
Induction of Predictive
Models for Dynamical

 Systems via Data Mining

Danny Van Welden

Proefschrift voorgedragen tot het behalen van het doctoraat
in de wetenschappen, richting informatica

Promotoren: Prof. Dr. H. De Meyer
Prof. Dr. ir. G.C. Vansteenkiste

Academiejaar 1999-2000

Acknowledgements

The more you learn the less you know

I am very grateful to Professor G. Vansteenkiste for providing me with my first job and for
offering me many opportunities to enhance my knowledge in different domains. In addition, I
owe a great debt of gratitude to Professor F. Cellier and to Professor E.J.H. Kerckhoffs, who
helped me when I needed them and who provided me useful feedback with regard to this the-
sis. I am grateful to Prof. H. De Meyer who helped me unconditionally during the finalisation
of my work. Moreover, I would like to thank all the above professors for their belief in me
(often more than I did) and for their encouragements.
I would also like to thank the colleagues at my work for the pleasant working environment
they helped to create. I like to thank especially Phillippe Geril for his revision of my English
writing and Annie Gevaert who helped me in all the administrative chores that had to be done.
Last, but not least, this thesis would not have been possible without the patience of my wife
Gerda and my children Laurenz and Maurijn, who had to endure my absence when I was
away for yet another course. Gerda’s support and understanding has been responsible for this
thesis in more ways than she could ever imagine.

Danny Florent Van Welden

Gent, November 22, 1999.

i

Contents

INTRODUCTION

PART I: A System Theoretic Approach to Identification of Dynamical
Systems

CHAPTER 1: FROM GENERAL SYSTEM THEORY TO GENERAL SYSTEM PROBLEM SOLVING

1.1 INTRODUCTION ..7

1.2 SYSTEMS: THE STARTING POINT FOR GST ..7

1.3 MODELLING...9

1.3.1 Validity of a model: a system – model relation...10

1.3.2 Approaches to model building ..11

1.4 INDUCTIVE MODELLING AND SYSTEM IDENTIFICATION METHODOLOGY............................12

1.4.1 Parametric system identification ...14

1.4.2 Non-parametric system identification via general system problem solving..15

1.5 GSPS: A PATTERN RECOGNITION APPROACH TO GST ..15

1.5.1 Epistemological level 0: source system (primitive or data-less system) ...18

1.5.2 Epistemological level 1: data system ..23

1.5.3 Epistemological level 2: Generative - behavioural system..25

1.5.4 Higher epistemological levels ...33

1.6 CONCLUSION...33

CHAPTER 2: SYSTEM APPROACH PROBLEM SOLVER

2.1 INTRODUCTION ..35

2.2 SAPS...35

2.2.1 The first SAPS implementation...36

2.2.2 SAPS-II ...37

2.2.3 Other research done on SAPS ...37

2.3 SAPS IN MORE DETAIL ..38

2.3.1 Sampling and recoding in SAPS ...38

2.3.2 Evaluation of a time-invariant pattern or mask ...43

ii

2.3.3 Searching the best mask ..49

2.3.4 Forecasting ..51

2.4 CONCLUSION...53

CHAPTER 3: FORMALISING MODEL CONSTRUCTION IN SAPS WITH HIDDEN MARKOV
MODELS

3.1 INTRODUCTION ..55

3.2 STATE MODELS AND INPUT-OUTPUT MODELS IN SAPS...55

3.3 HIDDEN MARKOV MODELS ...58

3.4 CONSTRUCTION OF A PREDICTIVE MODEL IN SAPS...61

3.5 APPLYING HIDDEN MARKOV MODELS TO SAPS..65

3.6 BASIC PROBLEMS TO SOLVE IN HIDDEN MARKOV CHAINS ...66

3.6.1 Problem 1: Compute an Observation Sequence Given the Complete Model Description67

3.6.2 Problem 2: Uncover Hidden State Part and Search ‘Correct’ State Sequence68

3.6.3 Problem 3: Optimise Model Parameters to Obtain a Best Description of Observation Sequence68

3.7 A NEWLY DEFINED PROBLEM TYPE FOR HIDDEN MARKOV MODELS.....................................68

3.8 CONCLUSION...71

CHAPTER 4: SUB-OPTIMAL MASK SEARCH IN SAPS

4.1 INTRODUCTION ..73

4.2 OPTIMAL MASK SEARCH IN SAPS-II ..73

4.3 SUB-OPTIMAL MASK SEARCH: A NEW METHOD..76

4.4 COMPARISON OF OPTIMAL AND SUB-OPTIMAL MASK ANALYSIS ...80

4.4.1 Sub-Optimal Search; is it justifiable?..82

4.4.2 Examples...84

4.5 SAPS-ST: A PROTOTYPE TOOL FOR GSPS ...85

4.6 RECODING IN SAPS-ST ..88

4.7 EVALUATING AND SEARCHING A (SUB)OPTIMAL MASK IN SAPS-ST89

4.7.1 Extra measures introduced in SAPS-ST..90

4.7.2 Enhancements with regard to quality function determination...92

4.8 FORECASTING IN SAPS-ST ...93

4.9 COMPARING SAPS-ST AND SAPS-II ..94

4.10 CONCLUSION...95

iii

PART II: A Data Mining Approach to Identification of Dynamical Systems

CHAPTER 5: FROM KNOWLEDGE DISCOVERY IN DATABASES TO CLASSIFICATION

5.1 INTRODUCTION ..97

5.2 KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING...97

5.3 KDD IN A BROADER PERSPECTIVE: THE VIRTUOUS CYCLE OF DATA MINING99

5.4 THE BASIC STEPS IN KDD...100

5.4.1 Step 0: Collecting data in a data warehouse..101

5.4.2 Step 1: Goal definitions and problem types ..101

5.4.3 Step 2: Data pre-processing...102

5.4.4 Step 3: Data mining...103

5.4.5 Step 4: Data post-processing or knowledge consolidation..103

5.5 LEARNING SYSTEMS AND KDD ..104

5.5.1 Computational learning...105

5.5.2 Supervised learning, unsupervised learning and target mapping ..106

5.5.3 Inductive bias ..106

5.5.4 Classifiers..107

5.6 CLASSIFICATION PRINCIPLES...107

5.7 CLASSIFICATION APPROACHES ...109

5.7.1 The machine learning approach versus the statistical approach to classification..............................109

5.7.2 Taxonomy of classification methods...111

5.8 POPULAR CLASSIFIERS...112

5.8.1 Concept learning ...112

5.8.2 Linear classifiers ...112

5.8.3 Tree classifiers ..113

5.8.4 Relational learning models or rules...113

5.8.5 Non-linear classification methods...114

5.8.6 Example-based methods..114

5.8.7 Probabilistic graphical dependency models ..114

5.8.8 Temporal pattern detection..115

5.9 VALIDATION OF CLASSIFIERS VIA TRAIN AND TEST SAMPLES ..115

5.9.1 Definitions and formalisations ..115

5.9.2 Overfitting...117

5.9.3 Error rate and its extensions ..118

5.9.4 Formalisation of accuracy for a classifier ...119

5.9.5 Internal error estimates..120

5.9.6 True error estimates...121

5.10 CONCLUSION...125

iv

CHAPTER 6: CLASSIFICATION AND REGRESSION TREES

6.1 INTRODUCTION ..129

6.2 CLASSIFICATION TREE EXAMPLES ...129

6.3 TREE INDUCTION PRINCIPLES ..133

6.4 HOW TO SPLIT A NODE: SPLITTING RULE? ..134

6.4.1 The relation between possible splits and variable type ...135

6.4.2 Node probability determination ..136

6.4.3 Measures of impurity ..137

6.5 HOW TO DECLARE A NODE TERMINAL: STOPPING RULE?..138

6.6 INFERENCING ON TERMINAL NODES: ASSIGNMENT RULE?...140

6.7 ADVANTAGES AND DISADVANTAGES OF TREE CLASSIFIERS...141

6.8 MACHINE LEARNING APPROACHES..142

6.8.1 ID3: A ‘Primitive’ Tree Classifier ..142

6.8.2 C 4.5: A ‘Classic’ Tree Classifier ...142

6.9 A STATISTICAL DOMAIN TREE CLASSIFIER: CART ...143

6.9.1 Splitting rule..143

6.9.2 Stopping rule ...144

6.9.3 Class probability trees and oblique trees...145

6.9.4 Surrogate splits..145

6.10 REGRESSION TREES...147

6.11 CONCLUSION...149

CHAPTER 7: RELATIONSHIP BETWEEN GENERAL SYSTEM THEORY AND KNOWLEDGE
DISCOVERY IN DATABASES VIA META-MODELLING

7.1 INTRODUCTION ..151

7.2 COMPARING GST AND KDD...151

7.2.1 Abstraction of a model ..151

7.2.2 Philosophical issues ..152

7.2.3 The life cycle of GST and KDD..153

7.2.4 Emphasis shifts between GST and KDD ..160

7.3 INTEGRATING GSPS AND DATA MINING..160

7.3.1 Converting trajectories to static data in GSPS ..160

7.3.2 Working on static data in data mining...162

7.3.3 Analogies between KDD and GSPS ...163

7.4 ADVANTAGES AND DISADVANTAGES OF DATA MINING APPROACH166

7.5 RESULTING PARADIGM SHIFT FOR SAPS ...167

7.6 CONCLUSION...168

v

CHAPTER 8: THE USE OF CLASSIFICATION AND REGRESSION TREES FOR SAPS

8.1 INTRODUCTION ..173

8.2 RECODING AND QUANTISATION ISSUES ...173

8.2.1 Known quantisation methods in KDD that are applicable to SAPS..174

8.2.2 Dynamic quantisation for SAPS ...175

8.3 MACHINE LEARNING APPROACHES TO SAPS ...178

8.3.1 Comparison of the ID3 algorithm and the SAPS-ST algorithm..178

8.3.2 Using C4.5 for SAPS ..179

8.4 FORECASTING IN SAPS VIA ‘NEAREST NEIGHBOURS’ ...180

8.4.1 Introduction of two new nearest neighbour methods ..180

8.4.2 Comparing nearest neighbours with state-observation forecasting ...183

8.4.3 Conclusion about the new nearest neighbour methods ...184

8.5 ADVANTAGES OF TREE CLASSIFIERS FOR SAPS..184

8.6 COMPARING REGRESSION TREE PERFORMANCE WITH SAPS ..185

8.6.1 Applying regression trees to synthetic data sets..187

8.6.2 Applying regression trees to real-world examples ..190

8.6.3 The effect of missing values on forecasting..192

8.6.4 Feedback from tree classifiers to SAPS ..193

8.6.5 Looking at large data sets..194

8.7 CONCLUSION...195

CONCLUSION AND FURTHER RESEARCH ... 197

vi

Appendices

PRELUDE TO THE APPENDICES..201

APPENDIX A: A SYNTHETIC LINEAR SYSTEM

A.1 AIM OF THE EXPERIMENT...203

A.2 DESCRIPTION OF DATA..203

A.3 USING AN OPTIMAL MASK SEARCH...204

A.3.1 Fixed recoding in SAPS-ST ...204

A.3.2 Uniform recoding in SAPS-ST...208

A.4 USING REGRESSION TREES...211

A.4.1 Use of the 1SE regression tree ...211

A.4.2 Use of a simple regression tree...214

A.4.3 Automatically generating rules from trees ...215

A.5 CONCLUSION..217

APPENDIX B: A SWITCHED NOISE-CONTAMINATED SINE SYSTEM

B.1 AIM OF THE EXPERIMENT ...219

B.2 SET-UP AND DATA GENERATION ..219

B.3 RECODING AND MAXIMAL ALLOWABLE MASK SETTING..221

B.3.1 Optimal mask search and its relative optimality...222

B.3.2 Comparing forecasting under a sub-optimal mask search ..224

B.4 USING A REGRESSION TREE FOR IDENTIFYING A MODEL ...227

B.5 CONCLUSION ..229

APPENDIX C: A REAL-WORLD ECONOMIC SYSTEM

C.1 AIM OF THE TEST...231

C.2 DESCRIPTION OF DATA..231

C.3 LOOKING FOR A PATTERN IN THE ORIGINAL DATA (WITHOUT DETRENDING)..................232

C.3.1 Sub-optimal mask searching...233

C.3.2 Using regression trees on non-detrended data ..233

C.3.3 Conclusion..234

C.4 DETRENDING BY FIRST ORDER DIFFERENCING..235

C.5 DETRENDING WITH A POLYNOMIAL FIT...237

C.5.1 Comparing the effect of the detrending method ...237

C.5.2 The pessimistic approach: using a very deep maximal allowable mask...238

vii

C.6 USING MISSING VALUES..240

C.7 TRYING SCATTER PLOTS TO HAVE A HINT ABOUT PATTERNS...241

C.8 FEEDBACK FROM THE DATA MINING METHOD TO SAPS ...244

C.9 CONCLUSION ..246

APPENDIX D: A REAL-WORLD WATER DEMAND SYSTEM

D.1 AIM OF THE EXPERIMENT...247

D.2 SETUP AND DATA GENERATION ...247

D.3 DATA MINING APPROACH WITH MAXIMAL ALLOWABLE MASK OF MEMORY DEPTH
SEVEN..250

D.4 INTRODUCING A GAP IN THE MAXIMAL ALLOWABLE MASK...252

D.5 CONCLUSION..255

ABBREVIATIONS ... 257

GLOSSARY .. 259

DUTCH SUMMARY

1

Introduction

The thesis describes two fundamental contributions towards the induction of predictive mod-
els for dynamical systems, based on a pattern recognition approach. One contribution involves
the enrichment of an experimental software tool for non-parametric system identification,
called SAPS [Cellier 1991]. The other concerns the establishment of a promising link of
SAPS’ underlying framework, called GSPS [Klir 1985], with a relatively young research do-
main that has the necessary methodology to aid in GSPS’ problem solving. The contributions
proposed in this thesis help to overcome the limited power of SAPS to the identification of
complex black-box systems. As the thesis demonstrates, the most promising perspectives of
achieving a good predictive model, is via the use of data mining methods.
The first contribution remains entirely in the domain of general system theory (GST), from
which SAPS originates. The second contribution implies a total paradigm shift that goes back
to the re-use of basic principles in GSPS. The second modification transcends the boundaries
of GST towards the domain of Knowledge Discovery in Databases (KDD); system identifica-
tion approach in GST is hereby considered as supervised learning applied to dynamical sys-
tems. Consequently, this thesis bridges a gap between the two domains. The GST domain
deals with the identification and modelling of dynamical systems, while the KDD domain
tries to identify useful and non-trivial patterns from observed, mostly static, data.
In general system theory, many methodologies exist, but one of them, called General System
Problem Solving (GSPS) [Klir 1985], is of particular importance in the sub-domain of system
identification, because it forms the backbone of SAPS. A central principle of GSPS that maps
observed input-output data to a state space via a time-invariant dependency pattern forms the
basis of a transformation that rephrases the system identification problem in GST to a data
mining problem in KDD. In the latter domain, a plethora of existing techniques can be used to
solve the deficiency of SAPS, towards the identification of complex systems, indirectly. This
results in an extremely powerful approach to system identification for large complex systems
where many variables come into play.
This thesis provides an overview of the two domains involved in two separate parts. Each part
moves gradually from the general underlying framework towards a specific implementation
tool. The first two chapters of each part are based on current literature. The remaining two
chapters in each part are new contributions of the dissertation. A summary of the major con-
tributions of this thesis is found in the conclusion at the end.

Part I: A System Theoretic Approach
Chapter 1 describes the underlying framework for the non-parametric system identification
approach in the domain of systems theory. It balances a formalised approach with a more de-
scriptive approach. The chapter moves from General System Theory towards General System
Problem Solving. The latter permits non-parametric identification of black-box systems via an
inductive approach based on pattern-recognition. The General System Problem Solving
framework is elaborated and more formalisations are given. They help to place the SAPS tool,
which is described in chapter 2, in the right context. The very important concept of a ‘mask’

2

is introduced and formalised in chapter 1. Throughout the chapter, some initial assumptions
with regard to the goal of the dissertation are highlighted.
Chapter 2 elaborates on a popular version of SAPS, which is developed by Cellier [1991] and
is called SAPS-II. It has proven to have a good potential for practical applications and as such
it will serve as a reference for the research developed in this dissertation. Although SAPS-II is
based on GSPS, some methodological differences and restrictions apply that are explained in
this chapter. Attaching a quality to a mask provides the possibility to compare masks and to
search for the best one. Two existing forecasting methods, which are compared with the new
methods introduced in chapter 8, are explained.
Chapter 3 establishes a link between problem types in SAPS and in hidden Markov models
via a rigorous formalisation of ‘state-transition’ matrix construction. It shows that correlation
in the system memory does not play a role for SAPS and that induction problems are similar
in SAPS as in hidden Markov models [Van Welden 20xx].
The first part of chapter 4 is theoretical and concentrates on the introduction and justification
of a newly introduced sub-optimal approach. The order complexity of the subsequent algo-
rithm is not exponential as it is for the existing optimal one, but polynomial. This results in
the possibility of tackling systems that are more complex [Van Welden and Vansteenkiste
1996]. The second part of chapter 4 gives a brief overview of the newly designed tool that
supports the sub-optimal mask search. This tool, which is called SAPS-ST, is intended as a
prototype to explore new model construction techniques [Van Welden and Vansteenkiste
1994]. Compatibility between the new software tool, SAPS-ST, and the existing tool SAPS-II
is not described in this dissertation. The reader is referred to [Van Welden 1999].

Part II: A Data Mining Approach
Chapter 5 provides an overview of the emerging domain of Knowledge Discovery in Data-
bases (KDD) and data mining. It follows the same structure as chapter 1. The field of machine
learning is briefly touched upon, because some concepts help in understanding the material
chapter 5 contains. It shows that system identification by SAPS belongs to a supervised
learning paradigm. The latter encompasses classification and regression. A formalisation of
classification is undertaken and tree classifiers are introduced at the end of this chapter.
Chapter 5 is indispensable for showing the plethora of methods that can be applied when do-
ing system-identification via supervised learning.
Chapter 6 concentrates on tree classifiers and shows their underlying principles. This chapter
supplies the knowledge to understand chapter 8 where the use of tree classifiers for SAPS is
demonstrated. It elaborates on a specific statistical approach for classification and regression
trees on which the software tool CART resides.
Chapter 7 explicitly establishes the link between GST and KDD. GSPS can be seen as a data-
mining approach, and, consequently, it can be embedded in KDD [Van Welden et al. 1998].
Relationships and emphasis shifts are explained at different levels of abstraction. A sharper
focus to directed systems (in GST) and to supervised learning (in KDD) is done. The resulting
paradigm shift for SAPS is outlined.
Chapter 8 illustrates how to apply data mining to SAPS with the aid of tree classifiers. The
latter are chosen because they give comprehensible models and because they have much in
common with the extension made in chapter 4. The advantages of using tree classifiers are
shown for recoding and for the handling of missing values [Van Welden et al. 1999]. An extra
benefit is the ranking of variable importance. In this chapter, the implementation of the near-
est neighbour algorithm in SAPS-II is modified and simplified. The new nearest neighbour
methods should be seen in the context of data mining.

 CART is a product from Salford Systems Inc., see www.salford-systems.com

3

Appendices contain examples that illustrate more than one aspect of the data mining ap-
proach. Appendix A and B contain synthetic examples, while appendix C and D contain real-
world examples. Each appendix emphasises different aspects by the example it contains.

Relevant articles by the author

[Van Welden et al.
1991]

Van Welden D., Verweij D., Vansteenkiste G.C., “A Proposal for Incorpo-
rating Heuristic Knowledge in a Multifaceted System”, Proceedings of
EUROCAST 91 - 2nd International Workshop on Computer Aided Systems
Theory, Krems (Wachau), Austria, April 15-19, 1991, p. 295-306.

[Van Welden and
Vansteenkiste 1992]

Van Welden D., Vansteenkiste G.C., “A Mixed Deductive-Inductive Ap-
proach to Model Recognition”, Proceedings of the 1992 European Simulation
Multiconference, York, UK, June 1-3, p. 112-118, 1992.

[Van Welden and
Vansteenkiste 1994]

Van Welden D., Vansteenkiste G.C., “SAPS-ST: A Testbed For Incremental
Research on GSPS”, Proceedings of the 1994 European Simulation Multi-
conference, Barcelona, Spain, June 1-3, p. 507-513, 1994

[Van Welden and
Vansteenkiste 1996]

Van Welden D., Vansteenkiste G.C., “Sub-Optimal Mask Search in SAPS”,
International Journal of General Systems, vol. 24, 1-2, p. 137-150, 1996.

