18 research outputs found

    Sistem Penjejak Pipa pada Balon Udara dengan Menggunakan Kamera dan Kontrol Logika Fuzzy

    Get PDF
    Balon udara merupakan salah satu jenis Unmaned Aerial Vehicle (UAV) yang mampu bergerak secara otomatis, salah satu aplikasinya adalah sebagai penjejak pipa. Pada dasarnya digunakan sistem navigasi dengan bantuan global positioning system (GPS) dan kontrol PID untuk mengatur arah tujuan. Tetapi penggunaan GPS pada daerah yang tidak memiliki ruang terbuka bebas tidaklah memungkinkan dikarenakan pada daerah tersebut sinyal GPS menjadi lemah ataupun hilang. Sehingga dibutuhkan sebuah sistem yang dapat bekerja secara independen tanpa menggunakan GPS dalam proses penjejakan pipa. Digunakan proses pengolahan citra dengan contour finding dan region of interest yang terpadu dalam sebuah sistem yang terdiri dari Raspberry Pi dan Arduino Mega dalam memandu balon udara untuk menyusuri pipa, sehingga balon udara dapat berjalan secara otomatis menyusuri pipa. Serta digunakan kontrol logika fuzzy untuk menentukan kecepatan motor untuk mempertahankan keseimbangan dan untuk menyusuri pipa. Hasil dari pengujian yang dilakukan dengan simulasi menggunakan pipa fleksibel berwarna biru pada tugas akhir ini menunjukan bahwa balon udara dapat menyusuri pipa dengan panduan pipa fleksibel. Selain menyusuri pipa fleksibel, balon udara juga dipertahankan kondisi roll-nya untuk selalu setimbang. Didapatkan kesalahan ukur dalam proses penjejakan pipa sebesar 4,7%, sedangkan untuk kondisi roll didapatkan kesalahan sebesar 0,76%

    Використання вейвлет перетворення при автономному визначенні широти місцеположення

    Get PDF
    Автономне визначення широти місцеположення рухомих та нерухомих об’єктів являє собою або самостійну задачу, або частину задачі визначення початкового значення широти для роботи як платформних, так і безплатформних інерціальних навігаційних систем. Для вирішення цих задач необхідно мати інерціальний вимірювальний модуль (ІВМ) із принаймні трьома гіроскопами і трьома акселерометрами. При використанні ІВМ, виконаних за МЕМС технологією, вихідні сигнали мікромеханічних гіроскопів та акселерометрів мають значні шумові складові. Для фільтрації таких сигналів зазвичай використовують фільтри Калмана. Однак для цього необхідно знати, окрім точної математичної моделі чутливих елементів, ще багато їх апріорних випадкових характеристик. У статті були проведені дослідження з метою вивчення можливості використання вейвлетперетворення для фільтрації вихідних сигналів мікромеханічних гіроскопів і акселерометрів ІВМ при автономному визначенні широти місцеположення. Особливістю використання вейвлет-перетворення для зашумлених неоднорідних сигналів є те, що в зв'язку зі зміною масштабу, вейвлети здатні виявити відмінність у характеристиках процесу на різних шкалах, а за допомогою зсуву можна проаналізувати властивості процесу в різних точках у всьому досліджуваному інтервалі. Саме завдяки властивості повноти цієї системи, можна здійснити відновлення процесу за допомогою зворотного вейвлет-перетворення. Експериментально підтверджено працездатність розробленого методу підвищення точності автономного визначення широти з ІВМ на основі мікромеханічних гіроскопів та акселерометрів. Проєкції кутової швидкості обертання Землі та гравітаційного прискорення були отримані з ІВМ, виконаного за МЕМС технологією. Після цього сигнали гіроскопів та акселерометрів ІВМ були відфільтровані, використовуючи вейвлети сімейства Добеші 10-го рівня, й усереднені. Ці сигнали було використано в обчислювальному алгоритмі для визначення широти місцеположення. Результати показали, що, на відміну від відомого фільтру Калмана, який майже не підвищував точність визначення широти, завдяки вейвлет-перетворенню й подальшому усередненню його результатів вдалося зменшити похибки визначення широти місцеположення майже вдвічі.Autonomous determination of the latitude of the place of movable and immovable objects is used as an independent task, as well as the task of determination of the initial value of latitude for operation of both platform and platform-free navigation systems. To solve these problems, it is necessary to have an inertial measurement unit (IMU) with at least three gyroscopes and three accelerometers. When using the IMU, executed by MEMS technology, the output signals of micromechanical gyroscope and accelerometers have significant noise components. Kalman filter is usually used to filter such signals. However, for this purpose it is necessary to know, besides the exact mathematical model of sensitive elements, many of their initial random characteristics. In the article, the research was conducted in order to investigate the use of wavelet transformation for the filtering of output signals of micromechanical accelerometers and gyroscopes for autonomous determination of the latitude of the place. The peculiarity of using wavelet transform for noisy signals is that due to changing scale, wavelets can detect differences in process characteristics on different scales, and with help of the shift we can analyze process properties at different points on the whole investigated interval. Due to the properties of this system's fullness that it is possible to restore the process by means of inverse wavelet transform. The efficiency of the developed method of increasing the accuracy of the autonomous determination of the latitude of the IMU on the basis of micromechanical gyroscope and accelerometers has been experimentally confirmed. The projections of the angular velocity of Earth rotation and gravitational acceleration were obtained from the IMU made by MEMS technology. After that, the signals of the gyroscopes and accelerometers of the inertial measuring unit were filtered, using the wavelet ‘Daubechies 10’ in decomposition, and averaged. These signals were used in a computational algorithm to determine the latitude. The results showed that, unlike the well-known Kalman filter, which almost did not increase the accuracy of the latitude calculation, wavelet denoising and further averaging reduced calculation error by almost twice

