person’s body, and the use of multiple camera 

views, provides the more accurate results, a marker-less solution also yields reasonable 

performance values [30]. 

One marker-less solution is the use of different camera views to extract the person 

silhouette, so that a skeletal model can be fitted in. Another one can be achieved using 

Microsoft’s Kinect 3D depth sensors, which use an infrared camera to gage the distance from 

the camera to the tracking points. 

Many scientific studies have demonstrated the feasibility of using the Kinect to measure 

spatial and gait parameters, such as walking speed, step length, gait symmetry among others 

[30]–[35]. 

In [35] the authors compared the measurement of walking speed, stride time and length 

against the well-established Vicon marker-based motion capture system, concluding that decent 

performance values can be achieved. 

In [33] the authors successfully attempt to use the Kinect to recognize a person from 

skeleton data, using automatic detection of half gait cycle and feature calculation of every gait 

cycle. This study included novel features such as, area of upper and lower body parts, distances 
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between upper body centroid and the centroids derived from different joints of upper and lower 

limbs, and feature selection and classification using Adaptive Neural Networks. 

In [31] three classifiers were studied (Naïve Bayes, 1R, and C45), regarding their 

performance in gait recognition, concluding with 91% accuracy, using the Naïve Bayes 

classifier and requiring only 4 features to correctly identify a person: height, leg length, torso 

length and arm length. 

2.4 Facial Recognition Software and Emotion Recognition 

The human computer interaction has increased exponentially in the last decades, 

becoming more and more important in all activity sectors. 

In order to improve these interactions, computers can now detect the user emotional state, 

which directly influences their actions and decision making. 

This advance in computer vision was made possible by the evolution in automatic facial 

recognition systems and the developments in neural networks, in particular with the use of deep 

learning to make classifications and pattern analysis. Thus, emotion detection by facial 

expression recognition is now possible through image processing. 

There are currently several algorithms based in the detection of image characteristics, that 

deliver, with reasonable accuracy, the analysis of the primary set of emotions (defined by Paul 

Ekman in the 1970s as anger, sadness, disgust, joy, surprise and fear [36], [37]), a few complex 

ones (neutral, contempt, puzzlement, confusion and frustration), and even some additional 

characteristics (valence, engagement, attention, expressiveness, negative and positive mood). 

The majority of the algorithms analysed can be divided in three distinct stages: face 

acquisition, extraction of the desired facial features, and classification of the facial expression 

analysed. 

2.4.1 Face Detection 

Face detection algorithms are generally used beforehand to identify the region containing 

the face, being Robust Real-Time Face Detection algorithm [38], or an adapted version of it, the 

most commonly used. 
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Because pose angle and distance, scale changes and uneven illumination can be a 

problem, some algorithms require some sort of face normalization. 

Some algorithms also process background separation and facial features separation before 

applying a face segmentation technique. 

2.4.2 Facial Feature Extraction 

For the Facial Feature Extraction process two distinct methods are used: Deformation 

Extraction and Motion Extraction. 

Deformation extraction requires a baseline or a neutral face from which to compare 

against the facial actions, whereas Motion Extraction records the changes in facial expressions. 

Several methods can to accomplish this feature extraction, such as neural networks, 

Gabor wavelets, differential images, 3D motion models, point distribution models, labelled 

graphs, feature tracking, parametric motion models, high gradient components, among others 

[39]. 

2.4.3 Emotion Classification 

Usually two different approaches can be used in order to describe the identified emotion: 

facial affect detection and facial action unit detection [40]. 

The more common descriptors used in facial affect detection are the six basic emotions 

defined by Ekman (anger, sadness, disgust, joy, surprise and fear). For the facial action unit 

detection, one of the most popular methods for coding the facial actions is the Facial Action 

Coding System [37]. 

2.4.4 Example of an Algorithm 

The study presented in [41], used a set of 313 sequences of images, with 640x480pixels 

in 8-bit grayscale. The face detection algorithm, a cascade of classifiers (each with a subset of 

Haar Basis functions), used scan patches of 24x24 pixels, classifying each as face or non-face. 

Between 2 and 200 subsets of filters were selected using a feature based on Adaboost. The best 

performance single-feature classifier was selected. 

The weights of the weak classifiers in the neural network were then adjusted using 

Adaboost rules. These adjustments were repeated until strong classifiers had the desired 

performance. The images were then converted into a Gabor magnitude representation, using a 

bank of Gabor filters at 8 orientations and 5 spatial frequencies. 
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The facial expression classification was based on support vector machines (SVM). A 

combination approach, in which the Gabor Features chosen by Adaboost were used as a reduced 

representation for training SVM’s (AdaSVM’s) outperformed Adaboost by 3.8 percent points, 

and higher spatial frequency Gabors and higher resolution images, also improves performance. 

White dots indicate locations of all selected Gabors. In figure Figure 2-1 each expression 

is a linear combination of the real part of the first 5 Adaboost features selected for that 

expression. Faces shown are a mean of 10 individuals. 

 

Figure 2-1 Gabors selected by Adaboost for each expression [41]. 

2.4.5 Commercial Emotion Detection API’s and SDK’s 

Commercial emotion detection algorithms are difficult to obtain so, in order to make an 

overview, one must present the results provided by the companies. 

iMotion is a biometric research laboratory where human behaviour is one of the major 

study areas. They developed an image processing platform, in cooperation with Emotient, 

capable of detecting human emotions, and connected this feature with other biometric sensors in 

order to improve the accuracy of their results. The company shares their findings to Affectiva 

which develops products based on iMotion’s developments [15]. 

Affectiva’s product “Emotion as a Service” provides advanced emotion analysis in order 

to increase the consumer experience with gaming, product testing, learning, entertainment, and 

research, among others. Their software is powered by iMotion’s software, and the combination 

with “Affdex” (another product of Affectiva) provides a bigger solution towards emotion 

classification [42]. 
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Emotient’s product “FACET technology” intends to gain profound knowledge on human 

emotions reactions via facial expressions. The facial expression detection algorithm gives 

valence, action units and emotion channels. The company has since been bought by Apple. As 

such, information about this product is no longer disclosed. 

Noldus FaceReader is a product able to do facial expressions analysis. The software had 

more than 10.000 images used for training and is capable of detecting the six basic facial 

expressions as well as neutral and contempt. It can also calculate gaze direction, head 

orientation and person traits. The software is used by more than 400 universities, research 

institutes and companies in many markets, such as consumer behaviour research, and 

psychology, among others [43]. 

nViso SA is a company that is also doing research in facial emotion recognition. The 

EmotionAdvisor is their main product and provides a scalable, robust and accurate artificial 

intelligence solution to measure emotional reactions. The company recently won the “IBM 

Bestseller Award 2015” during the “Success Made with Partners” conference, confirming the 

success combination between nVisio EmotionAdvisor and IBM Cloud Service [44]. 

Microsoft has its own Cognitive Service’s API. The Emotion API, as Microsoft named it, 

is capable of detecting faces and analyse a range of feelings. The API uses images as input and 

returns the confidence across a set of emotions, as well as boxes of the detected faces in the 

image [45]. The API is free to use up to 30.000 images per month.
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Table 2-2 Comparison Table of Commercial Emotion Detection APIs and SDKs 

NAME AFFECTIVA 
AFFDEX 

EMOVU EYERIS NVISO NOLDUS SIGHTCORP 
INSIGHT SDK 

SIGHTCORP 
F.A.C.E. 

IMOTIONS CROWDEMOTION MICROSOFT 
COGNITIVE SERVICES 

EMOTION API 

WEBSITE http://www.aff
ectiva.com/solu
tions/apis-sdks/  

http://emovu
.com/e/devel
opers/api/  

http://ww
w.nviso.ch/
index.html  

http://www.noldus.c
om/human-behavior-
research/products/fa
cereader  

http://sightcor
p.com/insight/  

https://face.sig
htcorp.com/  

https://imoti
ons.com/api
/  

http://www.crowdemo
tion.co.uk/solutions.ht
ml  

https://www.micro
soft.com/cognitive-
services/en-
us/emotion-api  

#E
M

O
TI

O
N

S 
D

ET
EC

TE
D

 

anger           

sadness          

disgust          

joy/happy          

surprise          

fear/scared          

contempt               

neutral             

Puzzled                  

Confusion                  

Frustration                  

A
D

D
IT

IO
N

A
L 

FE
A

TU
R

E 
D

ET
EC

TI
O

N
 valence                

engagement                  

Attention                  

Expressivenes

s 

                 

Negative 

Mood 

                 

Positive Mood                  

 

http://www.affectiva.com/solutions/apis-sdks/
http://www.affectiva.com/solutions/apis-sdks/
http://www.affectiva.com/solutions/apis-sdks/
http://emovu.com/e/developers/api/
http://emovu.com/e/developers/api/
http://emovu.com/e/developers/api/
http://www.nviso.ch/index.html
http://www.nviso.ch/index.html
http://www.nviso.ch/index.html
http://www.noldus.com/human-behavior-research/products/facereader
http://www.noldus.com/human-behavior-research/products/facereader
http://www.noldus.com/human-behavior-research/products/facereader
http://www.noldus.com/human-behavior-research/products/facereader
http://sightcorp.com/insight/
http://sightcorp.com/insight/
https://face.sightcorp.com/
https://face.sightcorp.com/
https://imotions.com/api/
https://imotions.com/api/
https://imotions.com/api/
http://www.crowdemotion.co.uk/solutions.html
http://www.crowdemotion.co.uk/solutions.html
http://www.crowdemotion.co.uk/solutions.html
https://www.microsoft.com/cognitive-services/en-us/emotion-api
https://www.microsoft.com/cognitive-services/en-us/emotion-api
https://www.microsoft.com/cognitive-services/en-us/emotion-api
https://www.microsoft.com/cognitive-services/en-us/emotion-api
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The different APIs detect different emotions. Table 2-2 provides a comparison between 

the software applications mentioned before and others less known. The table reveals the number 

of emotions that each application can recognize as well as some additional features. 

The Affectiva SDK was chosen to be used in this dissertation, because of the higher 

number of emotional metrics reported, and because of it is free for individual research use. 

2.5 Existing Technologies for Student’s Monitoring in the 

Learning Environment 

One of the biggest challenges that arise from the technology assisted learning 

environment, or e-learning, is the inability to create an emotional connection between the 

student and the teacher. 

