294 research outputs found

    Feature Selection Using Genetic Algorithms for the Generation of a Recognition and Classification of Children Activities Model Using Environmental Sound

    Get PDF
    In the area of recognition and classification of children activities, numerous works have been proposed that make use of different data sources. In most of them, sensors embedded in children’s garments are used. In this work, the use of environmental sound data is proposed to generate a recognition and classification of children activities model through automatic learning techniques, optimized for application on mobile devices. Initially, the use of a genetic algorithm for a feature selection is presented, reducing the original size of the dataset used, an important aspect when working with the limited resources of a mobile device. For the evaluation of this process, five different classification methods are applied, k-nearest neighbor (k-NN), nearest centroid (NC), artificial neural networks (ANNs), random forest (RF), and recursive partitioning trees (Rpart). Finally, a comparison of the models obtained, based on the accuracy, is performed, in order to identify the classification method that presents the best performance in the development of a model that allows the identification of children activity based on audio signals. According to the results, the best performance is presented by the five-feature model developed through RF, obtaining an accuracy of 0.92, which allows to conclude that it is possible to automatically classify children activity based on a reduced set of features with significant accuracy.In the area of recognition and classification of children activities, numerous works have been proposed that make use of different data sources. In most of them, sensors embedded in children’s garments are used. In this work, the use of environmental sound data is proposed to generate a recognition and classification of children activities model through automatic learning techniques, optimized for application on mobile devices. Initially, the use of a genetic algorithm for a feature selection is presented, reducing the original size of the dataset used, an important aspect when working with the limited resources of a mobile device. For the evaluation of this process, five different classification methods are applied, k-nearest neighbor (k-NN), nearest centroid (NC), artificial neural networks (ANNs), random forest (RF), and recursive partitioning trees (Rpart). Finally, a comparison of the models obtained, based on the accuracy, is performed, in order to identify the classification method that presents the best performance in the development of a model that allows the identification of children activity based on audio signals. According to the results, the best performance is presented by the five-feature model developed through RF, obtaining an accuracy of 0.92, which allows to conclude that it is possible to automatically classify children activity based on a reduced set of features with significant accuracy

    Systematic Review of Machine Learning Approaches for Detecting Developmental Stuttering

    Get PDF
    A systematic review of the literature on statistical and machine learning schemes for identifying symptoms of developmental stuttering from audio recordings is reported. Twenty-seven papers met the quality standards that were set. Comparison of results across studies was not possible because training and testing data, model architecture and feature inputs varied across studies. The limitations that were identified for comparison across studies included: no indication of application for the work, data were selected for training and testing models in ways that could lead to biases, studies used different datasets and attempted to locate different symptom types, feature inputs were reported in different ways and there was no standard way of reporting performance statistics. Recommendations were made about how these problems can be addressed in future work on this topic

