
D

Establishing Trust

and Confidence

Among Entities in

Distributed Networks

Francis Nwebonyi Nwebonyi
Programa Doutoral em Informática
Departamento de Ciência de Computadores

2019

Orientador
Manuel Eduardo Carvalho Duarte Correia, Professor Auxiliar, Faculdade de Ciências

da Universidade do Porto

Coorientador
Rolando da Silva Martins, Professor Auxiliar, Faculdade de Ciências da Universidade

do Porto

Declaration of Authorship

I, Francis Nwebonyi Nwebonyi, declare that this PhD Thesis titled, ‘Establishing Trust

and Confidence Among Entities in Distributed Networks’ and the work presented in it

are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at the stated universities.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed: Francis Nwebonyi Nwebonyi

Date: 26/05/2020

ii

Abstract

Distributed networks have gained popularity due to their openness, flexibility, cost and

performance advantages. Their importance has been renewed by emerging technolo-

gies including edge computing; which is considered a key driver of Internet of Things

(IoT) and 5th generation network (5G). Sadly, the same properties that foster their

success also make them prone to several attacks. As an example, up to 66 percent of

contents shared in some P2P platforms are estimated to be polluted. The literature

identifies Trust and Reputation System (TRS) as a viable solution for the security of

agents in distributed networks, and many TRS-based proposals have been reported. But

these systems lack some core requirements which make them unsuitable for emerging

edge computing paradigms and similar platforms. Newcomers are mainly introduced

via default scores, puzzles or heuristics which do not reflect the behaviours of the new

nodes. Similarly, there is no efficient distributed solution to bandwidth attacks, and

the nodes’ participation rates often do not reflect adequately in the computed scores.

These limitations often place genuine nodes at constant disadvantage, while opening

loopholes for attackers to exploit. Furthermore, the recommendation systems used in

TRSs can be marred by false recommendations and similar manipulative attacks. This

work aims to build on the literature to address the aforementioned problems and similar

others; making TRS more secure, practical and fairer. We derived a system that tar-

gets mobile edge-clouds, while at the same time accommodating older popular protocols

such as BitTorrent. Firstly, we experimented with a distributed platform, incorporating

attributes of mobile edge-clouds, and observing the performance of the proposed sys-

tem. Secondly, the proposed method was adapted and tested for an edge computing

and IoT based eHealth scenario. Thirdly, a containerized platform was setup and aimed

at further verifying the results. Additionally, (Ethereum) blockchain technology was

incorporated to potentially publish and manage trust scores directly, eliminating the

need for recommendation systems. A lightweight consensus mechanism was proposed to

dodge the high cost of Proof-of-Work (PoW), and other limitations of popular methods.

The new method offers a more efficient reputation bootstrapping method, mitigation

against bandwidth, sybil and collusion attacks, as well as better management of inter-

action rate, which further lead to improved fairness and security. Peersim simulator

was used for the simulations, while Docker, Kubernetes and modified Vuze client were

utilized for the containerization part. Results show that the proposed method is robust

and can efficiently mitigate popular attacks in distributed networks, including mobile

edge-clouds.

Acknowledgements

I would like to thank my supervisors, Professor Manuel E. Correia and Professor Rolando

Martins who supervised this work with great passion and dedication. The ‘you can do

it’ attitude which they encouraged me to build has been invaluable for this work and

potentially for future roles anywhere in the world.

Thanks to my late father, Dr. Francis Boye Nwebonyi, whose intelligent advice guided

my career choice, leading to this PhD. My wife, mother and siblings have been great

sources of encouragement and support throughout this study period, I am thankful to

them.

Mr Steve M. Taylor of Tabass Ltd, and his family have been very helpful and supportive

of this work. Artur R. Ferreira and Tadeu Freitas contributed in code and advice towards

the development of part of the testbed. I appreciate the support and contributions.

I am thankful to the management of Ebonyi State University Abakaliki, who financially

supported this PhD initially, through TETFund, until financial crisis in the county

interrupted the support. Special thanks go to NanoStima-RL3 for a research grant (BI)

through which I was able to continue the PhD.

I appreciate my friends; Benjamin, Afonso, Jorge, Francesco and others who added color

to life outside work.

iv

Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 3

1.2 Research Objectives . 6

1.3 Contributions . 7

1.4 Publications . 8

1.5 Thesis Structure . 9

2 The Concepts of Trust and Distributed Networks 11

2.1 Meaning of Trust . 11

2.1.1 Reputation . 14

2.2 Distributed Networks . 18

2.2.1 BitTorrent . 18

2.2.2 Edge Computing . 19

2.2.2.1 Fog computing . 20

2.2.2.2 Mobile Edge Computing (MEC) 22

2.2.2.3 Cloudlet . 23

2.2.2.4 Edge-Centric Computing 24

2.2.2.5 Osmotic Computing . 25

2.2.2.6 Mobile Edge-Clouds . 25

2.3 Common attacks . 27

2.4 Summary . 30

v

Contents vi

3 State of the Art 31

3.1 Trust Bootstrapping, Propagation, Aggregation and Prediction 31

3.2 TRS in Peer-to-Peer (P2P) . 34

3.3 TRS in Edge Computing . 36

3.4 TRS in Blockchain Systems . 39

3.5 TRS in other Distributed Platforms . 42

3.6 Summary . 45

4 FBit (Fairer Bits) 46

4.1 Reputation Bootstrapping . 46

4.2 Familiarity . 50

4.3 Reputation Score Computation . 52

4.4 Modified BitTorrent Unchoke Algorithm for Leechers 54

4.4.1 FBit in DHT (Distributed Hash Table) Protocols 57

4.5 Modified BitTorrent Unchoke Algorithm for Seeders 58

4.6 Experiments and Results . 61

4.6.1 Similarity Check . 67

4.7 Summary . 68

5 FBit in Specific Use-cases of Mobile Edge-Clouds 70

5.1 Some use-cases of Mobile edge-clouds . 70

5.1.1 User Generated Replay (UGR) . 70

5.1.2 Rescue Assistance in Cases of Emergency 71

5.1.3 Search for Missing Persons . 72

5.1.4 IoT based eHealth System: . 73

5.1.4.1 F-BETH . 77

5.2 Summary . 81

6 FBit in DHT and BlockChain 82

6.1 FBit in DHT . 82

6.1.1 Vuze protocol . 83

6.1.1.1 Choke and unchoke in Vuze 84

6.1.2 FBit-U . 84

6.1.3 Experiment . 86

6.1.4 Components of the test-bed . 87

6.2 Distributed Trust Ledger (DTL) . 89

6.2.1 Blockchain technology . 90

6.2.2 Trust in Blockchain . 91

6.2.3 FBit in Blockchain . 92

6.2.4 Reputation Bootstrapping . 93

6.2.5 Familiarity . 96

6.2.6 Reputation computation . 96

6.2.7 System description (Post Bootstrapping) 96

6.2.7.1 Miner election . 98

6.3 Summary . 100

7 Conclusion 102

List of Figures

2.1 Basic forms of Trust . 13

2.2 Edge Computing concept [1]. 21

2.3 OpenFog Reference Architecture for Fog Computing [2]. 22

4.1 When Leechers Send Requests to a Seeder. 60

4.2 FBit vs other methods; showing the difference in download rate for non-malicious

nodes. FBit allows them to download at higher rate amidst sybil attackers. . . . 63

4.3 Collusion Attack. 66

4.4 The download rate of genuine nodes versus attackers in the (a) original, (b) TMS

and (c) FBit methods. 67

5.1 Sharing videos and photos in crowded venues 71

5.2 Communication to aid rescue of victims in disaster scenario 72

5.3 Search for missing person(s) . 73

5.4 Architecture for IoT Based e-Health . 74

5.5 Simplified Architecture for IoT Based e-Health, with Fog Computing 75

5.6 IoT Based e-Health, with Mobile edge-clouds 76

5.7 Download rate for normal nodes in a network of 200 nodes and varied
percentage of attackers. 79

5.8 Attackers were able to access and engage the resources of their victims in other

methods, but F-BETH proved effective. 80

6.1 Precedence in DTL. 93

6.2 Resolving a fork in an endorsement chain . 97

vii

List of Tables

3.1 Summary of related work . 37

3.2 Summary of related work II . 38

6.1 ECC vs RSA . 88

viii

Abbreviations

PoW Proof-of-Work

PoS Proof-of-Stake

BFT Byzantine Fault Tolerance

DTL Distributed Trust Ledger

FBit Fairer Bits

FBit-U Fairer Bits Uncontrolled

DHT Distributed Hash Table

TRSs Trust and Reputation Systems

P2P Peer-to-Peer

UGR User Generated Replay

MANETs Mobile Adhoc Networks

PEX Peer Exchange

IoT Internet of Things

PC Personal Computer

MEC Mobile Edge Computing

RAN Radio Access Network

SDN Software-Defined Networking

NFV Network Function Virtualization

AI Artificial Intelligence

QoS Quality of Service

ix

Dedicated to my children; David and Bernice.

x

Chapter 1

Introduction

Computing trend has experienced some back-and-forth switch between centralized and

distributed controls. From mainframe computers which were mainly centralized, to

distributed architectures such as personal computers (PCs), local networks and P2P

systems. Cloud computing brought centralization with it, offering attractive advantages

to business owners and their clients. But the sharp growth of connecting devices in

number and capacity, has caused genuine doubts on the ability of cloud computing

infrastructure to cope with the rising demands, in a way that satisfies the requirements

of real time applications. As a result, decentralization once again has the baton [3], in

order to accommodate the needs of IoT and related services.

Despite its many advantages, cloud computing suffers from issues related to latency,

privacy and trust [3][4]. The number of connecting devices is estimated to hit 1 trillion

by 2025 [5], and with such number and the massive amount of data they would be

generating, relying on the remote cloud infrastructures for all computations may cause

delay and bandwidth-related issues. Real-time applications may find it difficult to cope.

To overcome these problems and provide better user experience for real-time and latency-

sensitive applications, focus is now on distributed cloud technologies such as Cloudlet,

Mobile Edge Computing (MEC), Fog computing and Mobile edge-clouds [6]. These

and similar paradigms are under the edge computing concept, which has attracted huge

attention recently due to its potential in addressing the inherent weaknesses associated

with cloud computing.

1

Chapter 1. Introduction 2

The main idea behind the emerging edge computing technologies involves bringing data

processing/computing and storage closer to the network edge, so that request and re-

sponse time is considerably minimized. Each paradigm may have its primary target

application and a slightly different approach, but the concept is usually similar. In some

cases, a mini server is brought closer to the edge devices, so that some computation and

storage tasks can be done and returned quickly without going through remote data cen-

ters, which would be the case in traditional cloud computing. In other cases, it is more

distributed, with less need for mini servers. Mobile devices in close proximity simply

pool their resources together, forming an easy to access “cloud” which functions in a

P2P fashion.

Edge computing technologies are not meant to completely replace cloud computing, but

are rather meant to work with it. Notwithstanding, they can also work independently.

In particular, mobile edge-clouds can function independently with little or no infrastruc-

tural support. This makes it important for services in areas where there may be little or

no traditional infrastructure, such as rescue operation scenarios in cases of emergency,

improving user experience in crowded venues where infrastructure may be under strain,

and searching for missing persons (e.g. children) in a crowded place. As a branch of

P2P, these technologies inherit serious security concerns in addition to peculiar threats

and attacks. Such attacks would mar the huge efforts that are currently being made in

bringing edge computing to reality, and further truncate its benefits if unchecked.

In the literature, there are many reports which have highlighted some of the security

concerns that are associated with distributed protocols. Many of these reports have

proposed trust and reputation systems (TRSs) as viable for addressing the security

concerns without incurring outrageous overhead.

TRSs have been applied to tackle different kinds of attacks in earlier P2P systems [7–

13]. Successful online commercial services such as Ebay and Amazon use some of these

methods to help users to discern who to transact with, based on their reputation. Kazaa

also used a reputation management system, where users rate the participation level of

each other, by giving more grade to those that share genuine contents frequently [8].

Similarly, BitTorrent adopts a ‘give and take’ method known as tit-for-tat. Although

this is not exactly a reputation based system, it also rewards users that contribute more

to the network.

Chapter 1. Introduction 3

We agree that TRS can be adapted to address security issues both in the old and

emerging distributed networks. This work is therefore TRS-based, but it is focused

on fully (or relatively more) distributed environments, including mobile edge-clouds.

Emphasis is also on resource constrained devices who cannot afford resource intensive

security protocols. We derive trust through reputation and familiarity concepts, as

discussed in later chapters.

Nowadays, a discussion around distributed protocols/networks may seem incomplete if

blockchain is not mentioned. In a nutshell, it is a distributed ledger which is shared

among its users, allowing them to perform sensitive transactions without needing an

intermediary or central authority. The ledger allows several parties in a network or

system to add transactions, such that any change made consistently reflects across every

copy. Because it is distributed, ledger reconciliation becomes easier, but it may attract

some computational and storage cost. Many consider it a trustless system, but as we

shall highlight, there is crucial need for trust. Infact, TRS has been proposed as a way

to strengthen the blockchain system, so that it can overcome some known attacks.

Due to its vast application, we have explored the blockchain system, both as a distributed

system that can benefit from TRS, and as a tool used to further solidify security in the

proposed system. We propose a system that leverages its core attributes to secure our

TRS system such that reputation scores would be shielded from badmouthing, slandering

and other forms of attacks.

1.1 Motivation

The proposed system is based on reputation and trust. Trust has been identified as a

crucial concept in digital security, without which it would be difficult to reason about

the security of any system in a convincing manner [14]. In the absence of central entities

that check and certify the activities of nodes in a network, each peer is left to fend for

itself. Outside the digital world, people as social entities have the ability to discern

whether or not to engage a neighbour in a given transaction. Sometimes people meet

for the first time and get along well, and thus establish some kind of relationship. Other

times their meeting may not lead to further transactions or cooperation.

Chapter 1. Introduction 4

Such ability to build relationships and transact without recommendation from certificate

authorities or similar agencies is made possible for entities in digital platforms via TRSs.

As mentioned previously, the literature contains many proposals on trust which are

targeted at distributed networks, including P2P. But there are some lapses that need to

be addressed to make TRSs fairer and more secure for the old and emerging distributed

networking paradigms, including mobile edge-clouds. This is important because the

relatively new technologies have peculiar security needs in addition to other loopholes

which they inherit from their parent protocols. Some of the noted lapses include the

following:

1. Most earlier methods focus mainly on how to mitigate attacks from malicious

nodes after they have joined the network, but pay less attention to stopping or

limiting malicious peers from joining initially. Those who attempt to overcome this

limitation often require pre-established trust relationships over other channels, or

some central entity such as server or super nodes which can constitute prime target

for attacks. The new method overcomes these barriers and provides a distributed

and fairer means of bootstrapping reputation scores for newcomers. This, by

extension, makes it more suitable for mobile edge-clouds because the need for

central entities or super nodes are eliminated, and nodes with low resources can

participate easily.

2. Current methods tend to channel huge effort towards protecting client nodes from

malicious server nodes (or seeders), but little attention is given to the protection of

server nodes from malicious clients, especially in distributed P2P platforms. This

gives rise to a form of bandwidth attack [15, 16] which has escaped the attention

of nearly all TRSs in the literature. This attack has been shown to have adverse

potential effect on security and fairness in distributed networks. To the best of

our knowledge, our work is the first to tackle bandwidth attack (on seeders) in a

distributed P2P reputation model, based on actual leecher-to-leecher behavior of

peers. The new method empowers both client and server nodes to directly identify

attackers and act fairly. This is important for many mobile edge-clouds use-cases,

such as file sharing in crowded venues which was mentioned earlier.

3. It is a common practice to use interaction experiences between a “trustor” and a

“trustee” to determine reputation and trust. In some cases, the number of good

Chapter 1. Introduction 5

interactions minus the bad ones normally form the bases for direct reputation and

trust scores. Other times, it is based on the ratio of the good transactions to the

total number of interactions. But the cumulative interaction rate barely reflects in

the end result. This mostly leads to situations where more familiar node(s) may

have little or no noticeable advantage over a less familiar one. Using the ratio

method as an example, if node A has 4 good interactions out of a total of 5, and

node B has 40 good interactions out of a total of 50, they may have the same score.

In the new method, the interaction rate concept (or ‘familiarity’) is accounted

for, as a way of encouraging nodes to engage actively in the network. When it

comes down to node A and node B, the proposed method leans towards node B,

while paying attention to how recent the bad scores are. If two nodes have similar

reputation scores, the new method would give priority to the agent with higher

interaction rate.

Each peer is monitored to see how much they have invested in the network relative

to its capability and with respect to how much they have gained from network. This

concept of familiarity is similar to the idea of personal trust, coined by Williamson

[17]. It played a significant role towards mitigating bandwidth attacks in the

proposed system.

4. The recommendation systems which is used to gather indirect trust information

in most TRSs are prone to badmouthing and slandering attacks [18]. The trust

score is only useful if the recommendation upon which they are based is sincere.

Each recommendation giver is responsible for the recommendation it gives, while

the receiver can only try to sieve the recommendations using some methods such

as weighted average. But if many nodes lie about their recommendations, even

such methods would not be effective. We involved the blockchain technology in

the proposed method to address this problem. Unlike [18], our system does not

just give a zero or one rating for downloaded files, and it is adapted for BitTorrent

and similar other protocols. A lightweight consensus mechanism is proposed to

make it usable for resource constrained devices.

Chapter 1. Introduction 6

1.2 Research Objectives

This research work is aimed at building on the literature to establish a more robust

trust-based system for improving security and fairness among entities in distributed

networks. This is done in a manner that makes peers able to reason autonomously,

and make favorable security decisions even amidst several malicious parties. It will

also be able to bootstrap trust efficiently to reflect actual behaviour of any newcomer,

thereby encouraging consistent fairness within (and across) platforms, and discouraging

maliciousness including free-riding, whitewashing, bad-mouthing, Sybil, collusion and

fake-block attacks. These attacks shall be discussed in subsequent chapters. The sub

tasks which will lead to the research goal include:

1. In-depth studies of existing security approaches (both trust based and otherwise)

that are already in the literature for this kind of network, with the aim of iden-

tifying the best ones and building on them to establish a more efficient system

that will function in the midst of higher percentage of maliciousness, and in a fully

distributed platform.

2. Extracting and digitizing vital contexts, for peers’ assessment. As part of this

objective, effective methods have been derived to tackle the cold-start (or boot-

strapping) problem [19] so that new peers can be fairly introduced into the net-

work, instead of simply assigning initial positive scores to them, or using other

non-optimal heuristics.

3. Applying suitable mathematical techniques to analyze, and grade the extracted

contexts. This is important because if the extracted contexts are not properly

correlated, they would make little or no meaning. We therefore apply adequate

mathematical and statistical methods to capture the needed contexts.

4. Building a robust algorithm that will enable entities to assess their counterparts in

order to make secure and fair decisions on communication issues such as allowing

access to its resources or otherwise. The algorithm will be tested on simulated

(and containerized) test-beds, which reflect the attributes of mobile edge-clouds,

and some other popular distributed protocols.

5. A lightweight integration of the new system into blockchain is also proposed, so

that participating nodes would reach a consensus concerning the reputation of

Chapter 1. Introduction 7

every peer. Trust scores are recorded immutably, and made easily accessible. With

this feature, we further intend to make the system capable of featuring effectively

in more than one kind of distributed platform, since a node’s reputation can be

used across similar network environments.

1.3 Contributions

Following the approved work plan for this thesis, our main contributions, some of which

are already published, are summarized thus:

1. The literature of TRSs in popular distributed protocols such as P2P have been

surveyed, highlighting their strengths and weaknesses. We identified popular weak-

nesses that need to be addressed in order to make the system stronger and more

suitable for real-life application, especially on emerging edge computing systems.

2. We derived a novel method for bootstrapping reputation, so that the scores reflect

the actual behaviour of new nodes, without placing existing nodes at disadvantage.

A Sybil attacker may, for example, outsource puzzle computation, enabling it to

maneuver the puzzle system of introducing new nodes, but our system is immune

to this because it may be more difficult to outsource bandwidth. This will make

more sense when we explain the bootstrapping method later.

3. We developed means of mitigating Bandwidth attack [15] which was neglected in

the literature of TRSs. Our method allows seeders (service providers) to also be

able to assess their clients in a distributed manner, based on first-hand information.

4. The system was tested on a simulated test-bed, which reflects the attributes of

mobile edge-clouds; an edge computing paradigm that is considered potentially

vital for IoT. Mobile edge-clouds can improve user experience among low-resource

nodes, with little or no dependence on traditional communication infrastructures.

The test-bed was also made to feature the attributes of older P2P platforms such as

BitTorrent, since our approach is aimed at being applicable to the new paradigms

as well as their parent protocols.

5. A version of the proposed method was adapted for IoT based eHealth system. We

explained how mobile edge-clouds would function with fog nodes to bring about

Chapter 1. Introduction 8

improved Quality of Service (QoS), and service availability even in cases of natural

disaster which would make fog nodes and other infrastructures unavailable. This

would aid rescue operation and sustained eHealth services to people in the affected

area.

6. We also propose the application of Blockchain technology to further secure trust/rep-

utation scores for every peer, so that badmouthing and similar attacks would be

very difficult or impossible. Knowing that we are focused on environments that

may involve heavy presence of low resource mobile devices, a lightweight consensus

mechanism was proposed.

1.4 Publications

So far, here are the publications that have been made with respect to this thesis:

1. Nwebonyi, F. N., Martins, R., & Correia, M. E. (2018, August). Reputation-Based

Security System For Edge Computing. In Proceedings of the 13th International

Conference on Availability, Reliability and Security (p. 39).

2. Nwebonyi, F. N., Martins, R., & Correia, M. E. (2019). Reputation based approach

for improved fairness and robustness in P2P protocols. Peer-to-Peer Networking

and Applications, 12(4), 951-968.

3. Nwebonyi, F. N., Martins, R., & Correia, M. E. (2019). Security and Fairness in

IoT Based e-Health System: A Case Study of Mobile Edge-Clouds. In 2019 In-

ternational Conference on Wireless and Mobile Computing, Networking and Com-

munications (WiMob) (pp. 318-323). IEEE.

The literature review was documented in article number 2. This publication also contains

the implementation and results of the proposed system in a P2P protocol. The system

reflects to a large extent the general attributes of P2P.

Article number 1 has its emphasis on the attributes of mobile edge-clouds, as a case study

for edge computing and IoT services. This was done by minimizing the functionality

of the tracker to reflect, among other changes, the characteristics of the new protocol.

Chapter 1. Introduction 9

There were no significant difference in the results compared to the results of article

number 2, mainly because the system was aimed at being as distributed as possible

from the beginning.

The third paper focused on the application of mobile edge-clouds in IoT based eHealth

systems, as well as the role of the proposed system in attaining inexpensive security in

such distributed and volatile environment. This was done with full awareness of the

sensitivity of information that potentially flow in such platforms. Results differ a little

here, because some attributes of the proposed method were downplayed since they were

considered non crucial for the eHealth setting.

1.5 Thesis Structure

The remaining part of the thesis is organized as follows:

• Chapter 2 reports the concept of trust and reputation. It features popular defini-

tions of trust, as well as how it is built and conceptualized. We report the meaning

of reputation and various methods applied throughout the literature to compute

them. In this chapter, we also discussed distributed networks and the prevalent

attacks that they face. The advent of edge computing technology was equally

reported here alongside its different paradigms, including fog computing, mobile

edge computing (MEC), cloudlet, edge-centric computing, osmotic computing, and

mobile edge-clouds.

• Chapter 3 discusses the literature review, bordering on TRSs and their application

in various distributed platforms to mitigate attacks. Detailed discussion concerning

its application on distributed networks, such as P2P, edge computing, blockchain

technology and mobile adhoc networks (MANETs) were documented.

• Chapter 4 documents the proposed system, called FBit. It also reports experimen-

tal results obtained via simulations. Different attacks were simulated including

Fake-block attack, Bandwidth attack, Sybil attack, and Collusion attack.

• Chapter 5: this chapter discusses the application of mobile edge-clouds for im-

proved quality of service in IoT based eHealth system. It also discusses other

Chapter 1. Introduction 10

use-cases of mobile edge-clouds including user-generated replay, rescue assistance

in cases of emergency, and searching for missing persons in a crowd. In each case,

the application of FBit for improved security is explained.

• Chapter 6 presents proposals for: (i) A version of the proposed system called FBit-

U, which is aimed at testing the system in a containerised network setting, using

docker and other tools. The goal is to attain a more realistic test environment

since it would be super expensive to purchase hundreds of physical devices for the

experiment. (ii) Adapting FBit-U into a blockchain system, so that trust scores

would be publicly available and decision making would be more transparent. The

system may significantly reduce or eliminate the chances of false recommendations:

it is tagged Distributed Trust Ledger (DTL). This is not yet completed/tested.

• Chapter 7 presents the conclusion and outlines future work.

Chapter 2

The Concepts of Trust and

Distributed Networks

As mentioned in the previous chapter, trust-based methods can be applied to secure

distributed networks. Here, the actual meaning of trust is given, as well as how it is

related to security, and why it is considered suitable for distributed networks. We shall

define trust and related concepts, and establish its link to digital security. In addition, we

shall discuss distributed networks, including P2P, edge computing and related protocols.

By explaining them and their attributes, it would be easy to understand why trust is

necessary for security in such platforms.

2.1 Meaning of Trust

Trust has almost become synonymous to security, it has been identified as a crucial

concept in digital security; without which it would be difficult to reason about the

security of any system in a convincing manner [14]. Trust can play a crucial role in

making cooperation possible among different agents or groups. It is different from a

feeling of affection or warmth, but involves a deliberate regulation of how much an

agent is willing to depend on another.

The study of trust (and mistrust) in its empirical form kick-started in late 1950s, as a

result of increased suspicion which the cold war created. By late 1960s, the study of

trust took a more individual focus due to increased suspicion which people were having

11

Chapter 2. The Concepts of Trust and Distributed Networks 12

against their authorities and institutions: trust was conceptualized as a personality trait.

Increase in divorce rate and other changes in (American) families is said to have moti-

vated trust research in the 1980s, and it was geared towards interpersonal relationships.

From 1990s till present, technological shifts and advancements have led to the study of

trust as a solution to crucial economical, sociological and computational issues [20].

The application of formal and informal controls to motivate cooperation and thus trust,

was proposed in 1990s: it allows trustworthy agents to reap some kind of benefits for

acting reliably [21, 22]. This has since been applied in online systems such as Ebay

and Amazon, and is being constantly explored for application in modern distributed

platforms.

Despite its generally agreed importance, trust is difficult to define, mainly due to its

complexity as a concept. Scholars have therefore defined it in a number of ways, but they

all reflect a generally accepted behaviour of an agent in a community (i.e. reputation)

in addition to other relevant concepts.

According to Tschannen-Moran and Hoy, “trust is one party’s willingness to be vulnera-

ble to another party based on the confidence that the latter party is benevolent, reliable,

competent, honest and open” [20]. Gambetta et al. defines it as a level of subjective

probability on which a party bases his assessment that another party will act in a cer-

tain manner, before monitoring the action (or even if he is not able to monitor it), and

given that the assessment affects his own action [23]. Fukuyama defines trust as the

expectation which arises in a community as a result of honest, regular and cooperative

behaviour, as agreed by other members of the community based on mutual norms [24].