[Van Welden 1998] Van Welden D., Tree Classifiers as Data Mining Tools. MSc. Thesis, Catho-
lic University of Leuven, Belgium, 1998.

[Van Welden et al.
1998]

Van Welden D., Kerckhoffs E.J.H., Vansteenkiste G.C., Extending a Fuzzy
Inductive Reasoner with Classification Procedures, Simulation Technology:
Science and Art, Proc. 10th European Simulation Symposium and Exhibition,
ESS 98, ed. A. Bargiela and E. Kerckhoffs, Nottingham, October 26-28, UK,
p. 111- 116, 1998.

[Van Welden 1999] Van Welden D., Compatibility of SAPS-ST and SAPS-II (with user-manual),
Technical Report, 1999.

[Van Welden et al.
1999]

Van Welden D., Kerckhoffs E.J.H., Vansteenkiste G.C., “Automatic Recod-
ing in a Fuzzy Inductive Reasoner”, ICQFN'99, Warsaw, June 1-4, p. 348-
354, 1999.

[Van Welden 20xx] Van Welden D., “Formalizing Candidate Model Construction in SAPS With
Hidden Markov Models”, International Journal of General Systems, accepted.

Other references

[Cellier 1991] Cellier F.E., “Continuous System Modelling”, Springer-Verlag, New York, 1991.
[Klir 1985] Klir G.J., Architecture of Systems Problem Solving, Plenum Press, 1985.

Figures that clarify the arrangement of the thesis
Figure 1 shows the decreasing level of abstraction.

Figure 2 shows the main parts of this thesis with their chapters. Chapters that are new contri-
butions of the thesis are depicted in bold

4

0HWKRGV DQG WRROV

$ VSHFLILF VXE�PHWKRGRORJ\

8QGHUO\LQJ

IUDPHZRUN

*HQHUDO 6\VWHP 7KHRU\ �*67�

DQG

*HQHUDO 6\VWHP

3UREOHP 6ROYLQJ �*636�

�FK ��

6\VWHP $SSURDFK 3UREOHP

6ROYHU

�6$36�

�FK ��

6XE�RSWLPDO

PDVN

VHDUFKLQJ

�FK ��

5HJUHVVLRQ

WUHHV DQG

QHDUHVW

QHLJKERXUV

PHWKRGV

�FK ��

&ODVVLILFDWLRQ DQG

5HJUHVVLRQ 7UHHV

�&$57�

�FK ��

.QRZOHGJH 'LVFRYHU\ LQ

'DWDEDVHV �.''�

DQG

6XSHUYLVHG OHDUQLQJ

YLD FODVVLILFDWLRQ

�FK ��

system-theoretic viewpoint data-mining viewpoint

Figure 1 : The stepwise refined structure of this thesis

5

&KDSWHU ��)URP .QRZOHGJH

'LVFRYHU\ LQ 'DWDEDVHV WR

&ODVVLILFDWLRQ

&KDSWHU ��)URP *HQHUDO

6\VWHP 7KHRU\ WR *HQHUDO

6\VWHP 3UREOHP 6ROYLQJ

&KDSWHU �� 6\VWHP $SSURDFK

3UREOHP 6ROYHU �6$36�

&KDSWHU ��)RUPDOLVLQJ 0RGHO

&RQVWUXFWLRQ LQ 6$36 ZLWK

+LGGHQ 0DUNRY 0RGHOV

&KDSWHU �� 6XE�RSWLPDO 0DVN

6HDUFK LQ 6$36

&KDSWHU �� &ODVVLILFDWLRQ DQG

5HJUHVVLRQ 7UHHV

&KDSWHU �� &RQFUHWLVLQJ WKH 'DWD

0LQLQJ $SSURDFK WR 6$36 ZLWK

&$57 DQG 1HDUHVW 1HLJKERXUV

&KDSWHU �� *HQHUDOLVLQJ WKH

5HODWLRQVKLS EHWZHHQ *HQHUDO

6\VWHP 7KHRU\ DQG .QRZOHGJH

'LVFRYHU\ LQ 'DWDEDVHV YLD

0HWD�0RGHOLQJ

������

Figure 2 : Overview of the thesis (bold rectangles cover original contributions by the author)

PART I

A System Theoretic Approach to Identification of
Dynamical Systems

7

Chapter 1

From General System Theory to General
System Problem Solving

1.1 Introduction

The aim of this chapter is to provide a review that sets the basic theoretical foundations for the
thesis. It balances a formalised approach with a more descriptive approach to the necessary
basic concepts and terminology. The chapter moves from GST (General System Theory) to-
wards a specific system-theoretic context, GSPS (General System Problem Solving), in which
black-box systems can be identified via an inductive reasoning approach based on a pattern-
recognition paradigm. Consequently, the paradigm that emerges in this chapter is one of sys-
tem identification: the behaviour of an unknown system is ascertained from observations and
turned into a model. The second half of this chapter elaborates more on GSPS forming the
backbone for the tool SAPS (System Approach Problem Solver) described in chapter 2.
Throughout the chapter, assumptions with regard to the goal of the thesis are highlighted.

1.2 Systems: the starting point for GST

A system is what is distinguished as a system [Gaines 1979]. The task of scientific research is
to find laws describing whole classes of systems and not only unique systems. The resulting
discipline is denoted by general systems theory. Klir [1985] expresses this by saying: “A gen-
eral system is a standard and interpretation-free system chosen to represent a class of systems
equivalent (isomorphic) with respect to some relational aspects that are pragmatically rele-
vant”. Hence, a taxonomy of general systems based on (abstract) relational aspects transcends
the disciplines of sciences. This allows a systematic approach later in this thesis where meth-
odological distinctions aid in the taxonomy.

However, concretising the definition is harder than the abstract definition given in the first
line of this section. A particular suited definition will be given on the next page. It fulfils the
requirements to delineate the approach taken in this work. However, regardless any definition,
one still has the separability problem and the selectivity condition that complicates a useful
system characterisation [Karplus 1976]. These issues will be recapitulated when talking about
a ‘source system’ in section 1.5.1.

In systems, one is interested, on the one hand in their internal functional relationships, on the
other hand in their external relations to the environment. The former is called the structure of
the system; the latter is its behaviour [Klír and Valach 1967]. Behaviour is concerned with the
dependence of responses to stimuli. Structure is concerned with the manner of arrangement,
that is organisation, of the mutual coupling between the elements of the system and the be-
haviour of these elements.

8

When observing what are deemed relevant attributes of a system, one must also take into ac-
count the space-time specification and the space-time resolution level [Klir 1969].

When a separation of quantities into those produced by the environment and those produced
by the system is given in advance, then inputs, the former, and outputs, the latter, can be dis-
tinguished. Such systems are called controlled systems [Klir 1969] or directed systems1, [Klir
1985]. If a separation into inputs and outputs is not given, one talks about neutral systems
[Klir 1969].

In this thesis, a first restriction towards directed systems, see Figure 1.1, that represents rela-
tively closed physical systems, is made.

U(t) X(t) Y(t)

Figure 1.1 : A directed system

For the directed system in Figure 1.1 the external quantities are U(t) and Y(t); the internal
quantity is X(t). The input is represented by U(t) and the output by Y(t).

The phrase in [Zeigler 1976], which states that: “the input-output behaviour of the system
constitutes all that can be directly known about a system” will be the philosophy behind the
black-box approach described in the thesis.

There exist several definitions for a system, but they all follow the same underlying princi-
ples. In these definitions the concept of states is important to this thesis. This will be explored
in more detail in chapter 3. States can store information coming from the inputs if a system
has a memory. Klír and Valach [1967] call such systems ‘memories’. They also introduced
���������������	��

������ ���������
�� ������ �������	����������������� ��������������� ������

and Zeigler [1976] is found in the glossary.

The definition from Klir [1969] is adopted in this thesis. It states that it is sufficient to con-
sider only the following constant traits of a directed system:

(1) A set of external quantities and a given resolution level. In the case of a directed system
the external quantities are classified as input and output quantities, and the resolution level
is given for both.

(2) A given activity (experimentally determined or observationally given measurements),
where the quantities are classified as input and output quantities for a directed system

(3) A given permanent behaviour, which is a time-invariant relation that holds between the
principal quantities associated with the latest values of output quantities on the one hand,
and the set of all the other principal quantities on the other.

1 Klir [1969] states that causal systems are directed systems, but the opposite is not necessarily true, while Zei-
gler [1976] makes no distinction between causal systems and directed systems.

9

(4) A given UC (Universal Coupling) structure (defined by subsystems, their behaviour, and
their coupling). The couplings are directed from output quantities of one element to input
quantities of other elements, including the environment for directed systems.

(5) A given ST (State-Transition) structure (defined by a set of states and a set of transitions
between them). A more rigorous formulation is given in chapter 3. In the case of directed
systems, a single stimulus is associated with each transition.

Depending on the type of the system problem, each of the above traits can be used for a basic
definition of a system. They also allow defining ‘analysis of systems’ and ‘synthesis of sys-
tems’. The former starts form a given (UC) structure to find the corresponding behaviour
and/or the ST structure. The latter starts from a given behaviour or activity and looks for a
compatible ST-structure and appropriate (UC) structure. As a particular behaviour can be re-
alised by different structures consisting of the same type of elements, further requirements are
needed to determine a structure (see the concept ‘inductive bias in chapter 5). The synthesis of
systems is far more complicated than the analysis of systems. “In practice, no case of synthe-
sis can be formulated without the input and output quantities being decided in advance” [Klir
1969].

1.3 Modelling

A model is a system similar to an original, sometimes called real system in the sense that,
when solving a problem concerning the original system, it can solve the problem to a better
advantage [Klir 1969]. A model is thus a workable surrogate for a system. Figure 1.2 gives a
simplified view on modelling.

V\VWHP PRGHO

SK\VLFDO

FRQFOXVLRQV

PRGHO

FRQFOXVLRQV

DEVWUDFWLRQ

VLPXODWLRQ

LQWHUSUHWDWLRQ

LQYHVWLJDWRU

JRDO

H[SHULPHQW

5HDO ZRUOG 0RGHOOLQJ ZRUOG

Figure 1.2 : Modelling

10

Zeigler [1976] considers a base model, but he also has to fall back on a lumped model to have
a workable version. The latter is found under a given set of conditions, which is called an ex-
perimental frame. An experimental frame embodies the space-time resolution of the system
and the purpose of the investigation of the system (e.g., only specifications for real possible
behaviour are used). It characterises a limited set of circumstances under which a system is to
be observed or experimented with. Hence, it can be defined as “a definite subset of all possi-
ble experiments feasible with a real system and reproduceable with the mechanised model”
[Elzas 1984]. Thus, associated with an experimental frame is a subset of the input-output be-
haviour of the system under investigation, [Zeigler 1976]. In the terminology of Klir [1985],
this corresponds with what he calls an observation channel. Validity of a model is thus always
assessed with regard to an experimental frame. For this viewpoint, models and experimental
frames are intertwined.

A multidimensional taxonomy for models can be devised, according for example, to their ab-
straction, to their space-time resolution, to their degree of determinism, their linearity, their
emphasis towards structure (e.g. block diagram, Bond graphs, …) or behaviour (e.g. equa-
tions). Models are kinds of systems, so they too can be black, white or grey-box. For example,
neural networks can be considered black-box, while tree classifiers are white-box (see chapter
8).

In this thesis, a second restriction to white box models for black box systems is made.

1.3.1 Validity of a model: a system – model relation

The validity of a model plays a crucial role in all data experiments undertaken in this thesis.
The validity of a model is about how well a model represents the original system it stands for.
In the first instance, validity can be measured by the extent of agreement between the original
system and the model. This is already formalised in Coombs et al. [1954] where the authors
describe two different routes: one is by experiment (validation) and the other by logical argu-
ment (deductive modelling)2. Both routes try to arrive at the same conclusions about the real
world by different means. The notion of validity is extended by Zeigler [1976], who distin-
guishes different degrees of validity:

1. A model is replicatively valid if it matches data already acquired from the original system.

2. A model is predictively valid if it can match the data of the original system before these
data are acquired from the original system. Predictive validity is stronger than replicative
validity.

3. A model is structurally valid if it is not only predictively valid, but also reflects the ways
in which the original system operates to produce its behaviour.

Philosophically, model building should follow a simple representation of the scientific
method in which the need for continued efforts at ‘falsifying’ the model as an explanation of
the observed data is considered as the main methodological activity. Here, the concept of
‘conditional validity’ (i.e., the model accepted as being conditionally valid until falsified) is
introduced in order to allow for inherent uncertainty in life-science systems.

2 Words in parentheses added by author

11

1.3.2 Approaches to model building

Some directives should be taken into account when constructing or identifying a model. One
has to avoid either excessive complexity or undue simplicity. A model should be representa-
tive of the original system and thus reflect the real system closely enough. It should encom-
pass all knowledge available of the original system, otherwise the model may be incomplete
[Zeigler 1976]. Yet, it should be parsimonious, i.e., simple enough to understand to achieve
the goals of modelling (Occam’s razor). Furthermore, complex models are difficult to cali-
brate and difficult to validate properly. Excessive model complexity can be penalised via the
use of complexity measures, e.g. Akaike’s measure of fit.

Keeping in mind these directives, two main approaches to model building are devised. They
are based on two principal types of information about a general system, which relate to the
extreme ends of the system’s greyness spectrum (see Figure 1.3):

• knowledge and insight about the system (white box component)

• experimental data of system inputs and outputs (black box component).

D SULRUL LQIRUPDWLRQ

UDZ GDWD

PRGHO

���

������

GHGXFWLYH

LQGXFWLYH

Figure 1.3 : The two sources of information for model construction

The two main approaches are depicted in Table 1.1 and illustrated in Figure 1.3.

knowledge based approach data based approach

synonyms modelling system identification

top-down modelling bottom-up approach

reasoning deduction induction

does what? encodes the (inner) structure
of the system

encodes the behaviour of the
system (via experimental data)

problem type Analysis synthesis

Table 1.1 : The two main approaches to constructing a model

12

A model constructed purely deductively can generally be considered as a unique solution of
modelling. Hence, the top-down approach can and should be used if there is enough a priori
knowledge and theory to characterise completely the mathematical equations. In that context,
the concept of model structure3 becomes important.

The bottom-up approach tries to infer the structural information from experimental data and to
come up with a usable model under a given experimental frame. This approach may generate
an infinite number of models satisfying the observed input-output relationships. So, there is
no straightforward procedure for determining the structure of a model. A set of guiding prin-
ciples and quantitative procedures for inferring structure parts from data sets is needed. More
specifically, it is desirable to have additional assumptions or constraints to help selecting an
‘optimal’ model (this issue will be referred to again when discussing GSPS).

The deductive approach is preferred whenever possible, this is called the physicality principle,
because it involves a one-to-one mapping (in fact, no new knowledge is generated), while
bottom-up modelling involves a one-to-many mapping (knowledge has to be induced). The
latter issue is very important in the field of machine learning. It will be discussed in more de-
tail in chapter 5 (where inductive bias is discussed).

System observations may be obtained either actively or passively. In the former situation the
modeller specifies interesting inputs, applies these to the system under study, and observes the
outputs. In the latter situation, the modeller cannot specify the inputs and he/she has to accept
whatever input-output data is available. Figure 1.4 shows a hierarchy of possible approaches.
The inductive approach taken in this thesis is shown in bold.

1.4 Inductive Modelling and System Identification Methodology

If the (deductive) modelling route is impossible, one has to treat the system as a black (or
grey) box and try to infer a model via data-analysis of input and output signal recordings. This
is the identification route, which is based on experimentation. The Concise Encyclopaedia of
Modelling & Simulation describes identification as “the search for a definition of a model
showing the behaviour of a process evolving under given conditions. It is usually realised by
means of a set of measurements and by observing the behaviour of a system during a given
time interval. The model obtained by identification must enable the evolution of the identified
process to be predicted for a given horizon, when the evolution of the inputs and various ex-
ternal influences acting on this system during this time interval are known” [Atherton and
Borne 1992]. Hence, system identification is concerned with the problem of building mathe-
matical models of dynamic systems based on I/O measurements. The approaches to identifi-
cation as described in the Concise Encyclopaedia of Modelling & Simulation are quite gen-
eral. They consist of

• collection of input-output data from the system (data is usually recorded by sampling in
discrete time),

• settling for a set of candidate models (or model type/paradigm),

• picking one particular member of the model set as the best representative, guided by the
information in the data.

3 Do not confuse with system structure

13

GHGXFWLYH

PDWKHPDWLFDO PRGHO

LQGXFWLYH

QXPHULFDO DSSURDFKHV

DQG DSSUR[LPDWLRQV

DFWLYH VHWXS

SDVVLYH VHWXS

D SULRUL NQRZOHGJH

QR D SULRUL NQRZOHGJH

D SULRUL NQRZOHGJH

QR D SULRUL NQRZOHGJH

Figure 1.4 : Hierarchy of desirable approaches to modelling

6\VWHP

H[SHULPHQWDO

IUDPH

$ SULRUL

NQRZOHGJH

LGHQWLILFDWLRQ

PRGHO YDOLGDWLRQ

PRGHO

*RDO

 chosen model paradigm
/ candidate models

bad good

Figure 1.5 : System identification

14

The identification procedure consists of four choices:

1. Experimental design encompasses the choice of inputs to be made, sampling rates, pre-
sampling filters, and so on, to have the most informative data. Experimental design takes into
account the goal, the a priori information, and the data. It is mapped into the experimental
frame block in Figure 1.5.

2. The choice of a model set or model paradigm is the most difficult one to justify. A priori
knowledge and engineering intuition or insight have to be combined with formal properties of
model and identification methods to contribute to a good result.

3. The choice of criterion of fit is concerned with the method of evaluating the quality of a
particular model. It is put in the experimental frame.

4. The model validation determines if a model is good enough, based on the criterion of fit.

1.4.1 Parametric system iden tification

In parametric system identification, a model structure is chosen that contains unknown pa-
rameters, e.g., one puts forward a certain equation form. This is the structure identification
step. Given this structure, the parameters of the structure are identified in a subsequent pa-
rameter identification step. Hence, the identification step now consists of two sub-steps:
structure identification (compare with choosing a distribution) and parameter identification
(compare with filling in the parameters of the distribution). The identification block of Figure
1.5 can now be decomposed as in Figure 1.6. However, if the structure is not right, then all
that follows is wrong too.

LGHQWLILFDWLRQ

6WUXFWXUH LGHQWLILFDWLRQ

3DUDPHWHU LGHQWLILFDWLRQ

=

Figure 1.6 : Parametric system identification

A mixed modelling-identification approach in the parametric system identification facilitates
a maximum extraction of knowledge from the system. The simplest approach is where the
structure identification block is completely replaced by a deductive model construction. Pa-
rameter identification then gives estimates for the yet unknown parameter values. The model
validation encompass in it also a validation of the given structure: if a good validation can not
be obtained, then there is probably something wrong with the given model structure. If one
has different model structures available, the parameter identification step should be taken for
each candidate model (from the model set): competing models may result. It is hoped that at
least the best model from this set passes the validation set.

An example of parametric system identification is found in time series and Box-Jenkins mod-
elling [Ljung 1993]. They work with a certain (linear) model structure that is determined pre-
viously. Furthermore, one usually assumes a certain probability distribution for the noise (al-
though research into non-parametric approaches is current). Non-linear parametric system
identification is found in the neural network approach [Hecht-Nielsen 1990] and in non-linear
time series [Tong 1990]. The next section describes a (non-linear) non-parametric modelling
approach.

15

1.4.2 Non-parametric system identification via general system problem solving

Known non-parametric system identification methods are correlation and spectral analysis,
[Ljung 1993]. However, in the approach that forms the backbone of this thesis, the interest is
confined to a specific pattern recognition paradigm cast in a theoretical framework, denoted
by the name General System Problem Solving (GSPS) [Klir 1985]. It is related to the step-
wise, epistemological approach used by humans when doing inductive reasoning in every day
situations.

1. They try to identify the problem and determine the inputs relevant for the system.

2. An identification of a subset of characteristics (state variables) related to this problem is
made.

3. The manner in which the available inputs influence the related characteristics is deter-
mined. This is the search for a pattern.

4. An appropriate strategy to use the available inputs in an optimal manner to achieve the de-
sired characteristics is determined.

GSPS is a conceptual framework through which system problems are formalised in a compre-
hensive taxonomy of systems. An epistemological hierarchy makes it possible to capture an
infinite variety of systems problems through a small number of problem categories. Its un-
derlying principles are based on the notion of external/internal quantities, type of relations,
organisation and behaviour of a system.