In order to assess the student level of understanding, a test needs to be performed 

afterwards. Contrasting with in-person learning, in which that appraisal can be done in real-

time, by the teacher, enabling the detection of cognitive stress, comprehension difficulties, 

tiredness, among other problems [46]. 

By tracking eye and gaze position, fixation time and location, and blink rate, it is possible 

to correlate these metrics to the student “level of attention, stress, relaxation, problem solving, 

successfulness in learning, tiredness or emotions” [18]. 

The e5Learning platform uses pupil information, fixation duration and blink rate to 

recognize the user emotion, namely “high workload/non understanding” and “tiredness” [47]. 

Higher cognitive load has been correlated to occur when a student performs a search, 

with an increase in pupil size, and lower saccades and blinks. Pupil size is also larger, after 

highly arousing positive and negative stimuli, than after medium arousal with neutral stimuli 

[47]. 

Eye tracking is one particular technology that has been used directly in e-learning 

systems, in order to merge the gaps in Human Computer Interactions (HCI). 
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One of the first projects to include this technology was “Adaptive e-Learning with Eye 

tracking” (AdeLE) [48], which analysed eye-movement patterns during learning and tried to 

link those patterns with cognitive processes. 

In [49], the eye tracker is used to adapt presented content to the learner by following his 

topics of interest. 

In [50], a empathic software agent interface was developed using an eye tracker, to infer 

the focus of attention and motivational status of the learner, responding with instructional 

behaviours and display of emotion. 

The e5Learning learning environment recognizes basic emotion via an eye tracker, 

assessing “high workload”, “non-understanding” and “tiredness” situations in order to adapt 

content presentation in real-time [51]. 

As the cost of these eye tracking devices lowers, it is expected a more generalized use 

with platforms that require the input of the learner’s attention and level of understanding, in 

order to adapt and personalise their content to the student best interest. 
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3 Student’s Monitoring Knowledge Base 

The prevention of HEI dropouts and other learning related problems, using a 

technological approach, is now possible with the multitude of emotion analysis systems 

available. Using the Internet of Things (IOT) paradigm, integrating several devices such as 

biomedical sensors, eye trackers and others, to collect information from the students, can 

support teachers in the identification and management of students’ emotional state, during 

classroom lessons. 

In this chapter, a scenario for the monitoring of students’ behaviour and emotional state, 

using a technological support platform, is proposed, and an ontological model, designed to 

gather and manage student’s information as a knowledge base, is presented. 

3.1 Application Scenario 

The proposed scenario consists in evaluating the students’ emotions, behaviours and 

affective states, aggregating the information, using a framework capable of assessing 

problematic situations. The cases studies, represented in Figure 3-1, comprise three biometric 

acquisition devices and one integration platform, for information analysis and reporting system, 

as a proposed solution. 
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Figure 3-1 Scenario for student affective management 

3.1.1 Biometric Data Acquisition 

For this scenario three different capturing devices can be used: a Kinect, an Eye Tracker 

and a Camera, each described in the corresponding case study. 

Case #1: Gait and Posture Analysis while entering or leaving the classroom. 

This case study implementation will use a 3D motion capture device, composed by an 

RGB camera and an infrared depth sensor (i.e. the Kinect device), to track the student skeleton 

key points, in order to analyse its posture and gait, while entering and leaving the classroom. 

It is expected with this observation, that a change in one student regular gait can be 

flagged as a signal for changes in determined emotional states. 

Case #2: Eye Tracking while sitting at a desk. 

This case study will use a remote Eye Tracking device, which is generally composed by 

an infrared light source, an infrared or near-infrared camera and an RGB camera. The Eye 

Tracker sits in the desk, directed at the student, and tracks head movements as well as eye 

movements (saccades, smooth pursuit, vergence and vestibulo-ocular movements, gaze 

fixations and eye blinks), and pupil’s size and dilation changes (proven to be an indicator of 

cognitive activity). 

The analysis of these biometrics can enable the recognition of the student different 

affective states, during the learning process, and can also be used to measure the engagement 

level of the student. 



23 

Case #3: Automatic Emotion Detection through Facial Expressions, while sitting at a desk. 

This case study will use a regular RGB camera, pointed at the student’s face, in order to 

record the changes of the facial expressions. 

An algorithm will detect and isolate the face, then extract the facial features collected, 

analyses the classified facial expressions, and determines the correspondent emotion or 

emotions. 

Both eye tracking and facial expression emotion detection case studies can be deployed to 

a student using a computer, alongside with the sensorial device, or without the computer and 

just the device. 

3.1.2 Acquired Data Processing and Integrated Warning 
Platform 

All the data recorded in the previous cases is to be collected and processed in real-time, 

and will be compiled creating an emotional map, that can be analysed to flag potential 

problematic situations of disengagement, attention disorder, learning difficulties, emotional 

stress, HEI dropouts, and possibly other situations. 

Case #4: Integration Platform 

An integration platform will be created to manage each student information and historic 

track record, and to provide a real-time early-alert system when a deviation from the regular 

patterns is detected. This platform is intended to be available, in  real time, to the teacher, to aid 

in the class management, so that he or she may act accordingly to each situation and/or adapt 

the course to meet the needs of the students. It should also be possible that, in the end of each 

class, an automatic report is drafted and made available to the interested parts, namely the 

teacher, the student, the parents and the school. 
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3.2 Ontology 

An ontology consists in a formal representation of concepts in a domain of discourse, 

called classes, the properties of this entities, and the relationships between them, called 

restrictions. 

Alongside with the individual instances of classes, the ontology forms a knowledge 

database. Thus, it is used to manage all the knowledge of the proposed scenario. 

The Web Ontology Language (OWL) [52] is a language schema, designed to represent 

this relational database, storing this concepts, their meaning, and how they relate to each other, 

in tables. It works as a layer above Resource Description Framework (RDF) [53] and RDF 

Schema (RDFS) [54], which in turn are a layer above Triples (the codification of semantic data 

in the form of subject–predicate–object) and Uniform Resource Identifiers (URIs). 

Additionally, it allows reasoning over the ontology to infer implicit knowledge, even if it 

has not been specified. 

3.2.1 Design 

The ontology used was designed with Protégé 3.5 [55], [56], an older version that, 

although the lack of support for OWL 2 [57] and some outdated features, is much simpler to 

learn and to use. Additionally, it is always possible at any moment, to use it in newer versions, 

enabling it to all the existent capabilities. For the specific future usage of it, such evolution 

could be necessary. 

 Figure 3-2 is a diagram representation of the ontology model used to build the 

framework. The graphical representation used is based on a graphical representation tool of 

OWL ontologies, called VisioOWL [58]. 

Some classes have data type properties, represented in green, that help define each class 

individual. 

Relationships and rules between classes are represented as object properties, in blue, and 

they provide the meaning between this classes. 

Finally, each type of property is defined by cardinality restrictions, represented by the 

arrows with the respective cardinality written as a mathematical restriction, in order to ensure 

the appropriate data and individual relationship. 
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 Figure 3-2 Ontology Diagram 
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There are six primary classes that represent the focus of the framework data input: User, 

Session, Observation, Affect, Emotion and Behaviour. 

The proposed workflow of the data input in the framework follows the following 

principles: 

– The first ontology individual to be created should to be of the class User, specifically a 

Student, given the inferred rule that any of the remaining primary classes require a relationship 

with at least one Student. 

– The User class serves the purpose of storing the user personal details, and there can be 

two different types of Users: subclass Student and subclass Teacher, the Student being the target 

to be analysed by the framework, and the Teacher being a possible means of collecting 

observation data from a Student. 

– Next a Session can be created, requiring at least one Student individual to be associated. 

It is also associated with one or more Observations individuals that are recorded during the 

Session duration, meaning that during one session, multiple observations can be recorded. This 

class represents a timeline in which the Student Observations were recorded, such as a 

classroom during a lecture, or a e-learning lecture. 

– Then Observations can be made. This class requires exactly a Student and a Session to 

exist and that exactly one of each is associated with the observation. It is also required that, at 

least one of three classes (Affect, Behaviour or Emotion) and at the most one of each is 

associated. 

Three types of Observations direct subclasses can be created: Human_Observation, 

Digital_Observation and Profiles. 

Human_Observations represents the observations collected via the teacher or an expert 

input, and therefor require the link with exactly one Teacher individual. 

Digital_Observations on the other hand, represents the observations collected via 

hardware or software devices that target the student. 

The Profiles subclass and its subclasses (Attention_Disorder, Drop_Out, 

Sociological_Issue, Other_Profile) are intended to represent the various observation 

requirements necessary to trigger an alarm, flagging the situation corresponding each profile. In 

section 3.2.3, a more detailed explanation of each profile is presented, along with the proposed 

conditions necessary to trigger each profile alert. 
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– Finally, the triple twin classes, Affect, Behaviour and Emotion, each require to be 

connected to an existing Observations individual, and are the representation of the key input 

data, collected from either a digital device or a teacher, required to assess and profile the 

student. 

Each of these classes have a set of defined data properties that are used to store the float 

values of the respective property, and it is required that at least one and at the most one of each 

exists for the respective class individual to be considered a valid input. 

A more detailed explanation into each of these three twin classes and their properties is 

provided in 3.2.2. 

3.2.2 Affect, Behaviour, and Emotion Classes Properties 

It is important to note that, since there is no scientific consensus in the definitions of 

emotion and affect, with both terms being used, in some cases with the same connotation, with 

exchanging meaning, or with different purposes, in the presented work a clear distinction is 

made between emotion and affect: it is considered that an emotion is a person’s internal state of 

being, while affect is considered to be the body physical reaction to an emotion or emotional 

event. 

The initial idea for affect and behaviour properties was to provide a similar tool to 

BROMP, Human Affect Recording Tool (HART) [16], which is a “momentary time sampling 

method in which trained, certified observers record students’ behaviour and affect individually”. 

BROMP utilizes several affect and behaviour coding schemes, related to the students’ 

engagement and their relationship with their learning environments, and its more common use is 

to obtain ground truth labels for Educational Data Mining research. 

Just like the HART tool, the developed framework also allows to record these 

observations simultaneously, due to the apparent independency between affect and behaviour. 

However, due to the particularities of each application scenario, described in section 3.1, 

it was decided to create two new coding schemes, for affect and behaviour, based on some of 

the coding schemes already used in BROMP. The coding schemes used in this framework, for 

the three twin classes, ought to be subject to change or adaptation, per the needs of any new 

application scenario. 
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Affect Coding Scheme 

Bored: when a student appears to feel tedious/lacking interest about the activity he/she is 

participating in. 