According to Cummings & Bromily, trust is the belief of an agent or group of agents

that another party or group will (a) make sincere efforts to behave in compliance to

any commitment; implicit or explicit, (b) is honest in any negotiation that precede such

commitment, (c) does not take advantage of another in excessive manner, even if the

opportunity exists [25]. And Mishra described trust as the willingness of one party

to be vulnerable to another believing that the latter is competent, open, reliable and

concerned [26].

To consider an entity trustworthy means to have high probability that such entity will

act favorably or at least in a manner that is not harmful. Trust is context dependent,

Chapter 2. The Concepts of Trust and Distributed Networks 13

which is like saying that you can trust a lawyer’s legal advice but not his advice on how

to fix your car. It is usually based on some sort of relationship; direct, indirect or both

as illustrated in figure 2.1.

(a) Direct Trust

(b) Indirect Trust

(c) Hybrid Method.

Figure 2.1: Basic forms of Trust

Trust can be categorized into three major forms; direct, indirect and hybrid forms of

trust. Direct trust is achieved by observing a neighbor directly, without involving a

third party (figure 2.1a). On the other hand, the concept of trust transitivity is usually

harnessed to establish indirect trust, which involves gathering recommendations from

Chapter 2. The Concepts of Trust and Distributed Networks 14

neighbors about a peer (figure 2.1b). The indirect trust of a trustee is dependent on the

observation of other entities about its behavior during their past interactions. These

observations are usually communicated to the trustor in form of recommendations.

There is also a hybrid of these two forms of trust. It involves the combination of direct

and indirect trust to achieve even a stronger paradigm (figure 2.1c). This becomes

particularly important when the trustor does not have enough information based on

direct experience, to make decision concerning the trustee.

Security has been broadly classified into two categories; hard security and soft secu-

rity [27]. Hard security is associated with the traditional security approaches such as

traditional access control and authentication. It provides partial security; meaning that

corporate resources are mainly protected from unauthorized users, but it does not always

protect legitimate users from malicious service providers. This means that a central en-

tity (usually the service provider) is able to assess peers that are requesting services, but

the service requester nodes are not always empowered to assess such service provider in

a distributed manner. Soft security tackles this weakness, and trust is often promoted

as the basis for soft security [28].

2.1.1 Reputation

Reputation is usually the basis for determining trust, which implies that if an entity has

maintained a good reputation during past interactions, it can gain a level of trust that

would warrant subsequent interaction within a domain. Reputation can be seen as the

view of other agents within a community regarding a given entity, which is generally

known and assessed by the members of that community[29].

For nodes to communicate on trust platforms, it is necessary for them to be able to

measure the level of trust they can place on each other. This influences the disposition

of the nodes, to engage in transactions, or otherwise.

It can be challenging to measure digital trust with absolute precision, especially in

distributed environments. The fact that many peers possess limited resources and ca-

pacities, adds to this challenge. Moreover, trust is a social concept, and some human

instincts and reasoning which aid people in making trust decisions, are not easy to cap-

ture in algorithmic form. But the literature contains several approaches which have

Chapter 2. The Concepts of Trust and Distributed Networks 15

been proposed for the purpose of aggregating and building trust in digital environments

[29]. Most of the proposals adopt one (or more) of the following methods to calculate

reputations, upon which trust is based.

1. Summation

The simplest form of trust computation is usually to sum the positive and neg-

ative scores separately, then subtract the negative from the positive, in order to

determine how reliable an agent has been. This approach has been adopted to

calculate direct reputation in [11], and it is also used by eBay reputation system

[30].

2. Average

Another method which is close to simple summation involves taking the average of

all scores of the peer being assessed, such as the case of Amazon [31]. Some other

models such as TE-AODV [32] also use this method; assigning default scores to

newcomers. Sometimes, this method is slightly extended, by taking the weighted

average, instead of the normal average. The extended version allows the reputation

of the recommending node (or similar factors) to be taken into account, as done

in [8].

3. Bayesian Method

Interaction outputs are usually rated as good or bad, that is, in a binary form.

The number of positive and negative scores are used to compute reputation, using

the beta probability density function (PDF). The PDF tuple α and β represent the

number of good and bad interactions respectively, and the probability expectation

value of beta distribution is represented as follows [33];

E(p) = α/(α+ β) (2.1)

Compared to other methods, this method tends to have detailed theoretical back-

ground which can amount to higher confidence in its outcome. During bootstrap-

ping, α and β are each assigned the value of 1, which amounts to a default score

of 0.5. Despite being popular, this type of (default) score initialization has been

criticized for having the likelihood of being either unfair to the new node or the

Chapter 2. The Concepts of Trust and Distributed Networks 16

ones that are already in the network. It also has a tendency of not adequately ad-

dressing white-washing [34, 35]. A white-washer is a peer that leaves the network,

usually after behaving badly, and then rejoins with a different identity.

4. Fuzzy Techniques

This is one of the methods adopted for computing and aggregating reputation [8].

It involves reasoning about trust in-terms of fuzzy values. It appears to give more

room for incorporating human-like reasoning such as agreement compliance, trans-

action time/age, etc, in reputation computation and aggregation. Given many

recommendations for example, fuzzy technique can be applied to probe for the

relevance of such recommendations by reasoning about compliance (or otherwise)

to transaction agreement. That is, applying compliance as an objective measure

to verify the subjective user ratings [36].

Sabater et al. [37] also falls under this category; they talked about the individual,

social, and ontological dimensions of reputation. Individual and social dimensions

correspond to direct and indirect trust respectively. But the ontological dimension

dived deeper into what it actually means to have a given reputation. If company A

has a good reputation as a transportation company, then using fuzzy concepts, we

may want to account for how it handles luggage, the kind of meal it serves, etc.

Different techniques apply various means to capture trust, but fuzzy techniques

appear popular in this kind of reasoning.

5. Flow Techniques

Here, reputation relates to the level of importance which a peer attracts within

a community. As an example, in PageRank [38], the number of links pointing

to an entity (such as website), compared to the number of links that leaves the

entity, is used to determine the importance or reputation of that entity. If we take

I(P) to be the set of other entities that are pointing to page P, otherwise called

the in-links, and |P | to be the number of other pages that P is pointing out to,

otherwise called the outlink, then PageRank of P denoted by r(P), is computed as

follows;

r(P) =
∑

Q∈I(P)

r(Q)

|Q|
, (2.2)

Chapter 2. The Concepts of Trust and Distributed Networks 17

where |Q| is the out-links from Q. r(P) is mainly influenced by the pages that are

pointing to it, which can be regarded as recommendations. However, an increase

in the number of references made by Q, reduces the influence of Q on P.

6. Belief Models

This approach is somewhat related to probability theory, but the sum of ‘proba-

bilities’ for all possible outcomes do not necessarily have to be equal to 1. Trust is

expressed as a belief that a system will resist malicious attacks, or that a person

will cooperate and not defect. A node is considered cooperative if it acts well,

supporting and getting support from other nodes as expected. It defects when it

begins to act selfish or malicious.

Unlike some other models in which belief in an agent’s cooperation is considered

true or false (i.e. discrete), belief models consider a case where there is no clear

information on either belief or disbelief, and thus an uncertainty factor is intro-

duced. Instead of using belief or disbelief in order to determine trust, uncertainty

also counts. Opinions are usually expressed in the form [39]; ωX
Y = (b, d, u, a),

where ωX
Y is X’s opinion about statement Y, while b, d, and u stand for belief,

disbelief, and uncertainty receptively. a ∈ [0, 1] is referred to as relative atomicity,

which is used to determine how uncertainty affects the expected opinion.

7. Discrete Trust

Trust is a social concept and thus humans as social entities are often better at

determining the trust of other entities, based on experience and other intangible

factors. Computationally, scholars try to capture as much of the human related

attributes as they can, to enable them to make algorithmic trust possible and

close to the human perception of trust. For example, some models such as [29]

have emulated the human style of trust perception, to discreetly rank trust as very

trustworthy, trustworthy, untrustworthy, very untrustworthy. Lookup tables are

then used to determine the actual trust of an entity.

As outlined, trust logic comes in different forms. Our goal is not to apply all of them in

our model, and we also do not think that doing so is necessary. We will however be taking

advantage of some of the methods which have shown high prospects for success in the

literature. This will be seen when we introduce the proposed method, but before we get

Chapter 2. The Concepts of Trust and Distributed Networks 18

there, it is important to discuss distributed networks and edge computing paradigms, as

well as some known attacks in distributed networks. These are discussed subsequently.

2.2 Distributed Networks

TRS has been popularly applied to address security issues in distributed networks. In

this section, we shall discuss some of the distributed networks, highlighting the ones

that are of particular interest to this project, such as the mobile-edge clouds. Common

attacks which the networks are vulnerable to, shall also be outlined.

Let us begin with Peer-to-peer (P2P) which is one of the most popular distributed

protocols. P2P is a network architecture in which every node behaves in a similar

way and renders same kind of service [9]. For example, nodes can function as clients

and servers at the same time, making users more actively involved in the network,

even offering their resources. P2P networks are popularly used for file sharing, but

its application also spreads across various other domains, including the relatively new

domain of edge computing. To illustrate how the network functions, we will now discuss

popular P2P based protocols and other distributed network settings, paying particular

attention to edge computing.

2.2.1 BitTorrent

BitTorrent is the most popular among P2P protocols, accounting for about 53% of the

entire P2P traffic, and more than 30% of overall Internet traffic [40]. It is a good case

study because it is very well known, widely deployed and it harbors major properties

and behaviours of P2P systems. BitTorrent is mainly used for file/content sharing.

A share process in BitTorrent is initiated by first creating a meta-data describing the

file that is to be shared, including SHA1 hash information about the pieces, among

others. The information in the torrent file guides peers to the tracker and subsequently

to other leechers and seeders in the swarm [41]. Leechers are peers that do not have all

the file pieces, while seeders are peers with all the pieces. A tit-for-tat method is used

to ensure that leechers who receive files also give to others. Seeders are assets to the

network because they selflessly share files, without the need to download. Because of

Chapter 2. The Concepts of Trust and Distributed Networks 19

this, tit-for-tat does not directly apply to them and thus they can be exploited in some

ways, as discussed subsequently.

In DHT (Distributed Hash Table) based BitTorrent, the tracker does not aid in the

discovery of files or peerset. Nodes do this all by themselves. With distributed tracker

systems such as Mainline DHT (MLDHT), peers use content IDs (also called infohash) to

find the location of desired contents. Once a node knows the infohash of the file it wishes

to fetch, it applies some controls to arrive at its location. Some of the controls include;

‘PING’ for ascertaining a node’s availability, ‘FIND NODE’ used to get the k-closest

neighbors, ‘GET PEERS’ for getting the initial peerset and ‘ANNOUNCE PEER’ used

by nodes to announce that they are part of the swarm [42]. Trust is usually required to

empower nodes with some means of deciding who to transact with, or otherwise, without

relying on central entities.

2.2.2 Edge Computing

This is a newer distributed computing paradigm. Computing trend went from main

frame, which was mainly centralized, to personal computers which is a more distributed

architecture. But centralization returned with cloud computing, before the recent shift

back to decentralization due to the low latency requirements of IoT and related services.

Edge computing paradigms such as fog computing, mobile edge computing, and mobile

edge-clouds are all focused at ensuring low communication latency.

The centralization which cloud computing offers, has notable advantages. It provides the

option of renting infrastructures, instead of a more expensive alternative of purchasing

them, thereby making it less expensive to kick-start a businesses. Data collocation,

abundant resources for heavy computations, on-demand, and elasticity are all parts of

the advantages of cloud computing. It is a straightforward way to boost capacities and

capabilities without the need to invest on new infrastructure, staff or software [43].

On the other hand, it is estimated that there will be about 50 billion connected devices

by 2020 [44], and up to 1 trillion devices by 2025 [45]. Many of the devices will be

generating several gigabytes of data within short intervals, which would need to be

stored and processed. This would lead to sharp upward demand for bandwidth and thus

Chapter 2. The Concepts of Trust and Distributed Networks 20

become strenuous for the cloud computing infrastructure; especially because many IoT

services require real-time update, and the cloud is remote in nature.

As an example, autonomous cars would be generating gigabytes of data per couple of

miles or kilometers, which would require real time analysis or computation to enable

them to navigate appropriately in real time. Connecting back and forth to the remote

cloud would generate heavy traffic, and real time computation would be very difficult.

Edge computing paradigms such as fog and mobile edge-clouds are distributed platforms,

geared towards addressing latency and related issues.

Edge computing is a distributed architecture of information technology (IT) in which

data processing is done at the network periphery; close to its originating source, as much

as possible [46], as illustrated in Figure 2.2. The concept emerged around 2002, with

main focus on application deployment over Content Delivery Networks (CDNs). Some

companies aimed to take advantage of the resources and proximity of CDN edge servers

to boost scalability [3]. Since then, edge computing concept has continued to evolve into

different varieties and use-cases.

The advent of IoT has accelerated its growth, because resources which the edge devices

already possess are capable of supporting the remote cloud if properly exploited. It

can lead to latency reduction and faster service delivery, which is crucial for IoT appli-

cations. Our method is designed to be easily adaptable to edge computing platforms.

More emphasis shall be on mobile edge-clouds because it is more distributed and can

therefore be relatively more challenging to coordinate and secure, compared to some

others. Different edge computing paradigms, which have been reported in the literature

are outlined and discussed next.

2.2.2.1 Fog computing

Fog computing provides near-by data centers where some operations can be performed

without the need to channel such process to the central cloud every single time. It

provides networking, storage, and compute services between end devices (e.g. mobile

devices) and traditional data centers. Fog nodes are heterogeneous devices that are

distributed geographically - e.g. at roadside to monitor traffic related activities, and

help autonomous cars to make real time decisions. Fog nodes can communicate with

Chapter 2. The Concepts of Trust and Distributed Networks 21

Figure 2.2: Edge Computing concept [1].

each other and with the cloud to share information. Under Fog, multiple infrastructure

providers can coexist and cooperatively work with each other. Fog nodes and services

launched on the cloud platform may belong to different actors including private users

and mobile network operators [47]. Cisco defines Fog computing as “a paradigm that

extends cloud computing and services to the edge of the network” [3].

With edge computing paradigms such as Fog, users can actually become part of a virtu-

alization platform, able to lease out some storage or computing capacity for application

to run on them. Fog requires the heterogeneous devices and services which run on

its platform, to be managed homogeneously; in an automated fashion, using adequate

software. The Network Function Virtualization (NFV) is a technology that makes the

needed homogeneous management of heterogeneous devices and services achievable [44].

Chapter 2. The Concepts of Trust and Distributed Networks 22

OpenFog Consortium is the body responsible for the standardization of fog computing.

There are six groups established by Openfog for evaluation, classification and recom-

mendation of standards, technologies and practices that are necessary to enable the

fog architecture address its challenges adequately. In 2017, the OpenFog Consortium

released the OpenFog Reference Architecture; a general framework designed with the

intense data requirements of 5G, IoT and AI (artificial intelligence) applications in mind.

It represents the first step in creating fog computing standards.

The framework presented in Figure 2.3 captures five key perspectives in fog computing,

including; performance and scale, security, manageability, data analytic and control,

and IT business and cross fog application perspectives [48]. Also captured are the three

views that have been identified for fog, including software, system and node views.

Figure 2.3: OpenFog Reference Architecture for Fog Computing [2].

2.2.2.2 Mobile Edge Computing (MEC)

Mobile edge computing is a similar concept to fog computing: it provides environment

for IT services and cloud computing capabilities within Radio Access Networks (RAN),

in close proximity to mobile subscribers. The aim is to reduce latency and improve effi-

ciency in network operation and service delivery, thereby boosting user experience [49].

The IT service environment when brought to the network edge, will enable services and

Chapter 2. The Concepts of Trust and Distributed Networks 23

applications from mobile operators, content and service providers to be easily integrated

into the multi-vendor MEC platform.

At the MEC world congress in 2016, Mobile Edge Computing was renamed as Multi-

access Edge Computing, in order to accommodate non-cellular operators who also show

huge interest in the concept [48]. MEC has been recognized alongside NFV and SDN

(Software-Defined Networking) as key emerging technologies for 5G (5th Generation)

networks. This is because it can help in transforming the mobile broadband network into

a programmable world, while also contributing towards satisfying throughput, latency,

automation and scalability, which are core requirements of the 5G.

With SDN, the logical overlay network can be decoupled from the underlying physical

network [50]. This means that the logical overlay network can be programmed (changed,

stored, etc.) without the need to reconfigure the associated physical hardware architec-

ture. It can be leveraged to create and deploy innovative solutions that would address

network-related issues, including congestion control, routing, or real-time communica-

tion.

MEC’s approach is complementary to that of NFV, and both can be hosted on similar

infrastructures. Technology integration, business transformation, and industry collab-

oration are the market drivers behind MEC. Augmented reality, intelligent video ac-

celeration, connected cars, internet of things gateway are some service scenarios that

stand to gain from Mobile Edge Computing [51]. But the requirements of 5G in the

telecommunication firms remain the core business driver of MEC.

2.2.2.3 Cloudlet

A Cloudlet has been described as a “trusted” computer or a cluster of computers that

are rich in resources, well connected to the Internet and is available for use by close-range

mobile devices [48]. They are small data centers distributed geographically, closer to the

mobile devices than the cloud. Cloudlet primarily aims at supporting resource intensive

mobile applications, by providing mobile devices with powerful computing resources at

low latency. It uses hand-off technology found in Virtual Machines (VM), to migrate

offloaded services from one cloudlet to another as devices move from point to point.

Chapter 2. The Concepts of Trust and Distributed Networks 24

OpenStack++, an extension of a more popular OpenStack has been implemented to

support Cloudlets, in addition to other technologies such as cloudlet discovery, and just-

in-time provisioning [48]. Cloudlet is less efficient compared to other advancements such

as Mobile Edge Computing (MEC) due to its reliance on Wifi access points, and resource

limitation of the Cloudlet servers [52, 53].

Cloudlet has also been identified as an approach to Mobile Cloud Computing (MCC),

where mobile devices offload workload(s) to a local cloudlet, which is basically a set of

multi-core computers connected to cloud servers. MCC is a general concept that captures

offloading of tasks by mobile devices to the cloud computing infrastructures. This enables

a mobile device to use resource providers, other than itself, to host application execution

[54] - a concept which edge computing technologies share.

2.2.2.4 Edge-Centric Computing

This shares close similarity with the earlier mentioned methods, especially the Fog. Its

bases are drawn from (i) the fact that individuals who upload documents to the cloud

may be worried about loosing privacy over such documents to the central services, (ii)

the zeal to exploit resources of emerging powerful mobile devices, and (iii) to close the

gap that exist between man and machine, by focusing on human-driven applications

that are controlled from the network edges. This “human centric” idea distinguishes it

from other Edge computing methods.

Edge-Centric Computing aims to push data, applications, and services to the periphery

of the network. It is envisaged that users, under this concept, are able to decide which

part of their information a third party can access. The system is also expected to adapt

to the behavior of any user, as well as handle interactions with humans via the connected

mobile devices. Users can also be part of crowd-sourcing platforms by providing personal

data for external use, such as allowing a third party company to access their energy usage

data. The idea here is basically to make users more inclusive in the process [49] and

minimize the man-machine gap.

Chapter 2. The Concepts of Trust and Distributed Networks 25

2.2.2.5 Osmotic Computing

Similar to some other edge computing offshoots, this concept is motivated by the increas-

ing need to support interactions between the IoT edge devices and the cloud. Osmotic

computing is focused on the management of services across cloud and edge data centers

in a dynamic manner, with the goal of improving QoS in IoT. More specifically, it is

aimed at decomposing applications into micro-services, and then tailoring them dynam-

ically in smart environments, utilizing both the resources available at the edge and the

cloud. The idea is to have micro services in containers, and then move them oppor-

tunistically between the edge and the cloud, taking into account the condition of both

infrastructures; in-terms of requirements like availability, reliability, and load balancing.

Osmotic computing tries to understand which service needs to be executed at the edge

and that which needs to be executed at data centers. It hopes to dynamically handle

resource contention among co-deployed micro-services across edge and the cloud. It is

expected to detect and resolve resource contention through micro-service performance

characterization, coordinated deployment and workload prioritization. Besides the well

known method of offloading software applications from the edge devices to the cloud,

osmotic computing holds the view of also enabling reverse upload for applications, from

the cloud to the edge devices, to maintain a balance. According to [55], this can assist

in checking latency and ensuring better resource management.

2.2.2.6 Mobile Edge-Clouds

Apart from the growing number of connecting devices, they (e.g. mobile devices) are also

growing in capacity. Very often, users of those devices are found in close geographical

proximity, presenting opportunities to tap into their collective resources. This is inline

with the fact that availability, power efficiency, real-time demands, outage management,

and even security can be better addressed by adopting the use of edge devices [56].

Mobile edge-clouds tap from that opportunity to pull various edge resources of end users

together, to form a platform which is much higher in resources (compared to individual

nodes) and on which computation and storage operations can take place. The idea is

based on the fact that mobile devices are ubiquitous, and many possess considerable

computation abilities which when put together can amount to a dependable platform

Chapter 2. The Concepts of Trust and Distributed Networks 26

for more powerful processing and storage abilities, than would be obtained in isolation.

Individually, the devices are under utilized, less than 25% of their resources are engaged

per hour [57]. Mobile edge-clouds can be of particular importance in cases of disaster or

in huge crowds where bandwidth and latency could be issues [58].

Mobile edge-clouds can be totally comprised of near-by mobile devices with little or no

infrastructural support [59]. It can also co-exist with traditional cloud computing, if

need be [60]. It differs from similar concepts such as Cloudlet, Mobile Edge Computing

(MEC) and Fog computing, which introduce mini servers to handle some storage and

computational tasks instead of channelling all of them to/from the cloud. It is more

distributed and thus presents more potential security challenges.

By providing storage and computation capabilities to the edge nodes, mobile edge-clouds

can improve location and context aware decisions, reduce latency, conserve bandwidth,

minimize cross-domain traffic, and also help to address some security and privacy con-

cerns of traditional cloud computing; thereby improving Quality of Service (QoS). It can

be equipped to serve low latency internet applications such as Robotics, virtual realities,

and real time interactive industrial control systems. Since mobile edge-clouds does not

replace cloud computing but co-exists with it, the cloud offers an infrastructure which

edge-clouds agents can fall back to, if need be.

Mobile edge-clouds can be adapted for IoT applications or just conventional applications

such as disaster recovery or improving user experience in a soccer stadium or content

delivery, etc. It has also been identified as essential in attaining the emerging tactile

internet which is aimed at interconnecting traditional (wired) network, mobile network

and IoT, to form a unique kind of network [49]. IoT application may involve event

detection, sensing, actuator controlled machine-to-machine interactions, or human-to-

machine interaction. These usually generate huge data and traffic at the network edge,

and necessitates aggregation and processing of such data at the same edge, so that only

the aggregates are sent instead of the entire data which is heavier. This can reduce

latency for real time machine-to-machine monitoring applications, and make provision

for actuators and sensors who are resource and power constrained, to offload storage

and computation to more powerful devices/platform.

Streaming applications and services over mobile edge-clouds’ related platforms is begin-

ning to gain patronage. Applications such as BitTorrent Live allows video streaming in

Chapter 2. The Concepts of Trust and Distributed Networks 27

a peer-to-peer form, without internet connection. Distributed storage is also beginning

to take advantage of the platform: for example, Resilio Sync enables sharing of file over

a private cloud through Wifi-Direct. Resilio Sync is deployed on top of BitTorrent pro-

tocol [61]. It has been shown that mobile edge-clouds can out perform the traditional

cloud computing architecture, both in latency and power consumption efficiency [62].

Security of Mobile Edge-clouds: As a relatively new technology, edge computing

and mobile edge-clouds in particular still face a number of challenges including, but not

limited to privacy and security issues. For example, owners of mobile devices which

are in close physical proximity, may be meeting themselves for the first time and have

never communicated before. This makes everyone a stranger to its neighbors, with no

pre-existing trust or endorsement from trusted agent. There is therefore a fundamental

issue of trust.

Furthermore, participating nodes may be required to run codes from other devices in or-

der to provide computational resources. This poses more threat than mere file exchange

or running third-party applications, because third party applications are usually from

known App stores which are subject to vetting. Nodes therefore need to be reassured

before they can run such code, and that requires reasonable level of trust.

There is also an issue of privacy, considering the fact that mobile edge-clouds’ nodes

(devices) also provide data which are processed in the network, as well as storage and

computation resources. Users contribute data/resources which they possess locally in

their devices, such as videos, photos, contacts, location, etc. The privacy of such data is

at stake and users worry about sharing privacy sensitive information. Because of these

issues and related others, it is very challenging to adequately secure communication

among entities in a mobile edge-clouds’ platform [63].

2.3 Common attacks

Decentralized networks suffer from diverse forms of attack. Apart from free-riding,

which is an act of selfishness, in which peers download from others without uploading

to them in return, some other popular attacks in P2P (and similar networks) include

the following:

Chapter 2. The Concepts of Trust and Distributed Networks 28

1. Lying Piece Attack : The goal of this attack is to destabilize the ‘rarest first’ policy

of file sharing platforms such as Bittorrent, in which peers while downloading,

give priority to blocks that are scarce in the network, so that they will not be lost

completely. Attackers advertise false pieces, thereby misleading other peers on the

pieces that are actually rare [64]. More generally, the intention of attackers here

might also be to cause other forms of confusion, such as diverting the attention

of victims from genuine contents to non existing ones, in order to frustrate their

download efforts.

2. Chatty Peer Attack : Attackers establish many TCP connections with their vic-

tims. They announce possession of many file pieces, but when the victims request

for some blocks of such pieces, they never upload any. Instead, the attackers re-

send handshake messages, thereby sticking as neighbors to the victims, who spend

considerable amount of time waiting in vain for the attacker’s response [65]. This

can be an extension of the previous attack.

3. Fake-Block Attack : Attackers also advertise possession of many or all file blocks,

pieces or packets. When victims request for such blocks, they send fake blocks

in response. After downloading all blocks of a piece (from attackers and genuine

peers), the victim may hash the file piece to check authenticity. This fails because

of the fake blocks, warranting that the entire blocks be downloaded afresh, meaning

a huge waste of bandwidth and time [66].

4. Bandwidth Attack : This is usually an attack targeted at service provider nodes

(otherwise called seeders) with the goal of occupying their upload bandwidth, so

that there is little or none left for legitimate peers. In protocols such as BitTorrent,

seeders do not download, so they keep uploading to the fastest downloading peer(s).

Attackers therefore exploit this by simply connecting to seeders and downloading

only from them at fastest rate possible, so that they are constantly unchoked, while

the reputable peers are continually choked [15, 16, 67]. This attack can extend

to distributed networks in general, since a node can function as a service provider

and/or service requester, depending on its status. Node A is said to be unchoked by

Node B if Node B is open to receive and service requests from Node A, otherwise

it is chocked.

Chapter 2. The Concepts of Trust and Distributed Networks 29

5. Sybil Attack : Fake identities, otherwise called Sybils can be created very cheaply.

To beat reputation systems, attackers create links between their Sybils, and through

that means unleash different kinds of attack. They can also use such links for rais-

ing their own reputation and thus gain unmerited advantage [68, 69].