GSPS starts from the premise that raw data for a given system under investigation are not di-
rectly usable for recognising typical system behaviour. They must be converted into a form in
which time-invariant relations (more general: time-invariant patterns) between the observed
quantities are expressed in a sufficiently simple manner suited to the given purpose [Klir
1969]. The key interest will be the search for a ‘good’ (‘good’ will be formalised) time-
invariant relation, which is specified by Klir as: “The time-invariant relation is supposed to be
any relation that is satisfied within a certain time interval. In general, some past values
and/or some future values of the observed quantities may be included in the relation as well
as their instantaneous (present) values”.

1.5 GSPS: a pattern recognition approach to GST

The stepwise inductive approach explored in this thesis is based on the case where a class of
systems can be uniquely defined by a given activity (see section 0). It is exemplified by a hi-
erarchy of epistemological levels in which each higher level builds on the lower and adds
some additional knowledge. This hierarchy of levels forms the skeleton of the taxonomy of
systems in GSPS, see Figure 1.7. Source and data systems are predominantly of an empirical
nature, while higher epistemological levels are predominantly of a more theoretical nature.

16

6RXUFH 6\VWHP

/HYHO �

'DWD 6\VWHP

/HYHO �

*HQHUDWLYH 6\VWHP

/HYHO �

6WUXFWXUH 6\VWHP

/HYHO �

0HWD 6\VWHP

/HYHO �

Figure 1.7 : Simplified overview of epistemological level

An inductive approach relates to climbing up the hierarchy. In contrast, a deductive approach
signifies descending the hierarchy. As each higher level contains some more knowledge than
a lower level, one easily sees that inductive reasoning tries to find more information from
facts, while deductive reasoning generates no new knowledge.

At level 0 (source system), one defines what could be the constituents of relevant data relative
to the object of investigation, the purpose of the investigation and the constraints posed on the
system. At level 1 (data system), one does the actual data gathering, related to the source sys-
tem previously chosen. The data is stored in an activity matrix. At the next level (level 2), one
can start with data processing, where the aim is to discover some support-invariant relation-
ships among the data. Such a relationship will be called a mask. Higher levels contain struc-
tural and meta-knowledge.

The epistemological levels form the vertical dimension of Figure 1.9. This figure is an elabo-
ration of Figure 1.2. The horizontal dimension indicates which types of system problems are
defined (methodological problems or types). Klir considers the methodological distinctions as
a secondary classification of system problems. Based on the variables, a first methodological
distinction can be made between neutral and directed systems, see Table 1.2.

17

System type

0 (neutral)

1 (directed)

Table 1.2 : Distinction according to system type

Another — independent or orthogonal — series of methodological distinctions is based on the
scale of the variables (and support, see later for a definition of support). They relate to:

• the ordering property : nominal scale or (partial or linear) ordinal scale,

• presence of a metric (distance measures),

• continuity: continuous or discrete.

The different possibilities are shown in Table 1.3.

Ordering Distance Continuity

0 (no-ordering) 0 (no) 0 (discrete)

1 (part-ordering) 1 (yes) 1 (continuous)

2 (linear-ordering)

Table 1.3 : Distinction according to scale

Table 1.3 implies 12 possible combinations. E.g. (1,1,0) depicts a discrete partial ordered
variable with a distance measure attached. The combinations (0,0,1) and (0,1,x) are not
meaningful, leaving use with nine useful combinations. They can be partially ordered by the
relation ‘being methodologically more special than’ in a Hasse diagram, which is depicted in
Figure 1.8.

�������

�������

������� ������� �������

������� ������� �������

�������

Figure 1.8 : Hasse diagram for methodological types on level 0

Figure 1.9 shows how abstraction leads to a finite number of types of general systems, each
characterised by a particular epistemological level and a finite set of relevant and desirable
methodological distinctions, [Klir 1985].

18

JHQ� V\VWHP SUREOHP

UHSUHVHQWDWLYH

JHQ� V\VWHP VROXWLRQ

UHSUHVHQWDWLYH

$EVWUDFWLRQ

Problem space

,QWHUSUHWDWLRQ

LQWHUSUHWHG V\VWHP

VSHFLILF V\WHP SUREOHP

VSHFLILF V\WHP VROXWLRQ

SUREOHP W\SH

�����������	��
��
���

PHWKRGRORJLFDO GLVWLQFWLRQV

OHYHOV
(SLVWHPRORJLFDO

Figure 1.9 : The methodological framework : GSPS

Seeking an ST-structure corresponds to epistemological level 2, while trying to find an UC-
structure corresponds to level 3. Only the relevant epistemological levels 1, 2, and 3, needed
in the remainder of this thesis are discussed in more depth.

1.5.1 Epistemological level 0: source system (primitive or data-less system)

In general, real world objects consist of a virtually unlimited number of properties, which can
not be studied all (at the same time). Remark the relationship with the selectivity problem of
Karplus. Therefore, in daily life, interaction of an observer with an object is usually restricted
to a limited set of relevant attributes of each object. In order to distinguish individual obser-
vations on attributes, an underlying property, denoted by the term ‘backdrop’ (reference vari-
able, index), is needed to distinguish these observations uniquely. A typical backdrop is time;
others are space, population individuals and/or combinations of them.

The source system has two main purposes:

• selecting a set of relevant attributes on an object system of interest together with the back-
drops (compare with a function of the experimental frame)

• abstracting the relevant attributes and backdrops

This goal is realised via a layered approach in which the source system level is formed by
three sub-levels, together with the relations among them. These three primitive sub systems
are the object system, the specific image system, and the general image system. They are de-
picted in Figure 1.10.

19

OHYHO �

OHYHO �

,

2

�I

DEVWUDFWLRQ FKDQQHO

REVHUYDWLRQ FKDQQHO

JHQHUDO LPDJH V\VWHP

VSHFLILF LPDJH V\VWHP

REMHFW V\VWHP

GSPS

Scientific
Domain

Figure 1.10 : GSPS interface

One notices that the source system interfaces with the real world through observation chan-
nels and the object system, and with GSPS through abstraction channels and the general im-
age system. The latter restricts GSPS via abstraction to syntactic (structural and general) as-
pects of systems problems solving only. The interface with the real world is mediated through
the object system O and an overall observation channel.

The object system O: the ‘what’ question

Hence, the object system O is defined directly on the object of interest by selecting some of
its characteristics (attributes and backdrops) relevant to the problem under consideration. An
attribute, indexed by i, is denoted by ai and its set of potential appearances by Ai. Variables
serve as abstract operational images (representations) of attributes defined in terms of a spe-
cific measurement or observation procedure. Each variable, denoted by vi, has a unique name
and is associated with a particular set of entities through which it manifests itself via states or
values.

Hence, the object system O consists of a set of attributes ai, each associated with a set of po-
tential appearances Ai, and a set of backdrops bj, each associated with a set of instances Bj.

Formally:

O a A i N b B j Ni i n j j m= {({(,) | }, ,) | }∈ ∈ (1.1)

The choice of attributes (and backdrops) will not only be determined by what one knows, but
also by the goal of the identification effort (purpose of investigation). This explains the syno-
nym ‘experimental frame’ for the object system. What remains is a list of — what are sup-
posed — relevant attributes (and backdrops).

A stepwise approach via a mapping to an image system (first a specific and then a general im-
age system) helps in abstracting the attributes (and backdrops). The term image system was
chosen to indicate that the system is an abstract and (usually) simplified representation of
some object system. It is a homomorphic image of the corresponding object system.

20

The specific image system �: the ‘how’ question

A first operational abstract (and usually simplified) representation of the object system is de-
fined in an image system. The interaction of the measuring device or observer with the system
under investigation is formalised in an observation channel. Which characteristic to measure is
already determined in the object system. What remains is how to measure it.

The specific image system � consists of a set of specific variables �vi each associated with a

specific state set �Vi and a set of specific supports �wj , each associated with a specific support

set �Wj . Formally:

� {(� , �) | },{(� , �) | }I v V i N w W j Ni i n j j m= ∈ ∈ (1.2)

The relationship between an object system O and a specific image system � is established by
an overall observation channel ϑ . It provides a mapping that introduces a specific variable
(support) as an image of an attribute (backdrop). During that mapping, some inaccuracies
(noises) may be eliminated if not too close to the boundaries. In the latter case, fuzzy tech-
niques may prove useful. A crisp observation channel oi for an attribute ai is given by

o A Vi i i: �→

This equation can also be written as

o A Vi i i: � { , }× → 0 1 or o A Vi i i: � { , }→ × 0 1

As an example, consider the unpopular taxes one each year has to pay. An attribute ai is the
annual income of the person. Its appearance set Ai is {0, 1, ..., 100000} EURO (ignore real
millionaires for the moment). The specific variable �vi is the annual income bracket the per-

son falls in. The state set �Vi consists of the tax scale {x < 3000, 3000 ≤ x < 7000, 7000 ≤ x
<12000, 12000 ≤ x <20000, > 20000}. Remark the crisp boundaries on x.

The observation channel is homomorphic with regard to presumed relevant properties of Ai

and those in �Vi . It induces a partition in Ai, denoted by Ai/oi. Elements in each of the equiva-
lence classes are viewed as non-distinguishable through the measurement (observation) pro-
cedure. Each induced partition (i.e., the grain size) is called a resolution form, [Klir 1985].

Observations of appearances near the edge of a block can be mapped into the wrong block.
These appearances thus have an observation uncertainty, which can be dealt with by the use
of fuzzy set theory. In that case, each block is a fuzzy subset of the set Ai or one can consider
crisp subsets and assign a degree of certainty that an element belongs to a block. The latter
solution is chosen by Klir where a fuzzy observation channel can be seen as a membership
grade function that defines a fuzzy relation on the Cartesian product A A oi i i� / . In a more
familiar form, this fuzzy relation becomes (A o Vi i i/ ��):

~ : � [,]o A Vi i i× → 0 1 (1.3)

where ~(,)o x y expresses the degree of certainty that appearance x belongs to the block y in Ai

or corresponding value in �Vi . It can be replaced by:

~ : � [,]o A Vi i i→ × 0 1

21

A similar procedure can be followed for the backdrops, but for backdrops, one usually takes
the observation points very specific. Thus, mostly no fuzzy set concept is needed4. Time is
taken as backdrop in this thesis, so there is no need for a fuzzy support-observation channel.

An observation channel can be an explicit definition of the function oi or ωj, or operationally
when Ai or Bj are not explicitly known. It usually consists of a physical device (measuring in-
strument) and a procedure describing its use. The (possibly significant) influence of the de-
vice on the measured attribute is found in the states of the variable.

Another independent methodological distinction concerns the nature of the overall observa-
tion channel: crisp, fuzzy, mixed, see Table 1.4.

Observation
channel

0 (crisp)

1 (fuzzy)

2 (mixed)

Table 1.4 : Distinction according to overall observation channel

As already seen from Figure 1.10, observation channels are studied in the traditional sciences
and form no part of GSPS itself. An overall observation channel is defined by

ϑ ω= ∈ ∈{(, � ,) | },{(, � ,) | }A V o i N B W j Ni i i n j j j m (1.4)

where

- oi must be homomorphic with respect to relevant properties in Ai, �Vi

- ωj must be homomorphic with respect to relevant properties in Bj, �Wj

A fuzzy overall observation channel ϑ could be defined analogously, but with oi, respectively
ωj replaced by their fuzzy counterparts.

In searching an induced model, it is preferable to abstract the specific variable to facilitate the
searching for the model and to standardise the input for higher epistemological levels and the
General System Problem Solving methodology.

How to deal with noise and measurement errors?

A minimum requirement for an observation channel is that it allows to classify an attribute in
an equivalence class in Ai/oi or, more general, in �Vi . If the blocks of Ai/oi are substantially
larger than the influence of the noise or measurement errors, then the block may correctly be
identified with the appearance. However, when the appearance is too close to the edge, the
noise (or measurement error) may bring it into a neighbouring interval so that the block is not
the right one anymore. The use of a fuzzy observation channel may help. In this case, how-
ever, it is proposed to retain the situation where the point is considered to be in both blocks
with different membership values. If not, then the point may be classified only in the neigh-

4 There are cases in which one prefers to use a fuzzy support-observation channel, e.g. consider young, middle-
aged and old populations.

22

bouring block alone (where it should not belong) and the information that it may also belong
to the other block (if there were no noise) is ruled out. Chapter 2 will show that the existing
tool based on GSPS only retains variables with membership values > 0.5. More research is
needed to compare the two options.

The general image system I

The GSPS framework only deals with general variables and supports. The necessary extra
level of abstraction is achieved by a relationship between a specific image system � and a gen-
eral image system I in the form of an overall abstraction - and (in the reverse direction) exem-
plification channel. Hence, the interface with the higher epistemological levels and GSPS is
mediated through the general image5 system I, and an overall exemplification-abstraction
channel Ε.

The isomorphic mapping from the specific variables (and supports) to the general variables
(and supports) is called an abstraction. Each specific variable (and support) is an interpreta-
tion of a general variable (support). The inverse mapping is isomorphic and denoted by the
term exemplification. Both mappings are in essence re-labelling functions. They are found in
Table 1.5.

exemplification abstraction

Variables e V Vi i i: �→ e V Vi i i
− = →1 �

Supports ε j j jW W= → � ε j j jW W− = →1 �

Table 1.5 : Exemplification and abstraction mapping

As an example, consider again the tax example. The general variable is now simply an integer
and the general state set is {1, 2, 3, 4, 5}.

Consequently, a general image system I consists of a set of general variables vi, each associ-
ated with a general state set Vi, and a set of general supports wj, each associated with a general
support set Wj, i.e.,

I v V i N w W j Ni i n j j m= ∈ ∈{ ,) | },{ ,) | }

An overall abstraction and exemplification channel can be defined in analogy with an overall
observation channel.

Ε = ∈ ∈{(� , ,) | },{(� , ,) | }V V e i N W W j Ni i i n j j j mε

where ei (εj) must be homomorphic with respect to relevant properties in Ai, �Vi (Bj, �Wj).

There is no fuzzy counterpart of Ε for all information is already recoded such that the states
set �Vi is crisp.

The mapping from specific to general image system has as its only means abstraction of data
by removing all semantic meaning to facilitate computing. The problem is then generalised,
formalised and made domain independent. One may refer to the statement made in [Coombs

5 The term image system was chosen to indicate that the system is an abstract and (usually) simplified represen-
tation of some object system. It is a homomorphic image of the corresponding object system.

23

et al. 1954]: “A model is not itself a theory; it is only an available or possible or potential
theory until a segment of the real world has been mapped to it”. In this context, one may con-
sider the induction effort as a theory construction via a model creation: the theory construc-
tion occurs in the object and specific image system, while the model construction occurs
higher up in the epistemological hierarchy. The relation between O and I is then given by the
composition of an observation and abstraction channel.

Summary

The source system can now formally be defined by the quintuple:

S O I I E= , �, , ,ϑ (1.5)

which serves as a source for empirical data, and interpretations of abstract data.

Hence, the source system provides a comprehensive frame for data gathering, data processing
as well as interpretation of both the data and results of processing.

Any relation recognised in the object system should be made explicit, e.g. ordering, etc. One
should aim to get as much a priori knowledge as possible concerning the data expected to be
measured (meta-data). Any useful relation that can be recognised in the set of appearances of
the attributes, should be added to the definitions of the object system [Uyttenhove 1978], e.g.,
declarative knowledge should be added too and procedural knowledge must be incorporated.
This knowledge must be abstracted in the image system. One should take care not to lose to
much information when going to the specific image system. Use the finest resolution if com-
putational complexity stays within limits or use a good quantisation (discretisation) scheme,
see the recoding in chapter 2 and the automatic recoding in chapter 8.

A priori knowledge may come from the methodological distinctions (e.g., is the system neu-
tral or directed, is the observation channel crisp or fuzzy, is a variable (or support) nominal,
ordered, continuous, ... ?). Derivatives (additional variables) or other derived variables can be
added (see chapter 5, augmenting data in the pre-processing step).

The outcome of this effort is a general image system, classified according to its problem type
(methodological distinctions) and equipped with all extra knowledge of the system one can
get.

1.5.2 Epistemological level 1: data system

The data system contains the information of the source system, but supplemented by data, i.e.,
by actual states of the variables with respect to a support set. Actual observations are recorded
in terms of an ordered pair that consists of an overall support instance at which the observa-
tion is made and the observed overall state of the variables involved. A crucial function in the
data system is the (crisp) data function, given by

d W V: �

where W is the overall support set (1 2 mW W W W� � �� for m supports) and V the overall

states set (1 2 nV V V V� � � �� for n variables).

While the general image system I characterises only potential states of the variables, function
d provides information about their actual states within the delimited support set. Extra knowl-
edge is introduced in the system and the formal definition of the data system is then:

D I d� ,� � (1.6)

24

For any particular application, however, the meaning of data d must be added to the formula-
tion. This is done by replacing I with S (data system with semantics). For an observation char-
acterised by

� �

1 ()
i i

i i

i i

i i i

A V

A V

V V

e o x y�

° °

�

�

� �
�� �

� �� 	
�

�

�����

�����

one has 1() (, ,)nd w v y y� � � , where yi is the observed state of a variable vi.

The function d can be determined in many ways: it may come from observations, it may be
derived from higher level systems, or it may be defined in a design.

When one uses fuzzy observation channels, then each actual observation is recorded as an or-
dered pair that consists of an overall support instance w and an n-tuple (h1, ..., hn) of functions

h Vi i: [,]� 0 1

where hi(y) expresses the degree of certainty that y is the observed state of variable vi. In [Klir
1985], data for a crisp observation channel is represented in a matrix

, ,i w nd v i N w W
 �� � �
 �

whose entries vi,w are states of variable vi observed at overall support instances w. This is il-
lustrated in Table 1.6, where the support is specified as discretised time (this will be used
later), i.e.,

() ,i j n jd v t i N t �
 �� � �
 �

observation point i 0 1 2 …

v1 1 2 1
v2 2 2 3
…

Table 1.6 : A crisp data or activity matrix

Just as an illustration, a fuzzy data matrix is shown in Table 1.7 6.

6 The membership values depend on the membership functions. Here, they are mere illustrations and one should
not attach too much importance on their values.

25

observation point i 0 1 2 …

v1 (1;0.9),
(2;0.3)

(1;0.5),
(2;0.5)

(1;0.7),
(2;0.4)

v2 (1;0.2),
(2;0.8),
(3;0.0)

(1;0.0),
(2;0.9),
(3;0.2)

(1;0.0),
(2;0.3),
(3;0.7)

…

Table 1.7 : A fuzzy data or activity matrix

At the data system level, additional methodological distinctions can be made.

Data can be completely specified if and only if all entries in its data matrix are specified. Oth-
erwise, data is called incompletely specified. In the latter case, two additional types of incom-
pleteness can be specified:

• some data are not available (missing values), see appendix C for an example.

• it does not matter what some of the data are (don’t care conditions)

Another methodological distinction can be made when the overall support set is linearly or-
dered (e.g., when time is the only support). One can then distinguish periodic data from a-
periodic data. The examples contained in appendices A, B and D are periodic. The example in
appendix C is a-periodic.

The methodological distinctions on level 1 are depicted in Table 1.8.

Spec Periodic

0 (incomplete) 0 (no)

1 (complete) 1 (yes)

Table 1.8 : Methodological distinctions at level 1

A priori knowledge on the data level can consist of the relevant methodological distinctions.
Besides these two distinctions, one should try to obtain statistical information on the raw data
(specific image system) and the mapped, sometimes called ‘recoded’ data (this term will be
explained in chapter 2) and do a comparison.

1.5.3 Epistemological level 2: Generative - behavioural system

In the inductive approach, the next step is data processing in which one searches a support-
invariant characteristic (a pattern) in the data of level 1. This gives, besides explanation, the
possibility for prediction, retrodiction, or generalisation. Prediction will be considered in the
examples of the appendices. Support-invariant generative relational characteristics of the vari-
ables in the image system are represented by an overall characterisation of a constraint among
a set of variables within the support set. In our framework where time is the only support, this
boils down to searching time-invariant patterns among the variables.

For an ordered support set, e.g., time, the individual states can be constraint not only by each
other, but also by states in a chosen neighbourhood of each particular support instance (pat-
tern depth > 0). Such a neighbourhood is referred to as a mask. A mask is defined in terms of
the variables involved, the support set, and a set of translation rules in the support set. A mask

26

can be represented by a matrix in which the number of rows is equal to the number of vari-
ables and the columns relate to a finite set of support instances, see Table 1.9.

v1 s1,5 s2,5

v2 s3,5

v3 s4,5 s5,5

v4 s6,5

Table 1.9 : A mask with sampling variables for w = 5

Each (crisp) translation rule is a one-to-one mapping that accounts for the influence of the
neighbourhood obtained via the support set W. A translation rule rj is thus a parameter-
invariant relationship given by

r W W

w r w
j

j

:

()

�

�
(1.7)

If the set of transition rules is denoted by R, then sampling variables can be characterised by a
relationship M over V x R, where M stands for the mask defined previously.