Concentrated: the student is engaged, paying attention and focusing in a task. 

Confused: when a student appears to have difficulty understanding a concept of a 

received information or an activity he/she needs to perform. 

Excited: the student is in a restless or agitated state, in the execution of the current task. 

Frustrated: if a student feels distressed, annoyed or incapable to accomplish the assigned 

task. 

Neutral_Affect: when the student shows no signs of affect that may influence his/her 

engagement in the current activity. 

Satisfaction: the student shows enthusiasm in the execution of the current task, indicating 

a pleasurable experience. 

Other_Affect: used to describe an affect not listed in this coding scheme. 

Behaviour Coding Scheme 

Off_Task: the student is not working on the activity assigned by the teacher. 

On_Task: the student is doing the task he/she is supposed to be doing. 

Active_Participation: the student is actively involved in the activity, showing work in its 

execution. The student needs to be On_Task to be able to be in Active_Participation. 

Inactive_Participation: the student is involved in the activity, but shows no clear signs of 

his/her contribution. The student needs to be On_Task to be able to be in Inactive_Participation. 

Engaged: the student is willingly working/learning, despite any difficulties in doing so. 

For the student to be Engaged he/she needs to be On_Task and can also be either in 

Active_Participation or in Inactive_Participation. 

Disengaged: despite participating in the task, the student shows a clear disconnection to 

it, is uninterested in its execution and/or is in unwillingly to learn from it. For the student to be 

Disengaged he/she needs to be On_Task and can also be either in Active_Participation or in 

Inactive_Participation. 

Other_Behaviour: used to describe a behaviour not listed in this coding scheme. 
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Emotion Coding Scheme 

The coding scheme used for emotions followed the range of emotions reported by the 

various softwares of automatic emotion recognition through facial expressions. Thus, and to 

ensure the framework remains compatible with any automatic emotion recognition software, the 

definition of usage, of each of the emotions categorised, is relegated to the provider of the 

referred emotions’ classification (either the specific software or the human observer). 

The list of coded emotions is the following: Anger, Contempt, Disgust, Fear, Happiness, 

Joy, Neutral_Emotion, Sadness and Surprise. 

3.2.3 Profiles 

The four profile classes presented, named Attention_Disorder, Sociological_Issue, 

Drop_Out and Other_Profile, are intended to be used as the knowledge variables, representing 

the conditions necessary to trigger the respective profile alert. 

The Other_Profile is a class open to expand the existing profiles to future work developed 

using this framework. 

Attention_Disorder 

Attention deficit hyperactivity disorder is usually regarded as having three main 

characteristics: hyperactivity, impulsivity and inattention. The fifth edition of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-V) defines it as a "a persistent pattern of 

inattention and/or hyperactivity-impulsivity that interferes with functioning or development" 

[59]. It also states that in adults (17 years and older) five or more symptoms (of the total 18 

listed) are required to be observed for at least 6 months. 

Sociological_Issue 

Oppositional defiant disorder is defined by the DSM-V as "a pattern of angry/irritable 

mood, argumentative/defiant behaviour, or vindictiveness” [59]. Again, at least four symptoms 

from any of these categories (angry and irritable mood; argumentative and defiant behaviour; or 

vindictiveness) must be observed for at least 6 months. 

Drop_Out 

Because there are many factors that can lead to school drop outs and there seems to be no 

consensus in a clear diagnose, the observations used for this profile were proposed using 
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common sense. The same process was used for the sociological issues (which can cover a broad 

range of particular situations). 

Proposed Profile Detection Conditions 

Since the objective with these observations is to assist teachers and faculty staff with the 

early detection of possible student’s problems, and not with the diagnosis of said problems, a set 

of conditions are proposed in Table 3-1, to serve as minimum requirements to create alerts, 

related to the possibility of the student having the described profiles. 

Table 3-1 Proposed Profile Alert Conditions 

Profiles Emotions 

values above 

0.5 

Behaviours 

values 

above 0.5 

Affects 

values 

above 0.5 

Minimum number of 

occurrences, in the 

previous 30 minutes 

Attention 

Disorder 

Sadness  Disengaged 

Off_Task 

Confused 

10 

Drop Out 

Anger 

Contempt 

Disengaged 

Off_Task 

Bored 

25 

Sociological 

Issue 

Fear Disengaged 

Off_Task 

Excited 

Frustrated 

10 

The emotions, affects and behaviours, proposed for each profile alert, were based on the 

feedback received from an expert in educational psychology, and the values were assigned 

based on common sense, and will be subject to proper scientific validation in future work. This 

initial set of conditions can be used in a neural network analysis, as the set of initial weights for 

the neurons, to be developed in a future work, as part of an integration with machine learning 

algorithms, to be used for in correlation with the observations made by the teachers or 

psychologists, to attempt to predict the diagnose of the mentioned profiles. 
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4 Framework for Student’s Profile Detection 

In this chapter, a framework is proposed, to streamline student’s data acquisition from an 

array of devices, to generate and manage a knowledge base, defined in section 3.2, intended to 

assist in the detection of profiles, related to student’s problems. 

The architecture used for the implementation of the framework, as well as each module 

description, is also presented. 

4.1 Framework Design 

The proposed framework, illustrated in Figure 4-1, consists in a multi-level platform, 

encompassing hardware sensors, their respective middleware, SDK’s or API’s, data processors, 

an ontology, a file database and a graphical user interface (GUI). 

The framework main goal is the storage standardization of the data, collected from the 

student, enabling the compatibility with any device, supporting multiple devices in real-time. 

The secondary goal is to provide a platform that analyses and processes the collected 

information, extracting knowledge from the student data, to extrapolate possible profiles of 

student’s problems, offering real-time warnings and reports. 
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Figure 4-1 Framework Diagram 

The first data entry point is through a sensor, collecting the student biometric data. 

Usually the sensor is accompanied by a custom software, an SDK or an API, that is used to 

connect to the sensor and convert its signals into biometric data. 

This biometric data will then be processed in a Data Acquisition Processor, that compiles 

it into the appropriate format and saves it to files in a database. 

A Data Compiler Processor will scan the database for new files and, for each file, 

compile the data average results into a single set of knowledge, which is sent to the Knowledge 

Processor. 

The Knowledge Processor is responsible for the handling of all the knowledge being 

queried and updated into the Ontology, whether it comes from the Sensor-Data Compiler 

Processor chain, or from the second data entry point, the Main GUI. It is also responsible for the 

activation of the profiling alerts in the Main GUI. 

The Main GUI presents the user (e.g. the teacher) with a set of tools to insert new 

information in the Ontology, to consult the existing knowledge and to manage the Data 

Processor’s settings. 

The Ontology is used as a relational knowledge database and its design is presented in 

more detail in section 3.2. 
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4.2 Architecture 

This section presents the architecture developed, as the proposed implementation of the 

framework described in section 4.1. 

The conceptual model presented offers a structural overview of the system components 

and the behavioural relationship between them, as shown in Figure 4-2. 

 

Figure 4-2 Architecture Diagram of the Student’s Profile Detection Platform 
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Unfortunately, due to timing constrains, the implementation of a module containing the 

case study #1, proposed in section 3.1.1, was not feasible, and will be an option for future work. 

4.2.1 Ontology 

For the implementation of the platform ontology, a variety of .Net C# library API’s were 

analysed: RDFSharp [61], OwlDotNetApi [62], LinqToRdf [63], OWL API .NET [64], and 

dotNetRDF [65]. 

A .Net C# library API was chosen to manage the ontology, contrary to the more 

traditional/common approach of using the Java framework Apache Jena [60], to keep all the 

coded programs in the same language, and to enable the seamless integration across applications 

and processes. 

DotNetRDF was chosen because it provides almost the same functionalities as Jena 

(except OWL reasoning, for now), it is one of the most commonly used RDF/Triple Store 

libraries in C#, and it has the more detailed documentation of all. 

The dotNetRDF API allows to manage, parse, read and write OWL and RDF files, as 

well as Graphs and Triple Stores, offers several engines for reasoning RDFS, Simple 

Knowledge Organization System (SKOS) [66], N3 Rules [67] and Triple Stores, and also 

several processors for SPARQL queries [68] and for SPARQL 1.1 updates [69], [70]. 

Two important functions were created to handle SPARQL queries (SparqlQuery) and 

SPARQL updates (SparqlUpdate), respectively. 

Each with similar behaviour: receive the ontology graph and a command string 

containing the SPARQL query or update, as input parameters. The SparqlQuery then returns a 

string array with the query results and the SpaqlUpdate updates the ontology graph, while also 

saving it to a predefined RDF file. 

Since many query and update commands are used more than once, all the commands used 

in the platform are set as constant strings or as static string returning functions with string(s) 

input(s), for commands that have fields with variable names. This allows the possibility to 

create an easy access library with these functions (OntoFunctions.cs). 

SPARQL Query Example 

The following is a Sparql query example, used to list the Student individual, linked to a 

given Observation sub-class individual, “Observation_Ind”, by the object property 

“Has_Student”: 



35 

PREFIX onto: <http://www.owl-ontologies.com/Ontology1480873742.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

SELECT ?z 
WHERE { 
?y rdfs:subClassOf* onto:Observations . 
?x rdf:type ?y . 
FILTER regex(str(?x),'Observation_Ind','i') . 
?x onto:Has_Student ?z . 
} 

All query commands start with a set of prefixes for the namespaces used by the queries. 

Following the prefixes, most queries start with the “SELECT” statement, which serves a 

similar purpose to its Structured Query Language (SQL) counterpart: defining which variables 

are returned by the query (“?z” in this example). 

The “WHERE” clause is where the values and variables being queried are defined. 

In the example, the line “?y rdfs:subClassOf* onto:Observations .” is a triple, formed by a 

subject, “?y”, a predicate, “rdfs:subClassOf*”, and an object, “onto:Observations”. 

If any of the triple elements is a variable, it is preceded by a “?”. 

As such, the query result of this line would be all the sub-classes of the class 

Observations, defined in the ontology used, and would be returned to the variable “y”. 

The following line, “?x rdf:type ?y .”, would return all the individuals of each sub-class in 

the variable “y”, to the variable “x”. 

The “FILTER regex(str(?x),'Observation_Ind','i') .” would then filter the individuals in the 

variable “x”, leaving only the individual with the name matching “Observation_Ind”, in the 

variable “x”. 

