489 research outputs found

    Advances in wireless community networks with the community-lab testbed

    Get PDF
    Beyond traditional telecom providers, citizens and organizations pool their own resources and coordinate in order to build local network infrastructures to address the digital divide in many parts of the world. These crowdsourced network infrastructures can be self-organized and shared by a community for the collective benefit of its members. Several of these networks have developed open, free, and neutral agreements, and are governed as a common-pool resource: community networks. These are built using a variety of commodity wireless hardware (e.g., Wi-Fi long-range point-to-point links, Wi-Fi and GSM access points, and mesh networks), sometimes optical fiber links, heterogeneous nodes, routing protocols, and applications. A group of researchers, developers, and community networks developed the Community-Lab testbed, and for the last five years have worked together to overcome obstacles, improve the technologies, tools, and operational models being used, as well as model best practices for more effective and sustainable community networks. This article presents the challenges for experimentation, the testbeds built, results, lessons learned, and the impact of that work to place wireless community networks as one sustainable way toward an Internet accessible to all.Peer ReviewedPostprint (author's final draft

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Multi-layer Security Analysis of the XRP Ledger

    Get PDF
    • 

    corecore