6. Index Poisoning Attacker : In distributed file sharing platforms for example, clients

often keep indexes of files which map each file identifier to their hosts. Index

poisoning attackers exploit this setting by publishing fake file indexes, with the

goal of denying victims access to genuine neighbors. The attacker basically starts

a file sharing task, but with fake information such as port number, IP address,

infohash, etc. Since there are usually no strong verification means, owing to the

openness of the system, this attack is easily executable. The innocent peers are

left to pay the price by using up their time and resources trying to access contents

(or packets) that are not truly existing; leading to denial of service [70].

7. Combination Attack : This is a form of content pollution attack, which combines

fake-block and index poisoning attacks, to cause stronger effect. Attackers in this

case extend index poisoning by including their own IDs in the fake infohash to

be advertised. The idea is that if the victims insist on establishing connections

despite failures due to fake information, they would eventually connect to the

attacker(s) itself, who worsen their situation by feeding them with fake blocks.

So they suffer the effects of both fake-block attack and index poisoning attack.

Combination attack has been illustrated to impose more harm than fake-block or

index poisoning attacks individually [71].

8. Peer Exchange (PEX) Attack : This is very similar to DDoS (Distributed Denial

of Service) and index poisoning, it is sometimes captured separately to portray

the fact that they are launched on PEX; taking advantage of its features such as

large list of peers (upto 3000 in some cases), and very frequent PEX messages.

Even though this is not the ideal design of PEX, studies have shown that almost

all PEX implementations do not follow the original rules and there is no effective

way to enforce it [72], making it easy for malicious peers to fabricate huge PEX

peer lists with false IP addresses. This can cause victims to waste resources and

time trying in vain to connect. Similarly, the attacker can also send PEX messages

containing the address and port number of a victim to as many others as it can.

Chapter 2. The Concepts of Trust and Distributed Networks 30

This is aimed at weighing the victim down with too many connection requests,

resulting to DDoS.

9. Collusion Attack : Collusion attackers collude to favor themselves at the expense

of legitimate peers. Attackers can join forces under collusion attack to make any

of the mentioned attacks more devastating [73]. In TRSs, collusion attackers give

themselves favorable scores, and downgrade the scores of others. This can mislead

genuine peers into falsely believing that the malicious nodes are the reputable ones,

and vice versa. With this method, the attackers can take over the network and

successfully eliminate the genuine nodes from network services.

10. Bad-mouthing [74] or Slandering [18] Attack : These attacks both refer to an act

of manipulating feedback or recommendations given concerning a given node, with

the intention of reducing its reputation. It is common in nearly all distributed and

semi-distributed TRSs. Recall that indirect trust score is obtained by asking for

recommendations from neighbours who may have interacted with an unfamiliar

agent. This helps the local node to make a decision regarding whether interaction

with the agent is ideal or not. Via bad-mouthing or slandering attacks an inno-

cent node may be shut out of the network as a result of false recommendations,

especially when such attacks are coordinated directly or indirectly.

2.4 Summary

In this chapter, we discussed the concepts of trust and reputation. The “controversy”

in the definition of trust was highlighted, and different forms of trust were explained.

The meaning of reputation and different ways of computing reputation were outlined.

Distributed networks were equally discussed using various protocols. BitTorrent was

introduced to highlight the properties of a traditional P2P platform, while edge com-

puting represents recent and emerging offshoots of distributed networks; we highlighted

how edge computing paradigms are crucial to the future of computing. Security chal-

lenges and common attacks were also explored; these attacks are potentially applicable

to edge computing.

Chapter 3

State of the Art

The literature reports many TRS (Trust and Reputation System) proposals that seek

to ensure trust and security in distributed networks. In this chapter, we have reviewed

such reports, highlighting their strengths and weaknesses, so that we can build on them

to derive a better solution. We covered popular distributed environments including P2P,

MANETs, blockchain, bittorrent and edge computing.

3.1 Trust Bootstrapping, Propagation, Aggregation and

Prediction

This section outlines the popular methods which are used to compute trust in Trust

and Reputation Systems (TRSs). The methods which shall be discussed in subsequent

sections apply one method or the other to bootstrap, propagate, and aggregate trust

information, enabling nodes to predict the likelihood of compliance (or otherwise) of

other peers. The idea here is to give an overview of how trust computation works

generally in TRSs, so that subsequent discussions would make more sense. We shall in

the following sections describe different TRS based methods that have been proposed

for different distributed environments, including P2P, blockchain, and MANET.

• Bootstrapping: The first method often involves trust bootstrapping, which ad-

dresses how newcomers are going to be introduced into the network, in a safe and

efficient manner. Generally, the literature approaches this in six different ways.

31

Chapter 3. State of the Art 32

The first and most popular method involves assigning default or positive values

to newcomers [8, 10, 75]. The second is the dynamic initialization method [76], in

which the current security status of the network (or system) determines the scores

that would be assigned to the new nodes. If maliciousness is currently high, then

the value of initial trust score will be low, otherwise it would be high.

Thirdly, there is a recommendation and endorsement based method. Under this

category, if a newcomer has similar interest and capabilities [34] or patterns [35],

with an existing service (or node) which is already known as credible, then its

initial score can be derived from such existing node or service. The fourth involves

the use of game theory [77] for predicting initial trust, usually in web service

platforms. Method number five involves the use of central/super entities [78], or

prior registration [79], or pre-existing trust relationship [80, 81].

The sixth method features the use of challenge/puzzle [82, 83] to restrict the num-

ber of fake identities that a Sybil attacker can introduce into the network. This

is more related to resource testing rather than trust. It is easy for existing nodes

to verify puzzles, but an attacker can outsource the puzzle computation and then

introduce many Sybils into the network; this is obviously not good for the ex-

isting nodes who unknowingly clear such Sybil entities. Our method is different

because emphasis is not only on resources but also on reputation, during and after

the bootstrap stage. The new method is also distributed, with no need for prior

registration, pre-existing trust relationship or super node.

• Propagation: Guha et al. and Zhang et al. [84, 85] specifically highlighted the

importance of trust propagation in TRS. To give an example of how this process

works, in [84] trust is propagated based on the length of arguments: If i trusts j,

and j trusts k, then in one propagation step (otherwise known as atomic propaga-

tion) the possibility of i trusting k could be inferred. This is based on the transitive

attribute of trust. According to Zhang et al. [85], if graph C represents the net-

work that contains all possible trust relationships which can be formed through

trust propagation, such that the observed network N is a sub-graph of C (That

is; if a vertex set U(N) of network N is the same with vertex set U(C) of network

C, and an edge set E(C) of N is contained in E(C) of C) then C is considered a

candidate network. Given any vertices (u,v), if such vertices do not form an edge

in network C, then it is impossible for u to trust v through trust propagation.

Chapter 3. State of the Art 33

Most TRSs use propagation techniques that are similar to that of [84]. In general,

a web of trust can be formed by exploiting the transitivity attribute of trust.

• Aggregate: After propagation, there is usually the need to aggregate trust infor-

mation. The literature has reported a number of trust aggregation approaches,

such as GossipTrust and CMANET explained in [27]. GossipTrust focuses on

fact aggregation while CMANET draws its bases from distributed Bellman-Ford

algorithm which is considered sophisticated, and thus best used for light weight

aggregations in order to avoid incurring heavy overhead. The authors of [86] also

focused on the lying strategies of recommendation givers during the aggregation

process. They explained that provision needs to be explicitly made for these lying

strategies by Beta-family TRS models.

In general, a good TRS should be able to efficiently sieve out bogus information

resulting from propagation (e.g. recommendation). This is done in a number of

ways; some systems simply sum or take an average of recommendations, others

probe into how genuine they are via different means. In the previous chapter, we

discussed various methods through which reputations are aggregated to arrive at

trust.

• Prediction: The aim of propagating and aggregating trust information is to actu-

ally build trust in a reliable way. In [87] an opportunistic network was used to

illustrate this, while in some other models, nodes use the ratio of packets that were

correctly forwarded by neighbours to determine its trust history [88]. Fuzzy logic

(or similar approach) can also be applied, with the evaluated node’s trust history

and its ability to deliver services credibly, as inputs.

Hopefully the term ‘prediction’ did not sound confusing, it was used to capture

the idea of decision making based upon the trust information already gathered.

For example, an agent may determine (or ‘predict’) with some level of certainty

that another party would act in a given way (favourable or otherwise).

Often times, a node’s direct experience tend to supersede or totally eclipse trust

information that is gathered through other means, because the node trusts itself

better than others in the network. However, getting a global opinion is crucial, so

that nodes do not keep acting based on local view. A good approach is usually to

Chapter 3. State of the Art 34

combine the two (local and global views) and then determine how much weight to

attach to each, based on defined heuristics.

3.2 TRS in Peer-to-Peer (P2P)

This section discusses popular related works in the P2P domain. It is one of the popular

distributed networks where TRS has been heavily featured. Studying TRS in P2P is

essential for understanding how it would be adapted to work better in emerging offshoots

such as mobile edge-clouds.

Naghizadeh et al. [11] proposed a model which targets free-riding and similar attacks in

BitTorrent, a popular P2P protocol. In their system, the tracker serves as a super node,

helping other nodes to make decisions that would help them to avoid free-riders. The

authors of [66] came up with a more decentralized method in which 10 percent of the

nodes act as super-nodes, and are charged with the responsibility of decision making.

However, there is a possibility of some malicious nodes making it to the super node

stage, and then taking advantage of the network. Moreover, this method also relies on

central agents.

The work of Shah et al. [89] shares significant similarity with the method proposed by

Sarjaz and Abbaspou [66]. The former randomly selects peers whose scores would be

used to compute the global scores, not the top 10 percent, as mentioned earlier. The

idea in both cases is that by having the view of other nodes, collusion attack would be

averted. But that is true only if the views of sincere nodes are considered in computing

the global score, otherwise the computed score would be deceptive. The random choice in

this method makes it difficult to survive certain percentage of maliciousness; the system

stops being efficient when the number of malicious nodes grows up to 30 percent.

Wong et al. [12] mainly focused on content pollution. For any pollution suspected, the

network is divided into subunits in order to identify and carve out pollutants. This

technique can cause huge overhead and possible isolation of network segments. In the

same vein, Santos et al. [90] proposed a reputation voting system based on subjective

logic, where peers are required to vote for files as either polluted or valid. However, vote

collection can take time, since the nodes might need to download big chunk of the file

before casting their votes.

Chapter 3. State of the Art 35

In [90], when a node finishes downloading a content/file, it gives a positive or negative

vote for that content, to reflect how valid (or otherwise) the file is. When the reputa-

tion for a given content is beyond a threshold, then it is considered non-polluted and

downloads are encouraged. A tracker is used here to regulate concurrent downloads, but

their approach does not work for DHT and PEX (Peer Exchange) based systems since

they depend on a central agent.

An automatic voting system with similar concept and assumption was proposed in [91]

to incentivize nodes and make them willing to vote, so that reliable information may be

gathered concerning each content/file. The system assumes that files which are seeded

frequently have high reputation and are not polluted, while the ones that are deleted

after download are most likely contaminated. Machine learning algorithms were used

to learn about this, but the claim is only implicit, not proven to work. The main focus

appears to be on the whole file, not chunks or pieces which are exchanged to build up

the file. However, attackers may be able to embed malicious or bogus block(s) at piece

level, causing a file which is valid to be considered malicious.

Pecori’s work [75] focused on Sybil attacks within Kademlia-based BitTorrent protocols.

Nodes assess their potential service providers based on trust scores. In particular, trust

scores are taken into account when selecting/ordering the k-bucket. Newcomers are kick

started with some positive risk scores to enable them join the network. Kohnen [92] also

focused on Kademlia with similar approach, but each peer has a trust management node

which must be contacted whenever the trust score of such peer need to be accessed.

These methods reflect the trend in most reputation and trust models, which involves

placing emphasis mainly on client nodes, in order to shield them from malicious server

nodes, but with minimal emphasis on protecting the server nodes (seeders) from greedy

leechers. This creates room for bandwidth attack, which has received little or no at-

tention in current trust and reputation models. Bandwidth attack is mainly targeted

at seeders, not leachers. A few methods which are not reputation or trust based have

attempted to address the bandwidth attack, but suffer crucial limitations related to

poor or nonexistent means of verifying claims/votes [67], and outrageous overhead due

to frequent encryption and decryption operations [93].

Another trend that is easily noticeable is the fact that most of TRS bootstrap trust by

assigning initial trust (or risk) score which does not reflect the newcomer’s behavior,

Chapter 3. State of the Art 36

and which may be unfair to either the existing nodes or the newcomer. The reports in

[8] and [10] also feature in this trend, and initialize newcomers with scores that allow

them to join the network without initial assessment, thereby making whitewashing very

easy. A white-washer would leave the network (e.g. when its trust score drops) and then

rejoins with a different identity.

Some exceptions to the default trust score trend, such as [94] and [95] require bootstrap-

ping servers for new nodes to join, which can be a bottleneck in distributed settings.

Other methods [80] require some form of ‘pre-established’ trust relationship for new-

comers, which may not always be available. An alternative solution which is based on

the Opennet model [80] allows publicly known ‘seednodes’ to assist in introducing new

nodes. However, this might involve revealing vital information to malicious nodes too,

which they can use to attack the network. Additionally, if for any reason a ‘seednode’

becomes malicious, its effect would be high because of its high privilege.

Danezis et al. [81] proposed a system that would be resistant to Sybil attacks. It is

also based on pre-established trust relationship, which can be unavailable in some cases.

Such relationships are expected to have been acquired offline, and are accumulated to

form a bootstrap graph, which is a core part of their modified DHT routing mechanism.

We provide a summary of related work regarding TRS in P2P, in Tables 3.1 and 3.2.

In Table 3.2, ‘Y’ stands for ‘yes’, ‘-’ represents ‘no’, ‘NA’ means ‘Not Applicable’, while

‘P’ is for ‘partial’. Our views about Sybil attack as reflected on the table agrees with an

earlier work in [69], and more recently [75] which noted that no effective Sybil attack

measure has been derived for distributed networks. We used the term ‘partial’ to mean

that the reviewed method can minimize the attack, but not stop it completely. While

‘yes’ indicates those we think have addressed them more directly. Methods that focus

only on bootstrapping were discussed in the previous section.

3.3 TRS in Edge Computing

A number of reports have also suggested the use of TRS particularly in edge comput-

ing. Some of them include [58] which proposes a mechanism that requires people (eg.

administrators) to actually visualize the contents of a packet/file and sign them, before

dissemination. However, this can be laborious, and as traffic grows, scalability can be a

Chapter 3. State of the Art 37

Table 3.1: Summary of related work

Reference Strength Weakness

Qureshi et. al. [7] Provides copyright protec-
tion.

Pre-trusted and central enti-
ties are required, and they
may not always be available.

Aringhieri et. al. [8] Provides effective aggrega-
tion system.

It can be resource intensive
due to broadcasts.

Cornelli et. al. [9] Provides partial
anonymity, which gives a
level of privacy.

Not accountable for peers that
drop requests, which would
discourage cooperation.

Kamvar et. al. [10] Scores reflect global view
and therefore more likely
to be valid.

Pre-trusted peers have to be
trusted always. If they be-
come malicious, the entire sys-
tem suffers.

Naghizadeh et. al. [11] Mitigates free-riders effi-
ciently.

Scores are sieved poorly, this
would make them prone to
easy manipulation.

Sarjaz et. al. [66] The reputation of recom-
mending nodes are as-
sessed, this would make
malicious nodes to have
less impact in the score
computation.

Rogue nodes might make it to
the top/super level, and hi-
jack the network.

Adamsky et. al. [67] Nodes are able to make in-
dependent decisions.

Fake votes can easily be given.

Ragab-Hassen et. al. [96] Vote falsification is diffi-
cult.

It can be resource intensive.

Santos et. al. [90] Nodes are able to make
assessments early enough,
which leads to quicker de-
cision making.

It is not DHT compatible.

Ormandi et. al. [91] Scoring can be automatic
and quick.

The system is only implicit,
not tested.

Wong et. al. [12] Tracks pollution or mali-
ciousness at block level.

Tracker could be over-
worked/overwhelmed leading
to potential denial of service.

Dhungel et. al. [13] Fake pieces can be detected
easily.

False positive/negative can be
high.

Pecori R. [75] Can function in distributed
platforms.

The system only manages the
effects of Sybil attack, not ad-
dressing it fully.

Clarke et. al. [80] Trust bootstrapping was
considered here.

When pre-relationship in un-
available, the alternative can
be weak.

Danezis et. al. [81] Routing can be done safely
with this system.

Newcomers require pre-
trusted peers.

FBit Distributed, efficient boot-
strapping, bandwidth at-
tack mitigation.

Churn effect not analyzed.

Chapter 3. State of the Art 38

Table 3.2: Summary of related work II. Here is a description of the columns: ‘Boot
Perf’ captures whether trust was bootstrapped or not, while ‘Distributed’ refers to how
distributed the system is. Accordingly, ‘Content Pollution’ and ‘Selfish Acts’ reflect
how the system handles content pollution and selfish acts such as free-riders respec-
tively. ‘Sybil Attack’ and ‘Bandwidth Attack’ also account for how much the system
addresses the respective attacks. ‘Y’ stands for ‘yes’, ‘-’ represents ‘no’, ‘NA’ means

‘Not Applicable’, while ‘P’ is for ‘partial’.

Reference Boot Distributed Content Selfish Sybil Bandwidth

Perf Pollution Acts Attack Attack

[7] - - Y - P -

[8] - Y Y Y P -

[9] - Y Y Y P -

[10] - Y Y Y P -

[11] - - Y Y P -

[66] - - Y Y P -

[67] NA Y - - - Y

[96] - Y Y Y P -

[90] - - Y P P -

[91] - - Y P P -

[12] - - Y Y - -

[13] - Y Y Y P -

[75] - Y Y Y Y -

[80] Y Y Y Y Y -

[81] Y Y - Y Y -

FBit Y Y Y Y Y Y

serious issue. Huang et al. [97] also presented an architecture in-which the cloud acts as

a security enabler in MANET or mobile cloud. Services such as trust pre-establishment

are considered to be beyond the MANET, and are thus provided by the cloud. Such

dependency on central points brings about latency-related concerns.

Similarly, Dybedokken [98] proposed a trust management system for fog, where the trust

model runs on the fog nodes and the fog clients only get the end result. Schooler et

al. [99] reiterated the importance of blockchain application as well as brokerage system

that would reconcile the compliance of objects in an IoT fog environment. Mobile edge-

clouds’ nodes are more independent compared to fog computing clients; these methods

and similar others which are built around the hierarchical nature of fog may not be good

fit, mainly because mobile edge-clouds is less hierarchical.

Chapter 3. State of the Art 39

3.4 TRS in Blockchain Systems

In this section, a review of the application of TRS in blockchain systems is documented.

This is necessary because we are interested in merging Blockchain with TRS, to derive

a blockchain-based system that would be IoT friendly.

Although there are many reputation based methods which are aimed at providing trust

and security in distributed networks, reports that focus on safeguarding the reputation

scores upon which TRS is based, are relatively not so many. Scholars have quickly

identified blockchain as a way of addressing the challenge. They have also illustrated the

fact that TRS can equally help to improve trust, security and cooperation in blockchain

systems.

In this section we shall highlight both reports: where blockchain is employed to secure

TRS scores, and where TRS is employed to make blockchain even more resilient. This

is relevant because we shall be adapting our model into blockchain, mainly to secure the

trust scores. According to Lu et al. [100], the security of a reputation system is in itself

a serious challenge that is still unresolved. Lu’s work focused on the issue related to

privacy, using a kind of central monitoring agent. They proposed a method that features

an enforcement agent and a certificate authority, which approves and issues certificates

respectively.

Khaqqi et al. [101] introduced blockchain technology into emission trading scheme,

which is aimed at reducing emission and encouraging the adoption of technologies that

encourage long-term abatement. They acknowledged that Blockchain can ensure im-

mutability of recorded data but cannot guarantee that the original data entered into a

system is credible, since such data may have been generated via other channels. They

used smart tamper-resistant meters to ensure that inputs are obtained correctly. In their

system, participants are able to access offers based on their reputations. More reputable

ones are able to get more offers, while those with less reputation can only get limited

offers. This works because the (reputation-based) trading rules are incorporated into

the blockchain, accessible by all.

Yu et al. [102] also applied the concept of reputation to Blockchain. They focused

on strengthening the Blockchain network to be able to withstand attacks even if the

attackers make up to 51 percent of the network. The reputation of a miner is derived

Chapter 3. State of the Art 40

based on how much it contributes to the network. The reputation of each node with

respect to the total reputation of the network determines the weight of its vote during

consensus. Leaders who do not commit up-to ‘x’ miniblocks (transactions) per epoc

(time) may be penalized for under performing, this is in attempt to ensure that it does

not stall the throughput. The time required for reputation to be built, makes it difficult

for resourceful nodes to instantly hijack the network. This work focuses on applying

reputation system to strengthen the blockchain system. But as discussed later in this

work, part of our focus will be on securing the reputation system itself, using blockchain

technology.

Sharples et al. [103] suggested a blockchain of intellectual achievements and reputation,

such that it can be used for employment, academic recognition and even have trade-able

(monetary) values. Students and institutions alike can earn badges and kudos based on

their contributions and performances. This can be recorded in the Blockchain to make

it publicly available and verifiable. The University of Nicosia already offers certificates

that can be verified via Bitcoin Blockchain1, which may be considered a primary step to

the ideas of Sharples et al. We share in their idea of adding more value to reputation:

a situation where the reputation of agents (e.g. persons or nodes) would be globally

known is envisaged. There may be a problem of determining a uniform (cross platform)

reputation measure, but that may be resolved with further research.

In another related work, Yang et al. [104] proposed a blockchain based trust management

system for vehicular networks, with focus on assessment, dissemination and recording

of trustworthiness in the network. They assumed that only a small number of attackers

may be present in the the network, and therefore their impact via bad-mouthing may

be insignificant. Each vehicle is expected to go through the RSUs (Roadside Units)

before they are able to access the trust information of neighbors. The RSUs are also

exclusively responsible for trust computation and reaching consensus. On the contrary,

we shall focus on a different kind of network and do not envisage only a small number

of attackers. We will also be looking at a system that would allow each peer to directly

access the trust information of any other node in the network. In addition, we intend

to store less detail in the public ledger to make it less bulky.

1https://digitalcurrency.unic.ac.cy/free-introductory-mooc/self-verifiable-certificates-on-the-bitcoin-
blockchain/ academic-certificates-on-the-blockchain/ (Accessed 12/12/2018).

Chapter 3. State of the Art 41

In [105], an obligation chain was introduced, where obligations can be published and

can be used to judge the trust of an entity. They are focused on trust between islands

of trust, while assuming that each TRS island is locally secure. The system is made up

of service provider (SP), service provider end-device (SPD), service provider back-end

server (SPB), service consumer (SC), service consumer end-device (SCD), and service

consumer back-end server (SCB). The SPB publishes terms while the SCB is responsible

for keeping track of changes that may occur in the terms. The medium for publishing

the terms is not exactly specified, but a website was suggested. SPB further accesses

SCs and decides whether the SP should trust them or otherwise. Based on the terms,

SCB creates and signs obligations. After verifying the obligations, the SPB sends a

Bitcoin account where SC would pay for services received. Unlike their method, our

system is focused on addressing security challenges within a distributed trust island. It

is focused on less organized systems such as mobile edge-clouds, where infrastructures

can be limited or absent.

Schaub et al. [106] suggested a system that uses blockchain to attain privacy in online

TRS systems. Users can publish reviews anonymously so that other users can analyze

such reviews before transacting with a service provider. They aim to eliminate the need

for encryption key. There were no means of reaching agreement on the trustworthiness

of peers: individuals publish reviews which may be divergent. Similarly, only service

providers can be rated, not the consumers or clients. Wealthy service providers are also

able to easily undertake ballot-stuffing. Moreover, no method of public key distribution,

from service providers to clients, was mentioned.

The report of [107] contains a feedback system that gives vouchers to customers as

incentive for positive feedback. The feedback (if signed) adds reputation to the service

provider up to the voting fee which the provider proposed in the voucher. Wealthy

service providers can have more reputation since they can afford higher voting fees, and

they can also assign vouchers to fake identities to promote their reputation. Also, if

services are free, the providers will still have to pay for the reputation even without

receiving any money for the service.

Targeting BitTorrent specifically, Pant et. al. [108] suggested a system that rewards

file upload based on Bitcoin. They aim to combat free-riding, arguing that with crypto-

currency incentives, nodes would rather contribute than become a free-rider. Their

Chapter 3. State of the Art 42

system requires a certificate authority which confirms every Bitcoin address that is to

participate in the system. Peers are also required to report to another central agent, each

time they upload a file, so that they can get their pay. These factors make it unsuitable

for more distributed platforms such as Kademlia. Whether a Bitcoin gained in this

manner is equivalent or comparable to that which is gained through the traditional

mining process is also not clear.

In [18], the authors aimed at addressing similar problem which has to do with how

information regarding trust can be shared without bias or modification. Each time a

file is received, the receiver sends the information to the miners who contact the two

nodes involved in that transaction, asking them to send a signed proof: a nonce sent

by the miner, and the file hash. Apart from sending transaction information to the

miners, nodes also store more details locally. To make the chain lighter and increase

transaction per second, transactions that are more than 30 days old are deleted by

the miners. Nodes connect to miners to ask for information concerning any peer that

they may wish to download from. This work was mainly theoretical, and appears only

partially distributed because peers are not able to make independent decisions.

Like in [106] and similar others, [18] allows clients to judge service providers based on

the quality and authenticity of the files they share. But service providers lack bases to

credibly judge the clients in a way that can stop malicious clients from exploiting them.

Interaction rates are mainly downplayed; according to the authors, one transaction

between two nodes is same as a thousand transactions in-terms of reputation. Only 10

transactions per second is possible with their system (theoretically), and it is expected

to handle up to 40 percent of attackers. Impact of Sybil attack on the system was

not ascertained, and they stated that more work would be needed to make the system

function in BitTorrent and similar networks. Our work partly aims to address this

weakness by incorporating blockchain-based reputation system into mobile edge-clouds,

BitTorrent and similar platforms.

3.5 TRS in other Distributed Platforms

Here, we are going to highlight popular TRS schemes that are used in similar other

distributed platforms, such as MANET. This helped us to further establish the pattern

Chapter 3. State of the Art 43

which TRSs follow in making trust decisions, as earlier outlined.

In [109], a Reputation-Based Framework for Sensor Networks (RFSN) was reported. It

has two major components; watchdog system which identifies outliers, and reputation

system which has the responsibility of keeping track of the reputation of every node.

A stationary reputation state is expected to be reached through a considerable high

number of interactions before a trust decision can be possible: this can be considered

its main downside.

The distributed network monitoring approach proposed by Lopez et al. [110] focuses on

reconciling trust issues between DNS and client systems. The work aims at enhancing

trust in the responses which DNS servers give, by combining information from various

observation points to arrive at a more accurate trust result. It is focused on communica-

tion between a client computer from a remote location (such as a hotel that has public

internet connection) and an authoritative DNS server of a company via a catching DNS

server (of the hotel); ensuring that information reaching the client computer remains

consistent with the one from the company’s server.