    Sistem Penjejak Pipa Pada Balon Udara Dengan Menggunakan Kamera Dan Kontrol Logika Fuzzy

    Get PDF
    Balon udara merupakan salah satu jenis Unmaned Aerial Vehicle (UAV) yang mampu bergerak secara otomatis, salah satu aplikasinya adalah sebagai penjejak pipa. Pada dasarnya digunakan sistem navigasi dengan bantuan global positioning system (GPS) dan kontrol PID untuk mengatur arah tujuan. Tetapi penggunaan GPS pada daerah yang tidak memiliki ruang terbuka bebas tidaklah memungkinkan dikarenakan pada daerah tersebut sinyal GPS menjadi lemah ataupun hilang. Sehingga dibutuhkan sebuah sistem yang dapat bekerja secara independen tanpa menggunakan GPS dalam proses penjejakan pipa. Digunakan proses pengolahan citra dengan contour finding dan region of interest yang terpadu dalam sebuah sistem yang terdiri dari Raspberry Pi dan Arduino Mega dalam memandu balon udara untuk menyusuri pipa, sehingga balon udara dapat berjalan secara otomatis menyusuri pipa. Serta digunakan kontrol logika fuzzy untuk menentukan kecepatan motor untuk mempertahankan keseimbangan dan untuk menyusuri pipa. Hasil dari pengujian yang dilakukan dengan simulasi menggunakan pipa fleksibel berwarna biru pada tugas akhir ini menunjukan bahwa balon udara dapat menyusuri pipa dengan panduan pipa fleksibel. Selain menyusuri pipa fleksibel, balon udara juga dipertahankan kondisi roll-nya untuk selalu setimbang. Didapatkan kesalahan ukur dalam proses penjejakan pipa sebesar 4,7%, sedangkan untuk kondisi roll didapatkan kesalahan sebesar 0,76%. ======================================================================================================================== Helium ballon is one type ofUnmaned Aerial Vehicle (UAV) which capable of moving automatically, one of application of this kind ofUAV is as pipe fullower. Basically, global positioning system (GPS) is used for navigation system with PID control to adjust balloon's heading. However, GPS usage withio area without lioe of sight to GPS sattelite is impossible due to weak signal reception. Therefore, a system which can work independently without GPS assist is needed to follow pipelioe. Image processing is used with contour finding and region of interest which is integrated withio Raspberry Pi and Ardnino Mega to guide the balloon to follow pipelioe, which the ballon can be ruo automatically. The result of test performaoce with simulation using blue colored flexible pipe in this final project shows that helium ballon can fly above flexible pipe using as guidelioe. Appart from following flexible pipe, ballon's roll condition maintained to stable at 0°. Error reading obtained from gas pipe tracking is 4,7%, whilst fur roll error obtained when testing is 0.76%