    Affective Brain-Computer Interfaces

    Get PDF

    A step towards Advancing Digital Phenotyping In Mental Healthcare

    Get PDF
    Smartphones and wrist-wearable devices have infiltrated our lives in recent years. According to published statistics, nearly 84% of the world’s population owns a smartphone, and almost 10% own a wearable device today (2022). These devices continuously generate various data sources from multiple sensors and apps, creating our digital phenotypes. This opens new research opportunities, particularly in mental health care, which has previously relied almost exclusively on self-reports of mental health symptoms. Unobtrusive monitoring using patients’ devices may result in clinically valuable markers that can improve diagnostic processes, tailor treatment choices, provide continuous insights into their condition for actionable outcomes, such as early signs of relapse, and develop new intervention models. However, these data sources must be translated into meaningful, actionable features related to mental health to achieve their full potential. In the mental health field, there is a great need and much to be gained from defining a way to continuously assess the evolution of patients’ mental states, ideally in their everyday environment, to support the monitoring and treatments by health care providers. A smartphone-based approach may be valuable in gathering long-term objective data, aside from the usually used self-ratings, to predict clinical state changes and investigate causal inferences about state changes in patients (e.g., those with affective disorders). Being objective does not imply that passive data collection is also perfect. It has several challenges: some sensors generate vast volumes of data, and others cause significant battery drain. Furthermore, the analysis of raw passive data is complicated, and collecting certain types of data may interfere with the phenotype of interest. Nonetheless, machine learning is predisposed to address these matters and advance psychiatry’s era of personalised medicine. This work aimed to advance the research efforts on mobile and wearable sensors for mental health monitoring. We applied supervised and unsupervised machine learning methods to model and understand mental disease evolution based on the digital phenotype of patients and clinician assessments at the follow-up visits, which provide ground truths. We needed to cope with regularly and irregularly sampled, high-dimensional, and heterogeneous time series data susceptible to distortion and missingness. Hence, the developed methods must be robust to these limitations and handle missing data properly. Throughout the various projects presented here, we used probabilistic latent variable models for data imputation and feature extraction, namely, mixture models (MM) and hidden Markov models (HMM). These unsupervised models can learn even in the presence of missing data by marginalising the missing values in the function of the present observations. Once the generative models are trained on the data set with missing values, they can be used to generate samples for imputation. First, the most probable component/state has to be found for each sample. Then, sampling from the most probable distribution yields valid and robust parameter estimates and explicit imputed values for variables that can be analysed as outcomes or predictors. The imputation process can be repeated several times, creating multiple datasets, thereby accounting for the uncertainty in the imputed values and implicitly augmenting the data. Moreover, they are robust to moderate deviations of the observed data from the assumed underlying distribution and provide accurate estimates even when missingness is high. Depending on the properties of the data at hand, we employed feature extraction methods combined with classical machine learning algorithms or deep learning-based techniques for temporal modelling to predict various mental health outcomes - emotional state, World Health Organisation Disability Assessment Schedule (WHODAS 2.0) functionality scores and Generalised Anxiety Disorder-7 (GAD-7) scores, of psychiatric outpatients. We mainly focused on one-size-fits-all models, as the labelled sample size per patient was limited; however, in the mood prediction case, it was possible to apply personalised models. Integrating machines and algorithms into the clinical workflow require interpretability to increase acceptance. Therefore, we also analysed feature importance by computing Shapley additive explanations (SHAP) values. SHAP values provide an overview of essential features in the machine learning models by designating the weight of predictability of each feature positively or negatively to the target variable. The provided solutions, as such, are proof of concept, which require further clinical validation to be deployable in the clinical workflow. Still, the results are promising and lay some foundations for future research and collaboration among clinicians, patients, and computer scientists. They set the paths to advance future research prospects in technology-based mental healthcare.En los últimos años, los smartphones y los dispositivos y pulseras inteligentes, comúnmente conocidos como wearables, se han infiltrado en nuestras vidas. Según las estadísticas publicadas a día de hoy (2022), cerca del 84% de la población tiene un smartphone y aproximadamente un 10% también posee un wearable. Estos dispositivos generan datos de forma continua en base a distintos sensores y aplicaciones, creando así nuestro fenotipo digital. Estos datos abren nuevas vías de investigación, particularmente en el área de salud mental, dónde las fuentes de datos han sido casi exclusivamente autoevaluaciones de síntomas de salud mental. Monitorizar de forma no intrusiva a los pacientes mediante sus dispositivos puede dar lugar a marcadores valiosos en aplicación clínica. Esto