A Trust Based Encryption (TBE) was introduced in [111] to ensure privacy during

information sharing in distributed networks. According to the report, a sender needs a

reputation value (R) during encryption while the receiver needs to have a separate key

which must tally with a rating value (r), such that r ≤ R. This system in practice would

incur huge communication overhead, and could be cost intensive.

Consequently, Lin et al. [112] proposed a modified trust based encryption (TBE) scheme

which features reduced communication overhead and memory management with similar

privacy level. Both approaches assumed central key systems, which can be a cause for

concern.

In [113], nodes directly monitor their one-hop neighbors based on two behaviors; packet

modification and packet dropping. The assumption here is that the nodes overhear

each other, enabling them to know if packets are delivered to designated nodes without

mutilation, or otherwise. Trust scores are calculated afterwards based on Bayesian

inference and Dempster Shafer theory. The idea behind this work is that only the

shortest path nodes are observed, not every node. After finding the shortest path nodes,

they are registered using fuzzy logic, and service request(s) are sent to them. It is not

Chapter 3. State of the Art 44

clear whether (or not) the system is able to differentiate when packets are dropped for

any other reason besides maliciousness, such as resource issues or energy.

Similarly, Wang et al. [114] is focused on dynamic trust estimation for service provider

nodes with peculiar consideration to their behavioral pattern as they respond to envi-

ronmental changes. They opined that trustworthy service providers (SP) will be more

likely to be selected by many service requesters (SR), since the nodes that enjoy their

trustworthiness will usually propagate their observations to the rest of the nodes in

the network. The novelty of their work is the introduction of logistic regression into

trust computation as against the popular Bayesian and fuzzy logic. It may however be

resource intensive, in-terms of processing time and storage.

In a nutshell, they are focused on predicting the future behaviour of a node based on

recommendations received concerning that node and the environmental conditions (e.g.

energy, capability) surrounding those recommendations. This is done as a way of getting

a balanced view of the node’s behaviour, from the recommendations, as much as possible.

We addressed similar concerns using similarity check (see subsection 4.6.1), and plan to

possibly eliminate the risk altogether by adopting some blockchain attributes.

Venkanna et al. [32] focused on dynamic calculation of trust and available energy value

of each node, and applying results in cooperative routing path establishment. They

grouped node behavior into two; malicious nodes and selfish nodes. Malicious nodes

modify packets and disrupt routing patterns, thus yielding attacks like greyhole attack

and blackhole attack among others. Selfish nodes do not really cause any attack, but

they only communicate when transactions would favor them, else they choose to reserve

their resources and not spend it on helping others. Similar to the other methods, authors

assume an initial score for newcomers.

A black hole node basically forges routing information such as the number of hops and

sequence number, falsely claiming to be the destination node. As a result, packets can

be routed to it in error, and it would be able to eavesdrop and then drop the packets.

[115]. Gray hole nodes selectively drop packets, instead of dropping all as black hole

attackers do [116].

In [117], the use of certificates and trust management were combined for secure routing

in MANET. Certificates are needed for nodes to gain access, and afterwards, trust

Chapter 3. State of the Art 45

management is deployed to monitor its behavior: This approach falls within the fifth

method of trust bootstrapping, based on our earlier classification. Each node evaluates

the information gathered by self and neighbor nodes, to aid its trust decisions. Trust

management here comprises of information gathering, scoring, and response. Assessment

and evaluation of direct and indirect observations make scoring possible. Management

of certificates in a distributed way can be challenging.

3.6 Summary

Detailed literature review of existing reports has been presented. We looked into various

P2P protocols and similar networks including MANETs. BitTorrent, mobile edge-clouds,

and blockchain technologies are also among the distributed networks which have been

reviewed, focusing on the application of TRS to achieve network security in a distributed

or semi distributed manner. Strengths and weaknesses of TRSs in these areas were

highlighted, establishing the bases and need for the proposed system. The proposed

method builds on the strength of the literature, while closing its gaps; leading to a

system that would serve both emerging edge computing paradigms such as mobile edge-

clouds, and older distributed protocols such as BitTorrent.

Chapter 4

FBit (Fairer Bits)

The proposed system is termed FBit (Fairer Bits); it is aimed at improving fairness and

robustness against maliciousness in distributed networks, with focus on bandwidth at-

tack, fake block attack, free-riding, sybil attack and collusion attack. FBit ensures that

peers are treated with priorities that match their levels of cooperation, thereby providing

better motivation for cooperation, better resource management, network safety, fairness

and efficiency. Although a modified BitTorrent protocol has been used for illustration,

mainly due to its popularity and similarity to some use-cases of mobile edge-clouds,

the new method can be applied to other distributed platforms as highlighted subse-

quently. This chapter explains the FBit system and experimental results obtained. It

also contains detailed explanations of how various components of the system work.

4.1 Reputation Bootstrapping

At the point of entry, every node is expected to generate a key pair (Kp, Kb) with

which they sign their transactions. New nodes start by discovering other nodes that are

already in the network through the tracker (or DHT) as in normal BitTorrent, and then

sending Bitfield messages requesting to be added as neighbors. Through the messages

(or controls), they also send their self signed certificates. When a trustor receives such

request, it associates the accompanying public key with the trustee, to distinguish it

from other nodes. A trustor is a node who decides whether or not to trust another peer,

the trustee. Node’s ID can be derived from its public key (e.g. taking a hash). For the

46

Chapter 4. FBit (Fairer Bits) 47

newcomer’s request to be granted, it has to demonstrate some preliminary trustworthy

acts.

As an illustration, assume that nodeA, nodeC and nodeE were already in the network,

when nodeB requests to join through nodeA. After nodeB’s request, when nodeA receives

the next unchoke message from any of its neighbors (e.g. nodeC), it responds by sending

a request for a block, according to BitTorrent procedure. However, in addition, it

requests that the block should be routed through nodeB (which is the new node), instead

of having it sent directly. When nodeB receives such block from nodeC, it forwards it to

nodeA, appending its signature, based on the key it generated initially. Note that the

block by itself is not intelligible. For it to make sense, other blocks that make-up a piece

must be received too. The newcomer is however unable to determine the blocks which

it receives, and it would most likely receive random blocks from different pieces, which

would only make sense if it is able to join the network and request the missing ones.

Given that the transaction is honest, nodeB gains some reputation points, and the

reputation of nodeC is updated too. This ensures that the new node does not gain

reputation advantage over the existing ones. NodeA can repeat this step for some other

blocks, giving nodeB more opportunities to serve and build reputation. In case of DHT,

proximity would be considered in the routing process, such that nearby nodes would be

more active in helping the newcomer to gain reputation.

While nodeA is waiting, it can proceed with other requests so that it would not be

trapped if nodeB does not deliver. Other nodes in the network such as nodeC and

nodeE (who are now aware of the newcomer) can also route some of their requests

through nodeB, thereby giving it quick chances to build up reputation and join the

network fully. The new node is not allowed to request any service until it is admitted.

Each transaction, both from the new and old nodes are signed. Relying on the reputation

of the existing node(s) which are introducing the newcomer, we assume that they will

act fairly. To be precise, nodes with low trust scores will not be able to introduce a

newcomer. Based on their trust scores, we can be hopeful that they would treat the new

nodes fairly. Existing nodes can lose reputation for inappropriate introduction, and can

also gain for appropriate ones.

When nodeB joins through multiple nodes (e.g. nodeA, nodeC, nodeE), nodeA deter-

mines if nodeB is due to be added as a neighbor, by collecting recommended Bootstrap

Chapter 4. FBit (Fairer Bits) 48

factors (Bf) from the other nodes. NodeA further weighs each recommendation based

on its trust on the nodes that sent them, as illustrated in equation (4.1). BfCB is the

Bf reported by nodeC concerning nodeB, while GSAC is the reputation of nodeC from

the perspective of nodeA. The same pattern repeats for every neighbor that would sub-

mit Bf recommendation. Notice that nodeA still adds its own bootstrap factor, which

it computed previously (BfAB), but with an optimal self reputation of 1. BfAB
is the

current Bf of B, calculated by A. It will be used as BfAB in the next update of Bf for

node B, if need be.

BfAB
=
(∑

C

BfCB ·GSAC

)
+BfAB (4.1)

No further normalization is relevant at this stage because the newcomer is not expected

to service too many nodes before it joins, not all neighbors are therefore expected to

respond to the request for Bf recommendation. The interest here is on the cumulative Bf

value, not the average. We pass the accumulated Bf through a unit step function Θ(Bf),

that returns either 0 or 1 depending on the value it receives, according to equation (4.2),

where nmin is the minimum Bf required from a newcomer.

Θ(Bf) =

{0 if Bf <nmin

1 otherwise

(4.2)

The self signed certificates mentioned previously, do not stop generation of multiple

identities, but they do help to verify that malicious nodes do not try to impersonate

existing trustworthy ones; a duplicate ID would signal a red flag. New nodes usually do

some work in order to gain entry into the network, which is to service some nodes that are

already in the network upto some limit. This would mean spending some resources and

a bit of time by the newcomers. Since resources (including bandwidth) are not usually

limitless, the number of sybils that a sybil attacker can introduce into the network would

be limited. The (limited number of) sybils that make it into the network are further

contained through the reputation and interaction rate checks, subsequently discussed.

In our setup, sybil attackers also distribute fake blocks in the network. Their aim is not

limited to selfish gain, we assume that they can also try to shutdown the network by

making it hard for genuine nodes to participate.

Chapter 4. FBit (Fairer Bits) 49

It is important to minimize the number of admitted sybils because the lesser they are

in number; the easier it would be to contain them and thus the lesser their effect.

Outsourcing bandwidth may be more difficult than outsourcing computation, and so

the FBit method of bootstrapping may cope better with sybil attackers who may decide

to outsource puzzle computation. In addition, trust requires a fraction of time to build,

not just other resources. Although it may be a small time fraction, depending on how

the threshold is set, it can still contribute in reducing the effect of a malicious node who

may have access to high computation resources.

In general, the existing nodes are not expected to spend significant extra resources while

admitting the newcomers. This is because they simply perform normal checks which

they usually do for all packets, even those from known nodes. So, there is no significant

burden (due to bootstrapping) on the trustors and the network in general. Whitewashing

also appears less appealing and nodes are discouraged from becoming malicious after

joining the network, since it takes some effort to rejoin and nodes are regularly monitored

by their neighbours.

One can argue that the newcomers may have delay in connection due to the bootstrap-

ping process. This makes sense, but let us recall that the blocks which the new nodes

receive during the bootstrapping stage would eventually make sense when they join the

network and download other associated blocks. This means that they did not really

waste the resources or time spent in the process. Similarly, the Bf threshold can be

tuned to make sure that it does not cause significant connection delay for the newcom-

ers.

To summarize this section, the new approach does not suffer the kind of fundamental

problem [118] experienced in puzzle-based methods, which has to do with the effect of

disparity in resources or computation abilities between legitimate users and would-be

attackers. With the new method, even if a would-be attacker has access to large com-

putational resources, it may not make a significant difference. Moreover, the proposed

method favours productivity, because newcomers actually render valuable help, and in

return gain reputation. As explained in subsection 4.4, this method can be adapted to

similar other protocols. It is distributed, and was not built to depend on any seed node

or super peer.

Chapter 4. FBit (Fairer Bits) 50

4.2 Familiarity

Many distributed protocols (especially P2P) operate in a “give and take” manner. This

means that the network can be self-sustaining, without relying on a dedicated single

server. The idea behind the familiarity concept is to enable nodes to ascertain how

much each neighbor has contributed to them particularly, and to the network in general.

We assume that more familiar nodes interact more often, and if genuine, contribute more

to each other. This idea, in a sense is similar to the tit-for-tat method of BitTorrent

where nodes prioritize neighbors that have given more to them.

However, unlike BitTorrent where nodes act mainly based on local tit-for-tat views,

the new method allows peers to also ascertain the global impact of each node on every

other node in the network (or neighbourhood) at a given time, in-terms of resource

contribution, on a scale of 0 to 1. This ensures that a more liberal and reputable node,

gains more advantage, not just for its reputation but also for its liberality in terms of

rendering services to others.

In a nutshell, not only the reputation of a node is important, but also the rate of

contribution that led to the acquisition of such reputation; this is captured by the

familiarity concept. Neither reputation nor rate alone can account for optimal fairness,

thus the need to combine them. We shall focus on familiarity in this section, and then

capture reputation in the next.

Equation (4.3) captures the activity rate of peers in a network at intervals (t = 20

seconds). If node i downloads from node j, or uploads to it, i records an interaction

(download or upload), and vice versa. We also take note of unanswered requests, because

they could be signs of maliciousness, such as lying piece attack. Interaction time is also

recorded. Given that node i has x successful interactions (or transactions) with node j

within time t, it calculates the interaction rate of node j, IRij(t) using equation (4.3);

IRij(t) = xij(t)/nmax, (4.3)

where nmax is derived by dividing the node’s bandwidth by the size of each block and

multiplying the result by time (t). Literally, nmax is the optimal rate at which each

peer is expected to function in the swarm within t interval, and it is recalculated every

Chapter 4. FBit (Fairer Bits) 51

t seconds. An alternative way to determine nmax in an environment where knowing the

bandwidth is difficult, would be to collect votes from nodes that have interacted with

the ‘newcomer’, reflecting their experience and using that to estimate nmax. Nodes pay

more attention to neighbors who service them in return. If extended, it means that

nodes give to neighbors who give back to the network, in order to ensure sustainability.

A successful transaction means a non-malicious upload or download.

As familiarity grows, IR tends to 1. nmax is chosen in a way that keeps IR below 1

within the time (t) range. However, in rare cases, and depending on the choice of nmax,

IR can be greater than 1. When this happens, the excess is not considered, so IR simply

equals 1.

As already noted, most earlier TRSs use parameters such as the difference between num-

ber of a peer’s ‘downloads from’ and ‘uploads to’ another peer as a way of determining

cooperation. For instance, if node i has uploaded z chunks to node j and downloaded

y chunks from it, then y minus z will be the bases for determining the fairness or

otherwise of j, from the perspective of i. In some cases, ratio is used instead of subtrac-

tion, mostly in models that are based on probability expectation value [33]. y and z

can also represent the number of favourable and unfavourable interactions respectively.

Unanswered requests are often counted among the unfavourable transactions.

The problem with such method is that the cumulative interaction rate does not reflect

adequately on the end results. As an example, consider a case where y = 500, and z

= 499, the difference will be 1, just the same as when y = 2 and z = 1, ignoring the

interaction frequencies, which can be a vital factor by itself. If we take the ratio of good

interactions over total, then the case with fewer interaction may be at clear advantage,

which can be somewhat unjust. Wang P. et al. [119], identified similar problem, but

their approach soldered the concept rigidly into trust computation, such that it might

be a problem when emphasis is preferred either on just trust or frequency.

In case of high familiarity and a sudden unsatisfactory interaction, we can probe further

to ascertain if the nodes were under resource strain when they malfunctioned, and also

consider the severity of the unfair act they have portrayed. Such act of further probe

may enable nodes to be fairer in dealing with neighbors and help them to identify some

attack patterns. In a nutshell, we use this concept of familiarity to capture the activity

rate of a peer, not just locally, but generally in the network, on the scale of 0 to 1. Trust

Chapter 4. FBit (Fairer Bits) 52

score alone can hardly reveal this relationship. We have applied it more specifically in

subsection 4.5 to tackle bandwidth attack.

4.3 Reputation Score Computation

Applying the concept of probability expectation value [33], and based on recorded inter-

action experience, non-malicious downloads are associated with α, while the bad ones

plus uploads (as well as no replies) are associated with β. Expected reputation (DTij),

based on the behaviour of node j, according to the direct experience of node i with

respect to time (t), is given in equation (4.4).

DTij(t) =
αij(t) + Θ(Bfij)

αij(t) + βij(t) + Θ(Bfij)
(4.4)

A download is considered non-malicious if its piece is hashed without error. If there is a

mismatch in the hash code, it is considered malicious. Bf serves as a normalizing factor

when computing expected reputation, since every node in the neighbourhood of i is

expected to have been bootstrapped, which implies that it has Bf>0. In the equation,

Bf is not time-dependent because it does not really change after the bootstrapping

stage. The number of uploads counts for β because we want the reputation score to

reflect credibility and at the same time uphold the tit-for-tat attribute which allows

leechers to prioritize nodes that upload more contents to them. For example, free-riders

who do not really circulate bad files can still get a reputation drop by their act of not

giving.

As the number of interactions grows, the behaviour of nodes may change, making it

important for older interactions to have less weight or be completely forgotten. After

more than 1 interactions (i.e. if ∃ DTij(t−1)
), aging factor is introduced. The aging

factor used here is related to that of [8] and it basically considers the similarity between

previous records and a recent outcome; the wider the difference, the less consideration

such history is given. If we denote the aging factor as ρ(t), then we can update our local

experience with respect to the most recent transaction, at time (t), with equation (4.5).

This equation also applies to IR computation.

Chapter 4. FBit (Fairer Bits) 53

DTij(t) = ρ(t)DTij(t−1)
+ (1− ρ(t))DTij(t) (4.5)

To get a general view of the reputation and participation of any neighbor, nodes usually

ask others for recommendations concerning that neighbor. Replies to such recommen-

dation requests usually come in pairs; DT and IR. Considering our testbed (modified

BitTorrent), nodes can also update the tracker with recommendation information when

they make contacts, although such tracker update is not a requirement for the proposed

method. When a node asks for recommendation from its (good) neighbors, it ranks each

recommendation according to the reputation of the recommending node, using the Or-

dered Weighted Average (OWA) [120]. The choice of OWA is due to its weight tuning

advantage, which allows us to easily associate each indirect score with the reputation of

the node that sent them. If node i asks its n sequence of neighbors j, about another

peer l ; i discounts collected recommendations (DTjl), and Interaction Rates (IRjl) as

indicated in equations (4.6) and (4.7).

ITil(t) =

∑n
j=1DTij(t) ·DTjl(t)∑n

j=1DTij(t)
(4.6)

CIRil(t) =

∑n
j=1 IRij(t) · IRjl(t)∑n

j=1 IRij(t)

(4.7)

Where ITil(t) and CIRil(t) are the reputation and IR of l respectively, according to i,

based on the information it got from other peers. Assuming that DTjl(t) are arranged in

descending order. Similarity check which is elaborated in section 4.6, is performed on the

collected recommendations before computation. This is to sieve out recommendations

that may have been submitted by colluding attackers.

The trustee’s score based on the the direct experience of the trustor (DTil(t)) can be

added at the discounting stage, i.e. using equations (4.6) and (4.7). In that case, the

trustor uses a peak score of 1 to show that it trusts itself completely. Alternatively,

recommended scores (IT, CIR) and direct scores (DT, IR) can be distinct, and later

merged with equations (4.8) and (4.9), adjusting the weight (0 ≤ σd ≤ 1) to suit peculiar

needs. We adopted the latter (using equations (4.8) and (4.9)) for the results shown

Chapter 4. FBit (Fairer Bits) 54

in this work, with a weight of 0.6 assigned to σd. In our experience, this value appears

optimal because it gives trust an upper hand, without undermining the familiarity factor.

TR = σd ·DT + (1− σd) · IT, (4.8)

TIR = σd · IR+ (1− σd) · CIR, (4.9)

where TR stands for Total Reputation, and TIR is the Total Interaction Rate. They can

further be merged with equation (4.10), to arrive at a General Score (GS). We observed

on the course of this work that considering the IR factor can make a difference, compared

to when it is not considered. 0 ≤ σt ≤ 1 is another weighting factor used in equation

(4.10); it has same value as σd mentioned previously.

GS = σt · TR+ (1− σt) · TIR (4.10)

4.4 Modified BitTorrent Unchoke Algorithm for Leechers

For clarity, we have divided the algorithm into two parts. The first (Algorithm 1) briefly

discussed in this section, captures the steps that FBit leechers take when unchoking other

leechers. While the second part (Algorithm 2) which is presented in the next subsection,

depicts the steps that seeders take when unchoking leechers. Algorithm 1 applies the

earlier discussed concepts of bootstrapping, familiarity and reputation to mitigate sybil

attack, fake-block attack, free-ridding, and collusion attack; while Algorithm 2 focuses

specifically on stopping bandwidth attacks. The two algorithms work smoothly together.

In our setup, sybil and collusion attackers also behave as fake-block attackers while in

the network. This means that in addition to their respective traditional behaviours

which were earlier outlined, they distribute fake-blocks (only) when they gain access

into the network. Collusion attackers know themselves and do not send fake blocks to

each other, only to others.

The acronyms used in the algorithms are explained as follows:

Chapter 4. FBit (Fairer Bits) 55

• MaxUnchoke; used to indicate the maximum number of neighbors a server node

can service simultaneously at a given time.

• NumberUnchoked ; used to show the number of neighbors that is currently being

served by a given node.

• InterestedPeerList ; keeps a list of neighbors that are interested in a given block of

the file.

• TrustedPeerList ; used to keep a list of nodes (among those interested in the current

block) which have reputation scores that are above ‘threshold’.

• threshold ; minimum score (0.5) a peer must have before it can be added to the list

(‘InterestedPeerList’) of those that will be considered for a given transaction.

Algorithm 1 Leecher Unchoke Method

1: MaxUnchoke = c
2: NumberUnchoked = 0
3: InterestedPeersList← P
4: TrustedPeerList← {}
5: while NumberUnchoked ≤MaxUnchoke do
6: for all peers(P) in InterestedPeerList do
7: Calculate IR and DT scores()
8: if IR Is High then
9: TR = DT

10: TIR = IR
11: else
12: Get recommendations and check similarity
13: Apply equations (4.6) to (4.9)
14: Calculate GS() according to (4.10)
15: end if
16: if TR ≥ threshold then
17: TrustedPeerList← p
18: end if
19: Sort TrustedPeerList by GS()
20: Unchoke Top Scores First()
21: NumberUnchoked+ +
22: end for
23: RemovePFromInterestedPeersList
24: end while

In a nutshell, here is the function of each line in the first algorithm. Lines 1 and 2 initiate

MaxUnchoke and NumberUnchoked variables respectively, while lines 3 to 4 start the

lists of InterestedPeerList and TrustedPeerList. According to line 5, if a node is currently

able to service any additional neighbor, it selects a trustee from the InterestedPeerList

Chapter 4. FBit (Fairer Bits) 56

(line 6) and calculates the IR and DT of the trustee (line 7). If the trustee is very

familiar to the trustor (line 8) then scores are based on direct experience only (lines

9 and 10), otherwise recommendations are collected (lines 12) and used for calculating

scores (lines 13). By skipping indirect score computation when IR is high, we can save

some computation effort.

When recommendations are collected, a similarity check which is triggered by line 12

of algorithm 1, is also done. Similarity check is explained in subsection 4.6.1. GS is

afterwards calculated in line 14. However, if a trustee has a TR that is below threshold,

it does not qualify to be considered for any service (lines 16 to 18). Those who are

qualified to receive services are serviced according to their GS scores beginning with the

highest score (lines 19 and 20). When a transaction process is initialized, the trustee is

removed from the InterestedPeerList (line 23).

When nodes are able to validate each other and complete transactions, they mutually

update reputations and interaction rates, reflecting their experiences. In Algorithm

1, leechers use such updates in determining requests to respond to, and the priority

that each requester deserves. Equations (4.4) and (4.3) are applied to update direct

reputation and familiarity (rate) information respectively. If a node has communicated

regularly with consistent reputation for a considerable amount of time (even recently),

then direct/local information is sufficient for making trust decisions. This is to save

resources that would otherwise be used to gather and compute recommendations. Of-

course, local experience may be built upon recommendations that were collected at some

point in the past.

Trustors contact neighbors for recommendations when they do not have enough infor-

mation to assess the trustee, or when the familiarity which exists between the two nodes

is not high enough. Line 13 of algorithm 1 triggers equations (4.6) to (4.9) which are

responsible for computing indirect scores and combining them with direct experience of

the trustor. The general score (GS) is further calculated using equation (4.10) which

basically applies desired weights to merge reputation and familiarity scores. Based on

the GS, all trustees that are not considered malicious are collected in a list and priority

is given to each according to its contribution and reputation in the network.

Chapter 4. FBit (Fairer Bits) 57

4.4.1 FBit in DHT (Distributed Hash Table) Protocols

Although peers may be given different names in different platforms, the concept of seeder

(service giver) and leecher (service receiver) is quite common. In most cases, network

peers serve as both service providers and consumers. The algorithms presented in this

work have not been built to rigidly fit into BitTorrent architecture alone. Focus has

been more on the nodes, so that any similar architecture would require minimal tuning

to adapt it.

DHT (including MLDHT) makes it possible for the network to function without a

tracker. Every node acts as a mini tracker; they collectively perform the task of discov-

ering other peers which are in the network. In MLDHT, nodes randomly choose 160-bit

unique ID which also contains some information about their distances. At first, nodes

need to query the k-bucket to know peers that are closest to the infohash. The client

node further tries to connect to the closest peers in order to initiate queries. Given

that the connected node is aware of the peers which are associated with the infohash, it

returns a list of such peers, and file download continues similar to the way it happens

in the traditional protocol [121].

Just before the download processes, the reputation bootstrapping can happen for new-

comers. Key exchange messages can be embedded in any of the control messages men-

tioned earlier (e.g. ‘FIND NODE’), while newcomers may be served after successfully

responding to requests, such as requests for peers that are associated with the infohash

(which the newcomer should have at this stage). In the current implementation of the

proposed system, the tracker does not perform any special task, every node is regarded

as equal. This is a way of making it non-centralized and enabling its adaptability to

other platforms.

FBit is focused more on content downloads (retrieval/storage) and less on routing, but

it can be featured in both processes. Instead of considering only the distance while

choosing the k-bucket nodes, GS score in FBit can be introduced into the process (as

done in the next chapter). A weighted average of the GS and “distance factor” can

be adopted, similar to the method used in [75]. With the advantages being reputation

bootstrapping, computation of indirect reputation and mitigation of bandwidth attack;

contrary to assigning positive risk factors to newcomers and using only direct scores, as

done in [75]. This is elaborated in subsequent chapters.

Chapter 4. FBit (Fairer Bits) 58

Similarly, in Gnutella [122], peers perform the task of both servers and clients. To

join, Gnutella newcomers connect to any known host, and through that means get in-

touch with other nodes. Such known host(s) can serve as the initial trustor(s) in the

bootstrapping stage of the proposed system. Similarly, the “broadcast” and “back-

propagation” of information in Gnutella can serve as means of relating the reputation

(and other information) of peers to other neighbours within the network.

The new method has been derived to fit into edge computing protocols, particularly

the mobile edge-clouds. In most edge computing paradigms, edge elements (nodes) are

usually supported by access points and occasionally by the cloud infrastructure; this may

be an added advantage because they may help bring some coordination (like the tracker

does), making trust computation easier. Our focus is however more on mobile edge-

clouds where nodes can be completely independent, with no hierarchical communication

pattern in the network.

4.5 Modified BitTorrent Unchoke Algorithm for Seeders

As mentioned earlier, malicious peers take advantage of the opening discussed under

bandwidth attack to abuse seeders and download mainly from them, thereby blocking

their unchoke slots (i.e. making them unable to upload to legitimate peers). Such

behaviour also enable the malicious nodes to avoid downloading from other leechers

who could measure their contributions based on experience.