    Блочная калибровка инерциально-измерительного модуля

    No full text
    Представлено новий метод калібрування інерціальних вимірювальних блоків для безплатформової інерціальної технології. Інерціальний вимірювальний блок складається з акселерометрів, гіроскопів і системи обробки сигналів. Як правило, для калібрування інерціального вимірювального блоку використовують метод тестових поворотів та обертання на поворотному столі. Новий метод калібрування основано на вимірюванні повного кута повороту або кінцевого обертання. Фактично пропонується повертати інерціальний вимірювальний блок навколо одної осі кінцевого повороту. Для розв’язання рівняння калібрування необхідно забезпечити рівність рангу основної матриці порядку базової матриці. Результати змодельованих даних ІВБ представлено для демонстрації ефективності нового методу калібрування.A new calibration method is proposed for the inertial measurement units of strapdown inertial technology. Such a block consists of accelerometers, gyroscopes and a signal processing system. As a rule, the method of test turnings and rotations on rotary table is used for calibration of the inertial measurement unit. The new method is based on measurement of the full angle of turning or the final rotation. In fact, it is proposed to turn the inertial measurement unit around the axis of final rotation. To solve the equation of calibration, it is necessary to provide the equality of the rank and order of basic matrix. The results of modeling data demonstrate an efficiency of new method of calibration

    3D-Calibration of the IMU

    Get PDF
    International audienceA new calibration method for Inertial Measurement Unit (IMU) of strapdown inertial technology was presented. IMU has been composed of accelerometers, gyroscopes and a circuit of signal processing. Normally, a rate transfer test and multi-position tests are used for IMU calibration. The new calibration method is based on whole angle rotation or finite rotation. In fact it is suggested to turn over IMU around three axes simultaneously. In order to solve the equation of calibration, it is necessary to provide an equality of a rank of basic matrix into degree of basic matrix. The results of simulated IMU data presented to demonstrate the performance of the new calibration method

    Reliable and secure body fall detection algorithm in a wireless mesh network

    Get PDF
    Falls in elderly is one of the most serious causes of severe injury. Lack in immediate medical help makes these injuries life threatening. An automatic fall detection system, presented in this research, would help reduce the arrival time of medical attention, reduce mortality rate and promote independent living. Therefore, the algorithm finds its application in the medical field, specifically in nursing homes. The system designed and presented in this research is not only capable of detecting human falls but also distinguishing them from routine fall-like activities. Falls are detected with the help of a small wearable embedded device, i.e. Texas Instruments\u27 eZ430 Chronos watch which is wireless development kit. The watch operates at an RF frequency of 915MHz to communicate with each other in a wireless network. The wearable wrist watch is programmable and has an in-built accelerometer sensor and microcontroller circuitry. The accelerometer sensor is motion sensitive and measures the acceleration due to gravity. Whenever a fall is detected the watch sends a signal to the neighboring watch, which is always in the monitoring mode. Signal transmission and reception between these devices is via wireless communication, where every node is a sensor forwarding the signal to the next node. A wireless mesh network helps in quick transmission of signals thereby alerting the authorities. In order to differentiate between body fall and Activities of Daily Life, various body motions and gestures have been studied and presented. The features of a real fall and that of normal human motions are extracted and analyzed from the data obtained by volunteers who participated in the research. Evaluation of results led to setting forth threshold values for parameters like acceleration, change in co-ordinate axes and angle of orientation. Over-passing the threshold raises a fall alarm to bring to the attention of the hospital authority

    Sensing and Control of MEMS Accelerometers Using Kalman Filter

    Get PDF
    Surface micromachined low-capacitance MEMS capacitive accelerometers which integrated CMOS readout circuit generally have a noise above 0.02g. Force-to-rebalance feedback control that is commonly used in MEMS accelerometers can improve the performances of accelerometers such as increasing their stability, bandwidth and dynamic range. However, the controller also increases the noise floor. There are two major sources of the noise in MEMS accelerometer. They are electronic noise from the CMOS readout circuit and thermal-mechanical Brownian noise caused by damping. Kalman filter is an effective solution to the problem of reducing the effects of the noises through estimating and canceling the states contaminated by noise. The design and implementation of a Kalman filter for a MEMS capacitive accelerometer is presented in the thesis in order to filter out the noise mentioned above while keeping its good performance under feedback control. The dynamic modeling of the MEMS accelerometer system and the controller design based on the model are elaborated in the thesis. Simulation results show the Kalman filter gives an excellent noise reduction, increases the dynamic range of the accelerometer, and reduces the displacement of the mass under a closed-loop structur