permite mejorar los procesos de diagnóstico, adaptar tratamientos, e incluso proporcionar información continua sobre el estado de los pacientes, como signos tempranos de recaída, y hasta desarrollar nuevos modelos de intervención. Aun así, estos datos en crudo han de ser traducidos a datos interpretables relacionados con la salud mental para conseguir un máximo rendimiento de los mismos. En salud mental existe una gran necesidad, y además hay mucho que ganar, de definir cómo evaluar de forma continuada la evolución del estado mental de los pacientes en su entorno cotidiano para ayudar en el tratamiento y seguimiento de los mismos por parte de los profesionales sanitarios. En este ámbito, un enfoque basado en datos recopilados desde sus smartphones puede ser valioso para recoger datos objetivos a largo plazo al mismo tiempo que se acompaña de las autoevaluaciones utilizadas habitualmente. La combinación de ambos tipos de datos puede ayudar a predecir los cambios en el estado clínico de estos pacientes e investigar las relaciones causales sobre estos cambios (por ejemplo, en aquellos que padecen trastornos afectivos). Aunque la recogida de datos de forma pasiva tiene la ventaja de ser objetiva, también implica varios retos. Por un lado, ciertos sensores generan grandes volúmenes de datos, provocando un importante consumo de batería. Además, el análisis de los datos pasivos en crudo es complicado, y la recogida de ciertos tipos de datos puede interferir con el fenotipo que se quiera analizar. No obstante, el machine learning o aprendizaje automático, está predispuesto a resolver estas cuestiones y aportar avances en la medicina personalizada aplicada a psiquiatría. Esta tesis tiene como objetivo avanzar en la investigación de los datos recogidos por sensores de smartphones y wearables para la monitorización en salud mental. Para ello, aplicamos métodos de aprendizaje automático supervisado y no supervisado para modelar y comprender la evolución de las enfermedades mentales basándonos en el fenotipo digital de los pacientes. Estos resultados se comparan con las evaluaciones de los médicos en las visitas de seguimiento, que proporcionan las etiquetas reales. Para aplicar estos métodos hemos lidiado con datos provenientes de series temporales con alta dimensionalidad, muestreados de forma regular e irregular, heterogéneos y, además, susceptibles a presentar patrones de datos perdidos y/o distorsionados. Por lo tanto, los métodos desarrollados deben ser resistentes a estas limitaciones y manejar adecuadamente los datos perdidos. A lo largo de los distintos proyectos presentados en este trabajo, hemos utilizado modelos probabilísticos de variables latentes para la imputación de datos y la extracción de características, como por ejemplo, Mixture Models (MM) y hidden Markov Models (HMM). Estos modelos no supervisados pueden aprender incluso en presencia de datos perdidos, marginalizando estos valores en función de las datos que sí han sido observados. Una vez entrenados los modelos generativos en el conjunto de datos con valores perdidos, pueden utilizarse para imputar dichos valores generando muestras. En primer lugar, hay que encontrar el componente/estado más probable para cada muestra. Luego, se muestrea de la distirbución más probable resultando en estimaciones de parámetros robustos y válidos. Además, genera imputaciones explícitas que pueden ser tratadas como resultados. Este proceso de imputación puede repetirse varias veces, creando múltiples conjuntos de datos, con lo que se tiene en cuenta la incertidumbre de los valores imputados y aumentándose así, implícitamente, los datos. Además, estas imputaciones son resistentes a desviaciones que puedan existir en los datos observados con respecto a la distribución subyacente asumida y proporcionan estimaciones precisas incluso cuando la falta de datos es elevada. Dependiendo de las propiedades de los datos en cuestión, hemos usado métodos de extracción de características combinados con algoritmos clásicos de aprendizaje automático o técnicas basadas en deep learning o aprendizaje profundo para el modelado temporal. La finalidad de ambas opciones es ser capaces de predecir varios resultados de salud mental/estado emocional, como la puntuación sobre el World Health Organisation Disability Assessment Schedule (WHODAS 2.0), o las puntuaciones del generalised anxiety disorder-7 (GAD-7) de pacientes psiquiátricos ambulatorios. Nos centramos principalmente en modelos generalizados, es decir, no personalizados para cada paciente sino explicativos para la mayoría, ya que el tamaño de muestras etiquetada por paciente es limitado; sin embargo, en el caso de la predicción del estado de ánimo, puidmos aplicar modelos personalizados. Para que la integración de las máquinas y algoritmos dentro del flujo de trabajo clínico sea aceptada, se requiere que los resultados sean interpretables. Por lo tanto, en este trabajo también analizamos la importancia de las características sacadas por cada algoritmo en base a los valores de las explicaciones aditivas de Shapley (SHAP). Estos valores proporcionan una visión general de las características esenciales en los modelos de aprendizaje automático designando el peso, positivo o negativo, de cada característica en su predictibilidad sobre la variable objetivo. Las soluciones aportadas en esta tesis, como tales, son pruebas de concepto, que requieren una mayor validación clínica para poder ser desplegadas en el flujo de trabajo clínico. Aun así, los resultados son prometedores y sientan base para futuras investigaciones y colaboraciones entre clínicos, pacientes y científicos de datos. Éstas establecen las guías para avanzar en las perspectivas de investigación futuras en la atención sanitaria mental basada en la tecnología.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: David Ramírez García.- Secretario: Alfredo Nazábal Rentería.- Vocal: María Luisa Barrigón Estéve