M V R� �

Empty entries in the matrix Table 1.9 are not included in the mask (they will be represented
by zeros in the masks used from chapter 2 on). Sampling variables are thus non-zero entries in
a mask, which can be generalised for fuzzy relations by

M V R� � �[,]0 1

A fuzzy translation rule can be used if the constraint is uncertain. In the sequel, however, a
limitation to crisp translation rules is done.

A sub mask is any subset of V R× for which

� �
VXE

⊆ or � �
VXE

∈℘ � �

The cardinality of a mask M, denoted by #M, stands for the number of non-zero entries for the
neighbourhood set. The depth of the mask ∆M is defined as the number of columns. The car-
dinality of R is equal to the depth of the mask, i.e., #R = ∆M, because each particular transi-
tion rule j acts upon only one column of the mask matrix (see further). The set of sampling
variables, denoted by S, is then given by � �1 2 #, , , MS s s s� � .

Any translation rule rj can be applied to any variable in vi in V. Thus, given a general image
system I, a set of variables V in I, and a set of transition rules, the sampling variables are de-
fined by

s vk w i r wj, , ()� (1.8)

Each sample variable can be uniquely labelled by an index function k:

#: Mk M N�

27

If sk is defined solely in terms of a variable vi (what was supposed), then its state set Sk, is
equal to the state set Vi. A special case arises when the support set is totally ordered7, then one
can make equation (1.7) more explicit by

()jr w w ρ= +

and thus simplifies equation (1.8), with a more familiar notation for time t, to

s vk t i t, ,�
�U

, (1.9)

The column in the mask for which � � 0, is called the reference (instance). Table 1.10 shows
a mask. A mask is thus a fixed set of sampling variables.

ρ = -1 ρ = 0 ρ = 1

v1 s1, t = v1, t-1 s2, t = v1, t

v2 s3, t = v2, t

v3 s4, t = v3, t-1 s5, t = v3, t

v4 s6, t = v4, t+1

Table 1.10 : A mask with sampling variables for time t

Table 1.10 shows the theoretical values of the sampling variables for a reference time t = 5.

v1 s1,5 = v1,4 s2,5 = v1,5

v2 s3,5 = v2,5

v3 s4,5 = v3,4 s5,5 = v3,5

v4 s6,5 = v4,6

Table 1.11 : A mask with sampling variables for time t = 5

where the transition rules can be shown explicitly (#R = 3)

• r1 (ρ = -1) consists of s1,5 = v1,4 and s4,5 = v3,4

• r2 (ρ = 0) consists of s2,5 = v1,5 , s3,5 = v2,5 and s5,5 = v3,5 (identity transition rule)

• r3 (ρ = 1) consists of s6,5 = v4,6

It can be seen that a mask placed on an activity matrix only makes a subset of the mask entries
transparent, hence, its name. If an activity matrix has k data records, then k-∆M+1 complete
samples of activity can be used from the activity matrix.

The difference between the maximum and the minimum values of r among the sampling ele-
ments included in a mask will be called the memory depth of the mask, i.e., ∆M – 1. Sampling
variables are thus those variables that participate in the time-invariant relations of discrete
systems.

7 Klir already wrote about sampling variables for a totally ordered support in [Klir 1969, p 116]

28

Different masks can be constructed by using other sets of translation rules. Each mask corre-
sponds to a specific viewpoint according to which the constraint among the variables is repre-
sented, [Klir 1985]. A mask can be built up from data or, when it is abstracted from a (more
precise qualitative) quantitative description, serve as a means of validation. It is very impor-
tant to remark that a mask does not change: hence, the translation rules do not change.

The overall state set of the sampling variables C is defined by:
#

1

M

k
k

C S

��

Data samples are defined as a subset of the overall state set C. They represent observed states
of the sampling variables. The subset can be expressed by a functional relationship, called a
behaviour function. It specifies the occurring states of C, independent of the actual support
values. If the behaviour function is crisp, it is called a selection function. The roster method of
expressing the constraints is simply to list all possible overall sampling states. This list of
samples is a subset of the overall state set of the sampling variables, i.e., the selection function
becomes

� �

� �

� �

%
� � � �

�

�

→
→
→

� �

�

�

�	
�����

������

�	
�����

������ �
�����

The selection function can be considered as a special case of a possibility distribution func-
tion, [Klir 1985]. An extension can be found in a fuzzy behaviour function, which is defined
by

~
: [,]

()

f C

c c
B

C

�
�

0 1

�

Based on the nature of the behaviour function (crisp, probability, possibility, etc.), different
extra methodological distinctions can be introduced. In this thesis, a restriction to probabilistic
(special case of a fuzzy measure) behaviour functions is made. This is conform with [Klir
1985] where he considers only possibilistic and probabilistic behaviour functions as most in-
teresting.

Consequently, a behaviour system FB can be defined to characterise a support-invariant con-
straint of a set of variables in terms of a behaviour function fB, a mask M and an image system
I.

F I M fB B� , ,� � (1.10)

(each term between brackets is dependent on the previous one(s)).

A mask can be considered as a qualitative representation of the behaviour. Each mask M im-
plicitly represents another aspect (qualitative distinctions; order of system, ...), while each fB

represents the way of selection (crisp, fuzzy). In an implementation of GSPS, called SAPS
(System Approach Problem Solver), it will be shown that a probabilistic approach is used.
This is already put forward in [Uyttenhove 1978], where he defines a basic behaviour by8:

8 Uyttenhove takes a subset of C, but it can be extended to C by putting zero probabilities for the extra data sam-
ples.

29

(, ()) | ,0 () 1, () 1
c C

BasicBehavior c p c c C p c p c
°

� �
� � � � �� �
� �

�

Uyttenhove considers also the probability of occurrence of a pair of sample variables. He talks
about a basic state-transition relation (ST-behaviour) given by, [Uyttenhove 1978]:

BasicST c c p c c c c subset C C p c c p c c
c c

= ∈ × ≤ ≤ =
�
�
�

�
�
�

∑((, '), (, '))|(, ') (), (, ') , (, ')
, '

0 1 1

To be able to generate the data, the basic ST-behaviour is modified by using conditional prob-
abilities instead. Hence, a generative ST-relation is defined:

BasicGST c c p c c c c subset C C p c c p c c
c

= ∈ × ≤ ≤ =
�
�
�

�
�
�∑((, '), ('|))|(, ') (), ('|) , ('|)

'

0 1 1

The constraint, represented by M, is a non-causal support-invariant relation, which does not
describe how data is to be generated. To be able to do that, the sampling variables are parti-
tioned into two distinct sets:

• generating (sampling) variables. They are associated with a generating submask Mg .

• generated (sampling) variables, i.e., they are generated by the generating variables through
the support-invariant constraint. They are associated with a generated submask Mg .

A generative mask MG is then defined by

M M M MG g g� , , (1.11)

where

� � �

� � �

� �

J J

J J

J J

� ⊂

∪ =

∩ = ∅

(1.12)

A re-labelling function can then replace the labelling function k by two new ones:

:

:

g g g

g g g

M K

M K

�

�

�

�
(1.13)

A concrete example is found in chapter 2. The state sets of the

• generating variables are denoted by G Sk
k Kg

�
°

�

• generated variables are denoted by G Sk
k Kg

�
°

�

The (crisp) behaviour function now becomes a (crisp) generative behaviour function:

f G GGB: �

The behaviour system becomes a generative behaviour system

F I M fGB G GB� , ,� � (1.14)

Data can now be generated by a two-step algorithm:

30

(1) given state g G� and t T� , use fGB to determine g G� for t. It is assumed in this case
that g is known at t, so an ‘initial’ condition is needed.

(2) in- or decrement t and repeat (1). Incrementing (for prediction purposes) needs an initial
condition for the smallest t, while decrementing (for postdiction purposes) needs initial
conditions for the greatest t. If t increases from left to right, then for incrementing, Mg is
the set of all right-most elements of M, while for decrementing, Mg is the set of all left-
most elements.

It is assumed that at least one state g is permitted by function fGB, i.e., ∃ ∈ =g G f g gGB, (,) 1. If
only one state is permitted, the data generation is unique and the system is deterministic (se-
lection function). If more than one state is permitted, the system is non-deterministic: there is
no functional relationship, but a pure relational relationship. The selection function is inade-
quate for dealing with non-deterministic systems. Consequently, an extension to the popular
probability measure is taken. Here, interest lies in the degree of likelihood of occurrence for
any state out of the set of all states of the variables involved. One can rewrite the selection
function fGB as a relation over G G� , i.e.,

f G G

f g g g g

g g

GB

GB

: ,

(,)

� � 0 1	

= 1 if occurs when occurs,

= 0 if cannot occur when occurs,

then the extension to its fuzzy counterpart is clear via

f G G

g g f g g
GB

GB

: ,

(,) (|)

× →
→

0 1

where f g gGB (|) is the conditional probability or possibility on g .

Again, the probability measure will be taken here. If cg is that portion of a sample c that is as-

sociated with the generated variables and cg stands for the rest of the sample, then a genera-

tive relation (generative state transition relation) can be defined as, see [Uyttenhove 1978],

GenST c c p c c c c subset C C p c c p c cg g g g g g g g g g
cg

� � � � � �
�
��
��

�
��
��

�((,), (|))| (), (|) , (|)0 1 1

31

Selection of a right or optimal mask

The selection of a right mask is governed by general principles as given in [Klir 1985],
Hence, the requirements can contain (in decreasing order of importance)

(1) a restriction of a set to a subset by some a priori knowledge, which is by default, or by the
user defined, or by expert knowledge, by structural knowledge, etc. (see sub-mask).

(2) a restriction to masks for which the misfit between generated data and experimental data
is as small as possible (the selection function can be manipulated accordingly)

(3) a restriction to masks for which the degree of non-determinism is small

(4) a restriction to masks for which the complexity is small

From chapter 2 on, an optimal mask will be looked for that fulfils some requirements. For that
aspect, a largest acceptable mask ML is defined by ML V R� � where
R t� � � �()|� � � �1 2	
 [Klir 1985]. It is a full matrix with n rows and ∆M columns. Each
submask Mi represents a restricted set of the possible behaviour systems. Meaningful sub-
masks can be derived from a priori (domain) knowledge. At least, they must satisfy the fol-
lowing conditions:

(a) one element in each submask (a row in the M-matrix) is included,

(b) one element with the translation rule t + ρ2 must be included (a rightmost element). This
requirement is needed to prevent duplicates of equivalent sub-masks.

The number of meaningful sub-masks generated by the domain-independent rules for n vari-
ables and depth ∆M is given by

N n M M n M n
(,)� ' '� � � ��2 1 2 11�
 �
 (1.15)

Additional restrictions may be: fixed set of generated sampling variables; fixed number of
sampling variables; fixed upper bound of number of sampling variables, or a restriction to
masks without gaps (see appendix D for an example of a mask with a gap). These restrictions,
together with the background knowledge, result in a set of candidate masks (see chapter 2).
The background knowledge stems from an amount of a priori knowledge about the system
behaviour. E.g. a special rule concerns the fact that for non-ordered support set, one must only
take memory-less masks (∆M = 1). Memory-less masks do not need initial conditions. In
contrast, memory-dependent masks require initial conditions. The larger the mask, the larger
the number of required initial conditions (order is higher). The set of candidate masks finally
resulting from these requirements, should be small enough to let the user determine a suitable
mask (if more candidates remain).

To be able, in some cases at least, to determine how well the support-invariant relation is rep-
resented by a particular mask, one needs a measure of generative uncertainty associated with
the choice of a particular mask. The degree of non-determinism is related to the average un-
certainty associated with the generation of data. This uncertainty is defined in terms of gen-
erative behaviour functions fGB (�fGB). If the behaviour function is a probability distribution
function, then one uses the Shannon Entropy as measure for generative uncertainty. This will
be explained in much more detail in chapter 2.

32

Directed systems

For directed systems the sampling variables can be further partitioned in two subsets:

• the input variables are situated in a submask Me , the e stands for those generated by the
environment

• the remaining variables are situated in a submask Me , hence, M M Me e∪ = and
M Me e∩ = ∅

The mask of a directed behaviour system is then defined by

� , ,M M M Me e=

The directed behaviour function fB is defined by

� : [,]

, � (|)

f E E

e e f e e

B

B

× →

→

0 1

where the state set of the

• environmental or input variables is denoted by
e

k
k K

E S
∈

= ∏

• non-input variables is denoted by
e

k
k K

E S
∈

= ∏

The behaviour system becomes a directed behaviour system

� , � , �F I M fB B= � � .

Me can be further partitioned in Mg and Mg such that (1.12) applies, but now with M re-

placed by Me . Thus,

� , , ,M M M M MG e g g=

with

� : ,

(, ,) (| ,)

f E G G

e g g f g g e
GB

GB

× × →
→

0 1

If the system is deterministic, then it can be rewritten as � :f E G GGB × → .

Finally, the directed generative behaviour system is defined by

� �, � , �F I M fGB G GB= � � (1.16)

The sampling of the data is, if the mask is well chosen, a constant confirmation of the same
mask. If this confirmation can not be upheld anymore, one may need to consider the presence
of a varying system.

An extended form of behaviour is the state transition relation, which specifies a binary rela-
tion of pairs of successive samples. It has some structural connotations [Uyttenhove 1978].

This thesis will only consider probability measures in a directed generative behaviour system.
The use of probability measures is more general than simply using a selection function.

33

Hence, non-deterministic systems, which are more general than deterministic systems, can be
dealt with.

1.5.4 Higher epistemological levels

The structure system (level 3) describes relations between lower level systems. The system
consists of generative (or lower level) subsystems, which may, for example interact through
shared variables. A relation is represented by direct couplings among the elements. It consists
of a set of elements and some relations between them.

A meta-system (level 4) shows the relations between lower-level relations. The system con-
sists of lower level subsystems and some support-invariant meta-characterisation (e.g. rule,
relation, procedure).

This is a parameter invariant procedure, which describes changes from one system to another.

1.6 Conclusion

This chapter sets the context in which the identification problem described in the introduction
is situated. It gives a brief introduction to general systems theory, the two main approaches
towards modelling and it gradually focuses from general system theory to a specific non-
parametric system identification methodology, called general system problem solving. Some
initial assumptions for the framework of this thesis were stated: the systems to be identified
are ‘black-box’ and directed; and the models should be white-box. Furthermore, the observa-
tions are obtained passively, which adds a further challenge to the identification process.

34

References

Atherton and Borne [1992], Concise Encyclopaedia of Modelling & Simulation. ed. D.P.
Atherton, P. Borne, Pergamon Press, 1992.

Coombs C.H., Raiffa H., Thrall R.M. [1954], “Some Views on Mathematical Models and
Measurement Theory”, Decision Processes, John Wiley, New York, 1954.

Elzas M.S. [1984], “System Paradigms as Reality Mappings”, Simulation and Model-Based
Methodologies: An Integrative View, ed. Ören T.I., Zeigler B.P. and Elzas M.S., NATO ASI
Series, Series F: Computer and System Sciences, vol. 10, Springer Verlag,
p. 41-68, 1984.

Gaines B.R. [1979], General Systems research: Quo Vadis? General Systems Yearbook, 24,
p. 1-9, 1979. Cited in [Klir 1985].

Hecht-Nielsen R. [1990], Neurocomputing. Addison-Wesley Publishing Company, 1990.

Karplus W.J. [1976], “The Spectrum of Mathematical Modelling and Systems Simulation”,
Simulation of Systems, ed. Dekker L., North-Holland Publishing Company, p. 5-13, 1976.

Klir G.J. [1969], An Approach to General System Theory. Van Nostrand Reinhold, 1969.

Klir G.J. [1985], Architecture of Systems Problem Solving. Plenum Press, 1985.

Klír J. and Valach M. [1967], Cybernetic Modelling. (English edition), Hiffe Books Ltd.,
1967.

Ljung L. [1993], System Identification Toolbox - For Use with Matlab. The MathWorks, Inc.,
1993.

���������� ����� ������ � !Mathematical Theory of General Systems”, Advances in Mathe-
matical Systems Theory, ed. Preston C. Hammer, The Pennsylvania State University Press,
p. 47-80, 1969.

Tong H. [1990], Non-linear Time Series: A Dynamical Approach. Oxford University Press,
1990.

Uyttenhove H.J. [1978], Computer-Aided Systems Modelling: An Assemblage of Methodo-
logical Tools for Systems Problem Solving. Ph.D. thesis, School of Advanced Technology.
State University of New York at Binghamton, 1978.

Zeigler B.P. [1976], Theory of Modelling and Simulation. John Wiley & Sons, 1976.

35

Chapter 2

System Approach Problem Solver

2.1 Introduction

This chapter introduces a non-parametric system identification tool based on GSPS, which is
called SAPS (System Approach Problem Solver). Two versions have been designed: one by
Uyttenhove [1978] and one by Cellier [1991]. The latter is called SAPS-II. It has more poten-
tial for practical applications and so will serve as a reference for the research developed in this
thesis. Consequently, this chapter describes SAPS-II in much more detail.

Although SAPS-II is based on GSPS, some methodological differences and restrictions apply.
On the source system level, the system type is directed, the support is time, and the observa-
tion channel is fuzzy or crisp. The concept of an observation channel can be found in what is
called ‘recoding’ in SAPS-II. At the data system level, the data may or may not be completely
specified, [Nebot 1994], but data should be periodic, (see appendix C). At the behavioural
system level, only causal masks are used. The matrix representing a mask is transposed with
regard to the matrix in GSPS, and is simplified to consider only one output at a time. The lat-
ter is no real restriction because, if more outputs occur, then an equal number of correspond-
ing one-output masks is initiated and an identification process is run for each. The evaluation
of a mask provides the possibility to compare masks and to search for the best one. Attention
is devoted to prediction in SAPS-II for which two methods are available. Both allow the de-
termination of prediction errors [Cellier and Yandell 1987; Herrera 1999]. SAPS-II is also
implemented for epistemological levels higher than 2, see for example [de Albornoz 1996],
but as in chapter 1 for the theoretical framework, a restriction to the first three epistemological
levels is present.

2.2 SAPS

In essence, SAPS uses a pattern recognition approach to identify relevant patterns in data
stemming from black box systems by using the general system problem solving framework
proposed in chapter 1. As already stated: most identification tools require an assumed model
structure to start with (parametric system identification). If the structure is not right, then the
parameter estimation that follows is in essence wrong. Thanks to the GSPS framework, SAPS
avoids this pitfall by not presupposing any structure (non-parametric system identification).
Furthermore, most identification procedures generate a system model that is disassociated
from its own confidence information. They allow prediction over a too long time period
where the model loses it validity. SAPS draws its own confidence information and does not
allow to forecast behaviour that cannot be justified on the basis of observed data (see section
2.3.4).

36

The first implementation was written in APL by Uyttenhove [1978]. It has been re-
implemented as a toolbox under the name SAPS-II within the framework of the CTRL-C en-
vironment by Cellier [1987]. Emphasis was put on a cleaner user-interface and a modular ap-
proach. A third ‘partial’ and object-oriented version, called SAPS-ST, is now available as a
prototype in Smalltalk, [Van Welden and Vansteenkiste 1994]. More information about this
prototype is found in the second part of chapter 4.

2.2.1 The first SAPS implementation

In [Uyttenhove 1978], the author describes a general way in which SAPS should work in the
context of GSPS. His implementation is written in APL and concentrates on certain transi-
tions that are considered to be simple because they only imply the application of one kind of
methodological tool. Other transitions are compound transitions, which can be formed by
combining simple ones. The simple transitions are depicted in Figure 2.1. Each transition
problem from epistemological system i to epistemological system j is denoted by tri,j

0

2

3

4

1tr11

tr14

tr23

tr12

Figure 2.1 : Simple transitions between epistemological levels

The four corresponding tools, one for each simple transition are:

1. Tool AGGREGATE (tr11) deals with transitions on level 1 and allows entering,
showing and altering of data. Elementary statistical measures can be obtained about
the data. Not only crisp, but also fuzzy data is accepted,. Nine variables and 2000 rec-
ords can be handled. The mapping from a specific image system to a general image
system is performed manually. The transformation from field data to abstract data is
called ‘recoding’: values of a quantity belonging to a discrete system are divided into
several disjoint sets (change of resolution). Hence, this tool contains an important rou-
tine called RECODE. Thus, recoding, which sets the resolution level of a quantity, in
this SAPS version occurs manually.