To check this, FBit in algorithm 2 warrants that a leecher (l) who requests download

from a seeder (s), has to submit its top IR information alongside its request. Seeder

(s) uses such information to determine how much l has uploaded and downloaded from

its fellow leechers. s then gives priority to peers that are more selfless in their services

to other leechers, in order to motivate them and encourage others not to be selfish. It

also mitigates a kind of denial of service attack that would occur if the unchoke slots of

seeders are congested by attackers. This algorithm further holds each peer responsible

for, not only its reputation, but also the impact it is able to make in the network. Recall

that seeders are basically service givers who have no need for receiving. P2P networks

need them and they need to be encouraged and optimally protected.

Chapter 4. FBit (Fairer Bits) 59

It is possible for two leechers to collude and submit false information about each other,

to gain priority. However, they cannot control the information which other leechers

submit about them; this may lead to information mismatch (by a high margin), giving

the seeder a clue of foul play.

Algorithm 2 Seeder Unchoke Method

1: MaxUnchoke← {predefined}
2: InterestedPeersList← {}
3: NumberUnchoked← 0
4: while NumberUnchoked ≤MaxUnchoke do
5: CollectVotesIncludingRecentlyCached()
6: DoIntermitentScoreValidation()
7: CountVoteForEachP()
8: UnchokeHighestVotedP()
9: if PeersHaveSameVote() then

10: UnchokePWithHigherIRScore()
11: end if
12: NumberUnchoked+ +
13: RemovePFromInterestedPeersList()
14: if VotedP Is Not In InterestedPeersList then
15: CacheVote()
16: end if
17: end while

As an illustration, nodes l, i, and j in Figure 4.1 represent individual peers in a swarm

who request services from a seeder node. The message accompanying their requests

indicate other peers (leechers) that they have downloaded the most from, and uploaded

the most to. A malicious node who chooses to download only from seeders in order to

dodge assessment by fellow leechers, will have little or no “upload” information to give

and thus will not be qualified to make requests. Similarly, new nodes may not be able to

complete this process, they have to bootstrap instead, preferably through leechers. In

the illustration, node i will be served first because it has the highest vote, before node

k and then node j.

Seeders can confirm scores by validating submitted scores for consistency. For instance,

it could be seen that nodes i and k have both submitted scores of each other at about

same time. The download rate (DR) score which i submitted concerning k is therefore

expected to match the upload rate (UP) score which node k submitted concerning i,

at about that same time. Line 6 of algorithm 2 executes this check, every t seconds.

Earlier methods lack in this regard; they focus mainly on protecting leechers (i.e. client

nodes), and give little or no attention to the seeders (i.e. server nodes).

Chapter 4. FBit (Fairer Bits) 60

Figure 4.1: When Leechers Send Requests to a Seeder.

If two or more peers have the same number of votes among the submitted top leechers,

then the highest IR score will be given priority, according to lines 9 to 11 of the algorithm.

If their IR scores are still same, the first request will be served first. By giving priority

to nodes that show more cooperation with fellow leechers, they are rewarded for being

cooperative and others are encouraged to do likewise. Nodes with low score, but are

genuine will have no problem downloading from other leechers in order to step up their

scores. At the initial stage however, services by seeders are on first-come, first-served

basis.

Seeders can also cache some of the information temporarily, so that it could be used in

the near future if need be. For example, if any other node besides i, j and l were voted,

its score would be cached for when such node would request a service, within the epoch

(lines 14 to 16 of algorithm 2).

Here is a summary of the function of each line in algorithm 2. Lines 1 to 3 initiates

the variables the same way it is done in the first algorithm, and line 4 also has similar

function. Line 5 enables a server node to collect votes from its client nodes indicating

the IR information of other peers which they have interacted with. The votes are

then validated in line 6, while line 7 counts valid votes for each client node in the

InterestedPeerList, and services are then rendered based on active cooperation in the

network (line 8).

If the top voted peers have the same number of votes then a peer with higher IR score

will be served first (lines 9 to 11). Once a transaction process is initiated, line 12 updates

the number of nodes that are currently being served and line 13 removes the node from

InterestedPeerList to indicate that it is being served. If a node is voted but has not

Chapter 4. FBit (Fairer Bits) 61

requested for any service, its vote is cached momentarily, in-case it makes requests within

the current interval. This means that calculation/validation is not necessarily done at

every single request. After each transaction round, the MaxUnchoke is decreased.

4.6 Experiments and Results

The PeerSim simulator was used to implement a testbed for FBit. It is a java based

P2P simulator which already includes a BitTorrent protocol implementation [123, 124].

This allowed us to focus on adapting the protocol to fit our use-cases.

The simulation runs on two virtual machines each with 16 CPUs at 2500MHz and 64GB

RAM. Each machine runs OpenJDK Runtime Environment 1.8, and Python 3.4.3 which

is used for scripting. PeerSim has a configuration file that allows parameters to be

adjusted as desired. Some of such parameters include;

• network.size; it is used to specify the network size, and it was set to 100.

• network.node.direct weight ; this is a new addition, used to specify the weight of

direct scores (that is IR and DT). It was set to 60 percent.

• protocol.urt was set to “UniformRandomTransport”, which is the transport pro-

tocol used by the simulator.

• protocol.simulation.file size; this is used to specify the size of the file to be shared

in the network. The process is completely successful if every peer downloads a

complete file before the process ends. It was set to 20mb in the simulation. This

file size was used (instead of a bigger file) just to make the experiment faster, since

each stage is repeated up to 30 times, before obtaining the confidence level. We

however expect similar performance regardless of file size.

• protocol.simulation.duplicated requests; this was set to 1, meaning that a node can

only send one request for a particular block at a time. It could be set to any

other value if desired. We did not study the effect of varying this parameter,

but setting it to 2 for example may even make the bootstrapping process a little

better. Imagine that a newcomer is malicious and refuses to forward the correct

block routed through it, the existing node would simply fall back to the duplicate

request, without making a fresh request for the same block.

Chapter 4. FBit (Fairer Bits) 62

• init.net.seeder number ; this was set to 1, so that each simulation begins with one

seeder. There are other variables that are initialized at the start of the simulation

such as the number of attackers. When a type of attack is not present, its value

is set to 0 (eg. init.net.nCollusionAttacker 0). There are also some controls that

allow us to observe and get feedback from the simulation (eg. control.observer.step

simulation.logtime). During “logtime”, we update the files that have been created

to store needed information which is used to measure the performance of the

network.

• protocol.simulation.max swarm size was set to 200 to show that the network can

only grow to a maximum of 200 nodes (there is no specific reason for choosing 200,

except that we needed a number that is more than the network size which is 100).

This can change to accommodate any network size of choice.

• random.seed ; every simulation needs to have a seed value. Using the scripts, this

and other necessary variables are automatically generated at the beginning of each

simulation. In the case of the random seed, the script generates it randomly, while

other values (such as percentages of attacker) are picked accordingly from the series

of provided values. Event based engine of Peersim was used for this experiment.

A 95 percent confidence level was maintained for the recorded simulation results, this

is in order to statistically validate their consistency. Simulations were ran with network

size of 100 nodes, and varied number of malicious nodes, to determine their impact

in each case. Different attacks were simulated including sybil, fake-block and collusion

attacks, with the goal of determining how efficiently such attacks are mitigated using the

new bootstrapping and mitigation approach, compared to other methods. The original

BitTorrent method [123] and another Trust Management System (TMS) by Sarjaz et al.

[66] were adopted for comparison. For TMS, we implemented it using the information

provided in [66]. TMS was chosen for comparison because it addressed similar attacks

(such as fake-block attack), and was also tested on BitTorrent platform.

In TMS, each node calculates the local scores of its neighbours, and sends the scores to

the tracker (a kind of central node) who determines the top 10 percent nodes, based on

the scores. The top 10 percent nodes then determine the global scores of other nodes.

The global scores are returned to the nodes so they can use it for decision making.

Nodes can be assigned a low score if they share fake blocks for example. But the

Chapter 4. FBit (Fairer Bits) 63

familiarity concept we discussed earlier is not accounted for, and any node can (re)join;

no bootstrapping. Additionally, when a node becomes a seeder, it is no longer able

to calculate local scores, leaving it potentially disadvantaged. These explain why TMS

could not withstand sybil (plus fake-block) attack in this experiment.

The simulation began with a single seeder in each case, and runs until a 95 percentage

confidence level is attained, and the average is taken afterwards. Each simulation can

run up to 30 times. The file size is 20mb for all experiments. This work did not address

the implications related to churn, nodes stay in the network throughout the simulation.

The presented results were obtained with network size 100 and varied percentages (0,

10, 20, 30, 40, and 50, 60, 70, 80) of attackers. For clarity, we once again state that what

we call a sybil attacker in this context is actually both a sybil and a fake-block attacker.

When the sybil attacker makes its way into the network, it also circulates fake blocks;

more sybils means more fake-blocks and higher chance of shutting down the network.

This is important for understanding the result.

Figure 4.2: FBit vs other methods; showing the difference in download rate for non-
malicious nodes. FBit allows them to download at higher rate amidst sybil attackers.

Figure 4.2 presents a result of how the network responded to sybil attackers, who also

distribute fake-blocks when they are able to gain access. The result compares FBit

to the original tit-for-tat based BitTorrent and TMS. As shown, non-malicious nodes

suffered less attack with FBit compared to other methods; they are able to download

Chapter 4. FBit (Fairer Bits) 64

at significantly faster rate. The core reasons for the improved performance center on

the following: (i) sybil attackers, to a large extent, can be stopped before they enter

the network and cause any disruption; (ii) for some of the attackers who make it into

the network, the algorithm is also able to capture them early enough, minimizing their

impact; (iii) seeders can protect themselves from exploitation. Most TRSs address the

second point but not the first and third points.

The proposed bootstrapping method stops attackers at the point of entry. Introducing

sybils becomes costly and an attacker can only introduce a limited number of sybils based

on its capacity, knowing that it may be difficult to outsource bandwidth. Attackers that

manage to enter the network are further fished out by monitoring their behaviours. The

IR computation particularly protects the seeders from exploitation. If a node is found to

be circulating fake blocks, it is blacklisted. Other forms of maliciousness such free-riding

result in trust depreciation.

When the number of sybils rose beyond 50 percent of the network size, the graph (Figure

4.2) indicates that their effect on the FBit network became stronger, and mitigating

them led to a sharp decrease in the download rate of legitimate nodes. This is expected

because, with very high percentages of sybils, there will be more failed and repeated

transactions. Transactions fail when nodes suspect that their neighbor is likely a sybil,

and decline its offers (or refuse to engage it). When this repeats, more time will be

needed to find the right nodes, and thus the overall transaction time will increase.

Also noteworthy is the fact that attackers do not upload any good block. The only

resource (e.g. file) available for sharing in the network is the one that the good nodes

possess. As the percentage of attackers increases, the overall resources of the network

reduces, this further explains why the download rate of FBit’s non-malicious nodes

declined as attackers grew in number. This is also true for malicious and non-malicious

nodes in the other two methods.

As briefly pointed out earlier, reputable nodes which are already in the network do not

incur much cost by introducing or validating newcomers, except for slight ‘transaction

time trade-off’ that may arise as a result of routing some chunks or queries through the

newcomer. Such trade off is however compensated by the gain in reputation that the

trustor stands to get after successfully introducing a new node. The delay caused by

forwarding some packets (or queries) through the newcomers appears mild. Albeit, our

Chapter 4. FBit (Fairer Bits) 65

method suffers some overhead which is clearly visible when there are no attackers (i.e.

zero percent) in the network, according to Figure 4.2.

TMS could not cope with sybil attackers because of the earlier mentioned flaw in the

bootstrapping method. If sybils can be introduced almost at no cost, an attacker can

easily introduce many of them and hijack the network at early stage. In tit-for-tat, new

comers are admitted without checks via optimistic unchoke, giving room for attackers

who sap the available resources and frustrates the network with fake blocks.

In another round of experiment, FBit was exposed to collusion attacks, where fake-block

attackers cooperate to favour themselves, and downgrade the reputation of others that

are not in their clique. Figure 4.3 captures the performance of FBit in comparison with

tit-for-tat based BitTorrent and TMS. A careful look at the result reveals that FBit

can cope with collusion attacks. Although collusion attackers appear to have higher

impact compared to a non collusion scenario such as figure 4.2, FBit nodes are still

able to download at considerably fair rate. The noticed decline in download rate (with

higher percentage of attackers) is expected, because finding reliable nodes becomes more

difficult and more time consuming. The TMS method felt more collusion impact, while

the original method was completely overwhelmed.

Similar to the sybil attackers explained earlier, in addition to the traditional behaviour

of collusion attackers, they also exhibit the characteristics of fake-block attackers. The

nodes collude and distribute fake blocks to other (good) nodes that are not in their

clique. The goal of the attackers is beyond selfish gain, the assumption is that they may

also want to shutdown the network, and this is achieved when genuine nodes are unable

to download. They also indirectly exhibit bandwidth attack attributes, since seeders

are more likely to become victims if they lack information to make decisions, like the

leechers.

To guard against collusion attack, TMS uses recommendations from top 10 nodes to

compute the score of the other peers. From the result, this does not appear effective

because malicious nodes also stand the chance of joining the top nodes, especially with

exaggerated scores from other colluding nodes. Tit-for-tat also does not combat collusion

attack and nodes may be overwhelmed by malicious traffic from the attackers. For

example they can be trapped in a cycle of downloading, verifying and discarding fake

blocks; making it impossible for them to successfully complete transactions. Moreover,

Chapter 4. FBit (Fairer Bits) 66

Figure 4.3: Collusion Attack.

in TMS and the original method, attackers are able to steal resources from seeders.

FBit copes with collusion attack using similarity check which is explained shortly (in

subsection 4.6.1).

To measure how successful an attack is, we compared how the malicious nodes fared with

the performance of the non-malicious ones. Ideally, non-malicious nodes are expected

to beat the attackers and maintain a clearly higher download rate. Figure 4.4 illustrates

this, with non-malicious nodes downloading clearly at higher rates in FBit, while the

collusion attackers were dominating in the other methods. The gap is more in the

original method and less in TMS, indicating that TMS is more resilient to collusion

attack than the original method.

A Resilient system is expected to frustrate attackers and allow non-malicious nodes to

download faster. In the original and TMS methods, attackers are able to download,

especially from seeders. TMS performed better than the original method, but was still

tricked by the attackers. FBit is clearly more successful in stopping the attackers from

stealing resources, showing resilience against bandwidth attack which the seeders are

often exposed to. In this way, the network resources are conserved, ensuring that it

does not shut down. Although Figure 4.4c appears to show that the malicious nodes in

FBit downloaded zero blocks, the value is not exactly zero, but rather very small. This

Chapter 4. FBit (Fairer Bits) 67

(a) Original (b) TMS

(c) FBit

Figure 4.4: The download rate of genuine nodes versus attackers in the (a) original,
(b) TMS and (c) FBit methods.

does not necessarily mean that no attacker entered the network, it simply means that

the good nodes, with the help of the algorithm, is able to avoid downloading from, and

uploading to, the attackers. Nonetheless, the bootstrapping method makes the process

easier by stopping most sybils from getting into the network. The overhead incurred in

the process by FBit is already shown in Figure 4.3.

4.6.1 Similarity Check

Before we summarize this chapter, let us discuss the similarity check which was men-

tioned earlier.

Some models have applied neighbor similarity to detect attackers in a distributed proto-

col. For example, in [125], if recommendations collected from various nodes regarding a

Chapter 4. FBit (Fairer Bits) 68

peer is significantly divergent (not similar) then such peer would raise suspicion. Their

approach was designed for e-commerce, and it requires coordination from some form of

central agents such as group leaders, which can be a limitation. However, we tapped from

their idea of similarity, and applied it (with modifications) to tackle collusion attack.

In FBit, when a peer is sending a request for recommendation, it selects some trusted

neighbor(s) randomly from its neighbor list, and sends request for recommendation

regarding the selected nodes and the actual unfamiliar node (i.e. the would-be collusion

attacker). So, the trustor requests recommendation for the actual unfamiliar peer, and

at least one familiar fellow that would be used to judge the similarity between the trustor

(who is requesting recommendation) and its neighbor (from whom recommendation is

sought). The selected neighbour(s) must be different from the node being inquired

about, and the one from whom recommendation is sought.

If the recommendation giver is in a collusion clique with the unfamiliar peer, then it will

give it high score and downgrade the reputable one. Or in an attempt to mask its acts,

the attacker may decide to simply exaggerate or downgrade both scores, but this would

still be noticed in the similarity check. When recommendations from various neighbors

are gathered, priority is given to the ones with the most similarity, based on the known

peers that have been inquired about. Line 12 of algorithm 1 triggers the similarity check.

“Most similarity” here refers to the recommendations that are closest to the trust scores

which the trustor has recorded regarding the familiar nodes that were included in the

recommendation request. For example, if the familiar nodes are clearly downgraded

while the unfamiliar one(s) has a very high score, then it may mean that the unfamiliar

node is in a collusion clique with the recommendation giver.

4.7 Summary

In this chapter, the FBit algorithm was derived. “Familiarity” and reputation are among

the the key ingredients required to build trust. The concept of familiarity was captured

by monitoring the activity-rate of every peer locally and globally, while reputation is

tracked by monitoring neighbours’ behaviours directly and indirectly. The algorithm

was tested on a distributed file sharing platform adapted to reflect key attributes of

mobile edge-clouds. These attributes are illustrated by the use-cases discussed in the

Chapter 4. FBit (Fairer Bits) 69

next chapter. During the test, the functionality of the tracker was drastically reduced

and nodes are enabled to monitor and make their own trust and security decisions. This

is to reflect a case where there is limited (or no) infrastructural support in mobile edge-

clouds’ network. Results obtained show that FBit can effectively avert popular attacks.

We gave hints on how the system would function in other distributed scenarios, and

shall elaborate on this in subsequent chapters.

Bear in mind that not every single malicious behaviour has been covered in this exper-

iment. We focused on sybil and collusion attacks with a blend of bandwidth and fake-

block attacks, in hope that it would be easy to adapt the method for similar threats.

Also, FBit was derived to be able to stop other malicious behaviour such as free-riding

and lying piece attack.

Chapter 5

FBit in Specific Use-cases of

Mobile Edge-Clouds

FBit aims to function in both the relatively older distributed protocols and the emerg-

ing ones. It is expected to effectively feature in emerging technologies including edge

computing and related paradigms. Some of these technologies have been discussed in

the previous chapters including mobile edge-clouds, which is of particular interest in this

work. In this chapter, we highlight some use-cases [61] of mobile edge-clouds, to further

illustrate how FBit fits into them. Most of the use-cases are in line with the objectives

of Hyrax project [126], which is aimed at deriving platforms for innovative applications,

based on mobile edge-clouds. The thesis has been developed under the Hyrax project.

We have specifically illustrated and tested how mobile edge-clouds would improve qual-

ity of service in IoT based eHealth system, as well as the role of FBit in ensuring security

in such volatile environment.

5.1 Some use-cases of Mobile edge-clouds

5.1.1 User Generated Replay (UGR)

Traditional infrastructure (e.g. WiFi) can experience enormous strain in crowded venues,

such as sports arenas. Consider a football stadium for example, where an important

match is taking place; thousands of people often gather to witness the competition.

70

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 71

Some people may be closer to an important highlight at a given time, and they would

take videos and pictures of the highlights to share with other people within the sports

arena. Numerous messages of that form flow through the infrastructure, dragging it to

a near breaking point.

Under the concept of mobile edge-clouds, near-by devices can come together to form

a pool as illustrated in figure 5.1. Contents (e.g. videos, files and photos) which are

generated by the users can then be circulated in the crowd without involving any infras-

tructure, except as last resort. This option is faster and cheaper, and may substantially

improve availability, since there is no single point of failure.

Figure 5.1: Sharing videos and photos in crowded venues

This use case matches the information sharing experiment which was presented in the

previous chapter. FBit plays a crucial role in ensuring that nodes who may cease the

opportunity to circulate unlawful or harmful contents are discovered and ejected from

the mobile edge-clouds’ network.

5.1.2 Rescue Assistance in Cases of Emergency

In a case of natural disaster for example, communication infrastructure which would

normally be used by victims and the rescue team may be affected, and communication

would be very hard or impossible. Rescue assistance systems which are designed to

depend on such infrastructure also become useless once they can no longer connect.

The concept of mobile edge-clouds can help to close such gap, by enabling users within

that area to connect with each other in a P2P fashion, thereby forming a network that

does not rely on the infrastructure (figure 5.2). Useful information such as videos,

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 72

pictures, texts, and location information may be shared within the edge-cloud network,

helping the rescue team to locate people with ease.

However, individuals may find it easier to use the system if they have some confidence

that there are no rogue nodes who are trying to exploit them and steal their information.

FBit can help to alleviate such worry and reluctance, by ensuring that only actual nodes

are connected, and that information misuse is checked by examining and observing the

reputation of each connected entity. It is possible that sufficient trust may have been

built during some interactions that occurred prior to the emergency, enabling nodes to

have reasonable information that would help them to make safe(r) decisions. Safety

remains the primary objective, which means that the new feature can be turned off, if

the node is running short of energy or similar resources. If on the other hand a node has

energy and other resources that is estimated to be sufficient for it to operate until rescue

arrives, then the proposed system can be beneficial during and after the emergency

situation.

Figure 5.2: Communication to aid rescue of victims in disaster scenario

5.1.3 Search for Missing Persons

Leveraging computer vision and mobile edge-clouds, face recognition can be done with-

out relying on the cloud computing infrastructure [61] which are often remote in nature.

Photos of missing persons can be searched locally on mobile devices (figure 5.3), gath-

ering relevant information with respect to time and other factors, which would help

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 73

to locate the missing person(s). Since some people are often concerned about the pri-

vacy of their data that are residing in traditional cloud infrastructure, this may be an

alternative.

Additionally, it may be faster due to reduced latency, and cheaper because it may just

use the idle resources of the devices involved. If need be, the edge-clouds network can

also engage near-by infrastructure or the cloud.

Security would however be an issue due to lack of coordination; which on the other

hand does not lack in traditional computing cloud systems. FBit is designed to close

this gap by giving each device the ability to regulate access, based on reputation and

cooperation; judging from its local view as well as the global view of the edge-clouds’

network, as earlier outlined.

Figure 5.3: Search for missing person(s)

5.1.4 IoT based eHealth System:

Internet of Things (IoT) enables the connection of variety of things, including humans,

animals, computers, mobile devices, sensors, software and hardware, to bring about

convenient communication and improved QoS. An IoT platform is primarily made up of

sensors, the cloud and communication interfaces, as well as suitable algorithms.

In the context of e-Health, wearable devices with sensors are used to collect patients’

data, such as heartbeat and glucose level. The data can be further processed at nearby

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 74

node(s) or the cloud, depending on the network architecture. This provides a platform

to monitor patients’ health in real time. It enables patients to make better health de-

cisions, e.g. about diet and exercise, while at the same time enabling doctors to, for

example, determine when a patient is due for next appointment, and whether (or not)

the patient is complying with prescription advice.

Architecture for IoT Based e-Health: As shown in Figure 5.4, there are four layers

in the IoT based e-health architecture [127], namely; the interface, service, networking,

and sensing layers. At the sensor layer, information is gathered from patients concerning

their health status, and through the network layer, the gathered information can be sent

to a fog node or cloud for processing. Actual e-Health service is provided at the service

layer; where information is compiled and analyzed to determine the health status of

patients at a given time. Result is then communicated to doctors and patients via the

interface.

Figure 5.4: Architecture for IoT Based e-Health

The advantages of IoT based e-Health are clear; ranging from reduced cost, and less

waiting time at hospitals, to more doctors’ involvement, through real-time monitoring of

patients’ health status, even from a distance. Edge computing is a crucial driver of IoT,

and e-Health by extension. As earlier noted, it minimizes latency and ensures optimal

quality of service. Fog computing is already popular in the e-Health [128] domain. Fog

nodes serve as intermediaries, placed between the edge devices and the cloud, for quicker

data collection (and processing). See Figure 5.5.

Mobile Edge-clouds in e-Health: As cities and homes become smarter, the number

of (e-Health) connecting devices would increase drastically; people and things would be

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 75

Figure 5.5: Simplified Architecture for IoT Based e-Health, with Fog Computing

connected on the go, via wearable, sensors, etc. This further means that there would be

increased pressure on the edge nodes. To maintain a low latency e-Health system, the

number of fog nodes may need to increase. The fog nodes may also need to be made more

resourceful, so that they can handle more requests: these would clearly require extra

infrastructural cost. In addition, fog nodes may be damaged in cases of natural disaster,

cutting off people who are in the affected area, and making both e-health services and

rescue operation very difficult.

Minding the crucial nature of e-Health services, mobile edge-clouds, though not popular

at the moment in the e-Health domain, may be employed towards ensuring non-stop

e-Health services and to aid rescue operations in cases of natural disaster. Figure 5.6

gives an illustration of how mobile edge-clouds can coexist with fog nodes, for enhanced

QoS and uninterruptible e-Health service delivery. Peers no longer need to channel every

traffic through a fog node at all times; this in a way tends to flatten the hierarchical

communication setup of fog computing.

Fog nodes are more likely to be affected by (natural) disasters because they are often

dependent on external power sources and mostly rely on established infrastructure to

function. Peers that are in close proximity can pool their resources together to form

edge-clouds which may be capable of addressing some requests that are within their

resource limits, and offloading bulky tasks to fog nodes or the cloud. In practice, even

the fog nodes can be part of a nearby mobile edge-clouds.

Some Security Issues Associated with e-Health: The attacks which were outlined

earlier in this work also apply to IoT based e-Health. But the following are specific to

the system, and thus worth mentioning.

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 76

Figure 5.6: IoT Based e-Health, with Mobile edge-clouds

• Attack on EWS: The IoT-based Early Warning Score (EWS) can be used in e-

Health to predict urgency in patients’ health conditions. Very high amount of data

is being generated regularly, which is too much for the medical officials and doctors

to directly monitor [127]. EWS therefore helps by doing that automatically and

then communicates any warning to the concerned individuals or officials. If data

packets are maliciously modified, the analysis would be wrong and the process

would be damaged. Similar attacks on the prescription system, hospital visit

schedules, and smart ambulance can be very dangerous.

• Physical interference: Apart from the risk of modifying packets, patients can be

vulnerable and easy to manipulate. This means that there may be increased risk

of physical interference with the e-Health nodes/devices. Physical security for all

the relevant nodes may be expensive. As a backup plan, the proposed method

may help nodes to detect when its neighbour is compromised or malfunctions, and

in such cases pay less attention to (or double check) information that are coming

from the neighbour. The malfunctioning nodes can also be flagged.

The new method would serve as an inexpensive (extra) layer of security, and

not a replacement of other security methods, such as authentication. Moreover,

it is possible to steal authentication details and instantly compromise connected

systems, but that would not apply to trust-based security, because time may also

be required to gain reputation and become influential enough.

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 77

5.1.4.1 F-BETH

This is a modified version of FBit which targets the e-Health potential use-case, it stands

for “Fairer Bits in E-healTH”. F-BETH processes start with reputation bootstrapping

as earlier described in Section 4.1, and Equations 4.1 and 4.2 are used to determine when

nodes are able to join fully. The processes are illustrated in Algorithm 3. The goal here

is to have an inexpensive means of maintaining trust and security in a kind of e-Health

use-case presented earlier. It involves a mobile edge-clouds’ environment which can be

self-sustaining in case of emergency and can also be used in non-emergency situations

where it is considered optimal, e.g. to improve QoS.