Finally, “?x onto:Has_Student ?z .” would return the Student individual, listed in the 

Has_Student object property, of the “Observation_Ind” individual, to the variable “z”. 

SPARQL Update Example 

The insertion of new knowledge in the ontology is accomplished using SPARQL updates, 

such as the following example, which inserts a new student individual and the respective 

properties in the ontology: 

PREFIX onto: <http://www.owl-ontologies.com/Ontology1480873742.owl#> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX owl: <http://www.w3.org/2002/07/owl#> 
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> 

INSERT DATA { 
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onto:Student_id rdf:type onto:Student . 
onto:Student_id onto:Name "Name"^^xsd:string . 
onto:Student_id onto:Age "Age"^^xsd:int . " 
onto:Student_id onto:Gender "Gender"^^xsd:string . 
onto:Student_id onto:Education_Degree "Education_degree"^^xsd:string . 
onto:Student_id onto:Student_ID "Student_id"^^xsd:int . 
} 

Just like in a SPARQL query command, an update command also is preceded with the set 

prefixes to be used. 

The “INSERT DATA” operation contains the triples to be added to the ontology graph. 

In this example, the Student individual triple is inserted first, followed by triples of the 

values of the data properties: Name (string), Age (integer), Gender (string), Education_Degree 

(string) and Student_ID (integer). 

4.2.2 Knowledge Processor 

The platform input data can be received from any type of sensorial device, through 

Transmission Control Protocol (TCP) socket communication. 

TCP socket programming was chosen over Windows Communication Foundation, 

Hypertext Transfer Protocol (HTTP) Web Services and named pipes, due to the easiness of 

using asynchronous socket programming (using Microsoft .NET Framework 4.5), for client-

server systems. 

The TCP socket client-server communication follows the stated protocol: 

The Data Compiler Processor must establish a TCP socket connection to the specified IP 

and port of the machine running the platform, which must be in the same LAN of the device. 

After the connection is established successfully, a string with the following parameters 

must be sent: “Connect_Request”. 

This prompts the platform Main GUI, to pop-up a window, asking the user (e.g. teacher) 

to select or create the observed student and the session in which to record the data to be received 

next. 

If a valid student and session are selected, the platform replies the received 

“Connect_Request” with the string “Connection_Established”, after which the device can start 

sending the sensor data, creating an Observations individual, of the subclass 

Digital_Observation, per each data record received. 
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The data sent by the Data Compiler Processor must follow the Emotion Markup 

Language [17] schema, using the FSRE [14], [71] category set, for reporting student’s 

emotions, along with the starting time of the recording and the respective duration. 

Because this schema offers a very clear, understandable syntax, that uses Extensible 

Markup Language (XML) serialization, enabling an easier computer reading, an adapted 

version of EML is also used to report student’s behaviours and affects. 

 The name of the device used to record the observation is also passed as an <info> 

element, before the single EML emotion annotation. 

The following code is an example of a hypothetical communication stream, of one 

Observation, sent from the Data Compiler Processor (with the compiled emotion’s, behaviour’s 

and affect’s data), and the Knowledge Processor: 

<info>DeviceName</info> 

<emotion xmlns="http://www.w3.org/2009/10/emotionml" category-
set="http://www.w3.org/TR/emotion-voc/xml#fsre-categories" start="1268647200000" 
duration="130"> 

<category name="anger" value="0.00"/> 
<category name="contempt" value="0.08"/> 
<category name="disgust" value="0.43"/> 
<category name="fear" value="0.00"/> 
<category name="joy" value="0.00"/> 
<category name="sadness" value="0.02"/> 

</emotion> 

<BEHAVIOUR start="1268647200000" duration="130"> 
<category name="Active_Participation" value="1.0"/> 
<category name="Disengaged" value="0.7"/> 
<category name="Engaged" value="0.3"/> 
<category name="Inactive_Participation" value="0.0"/> 
<category name="Off_Task" value="0.0"/> 
<category name="On_Task" value="1.0"/> 
<category name="Other_Behaviour_Name" value=""/> 
<category name="Other_Behaviour" value="0.0"/> 

</BEHAVIOUR> 

<AFFECT start="1268647200000" duration="130"> 
<category name="Bored" value="0.8"/> 

 <category name="Concentrated" value="0.0"/> 
 <category name="Confused" value="0.3"/> 
 <category name="Excited" value="0.2"/> 
 <category name="Frustrated" value="0.5"/> 
 <category name="Neutral_Affect" value="0.0"/> 

<category name="Satisfaction" value="0.0"/> 
<category name="Other_Affect_Name" value=""/> 
<category name="Other_Affect" value="0.0"/> 

</AFFECT> 

The Knowledge Processor will analyse this data, and insert the Observation records in the 

Ontology in real-time. 
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As a proof-of-concept of a real-time profile detection system, an alert system was 

implemented, for the detection of a mock-up case of a student with attention problems. 

Every time there is a new Observation update, a query is made, searching every 

Observation made in the 30 minutes prior to the current one, for the value of the data property 

“Off_Task”, of the class Behaviour, higher than “0.5”, and if the returning number of 

Observations is higher than 10, an update is made to the Main GUI to pop-up an alert window, 

warning the GUI user (e.g. the teacher) that the Student is exhibiting attention problems. 

4.2.3 Data Compiler Processor 

This module works as a watcher of new files in the database, as a data compiler and as an 

element of communication of the recorded Observations data and the Knowledge Processor. 

It is instantiated by the Main GUI and, on launch, immediately starts monitoring the 

folder where the database files are stored, and connects to the Knowledge Processor as a TCP 

socket client. 

When a new XML data file is created in the database directory, if it is no longer in use by 

another process, the Data Compiler reads its content and analyses its data, compiling all that file 

data into a single set of knowledge (by averaging the data values), formatted as an EML 

element, or in case of Affects and Behaviours, as XML elements with the identical formatting to 

EML. It then sends this knowledge to the Knowledge Processor TCP server, following the 

protocol described in section 4.2.2. 

In theory, there could be one instance of the Data Compiler Processor for each sensor, 

analysing and compiling the data files respective to each device. In practice, only one Data 

Compiler Processor was implemented, in order to save time and hardware resources, and 

currently it can analyse and process data from two sensors, simultaneously: the Gazepoint GP3 

Eye Tracker biometrics and the Affectiva’s emotion and behaviour data. 

Since the database files, from the Emotions Data Acquisition Processor, are already 

formatted using the stated protocol (using EML), this processor takes all the recorded 

measurements in one file and calculates the average for each category value, normalized to 

0.000-1.000 range, thus compiling the results as knowledge of one Observation. 

As for the database files of the Eye Tracker Data Processor, because they contain the raw 

biometrical data collected, a deeper analysis and correlation of each metric is required. 

Due to time and availability constrains, only a measure of on/off task properties 

(described in section 3.2.3) was deployed. This was accomplished by assessing the point of 
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gaze, as a percentage of the distance, to centre of the primary task area (the centre of the 

screen). 

4.2.4 GP3 Eye Tracker, Gazepoint Control and Eye Tracker 
Data Acquisition Processor 

The GP3 Eye Tracker, Gazepoint Control and Eye Tracker Data Acquisition Processor 

modules represent the data influx, collected from the student gaze, to the creation of files in the 

Database. 

GP3 Eye Tracker 

The Eye Tracker used was the Gazepoint GP3 Eye Tracker [20]. 

This eye tracker has a sample rate of 60Hz and provides the following metrics: 

- Fixation POG; 

- Left and right eyes POG; 

- Best POG, which is the average POG data from the left and right eyes if both are 

available, or just either one, depending on which one is valid; 

- Left and right eyes pupil coordinates and diameters, in pixels and in meters; 

- Blink duration and count per minute; 

It connects to a computer through Universal Serial Bus (USB) and requires two powered 

ports to work. 

Due to the delay in the provision of this sensor, the basic metrics it provides, and the low 

accuracy results, the study and development of cognitive and affective metrics was not feasible. 

Gazepoint Control 

Gazepoint Control is a proprietary middleware that is required to collect the captured data 

from the GP3 Eye Tracker. 

It allows TCP client to connect (using port 4242), and has a set of commands it can 

receive, to configure the eye tracker data and control its usage. 

The Gazepoint Control GUI, shown in Figure 4-3, offers the video overview being 

captured by the eye tracker, an option to select the screen in use, and a calibration option, where 

a 5 or 9 point calibration is possible. However, the eye gaze video, captured by the eye tracker, 

is not recorded. 
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Figure 4-3 Gazepoint Control 

Eye Tracker Data Acquisition Processor 

The Eye Tracker Data Acquisition Processor is the module used to connect with the 

Gazepoint Control, and record the eye tracker data in the Database as XML files. 

This module offers the option to configure which categories of data records are received 

from the Gazepoint Control TCP server, to connect/disconnect from the server and to start/stop 

the data stream. 

The TCP stream is received as a string in XML format, and contains the metrics provided 

by the eye tracker as well as a record counter, the time (in computer ticks and in seconds), the 

cursor position and optional user data. 

As each stream string is received, it is written in a XML file, named with the device name 

(“GP3”) and with the starting date and time of the Observation, which is stored in a “Records” 

directory representing the Database. 

The strings keep being written in the file until it contains all the records made during the 

time specified by the file creation sample rate variable. This sample rate variable is predefined 

to 60 seconds but can be changed as a launch argument when the processor starts. 
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4.2.5 Webcam, Affectiva SDK and Emotions Data Acquisition 
Processor 

The Webcam, Affectiva SDK and Emotions Data Acquisition Processor modules 

represent the data influx, collected from the analysis of facial expressions recorded by a 

webcam, to the creation of files in the Database. 

The Emotions Data Acquisition Processor integrates the Affectiva SDK, through the use 

of the affdex.dll and affdex-native.dll libraries. 

At launch, this module connects to a computer webcam, and hands over the video stream 

to the Affectiva algorithm. This algorithm locates the human face in the video stream, analyses 

the facial points extracting facial expressions, and uses deep learning to correlate all data to the 

emotions displayed by the recorded person. To avoid privacy concerns, the captured webcam 

video stream is not recorded. 

The emotions returned by Affectiva are: Anger, Contempt, Disgust, Fear, Joy, Sadness 

and Surprise. These metrics are stated to have a Receiver Operating Characteristic (ROC) of 0.8 

or above [72]. A measurement of Engagement and Attention are also provided, although the 

resulting accuracy for these two metrics is not disclosed, and there for they should be 

considered with the appropriate cautions. 