2. Tool MASKSEARCH (tr12) deals with the mask search (from level 1 to level 2). At
this level of behaviour systems, two kinds of behaviours are identified. A basic be-
haviour is a simple summary of the data in the form of a list of ‘aggregate states of the
system’. This is a mere collection of individual states observed in the data supplied
with their relative frequency of occurrence. A transition behaviour represents the suc-
cession of states observed in the system. On this behaviour, a mask has to be fit.

3. Tool LATTICE (tr23) deals with structure constraints (level 2 to level 3).

37

4. Tool META (tr14) is conceptually defined as a transition through the data system
where variation among states of the variables is detected along the dimension of the
parameter space (level 1 to level 4).

The concepts accompanying these tools are found back in later implementations of SAPS.
Unfortunately, this version of SAPS was not sufficiently flexible to be of much practical use
[Cellier 1991]. That is why a second version of SAPS has been developed by Cellier.

2.2.2 SAPS-II

The successor of Uyttenhove’s version of SAPS, called SAPS-II, is an interactive software
tool coded under the guidance of François Cellier [1987] at the University of Arizona [Cellier
and Yandell 1987]. SAPS-II has been implemented as an application function library in
FORTRAN to the control systems design software CTRL-C. A version in MATLAB© is also
available.

In SAPS-II, major emphasis is put on data flow. The SAPS algorithms are viewed as opera-
tors mapping one data structure to another. Each function (or subroutine) is an operator that
acts upon incoming data and writes the result of its action via the CTRL-C environment. An-
other function can be invoked with the resulting data from the previous function. Hence, a
good degree of modularity is achieved. SAPS-II furthermore provides a reconstruction analy-
sis based on a established (optimal) mask (level 3) by identifying a structure based on group-
ing subsets of variables together that seem to be more closely related to each other than to the
remaining variables.

Improvements in SAPS-II were done on the determination of the sampling interval. Although
there is no precise way to determine the most effective sampling interval, a good rule of
thumb is that the mask should cover the dynamics of the slowest mode in the model.

Recoding is refined and extended in SAPS-II. It is argued that recoding can be done more ef-
ficiently when it tries to retain as much information as possible. Remarking that the number of
states, or levels, that each variable can have after quantisation, is problem dependent, one may
state that the number of states should be as low as possible without losing too much informa-
tion. Hence, the term expressiveness emerged in SAPS-II. It is important to notice that the
conflict between the demands of simplicity for the purpose of a strong forecasting power
(predictiveness), and an improved resolution for the purpose of a strong expressiveness plays
an important role in the choice of the number of levels. The choice of how to map to a chosen
number of levels is as in Uyttenhove’s implementation fuzzy or crisp, but can now be chosen
to be uniform or not. Some quality measures are added and a valid range of forecasting is jus-
tified via confidence intervals.

2.2.3 Other research done on SAPS

A research group in Barcelona under the guidance of Prof. Cellier and Prof. Huber has done
some valuable research on SAPS. The main emphasis of Nebot’s [1994] thesis was to en-
hance the FIR (Fuzzy Inductive Reasoning1) methodology to be able to apply it to soft science
systems in general and to biomedical science systems in particular. To this aim she refined the
FIR methodology. She also introduced an enhancement of the FIR methodology for dealing
with incomplete data records. The thesis of Mugica [1995] treated the systematic design of
multivariable fuzzy controllers using FIR. The thesis of de Albornoz [1996] describes a
qualitative approach to research in the field of automated plant supervision, fault detection,

1 FIR is a slight modification of SAPS-II

38

and fault diagnosis of industrial processes. He has put more effort on reconstruction analysis,
which situates itself on the structure system level. The thesis of Herrera [1999] evaluates and
enhances the methodology of FIR, such that it helps in the prediction of the future behaviour
of time series. Her study allowed a characterisation of the types of time series that FIR pre-
dicts well. In order to overcome the ambiguity of the predictions (due to the qualitative ap-
proach) new elements of prediction were introduced: the formula used for calculating the
relative distances and the absolute weights of the five nearest neighbours was modified, and
new confidence measures (based on similarity and proximity) were incorporated. They allow
an estimation of the prediction error without the necessity of knowing the true value of the se-
ries.

2.3 SAPS in more detail

SAPS concentrates on the observation of a distinct set of quantities at a given space-time
resolution, on the search for a simple expression of the time-invariant relation between these
quantities, and on the search for the properties that determine the relations mentioned.

Confronted with an (partially) unknown system, one should be able to ‘learn’ its behavioural
pattern via the observation of extracted data. The distribution in the data values is of ultimate
importance for if there is not enough variance in these values, one cannot expect to extract
useful2 patterns from it: the data should be representative for the system’s behaviour.

2.3.1 Sampling and recoding in SAPS

When gathering raw data for a system, sampling takes place (discretisation3 of time), [Åström
and Wittenmark 1997]. In all existing versions of SAPS the sampled values have to be quan-
tised. Cellier [1991] calls the sampling and quantisation process recoding. In this thesis, re-
coding is used in a stricter sense so that it only refers to the quantisation process. A fuzzy re-
coding corresponds then with a composition of a fuzzy observation channel (equation (1.3))
and a crisp abstraction channel (see Table 1.5) for variables, i.e.,

1 1() [()]i i i i i ie o x e o x� ��� ��

The sampling process will be discussed first and then the quantisation process.

For the moment, suppose that time is continuous and sampling still has to occur. Usually, this
will often be the order in which data is processed as it comes from the system under investi-
gation. The two methods will be described independently.

Cellier [1991] explains how an optimal time step can be chosen according to different princi-
ples. He argues that if the time step is too small, the variable has not significant changed and
each time instant one is looking at a small time interval for the discovery of the pattern (over-
sampled situation). On the contrary, if the time step is too big, relevant patterns may be
skipped in the step. In this case, with every step the system reaches a new kind of steady state
where the steady state values of the state variables depend on the physical input only (under-
sampled situation).

By considering the system as a n
th

 order system, one may identify a fastest time constant and a
slowest one. In order to capture the fastest time constant one has to choose the time step suffi-

2 Useful is used in its general meaning, but in chapter 5 this term will be formalised.

3 In this chapter, the term discretisation will stand for discretising time (conform digital signal processing termi-
nology). It is not to be confused with quantisation.

39

ciently small. This can be done via the sampling theorem by Whittaker, which stems from in-
formation theory. This states that the time step δt should be (at least twice) smaller than the
smallest period observed in the signal. In the examples used in this thesis, data is either al-
ready sampled (hopefully fast enough), either generated via simulation in such a way that it is
sampled fast enough to capture the fasted time constant one wants to observe. It is hoped that
the time step was small enough not to throw away valuable information. It is, however, a dif-
ferent story for the slowest time constant. It has to be captured in the time-invariant pattern
that comes into play at the behavioural level. The slowest time constant cannot be discovered
always a priori. Therefore, when taking small time steps, masks have to be deep enough (∆M
large).

If a signal has a continuous scale, a way in which to recode it can be chosen. This is typically
done by first determining the number of desired levels and then to use a quantisation algo-
rithm. A similar process can be used for discrete data points if the level of detail is fine
enough. In that case one may still recode the data and map it to smaller value set (amalgama-
tion of levels).

Recoding results in a new qualitative data set of observations. The latter may be called a
qualitative activity matrix or a recoded data matrix. It forms the starting point for the next
epistemological level.

The recoding process happens in three distinct steps.

First, one determines the number of levels for each variable. A low overall number of levels
tends to give good forecasting possibilities but a low expressiveness, while a high number in-
creases the expressiveness but decreases the forecasting power. For example, recoding eve-
rything in one level would give a good but useless forecasting power. On the contrary, quan-
tising everything in 1000 levels would give good expressive power, but low predictive power
if there were not an enormous amount of points. The trade-off lies in the required minimum
number of observations for each composite (overall) level and the variety in observed data
level combinations. Cellier [1991] deduced a way to compute the number of desired levels.
To explain his method, suppose one has n variables and nrec data records. Each variable is re-
coded in ki levels, where a level denotes a value of a discrete state variable. The total number
of distinct legal states is the cross product of all possible legal states:

n kleg i
i

�� (2.1)

According to statistical considerations, one should record each possible discrete state at least
five times so the recorded number of states should be at least five times nleg, [Law and Kelton
1990]. In the special case where each variable is recoded in the same number of levels, say k,
one obtains:

n krec
n� 5

Therefore, the preferred maximum number of levels is then

k ROUND
nrec

n
�

�
��

�
��5

1

(2.2)

For reasons of symmetry, an odd number of levels is preferred over an even number. This al-
lows to include a medium range or a zero range as in (-, 0, +). Practically, one does not take
the number of allowed levels according to the equation (2.2). The trade-off number of levels,
taking into account expressiveness and predictiveness, is 3 or 5 levels (rule of thumb obtained
from experience).

40

The next thing to do is to determine the landmark values. Landmarks are the separation points
between the chosen intervals. One may opt for the equidistant case where the landmarks are
generating equal intervals of length (fixed-sized recoding) or one can chose the uniform dis-
tributed case where the landmarks are put in such a way that the qualitative data distribution is
uniform over the intervals (uniform recoding4). The way in which data is quantised is very
important, because the pattern matching that follows later on, is based on the quantised val-
ues. With regard to this aspect, Cellier noticed that certain ways of quantising retain more
‘expressiveness’ than others. Figure 2.2 and Figure 2.3 illustrate this. The former shows a
quantisation with fixed-sized recoding (3 intervals), while the latter shows a recoding (also 3
intervals) under uniform recoding. The latter quantisation retains more expressiveness with
regard to fluctuations in the data trajectory. This method is also better because the qualitative
values are better backed-up by more real values belonging to them. In fixed-sized recoding it
was possible that there were qualitative values representing only a few real values and other
representing almost all other real values. Hence, uniform recoding is preferred in this case.
However, some a priori considerations may indicate the use of fixed-sized recoding if the
separation points between the intervals (landmarks) have a special meaning. This is much re-
lated to the case where a domain expert already had an interpretation of the data and where he
classified it according to certain criteria. One may then find qualitative terms in the data set.

0,00

0,50

1,00

1,50

2,00

2,50

0 50 100 150 200 t

y (t)

Figure 2.2 : Quantising with fixed intervals

4 Uniform recoding is equal to an approach based on maximisation of the Shannon Entropy over the given num-
ber of intervals.

41

0,00

0,50

1,00

1,50

2,00

2,50

0 50 100 150 200 t

y (t)

Figure 2.3 : Quantising under a uniform distribution

Finally, when the landmarks are determined in one or another way, one still has two possi-
bilities for continuing the recoding process. Either one maps with a crisp function, or one uses
a fuzzy mapping. In a crisp mapping one simply puts the corresponding qualitative value in
the qualitative matrix. In the fuzzy case, one uses a membership function to map. This process
comes down to fuzzification. Instead of a probability coefficient, the qualitative values get a
membership grade coefficient (MGC). The MGC allows calculating the possibility, the confi-
dence and other measures. Its value denotes the degree of confidence one has in the class
value for that particular data point. The use of Gaussian membership functions is depicted in
Figure 2.4.

0.5

1

0
raw data values

medium highlow very highvery low

x

mx

Figure 2.4 : Gaussian membership function

The Gaussian membership function for a continuous variable x is defined by:

memb k xi i i� � �exp ()� 2� � (2.3)

such that membi at the landmarks are 0.5 (µi is the top or mean of the function).

42

SAPS-II uses its own kind of fuzzification method. The raw data values are recoded into
qualitative triples. The first argument is the class value of the output, while the other two are
the fuzzy membership value and the side value. The latter is necessary because of the non-
monoticity of the membership function, i.e., left (-1) or right (+1) relative to the top. The side
value is something typically for SAPS. This can be seen from Figure 2.4 for a raw (quantita-
tive) data point x. Recoding for that point gives the triple (high, mx, -1). Hence, recoding a raw
data matrix of the form

t u1 u2 u3 u4 y

1 3.5 2.4 5.0 3.0 10.2

2 7.2 8.7 2.1 1.4 8.3

3 … … … … …

 Table 2.1 : Raw activity matrix

gives rise to three new matrices after fuzzy recoding5, i.e., the matrix with the set values
(Table 2.2), the matrix with the membership values (Table 2.3) and the matrix with the side
values (Table 2.4).

t u1 u2 u3 u4 y

1 low very low medium low very high

2 high very high very low very low high

3 … … … … …

Table 2.2 : Set values after recoding Table 2.1

t u1 u2 u3 u4 y

1 0.80 0.55 0.81 0.79 0.67

2 0.72 0.64 0.92 0.95 0.69

3 … … … … …

Table 2.3 : Membership values after recoding Table 2.1

t u1 u2 u3 u4 y

1 -1 -1 -1 +1 +1

2 -1 +1 +1 +1 -1

3 … … … … …

Table 2.4 : Side values after recoding Table 2.1

5 The numbers are merely for illustration purposes.

43

These together refer to a qualitative data model, [de Albornoz 1996].

The I/O variables are now recoded to a fixed set of discrete values (categorical variables).
These are stored in a data matrix, which serves as primary input for the pattern identification
process. SAPS will try to find a pattern that explains the data present in the set matrix, de-
picted in Table 2.2. The identification of a time-invariant pattern occurs in two phases:

1. Apply a mask, evaluate it somehow so that comparisons are possible

2. Search if there is a better mask with regard to the chosen evaluation criterion

These two steps will now be described in more detail in section 2.3.2 and section 2.3.3.

2.3.2 Evaluation of a time-invariant pattern or mask

Basically, there are two important patterns for the model identification in SAPS. The primary
pattern is what is already defined as a mask in GSPS. It represents the input-output depend-
ency relations induced from the system. The secondary pattern is the state-transition matrix
describing how the relations are spelled out in a discretised form. It is needed to define what
is called the quality of the corresponding mask.

In SAPS, the primary patterns or masks are cast in matrix notations where the time axis (con-
trary to GSPS where the matrix is in a transposed form) now stretches over the rows of the
matrix. An example for three input variables (u1, u2, u3) and one output variable (y) is given
below. Just for convenience the output is put as the last column.

u u u y

t t

t t

t t

t

1 2 3

3 1 0 2 0

2 0 0 0 0

0 3 0 0

0 0 4 1

� � �

�

� �

�

	

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

�

.

.

.

Table 2.5 : A mask in SAPS

Although for directed systems three kinds of entries, (input, generating and generated, see
chapter 1) can be identified, it is sufficient in this context to distinguish only between gener-
ating and generated entries, called m-inputs and m-outputs6, [Cellier et al. 1996]. The former
are denoted by negative numbers, the latter by positive numbers. The different negative num-
bers are just to specify the ordering when flattening the recoded data. This is the concretisa-
tion of the labelling functions shown in equation (1.13), where

{ 1, 2, 3, }

{1,2,3, }

g

g

K

K

� � � �

�

�

�

I.e., generating sampling variables are represented by negative numbers, while generating
sampling variables are represented by positive numbers.

6 In SAPS-II, no further distinction in generated, generating, and input sampling variables is done for practical
reasons.

44

Table 2.5 represents a mask with depth four (∆M = 4). Alternatively, one could say that the
mask has a memory of three time steps, thus a memory depth of three. The mask in Table 2.5
represents the following relationship:

1 3 2 3() ((3 .), (3 .), (.), ())y t f u t t u t t u t t u t� � �� � � �� (2.4)

where f� stands for a qualitative relationship.

Shifting a mask over the recoded data results in an Input/Output matrix, which shows in each
row the sampling state. Compare this with equation (1.9) and Table 1.10 from chapter 1.
Chapter 3 gives an example in another theoretical context.

t s1,t = u1(t-3δ t) s2,t = u3(t-3δ t) s3,t = u2(t-δ t) s4,t = u3(t) s5,t = y(t)

Table 2.6 : An Input/Output matrix row

The secondary patterns are the state-transition matrices. They are created by moving a mask
over the recoded data and by summarising the set of sampling variable values. A more de-
tailed description of this process will be given in chapter 3. At this moment, it is sufficient to
realise that with each mask there belongs a corresponding state-transition matrix. An example
of a state-transition matrix is found in Table 2.7 (this state-transition matrix cannot be derived
from the mask in Table 2.5, because the dimension of the overall generating state set is differ-
ent).

in out pin\

. . .

. . .

.

. . .

1 2 3 4

11 0 0 667 0 333 0 0 3

12 0 333 0 0 0 667 0 3

21 0 0 1 0 0 2

22 0 5 0 5 0 0 0 2

Table 2.7 : A state-transition matrix in SAPS

The state-transition matrix contains the input-output relations and forms the backbone for the
forecasting abilities of SAPS. The leftmost column of Table 2.7 contains the observed overall
generating states (m-inputs), while the top row shows the possible values of the generated
sampling variable7 (m-output). The entries in the matrix (second to one-but-last) column con-
tain the conditional probabilities of occurrence (see further). The last column contains the es-
timated probabilities of occurrence of the observed generating states.

The state-transition matrix can be translated to rules, which then can be used in an expert
system. In this case, the expert system may learn from unknown behaviour and store the ex-
tracted and transformed state-transition matrix in its knowledge base. SAPS can thus also be
seen as an addendum to expert systems. It enhanced the possibilities of the latter. In chapter 8
another way of generating rules via another paradigm is shown.

The complexity of the state-transition matrix depends on the cardinality of the mask. One
could use the data matrix itself as a (secondary) pattern, but this pattern is regarded as too
complex and unusable for forecasting (parsimony principle for modelling). Hence, more sim-
ple patterns have to be found by first searching for simple (lower cardinality of mask) input-

7 As only one generated variable per mask is taken, just refer to it as the output.

45

output relations over time. Thus, a simple mask has to be found. However, it cannot be too
simple, for then it would generate too much uncertainty in the prediction. A trade-off has to
be found.

The trade-off will be represented in an evaluation function, denoted by Q. In SAPS terminol-
ogy, this is called the quality of a mask (although it also stands in fact for the quality of the
state-transition matrix). Q is a function of relevant measures on the primary and correspond-
ing secondary pattern. Three basic kinds of measures will come into play:

• the degree of determinism (or uncertainty) of the candidate model (based on the secondary
pattern),

• the complexity of the candidate model (based on the primary or secondary pattern),

• the predictiveness of the candidate model (based on the secondary pattern).

Modifications/extensions on this will be discussed in chapter 4.

Determining the entropy of a mask for crisp recoding

The degree of determinism will be computed via the Shannon Entropy. Thus, it is proposed to
take the (conditional) Shannon entropy as a measure for the uncertainty allowed in the be-
haviour prediction. Shannon entropy is a measure for the information-contents. It is defined
by

2logj j
j

H p p= −∑ (2.5)

where each outcome j (output) has a probability pj of occurrence. If a certain outcome, say
outcome k, has a probability 1 of occurrence (and consequently the others have a probability
of 0 of occurrence) then the entropy is 0. In this case one has a minimum of uncertainty or a
maximum degree of determinism. In case all probabilities are equal (uniform distribution of
probability of occurrence) then the entropy will be maximal. For n outcomes, each outcome
will have a probability of (1/n), and thus substituting this in expression (2.5) gives

H nmax log 2

In this case one has no clue of which outcome is most likely to occur and thus the degree of
uncertainty is maximal or the degree of determinism is minimal. Concluding, a small entropy
value is desired to reduce the uncertainty.

The use of entropy in SAPS is based on conditional probabilities of the output. For each data
row in the state-transition matrix (such as the one in Table 2.7), one can compute the entropy
of the outputs (indexed by j) conditional on a given m-input state8 by

2(|) (|).log (|)i j i j i
j

H out input P output input P output input� �� � � 	
 (2.6)

The total entropy for a given state-transition matrix is then a weighted entropy over the m-
input states (indexed by i), or the average entropy over the m-input states:

2

(). (|)

(). (|).log (|)

m i i
i

i j i j i
i j

H P input H out input

P input P output input P output input

=

 = −  

∑
∑ ∑

(2.7)

8 The m in m-input is dropped for convenience.

46

and this defines the Shannon entropy as used in SAPS. It is the conditional Entropy of the
output given the input. Applying this on the state-transition matrix in Table 2.7 gives

Hm � � �

� � �

� �

�

{ . * . *log (.) . *log (.)

. * . *log (.) . *log (.) . * *log

. * . *log . . *log . }

.