Bootstrapping may have happened before the emergency situation, since that system

can also be used in non-emergency cases. Alternatively, the bootstrap threshold can

be set to low if it needs to be used in an emergency, provided it is safe to do so. A

node is expected to bypass F-BETH if there is an emergency and its energy (or similar

resources) is running down. In that case, it does not care about trust and security -

it simply connects to any available node(s), hoping for the best. This ensures that the

node’s safety is prioritized.

After joining the network however, nodes monitor their neighbours as they do in FBit,

but mainly the reputation factor, and not the interaction rate (IR). As already empha-

sised, the IR information was necessary because among other things, it protects the

seeders from exploitation. It is necessary in the other use-cases but less relevant for the

e-Health use-case, because the network is not just for file sharing, and nodes are less

likely to become dedicated seeders.

The IR factor is minimized in FBit to arrive at F-BETH. The implication is that inter-

action rate (in-terms of give and take) is given less attention, while more emphasis is

on reputation (DT and IT). The impact of paying less attention to the IR factor was

not really tested, since fairness-related behaviours including free-riding and bandwidth

attacks were also left out. The goal is to illustrate the potential application of FBit in

this type of environment. A non-modified version would also fit in, but resources would

be spent doing computations that are not really needed. Modified BitTorrent protocol

was also used for the experiment, and the tracker has similar reduced functionality;

representing a fog node in this case. This simplified version may however not be so

efficient in normal Bittorent protocol or the user generated replay which was mentioned

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 78

earlier. The reason is that those mainly involve file sharing, and seeders may be exposed

if F-BETH is used instead of FBit.

With these changes, the F-BETH algorithm is as follows:

Algorithm 3 Leecher Unchoke Method

1: MaxUnchoke = c
2: NumberUnchoked = 0
3: InterestedPeersList← P
4: TrustedPeerList← {}
5: while NumberUnchoked ≤MaxUnchoke do
6: for all peers(P) in InterestedPeerList do
7: Calculate DT score()
8: if DT Is High then
9: TR = DT

10: else
11: Get recommendations and check similarity
12: Calculate TR (eqn 4.8)
13: end if
14: if TR ≥ threshold then
15: TrustedPeerList← p
16: end if
17: Sort TrustedPeerList by TR
18: Unchoke Top Scores First()
19: NumberUnchoked+ +
20: end for
21: RemovePFromInterestedPeersList
22: end while

The parameters are still the same as in algorithm 1, presented in the previous chapter.

Equation (4.4) was still used to calculate direct trust, while (4.6) was used for indirect

trust. Equations (4.5) and (4.8) were used to capture aging factor, and to combine direct

and indirect trust respectively.

As expected, the results were similar to FBit’s, but with some differences. As shown

in Figure 5.7, the ‘download’ rate appears significantly better (in this experiment) for

F-BETH, and slightly for the other algorithms, compared to the earlier experiments

with F-Bit. Download in this context represents successfully getting replies for requested

packets (and/or successful routing). Apart from difference in network conditions, arising

from the fact that different random seeds were used, there are two core reasons for the

noticed performance difference: (a) Because the network size is bigger in this experiment

(200 nodes - double the size used in FBit experiments earlier), there are usually more

reputable nodes in the network, even with similar percentages of attackers. This means

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 79

that relatively more good contents are always available and thus better chances of getting

them. (b) In addition, and particularly for F-BETH, less work was required during trust

computation, given that IR was not computed.

Figure 5.7: Download rate for normal nodes in a network of 200 nodes and varied
percentage of attackers. The numbers (20, 40, 60, 80, 100, 120, 140, 160) represent

actual number of attackers, equivalent to 10% to 80% of the network size.

The bootstrapping procedure remained effective, as attackers were largely stopped from

joining the F-BETH (5.8c) network or circulating malicious contents. As shown in

Figures 5.8, the case is not the same for TMS (5.8b) and the original (5.8a) methods,

which allowed attackers to engage the resources of well behaving nodes; a situation that

can give the attackers leverage to drain their resources. With focus mainly on “leechers”,

it makes sense that tit-for-tat (original method) appeared to perform a little better in

this scenario than in the previous one, since a node attends to those that render services

in return. Although the optimistic unchoke option also means that attackers may still

be serviced regularly. In TMS, the attackers appear able to manipulate the trust system,

thereby appearing trustworthy and receiving some services. This suggests that it may

not be best fit for less hierarchical systems like this.

The overhead is expected to be similar to FBit’s (see Figure 4.2), so it was not re-

assessed. Also, the sybil attackers maintained similar behaviors as described earlier; they

reply with bogus packets, in addition to the tradition sybil attack behaviours. Figure

5.8 illustrates how much attackers are able to get good contents or sincere services from

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 80

the network versus how much genuine nodes are able to. This gives us an idea of how

much the network is able to conserve its resources (e.g. energy and bandwidth) which

also relates to how sustainable the network may be.

(a) Original (b) TMS

(c) F-BETH

Figure 5.8: Attackers were able to access and engage the resources of their victims in
other methods, but F-BETH proved effective.

Some valid questions may come to mind regarding this IoT-based e-Health use-case.

For example, one may ask if it is really necessary to engage mobile edge-clouds; is fog

computing not sufficient?

To address this, we acknowledge that fog is quite popular and in many cases it is suf-

ficient. However, it has been found to be hierarchical in nature; participating nodes

follow some hierarchy as they communicate - from IoT devices to fog (or edge) nodes,

and if need be, to the cloud. While this results to improved quality of service and user

experience compared to just relying on the cloud, enabling nodes to establish customized

connection among themselves without always relying on the hierarchical pattern, may

lead to even better performance because latency and bandwidth may be better featured.

The network can also become more self-sustaining and able to better withstand disrup-

tions. We are not alone in this line of thought, Karagiannis et al. [129] also highlighted

Chapter 5. FBit in Specific Use-cases of Mobile Edge-Clouds 81

the need for a less hierarchical approach. Mobile edge-clouds can therefore work with

fog, making it possible to establish non-hierarchical connections when necessary.

Another doubt may be, why would anyone care about security or trust in emer-

gency scenarios? This is clearly a valid question, and we would like to clarify that

the proposed system can be bypassed in critical cases; victims can priorities survival

if for example they are running out of power or other relevant resources. However, in

some cases, a victim may have power and other resources that would last beyond the

estimated rescue arrival time. Given such ‘luxury’, the victim may choose to interact

only with trusted agents to guarantee security within and after the crisis. Secondly, if a

node already built some trust with neighbours before the crisis (e.g. during occasional

interactions) it may help it maximize its resources during the crisis by focusing on le-

gitimate/trusted nodes who are more likely going to forward its packets, while avoiding

malicious nodes that would simply drop them.

5.2 Summary

In this chapter, we have explained some use-cases of mobile edge-clouds upon which we

based our study. They are in conformity with the objectives of Hyrax project, under

which we worked. FBit was adapted for IoT based e-Health system. Although each edge

computing paradigm has its unique flavour, it may be possible to have a blend in the

future, where two or more paradigms would work together to boost availability and user

experience, especially as cities become more smart and IoT-based. We presented a pos-

sible blend of mobile edge-clouds and fog computing, leveraging the attributes of mobile

edge-clouds to minimize the hierarchical communication pattern of fog computing. This

may enable the network to withstand emergency situations that may make traditional

infrastructures unavailable; the nodes can reorganise to form a local cloud. As high-

lighted in the chapter, the hierarchical pattern has been viewed as potentially deficient.

FBit has been weighed for application in such distributed and sensitive environment,

and experimental results indicate suitability.

Chapter 6

FBit in DHT and BlockChain

In this chapter, we shall be discussing another flavour of FBit which is partly a work in

progress. It has not been fully completed and tested as at the time of writing the thesis.

We have also outlined in more detail how FBit functions with DHT (Distributed Hash

Table).

6.1 FBit in DHT

To find a desired content in an unstructured P2P network, nodes broadcast their search

to find as many nodes as possible, who share that content. If the content is popular, it

would be easy to find, but if not, it can be problematic. The flooding technique used

in the search is inefficient because it affects performance. Structured P2P solves this

problem while remaining distributed, via the use of DHT. A more efficient mechanism

is used to locate data by searching for nodes who have them, or are closer to their loca-

tion. Although FBit has the potential to function in both structured and unstructured

networks, we have focused on the former in this section, due to its advantages over the

unstructured.

We have opted to implement a flavour of FBit on a Vuze client because of the similarities

that exist between Vuze and some of the target use cases of mobile edge-clouds, already

discussed. In addition, like in previous experiments, we seek to build on an already

established protocol with known behaviour. Simulations were earlier done with respect

to some of the use-cases (particularly, content sharing and IoT based e-Health) and

82

Chapter 6. FBit in DHT and BlockChain 83

results presented. The intention here is to setup a test-bed that would be made up of

containers, which are more realistic hosts, compared to the previous simulations nodes.

We have also seized the opportunity to explain (in more detail) how FBit fits into DHT

based protocols. We shall highlight the functionalities of the Vuze client and other

components of the test-bed as follows:

6.1.1 Vuze protocol

Kademlia is a popular DHT which is implemented in many decentralized protocols. It

has two implementations; Mainline DHT and Vuze DHT - we have focused on the latter.

A content description in Vuze contains an infohash, including information about leechers,

seeders, torrent name and size [130]. To search for contents, a node needs to select 20

peers from its list of neighbours, and then contact them according to their proximity to

the content of interest. The proximity is based on network coordinates, and each peer

is responsible for calculating its network coordinates. The difference in the coordinates

translates to the amount of latency that would result from a communication between

the two points.

Each peer has a unique ID of 160 bits; which is a hash of the IP and port. Vuze’s

routing table is made up of buckets, with each bucket having about 20 nodes, identified

by their IDs. An XOR of two IDs gives information about the distance between them.

Usually, Kademlia nodes discover new peers and update their state using controls such as

‘PING’ - used to check availability, and ‘findNode’ and ‘findValue’ - used for maintaining

the routing table and to discover contents respectively. Upon receiving a reply, the

K-bucket is updated accordingly. Nodes may be replaced if they fail to respond to

messages/control.

A Vuze node can query up to 5 peers at a time. To choose these five peers, a bucket

of closest neighbours is first chosen based on the XOR distance of the IDs. The bucket

nodes are sorted according to how close they are to the target. The first 10 nodes are

further sorted according to the Vivaldi distance [131] of the coordinate space; this is

done in order to increase lookup and reply speed. Afterwards, requests are sent to 5 top

nodes. Based on the reply of those requests, discovered nodes are added and re-sorted.

Unless a timeout is reached or there is no new node discovered, the process is repeated

Chapter 6. FBit in DHT and BlockChain 84

until the desired target is found [131]. For a Vuze peer to discover other nodes in the

network, it needs to send messages to known nodes.

6.1.1.1 Choke and unchoke in Vuze

Peers in the network download contents and also upload same to their neighbours, unless

they are free-riders. When a peer gets all the file pieces, it becomes a seeder. A file is

usually divided into pieces, and then shared in a random fashion among agents in the

network, applying some techniques to ensure that every piece is retained in the network

as long as necessary. We shall be using the terms ‘downloaders’ and ‘leechers’ to mean

the same thing.

To unchoke a node means a promise to send data to that node. Peers unchoke the fastest

uploading nodes, and choke the worst uploaders. Node x shows interest in a content

it wants to download from a connection via an interest message. When the connection

gets such message, it checks for uploads that it has got from node x, similar to tit-for-

tat mentioned previously. This is to enable it to determine whether it would send the

requested packet or otherwise. Peers choose other nodes who they can serve at a given

time and then choke the rest. Data pieces can be verified via the hash information which

is contained in the torrent file. Every received piece is checked based on this hash, and

if there is a mismatch, such piece is dropped.

The techniques used in Vuze which involves unchoking the fastest uploaders can dis-

courage free-riding to an extent. But there are no techniques to prevent more serious

attacks such as Sybil, collusion, and bandwidth attacks.

6.1.2 FBit-U

This flavour of FBit is termed FBit-U, the U stands for ‘Uncontrolled’ and it is used

to capture the fact that we want to reflect real hosts and network behaviours as much

as possible, since it would be very expensive to buy so many physical devices for ex-

periments. It is a containerized sandbox which may also be used for similar other

experiments, beyond FBit.

Chapter 6. FBit in DHT and BlockChain 85

When a newcomer requests to join the network (through a known peer), he gets a reply

through which it is able to choose its initial bucket nodes. But to actually get any

content from the network, the newcomer is required to bootstrap its trust by servicing

other nodes genuinely, based on the information it already has. For example, it needs to

correctly reply some routing messages, to gain initial trust. Preferably, the newcomers

are used to route data packets, as one of the ways to help them gain initial trust, and they

are expected to deliver the data unadulterated. This is similar to the method in FBit,

except that the kind of ‘messages’ which the newcomer routes here may be different.

Nonetheless, packets which are routed through the newcomers are still expected to be

intangible pieces, which the newcomer may not be able to reconstruct since it may not

have all the required pieces. The overlay topology largely follows its normal pattern,

the key different is that we factor in trust while choosing the neighbours, instead of just

distance.

The same equation (4.1) can be used to determine when new nodes are due to join the

network fully. The delay or overhead that would arise as a result of this is expected to

be reasonable, following our earlier results (see figure 4.2). Nodes discover and update

their buckets based on distance, as in traditional Vuze, but in addition, it is also based

on trust scores of the peers. Similar to the method used in [75], the following formulae

(6.1) is used to select the nodes that would make up the bucket:

NC = (1− σ).
1

GS
+OC.σ, (6.1)

where NC stands for the new closeness, GS is the trust score, OC represents old closeness

which is used in traditional Vuze, and σ is the weighting factor. This is one of the

significant additions made to FBit-U, most other processes work very much like in FBit,

since distributed protocols has been the target from the beginning. The advantages of

FBit-U over other methods such as [75] were highlighted in section 4.4.1. The inverse

of GS is used in equation 6.1 because we want more trust to translate to less distance.

The maximum trust score which a node can have is 1.

To calculate the trust score (GS) of any peer, reputation and rate of interaction are

usually among the key factors considered, and they are calculated using the equations

which were outlined earlier (4.3 to 4.10), the algorithms are also similar. In the next

Chapter 6. FBit in DHT and BlockChain 86

subsection, we will explain the experimental setup and when necessary mention some

more variations between FBit and FBit-U.

6.1.3 Experiment

Apart from the first few nodes that are considered the initiators of the network, every

other node is expected to go through the bootstrapping process that was outlined; no

default score is assumed or assigned, and no puzzle or pre-existing trust is required. The

bootstrapping procedure utilizes an already existing feature in Vuze, which allows a peer

to (sometimes) send data to another node who then sends it to (you) the requester1.

Furthermore, the traditional choke/unchoke method was also altered. Instead of focusing

mainly on the number of uploads during unchoke processes, the new algorithm also

considers the reputation of peers in addition to their interaction rate. We check the

local and global engagement of a peer in the network; more commitment attracts higher

priority. This is similar but different from the share ratio concept already existing in

Vuze. Share ratio does not really account for the overall commitment of a peer in the

network. It only reflects the ratio, not the total. For example, a given node who has

small but equal amount of downloads and uploads, may end up with same ratio as

another node who has high but also equal amount of uploads and downloads. The new

system closes such gap to ensure improved fairness, as required in the use-cases.

When a seeder is seeding in the traditional Vuze client, it tends to upload to peers with

the largest portion of the file1. In FBit-U, seeders use the IR information to check how

each requester has contributed to its fellow leechers and the network in general. This

protects the seeders from abuse and bandwidth attack.

Modifications were also made to allow a form of authentication of nodes. At the initial

stage of the new system, nodes send their self-signed certificate to an existing node

through which they wish to join. That is then associated with the newcomer and further

spreads through the network so that members can use it to verify its signature. FBit-U

pieces are signed using elliptic curve digital signature algorithm, and are verified by

the recipients. The behaviours of malicious nodes were also implemented, including

fake-block, bandwidth, collusion, and sybil attacks.

1https://wiki.vuze.com/w/This funny word#Unchoking (accessed 11/04/2019).

Chapter 6. FBit in DHT and BlockChain 87

We also used gRPC 2. to build a control module that allows us to control the experiment.

With this, we could issue commands to all nodes at the same time and also collect

required logs. gRPC is explained in the next subsection.

6.1.4 Components of the test-bed

• Vuze: this is already discussed in the previous subsection. It forms a basic frame-

work upon which modifications are made to attain the desired platform for testing

the new system. The bootstrapping mechanism is to be implemented here, as well

as the trust model. At the time of joining the network, nodes choose a public and

private key pair (Kp, Kb). The new node notes the private key and sends a self

signed certificate alongside a request to join the network.

When an existing node receives the request, it associates the public key with that

new node, if it does not exist already. It further requests that some of its packets be

forwarded through the newcomer who it wishes to introduce into the network; this

would give the newcomer some initial reputation if routed correctly. The process

would be repeated by the same existing node or alongside other nodes to make

the process faster. Newcomers join the network after meeting an entry threshold

which is normalized so that it does not impose too much burden on them.

After gaining full entry into the network, bootstrap process is considered to be

complete for that node. The interaction rate and reputation of the new node

is continually monitored by its neighbours. The process involved in doing this

is same as outlined in the previous chapters. Equation 4.3 is used to calculate

the interaction rate, also called the familiarity rate, while Equation 4.4 is used to

monitor the reputation based on direct experience.

To make a node’s familiarity and reputation spread throughout the network, rec-

ommendation is used; this involves nodes asking about the trust of other nodes

(which they are not very familiar with) before completing interactions with them.

Priority is given to nodes with higher commitment and reputation, and this is

calculated using Equations 4.6 and 4.7. Equations 4.8 to 4.10 are used to combine

the scores into a single trust score which represents how much the network trusts

a given peer.

2https://grpc.io/docs/guides/concepts/ (accessed 29/05/2019).

Chapter 6. FBit in DHT and BlockChain 88

Every node is independent, and only needs to participate and interact correctly

with its neighbours; this is suitable for a fully distributed environment which we

envisage. It is also applicable to partially distributed setups. The use of signatures

and unique keys minimizes the chances of fake identities, while the bootstrapping

exercise further helps to keep Sybil attack and similar other attacks in check.

White-washing is also discouraged, since nodes would not want to work for the

initial bootstrap score, only to abandon it and repeat the same process: it is more

beneficial to preserve one’s reputation through sincere cooperation. If it is more

beneficial to cooperate, then peers may be discouraged from doing otherwise.

When a node misbehaves, its reputation drops, it may also be completely black-

listed depending on the type of behaviour it has exhibited. Free-riding for example

may incur reputation drop naturally, while outright transmission of fake blocks

would warrant blacklisting. To blacklist a node, its trust score is downgraded to

-1.

Elliptical curve algorithm, namely ECDSA3 was used for the signatures. It is

preferred over other algorithms such as RSA [132] because it is faster and requires

less memory and key size. We compare key lengths and key generation performance

for elliptical curve cryptography (ECC) and RSA in table 6.1 [133].

Key length (bits) Key generation time(s)

ECC - RSA ECC - RSA

163 - 1024 0.08 - 0.16

233 - 2240 0.18 - 7.47

283 - 3072 0.27 - 9.80

409 - 7680 0.64 - 133.9

571 - 15360 1.44 - 679.06

Table 6.1: ECC vs RSA

• Docker and Kubernetes: As seen in earlier experiments, to test the new method,

there is a need for many nodes (devices), which have to be individually loaded

with necessary packages and libraries. It would be very expensive to purchase

physical devices in that number, so we chose containerisation instead: Docker

containers were used for this purpose. This can also be achieved using virtual

machines (VM), but we chose containers because they are more economical in-

terms of resource consumption. For example, while containers start up within

3https://csrc.nist.gov/Projects/Elliptic-Curve-Cryptography (accessed 20/06/2019).

Chapter 6. FBit in DHT and BlockChain 89

seconds and scale into thousands, startup time for VM is in minutes and scales

in dozens. The capacity (required) for containers can also be in megabytes, while

that of VM is in gigabytes; making the latter more expensive [134].

These container features make it suitable for our target use-cases, since we are

focused on low-resource devices. It is lighter and makes a better match, unlike

virtualization which can be a little more heavy. Nonetheless, containers can also

transparently deploy tasks, just like VM. To manage the containers, kubernetes

is needed. It is basically a cluster manager for Docker containers, and it is open

source [135]. It is popularly used to manage heterogeneous nodes. We deployed it

on a cloud-based server.

• gRPC: A multi-threaded control module was designed as part of the test bed.

Since nodes are independent, we needed a way of having some control over the

experimental processes. The control module is based on gRPC and enables us

to remotely control each node in the network. The control mentioned here does

not involve interference with the actual network protocol such as file exchange. It

merely allows us to issue commands to every node at the same time, e.g. start,

ping, kill, retrieve logs, etc. Among other libraries, each node runs a gRPC plugin

which is used to make communication with the control module possible.

You may ask what exactly is gRPC? It is an open source RPC (Remote Proce-

dure Call) framework, which is known for high performance and can be deployed

in any environment. It is commonly used in distributed computing to connect

applications and devices to backend services 3.

6.2 Distributed Trust Ledger (DTL)

Blockchain technology emerged with promising advantages and high expectations. Among

its key advantages is the ability to make transactions possible among parties that do

not trust themselves; although even this arguably involves some form of trust, maybe

not between nodes, but trust on the system. TRSs on the other hand focus mainly on

establishing trust and security in distributed networks such as P2P, by exploring the

concept of reputation.

Chapter 6. FBit in DHT and BlockChain 90

But as we saw earlier, research is begining to be directed towards a form of convergence,

where TRS is leveraged to improve trust and security in the Blockchain systems, and

vice versa. The efficacy of any TRS largely depends on the security of each node’s trust

information/score. That is, whether or not the score is vulnerable to manipulation or

false testimonies. For this reason, FBit under the FBit-U flavour employs the use of

blockchain to secure the trust scores, thereby making the TRS system stronger.

Current TRSs focus mainly on managing the effect of score manipulations (e.g. bad-

mouthing attacks). They apply some techniques to choose valid testimonies from a pool

of received recommendations. Detected attackers may be blacklisted, but that often

succeeds some damaging effect which they may have caused in the network. This section

aims to exploit the immutability advantage of the Blockchain technology to eliminate

the chances of bad-mouthing and similar attacks targeted at reputation scores of nodes

in TRSs, and FBit in particular. A few similar reports in the literature [104, 105] are

focused on different network settings and lack support for mobile edge-clouds, see section

3.4. We will discuss more about this shortly.

6.2.1 Blockchain technology

Blockchain can be viewed as a distributed ledger which is shared among its users, al-

lowing them to perform sensitive transactions, which reflect on other ledgers, without

needing an intermediary or central authority. The three basic concepts behind the

technology are cryptographic algorithm, consensus mechanism and distributed ledger/-

database [136]. The ledger allows several parties in a network or system to add transac-

tions to it, such that any change made consistently reflects across every copy. Because it

is distributed, ledger reconciliation becomes easier, but it may require some additional

computation and storage costs.

Data concerning any transaction made in the network is stored in a sequence of data

blocks which are cryptographically linked. At any point in time, participants or users

are able to vote on the validity of transactions and eventually agree on its sequence and

system state, using a consensus mechanism. Blockchain can be permissioned or permis-

sionless. While there is more control on the transactions that occur in a permissioned

blockchain because the participants are known and easily identifiable, permissionless

Chapter 6. FBit in DHT and BlockChain 91

blockchain is more open. To prevent Sybil attack and discourage the spread of malicious

contents in the open system, appending new data is made (computationally) costly.

Since its emergence in 2008 with Bitcoin [137], the technology has been applied in differ-

ent sectors with the goal of gaining from its many advantages. Real estate [138], supply

chain [139], finance [140], record keeping and car leasing [141] are some of the areas

where Blockchain technology has been considerably featured. Although the technology

can ensure immutability, it cannot guarantee the credibility of the original data/infor-

mation entered into the system. This and similar other issues have prompted a debate

about its “trust-less” nature, with some scholars insisting that trust remains needful in

the system [142]. Accordingly, efforts have been made to introduce TRS into Blockchain

as a way of further strengthening it against manipulations and attacks [101, 102].

6.2.2 Trust in Blockchain

Without trust, it would be hard to optimally reason about the security of any system

[60]. It may be trust in participating peers, platform or other targets such as the products

which are shared in the network. Blockchain users for example trust the system to be

immutable, and the blockchain system ensures that its reputation in that context is not

broken.

While the concept of trust has been heavily discussed in the context of other distributed

platforms, it has received minimal attention in the context of Blockchain technology;

with more focus centering on adoption, usage and business models for the technology.

Blockchain is often conceived as a trust-free system, even though it remains challenging

to assess whether the system is actually trust-free [136].

According to Fröwis and Böhme [143], Ethereum smart contracts do require trust be-

cause about 40 percent of such contracts do not really conform to the ‘non-manipulability’

status. The reports in [142, 144, 145] also upheld the need for trust in bitcoin blockchain.

This has encouraged the earlier mentioned reports [101, 102] on the application of rep-

utation and trust concepts to support blockchain.

Acknowledging the importance of trust and reputation, the strengths of blockchain can

be leveraged to secure the reputation of every entity in the FBit-U system from bad-

mouthing and slandering attacks. This can be viewed as the opposite of [101, 102] since

Chapter 6. FBit in DHT and BlockChain 92

it aims to take advantage of the strengths of Blockchain to safeguard TRS scores instead

of the reverse (securing blockchain using TRS).

6.2.3 FBit in Blockchain

One of the key problems sabotaging the adoption of blockchain for trust management

and security in distributed platforms such as mobile edge-clouds and IoT, is the huge

computational resources required of each node [18], especially in proof-of-work based

blockchain. It makes some sense (though not optimal) to spend sizeable amount of

resources for mining in traditional crypto-currency systems such as Bitcoin, because

such can be a form of investment that can yield monetary return. However, for other

systems such as mobile edge-clouds [60], which may involve huge presence of (mobile)

devices with low resources, a less resource intensive scheme is necessary.

Proof-of-Stake (PoS) is usually the next popular port of call, after Proof-of-Work (PoW).

It also requires significant computational and memory resources for solving cryptography

puzzles [146], but that can be lower compared to PoW. It can be adapted to fit into

distributed networks where security, fairness and trust are needed, but at the same time,

resources are meager.

Accordingly, FBit-U is further modified based on PoS, TRS and BFT (Byzantine Fault

Tolerance), to establish a distributed trust ledger, such that nodes can update the be-

haviour of neighbours based on local and global experiences, and it would reflect on the

ledger of every other peer in the network. This new method is tagged DTL (Distributed

Trust Ledger). Nodes spend some “resources” to genuinely provide services to other

peers at a regular rate, in order to gain priority and earn high relevance as illustrated in

figure 6.1. But the resources mentioned here do not compare to that involved in PoW.

We aim to exploit the properties of blockchain such as consensus, security, distributed

and open access, to shield TRS scores and related information from attacks. We also

plan to derive a way of storing the ledger on mobile edge-clouds, so that participating

nodes can access it without keeping an entire copy locally.