For each frame that is processed by the Affectiva algorithm, the returned set of metrics is 

saved to a XML file, following the EML document schema, effectively creating an EML 

document. This file is named with the algorithm name (“Affectiva”) and with the starting date 

and time of the Observation, and is stored in a “Records” directory representing the Database. 

Just like in the Eye Tracker Data Acquisition Processor, each file contains all the records 

made during the time specified by the file creation sample rate variable. This sample rate 

variable is predefined to 60 seconds but can be changed as a launch argument when the 

processor starts. 

4.2.6 Main GUI 

The platform application offers a user interface, that enables the manual querying of the 

data stored in the ontology, as well as the option to manually insert data into the same ontology, 

through the Knowledge Processor. 

Using the Main GUI, the user can change the Ontology file in use to a different one, 

select or insert a new Session, User (either a Student or a Teacher), and select Observations 
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(either Human_Observation or Digital_ Observation), or insert a new Human_Observation, 

along with an Emotion, Behaviour and/or Affect. 

It can also be used to launch the Data Acquisition and Data Compiler processors, and to 

set the “File Creation Sample Rate”, which is the variable that defines the time window, 

containing the recordings made during that time, that each file can have. Along with the launch 

of the Data Acquisition Processors it is also launched the middleware for the respective device 

(if there is any). 

 

Figure 4-4 Main GUI 

Figure 4-4 is a screen caption of the Main GUI window, where it is possible to see some 

of the options available to manipulate the Ontology, as well as to Launch the sensorial devices 

and set the Profile alerts. It is also shown the list of Observations, and the properties available 
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for consultation: the Observation properties, the User (student) data and the Emotion, Behaviour 

and Affect values. 

4.2.7 Software Licenses and Hardware Requirements 

The Gazepoint software is available under a Creative Commons Zero license [73]. 

The dotNetRDF framework is available under the MIT license [74]. 

The Affectiva SDK, the Affdex SDK and the Affdex Code used in this architecture falls 

under the Affectiva free license agreement that is available at [75]. 

The current use of the implemented architecture, as part of a dissertation work, respects 

all the licenses previously mentioned. 

The minimum requirements, combined for all components implemented by this 

architecture, are the following: 

- Quad-core i5 or equivalent processor; 

- 8 Giga Bytes of Ramdom-access Memory; 

- 2 powered USB ports; 

- 1 webcam; 

- Windows 7 (or above) 64bits operating system; 

- .Net 4.5 Framework; 

4.2.8 Application Demonstration 

The Main GUI window, illustrated in Figure 4-4, is the first point of contact between the 

Teacher, or Expert, and the developed platform. Through this GUI the quick and easy access to 

each student information is facilitated, as well as the availability of tools to register new 

information, such as Student and Teacher data, Sessions, Human_Observations, Emotions, 

Behaviours and Affects, as shown in Figure 4-5, Figure 4-6, Figure 4-7 and Figure 4-8. 
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Figure 4-5 User Selection/Creation 

 

Figure 4-6 Session Selection/Creation 

 

Figure 4-7 Observation Selection/Creation 
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Figure 4-8 Manual Registration of Emotion, Behaviour and Affect Values 

Also in the Main GUI is possible to launch the “Data Processor” modules, displayed in 

Figure 4-9, used to automatically acquire the behavioural, emotional and affective data from the 

student. 

 

Figure 4-9 Data Processor Modules 

Each module can run simultaneously, along with the registration of new Observations in 

the Ontology, making the student data available practically in real-time. 
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Figure 4-10 Profile Alert 

Since with every new Observation made, the conditions used to set the Profiles are 

checked, when the evaluation of those conditions is authenticated, a pop-up window displays 

the alert message, informing the teacher for the occurrence of a potential problematic situation, 

as illustrated in Figure 4-10. 
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5 Proof-of-Concept Prototype 

This chapter describes the experiment, used to test the proof-of-concept prototype, which 

intended to validate the framework proposed in section 4.1, and its architecture implementation, 

presented in section 4.2. The experiment included a learning environment simulation, as 

proposed in the application scenario, in section 3.1, including case studies 2, 3 and 4, applied to 

single student sessions. 

5.1 Method 

The experiment consisted in a simulated test of an e-learning environment, where the 

participants were asked to read two excerpts of this document (from the preceding chapters), 

while their emotions, behaviours and affects were being recorded, by the sensors and by an 

expert. 

Each of the two excerpt readings was timed, and in one of them (the first one to half the 

participants, and the second one for the other half), external stimuli were introduced in the 

experiment, to induce distraction and disrupt the person’s task, in order to record a situation 

resembling the conditions set for the Attention_Disorder Profile. 

At the end of each excerpt reading, the participant was asked to answer five questions 

about its content, to assess the results of their attention level, during the reading. 

5.1.1 Material 

To perform the experience in optimal conditions, two computers were used (one desktop 

and one laptop). One was used by the participant to interact with the testing environment of the 

assigned task, while the other one was used by an expert, for simultaneous recording of the 

observations made. 
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The GP3 Eye Tracker was placed under the desktop monitor, pointing out directly to the 

participant eyes, and connected to the laptop, using two USB 2.0 ports. 

A USB webcam was placed on top of the desktop monitor, pointed at the participant face, 

and connected to a USB port in the laptop. 

5.1.2 Participants 

The experiment participants were 3 male and 3 female individuals, aged between 28 and 

30, all of them having a Master of Science (MSc) degree, in different engineering areas. 5 out of 

6 participants wore glasses. All the participants reported a level of understanding of written 

English, equal or above C1, in the Common European Framework of Reference for Languages 

[76]. 

One expert, Margarida Calado, who has a MSc degree in Educational Psychology, was 

present during each experiment, observing and recording the behaviour and affective state of the 

tested participants, in order to provide ground-truth label Observations, named 

Human_Observations. 

5.1.3 Apparatus 

Before the experiment, the participants were asked to sit in a desk, facing the desktop 

monitor, in a comfortable but straight position. For each participant, the webcam and eye 

tracker orientation angles were adjusted, to be more accurately pointed at the participant’s face. 

The eye tracker was calibrated per each individual, using the Gazepoint Control software, 

using a 5-points setup. After confirming the validity of the calibration, the expert sat in a 

discrete position near the participant, facing him/her, unobtrusively. 

Figure 5-1 shows the apparatus setup used in this experiment, comprising the GP3 Eye 

Tracker (highlighted in blue) and a webcam (highlighted in green), attached to the screen used 

by the participant to perform the tasks, and the expert laptop, used to control the experiment and 

annotate the expert observations 



49 

 

Figure 5-1 Experiment Apparatus Setup 

5.1.4 Procedure 

The participants were asked if they preferred anonymity in the treatment of their personal 

data, like the name, age, gender, education degree and recorded Observations. 

It was explained that the experiment consisted in two excerpt readings of a dissertation 

document, using the computer, each timed with 10 minutes, and after each one, there would be a 

small quiz about the content of the excerpt. Text editing tools were also made available to the 

participants, in case they wanted to take annotations. 

Out of the two excerpts given to each participant, one was selected to be targeted with 

external stimuli (to half the participants it was the first one, and for the other half it was the 

second). The external stimuli included diverting the participant attention with a side 

conversation, turning on loud music, showing engaging videos close to the participant screen, 

among other distractions. During the other excerpt reading, the opposite environment was 

attempted to be provided, compelling to concentration and attention to the task given. 

Throughout each 10-minute reading, the expert observed and recorded any changes in the 

participant emotions, behaviours and affects, using the platform Main GUI, running in the 

laptop. 
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In the end of each excerpt reading, the participants were asked a five-question quiz, 

related to specific details of the excerpt read. 

For the first excerpt (excerpt A), the text chosen had 2488 words, and included the 

Abstract, the Introduction, and section 2.1, of the State of the Art of this document. The five 

questions for this excerpt were the following: 

 Q1 – “What does ICT stand for?” 

 Q2 – “What are the primary goals of the ACACIA project?” 

 Q3 – “In which module of the ACACIA project, is the work of this dissertation 

integrated?” 

 Q4 – “What is the research method used in this dissertation?” 

 Q5 – “Enumerate the sensorial devices mentioned that can be used to detect 

emotions. (as many as you can)” 

For the second excerpt (excerpt B), the text chosen had 2652 words, and included 

sections 2.2, 2.3, 2.4 and 2.5, of the State of the Art of this document. The five questions for this 

excerpt were the following: 

 Q6 – “What does an eye tracker measures?” 

 Q7 – “What is smooth pursuit eye movement?” 

 Q8 – “What is approximately the difference in precision from low-end and high-

end eye trackers?” 

 Q9 – “What device is described to be used in gait recognition?” 

 Q10 – “What are the three stages, described in the document, deployed by the 

emotion detection algorithms?” 

All participants read the excerpt A first, and excerpt B secondly. 

5.1.5 Results 

Since the participants were divided in half, one half to receive distractive stimuli only 

during the reading of excerpt A, and the other half to receive the same distractive stimuli only 

during the reading of excerpt B, the first half is hereinafter called “group 1”, and the second half 

called “group 2”. 

Using the word count number of the text read by the participants and the evaluation of the 

answers given about each respective excerpt, detailed in Table 5-1, it is possible to confirm that 

every participant read significantly fewer words and overall performed poorly, when reading the 

excerpt subjected to stimuli, thus validating the premise that during the stimulated excerpt their 

attention was noticeably lower. This fact was also confirmed by the expert observations. 
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Table 5-1 Evaluation of Participants Results 

Partici-
pant 

Excerpt 
Used 
Stimuli 

Total 
Words 
Read 

Answers Quotation (%) 

Excerpt A Excerpt B 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

1 
A No 1182 100 40 100 0 0 - - - - - 

B Yes 933 - - - - - 100 100 0 0 0 

2 
A Yes 1304 0 90 50 100 0 - - - - - 

B No 1918 - - - - - 100 0 100 100 10 

3 
A No 2006 0 100 100 0 0 - - - - - 

B Yes 1258 - - - - - 100 100 0 0 0 

4 
A Yes 962 100 40 0 0 100 - - - - - 

B No 1916 - - - - - 100 100 100 100 0 

5 
A No 2488 5 60 10 0 100 - - - - - 

B Yes 1940 - - - - - 20 0 0 0 0 

6 
A Yes 674 0 100 0 0 50 - - - - - 

B No 1868 - - - - - 100 20 10 100 0 

On a curious note, participants of group 2 performed higher than group 1, in the quiz 

evaluation of the non-stimulated excerpt. 