0 3 0 667 0 667 0 333 0 333

0 3 0 333 0 333 0 667 0 667 0 2 1 1

0 2 0 5 0 5 05 0 5

0 75

2 2

2 2 2

2 2

As the state-transition matrix is used for forecasting, it is important to have a high degree of
determinism and, consequently, to strive for low values of the entropy. However, the model
for prediction has to be as simple as possible (under certain restrictions). This is the principle
of parsimony. Hence, a complexity measure has to be introduced. The complexity measure
can be defined in many ways. It can be based on the number of m-inputs, the depth of the
mask, etc.

Determining the entropy of a mask for fuzzy recoding

The quality determination in the previous section is only valid for crisp recoding where a
measure of ‘confidence’ is the probability of occurrence of a given m-input/m-output record.
With ‘confidence’ is meant what Cellier [1991] says: “it specifies how confident we are that
the assigned value is correct (in a certain m-input/m-output record)9”.

In the case of fuzzy recoding, fuzzy membership functions are to be used to obtain a measure
of ‘confidence’. In Table 2.8 one sees a record from applying a mask to a certain row from a
recoded data matrix with the corresponding membership values (side values not shown).

Recoded data or Input/Output matrix Membership values

x1 x2 x3 m1 m2 m3

Table 2.8 : A m-input/m-output record and its associated membership values

The confidence of a data row r is determined by the joint membership of the individual mem-
bership values, i.e.,

c input output memb memb membi r j r r k
k r

k
k(,) min(), , � � �

�

�

joint,
 in row
�

where k loops over the m-inputs and the output in row r.

The rest of the process for constructing a state-transition matrix is pretty much the same as in
the crisp case, but the accumulation of confidences may give values larger than 1. This is be-
cause SAPS uses a sum for the union of data records with the same state10, i.e.,

c input output c input output

c input output

i j i r j r
r

input output input output

i r j r
r

input output input output

i r j r i j

i r j r i j

(,) (,)

(,)

, ,
,

(, (,)

, ,
,

(, (,)

, ,

, ,

�

�

�

9 Parenthesis added

10 Other definitions for the union, such as maximum, may be applied.

47

To be able to use the same entropy function as before, normalisation is mandatory. Although
the use of the Shannon entropy in this case is theoretically not entirely correct (as Cellier
[1991] remarks), it seems to work satisfactory. There are theoretical solutions for this (the use
of U-entropy) foreseen, but they are not implemented (yet). Hence, in SAPS-II the entropy is
calculated as in the crisp case, but with the conditional probability replaced by a relative con-
fidence, i.e.,

P out input
c input output

c input outputj i
i j

i j
j

(/)
(,)

(,)
�

(2.8)

Complexity measures

Just to fix the idea, suppose complexity is defined as the number of m-inputs, i.e., #M-1. A
mask with few m-inputs tends to give state-transition matrices that have a low degree of de-
terminism, while masks with many m-inputs give rise to state-transition matrices with a high
degree of determinism. This corresponds with the principle that simpler models tend to have
less expressive power (lower resolution) and thus a higher degree of uncertainty. So, a trade-
off between degree of determinism and complexity has to be found.

The evaluation function Q should be such that the trade-off is incorporated in its functional
description. Thus a first proposal would be to use a function of the form

Q
H

C
m�

�1
(2.9)

where the degree of certainty could be defined by (1 – Hm) and where Hm is defined by equa-
tion (2.7). This, however, is inappropriate because one needs to compare different state-
transition matrices (and their corresponding masks) with each other to find the best model.
Hence, normalisation is necessary for comparison among models (i.e., comparing state-
transition matrices with different number of m-inputs). This is obtained by defining a normal-
ised overall entropy reduction by

H
H

Hr
m� �1

max

(2.10)

Applied to the previous example, the normalised overall entropy reduction becomes

H

H
Hm

r

�

� �

�
�
�

� � �
0 75

4 2
1

0 75

2
0 625

2

.

log
.

.
max

A possible evaluation function is now

max

1

#(inputs) # 1

m

r

H

HH
Q

m M

�

� �
� �

for a state-transition matrix with a corresponding one-output mask M.

Striving for small H is equal to striving for large certainty values (the numerator), and striving
for low complexity is striving for a low mask cardinality (the denominator). Thus, in both
cases, one aims at a high mask quality.

In a first version of SAPS-II, Cellier and Yandell [1987] used the quality function

48

Q
H

C
r� (2.11)

where the complexity weight C for an applied mask M is defined as

var

max

. .#n M M
C

M

�
�

�

where

• nvar is the number of variables,

• ∆M is the mask depth,

• #M| is the number of non-zero entries in the mask.

In a later version of SAPS-II, another measure was introduced, called the observation ratio
(OR), [Li and Cellier 1990]. It is a measure for the predictiveness of the prediction model
(state-transition matrix). It is defined by

OR
n n n n n

nleg

�
� � � ��

��
�

��
�

5 4 3 2

5
5 4 3 2 1 (2.12)

where

• n
leg

 = total number of distinct legal input states

• n
1
 = number of input states observed only once

• n
2
 = number of input states observed only twice

• n
3
 = number of input states observed only thrice

• n
4
 = number of input states observed only four times

• n≥5
 = number of input states observed five times or more

So if every legal input state has been observed at least five times, then OR = 1. If no data has
been observed, then OR = 1. OR will thus lie between 0 and 1.
The new form of the evaluation function (quality of a mask) is now defined by

Q H OR
H

H
ORr

m�
 � �
�
��

�
��

1

max

(2.13)

This function gives also a rating of how good (according to our new criterion) a mask per-
forms. The choice of a quality function and the choice of how and which measurable features
to include, is quite empirical and subjective. It is obvious that the applied criterion measures
must be based on sound principles. Besides the two choices just discussed, others can be de-
vised. In chapter 4, some other definitions are given.

This section showed how to evaluate a mask via its quality. Once a quality function is de-
fined, what remains is how to find the optimum quality value and its corresponding pattern.
The corresponding optimal mask guarantees that according to our chosen criteria, an optimal
pattern has been found that explains the data.

49

2.3.3 Searching the best mask

Section 2.3.2 demonstrated how to evaluate a mask and its corresponding state-transition ma-
trix. The latter can serve as a prediction model, see section 2.3.4. However, for a given data
set, many masks (and predictive models) are possible. This brings us to the search for the best
mask from a set of all possible candidates for a given data set (thus for a given source and
data system).

This set can be very large for a reasonable large data set. One could take as set the mask that
covers the whole data set, i.e., ∆M = nrec with all its sub-masks (see equation 1.15). Hence, an
upper bound on the complexity has to be inserted by the user in the form of a candidate mask.
SAPS ensures it will only try out and evaluate sub-masks from this candidate mask. Section
1.5.3 in chapter 1 shows how to define a sub-mask, but here a less formal description for one-
output sub-masks is given. A sub-mask M1 from a mask M is formed by putting certain m-
inputs in M zero. However, finding a relevant mask is far from trivial because of the fact that
— in the realistic case — different valid patterns or masks can be found that all explain the
observed data records under certain chosen criteria, expressed by a quality function Q. Hence,
the candidate mask must be carefully chosen and preferably be based on a priori knowledge.

It has been argued that in order to capture the fastest time constant, one has to choose the time
step sufficiently small. This should have been done in the source system. However, the slow-
est time constant can be captured via the mask. One can do this by simply taking the mask
large (deep) enough to hold this time constant. Cellier [1987] demonstrated this issue by
simulating a first linear order system with one input and three outputs. So one rule to take into
account is the following: “The depth of the mask must approximately cover the slowest time
constant of the system we want to capture”. Section 2.3.1 showed that the sampling period δt
should be no larger than one half of the shortest time constant. Using such a sampling period,
the slowest time constant should be captured by the time span covered by the mask, which is
denoted by ∆t. Each additional row in a mask adds an extra δt to its total time span, thus

.(1)t M t� � � � �

From this equation, the advisable mask depth can easily be computed.

Obviously, one could try to take the mask very deep (pessimistic vision) to be sure to have
captured the slowest time constant. However, an upper bound on mask depth is needed to re-
strict the computation load to a manageable size.

 Every possible sub-mask of the candidate mask can be considered as a point in a search space
delimited by the initial candidate mask. In SAPS-II, one does an optimal mask search in this
space, which implies an exhaustive search among all sub-masks in the bounded search space.

For a given output variable (a one output-mask), one starts from the empty variable set (the
initial state). All operators, each of which adds a variable, are applied to it so that all two en-
try-states (one m-input and one m-output) are generated, i.e., the cardinality of these masks is
two. All corresponding sub-masks are evaluated by the same quality function. The one with
the highest quality is retained. Then one creates all masks with an extra m-input entry and
starts evaluating all states formed by combinations of these m-input entries. Again, the one
with the highest quality is retained. This process continues for higher entry masks until the
candidate mask is reached. The mask (state) with the absolute best quality is then chosen to be
the optimal one (goal state). An improvement by some techniques to stop excessive evalua-
tion can be built in by cutting the generation of new masks under certain observations. Apart
from this improvement, one notices that the search is exhaustive. The optimal mask will be

50

found (within the constraints of a candidate mask). All the others will have lesser qualities.
The search process is graphically depicted in Figure 2.5. Remark the ‘bottom-up’ approach in
the search process.

DOO VXE�PDVNV

ZLWK FDUGLQDOLW\ �

FDQGLGDWH

PDVN

ZLWK

FDUGLQDOLW\ �0

DOO VXE�PDVNV

ZLWK FDUGLQDOLW\ �

DOO VXE�PDVNV

ZLWK FDUGLQDOLW\ �0

EHVW PDVN ZLWK

FDUGLQDOLW\ �

VWRS "

EHVW PDVN ZLWK

FDUGLQDOLW\ �

EHVW PDVN ZLWK

FDUGLQDOLW\ �0

VWRS "

QR

QR
EHVW PDVN

\HV

\HV

Figure 2.5 : Optimal mask search in SAPS-II

The drawback, however, is computing time. The time-complexity of the search process is
nearly exponential because all combinations of masks with two input entries, three input en-
tries, ... from the candidate mask are evaluated (see also chapter 4).

A general trend in the search is, that masks with a low number of entries generally have a low
degree of determinism and a low degree of complexity. Of course, it is always possible that an
underlying highly deterministic relation holds for a certain system, but in general this is quite
rare. Hence, the next thoughts are about the general case. Thus, for (one-output) masks with a
low number of m-inputs, or cardinality, one has a low quality due to the large degree of un-
certainty, while for masks with a large number of m-inputs (high cardinality) one has a low
quality due the higher complexity, e.g., observation ratio. This proves again that complexity
and degree of determinism are conflicting measures.

Summarising, it can be stated that less complex masks (with regard to the number of m-
inputs) have a low quality that will gradually increase when the masks become more complex,

51

but will start decreasing again. The tricky problem is that the optimum cannot be guessed be-
forehand. Chapter 4 elaborates more on these issues.

2.3.4 Forecasting

Shifting a mask over the data allows forecasting. The mask selects relevant data values from
the data list by selecting elements for which the entries in the mask are not zero (see chapter 3
for an example). With this given mask, usually the optimal mask, one can forecast easily by
using the state-transition matrix as a look-up table for (new) data (in the state space) for which
the inputs are given. Another method is to use a nearest neighbour method for forecasting.

Forecasting with the state-transition matrix

The state-transition matrix acts as predictive model: it relates the inputs on certain (past) time
instances to the output value or outcome on the reference time instance, denoted by Ot. One
may speak of a one-step prediction. With each one-step prediction a probability is attached.
When one wants to predict further into the future, the state-transition matrix is applied recur-
sively. This can be expressed formally by considering a given outcome sequence

1 2t t t nO O O O
� � �

� � . The probability for having this sequence is given by

1

() ()
n

t i
i

P O P O
�

�� (2.14)

At a certain moment the probability of occurrence of an outcome sequence may drop below a
(pre-defined) threshold. From this moment on, the prediction is too uncertain to be used.
Hence, SAPS limits its own prediction horizon.

If the forecasting procedure encounters an m-input state (overall generating state) that has not
been observed before, the forecasting process comes to a halt. A second best (or third, fourth,
etc) best state-transition matrix can then be investigated to see if it can do a forecast (for an
example, see appendix B). In SAPS-II, the second, third, etc. comes from a level with another
cardinality.

In case of fuzzy recoding an extra process, called regeneration is needed to restore the quan-
titative values of the predicted outcomes. Regeneration is similar to defuzzification. In that
process the membership values and the side function are used to specify more precisely the
exact value of the output to be predicted. The confidence measure can be used in a similar
way to limit the prediction horizon.

Forecasting with a nearest neighbours method

In later versions of SAPS-II, a five nearest neighbours (5NN) method is used for forecasting,
[Mugica and Cellier 1993 ; Cellier 1996]. Suppose there are n m-inputs (vi,j, j = 1, ..., n) and
one output (outi), then a row i in the I/O matrix will look like (compare with Table 2.6)

,1 ,2 ,i i i n iv v v out�� (2.15)

or in vector notation

i iv out�
�

(2.16)

Each recoded variable (be it an m-input or output) consists of a set value, a membership value,
and a side value. When doing a prediction one looks for similar records in the I/O matrix
among the m-inputs. Hence, of interest at this moment are the set, membership and side val-

52

ues of the m-inputs. Let us denote for each m-input vi,j, its set value by classij, its membership
value by Membi,j, and its side value by sidei,j. With these values, a normalised pi,j value is
computed via

, , , ,*(1)i j i j i j i jp class side Memb� � �

For each row i represented by equation (2.16), denote the corresponding m-input vector,
which is our point i in the measurement space, by ,1 ,2 ,(, , ,)i i i i np p p p�

�
� if there are n m-

inputs. Hence, a new list of records where each record i is of the form

(, ,)i i i ip class Memb side�
�

,

is created where the right hand side object represents the recoded output outi.

When a new input vector v
G

 is detected for which the outcome is not known, i.e.,

?v out�
G

(2.17)

and the corresponding out has to be predicted, its m-input vector p
�

 is determined and com-

pared with the list of all known ip
�

’s. This is done via the Euclidean distance (L2 norm), which

is computed via

� �
2

,
1

(,)
n

i i j j
j

d p p p p

� �

� �

(2.18)

The nearest point is used to forecast the class and side value of the output, i.e.,

, argmin (,)i
i

class side d p p�
� �

(2.19)

The membership value is determined by a weighted sum of the five nearest neighbour mem-
bership values. It is given by

,
{5 }

() ()rel i i
i N

Memb out w Memb out
°

�
 (2.20)

where {5N} is the set containing the five nearest neighbours (or less than five if no five could
be found). The normalised relative weights wrel,i are based on some inverse proportionality
with the distances11 via absolute weights. E.g., they can be computed by

max
,

max

i
abs i

d d
w

d

�
�

for {5 }id N� . Other manners can be devised for computing the absolute weights, [Mugica

and Cellier 1993 ; Nebot 1994 ; de Albornoz 1996 ; Herrera 1999]. For example, one could
take wabs,i = 1/di. If a point coincides with the new point, i.e., di = 0 then this point is taken as
the new point. The sum of the absolute weights over {5N} can then be used as a normalisation
factor to obtain the relative weight, which are all between 0 and 1, i.e.,

,
,

abs i
rel i

w

w
w

s
� ,

where

11 How they are computed can be found in [Cellier 1996].

53

,
{5 }

w abs i
i N

s w
°

�

Equations (2.19) and (2.20) determine the new point completely. Via an inverse process of re-
coding, called regeneration (a kind of defuzzification), one can reconstruct a (continuous) data
point for equation (2.17) (For example, solve equation (2.3) for x) Using this method on the
known data always gives a perfect forecast, because one distance will always be zero. Predic-
tion errors can be obtained via similarity and proximity measures, [Herrera 1999].

2.4 Conclusion

A tool called SAPS, which is based on GSPS, has been designed to facilitate non-parametric
system identification. In SAPS, restriction to a causal (one-output) mask is made in the con-
text of a generative system. Inputs and generating states are called m-inputs, while generated
states are called m-outputs. Time is the only support variable. Much attention has been given
to the recoding process (source and data system) and to the evaluation and construction of
masks (behavioural system). A sensible evaluation requires a trade-off between a normalised
Shannon entropy and a complexity measure, which is cast in an evaluation function. The
search algorithm that finds the best mask (i.e., the one with the highest quality) is of an ex-
haustive nature. In SAPS, forecasting can be done via a state-transition matrix or via a nearest
neighbour method. Both allow for a limitation of the forecasting horizon via prediction error
determination.

The fuzzy recoding used in SAPS cannot be placed easily at the source or data system level. If
fixed-sized intervals are used, then is belongs to the source system (it is a combination of ob-
servation and abstraction function. If uniform-recoded intervals are used, then it belongs to
the data system (is it an observation channel that relies on data?). Fortunately, this has no im-
plications for the remainder of this thesis.

54

References

Åström K.J., Wittenmark B. [1997], Computer-Controlled Systems. Theory and Design,
Prentice-Hall, New Jersey, 1997.

Cellier F.E. [1987], “Qualitative Simulation of Technical Systems by Means of the General
System Problem Solving Framework”, International Journal of General Systems, 13(4),
p. 333-344, 1987.

Cellier F.E. [1991], Continuous System Modelling. Springer-Verlag, New York, 1991.

Cellier F.E., and Yandell D.W. [1987], “SAPS-II: A New Implementation of the Systems Ap-
proach Problem Solver”, International Journal of General Systems, 13(4), p. 307-322, 1987.

Cellier F.E., Nebot A., Mugica F., and de Albornoz A. [1996], “Combined Qualita-
tive/Quantitative Simulation Models of Continuous-Time Processes Using Fuzzy Inductive
Reasoning Techniques”, International Journal of General Systems, 24, 1-2, p. 95-116, 1996.

de Albornoz A. [1996], Inductive Reasoning and Reconstruction Analysis: Two Comple-
mentary Tools for Qualitative Fault Monitoring of Large-Scale Systems. Ph.D. thesis,
Universitat Politècnica de Catalunya, Barcelona, Spain, 1996.

Herrera J.L. [1999], Time Series Prediction Using Inductive Reasoning Techniques. Ph.D.
thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1999.

Law A., Kelton D. [1990], “Simulation Modelling and Analysis”, 2nd edition, Mc Graw-Hill,
New York, 1990.

Li D., Cellier F.E. [1990], “Fuzzy Measures in Inductive Reasoning”, Proceedings of the 1990
Winter Simulation Conference, New Orleans, LA, p. 527-538, 1990.

Mugica F. [1995], Diseño Sistemático de Controladores Difusos Usando Razonamiento In-
ductivo. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 1995 (in Span-
ish).

Mugica F., and Cellier F.E. [1993], “A New Fuzzy Inferencing Method for Inductive Reason-
ing”, Proceedings International Symposium on Artificial Intelligence, Monterrey, Mexico,
p. 372-379, 1993.

Nebot A. [1994], Qualitative Modelling and Simulation of Biomedical Systems Using Fuzzy
Inductive Reasoning. Ph.D. thesis, Universitat Politècnica de Catalunya, Barcelona, Spain,
1994.

Uyttenhove H.J. [1978], Computer-Aided Systems Modelling: An Assemblage of Methodo-
logical Tools for Systems Problem Solving. Ph.D. thesis, School of Advanced Technology,
State University of New York at Binghamton, 1978.

Van Welden D.F., Vansteenkiste G.C. [1994], “SAPS-ST: A Testbed For Incremental Re-
search on GSPS”, Proceedings of the 1994 European Simulation Multiconference, Barcelona,
Spain, June 1-3, p. 507-513, 1994.

55

Chapter 3

Formalising Model Construction in SAPS
with Hidden Markov Models

3.1 Introduction

The link between SAPS and finite memory machines is outlined in this chapter. With this in
mind, states and state-models for black-box systems are defined. An extension to a stochastic
system can then be formalised via a hidden Markov model. The corresponding formalisation,
which is situated at the behavioural level in GSPS, proves that the state-transition construction
procedure followed in SAPS can be seen as a newly defined hidden Markov model problem
type. Two important side-results emerge. The first shows that correlation in the system
memory does not play a role for the system identification paradigm on which SAPS resides.
The second shows that the outputs are conditionally independent. The latter is a necessary
condition for the methodology in part 2 of this thesis.

This chapter rigorously justifies and clarifies the underlying paradigm in SAPS. The
correspondence with finite memory machines also allows a definition of what is meant by
complex, black-box systems. A simplification to SISO (Single Input Single Output) systems
is done to simplify explanations when there is no conceptual difference with the MIMO
(Multiple Input Multiple Output) case.