Chapter 6. FBit in DHT and BlockChain 93

Figure 6.1: Precedence in DTL.

6.2.4 Reputation Bootstrapping

The DTL system is designed to be DHT compliant and would be illustrated using a

Kademlia based client. It covers the four basic DHT actions which include Boostrapping,

lookup, PUT and GET operations [92]. Every Kademlia participant is expected to

perform a lookup, which is basically to locate k-nearest neighbours. The participant

then selects α nodes from the K-neighbours and sends FIND NODE requests to them.

Each queried node returns a list of other nodes, which the initiator may further query.

The entire k-bucket nodes can be queried if the α nodes fail to yield desired result.

Normally, α equals three, but can vary: for example, it can be one [147].

In the proposed system, new nodes join via similar way, but the services which they

can access in the network are restricted. For example they may have rights to perform

lookup/routing only, while they gain reputation and qualify for full access by performing

them sincerely. They can only have full rights when the bootstrap stage is completed

and their reputation score is up to a certain threshold. This is consistent with FBit

bootstrapping approach. Trust scores are computed locally based on individual experi-

ence, and then published on a blockchain after approval and adoption by other peers in

the network, via consensus.

A newcomer would be added to the k-neighbours of the node through which it wishes

to join. It can also be recommended to other nodes if the familiar node is unable to

accommodate additional peer in its k-bucket at that moment. Every interaction is rated

locally by the recipients. For instance, if a node returns legitimate node(s) when queried,

it is counted for it as a good behaviour; while those who return malicious or non existent

IDs would be denied network membership. It is also seen as a bad behaviour if a peer

continuously ignores lookup requests. Similar to FBit, when responding to requests,

Chapter 6. FBit in DHT and BlockChain 94

signed packets can also be routed via newcomers, and they gain bootstrapping scores by

forwarding them unadulterated. Nodes are however unable to make requests until they

fulfill the bootstrap requirements and gain full access into the network.

As part of the bootstrapping process, a newcomer accumulates initial reputation by gen-

uinely responding to routing or lookup requests. When its score fulfills the bootstrapping

requirement illustrated in equation 6.3, it gets absorbed fully into the network. The pro-

cess does not take long because nodes are encouraged (and actually rewarded) to admit

legitimate nodes into the network. This motivates them to help newcomers by giving

them opportunities to ‘serve’, and for each genuine service provided, their bootstrap

score is calculated according to equation 6.2.

Basically, each node serviced by a newcomer computes a score locally, and then at

interval, it pushes it to the blockchain. If the sum of Bf scores published in favour of

a newcomer is up to the minimum threshold, and there is no contrary opinion, then it

qualifies to be granted full access. This ensures that even a node that possesses very high

capabilities and resources does not have any impact on the network at the initial stage.

Similarly, continual monitoring of each node’s reputation, not only slows down the time

it takes for an attacker to acquire high amount of badges which gives it relevance in the

network, but also helps to eliminate attackers at first (or few) malicious attempt, before

it causes much harm.

Every submitted transaction contains a proof, which includes timestamp, and hash of

requested and received pieces/packets, as well as the public keys of the nodes involved.

Nodes generate their own key pairs before joining the network and disseminate the

public keys as they transact. Newcomers do not need to service every node in the

network before joining, once the Bf submitted by a few trusted peers confirm that they

have met the minimum requirement, they will be fully admitted. That is, when Θ(Bfi)

in equation (6.3) is up to 1. This Bootstrapping technique frustrates Sybil attackers

because they can only introduce a limited number, owing to lack of needed resources. It

also discourages white-washing and similar other attacks because nodes would not like

to loose the trust which they have laboured to build, knowing that no free score will be

given if it drops to rejoin. .

Chapter 6. FBit in DHT and BlockChain 95

Bfi =
∑
c

Bfci, (6.2)

Θ(Bfi) =

{0 if Bf <nmin

1 otherwise

, (6.3)

where Bfi is the Bootstrap factor credited to the new node i, according to the bootstrap

factors published by other nodes c concerning node i. The final bootstrapping outcome

(Θ(Bf)) can either be 0 or 1, as illustrated in equation (6.3). nmin is the Bf threshold.

Notice that there is no longer the need to collect recommended bootstrap factors as was

done in FBit.

In general, nodes at intervals publish scores of top nodes and newcomers (if any), based

on their local experience within that interval. Other nodes queue behind the scores they

agree with, or initiate another branch if they disagree. At the end of the interval, a

leader compiles valid transactions into block(s), and adds it to the blockchain, similar

to [102]. Valid votes need to have a minimum amount of resources (we call this badges)

staked in its favour, and like in Bitcoin, the heaviest branch wins, if multiple exist.

Existing nodes go through the same process while publishing newcomers’ scores. More

explanation regarding the score publication procedure shall be given subsequently.

When a peer suspects any act of maliciousness (e.g. an existing node trying to introduce

a nonexistent newcomer), it can ask for evidence of the transaction from the node who

submitted it, and such can be published against the malicious node. If the node refuses

to reply; that too can be published as an evidence against it. The evidence is analyzed,

and if the node is considered malicious, it will be blacklisted. The process of evidence

analysis is similar to other transactions; a node can flag a suspected malicious agent,

providing some proof, while other nodes either agree or disagree. Like in BitcoinNG

[148] a leader is elected at the beginning of intervals and it moderates transactions until

a new one is elected.

The use of puzzle [83] could be an alternative method of bootstrapping, but it is only a

test of resources, not a test of reputation. This means that a node with much resources

will be able to attack the network to the tune of its resources, as soon as it joins. But our

method of bootstrapping tests for both resources and reputation, meaning that a node

Chapter 6. FBit in DHT and BlockChain 96

with same amount of resource will take longer time to introduce sybils which would

be used to attack the network. Also, the attacker is likely going to be detected and

eliminated before completing the bootstrap process since reputation check begins at the

initial attempt to join. Moreover, the resources used during the bootstrapping process

are at the same time utilized to send valuable packets, unlike the puzzle method which

only serves one purpose.

6.2.5 Familiarity

Each node keeps track of how frequent other peers interact or respond to its requests.

This is used to know how much each neighbour has contributed to the local node in

particular, and to the entire network by extension. As previously mentioned, it is differ-

ent from reputation which is a reflection of how genuine the interactions/contributions

were. The equation used for this is same as (4.3).

6.2.6 Reputation computation

To keep track of the direct reputation that accompany the interaction rate of each

node, the probability expectation value of beta distribution [33] is applied to compute

local reputation. α represents the number of genuine transactions, while β captures the

number of malicious transactions and number of uploads (that was in favor of the node

being accessed). This among other things, helps a trustor to know how much it has

given to the trustee compared to how much it has received from it; reflecting a kind of

tit-for-tat attribute. The bootstrapping factor also comes into play here, and equation

(4.4) is re-used to compute the direct reputation experience.

6.2.7 System description (Post Bootstrapping)

After the bootstrapping process and local trust computation, nodes propose trust up-

dates at intervals, regarding the top performing nodes in their local list. This is done

by proposing that the trustee’s reputation score be updated to reflect its recent per-

formance. Other nodes who have also interacted with that trustee will then vote in

support, or against - if they feel that the current proposal does not reflect their local

experience. A leader manages an epoc, including overseeing the votes.

Chapter 6. FBit in DHT and BlockChain 97

In case of multiple endorsement chains, the heaviest branch is adopted; in-terms of

length, badges and reputation, as illustrated in figure (6.2). That is;
∑n

v=1GSv ∗
∑
SB,

where v stands for nodes that have endorsed a given transaction, GSv is the trust score

of each v, and SB represents the staked badges. Nodes can vote, endorse or propose a

counter score even if their experience was not gained within the current interval: it must

however not be based on a very old interval. Moreover, they need to have transaction

evidence to support their claims. Other forms of proposal (e.g. transactions) are also

done in a similar manner.

Figure 6.2: Resolving a fork in an endorsement chain

Figure (6.2) illustrates a disagreement in an endorsement chain; it could be a proposal

for score update, or compiled block made up of trust scores which needs to be added

to the main blockchain. In this example, chain B would have been adopted if it were

only based on resources possessed, since v5 and v6 staked many more badges. But

in addition to other blockchain attributes, DTL further considers trust : “A” would

therefore be rightfully adopted. The minimum stake required for a given type of pro-

posal/endorsement may vary, e.g proposal for score update may require less SB, while

proposal/endorsement of a block may require higher staked-batches. But the method of

fork resolution remains similar.

When the proposal of any node is adopted, the node is rewarded with some badge units,

if the transaction is not reported as malicious for a number of preceding intervals. Nodes

that have voted to support the proposal also share in the badge reward, as well as the

leader that commits the block to blockchain. Greater percentage of the reward goes to

the leader, followed by the initiator of the proposal, and the least goes to the nodes

who have voted in support. This is basically how nodes accumulate badges. The initial

Chapter 6. FBit in DHT and BlockChain 98

badge unit is assigned to the node after gaining “high” reputation. The value of ‘high

reputation’ can be set as desired, paying attention to the network needs.

If on the other hand the transaction is reported to be malicious within the probation

period, then the leader and the initiator would be punished. The probation period of a

block ends the moment another block is committed. Verification which is usually done

by the reputation group, can be done alongside ‘mining’ of the next block, to save time.

The more badges a node has, the more influence it has in the network. A node needs

to stake some badge(s) when making or supporting any proposal. The stakes can be

lost if the added node or transaction is reported and confirmed malicious, otherwise

it appreciates. When choosing the reputation group, badges are considered alongside

reputation scores.

The reputation group consists of y number of nodes with top trust scores: they are

dynamically chosen and need to communally possess a given percentage of the entire

reputation/trust score in the network (e.g. 2/3). Each member of the group is also

required to possess a minimum fraction of badge units, relative to the total badges in

the network. Since the trust and badge information is publicly available, if the duration

of each epoch (in time or number of nodes) is also known (synchronous), it would be

easy to agree on election/re-election of leaders and consensus group members.

If the system is asynchronous, then timing is done by consensus also: any node can

initiate an end-of-tenure vote regarding the current leader/miner, based on number of

committed blocks, or suspicion of maliciousness according to local experience. The

vote can be endorsed by other peers, and a new leader would be chosen. This can be

coordinated by a randomly selected node from the reputation group or volunteer from

the group.

6.2.7.1 Miner election

Our work builds on the principles of [102, 148], with needful adjustments. Time is divided

into epochs, and a leader is selected to manage each epoch; the leader is expected to

process up to n number of blocks within an epoch. n can be derived from the average

number of blocks that leaders are able to commit within an interval.

Chapter 6. FBit in DHT and BlockChain 99

Leaders who commit significantly less number may raise suspicion, since such act may

frustrate the network if a malicious leader is elected by chance. In the new method,

nodes gain reputation and badges as rewards for consistency and sincere contribution

to the network. Newcomers are allowed to join partially until they prove reliable. They

qualify for initial badge units after gaining “high” reputation, and from then, they move

on to become miners/leaders if they act consistently. It is important to note that DTL

only complements FBit-U, which means that most transactions still happen in a similar

way, while blockchain is adopted for better security and publicity.

As already noted, to propose (or support) any score update or transaction for pub-

lic adoption, nodes need to stake some badge units. If the proposed (or supported)

transaction is adopted and sustained as valid, the staked badges appreciate, otherwise

they would be lost. The system rewards ‘miners’ whose proposals are adopted, with

additional badge units. The reward is shared among contributors to that proposal: the

initiator, voters/endorsers, and leader who commits the block. The reward is added to

the staked badges and credited back to its owners. Nothing is added if the endorsed

proposal is not generally accepted. To select a miner therefore, a node is randomly

selected from the reputation group.

When the current epoch is about to expire, any node within the reputation group may

initiate a random selection process for selecting a new leader, while other group members

either support the selection or initiate another if they disagree. The process is similar

to other forms of transaction; badges need to be staked, which may be rewarded or lost.

Heaviest branch always wins, and the node in that branch becomes the new leader; it

announces itself through a broadcast, attaching its vote and public key information.

When a leader becomes quiet or inefficient (in-terms of honesty and speed), any other

node in the group can initiate a process to elect another leader.

The agreement procedure used in this work fundamentally follows Byzantine fault tol-

erance (BFT) protocols, which require a minimum of two-third (2/3) genuine nodes to

keep the network protected from attackers [102]. To strengthen this further, the pro-

posed system further requires that voters of adopted blocks need to collectively possess

a reputation score which is up to a given threshold, e.g. 1/3 of total reputation.

In the new system, nodes stake a given number of badges to vote or initiate a proposal,

while the reputation of the voters further define the weight of each vote, ensuring that

Chapter 6. FBit in DHT and BlockChain 100

resources and reputation jointly play a role in the consensus process. More reputable

nodes have better chances of getting services, and having their services accepted, which

advances the influence of the node in the network.

The system can dynamically determine the minimum stake required for transactions in

the network, based on availability (or otherwise) of badge units. Initiators of the network

generate the genesis block, and since each block contains evidence of transactions, nodes

that join subsequently can verify its validity.

Because everyone can see the scores and proves of transactions surrounding each score,

the risk of badmouthing or slandering attacks [18] is minimal or nonexistent. Further-

more, because it takes badges to propose or support a proposal, Sybil attack is also very

minimal; considering the fact that badges are gained with a combination of resources

(spent while working for it) and accumulated sincerity (earned by not acting maliciously

over time). Nodes who propose fake/malicious peers will have their badges revoked, and

they would lose their relevance. Other forms of attacks such as fake-block and band-

width attacks are addressed by reputation (DT) and interaction rate (IR) computations

respectively.

6.3 Summary

The processes that can be followed to adapt the proposed system to blockchain have

been outlined. Since PoW is not feasible in our kind of network, we have proposed a

modified PoS system that does not involve heavy resources. A number of reports have

suggested the use of TRS to improve trust in blockchian, but we have focused on the

reverse - applying the blockchain concepts to secure trust scores, in a way that can

accommodate mobile devices and other low capacity nodes. This part of the work is not

completed yet; it is still theoretical, yet to be tested.

The generated stakes as well as the reputation of each node serve as the transaction coin,

it can be re-used in the network when a node leaves to join at a later time. Although

FBit and its variants are robust and effective as they are now, deploying it to blockchain

as proposed here would extend their use cases tremendously. Blockchain attributes such

as immutability and public access would be inherited by the new system. However, we

Chapter 6. FBit in DHT and BlockChain 101

envisage scalability issues, like the case is with many Blockchain applications. FBit-

U which is a variant of FBit, aimed at functioning in a containerized platform, was

introduced alongside its test-bed; it featured a DHT protocol, Docker and Kubernetes.

In practice, FBit-U is a subset of DTL, not a different project.

Chapter 7

Conclusion

Computing is becoming increasingly distributed, especially with the advent of edge com-

puting, IoT and related technologies. To maintain improved quality of service (QoS)

and user experience in IoT applications, nodes need to rely less on central agents (such

as the cloud) for computation and data handling. Edge computing paradigms are used

to achieve this. These paradigms offer many advantages, but there are also some secu-

rity implications, and solutions need to evolve at a similar pace which the technologies

emerge.

The literature has documented TRS as optimal for addressing the security needs of

distributed networks. Their real life applications have been more in semi distributed

systems such as eBay, Yahoo, Amazon, and in some others such as Kazaa. However,

there are issues that remain unsolved in these systems which limit their efficacy in the

present setups, and (more importantly) limit their application in the mentioned emerging

technologies. Such issues were identified and addressed in this thesis.

One of the major issues identified and resolved is a loophole that can lead to bandwidth

attack, which remained unaddressed prior to our work, especially in distributed P2P

and related protocols including mobile edge-clouds. A P2P system is usually a give-

and-take platform, which means that every node can act as a client and as a server.

If it is a file sharing platform, every node downloads and uploads to others from the

portion it already has. There are nodes who start as seeders and others who become

seeders by completing their downloads/transactions, and then staying back to help other

nodes. The server nodes (seeders) are often fooled by malicious client nodes who take

102

Chapter 7. Conclusion 103

advantage of the fact that they lack firsthand information about the upload behaviour

of other nodes at recent intervals, leading to bandwidth attack.

Another identified loophole has to do with kick-starting newcomers’ reputations via

default scores or other heuristics that do not reflect their actual behaviours. This is

contrary to the basic trust requirements as already pointed out, and could encourage

white-washing or related malicious acts. It was addressed using our bootstrapping tech-

nique which assigns scores that correspond to the node’s actual behaviour. This helped

to minimise Sybil attack and makes white-washing less appealing.

Also among the considered weaknesses of the existing systems is the fact that they do not

adequately account for the concept of familiarity. A cooperative node should be rewarded

not just for not attacking the network but also for being a consistent contributor. It

is also not enough to just cancel out a node’s number of downloads with its number

of uploads. The problem with this method is that if a node downloads two pieces for

example, and uploads two pieces also, then it may be considered the same as another

node who has upload 500 pieces and equally downloaded 500 pieces. As explained earlier

in this work, our view is that trust scores need to better capture ‘contribution’ not just

‘non-maliciousness’ - this would encourage better participation.

The TRSs used in systems like eBay and Amazon have some form of centralization,

which makes them more coordinated. But in more distributed platforms, handling rep-

utations and recommendations can be more problematic. Our system introduces a way

of maintaining distributed ‘registration’ and preliminary screening via bootstrapping, as

well as a form of access control - since nodes can have privileges that correspond to their

reputations and commitments to the network (badges).

Peersim simulator which is an event driven simulator for P2P was used for the testbed.

Modified BitTorrent (which is one of the most popular P2P protocol) was used for the

simulations. This allowed us to establish the behaviour of the algorithm in a known

protocol, prior to modifications to reflect the attributes of the newer protocols, namely

mobile edge-clouds. The proposed system was also tested on a simulated IoT based

eHealth system, which is one of the possible use cases of mobile edge-clouds. Results

from both experiments show the robustness and scalability of the proposed method.

bibliography 104

We also outlined a framework for introducing blockchain into the proposed system, to

attain even a higher level of robustness. PoW (Proof-of-Work) is not suitable for mobile

devices because of their limited resources, and most PoS (Proof-of-Stake) methods partly

depend on the expensive PoW. The proposed system does not rely on PoW or Bitcoin,

it is based on BFT (Byzantine Fault Tolerance) and it generates its own kind of stakes

which are friendly with low-resource devices. Using our trust metric, nodes can prove

themselves in a way that is economical; computationally and energy-wise. We also

initiated the development of a containerized testbed which can be used to test similar

systems in a way that better reflects physical networks.

Regarding future work, completing the implementation of DTL constitutes an immediate

future work, since it has not been completed at the time of writing this thesis. In

addition, since DTL is BFT-based, it is expected that it would inherit some scalability

issues. This is mainly because of the quadratic message/communication complexity

that exists in the BFT protocols and most consensus protocols that are BFT-based.

Thankfully, this area is attracting growing research attention, with some interesting

solutions already proposed [149, 150]. As more research unfolds, DTL can adopt the

best performing protocol, in order to overcome the challenge.

The system was not exposed in-depth to the effect of high churn rate and energy-related

problems. In the case of UGR (User Generated Replay) for example, soccer fans are

assumed to be in the stadium for a reasonable time during the game. If this assumption

holds, it means that churn may be minimal during that period. However, only actual

experimentation and testing can show if the proposed system is able to handle high rate

of churn in practice.

Lack of already established open-source mobile edge-clouds’ protocols has led to the use

of related protocols for testing; they were modified according to the attributes of mobile

edge-clouds and its use-cases. This has partly led to the work on containerized testbed

which may be used in the future for experiments and testing of similar protocols. As

mobile edge-clouds become more mainstream, many other open-source protocols would

emerge - it would be great to see the proposed system incorporated into such protocols

also.

Machine learning can also be incorporated to make FBit learn nodes’ behaviours and

recommendation patterns better, this would save time and lead to better efficiency. We

bibliography 105

however expect this to introduce some additional cost or overhead.

Bibliography

[1] Department of Measurement, Budapest University of Technology Information Sys-

tems, and Economics. https://inf.mit.bme.hu/sites/default/files/

materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/

kiberfizikai-rendszerek/17/07_OpenFog.pdf. accessed 27/02/2019.

[2] OpenFog Consortium et al. Openfog reference architecture for fog computing. Ar-

chitecture Working Group, 2017. URL https://www.openfogconsortium.org/

wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf.

accessed 27/02/2019.

[3] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo

Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne Riv-

iere. Edge-centric computing: Vision and challenges. ACM SIGCOMM Computer

Communication Review, 45(5):37–42, 2015.

[4] Siani Pearson. Privacy, security and trust in cloud computing. In Privacy and

Security for Cloud Computing, pages 3–42. Springer, 2013.

[5] Mohit Taneja and Alan Davy. Resource aware placement of iot application modules

in fog-cloud computing paradigm. In Integrated Network and Service Management

(IM), 2017 IFIP/IEEE Symposium on, pages 1222–1228. IEEE, 2017.

[6] Utsav Drolia, Rolando Martins, Jiaqi Tan, Ankit Chheda, Monil Sanghavi, Rajeev

Gandhi, and Priya Narasimhan. The case for mobile edge-clouds. In Ubiquitous

Intelligence and Computing, 2013 IEEE 10th International Conference on and

10th International Conference on Autonomic and Trusted Computing (UIC/ATC),

pages 209–215. IEEE, 2013.

106

https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/kiberfizikai-rendszerek/17/07_OpenFog.pdf
https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/kiberfizikai-rendszerek/17/07_OpenFog.pdf
https://inf.mit.bme.hu/sites/default/files/materials/category/kateg%C3%B3ria/oktat%C3%A1s/msc-t%C3%A1rgyak/kiberfizikai-rendszerek/17/07_OpenFog.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

bibliography 107

[7] Amna Qureshi, Helena Rifa-Pous, and D Meǵıas. Electronic payment and en-

couraged cooperation in a secure and privacy-preserving P2P content distribution

system. MMEDIA 2015, page 16, 2015.

[8] Roberto Aringhieri, Ernesto Damiani, Sabine De Capitani Di Vimercati, Stefano

Paraboschi, and Pierangelo Samarati. Fuzzy techniques for trust and reputation

management in anonymous peer-to-peer systems. Journal of the American Society

for Information Science and Technology, 57(4):528–537, 2006.

[9] Fabrizio Cornelli, Ernesto Damiani, Sabrina De Capitani Di Vimercati, Stefano

Paraboschi, and Pierangela Samarati. Choosing reputable servents in a P2P net-

work. In Proceedings of the 11th international conference on World Wide Web,

pages 376–386. ACM, 2002.

[10] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust

algorithm for reputation management in P2P networks. In Proceedings of the 12th

international conference on World Wide Web, pages 640–651. ACM, 2003.

[11] Alireza Naghizadeh, Behrooz Razeghi, Iman Radmanesh, Majid Hatamian,

Reza Ebrahimi Atani, and Zoleikha Nadem Norudi. Counter attack to free-riders:

Filling a security hole in bittorrent protocol. In Networking, Sensing and Control

(ICNSC), 2015 IEEE 12th International Conference on, pages 128–133. IEEE,

2015.

[12] KY Wong, KH Yeung, and YM Choi. Solutions to swamp poisoning attacks in

bittorrent networks. Proc. of the 2009 Intl. MultiConf. of Engineers and Computer

Scientists, pages 360–363, 2009.

[13] Prithula Dhungel, Di Wu, and Keith W Ross. Measurement and mitigation of

bittorrent leecher attacks. Computer Communications, 32(17):1852–1861, 2009.

[14] Francis Nwebonyi Nwebonyi and Uchenna P Daniel Ani. BYOD network: enhanc-

ing security through trust–aided access control mechanisms. International Journal

of Cyber-Security and Digital Forensics, 4(1):272–290, 2015.

[15] Prithula Dhungel, Xiaojun Hei, Di Wu, and Keith W Ross. A measurement study

of attacks on bittorrent seeds. In Communications (ICC), 2011 IEEE International

Conference on, pages 1–5. IEEE, 2011.

bibliography 108

[16] Prithula Dhungel, Xiaojun Hei, Di Wu, and Keith W Ross. The seed attack:

Can bittorrent be nipped in the bud? Department of Computer and Informa-

tion Science, Polytechnic Institute of NYU, 2008. http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.219.3789&rep=rep1&type=pdf. Accessed

25/06/2019.

[17] Oliver E Williamson. Calculativeness, trust, and economic organization. The

journal of law and economics, 36(1, Part 2):453–486, 1993.

[18] Richard Dennis and Gareth Owenson. Rep on the roll: a peer to peer reputation

system based on a rolling Blockchain. International Journal for Digital Society, 7

(1):1123–1134, 2016.

[19] François Fouss, Youssef Achbany, and Marco Saerens. A probabilistic reputation

model based on transaction ratings. Information Sciences, 180(11):2095–2123,

2010.

[20] Megan Tschannen-Moran and Wayne K Hoy. A multidisciplinary analysis of the

nature, meaning, and measurement of trust. Review of educational research, 70

(4):547–593, 2000.

[21] James S Coleman and James Samuel Coleman. Foundations of social theory.

Harvard university press, 1994.

[22] Robert Putnam. The prosperous community: social capital and public life. The

american prospect, 13(4), 1993.

[23] Diego Gambetta et al. Can we trust trust. Trust: Making and breaking cooperative

relations, 13:213–237, 2000.

[24] Francis Fukuyama. Trust: The social virtues and the creation of prosperity. 1995.

[25] LL Cummings and P Bromiley. athe organizational trust inventory (oti): de-

velopment and validationo. Trust in Organizations: Frontiers of Theory and

Research, Sage Publications, Thousand Oaks, CA, pages 302–30, 1996. doi:

http://dx.doi.org/10.4135/9781452243610.n15.

[26] Aneil K Mishra, Roderick M Kramer, and Tom R Tyler. Trust in organizations:

Frontiers of theory and research. by Ed.ˆ(Eds.) Thousand Oaks, 1996.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.3789&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.3789&rep=rep1&type=pdf

bibliography 109

[27] Philip England, Qi Shi, Bob Askwith, and Faycal Bouhafs. A survey of trust

management in mobile ad-hoc networks. In Proceedings of the 13th annual post

graduate symposium on the convergence of telecommunications, networking, and

broadcasting, PGNET, 2012.

[28] Leszek Lilien, Adawia Al-Alawneh, and Lotfi Ben Othmane. The pervasive trust

foundation for security in next generation networks. In Proceedings of the 2010

New Security Paradigms Workshop, pages 129–142. ACM, 2010.

[29] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust and reputation

systems for online service provision. Decision support systems, 43(2):618–644,

2007.

[30] Paul Resnick, Richard Zeckhauser, John Swanson, and Kate Lockwood. The value

of reputation on ebay: A controlled experiment. Experimental economics, 9(2):

79–101, 2006.

[31] Dawn G Gregg. Outline reputation scores: how well are they understood? Journal

of Computer Information Systems, 50(1):90–97, 2009.

[32] U Venkanna, Jeh Krishna Agarwal, and R Leela Velusamy. A cooperative routing

for manet based on distributed trust and energy management. Wireless Personal

Communications, 81(3):961–979, 2015.

[33] Audun Josang and Roslan Ismail. The beta reputation system. In Proceedings of

the 15th Bled electronic commerce conference, volume 5, pages 2502–2511, 2002.