The analysis of the measures detected by the eye tracker (Off_Task), and by the emotion 

detection algorithm (Anger, Contempt, Disgust, Fear, Joy, Sadness, Surprise and Engagement), 

are detailed in Table 5-2. The analysis of the observations made by the expert are detailed in 

Table 5-3, and although in some emotions the average value is always zero, it only means that 

the expert did not observe any of those emotions during all the experiments. 

The analysis of the Behaviour properties shows a good indicator for the detection of 

attention problems, being Off_Task, reported by the eye tracker, a suitable property to be used 

as a threshold for setting this Profile condition. The difference in the Off_Task average value, 

comparing the stimulated excerpt to the non-stimulated one, ranged between 8.8% (participant 

3) and 25.9%. (participant 4). 

This conclusion falls in line with the assumptions made for the Attention_Disorder 

Profile conditions, proposed in section 3.2.3, and with the Human_Observations made by the 

expert. However, the average Engaged values were not consistent with the Observations made 

by the expert. As stated in section 4.2.5, because no information is provided about this measure 

accuracy, which proved to be inaccurate during these tests, the Engaged property will be 

disregarded from the analysis. 
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Table 5-2 Average Values Measured by Digital Observations 

 

A B A B A B A B A B A B

No Yes Yes No No Yes Yes No No Yes Yes No

Anger 0.0000 0.0000 0.0098 0.0165 0.0001 0.0000 0.0000 0.0000 0.0000 0.0005 0.0001 0.0000

Contempt 0.0147 0.0224 0.0612 0.0026 0.0653 0.0971 0.0479 0.0142 0.0030 0.0379 0.0103 0.0023

Disgust 0.0062 0.0063 0.0066 0.0040 0.0041 0.0066 0.0040 0.0042 0.0060 0.0198 0.0115 0.0042

Fear 0.0012 0.0050 0.0006 0.0008 0.0000 0.0004 0.0005 0.0001 0.0002 0.0003 0.0014 0.0000

Joy 0.0208 0.1522 0.0316 0.0000 0.0000 0.1220 0.0621 0.0269 0.0016 0.0958 0.1712 0.0000

Sadness 0.0006 0.0007 0.0088 0.0138 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0014 0.0000

Surprise 0.0476 0.1162 0.0169 0.0018 0.0024 0.0329 0.0276 0.0081 0.0092 0.0364 0.0553 0.0030

Off_Task 0.2146 0.3510 0.3900 0.2949 0.2650 0.3536 0.4230 0.1632 0.2535 0.3748 0.4116 0.2944

Engaged 0.1197 0.3310 0.0829 0.0305 0.0258 0.1850 0.1134 0.0391 0.0289 0.2102 0.2358 0.0036

Excerpt

Stimuli

Emotion

Behaviour

Average Values Measured (0-1 range)

Participant 1 2 3 4 5 6
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Table 5-3 Average Values Observed by the Expert 

A B A B A B A B A B A B

No Yes Yes No No Yes Yes No No Yes Yes No

Anger 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Contempt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Disgust 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fear 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Joy 0.0000 0.0545 0.1455 0.0000 0.0000 0.0909 0.0364 0.0909 0.0000 0.1182 0.0000 0.0000

Sadness 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Surprise 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Off_Task 0.0000 0.1727 0.1818 0.0000 0.0000 0.3909 0.2727 0.0000 0.0000 0.2636 0.3818 0.0000

Engaged 1.0000 0.7818 0.7818 1.0000 1.0000 0.5909 0.7636 1.0000 1.0000 0.7727 0.6909 1.0000

5 6

Average Values Observed (0-1 range)

Participant 3 4

Excerpt

Emotion

Behaviour

1 2

Stimuli
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The analysis to the Emotion properties, detected with the sensors, revealed more 

significant changes in the average values for Contempt, Joy and Surprise, on most participants, 

and is a good indicator of these emotions potential value. 

The change in the average value, between each different reading, was most significant 

with Joy, ranging between 3.2% (participant 3) and 17.1% (participant 6). Surprise average 

values, between each different reading, changed between 1.5% (participant 2) and 6.9% 

(participant 1). Contempt average values, between each different reading, changed between 

0.8% (participants 1 and 6) and 5.9% (participant 2). 

Comparing the emotions detected through the sensors with the observations made by the 

expert, it is possible to conclude that the average values for Joy were very similar, while the 

other emotions were not. This lead to the conclusion that the detection of Joy is a valid 

measurement, and is suitable to be used for setting the conditions of the Attention_Disorder 

Profile, contrasting with some assumptions made in Table 3-1. 

5.2 Validation 

The developed platform, based in the Framework for Student’s Profile Detection, proved 

capable of handling different concurrent sensors, used for the automatic detection of student’s 

emotions and behaviours, effectively creating a knowledge based student monitoring solution. 

With a Graphical User Interface suited to connect the teachers with the students’ affective 

needs, through a real-time alert system, capable of warning for potential problematic profile 

situations, when set conditions are detected by the sensors. 

Therefore, the detection of changes in student’s behaviours is greatly facilitated, which is 

a step forward in the prevention of drop-out intentions and academic disengagement, thus 

validating the hypothesis, proposed in section 1.3.2. 

The proposed application scenario was validated in the publication of a co-authored 

paper, called “Affective Computing to Enhance Emotional Sustainability of Students in Dropout 

Prevention”, presented in “DSAI 2016 – International Conference on Software Development 

and Technologies for Enhancing Accessibility and Fighting Info-exclusion” [77]. This paper is 

attached to this dissertation document as Annex A. 
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The platform Ontology was reviewed and approved by Educational Psychologist, Dr. 

Maria de Lourdes Mata, from Instituto Superior de Psicologia Aplicada (ISPA). 

The presented framework, its architecture implementation and the experimental results 

will also be submitted in a paper, called “A framework to bridge teachers, students affective 

state, and improve academic performance”, for the “IMECE 2017 – International Mechanical 

Engineering Congress and Exposition”, with the abstract already accepted. 

The work developed has been discussed in project ACACIA, and these results are already 

being used in the CADEP centres, in Colombia, Nicaragua, and Peru.
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6 Conclusions 

The research work, presented in this dissertation, was developed as a response to a 

growing problem in HEI, concerning students’ engagement and learning problems. 

As society shifts to make use of more technological aids, the need to adapt the academic 

context, to include these benefits, is demanded. The proposed framework is one of some 

possible answers to mitigate these needs. 

Designed to be interoperable with different types of sensorial systems, the framework 

proved capable of detecting the student’s behaviour, emotional and affective states, and to 

manage all the collected information into a knowledge-based system, able to pre-emptively and 

pro-actively detect situations consistent with profiles of students’ problems. 

Following the framework guidelines, the implementation and deployment of a system, 

using an eye tracker for behaviour identification, the recognition of emotions through facial 

expression analysis software and recorded observations from experts in educational psychology, 

was successfully achieved and validated. 

This system capability for real-time profile warnings, is a valuable asset to assist teachers 

identifying problems, during the students learning process, and to help in the prevention of 

school drop-outs. 

6.1 Future Work 

Although the primary goal of this dissertation was successfully achieved, through the 

validation of the hypothesis set in the beginning of this work, it was partially incomplete, 

mainly due to timing constrains, that prevented the timely implementation of a gait and posture 

detection system, using the Kinect sensor, the integration of a machine learning algorithm for 
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pattern outlier analysis, as a recommendation system for profile detection, and the 

implementation and experimental validation of the Sociological_Issue and Drop_Out Profiles’ 

detection. 

It is expected that future work can integrate the implemented architecture with the 

mentioned devices, as well as expand integration to other sensors, given the interoperability of 

the framework platform, by the usage of the EML standard. It is also expected that the 

correlation, between the Digital_Observation and Human_Observation values, can be used in a 

machine learning implementation, that attempts to predict the detection of the Profiles, further 

enabling the prevention of drop-out intentions and academic disengagement. 

Due to the sensitive information handled in the platform, the database files and processes’ 

communication will require end-to-end encryption, in order to provide student’s privacy, 

required for the deployment in a real-world scenario. 

Given the proof-of-concept environment, and the obvious hardware limitations, the 

developed platform was only tested in a single student session, even though it supports multiple 

sensors and students. 

A future step in scientific validation would be the deployment in a larger environment, 

like a real classroom, where significant data could be collected, further improving the machine 

learning dataset and, subsequently, the algorithm itself, for the more accurately detection of 

academic problematic profiles, thus fulfilling the objectives set for the Apoya module, of the 

ACACIA project
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ABSTRACT 
In ACACIA project, through its Apoya module seeks to provide 

means and methods to enhance emotional sustainability as 

innovative approach to student’s dropout prevention. Emotional 

state of the students at risk of dropout have to be assessed and 

innovative methods for counselling and curricula adaptation 

should be applied for getting out the student from the risk zone.  

The aim of this study is to propose an innovative solution to 

meliorate both emotional state and attention of students in risk of 

dropout. A scenario is presented in which eyetrackers and 

webcams are integrated in a platform in order to infer and manage 

students’ emotional state in a smart classroom environment. 

  

CCS Concepts 

• Applied computing →  Education →  Computer-assisted 

instruction.  

Keywords 

Affective computing, sensors, emotional state detection, student 

counselling. 

1. INTRODUCTION 
Cultural and social backgrounds of students may strongly 

influence the educational process and often lead to 

marginalization and social exclusion of certain students from 

meaningful participation in learning activities and community life. 

Such exclusion further reduces students’ perspectives to learn, 

grow, and develop. Adapted educational systems facilitating the 

modern level of knowledge and skills are crucial components of 

positive change and successful development of the society. The 

use of technologies is not the only requirement of the new 

century. Educational planning and policy-making are also of great 

importance. Any educational policy must be able to meet diverse 

challenges and enable everyone to find his/her place in the 

community, which they belong to, and at the same time be given 

the means to open up in other communities.  

The roadmap for inclusive education was set forth in 1994 at the 

World Conference on Special Needs Education in Salamanca [1]. 