3.2 State models and input-output models in SAPS

SAPS is best at identifying a time-invariant (stationary) causal dynamical system. Its
applicability as state model for time-invariant (causal) systems will be discussed in this
chapter. The concept of state models is well known in the theory of dynamical systems. State
variables allow specifying in a unique way the state of the system at each time instance t. For
a directed system the output is completely specified if one knows the input and the state on
the same time instance. For causal discrete1 time-invariant (SISO) systems the mathematical
description is given by

1 (,)

(,)
k k k

k k k

x f u x

y g u x
+ =
=

(3.1)

with

• uk the input at time instance k,

• xk the state at time instance k,

1 Assume periodic sampling to have happened.

56

• yk the output at time instance k,

• f the state-transition function,

• g the output or response function.

Note: Sometimes, u(k) is used instead of uk. It is especially advisable when having different
inputs, e.g., u1(k) and u2(k), or when applying operators on k, e.g., a lag operator.

The first equation is called the state-transition equation and the second the output equation.
For specified finite sets of stimuli and states the state-transition equation partially2 describes a
Finite State Automaton (FSA) [Carroll and Long 1989]. If one encompasses the output
function too then the discrete system described by equations can be compared with a Mealy
machine or Finite State Transducer (FST). A state transition diagram for a Mealy machine is
illustrated in Figure 3.1. It shows that if an input u(k) is applied to a state x(k) this results in
the state going to a next state x(k+1). During this transition, state x(k) sends out an output y(k).

[��� [��� [��� [���

\��� \��� \��� \���

X��� X��� X��� X���

Figure 3.1 : State transitions for a Mealy machine

The abstract theory of automata is oriented to problems in which the UC-structure is not
considered. Such problems are, for instance, the determination of the functions f and g, or the
ST-structure for a given behaviour. Hence, seeking a relationship with finite state automata
(or extensions of them) makes sense.

In Input/Output models, however, only observed input/output behaviour stemming from
measured data is available (black box systems). Hence, a state has to be defined based on this
available information. The state summarises past information into one instance in time, e.g.,
in the output function the term xk summarises input information u u uk k k− − −∞1 2, , ,� for an
input-output model. In addition, a state can also be constructed with past outputs y yk k− −1 2, ,�.
As an illustration, consider the following (linear) infinite-lag regression model of the form
[SAS/ETS 1993] (ai and w are coefficients):

� �2
0 1() () (1) (2) ()y k a a u k wu k w u k k�� � � � � � � ��

It reduces after some manipulation and with (0 0 (1), () () (1)b a w v k k w k� �� � � � �) to

0 1() (1) () ()y k b wy k a u k v k= + − + +

This illustrates the reduced number of parameters by introducing an auto-regressive term.

Thus, taking into account a previous output reduces the needed number of lagged inputs. This
principle might also be applied in general, obtaining

2 An initial state is implicit in the state-transition equation, but no set of final states is defined.

57

1 2 1, ,..., , ,...,k k k k m k k nx y y y u u− − − − −=

The output equation of (3.1) can then generally be written as:

1 2 1(, , ,..., , ,...,)k k k k k m k k ny h u y y y u u− − − − −= (3.2)

However, it still remains to be investigated what is the right mix of number of past outputs
and number of (past) inputs, i.e., the determination of m and n.

Equation (3.2) is used in directed generative systems (see equation (1.16)) in GSPS where one
initially considers the input at the reference time instance and a finite number of past outputs
and inputs (generating states). A corresponding mask for equation (3.2) can be readily written
down (see chapter 2). For reasons of (computational) complexity, m and n should not be too
large. The main purpose in GSPS is to find a meaningful and concise (low mask cardinality)
mix of the arguments in equation (3.2) according to certain criteria.

Comparing equation (3.2) with a finite-memory automaton reveals that GSPS tries to identify
the latter. The finite-memory approach is suitable if the behaviour is given in the form of an
activity. However, GSPS allows some degree of non-determinism, so it would be more
correct to compare it with a probabilistic version of a finite-memory automaton. Taking into
account the quantisation of the variables and that the next state only depends on the current
state and the inputs, one thus arrives at ‘controlled Markov chains’, a term mentioned in
[Bagchi 1993]. However, to the author's knowledge no hidden controlled Markov chain exists
with accompanying techniques for system identification. Thus, another solution has to be
sought.

Fortunately, chapter 2 showed that SAPS-II does not distinguish between inputs, past inputs
and outputs, i.e., the case of a generative system (with only generating and generated states)
applies. In fact, this looks very similar to the transformation of a Mealy machine to a Moore
machine via the theorem of Gill and Bloh, [Gécseg and Peák 1972]. Therefore, a new line of
thought based on the perception that it is possible to consider a new general state given by

*
,k k kx u x�

will be followed. Hence, following a similar reasoning, equation (3.2) can be rewritten as
*'()k ky g x=

where *
kx is a generating state that replaces the argument 1 2 1, , ,..., , ,...,k k k k m k k nu y y y u u− − − − − and

yk as the generated state. Therefore, in SAPS-II the new set of equations becomes
*

* *
1

'()

'()

k k

k k

y g x

x f x+

=

=
(3.3)

The final step consists in relaxing the deterministic requirements on the state-transition and
the output function (the state-transition function will prove to be irrelevant in the SAPS
system identification paradigm). Accordingly, in going from a deterministic to a stochastic
version there is no unique consequent to every state anymore and some probability
distribution is needed. The sought probabilistic alternative should apply for SAPS-II, see
equation (3.3). Such a variant can be found in the theory of hidden Markov models.

58

3.3 Hidden Markov models

A countable sequence of random variables { ; }X nn ≥ 0 is called a general discrete Markov
chain if each X Zn ∈ (Z is the set of integers, i.e.…,-2,-1,0,1,2,…), and iff the Markov

condition is satisfied, i.e., for any positive integer n, any sequence }0|{ nkik ≤≤ and j Z∈
one has

}|{},,,|{ 11101 nnnnnon iXjXPiXiXiXjXP ======= ++ � (3.4)

The random variable Xn is called the state of the chain at time n while X0 is called the initial
state. If the probabilities P X j X in n n{ | }+ = =1 do not depend on n, then the general discrete
time Markov chain is called stationary or simply a discrete (time) Markov chain [Tijms 1994;
Hock 1996].

The Markov condition indicates that the future depends on the past only through the present.
The probabilities P X j X in n n{ | }+ = =1 can be considered as elements of a matrix A such that

)}|({ 1, iXjXPA nnji === + (3.5)

Matrix A is a stochastic matrix. It satisfies the two requirements

1. ∀ ∈ ≥i j Ai j, : ,Z 0

2. ∀ ∈ =
∈
∑i Z Ai j
j Z

: , 1

Markov models in which each state corresponds to one observable event are too restrictive to
be applicable to many problems of interest. Hence, an extension is made where the
observation is a probabilistic function of the state. The resulting hidden Markov model is a
doubly embedded stochastic process with an underlying stochastic process that is not
observable, but can only be observed through another set of stochastic processes that produce
the sequence of observations (see Figure 3.2).

�
��

�
��

�
�

�
�

�
�

�
�
��� �

�
�
�
���

���

�
�

�
�
���

�1

�
�
���

�
�
���

�
�
���

�
0

�
0

�
0

����	

���	

�������

�
��1

�
1
���

1
� ���

1
� ���

�
��

Figure 3.2 : A general hidden Markov model

59

An observation sequence is denoted by

TOOOO �21= ,

where T is the number of observations.

Each observation Ot, (t = 1,…, T) stems from an alphabet, denoted by V (see below).

The hidden Markov model is characterised by

• A number of states in the model, say N states, where often some physical significance is
attached to the states. The individual states are given by NiSi ,,1, �= and the state at

time t is denoted by qt .

• The initial state distribution }{ iπ=Π , where NiSqP ii ≤≤== 1),(1π

• The state transition probability distribution/matrix, denoted by }{ ijaA = , where

)|(1 itjtij SqSqPa === + (Markov condition)

• A number of distinct observation symbols per state. Usually, the same discrete alphabet is
used. The alphabet size is denoted by M. The individual symbols are given by

},,,{ 21 MvvvV �=

• The observation symbol probability distribution/matrix in state Si ;)}({ kbB i= , where

MkNiSqtvPkb itki ≤≤≤≤== 1,1),|at ()(

Hence, a complete specification of a hidden Markov model involves specifying the model
parameters N and M, the symbol set V, and the specification of the three probability
distributions A, B and Π . In compact form the complete parameter set is denoted by

),,(Π= BAλ .

The roles of these parameters are nicely illustrated in the algorithm for generating an
observation sequence:

• initialisation :

1) set t = 1

2) choose initial state q1 according to �

• loop :

3) for t = 1 to T do:

{

3a) in state qt put O vt k� according to B

3b) transit to new state qt�1 according to A

}

An example of a hidden Markov model: urn and ball model

The urn and ball model illustrates a hidden Markov model for which one has chosen N states;
each state corresponds to an urn. In each urn there are, say, M distinct coloured balls (there
may be more than M balls). An observation is now generated as follows:

According to some random process (Π), an initial urn was selected and from that urn a ball is
selected at random, (B). The colour is recorded, Ot, and the ball put back in the same urn. A

60

new urn is then selected according to some process associated with the current urn, (A)
(otherwise, this is not Markov) and the ball selection procedure is repeated until, say, T
colours are observed.

The random process of selecting a new urn (could be the same urn) based on the current urn is
the Markov process (probabilities denoted by aij ; i: current urn, j: new urn). The process of

selecting a ball from the selected urn is multinomial, where

• the probabilities are denoted by b colori () ,

• i stands for the index of the urn,

• usually colour is replaced by an integer resulting from a labelling mapping (bijection
between colours and M integers).

To fix ideas, consider three urns (N=3) and three colours (not necessarily 3 balls) in each urn
(M = 3). The colours are red (R), green (G) and blue (B). The Markov chain is considered
left-right and is given in Figure 3.3.

�
��

�
�

�
�

� � � � � �

�
�
���

�
�
���

�
�
���

� � �

�
��

�
��

�
��

�
��

�
�

����
�

����
�

� ���
�

� ���
�

����
� ����

�

Figure 3.3 : An example of a hidden Markov model for the urn example

The initial state distribution is given by

� � 0 7 0 2 0 1. . .� �T

The state-transition matrix is known and given by

A �

�

�

�
�

�

�

�
�

0 2 0 8 0

0 0 5 0 5

0 0 1

. .

. .

The observation-distribution (conditionally on the states) by

b R b R b R

b G b G b G

b B b B b B

1 2 3

1 2 3

1 2 3

0 0 1 0 3

0 0 2 0 2

0 2 0 7 0 5

() .4 () . () .

() .4 () . () .

() . () . () .

� � �

� � �

� � �

An observation sequence could be for example O = (R,G,G,B,R,B)

61

3.4 Construction of a pred ictive model in SAPS

The next example starts from a binary recoded activity matrix given in Table 3.1. t indicates
discrete time instances, the index i will be used for state labelling.

t u1 u2 u3 u4 y

1 0 1 0 1 0

2 1 1 1 1 1

3 0 1 0 1 1

4 0 1 1 0 0

5 1 0 0 0 0

6 1 1 1 1 1

7 1 0 1 0 1

8 0 1 0 1 0

9 0 0 1 1 1

10 1 1 1 1 0

11 0 1 1 1 0

12 1 1 0 1 0

13 1 1 1 1 0

14 0 1 1 0 1

15 0 0 1 0 1

16 1 1 1 0 0

17 1 1 1 1 0

18 0 0 1 0 0

19 0 1 1 1 0

20 1 0 1 0 1

Table 3.1 : A list of recoded data records

An example of a mask is presented in Table 3.2.

u1 u2 u3 u4 y

 t-2 -1 0 0 0 0

 t-1 0 -1 0 0 0

 t 0 0 -1 0 1

Table 3.2 : A mask

62

The entry ‘1’ gives the location of the output or generated state, i.e., y(i). Entries that are ‘-1’
stand for relevant generating states (inputs, past inputs, and past outputs). Zero entries
indicate irrelevant entries for the dependency relation between output and generating states.

The mask with memory depth 2 in Table 3.2 stands for

1 2 3() ((2), (1), ())y t f u t u t u t= − −�

with f� a qualitative function (which will later be associated with a probability-observation
matrix).

State-observation vectors3 for a mask are generated by sliding the mask over the data (see
Table 3.1 where the shaded area shows the position of the mask at t = 9).),,(321 xxxx =�

forms the state and y the output. The result is depicted in Table 3.3.

state Si output vk state labelling

t x1 = u1(t-2) x2 = u2(t-1) x3 = u3(t) y state number i

1 0 0

2 1 1 1

3 0 1 0 1 3

4 1 1 1 0 8

5 0 1 0 0 3

6 0 0 1 1 2

7 1 1 1 1 8

8 1 0 0 0 5

9 1 1 1 1 8

10 0 0 1 0 2

11 0 1 1 0 4

12 1 1 0 0 7

13 0 1 1 0 4

14 1 1 1 1 8

15 1 1 1 1 8

16 0 0 1 0 2

17 0 1 1 0 4

18 1 1 1 0 8

19 1 0 1 0 6

20 0 1 1 1 4

Table 3.3 : State-observation matrix

3 Newly introduced terminology, consistent with the hidden Markov chain approach, is denoted in italics.

63

This matrix is built up by state-observation records denoted formally by },{ kit vSq = . In the

example, the recoding is binary, thus V={v1,v2} with v1 = 0, v2 = 1. The headers of the table
are extended with the appropriate notations.

In literature concerning SAPS, Table 3.3 is called an I/O model, but the term state-
observation matrix4 is more appropriate for it really describes what constitutes a row of the
matrix. The last column in the table is usually not written, but it is needed in order to draw the
state transition diagram in Figure 3.4.

The next step is to compress the state-observation matrix. The compression is reached by
summarising the state-observation records that are the same and by computing their relative
frequency and thus their probability of occurrence (see Table 3.4). In SAPS-II, this is called
the basic behaviour.

Si vk #(vk, qt = Si) P v q Sk t i(,)=

x1 x2 x3 y state-observation
frequency

State-observation
probability

position of
mask

0 0 1 1 1 0.055556 6

0 0 1 0 2 0.111111 10, 16

0 1 0 1 1 0.055556 3

0 1 0 0 1 0.055556 5

0 1 1 0 3 0.166667 11, 13, 17

0 1 1 1 1 0.055556 20

1 0 0 0 1 0.055556 8

1 0 1 0 1 0.055556 19

1 1 0 0 1 0.055556 12

1 1 1 0 2 0.111111 4, 18

1 1 1 1 4 0.222222 7,9,14,15

Table 3.4 : Compressed state-observation matrix

The compressed state-observation matrix contains the state-observation probabilities
P v q Sk t i(,)= .

A stochastic matrix is obtained by rewriting the above in the form of a ‘state transition’
matrix. In Table 3.5 the ‘state transition matrix’ is given with the frequency of the generating
part of the state record and its associated generating state probability. As will be shown soon,
this matrix is in fact an observation-distribution matrix.

4 In the state-observation matrix each record has a frequency of 1

64

y

state frequency
#(qt = Si)

x1 x2 x3 0 1 generating state
probability P q St i()�

0 0 0 0 ? ? 0.000000

3 0 0 1 0.67 0.33 0.166667

2 0 1 0 0.50 0.50 0.111111

4 0 1 1 0.75 0.25 0.222222

1 1 0 0 1.00 0.00 0.055556

1 1 0 1 1.00 0.00 0.055556

1 1 1 0 1.00 0.00 0.055556

6 1 1 1 0.33 0.67 0.333333

total frequency 18

Table 3.5 : ‘State transition’ matrix

The probabilities in the bordered zone are conditional probabilities; i.e., given a generating
state what is the probability of a certain value of the output. The conditional output is given
by the ratio of the corresponding state-observation frequency and the state frequency. Looking
more closely at the bordered stochastic matrix in Table 3.5, shows that it gives the probability
of observing a certain output symbol given a generating state or m-input, that is

)()|at ()|(kbSqtvPSxkyP iitki ===== �
(3.6)

which is semantically consistent with the hidden Markov model viewpoint. Using this to
make Table 3.5 more explicit one obtains Table 3.6.

i #(qt = Si) Si v1 = 0 v2 = 1 P q St i()�

1 0 0 0 0 ?)(11 =vb ?)(21 =vb 0

2 3 0 0 1 67.0)(12 =vb 33.0)(22 =vb 0.166667

… …

8 6 1 1 1 33.0)(18 =vb 67.0)(28 =vb 0.333333

Table 3.6 : Observation-distribution matrix (not completely shown)

The output symbols are simply the indices, i.e., ivi = , or a shift of them, e.g., 1−= ivi ,

depending on convention. The estimation of the conditional probabilities is based on
frequency counts (the next equation5 can also be found in problem type 3 of hidden Markov
chains [Rabiner 1989]:

Tt
Sq

Sqv

S

vS
kb

it

itk

i

ki
i ,,1

)(#

),(#

in timesof # expected

 observing and in timesof # expected
)(�=

=
===

5 bar denotes estimate, # denotes ‘number’

65

This is consistent with

)(

),(
)|at ()(

it

itk
itki SqP

SqvP
SqtvPkb

=
==== (3.7)

where in SAPS direct estimates for the numerator and denominator are used.

3.5 Applying Hidden Markov models to SAPS

Table 3.3 shows the sequence of states after applying the mask in Table 3.2 to the recoded
data presented in Table 3.1. This can be visualised in a state transition diagram. Taking
further into account the state dependent output probabilities, a hidden Markov model can be
drawn as in Figure 3.4.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

��	

��	

��	 ��� ���

��	

��

��

��

��

�

��	

� � � � � � � � � � � � � �

� � ���
 ���
 ��
� ��		 ��
 ��
 � �� � ��		 ��
�

Figure 3.4 : Hidden Markov model for the example in Table 3.1 scanned by the mask in
Table 3.2

This shows us that two approaches are possible:

1) modelling the output probabilities conditional on the states and accepting the state
sequences as given

2) modelling the state transitions as well

The first approach is used in SAPS where one has no interest in the (auto or cross)correlation
structure of the m-inputs (this can be seen as source system level assumptions about
generating variables and inputs in GSPS). The m-inputs are given a priori and for prediction
one can rely on their availability for each prediction. Hence, the correlation structure is not
necessary for prediction. Consider for example a hypothetical system where one looks at the
growth of plants (output) in relation with the inputs rain, sunshine, and fertilisation (see
Figure 3.5).

66

���������

����

�������

�����������

����������������

Figure 3.5 Example of plant growth

It is to be expected that when it rains, there will be no sunshine and vice versa. Thus, rain and
sunshine must be correlated. However, for prediction this does not matter because rain and
sunshine on future time instants will be given (with the right correlation automatically). Thus,
correlation implicitly present in the inputs will not affect prediction of the output. With regard
to Figure 3.4, one could say that each state Si is given when necessary for prediction. Hence,
one can treat the states as independent with regard to the output prediction, because the
outputs are, when conditioned on the states, independent (see sections 3.6.1 and 3.7).

The situation becomes different if one also would like to do predictions without being able to
rely on newly given m-inputs. Then, one has to predict the next state to occur and based on
this state, one may do a prediction for the output. Thus, correlation structures between m-
inputs are taken into account via a state-transition matrix to predict the most likely next state
Si+1. The corresponding probability for the chosen state-transition has to be taken into account
when computing probabilities for the predicted output. In this approach, one is in fact
modelling neutral systems via discrete stochastic processes6.

The second approach will not be elaborated much further in this thesis, although it can be put
in the framework of hidden Markov chains if a next state only depends on the current state as
assumed in Figure 3.4. However, it is demonstrated in much more detail in section 3.7 that the
first approach, which is used in SAPS and which models the output probabilities conditional
on the states for a given state sequence, is a new hidden Markov problem type.

3.6 Basic problems to solve in hidden Markov Chains

The problems encountered in hidden Markov models are now described according to their
increasing degree of difficulty. The new type of problem to be defined later is most akin to
type 1. Therefore, type 1 will be explained in some more detail. Type 2 and type 3 are well
described in Rabiner's paper, [Rabiner 1989].

6 An example of this approach can be found in Klir (1969) on page 120. There, a Markov chain is applied,
although it is not mentioned as such.

67

3.6.1 Problem 1: Compute an Observation Sequence Given the Complete Model
Description

Given an observation sequence TOOOO �21= and a model),,(Π= BAλ , how to compute
P O(|)O ?

Consider

all

(|) (, |)
Q

P O P O Qλ λ= ∑
and with

)|().,|()|,(λλλ QPQOPQOP =

one has

all

(|) (| ,). (|)
Q

P O P O Q P Qλ λ λ= ∑ .