    Brain connectivity analysis: a short survey

    Get PDF
    This short survey the reviews recent literature on brain connectivity studies. It encompasses all forms of static and dynamic connectivity whether anatomical, functional, or effective. The last decade has seen an ever increasing number of studies devoted to deduce functional or effective connectivity, mostly from functional neuroimaging experiments. Resting state conditions have become a dominant experimental paradigm, and a number of resting state networks, among them the prominent default mode network, have been identified. Graphical models represent a convenient vehicle to formalize experimental findings and to closely and quantitatively characterize the various networks identified. Underlying these abstract concepts are anatomical networks, the so-called connectome, which can be investigated by functional imaging techniques as well. Future studies have to bridge the gap between anatomical neuronal connections and related functional or effective connectivities

    Reconocimiento y Clasificación de Actividades Infantiles Utilizando Sonido Ambiental

    Get PDF
    En este trabajo se describe de manera detallada el contexto sobre el cual se desarrolla el presente trabajo a cerca del reconocimiento y clasificación de actividades infantiles utilizando sonido ambiental, como propuesta de tema para la tesis doctoral. A su vez, se presenta el planteamiento específico del problema, analizando los factores que influyen en él y las consideraciones a tomar en cuenta. Se describen además, de manera breve, las soluciones propuestas a través de este trabajo para abordar el problema aquí tratado, mencionando los métodos aplicados para llegar a ellas. También se muestra la hipótesis de investigación, así como el objetivo general y los objetivos específicos. En la parte final se presentan las contribuciones hechas con la realización del presente trabajo y la forma en la que está estructurado este documento

    Evaluation of a prior-incorporated statistical model and established classifiers for externally visible characteristics prediction