    Localização de alvos móveis com sensores SUN SPOT

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaO presente trabalho estuda a fiabilidade de um sistema de localização por inércia, utilizando um acelerómetro MEMS presente na plataforma de hardware Sun Spot. Inicialmente estudou-se a arquitectura e funcionamento da plataforma Sun Spot. Posteriormente efectuaram-se diversos tipos de movimentos de teste para recolher amostras de aceleração, aplicados em alvos com características variadas. Estudaram-se diversos métodos e criaram-se alguns novos para processamento das amostras em bruto, com a finalidade de eliminar o ruído e conseguir detectar estados de repouso e de velocidade constante. Estudou-se e aplicou-se um método de integração numérica para determinar a velocidade e distância percorrida com base nas amostras de aceleração capturadas. Com a aplicação dos métodos apresentados conseguiu-se diminuir o ruído presente no sinal, assim como o erro no cálculo da velocidade e distância percorrida com base na aceleração. Os resultados obtidos mostraram que um sistema deste tipo é fiável apenas na medição de distâncias curtas e que necessita de ser bem calibrado e afinado para cada tipo de movimento e alvo de aplicação.This work studies the reliability of an inertial navigation system, using an MEMS accelerometer present in the Sun Spot hardware platform. Initially we studied the architecture and functioning of the Sun Spot platform. Later we have made different types of test movements to collect acceleration samples, applied to targets of various characteristics. We have studied different methods and created new ones to process de raw samples, with the purpose to eliminate noise, detect resting and constant velocity states. Based in the collected acceleration samples we have studied and applied a numerical integration method to determine the velocity and distance travelled. By applying this different methods we managed to diminish the noise present in the signal, as well as the error in the calculation of the velocity and the distance travelled based in the acceleration. The results obtained showed that this type of system is reliable just for small distance measurements and it needs to be calibrated and fine-tuned for each type of movement and application target

    Measuring skeletal kinematics with accelerometers on the skin surface

    Get PDF
    The most common motion analysis method uses cameras to track the position of markers on bodily surfaces over time. Although each species has a common skeletal frame to reference recorded motions, the soft tissue covering each is not rigid. Markers, therefore, experience motion relative to the bone and do not accurately portray underlying bone activity. This limits clinical use of motion studies and the understanding of joint motion. Use of MEMS accelerometers for removing soft tissue artifact, motion relative to the bone, from surface measurements and determining the position of the underlying bone was investigated. An animal limb was modeled experimentally as a double pendulum with soft tissue as sprung masses with motions perpendicular to the pendulums. Horizontal motion was cycled at the top joint with a 25 cm stroke. Position data obtained from the mass with a Codamotion™ system and integrated accelerometer data were combined in a Kalman filter to determine global position. Acceleration data in the sensor coordinate system determined tissue artifact and were compared to measurements using CODA markers on the mass and pendulum. Removing artifact from mass position estimated pendulum position over time. In determining mass position, integrated accelerometer data experienced drift, deviating from reasonable values and were determined impractical for Kalman filter input. This led to using only the CODA-determined position as the true position. Accelerometer artifacts resulted in mean differences with the CODA markers of less than 1 mm over 3 cm displacements excluding a mass with mechanical difficulties. The largest mean difference across four tests was 0.66 mm, which is 96.17 percent accurate. Mean differences between base positions collected from accelerometers and CODA markers were found for the global x and y directions. Maximum deviations were 1.64 mm and 4.45 mm, respectively, which are 99.56 and 99.63 percent accurate. Results show the effectiveness of this procedure in calculating the location of the bases of sprung masses in two dimensions. The basis of this research contributes to the determination of bone position over time that will increase the potential of understanding fundamental, rigid body and joint motions in a clinical setting using noninvasive methods
    corecore