Inclusion is concerned with learning, participation, and equal 

opportunities for all children, youth, and adults with a specific 

focus on the groups that are vulnerable to marginalization and 

exclusion from society life. It could apply to any or all of the 

following categories: 

• girls and boys who have gender issues; 

• ethnic and faith minority groups, travelers; 

• asylum seekers, and refugees; 

• children who need support in learning the language of 

instruction (second language); 

• children with special educational needs, including those 

considered to have emotional, behavioral, sensory, physical, or 

mental disabilities; 

• gifted and talented pupils; 

• children with social difficulties, such as street children, 

prison inmates; 

• people in disadvantaged, remote areas, poorly served by 

educational services; 

• people who missed the opportunity to study in 

childhood; 

• children in need, including those in public care, orphan 

children; 

• other children, such as the ones with specific health 

needs, young careers, the children whose families are under stress, 

pregnant school girls, and teenage mothers; 

• any pupils at risk of disaffection and exclusion. 

These groups are usually excluded from the mainstream 

education. Therefore, education for them requires special 

approaches and techniques. 

This article is organized as follows: Section 2 presents an 

overview of the definition of the emotional states, section 3 

presents approaches for detection emotional states, section 4 

presents the Acacia project and especially the Apoya module 

dealing with methods for detection emotional states, section 5 

 

mailto:flf@uninova.pt


presents the architecture proposed for Apoya module while 

section 6 shows a working scenario within the centers for 

educational and professional development (CADEP) which will 

be setup in the Acacia project. Finally, section 6 summarizes the 

principal conclusions and future work. 

2. EMOTIONAL STATES 
As humans, our ability to perform every task in our daily life, 

from work to amusement or any other conscientious task depends 

on our emotions. Emotions play a central role as they ensure our 

survival and all activities from the most basic to the most 

elaborated tasks. Damasio proposed that the relationship between 

learning, emotion and body state runs much deeper than many 

educators realize and that the original purpose for which our 

brains evolved was to manage our physiology, to optimize our 

survival, and to allow us to flourish [2]. Emotions are as vast as 

the diversity of persons and their relationship with the 

environment including objects people and other living beings. 

Two aspects are important to be taken into consideration: first 

aspect is connected to the situation when exposed to external 

stimuli a person has a physiological flow of activity and that will 

trigger thoughts emotions and acts in response, and second, how a 

person reacts to threats or to friendly situations in different ways 

according to his feelings or thoughts towards those persons or 

environments[3]. 

There are several concepts such as emotion, feeling and mood 

that, sometimes are confused and used interchangeably without 

regarding to their differences in meaning. According to [4] 

emotions are cognitive data arising from events (internal and 

external) used to inform responses, and attributed to concepts and 

states while feelings are subjective experience of an emotion or 

set of emotions and mood is an overall state of emotion, which is 

sustained over longer periods of time and is less changeable than 

emotions themselves. 

Emotions are important in nonverbal communication, and 

emotions influence cognition in many ways; how we process 

information, our attention, and our biases towards information [5].  

 

Figure 1 Plutchik’s wheel model of emotions (after [6]) 

The Plutchik’s wheel Figure 1, represents the families of 

emotions, which can be used as a reference list when one looks to 

find means of detection. 

The Circumplex Model of Affect proposes that all affective states 

arise from two fundamental neurophysiological systems, one 

related to valence (a pleasure–displeasure continuum) and the 

other to arousal, or alertness. Each emotion can be understood as a 

linear combination of these two dimensions, or as varying degrees 

of both valence and arousal as depicted in Figure 2 [7]. 

 

 

Figure 2 Arousal and Valence in Circumplex Model of Affect 

3. EMOTION DETECTION APPROACHES 
Current research in affective computing combined with learning 

assessment may control the affective dimension of the learner. In 

other words it may detect motivation [8] or learning effectiveness 

[9]. In this respect, the first issue is affective detection, and some 

works have been done, mainly centered in using just one data 

source aimed to get enough information to detect the affective 

state of learner. Two aspects are of interest and have been 

analyzed: i) emotions detection, and ii) data labeling. Facial 

gestures detection can also provide useful information about the 

users’ emotions as in a research conducted by one of the 

psychologists of the aDeNu research group and project partners 

from the Universidad de Valencia. A review of the state of the art 

regarding emotions detection with facial gestures has been 

published in [10]. 

Psycho physiological sensors. One of the most common 

approaches on emotion detection relies on the use of Psycho 

physiological sensors, which consider different measures, 

including electrocardiography, skin conductance response or skin 

temperature. In [11] authors use a commercial pulsimeter and 

alternatively skin conductance to detect stress using continuous 

wavelet transforms and decision tree algorithms (J48). It has been  

noticed that the skin conductance presented broad differences in 

the relaxed and stressed stages. To perform the experiment, the 

subjects were asked to listen to annoying sounds and solve some 

Stroop tests (i.e., participants are asked to tell aloud the names of 

colors appeared in a different ink than the named color) [12]. 

Heart rates have been used in [13], but this time combined with 

speech to assess people’s emotions while watching 30 pictures 

from the International Affective Picture System (IAPS) [14]. The 

evaluation was achieved with the Self-Assessment Manikin scale - 

SAM (i.e., a non-verbal pictorial assessment technique that 

directly measures several emotional dimensions) [15]. In this case 

some personality traits were also used. The study presented in 



[16] shows the relationship between hyperventilation and 

affective states, measuring inspiratory and expiratory time, tidal 

volume, and pulse rate to study their connection with valence 

(pleasantness) and arousal (activation) measured using also the 

SAM scale. For elicit emotions in this experiment eight imagery 

scripts were used: three relaxation (positive valence, low arousal), 

two fear (negative valence, high arousal), one depressive 

(negative valence, low arousal), one action (neutral valence, high 

arousal) and one “desire” script (positive valence, high arousal). 

In [17] authors used Blood Volume Pulse, Galvanic Skin 

Response, Pupil Diameter and Skin Temperature to detect stress 

from 32 subjects while solving a series of Stroop tests [12]. To 

recognize stress patterns in the captured signals, three different 

learning techniques have been applied: decision tree learners, 

Naïve Bayes classifiers and Support Vector Machines (SVM). 

The last technique had the best prediction results (90.10%), 

followed by decision tree learner (88.02%). The lowest prediction 

rate was achieved with the Naïve Bayes (78.65%).  While dealing 

with e-learning materials, [18] links e-learning material provided 

to the learner with  his galvanic skin response as only data source. 

The results suggest that SVM (97.06%) and discriminant analysis 

(94.12%) shows higher accuracy levels than the k-nearest 

neighbour technique (79.42%).  In [19] authors use both facial 

electromyography and electro dermal activity as a man-machine 

interface for empathic consumer products. Trying to detect four  

emotions (neutral, positive, negative and mixed), they first applied  

analysis of variance and principal component analysis to perform 

the selection of a subset of extracted features. After that, they 

performed classification using k-nearest neighbours (k-NN), SVM 

and artificial neural networks (ANN). The average prediction 

rates obtained (60.71% for SVM, 61.31% for k-NN and 56.19% 

for ANN) questioned the success of the predictors. Conclusions 

pointed out the need of the development of a generic, self-

calibrating bio-signal-driven classification framework. In [20] 

electro-dermal activity was used to detect 12 proposed emotions 

during an 8 session experiment with 3 subjects while using 

ALEKS, a web-based ITS for math, statistics, science, and other 

domains. In [21] a framework is proposed to recognize learner’s 

emotions. Using electro-encephalography, skin conductance and 

blood volume pressure during an experiment that included three 

different environments (trigonometry, backward digit span, and 

logic) where the participants were asked to rate their experienced 

levels of stress, confusion, frustration, and boredom. In [22] 

participants suffering from cerebral palsy were asked to evaluate 

some affective sounds from the International Affective Digitized 

Sounds database [23]. The experiment tried to predict their 

affective state evaluated as valence and arousal using SVM with 

galvanic skin response data and electro-encephalography data. 

The accuracy was of 51%. In [24] electrocardiography is used 

together with electroencephalography in order to detect emotions 

elicited by means of a set of 60 emotional images from the IAPS 

database [14]. [24], [25] present studies comparing different 

works using autonomic nervous system responses as data input for 

emotion detection, classifying more than 60 studies according to 

the approach followed and the classification techniques used. 

There are many examples on the progress of affect computing in 

educational settings as well. For instance, a framework has been 

proposed to recognize learner’s emotions using 

electroencephalography, skin conductance and blood volume 

pressure in [21]. In [18] authors used e-learning material provided 

to learners in relation to their galvanic skin response. Electro-

dermal activity was used to detect the 12 proposed emotions in 

[20]. There are also instances on using non-verbal 

communication, such as body movements and facial expressions, 

which were used for evaluating learners’ states [26].  

The aDeNu Research Group at UNED has designed, implemented 

and evaluated the Ambient Intelligence Context-aware Affective 

Recommender Platform (AICARP) infrastructure to explore the 

potential of context-aware affective feedback beyond computer-

based recommendation approaches taking advantage of the 

possibilities of ambient intelligence [27]. The corresponding 

personalized support is provided without interrupting the learning 

activity by delivering the recommended action to the learner 

meanwhile the learning activity is achieved (e.g. while the learner 

is talking, the system can tell her to slow down by switching on a 

light or playing a sound). Such feature requires to enrich the 

system with capabilities for detecting changes in the learners’ 

affective state (e.g. from physiological sensors), as well as to 

interact with the user through the preferred sensorial channel (e.g. 

sight, hearing, touch, smell) [28]. [29] considers six main 

perspectives for modeling affect: emotions as expressions, 

emotions as embodiments, cognitive approaches to emotions, 

emotions as social constructs, affective neuroscience, core affect 

and psychological construct of emotion. All those trends are 

important for analyzing and characterizing emotional states, and 

currently influence AC. 

AC systems can create different scenarios that help and improve 

educational conditions. A system for emotions identification may  

detect signals of frustration during the learning process, or lack of 

understanding during the study of concepts and definitions. 

Applications include tracking of emotional trends in groups, 

detection of emotional interactions, and detection of anxiety or 

depression patterns. With such identification at the beginning of 

processes, the educational staff can start individual psychological 

assistance for students, avoiding future problems that interfere in 

the learning process, and even more, in their lives. 

Some tools are currently available for detecting emotions, such as  

Affectiva.  Affectiva is based on machine learning techniques and 

provides a non-invasive way to detect emotions, since it is based 

purely on the images captured via webcam. It considers 42 action 

units of the face and, from them, 6 major emotional expressions 

are mapped and analysed. The database of videos (used to train 

the Affectiva machine learning tool), documentation, software 

Affdex SDK are freeware, and UFOPA considers Affectiva tools 

as starting point for investigations related to future AC 

developments in education in the context of the ACACIA project. 