    Get PDF
    Human identification through DNA has played an important role in forensic science and in the criminal justice system for decades. It is referring to the association of genetic data with a particular human being and has facilitated police investigations in cases such as the identification of suspected perpetrators from biological traces found at crime scenes, missing persons, or victims of mass disasters [1]. Currently there are two main methods developed: the genotyping through short tandem repeats (STR profiling) and the forensic DNA phenotyping (FDP). Despite the fact that these two methods are aiming in identifying a person through its genetic material, their approach and consequences that come up are completely different. STR profiling compares allele repeats at specific loci in DNA and aims at a match with already known to the police authorities DNA profiles, while FDP, which is the focus on the current study, aims in the prediction of appearance traits of an individual [2, 3]. In contrast with STR profiling, information that arise out of FDP cannot be used as sole evidence in the court [4]. The ability of predicting EVCs from DNA can be used as ‘biological witnesses’ that can only provide leads for the investigative authorities and subsequently narrow down a possible large set of potential suspects. The use of FDP begins a new era of ‘DNA intelligence’ and holds great promise especially in cases where individuals cannot be identified with the conventional method of STR profiling and also in cases where there is no additional knowledge on the sample donor. So far in FDP, traits such as eye, hair and skin color can be predicted reliably with high prediction accuracy and predictive models have already been forensically validated [5-7]. Regarding other appearance traits, the current lack of knowledge on the genetic markers responsible for their phenotypic variation and the lower predictability, especially of intermediate categories, has prevented FDP from being routinely implemented in the field of forensic science. The majority of the predictive models developed for appearance trait prediction were based on multinomial logistic regression (MLR) while only few used other methods such as decision trees and neural networks. Machine learning (ML) approaches have become a widely used tool for classification problems in several fields and they are known for their potential to boost model performance and their ability to handle different and complex types of data [8]. However, within the context of predicting EVCs, a systematic and comparative analysis among different ML approaches that could possibly indicate methods that outperform the standard MLR, has not been conducted so far. In addition, incorporation of priors in the EVC prediction models that may have potential to improve the already existing approaches, has not been investigated in the context of forensics yet. These priors indicate the trait category prevalence values among biogeographic ancestry groups, and their use would allow us to leverage Bayesian statistics in order to build more powerful prediction models. In our case, incorporation of such priors in the model could reflect the additional information from all yet unknown causal genetic factors and act as proxies in the prediction model. Therefore, those two approaches were conducted throughout my PhD project in order to improve the already existing approaches of FDP which was the main aim of my study. In the first study, I aimed to collect a comprehensive data set from previously published sources on the spatial distribution of different appearance traits. I conducted a literature review in order to assemble this information, which later on could be incorporated as priors in the EVCs prediction models. Due to the lack of available and reliable sources, our resulting data set contained only eye and hair color for mostly European countries. More specifically, I collected data on eye color from 16 European and Central Asian countries, while for hair color I collected data from seven European countries. For countries outside of Europe, where the variation is low, it was not possible to assemble trustworthy and population-representative data. Afterwards, I calculated the association of those two traits and obtained a moderate association between them. Interpolation techniques were applied in order to infer trait prevalence values in at least neighboring countries. Resulting prevalences and interpolated values were presented in spatial maps. The subject of the second study was to incorporate the trait prevalence values as priors in the prediction model. However, due to the lack of reliable data that was observed in the first study, the incorporation of the actual priors that would give us the actual insight of their impact in the EVC prediction was not feasible with the current existing knowledge and the available data. Therefore, I assessed the impact of priors across a grid that contained all possible values that priors can take, for a set of appearance traits including eye, hair, skin color, hair structure, and freckles. In this way, I aimed to assess potential pitfalls caused by misspecification of priors. Results were compared and evaluated with the corresponding prior-free' previously established prediction models. The effect of priors was demonstrated in the standard performance measurements, including area under curve (AUC) and overall accuracy. I found out that from all possible prior values, there is a proportion that shows potential in improving the prediction accuracy. However, possible misspecification of priors can significantly diminish the overall accuracy. Based on that, I emphasize the importance of accurate prior values in the prediction modelling in order to identify the actual impact. As a consequence of the above, the use of prior informed models in forensics is currently infeasible and more studies on the topic are necessary in order to extend the current knowledge on spatial trait prevalence. Finally, the focus of the third study was exploring and comparing the performances of methodologies beyond MLR. MLR is considered the standard method for predicting EVCs, since the majority of the predictive models developed are based on that method. Due to the fact that there is still potential for improvement of MLR models, especially for traits such as skin color or hair structure, I aimed at applying different ML methods in order to identify whether there is a potential classifier that outperforms the conventional method of MLR. Therefore I conducted a systematic comparison between MLR and three alternative ML classifiers, namely support vector machines (SVM), random forests (RF) and artificial neural networks (ANN). The traits that I focused on here were eye, hair, and skin color. All models were based on the genetic markers that were previously established in IrisPlex, HIrisPlex and HIrisPlex-S [5-7]. Overall, I observed that all four classifiers performed almost equally well, especially for eye color. Only non-substantial differences were obtained across the different traits and across trait categories. Given this outcome, none of the ML methods applied here performed better than MLR, at least for the three traits of eye, hair, and skin color. Ultimately, due to the easier interpretability of the MLR, it is suggested at least for now and for the currently known marker sets, that the use of MLR is the most appropriate method for predicting appearance traits from DNA. Throughout my PhD project, it became apparent that the available knowledge on spatial trait prevalence values was quite restricted not only in certain appearance traits but also in continental groups. More specifically, most available and reliable data were focused on European populations and the traits that were available were mostly for eye and hair color. For other traits, such as skin color, hair structure, and freckles, the data were either extremely few or nonexistent. This was a significant obstacle throughout the project, since it prevented me from applying and testing the actual impact of the accurate trait prevalence values as priors in EVC prediction. However, the lack of data presented an opportunity to perform in-depth theoretical research, in particular testing the impact of priors within a spatial grid that included its possible values. I found out that there is a proportion of priors that showed potential to improve EVC prediction. However, caution is advised regarding misspecification of priors that can significantly deteriorate the models' performance. Furthermore, the application of different ML approaches did not show any significant improvement on the prediction performance against the standard MLR. This could be due to the nature of the traits, since some of them are multifactorial and affected by various external independent factors or due to possible limitations of the currently known predictive markers. With the available knowledge so far, it is emphasized throughout this study that for the time being, priors are refrained from being incorporated in the EVC prediction models while from the different classifiers applied, MLR is considered as the most appropriate method for EVC prediction due to its easier interpretability. In addition, the presented study highlights the importance of reference data on externally visible traits and the identification of more genetic markers that contribute to certain traits and I hope that the present work will motivate the emergence of these certain types of data collections that potentially may improve the current EVC prediction models