[34] Florian Skopik, Daniel Schall, and Schahram Dustdar. Start trusting strangers?

bootstrapping and prediction of trust. In International Conference on Web Infor-

mation Systems Engineering, pages 275–289. Springer, 2009.

[35] Hamdi Yahyaoui and Sami Zhioua. Bootstrapping trust of web services through

behavior observation. In International Conference on Web Engineering, pages

319–330. Springer, 2011.

[36] Wanita Sherchan, Seng W Loke, and Shonali Krishnaswamy. A fuzzy model for

reasoning about reputation in web services. In Proceedings of the 2006 ACM

symposium on Applied computing, pages 1886–1892. ACM, 2006.

bibliography 110

[37] Jordi Sabater and Carles Sierra. Reputation and social network analysis in multi-

agent systems. In Proceedings of the first international joint conference on Au-

tonomous agents and multiagent systems: Part 1, pages 475–482, 2002.

[38] Catherine Benincasa, Adena Calden, Emily Hanlon, Matthew Kindzerske, Kody

Law, Eddery Lam, John Rhoades, Ishani Roy, Michael Satz, Eric Valentine, et al.

Page rank algorithm. Department of Mathematics and Statics, University of Mas-

sachusetts, Amherst, Research, 2006.

[39] Audun Josang. Trust-based decision making for electronic transactions. In Pro-

ceedings of the Fourth Nordic Workshop on Secure Computer Systems (NORD-

SEC’99), pages 496–502, 1999.

[40] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The BitTorrent

P2P file-sharing system: Measurements and analysis. In International Workshop

on Peer-to-Peer Systems, pages 205–216. Springer, 2005.

[41] Ali Fattaholmanan and Hamid R Rabiee. A large-scale active measurement study

on the effectiveness of piece-attack on BitTorrent networks. IEEE Transactions

on Dependable and Secure Computing, 13(5):509–518, 2016.

[42] Liang Wang and Jussi Kangasharju. Measuring large-scale distributed systems:

case of bittorrent mainline DHT. In IEEE P2P 2013 Proceedings, pages 1–10.

IEEE, 2013.

[43] Subashini Subashini and Veeraruna Kavitha. A survey on security issues in service

delivery models of cloud computing. Journal of network and computer applications,

34(1):1–11, 2011.

[44] Luis M Vaquero and Luis Rodero-Merino. Finding your way in the fog: Towards

a comprehensive definition of fog computing. ACM SIGCOMM Computer Com-

munication Review, 44(5):27–32, 2014.

[45] Mohit Taneja and Alan Davy. Resource aware placement of iot application modules

in fog-cloud computing paradigm. In 2017 IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), pages 1222–1228. IEEE, 2017.

[46] Margaret Rouse. https://searchdatacenter.techtarget.com/definition/

edge-computing. accessed 27/02/2019.

 https://searchdatacenter.techtarget.com/definition/edge-computing
 https://searchdatacenter.techtarget.com/definition/edge-computing

bibliography 111

[47] Ruben Rios, Rodrigo Roman, Jose A Onieva, and Javier Lopez. From smog to

fog: a security perspective. In 2017 Second International Conference on Fog and

Mobile Edge Computing (FMEC), pages 56–61. IEEE, 2017.

[48] Y Ai, M Peng, and K Zhang. Edge cloud computing technologies for internet of

things: a primer. digit. commun. netw., 2018.

[49] Hang Liu, Fahima Eldarrat, Hanen Alqahtani, Alex Reznik, Xavier de Foy, and

Yanyong Zhang. Mobile edge cloud system: Architectures, challenges, and ap-

proaches. IEEE Systems Journal, 12(3):2495–2508, 2018.

[50] Wenfeng Liu, Hua Wang, Jingchun Jiang, HAN Donghai, and SHEN Jianjun. Mul-

ticast packet handling based on control information in software-defined networking

(sdn) environment, December 17 2019. US Patent 10,511,548.

[51] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.

Mobile edge computing—a key technology towards 5g. ETSI white paper, 11(11):

1–16, 2015.

[52] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user compu-

tation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on

Networking, 24(5):2795–2808, 2016.

[53] Yaser Jararweh, Ahmad Doulat, Omar AlQudah, Ejaz Ahmed, Mahmoud Al-

Ayyoub, and Elhadj Benkhelifa. The future of mobile cloud computing: integrating

cloudlets and mobile edge computing. In 2016 23rd International conference on

telecommunications (ICT), pages 1–5. IEEE, 2016.

[54] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud computing:

A survey. Future generation computer systems, 29(1):84–106, 2013.

[55] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, and Rajiv Ranjan.

Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud

Computing, 3(6):76–83, 2016.

[56] Ioan Petri, Omer F Rana, Yacine Rezgui, and Gheorghe Cosmin Silaghi. Trust

modelling and analysis in peer-to-peer clouds. International Journal of Cloud

Computing, 1(2-3):221–239, 2012.

bibliography 112

[57] Blesson Varghese and Rajkumar Buyya. Next generation cloud computing: New

trends and research directions. Future Generation Computer Systems, 79:849–861,

2018.

[58] Pedro M Pinto Silva, Joao Rodrigues, Joaquim Silva, Rolando Martins, Lúıs

Lopes, and Fernando Silva. Using edge-clouds to reduce load on traditional

wifi infrastructures and improve quality of experience. In 1st International Con-

ference on Fog and Edge Computing (ICFEC), pages 61–67. IEEE, 2017. doi:

10.1109/ICFEC.2017.14.

[59] Jiaqi Tan, Utsav Drolia, Rajeev Gandhi, and Priya Narasimhan. Poster: Towards

secure execution of untrusted code for mobile edge-clouds. ACM WiSec, 2014.

[60] Francis N Nwebonyi, Rolando Martins, and Manuel E Correia. Reputation-based

security system for edge computing. In Proceedings of the 13th International Con-

ference on Availability, Reliability and Security, page 39. ACM, 2018.

[61] João Rodrigues, Eduardo RB Marques, Lúıs Lopes, and Fernando Silva. Towards a

middleware for mobile edge-cloud applications. In Proceedings of the 2nd workshop

on middleware for Edge Clouds & Cloudlets, page 1. ACM, 2017.

[62] Utsav Drolia, Rolando Martins, Jiaqi Tan, Ankit Chheda, Monil Sanghavi, Rajeev

Gandhi, and Priya Narasimhan. The case for mobile edge-clouds. In 2013 IEEE

10th International Conference on Ubiquitous Intelligence and Computing and 2013

IEEE 10th International Conference on Autonomic and Trusted Computing, pages

209–215. IEEE, 2013.

[63] Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. Challenges in security and

privacy for mobile edge-clouds. Technical report, Citeseer, 2013.

[64] Marlom A Konrath, Marinho P Barcellos, and Rodrigo B Mansilha. Attacking a

swarm with a band of liars: evaluating the impact of attacks on bittorrent. In

Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007),

pages 37–44. IEEE, 2007.

[65] Prithula Dhungel, Di Wu 0001, Brad Schonhorst, and Keith W Ross. A measure-

ment study of attacks on Bittorrent leechers. In IPTPS, volume 8, pages 7–7,

2008.

bibliography 113

[66] Behrooz Shafiee Sarjaz and Maghsoud Abbaspour. Securing bittorrent using a

new reputation-based trust management system. Peer-to-Peer Networking and

Applications, 6(1):86–100, 2013.

[67] Florian Adamsky, Syed Ali Khayam, Rudolf Jäger, and Muttukrishnan Rajarajan.

Stealing bandwidth from bittorrent seeders. Computers & Security, 46:126–140,

2014.

[68] Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In Proceedings

of the 2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems,

pages 128–132. ACM, 2005.

[69] John R Douceur. The sybil attack. In International workshop on peer-to-peer

systems, pages 251–260. Springer, 2002.

[70] Jie Kong, Wandong Cai, and Lei Wang. The evaluation of index poisoning in

Bittorrent. In 2010 Second International Conference on Communication Software

and Networks, pages 382–386. IEEE, 2010.

[71] Jie Kong, Wandong Cai, Lei Wang, and Qiushi Zhao. A study of pollution on Bit-

torrent. In 2010 The 2nd International Conference on Computer and Automation

Engineering (ICCAE), volume 3, pages 118–122. IEEE, 2010.

[72] Ddos.

[73] Nitin Kumar Saini, Amit Chaturvedi, and R Yadav. Identifying collusion attacks

in P2P trust and reputation systems. Int. J. Comput. Appl.(IJCA), 2:36–41, 2014.

[74] Yafei Yang, Qinyuan Feng, Yan Lindsay Sun, and Yafei Dai. RepTrap: a novel

attack on feedback-based reputation systems. In Proceedings of the 4th interna-

tional conference on Security and privacy in communication netowrks, page 8.

ACM, 2008.

[75] Riccardo Pecori. S-kademlia: A trust and reputation method to mitigate a sybil

attack in kademlia. Computer Networks, 94:205–218, 2016.

[76] Mozhgan Tavakolifard and Svein J Knapskog. Trust evaluation initialization us-

ing contextual information. In Proceedings of the International Conference on

Management of Emergent Digital EcoSystems, pages 1–8. ACM, 2011.

bibliography 114

[77] Han Jiao, Jixue Liu, Jiuyong Li, and Chengfei Liu. A framework for reputation

bootstrapping based on reputation utility and game theories. In Trust, Security

and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th

International Conference on, pages 344–351. IEEE, 2011.

[78] Zaki Malik and Athman Bouguettaya. Reputation bootstrapping for trust estab-

lishment among web services. IEEE Internet Computing, (1):40–47, 2009.

[79] Yang Yu, Chunhe Xia, and Zhong Li. A trust bootstrapping model for defense

agents. In Communication Software and Networks (ICCSN), 2015 IEEE Interna-

tional Conference on, pages 77–84. IEEE, 2015.

[80] Ian Clarke, Oskar Sandberg, Matthew Toseland, and Vilhelm Verendel. Private

communication through a network of trusted connections: The dark freenet. Net-

work, 2010.

[81] George Danezis, Chris Lesniewski-Laas, M Frans Kaashoek, and Ross Anderson.

Sybil-resistant DHT routing. In European Symposium On Research In Computer

Security, pages 305–318. Springer, 2005.

[82] Andy Oram. Peer-to-Peer: Harnessing the power of disruptive technologies.

“O’Reilly Media, Inc.”, 2001.

[83] Diogo Mónica, Joao Leitao, Luis Rodrigues, and Carlos Ribeiro. On the use of

radio resource tests in wireless ad hoc networks. Proc. 3rd WRAITS, pages 21–26,

2009.

[84] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.

Propagation of trust and distrust. In Proceedings of the 13th international confer-

ence on World Wide Web, pages 403–412. ACM, 2004.

[85] Richong Zhang and Yongyi Mao. Trust prediction via belief propagation. ACM

Transactions on Information Systems (TOIS), 32(3):15, 2014.

[86] Tim Muller and Patrick Schweitzer. On beta models with trust chains. In IFIP

International Conference on Trust Management, pages 49–65. Springer, 2013.

[87] KSAS Mehak. Nature based trust security protocol against greyhole attacks in

opportunistic networks. Nature, 1(3), 2014.

bibliography 115

[88] Hui Xia, Zhiping Jia, Xin Li, Lei Ju, and Edwin H-M Sha. Trust prediction and

trust-based source routing in mobile ad hoc networks. Ad Hoc Networks, 11(7):

2096–2114, 2013.

[89] Purvi Shah, Jehan-François Pâris, et al. Incorporating trust in the bittorrent

protocol. In International symposium on performance evaluation of computer and

telecommunication systems, pages 586–593, 2007.

[90] Flavio Roberto Santos, Weverton Luis da Costa Cordeiro, Luciano Paschoal Gas-

pary, and Marinho Pilla Barcellos. Funnel: Choking polluters in bittorrent file

sharing communities. IEEE Transactions on Network and Service Management, 8

(4):310–321, 2011.

[91] Róbert Ormándi, István Hegedus, Kornél Csernai, and Márk Jelasity. Towards in-

ferring ratings from user behavior in bittorrent communities. In Enabling Technolo-

gies: Infrastructures for Collaborative Enterprises (WETICE), 2010 19th IEEE

International Workshop on, pages 217–222. IEEE, 2010.

[92] Michael Kohnen. Applying trust and reputation mechanisms to a kademlia-based

distributed hash table. In Communications (ICC), 2012 IEEE International Con-

ference on, pages 1036–1041. IEEE, 2012.

[93] Jian Wang, Xiumei Wu, Na Guo, Carsten Ullrich, and Heng Luo. Discourag-

ing improper exploitation against seeds in bittorrent swarms. In Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), 2010 International

Conference on, pages 235–242. IEEE, 2010.

[94] Aameek Singh and Ling Liu. Trustme: anonymous management of trust relation-

ships in decentralized P2P systems. In Peer-to-Peer Computing, 2003.(P2P 2003).

Proceedings. Third International Conference on, pages 142–149. IEEE, 2003.

[95] Kang Chen, Guoxin Liu, Haiying Shen, and Fang Qi. Sociallink: utilizing social

network and transaction links for effective trust management in P2P file sharing

systems. In Peer-to-Peer Computing (P2P), 2015 IEEE International Conference

on, pages 1–10. IEEE, 2015.

[96] Hani Ragab-Hassen, Olga Jones, and Nikos Galanis. Rabit: a reputation archi-

tecture for bittorrent. In 2012 IEEE global communications conference (GLOBE-

COM), pages 850–855. IEEE, 2012.

bibliography 116

[97] Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo. Mobicloud: building

secure cloud framework for mobile computing and communication. In Fifth IEEE

International Symposium on Service Oriented System Engineering (SOSE), pages

27–34. Ieee, 2010. doi: 10.1109/SOSE.2010.20.

[98] Tuva Selstad Dybedokken. Trust management in fog computing. Master’s thesis,

NTNU, 2017. URL http://hdl.handle.net/11250/2454375.

[99] Eve M Schooler, David Zage, Jeff Sedayao, Hassnaa Moustafa, Andrew Brown,

and Moreno Ambrosin. An architectural vision for a data-centric iot: Rethinking

things, trust and clouds. In Distributed Computing Systems (ICDCS), 2017 IEEE

37th International Conference on, pages 1717–1728. IEEE, 2017. doi: 10.1109/

ICDCS.2017.243.

[100] Zhaojun Lu, Qian Wang, Gang Qu, and Zhenglin Liu. BARS: a Blockchain-Based

Anonymous Reputation System for trust management in VANETs. In 2018 17th

IEEE International Conference On Trust, Security And Privacy In Computing

And Communications/12th IEEE International Conference On Big Data Science

And Engineering (TrustCom/BigDataSE), pages 98–103. IEEE, 2018.

[101] Khamila Nurul Khaqqi, Janusz J Sikorski, Kunn Hadinoto, and Markus Kraft. In-

corporating seller/buyer reputation-based system in Blockchain-enabled emission

trading application. Applied Energy, 209:8–19, 2018.

[102] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Verissimo. Repu-

coin: Your reputation is your power. IEEE Transactions on Computers, 2019.

[103] Mike Sharples and John Domingue. The Blockchain and kudos: A distributed

system for educational record, reputation and reward. In European Conference on

Technology Enhanced Learning, pages 490–496. Springer, 2016.

[104] Zhe Yang, Kan Yang, Lei Lei, Kan Zheng, and Victor CM Leung. Blockchain-

based decentralized trust management in vehicular networks. IEEE Internet of

Things Journal, 2018.

[105] Roberto Di Pietro, Xavier Salleras, Matteo Signorini, and Erez Waisbard. A

Blockchain-based trust system for the Internet of Things. In Proceedings of the

23nd ACM on Symposium on Access Control Models and Technologies, pages 77–

83. ACM, 2018.

http://hdl.handle.net/11250/2454375

bibliography 117

[106] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. A trustless

privacy-preserving reputation system. In IFIP International Information Security

and Privacy Conference, pages 398–411. Springer, 2016.

[107] Carboni, Davide. Feedback based Reputation on top of the Bitcoin Blockchain.

2015. https://arxiv.org/abs/1502.01504. Accessed 19/12/2018.

[108] Shruti Pant and Vishal Kumar. Bittrusty: A BitCoin incentivized peer-to-peer

file sharing system. In 2018 IEEE 3rd International Conference on Computing,

Communication and Security (ICCCS), pages 148–155. IEEE, 2018.

[109] Saurabh Ganeriwal, Laura K Balzano, and Mani B Srivastava. Reputation-based

framework for high integrity sensor networks. ACM Transactions on Sensor Net-

works (TOSN), 4(3):15, 2008.

[110] Jorge Lopez, Stephane Maag, and Gerardo Morales. Behavior evaluation for trust

management based on formal distributed network monitoring. World Wide Web,

19(1):21–39, 2016.

[111] Mudhakar Srivatsa, Shane Balfe, Kenneth G Paterson, and Pankaj Rohatgi. Trust

management for secure information flows. In Proceedings of the 15th ACM con-

ference on Computer and communications security, pages 175–188. ACM, 2008.

[112] Huang Lin, Xiaoyan Zhu, Yugang Fang, Dongsheng Xing, Chi Zhang, and Zhenfu

Cao. Efficient trust based information sharing schemes over distributed collab-

orative networks. IEEE Journal on Selected Areas in Communications, 31(9):

279–290, 2013.

[113] M Jose. Trust management scheme in manet using uncertain reasoning and fuzzy

logic in trust model. International Journal for Innovative Research in Science and

Technology, 2(2):268–273, 2015.

[114] Yating Wang, Yen-Cheng Lu, Ing-Ray Chen, Jin-Hee Cho, Ananthram Swami,

and Chang-Tien Lu. Logittrust: A logit regression-based trust model for mobile

ad hoc networks. In 6th ASE International Conference on Privacy, Security, Risk

and Trust, Boston, MA, pages 1–10, 2014.

bibliography 118

[115] Ming-Yang Su. Prevention of selective black hole attacks on mobile ad hoc net-

works through intrusion detection systems. Computer Communications, 34(1):

107–117, 2011.

[116] Abderrahmane Baadache and Ali Belmehdi. Fighting against packet dropping mis-

behavior in multi-hop wireless ad hoc networks. Journal of Network and Computer

Applications, 35(3):1130–1139, 2012.

[117] Jose Luis Tornos, José Luis Salazar, and Joan Josep Piles. Secure trust manage-

ment with source routing protocol for manets. Network Protocols and Algorithms,

7(2):42–59, 2015.

[118] Nikita Borisov. Computational puzzles as sybil defenses. In Sixth IEEE Inter-

national Conference on Peer-to-Peer Computing (P2P’06), pages 171–176. IEEE,

2006.

[119] Wang Ping and Qiu Jing. A mathematical trust model in e-commerce. In 2007

International Conference on Multimedia and Ubiquitous Engineering (MUE’07),

pages 644–649. IEEE, 2007.

[120] Ronald R Yager. On ordered weighted averaging aggregation operators in multi-

criteria decisionmaking. IEEE Transactions on systems, Man, and Cybernetics,

18(1):183–190, 1988.

[121] Zhang Xinxing, Tian Zhihong, and Zhang Luchen. A Measurement Study on

Mainline DHT and Magnet Link. In 2016 IEEE First International Conference

on Data Science in Cyberspace (DSC), pages 11–19. IEEE, 2016.

[122] Matei Ripeanu and Ian Foster. Mapping the gnutella network: Macroscopic prop-

erties of large-scale peer-to-peer systems. In international workshop on peer-to-peer

systems, pages 85–93. Springer, 2002.

[123] Frioli Fabrizio and Michelle Pedrolli. A Bittorrent module for peersim. University

of Trento, 2008.

[124] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In 2009

IEEE Ninth International Conference on Peer-to-Peer Computing, pages 99–100.

IEEE, 2009.

bibliography 119

[125] Guojun Wang, Felix Musau, Song Guo, and Muhammad Bashir Abdullahi. Neigh-

bor similarity trust against sybil attack in P2P e-commerce. IEEE transactions

on parallel and distributed systems, 26(3):824–833, 2014.

[126] Hyrax: Crowd-sourcing mobile devices to develop edge clouds.

[127] Bahar Farahani, Farshad Firouzi, Victor Chang, Mustafa Badaroglu, Nicholas

Constant, and Kunal Mankodiya. Towards fog-driven iot ehealth: Promises and

challenges of IoT in medicine and healthcare. Future Generation Computer Sys-

tems, 78:659–676, 2018.

[128] Ammar Awad Mutlag, Mohd Khanapi Abd Ghani, Net al Arunkumar, Mazin Abed

Mohamed, and Othman Mohd. Enabling technologies for fog computing in health-

care IoT systems. Future Generation Computer Systems, 90:62–78, 2019.

[129] Vasileios Karagiannis, Stefan Schulte, Joao Leitao, et al. Enabling Fog computing

using self-organizing compute nodes. In 2019 IEEE 3rd International Conference

on Fog and Edge Computing (ICFEC), pages 1–10. IEEE, 2019.

[130] Scott Wolchok and J Alex Halderman. Crawling Bittorrent DHTs for Fun and

Profit. In WOOT, 2010.

[131] Eric Chan-Tin, Victor Heorhiadi, Nicholas Hopper, and Yongdae Kim. Hijacking

the Vuze BitTorrent network: all your hop are belong to us. IET Information

Security, 9(4):203–208, 2014.

[132] Johan Hastad. N using rsa with low exponent in a public key network. In Confer-

ence on the Theory and Application of Cryptographic Techniques, pages 403–408.

Springer, 1985.

[133] Rounak Sinha, Hemant Kumar Srivastava, and Sumita Gupta. Performance based

comparison study of RSA and elliptic curve cryptography. International Journal

of Scientific & Engineering Research, 4(5):720–725, 2013.

[134] Pei-Hsuan Tsai, Hua-Jun Hong, An-Chieh Cheng, and Cheng-Hsin Hsu. Dis-

tributed analytics in fog computing platforms using tensorflow and kubernetes.

In 2017 19th Asia-Pacific Network Operations and Management Symposium (AP-

NOMS), pages 145–150. IEEE, 2017.

bibliography 120

[135] David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes.

IEEE Cloud Computing, 1(3):81–84, 2014.

[136] Florian Hawlitschek, Benedikt Notheisen, and Timm Teubner. The limits of trust-

free systems: A literature review on Blockchain technology and trust in the sharing

economy. Electronic Commerce Research and Applications, 29:50–63, 2018.

[137] Marco Iansiti and Karim R Lakhani. The truth about Blockchain. Harvard Busi-

ness Review, 95(1):118–127, 2017.

[138] Jan Veuger. Trust in a viable real estate economy with disruption and Blockchain.

Facilities, 36(1/2):103–120, 2018.

[139] Fabian Sander, Janjaap Semeijn, and Dominik Mahr. The acceptance of

Blockchain technology in meat traceability and transparency. British Food Jour-

nal, 120(9):2066–2079, 2018.

[140] Daniel Conte de Leon, Antonius Q Stalick, Ananth A Jillepalli, Michael A Haney,

and Frederick T Sheldon. Blockchain: properties and misconceptions. Asia Pacific

Journal of Innovation and Entrepreneurship, 11(3):286–300, 2017.

[141] Victoria Louise Lemieux. Trusting records: is Blockchain technology the answer?

Records Management Journal, 26(2):110–139, 2016.

[142] Caitlin Lustig and Bonnie Nardi. Algorithmic authority: The case of Bitcoin. In

2015 48th Hawaii International Conference on System Sciences (HICSS), pages

743–752. IEEE, 2015.

[143] Michael Fröwis and Rainer Böhme. In code we trust? In Data Privacy Man-

agement, Cryptocurrencies and Blockchain Technology, pages 357–372. Springer,

2017.

[144] Sapumal Ahangama and Danny Chiang Choon Poo. Credibility of algorithm based

decentralized computer networks governing personal finances: The case of cryp-

tocurrency. In International Conference on HCI in Business, Government and

Organizations, pages 165–176. Springer, 2016.

[145] Corina Sas and Irni Eliana Khairuddin. Exploring trust in bitcoin technology: a

framework for hci research. In Proceedings of the Annual Meeting of the Australian

bibliography 121

Special Interest Group for Computer Human Interaction, pages 338–342. ACM,

2015.

[146] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. LSB: A

Lightweight Scalable Blockchain for IoT security and privacy. arXiv preprint

arXiv:1712.02969, 2017.

[147] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer Information

System Based on the XOR Metric. In International Workshop on Peer-to-Peer

Systems, pages 53–65. Springer, 2002.

[148] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-

NG: A scalable Blockchain protocol. In NSDI, pages 45–59, 2016.

[149] Mohammad M Jalalzai, Costas Busch, and Golden Richard III. Proteus: A scalable

BFT consensus protocol for Blockchains. In 2019 IEEE International Conference

on Blockchain (Blockchain), pages 308–313, 2019.

[150] Yin Yang. LinBFT: Linear-Communication Byzantine Fault Tolerance for Public

Blockchains. arXiv preprint arXiv:1807.01829, 2018.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions
	1.4 Publications
	1.5 Thesis Structure

	2 The Concepts of Trust and Distributed Networks
	2.1 Meaning of Trust
	2.1.1 Reputation

	2.2 Distributed Networks
	2.2.1 BitTorrent
	2.2.2 Edge Computing
	2.2.2.1 Fog computing
	2.2.2.2 Mobile Edge Computing (MEC)
	2.2.2.3 Cloudlet
	2.2.2.4 Edge-Centric Computing
	2.2.2.5 Osmotic Computing
	2.2.2.6 Mobile Edge-Clouds

	2.3 Common attacks
	2.4 Summary

	3 State of the Art
	3.1 Trust Bootstrapping, Propagation, Aggregation and Prediction
	3.2 TRS in Peer-to-Peer (P2P)
	3.3 TRS in Edge Computing
	3.4 TRS in Blockchain Systems
	3.5 TRS in other Distributed Platforms
	3.6 Summary

	4 FBit (Fairer Bits)
	4.1 Reputation Bootstrapping
	4.2 Familiarity
	4.3 Reputation Score Computation
	4.4 Modified BitTorrent Unchoke Algorithm for Leechers
	4.4.1 FBit in DHT (Distributed Hash Table) Protocols

	4.5 Modified BitTorrent Unchoke Algorithm for Seeders
	4.6 Experiments and Results
	4.6.1 Similarity Check

	4.7 Summary

	5 FBit in Specific Use-cases of Mobile Edge-Clouds
	5.1 Some use-cases of Mobile edge-clouds
	5.1.1 User Generated Replay (UGR)
	5.1.2 Rescue Assistance in Cases of Emergency
	5.1.3 Search for Missing Persons
	5.1.4 IoT based eHealth System:
	5.1.4.1 F-BETH

	5.2 Summary

	6 FBit in DHT and BlockChain
	6.1 FBit in DHT
	6.1.1 Vuze protocol
	6.1.1.1 Choke and unchoke in Vuze

	6.1.2 FBit-U
	6.1.3 Experiment
	6.1.4 Components of the test-bed

	6.2 Distributed Trust Ledger (DTL)
	6.2.1 Blockchain technology
	6.2.2 Trust in Blockchain
	6.2.3 FBit in Blockchain
	6.2.4 Reputation Bootstrapping
	6.2.5 Familiarity
	6.2.6 Reputation computation
	6.2.7 System description (Post Bootstrapping)
	6.2.7.1 Miner election

	6.3 Summary

	7 Conclusion

