87 research outputs found

    Evaluation of Personalised Canine Electromechanical Models

    Get PDF
    International audienceCardiac modelling aims at understanding cardiac diseases and predicting cardiac responses to therapies. By generating the elec-trical propagation, the contraction and the mechanical response, we are able to simulate cardiac motion from non-invasive imaging techniques. Four healthy canine clinical data (left ventricles) were provided by the STACOM'2014 challenge. Our study is based on Bestel-Clement-Sorine mechanical modelling, while the electrophysiological phenomena is driven by an Eikonal model. Our model has been calibrated by a quantitative sensitivity study as well as a personalized automatic calibration. Results and comparison with clinical measures are shown in terms of left ventricular volume, flow, pressure and ejection fraction

    Prog Biophys Mol Biol

    Get PDF
    Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) clinical images. The goal of this study was to implement a processing pipeline for obtaining the interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison with alternative methods. The pipeline implemented here involves contouring the epi- and endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit functions method, and merging the interpolation results to obtain the ventricular reconstruction. Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. Reconstructions obtained from the Hi-res images were compared with the reconstructions computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular geometry reconstructions showed that the variational implicit functions approach performed better than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm activation maps and pseudo-ECGs) conducted using models based on the various reconstructions were compared. These electrophysiological simulations demonstrated that our implementation of the variational implicit functions-based method had the best accuracy.DP1 HL123271/HL/NHLBI NIH HHS/United StatesDP1HL123271/DP/NCCDPHP CDC HHS/United StatesR01 HL103428/HL/NHLBI NIH HHS/United StatesR01-HL103428/HL/NHLBI NIH HHS/United States2015-08-19T00:00:00Z25148771PMC425386

    An audit of uncertainty in multi-scale cardiac electrophysiology models

    Get PDF
    Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    When Cardiac Biophysics Meets Groupwise Statistics: Complementary Modelling Approaches for Patient-Specific Medicine

    Get PDF
    This habilitation manuscript contains research on biophysical and statistical modeling of the heart, as well as interactions between these two approaches

    When Cardiac Biophysics Meets Groupwise Statistics: Complementary Modelling Approaches for Patient-Specific Medicine

    Get PDF
    This habilitation manuscript contains research on biophysical and statistical modeling of the heart, as well as interactions between these two approaches

    Estimation of passive and active properties in the human heart using 3D tagged MRI

    Get PDF
    International audienceAdvances in medical imaging and image processing are paving the way for personalised cardiac biomechani-cal modelling. Models provide the capacity to relate kinematics to dynamics and—through patient-specific modelling— derived material parameters to underlying cardiac muscle pathologies. However, for clinical utility to be achieved, model-based analyses mandate robust model selection and parameterisation. In this paper, we introduce a patient-specific biomechanical model for the left ventricle aiming to balance model fidelity with parameter identifiability. Using non-invasive data and common clinical surrogates, we illustrate unique identifiability of passive and active parameters over the full cardiac cycle. Identifiability and accuracy of the estimates in the presence of controlled noise are verified with a number of in silico datasets. Unique parametrisation is then obtained for three datasets acquired in vivo. The model predictions show good agreement with the data extracted from the images providing a pipeline for personalised biomechan-ical analysis