    Connecting people through physiosocial technology

    Get PDF
    Social connectedness is one of the most important predictors of health and well-being. The goal of this dissertation is to investigate technologies that can support social connectedness. Such technologies can build upon the notion that disclosing emotional information has a strong positive influence on social connectedness. As physiological signals are strongly related to emotions, they might provide a solid base for emotion communication technologies. Moreover, physiological signals are largely lacking in unmediated communication, have been used successfully by machines to recognize emotions, and can be measured relatively unobtrusively with wearable sensors. Therefore, this doctoral dissertation examines the following research question: How can we use physiological signals in affective technology to improve social connectedness? First, a series of experiments was conducted to investigate if computer interpretations of physiological signals can be used to automatically communicate emotions and improve social connectedness (Chapters 2 and 3). The results of these experiments showed that computers can be more accurate at recognizing emotions than humans are. Physiological signals turned out to be the most effective information source for machine emotion recognition. One advantage of machine based emotion recognition for communication technology may be the increase in the rate at which emotions can be communicated. As expected, experiments showed that increases in the number of communicated emotions increased feelings of closeness between interacting people. Nonetheless, these effects on feelings of closeness are limited if users attribute the cause of the increases in communicated emotions to the technology and not to their interaction partner. Therefore, I discuss several possibilities to incorporate emotion recognition technologies in applications in such a way that users attribute the communication to their interaction partner. Instead of using machines to interpret physiological signals, the signals can also be represented to a user directly. This way, the interpretation of the signal is left to be done by the user. To explore this, I conducted several studies that employed heartbeat representations as a direct physiological communication signal. These studies showed that people can interpret such signals in terms of emotions (Chapter 4) and that perceiving someone's heartbeat increases feelings of closeness between the perceiver and sender of the signal (Chapter 5). Finally, we used a field study (Chapter 6) to investigate the potential of heartbeat communication mechanisms in practice. This again confirmed that heartbeat can provide an intimate connection to another person, showing the potential for communicating physiological signals directly to improve connectedness. The last part of the dissertation builds upon the notion that empathy has positive influences on social connectedness. Therefore, I developed a framework for empathic computing that employed automated empathy measurement based on physiological signals (Chapter 7). This framework was applied in a system that can train empathy (Chapter 8). The results showed that providing users frequent feedback about their physiological synchronization with others can help them to improve empathy as measured through self-report and physiological synchronization. In turn, this improves understanding of the other and helps people to signal validation and caring, which are types of communication that improve social connectedness. Taking the results presented in this dissertation together, I argue that physiological signals form a promising modality to apply in communication technology (Chapter 9). This dissertation provides a basis for future communication applications that aim to improve social connectedness
    corecore