 

4. ACACIA PROJECT 
ACACIA project is grounded on the principle of education for all. 

Although there have been many advances registered, higher 

education (HE) in Latin and Central America still faces several 

problems [30], including: student desertion caused by emotional 

factors, academic, economic or social marginalization; and the 

communication gaps between involved members that inhibit the 

management of collective actions to face transversal problems 

referred to the access and successful permanence in the university. 

The main goal of ACACIA project is to contribute to the 

dissipation of that exclusion, discrimination and marginalization 

by disparity or inequality. In this context, the goals of ACACIA 

are: 

 Recognize HE Institutions as social and political means 

to develop inter, multicultural and multi-linguals 

education programs matching the several real 

educational needs; 



 Strengthen teaching staff qualification and capacitation; 

 Use ICT as a tool to complement teaching processes and 

learning; 

 Propose new forms of institutional organization to 

promote the integration of groups that combine efforts 

and resources to the solution of problems previously 

mentioned. 

 

4.1 CADEP 
In terms of organization, as a result from the analysis of multiple 

theoretical approaches that address the problem of student 

retention, the project setup supporting centers for educational and 

professional development, namely CADEP. The CADEP has an 

integrated systems of modules (Empodera, Innova, Cultiva, 

Apoya, Convoca) which act together in order to: (i) monitor 

students at risk; (ii) training and support the academic, technical 

and administrative staff; (iii) use new strategies for university 

teaching and innovative use of ITC in practical scenarios by 

stimulating the entrepreneurship between students and professors.  

4.2 Apoya 
This module has two components. First one is technological and 

the second one is human. The goal of the technological 

component is to implement an automated emotion detection 

system that allows to monitors and supports students by providing 

automatic recommendations. 

The human component seeks to educate, inform and divulge 

throughout the academic community, guidelines for the 

recognition and handling of persons in situations of exclusion 

(attention disorder, including disability, cultural differences, 

extreme emotional situations, etc.). 

This module directly relates to all other development modules, 

providing valuable information to PT2 (Empodera), PT3 (Innova), 

PT4 (Cultiva), and PT6 (Convoca). In the final design the module 

will be integrated in CADEP, and will communicate with PT8 

(Disemina). PT8 Disemina provides guidelines for the detection 

and execution of situations that may generate social exclusion 

attending the broadcasting actions to raise awareness, for 

apprehension and for the action. 

APOYA tasks descriptions: 

T.1 Automatic detection of affective states. The work focuses on 

the implementation of a system for detecting emotions, also 

defining a methodology for data collection and methodology for 

emotional labeling and sys-tem management. 

T.2 Tracking and recommendations automation. This work deals 

with the automation of monitoring the student and the system that 

generates recommendations to help improve their academic level. 

T.3 Promotion of multiculturalism and diversity. The objective of 

this task is to generate guidelines for the detection and recognition 

of people at risk of social exclusion, a guide for action (treatment, 

activities, visibility) and a system of courses to train university 

and technical personnel (teachers, administrative staff and 

technical supporters included). 

T.4 Integration strategies. The objective of this task is to define 

the protocol operation and the internal articulation of Apoya 

module, define the operation of the laboratory module, define the 

diffusion and disclosure system and the system of internal 

evaluation of the module itself. 

 

5. ARCHITECTURE 
Physical data comes from the assessed subject and/or ambience, 

as the environment contains various sensors that capture data. 

Captured data are stored in a warehouse. The combination and 

fusion of multiple sensor output can be used. A rule-based expert 

system transforms this data into relevant contextual data. The 

problem of sensor fusion is particularly important in the extraction 

of contextual data: a sensor might not produce sufficient 

information due to uncertainty and unreliability of the sensor 

itself. Two types of sensor fusion may be applied: the competitive 

and the complementary. The competitive sensor fusion is based on 

sensors which detect equivalent physical data, trying to diminish 

the errors in the measurements of every sensor. The 

complementary sensor fusion uses different typologies of sensors 

to extract high level data. Various sensors and actuators connect 

the environment to the middleware level. Data and knowledge are 

transferred to applications and services that are accessed by end 

users on mobile devices or client-server-type information systems.  

The main goal of this environment is to create an enhanced 

learning and teaching environment. Our process is designed to 

identify the necessary improvements that will have an immediate 

positive impact, manage efficient implementation of those 

improvements, and regularly communicate progress and results to 

all stakeholders. 

5.1 Apoya Recommendations 
The fundamental issue in a ubiquitous learning environment is 

how to provide learners with the right material at the right time in 

the right way. Context aware adaptation is therefore indispensable 

to all kinds of learning activities in ubiquitous learning 

environments. 

The ubiquitous environment should be personalized according to 

the learner’s situation. Personalization is defined in [31] as the 

way in which information and services can be tailored in a 

specific way to match the unique and specific needs of an 

individual user. While a learner is doing learning task or activity, 

it usually looks for some knowledge. In a ubiquitous learning 

environment, it is very difficult for a learner to know who has this 

knowledge even though they are at the same place. In this case, 

the learner needs to be aware of the other learners’ interests that 

match his request [31].  

There are only a few studies that have attempted to induce the 

educational affordances of context‐aware ubiquitous learning 

environment. [32] devoted attention to the problem of what 

educational affordances can be provided by a context‐aware 

ubiquitous learning environment. They proposed a system named 

EULER that can provide eight educational affordances:  

1. knowledge construction,  

2. apply,  

3. synthesis,  

4. evaluation,  

5. interactivity,  

6. collaborative learning,  

7. game based learning,  

8. context aware learning.  

 



 

Figure 3 Emotional Gathering Architecture 

Moreover, they stressed that ubiquitous learning provides context 

aware information and self-learning opportunities for learners. 

Therefore, it not only enables students to achieve learning goals 

anytime and anywhere, it is also cultivating their ability to explore 

new knowledge and solve problems. This should be considered to 

be one of most important characteristics of ubiquitous learning. 

The process of ubiquitous learning is understood as a social 

process that happens at a time and place of the learner's choosing, 

continuing throughout one’s life. It is collaborative, evolving and 

informed by a process of self-paced development. 

6. SCENARIO 
Student dropout is a problem affecting Higher Education 

Institutions (HEI) in Latin America and Caribbean. The dropout 

problematic can be originated by several factors such as emotional 

factors, academic, economic or social cultural marginalization. 

A possible technological solution to avoid student’s dropout and 

increase their performance is to develop a frameworks using the 

internet of things (IoT) paradigm integrating several devices such 

as biomedical sensors and eye trackers to collect information from 

the students. The goal is to use that information collected from 

different sources to support professors to identify and manage 

students’ emotional state during classroom lessons.  

The proposed scenario consists of the evaluation of the student’s 

emotional state, for affective management and prevention of HEI 

dropouts (Figure 4). 

 

Figure 4 Scenario for affective management in student 

dropout prevention including four case studies: 1) gait and 

posture analysis; 2) eye tracking detection; 3) automatic facial 

emotion detection; 4) emotional record based on data 

integration. 

 

 

In that context four case studies were identified as illustrated in 

Figure 4: gait and posture analysis; eye tracking detection; 

automatic facial emotion detection; emotional record based on 

data integration; 

The gait and posture analysis case study is performed when the 

student enters or leaves the classroom. To implement this case 

study a 3D motion capture device will be used, composed by a 

RGB camera and an infrared depth sensor (i.e. a Kinect device) in 

order to track the student skeleton key points. It is expected that a 

change in the student regular gait also indicates a change in 

his/hers emotional state. 

The eye tracking detection case study is performed when the 

students are sitting at a desk. The eye tracker will be used to track 

both head and eye movements. This analysis allows both to 

recognize the student affect states and to measure the engagement 

level of the student during learning tasks. 

The automatic facial emotion detection case study is performed 

when the student is sitting at a desk. A RGB camera will be used 

for this case study to record facial expressions. An algorithm will 

extract and analyze the facial features in order to determine the 

correspondent emotion or emotions. 

Both in the eye tracking detection and in the automatic facial 

emotion detection case studies there is the possibility of not using 

a computer, just the emotion tracking device. 

In the emotional map based on data integration case study, data 

from the previous case studies will be collected and processed in 

real time in order to create an emotional map to detect potential 

problematic situations, such as disengagement, attention disorder, 

learning difficulties, emotional stress, and dropouts. This case 

study is performed in the classroom environment to support 

teacher manage the class. Technically, this integrative platform 

provides a real-time early alert system activated when deviations 

from regular patterns are detected. It is expected that the system, 

at the end of each class generates a report for the interested actors, 

i.e., teacher, students, parents, and the school. 

For this scenario 3 different capturing devices will be used, as 

mentioned above. 

The Kinect is comprised by an RGB camera and a infrared depth 

sensor, and its SDK allows to track a person’s skeleton key points. 

The eye tracker is a device usually composed by an infrared light 

source, an infrared or near-infrared camera and/or an RGB 

camera. It allows the tracking of head and eye movements as well 

as pupil variations, which has been proven to be an indicator of 

cognitive activity. 

In the automatic facial emotion detection case study a simple 

RGB camera is used, and a computer algorithm first detects and 

isolates the face, then the facial features are extracted and the 

facial expression classified. 

7. CONCLUSIONS AND FUTURE WORK 
The goal of ACACIA project is to contribute to student dropout 

prevention in Latin America, caused by a variety of factors 

including emotional factors, academic, economic or social 

marginalization. The organization of the project promotes the 

implementation of centers for educational and professional 

development, namely CADEP. That are supported by a set of 



integrated modules, in which is included APOYA module which 

aims to use innovation as driving factor to avoid student dropout.  

This paper addresses how affective computing may prevent 

student’s dropout. Specifically, this paper presents a scenario in 

the context of a smart classroom or environment, in which an 

innovative technology will be used to detect and manage students 

emotional state based on Kinect devices, eyetracker and webcam 

data acquisition. The scenario is composed by four case studies: 

gait and posture analysis, eye tracking detection, automatic facial 

emotion detection and emotional record based on devices data 

integration.  

Future work will be the technical design and implementation of 

the referred framework and the test of the described scenario in 

the CADEPs. Additionally, other innovative solutions and a 

methodology for prototype evaluation will be proposed and 

developed. 
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