    Electromechanical large scale computational models of the ventricular myocardium

    Get PDF
    Els models computacionals del cor són una eina important que pot donar als investigadors biomèdics una font addicional d’informació per entendre el funcionament del miocardi. Els models numèrics poden ajudar a interpretar dades experimentals i proporcionar informació complementària sobre mecanismes cardíacs que no poden ser determinats amb precisió mitjançant dispositius clínics clàssics. En aquesta tesi, s’apliquen tècniques de computació a gran escala per construir una eina computacional capaç d’executar-se en paral•lel en milers de processadors, permetent simulacions d’alta fidelitat en malles fines. Per simular el bombeig del cor, s’utilitza un esquema d’acoblament explícit entre les equacions electrofisiològiques en tres dimensions i la formulació en mecànica de sòlids. Per trobar la solució numèrica, s’utilitza el mètode d’elements finits. A més, s’implementen tècniques en assimilació de dades per a l’estimació efectiva dels paràmetres electrofisiològics i mecànics rellevants que apareixen a les equacions, la qual cosa ´es un pas crucial cap a un model cardíac sensible a cada pacient. El codi computacional s’aplica per simular problemes físics reals. S’estudia la propagació electromecànica en una geometria de conill, on es prova la sensibilitat del model a les variacions d’entrada. En particular, l’eina de càlcul s’utilitza per avaluar la influència del camp de fibres cardíaques en la contracció del teixit. Per desenvolupar una simulació cardíaca útil per a fins clínics, el model requereix la integració i combinació de la mecànica computacional i les tècniques de processament d’imatge més recents. El model resultant pot ser la base d’estudis teòrics sobre mecanismes de patologies, oferint als investigadors i cardiòlegs pistes addicionals per comprendre el funcionament del cor. Pot ajudar a la planificació de cirurgia i modelització, com és la predicció dels efectes de compostos farmacològics en el ritme cardíac o l’estudi de l’efecte de medicaments. Aquest projecte només és possible en un equip multidisciplinar, on grups especialitzats uneixen les seves forces en les respectives disciplines: cardiòlegs, investigadors imatge, bioenginyers i científics de la computació. El present model computacional del cor és un pas més cap a la creació d’un laboratori cardíac virtual.A cardiac computational model is a relevant tool that can give biomedical researchers an additional source of information to understand how the heart works. Numerical models can help to interpret experimental data and provide information about cardiac mechanisms that can not be determined accurately by classical clinical devices. In this thesis, High Performance Computing (HPC) techniques are used to build a cardiac computational tool, which is capable of running in parallel in thousands of processors, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual lab, allowing high fidelity simulations on fine meshes. To simulate the pumping heart, an explicit coupling scheme between the three-dimensional electrophysiological equations and the solid mechanics formulation is used, solving the governing equations with finite element methods. Also, data assimilation techniques are implemented for the effective estimation of some relevant electrophysiological parameters, which is a crucial step towards the patient-sensitive cardiac model. The data assimilation techniques are assessed on synthetic data generated by the model. Finally, the computational code is applied to simulate real physical problems. The electromechanical propagation in a rabbit geometry is studied to test the sensitivity of the framework to input variations. Particularly, the computational tool is used to evaluate the influence of the fiber field in the contraction of the tissue. To develop a cardiac simulation useful for clinical purposes, the integrative model requires combining computational mechanics and image processing techniques via data assimilation methods. Coupled with the most advanced image processing analysis, the framework can be the base of theoretical studies into the mechanisms of cardiac pathologies. It can help surgery planning and cardiac modeling, such as the prediction of the impact of pharmacological compounds on the heart’s rhythm or to improve the knowledge of drug study, giving medical researchers additional hints to understand the heart. This realization is only possible in a multidisciplinary team, where specialized groups join forces in their respective disciplines: cardiologists, image researchers, bioengineers and computational scientists. The present cardiac computational model is one further step towards the creation of a virtual la

    Modelling the interaction between induced pluripotent stem cells derived cardiomyocytes patches and the recipient hearts

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide. The single biggest killer is represented by ischemic heart disease. Myocardial infarction causes the formation of non-conductive and non-contractile, scar-like tissue in the heart, which can hamper the heart's physiological function and cause pathologies ranging from arrhythmias to heart failure. The heart can not recover the tissue lost due to myocardial infarction due to the myocardium's limited ability to regenerate. The only available treatment is heart transpalant, which is limited by the number of donors and can elicit an adverse response from the recipients immune system. Recently, regenerative medicine has been proposed as an alternative approach to help post-myocardial infarction hearts recover their functionality. Among the various techniques, the application of cardiac patches of engineered heart tissue in combination with electroactive materials constitutes a promising technology. However, many challenges need to be faced in the development of this treatment. One of the main concerns is represented by the immature phenotype of the stem cells-derived cardiomyocytes used to fabricate the engineered heart tissue. Their electrophysiological differences with respect to the host myocardium may contribute to an increased arrhythmia risk. A large number of animal experiments are needed to optimize the patches' characteristics and to better understand the implications of the electrical interaction between patches and host myocardium. In this Thesis we leveraged cardiac computational modelling to simulate \emph{in silico} electrical propagation in scarred heart tissue in the presence of a patch of engineered heart tissue and conductive polymer engrafted at the epicardium. This work is composed by two studies. In the first study we designed a tissue model with simplified geometry and used machine learning and global sensitivity analysis techniques to identify engineered heart tissue patch design variables that are important for restoring physiological electrophysiology in the host myocardium. Additionally, we showed how engineered heart tissue properties could be tuned to restore physiological activation while reducing arrhythmic risk. In the second study we moved to more realistic geometries and we devised a way to manipulate ventricle meshes obtained from magnetic resonance images to apply \emph{in silico} engineered heart tissue epicardial patches. We then investigated how patches with different conduction velocity and action potential duration influence the host ventricle electrophysiology. Specifically, we showed that appropriately located patches can reduce the predisposition to anatomical isthmus mediated re-entry and that patches with a physiological action potential duration and higher conduction velocity were most effective in reducing this risk. We also demonstrated that patches with conduction velocity and action potential duration typical of immature stem cells-derived cardiomyocytes were associated with the onset of sustained functional re-entry in an ischemic cardiomyopathy model with a large transmural scar. Finally, we demonstrated that patches electrically coupled to host myocardium reduce the likelihood of propagation of focal ectopic impulses. This Thesis demonstrates how computational modelling can be successfully applied to the field of regenerative medicine and constitutes the first step towards the creation of patient-specific models for developing and testing patches for cardiac regeneration.Open Acces

    Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation

    Get PDF
    International audienceCardiac computer models can help us understand and predict the propagation of excitation waves (i.e., action potential, AP) in healthy and pathologic hearts. Our broad aim is to develop accurate 3D MR image-based computer models of electrophysiology in large hearts (translatable to clinical applications) and to validate them experimentally. The specific goals of this paper were to match models with maps of the propagation of optical AP on the epicardial surface using large porcine hearts with scars, estimating several parameters relevant to macroscopic reaction-diffusion electrophysiological models. We used voltage-sensitive dyes to image AP in large porcine hearts with scars (3 specimens had chronic myocardial infarct, and 3 had radiofrequency RF acute scars). We first analyzed the main AP waves' characteristics: duration (APD) and propagation under controlled pacing locations and frequencies as recorded from 2D optical images. We further built 3D MR image-based computer models that have information derived from the optical measures, as well as morphologic MRI data (i.e., myocardial anatomy, fiber directions and scar definition). The scar morphology from MR images was validated against corresponding whole-mount histology. We also compared the measured 3D isochronal maps of depolarization to simulated isochrones (the latter replicating precisely the experimental conditions), performing model customization and 3D volumetric adjustments of the local conductivity. Our results demonstrated that mean APD in the border zone (BZ) of the infarct scars was reduced by ~13% (compared to ~318 ms measured in normal zone, NZ), but APD did not change significantly in the thin BZ of the ablation scars. A generic value for velocity ratio (1:2.7) in healthy myocardial tissue was derived from measured values of transverse and longitudinal conduction velocities relative to fibers direction (22cm/s and 60cm/s, respectively). The model customization and 3D volumetric adjustment reduced the differences between measurements and simulations; for example, from one pacing location, the adjustment reduced the absolute error in local depolarization times by a factor of 5 (i.e., from 58 ms to 11 ms) in the infarcted heart, and by a factor of 6 (i.e., from 60 ms to 9 ms) in the heart with the RF scar. Moreover, the sensitivity of adjusted conductivity maps to different pacing locations was tested, and the errors in activation times were found to be of approximately 10-12 ms independent of pacing location used to adjust model parameters, suggesting that any location can be used for model predictions
    corecore