Hence, enumerate every possible state sequence of length T and consider one of them, e.g.

TqqqQ ,21 �= . Then, under statistical conditional independence on the states the first factor
is given by

),|(),|(
1

∏
=

=
T

t
tt qOPQOP λλ .

This equation is a more rigorous formalisation of equation (2.14), which shows the prediction
horizon. To have a more explicit representation, write

)()()(

),|(),|(),|(

),|(),|(

21

2211

indep. stat. cond.

2121

21 Tqqq

TT

TT

ObObOb

qOPqOPqOP

qqqOOOPQOP

T
�

�

��

=
=

=

λλλ

λλ

for this specific state sequence. The second factor is given by

TT qqqqqqq aaaQP
132211

)|(
−

= �πλ

and after substitution and rearrangement of the factors, one finds

1 1 1 2 2 1

1 2

1 2
, , ,

(|) () () ()
T T T

T

q q q q q q q q T
q q q

P O b O a b O a b Oλ π
−

= ∑
"

� .

The problem with this solution is the number of computations involved. There are
approximately N T state sequences and for each state sequence roughly 2T calculations,
making a total of 2TN T ; e.g. 3 states, observation length 50, then approximately
100 3 1050 26* # calculations. The simple approach is thus computationally not efficient. A
much more efficient algorithm for computing P(O|λ) can be devised if one uses forward
variables [Rabiner 1989].

Remark that this problem type gives an indication of how well a given model matches a given
observation sequence. The higher P O(|)O the better the match.

68

3.6.2 Problem 2: Uncover Hidden State Part and Search ‘Correct’ State Sequence

Given an observation sequence TOOOO �21= and a model),,(Π= BAλ , how to choose
Q q q qT 1 2", which is optimal in some sense or explains best the observations?

The phrase ‘in some sense’ indicates that there are several optimisation criteria.

One approach is to choose the states that are individually most likely. This corresponds with
maximising the expected number of correct individual states. The Viterbi algorithm can be
used to find the single best state sequence for a given observation sequence. A problem that
may arise is that if certain state transitions have zero probability some non-valid states may
occur. Possible solutions could be to look for state sequences that maximise the number of
correct pairs or triples, …

3.6.3 Problem 3: Optimise Model Parameters to Obtain a Best Description of
Observation Sequence

How to adjust the model parameters to maximise P O(|)O ?

It is at this stage where one tries to induce the best models for real observed phenomena.

Unfortunately, there is no known analytical and optimal way of estimating the model
parameters for any finite observation sequence as training data. There do exist, however,
methods that choose model parameters such that they locally maximise P O(|)O . A method for
re-estimation of the parameters Π, A, and B can then be obtained. It can be proven (see
[Rabiner 1989]) that the new model corresponds with a critical point, i.e. (local) maximum, or
at least that it is better. In the latter case, one uses iteratively the thus obtained new model —
while improving each corresponding P O(|)O — until some limiting point. This final model is
the maximum likelihood estimate of the hidden Markov model.

3.7 A newly defined problem type for hidden Markov models

This problem type can be stated as “Compute an observation matrix given the state sequence
and the observation sequence”.

In the construction of a probability observation matrix (formerly state transition matrix), one
starts from a given output sequence and a given state sequence (Table 3.3). The goal is to
determine the probability-observation matrix that makes the observation sequence under the
given generating state sequence most likely. Hence, the problem type can be formalised as
follows:

Given

• an observation sequence O O OT1 2�

• and state sequence q q qT1 2� ,

determine

• MkNiSqtvPkb itki ≤≤≤≤== 1,1),|at ()(

• such that P O O O q q qT T(|)1 2 1 2" " is maximal.

Note that this problem type has not been previously considered in hidden Markov models.

69

This problem type is applicable to the hidden Markov model example in this thesis. As the
observations conditioned on the state sequence are independent, one can write

)|()|().|()|(212122112121 TTTTTT qqqOPqqqOPqqqOPqqqOOOP ������ = (3.8)

Remark that for a given factor in the right hand side the output observed at time t only
depends on the state the system is in at that time, i.e.,

P O q q q P O qt T t t(|) (|)1 2� = (3.9)

The maximisation can thus be rewritten7 as the maximisation of

P O q P O q P O qT T(|). (|) (|)1 1 2 2 � (3.10)

Example

Consider a 2-state model with a Bernoulli observation distribution; e.g., two coins where each
coin represents a state. Then, one has for a given observation sequence HHTTT (H: head, T:
tail) and given state sequence

2112154321 SSSSSqqqqq =

to determine

)|at ()(iti SqtHPHb == and)|at ()(iti SqtTPTb == for 21 ≤≤ i

such that

P H q P H q P T q P T q(|). (|). (|). (|)1 2 3 4 . (|)P T q5

 is maximal. Writing out the expression to be maximised:

)|5at ().|4at ().|3at ().|2at ().|1at (2514132211 SqTPSqTPSqTPSqHPSqHP =====

It can be rewritten as

b H b H b T b T b T1 2 1 1 2(). (). (). (). ()

Using powers, this becomes

b H b T b H b T1

1

1

2

2

1

2

1
() . () . () . ()

To maximise this expression, one needs to take into account the dependencies that are present
among the different factors. Dependencies are conditional on the state. Hence, maximisation
of the expression can be done for each state separately. Thus, maximise respectively

b H b T1

1

1

2
() . () and b H b T2

1

2

1
() . () .

Taking into account the constraints

1)()(11 =+ TbHb , 1)()(22 =+ TbHb

the respective maxima are

3

2
)(,

3

1
)(11 == TbHb and

2

1
)(,

2

1
)(22 == TbHb .

7 Notice the resemblance with the type 1 problem

70

Formalisation for the general case

For the general case, one has to maximise equation (3.10), i.e.,

)|()|().|(2211 ktTji SqOPSqOPSqOP === �

which allows for the possibility that a certain state appears more than one time, e.g. ji qq = .

To simplify notation, rewrite this with observation probabilities, i.e.,

b O b O b Oi j k T(). () ()1 2 �

Due to the state dependency, maximisation can be done per state, i.e., group per state for
maximisation:

max () . () () max () . () (),1 , , ,1 , ,b v b v b v b v b v b vi i i M
i

N

i i i M
i

N
e e e e e ei i i M i i i M

1 2
1

1 2
1

2 2
� �

� �
	

�

�

� �

where the observation symbol notation is used and where e e ei i i M, , ,, , ,1 2 � are parameters
indicating how many times a certain symbol, v v vM1 2, , ," , is observed for state Si, i.e.







==

==

∑
=

)(#

),(#

1
,

,

it

M

k
ki

itkki

Sqe

Sqve

(3.11)

Thus, one has to maximise

b vi k
k

M
ei k() ,

�
1

under the constraint

1)(
1

=∑
=

M

k
ki vb .

Assuming for illustration purposes that there are three (non-zero) factors, then this boils down
to maximising

b v b v b vi i i

e e ei i i() . () (),1 , ,
1 2 3

2 3

subject to the constraint

01)()()(321 =−++ vbvbvb iii .

Applying Lagrange multipliers results in

3,2,1,

3,
3

3,2,1,

2,
2

3,2,1,

1,
1)(,)(,)(

iii

i
i

iii

i
i

iii

i
i eee

e
vb

eee

e
vb

eee

e
vb

++
=

++
=

++
=

or rewritten, taking into consideration equation (3.11):

71















=→
=

==

=→
=

==

=→
=
==

)|(
)(#

),(#
)(

)|(
)(#

),(#
)(

)|(
)(#

),(#
)(

3
3

3

2
2

2

1
1

1

it
it

it
i

it
it

it
i

it
it

it
i

SqvP
Sq

Sqv
vb

SqvP
Sq

Sqv
vb

SqvP
Sq

Sqv
vb

It can be shown that this is a maximum via Taylor expansion and by looking at the second
derivatives, which constitute a bilinear form. Hence, in general the maxima are given by

MkNiSqvP
Sq

Sqv
vb itk

it

itk
ki ,,1,,1)|(

)(#

),(#
)(�� ===→

=
==

These maxima are the same as originally computed with SAPS, see equation (3.7). Hence,
SAPS solves newly introduced problem type for hidden Markov chains in the best (and
simplest) way.

3.8 Conclusion

Candidate model construction in SAPS can be formalised as a newly defined problem type in
the theory of hidden Markov models. The formalisation, which is applied at the behavioural
system level, proves that the classical way to compute the conditional probabilities in a SAPS
‘state-transition’ matrix is optimal. Model order determination problems arising in SAPS are
equally present in the theory of hidden Markov chains. As a spin-off result, the use of
straightforward terminology shows that the term ‘state transition matrix’ appears to be a bit
deceptive for it is in reality a probabilistic observation matrix. Other terms are proposed such
as state-observation matrix and compressed state-observation matrix. They are more
descriptive and consistent with the underlying structure of states and observations.

A new problem type strongly related to type 1 is found. Both types are fortunately analytically
solvable. It is important to note that model order determination problems encountered in
hidden Markov models are of the same kind as encountered in SAPS. They are:

• Models that are more complex are more capable of modelling (in the sense of giving a
good internal fit) a series of observations. This corresponds to more and larger states in
hidden Markov models, and to higher mask cardinality in SAPS.

• In type 3 problems, a local maximum is obtained. This is similar to the search for the
‘right’ mask in SAPS. An exhaustive search may become intractable for reasonably
complex systems. This issue will be dealt with in detail in chapter 4.

Finally, as shown in the newly defined problem type, correlation among inputs are not of
importance for the research done on directed systems in this thesis. Furthermore, the outputs
are independent if conditioned on the generating states. This issue will be of vital importance
when considering the whole new approach in part two of this thesis.

72

References

Bagchi, A. [1993], Optimal Control of Stochastic Systems. Prentice Hall, New York, 1993.

Carroll J. and Long D. [1989], Theory of Finite Automata (with an Introduction to Formal
Languages). Prentice Hall, New Jersey, 1989.

Gécseg F. and Peák I. [1972], Algebraic Theory of Automata, Akadémiai Kiadó, Budapest,
1972.

Hock Ng Chee [1996], Queueing Modelling Fundamentals. John Wiley & Sons, 1996.

Rabiner, L.R. [1989], “A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition”, Proceedings of the IEEE, 77, 2, p. 257-285, 1989.

Tijms, H.C. [1994], Stochastic Models: An Algorithmic Approach. John Wiley & Sons, 1994.

SAS/ETS [1993], SAS/ETS Software: Applications Guide 2, Econometric Modelling,
Simulation, and Forecasting. Version 6, First Edition, SAS Institute Inc.

73

Chapter 4

Sub-Optimal Mask Search in SAPS

4.1 Introduction

This chapter introduces a new algorithm for a sub-optimal mask search in SAPS. The
algorithm is not exponential as in all known previous versions of SAPS, but polynomial in
nature. This results in an improved execution speed for SAPS. Moreover, it allows for
handling of complex systems that were intractable before. The first part of this chapter
(sections 4.2-4.4) describes the theoretical justifications and the principles behind sub-optimal
mask searching.

The second part of this chapter (from section 4.5 on) deals with the implementation aspects of
the sub-optimal mask search. As the sub-optimal mask search algorithm is not implemented in
SAPS-II, a novel implementation in Smalltalk, called SAPS-ST (ST is the abbreviation for
SmallTalk), was designed. Although the algorithm is implemented in Smalltalk, it is not
intrinsically based on an object-oriented approach. The optimal mask-searching algorithm is
implemented for backward compatibility reasons. Comparisons and benchmarks are thus
possible because of the same uniform object-oriented environment. SAPS-ST is designed as a
research tool. Incorporating new techniques for recoding and mask search is very simple. It is
user-friendlier than SAPS-II and no programming skills are required in its use: even a new
quality function can be interactively constructed without writing a single line of code. Finally,
SAPS-ST has an option to transform an activity matrix in a form suited for the data-mining
approach described in chapter 8.

Most of part 1 of this chapter is published in [Van Welden and Vansteenkiste 1996].

4.2 Optimal Mask Search in SAPS-II

As seen in chapter 2, in searching the best mask, one starts with a low order mask and
gradually increases its order (depth) until the mask is found, see Figure 2.9. The search is
layered with regard to the number of m-inputs. In the optimal mask search, an exhaustive
search of all possible sub-masks is done. One starts with generating all simplest sub-masks
(two entries: one input and one output) and by evaluating each. The mask with the highest
quality is retained. Then one creates all sets with an extra input entry and starts evaluating all
(sub)masks formed by combinations of these input entries. Again, the one with the highest
quality is retained. This process continues for higher entry masks until the candidate mask is
reached. The mask with the absolute best quality is then chosen to be the optimal one. This
process is depicted in Figure 4.1.

The ‘take best sub-mask from a candidate set’ is elaborated in Figure 4.2.

The search has an exponential time-complexity: one obtains approximately 2n masks to be
evaluated before reaching a decision (all combinations of masks with two input entries, three

74

input entries, … from the candidate mask are evaluated). An improvement by some
techniques to stop excessive evaluation can be built in by cutting the generation of new masks
under certain observations. However, this does not change the order of complexity. Apart
from this improvement, one notices that the search is exhaustive. The optimal mask will be
found within the limits of an initial candidate mask1. All the others will have lower quality.

all sub-masks
with i entries

take best sub-mask
from a candidate

set

stopping criterion
met ?

initial
candidate

mask

best mask

store best
mask with i

entries

get best mask

increment i

yes

no

set entries
i = 2

candidate set
of masks

best mask from candidate set

best i entries
sub-masks

Figure 4.1 : Optimal mask search in SAPS-II

1 The concept of an initial mask will return in the new algorithm

75

*HQHUDWH ,�2 RU

RYHUDOO VWDWH

PDWUL[E\

VFDQQLQJ GDWD

ZLWK PDVN 0

&RPSUHVV WR

VWDWH� REVHUYDWLRQ

PDWUL[

&RPSXWH TXDOLW\

YDOXH

7DNH QH[W PDVN 0

IURP VHW RI

VXE�PDVNV

LV TXDOLW\ EHWWHU

WKDQ SUHYLRXV

VWRUHG RQH "

QR

UHSODFH SUHYLRXV

TXDOLW\ E\ QHZ

RQH

\HV

VWLOO D PDVN

QRW HYDOXDWHG "

\HV

QR

FXUUHQW EHVW

PDVN

UHWXUQ VWRUHG

PDVN ZLWK EHVW

TXDOLW\

FDQGLGDWH VHW

RI PDVNV

EHVW PDVN IRU FDQGLGDWH VHW

Figure 4.2 : Take best mask from a given set

76

Remarks

Two remarks can be made on this approach:

• the exhaustive search results in a combinatorial explosion of different masks to be
evaluated. Complex systems with many variables and/or mask depths can not be analysed
due to the exponential time-complexity. For systems that can be analysed, the
computational cost is high for there are many masks to be evaluated.

• in the exhaustive search process, multiple peaks in mask quality are observed that differ
only slightly. The maximum peak may sometimes only slightly exceed another that
corresponds with a much lower complexity. Therefore, the choice — viewed by the user
— of the absolute maximum sometimes may seem a bit arbitrary. An illustration is found
in Figure 4.3. This figure gives the respective qualities for all masks used in an optimal
mask search for the ‘haunted house’ example that was first introduced in [Uyttenhove
1978]. This example starts from the observation that, when tinkering with the lights and
the radio in the house, some strange noises (due to ghosts) could be heard. These strange
noises could be laughing, walking (on a cracking floor in the attic), or both laughing and
walking. The aim of the experiment was to have quiet nights by a correct sequence of
light-and/or radio switching. Hence, the inputs of the system are lights (states: on/off) and
radio (states: on/off). The output was ghosts with as states: quiet, laughing, walking, or
walking and laughing. After tinkering with the lights and radio, it was found that 17
observations were sufficient to detect a deterministic pattern to keep the ghosts silent.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 5 10 15 20 25 30 35 40 45 50 55

mask number

quality
max

Figure 4.3 : Haunted house example

4.3 Sub-Optimal Mask Search: a new method

Due to the reasons mentioned in subsection 4.2, another approach is proposed for the
searching method. Instead of starting with the simplest sub-masks in the evaluation of masks,
start with the most complex one and consider this as the root of a search tree. The most
complex mask of a given depth, is a mask with all m-inputs set to -1. Such a mask2 is named a

2 The reader should recall that, since chapter 2, only one-output masks are considered.

77

maximal allowable mask. An example of a maximal allowable mask with memory depth 2 for
five input variables is given in Table 4.1. It corresponds with the most general dependency
equation that goes two time steps back in time, given by

1 1 1 2 2 2 3 3 3

4 4 4 5 5 5

() ((), (1), (2), (), (1), (2), (), (1), (2),

(), (1), (2), (), (1), (2), (1), (2))

y i f u i u i u i u i u i u i u i u i u i

u i u i u i u i u i u i y i y i

= − − − − − −
− − − − − −

�

with f� a qualitative function.

 inputs output

 time u1 u2 u3 u4 u5 y

i-2 -1 -1 -1 -1 -1 -1

i-1 -1 -1 -1 -1 -1 -1

i -1 -1 -1 -1 -1 1

Table 4.1 : Most complex (highest cardinality) mask of memory depth 2 for five input
variables

From it, a new level in the tree is generated. This is done by taking all sub-masks with one
less input entry, i.e., with a lower cardinality by 1. These sub-masks are all evaluated. Only
the best (sub)mask is retained for further analysis. It becomes the new parent mask for
generating all its sub-masks with again one less entry. Each of these sub-masks is evaluated
and again the best mask (for this level) is retained for further analysis. This process may at
maximum continue until two entries are left (one is the input entry and the other is the output
entry). It forms the backbone of the sub-optimal mask search approach that will be elaborated
upon on in the sequel, where an alternative view on the quality function will be given and
justifications for the new approach will be given.

In real and complex systems the greedy tree-traversal approach just described will not
continue until leafs are met with only two entries. In order to explain this, it is important to
state some formal principles about the measures attached to each node. A node contains a
mask as one of its attributes. It is denoted by Mi. Other attributes will be the normalised
entropy value ei and complexity measure ci. To search a (sub) optimal mask, one tries to
minimise the normalised entropy and the complexity. This adheres to the desire to rely on
highly deterministic and yet simple models. Summarising, a node ni is determined by:

• its mask Mi,

• its normalised entropy value ei

• its complexity value ci (e.g. number of non-zero m-inputs, observation ratio)

• its quality qi, (e.g. Shannon Entropy or generalised entropies)

where the quality is a function of the entropy and the complexity (see chapter 2), i.e.,

q f e ci i i� (,)

The entropy measure that is considered for the quality determination is the Shannon Entropy.
It is intuitively clear that the entropy will increase when one goes down the tree. After all, the
more one goes deeper in the tree representation the less entries are left in the masks.
Consequently, the degree of determinism governed by the equation 1-ei, will decrease.

78

The complexity measure is also supposed to decrease (non-monotonically) when going deeper
in the tree. As an example, take the very simple complexity measure determined solely by the
number of generating entries in the mask. This complexity choice gives a level-invariant
value. In this way, the measure will only promote the depth of the tree traversal by giving
different weights to the levels in the tree, but it will not distinguish among different mask
configurations on the same level.

The entropy increases while the complexity decreases. Thus, the quality may increase
initially, go through several maxima and finally starts decreasing again. The optimum is
where the trade-off between the degree of determinism and the degree of complexity is at its
best, i.e., where the quality is the highest while descending the tree.

DOO VXE�PDVNV

ZLWK � HQWU\ OHVV

WDNH EHVW

VXE�PDVN 0L

LV D EHWWHU VXEPDVN

JHQHUDWHG "

LQLWLDO

FDQGLGDWH

PDVN

EHVW PDVN

QR

\HV

Figure 4.4 : Sub-optimal mask search

The algorithm for the (sub) optimal mask analysis is then, see also Figure 4.4:

79

Consider a (parent) node ni with quality qi.

1. check its total number of entries:
if the number of entries is two, then stop and return Mi as the sub-optimal mask,

2. evaluate all children:
a) if all children have a lower quality than qi, then stop and return Mi as the sub-

optimal mask,
b) else take the first child node with the highest quality, consider this child as the new

parent node and

3. repeat the process from step 1.

Obviously, the quality function is used as an evaluation function.

In case (1), the search process is stopped because the node is a leaf. For if there are two
entries left (one serves as input, the other as output), no further reduction is possible.

In case (2a), the search process is stopped because the quality begins to decrease. The
compromise is thus reached at the current level and no further search is considered necessary.
All children nodes have a lower quality because the increase in entropy outweighs the
decrease in complexity.

In case (2b), the search continues because the compromise has not been reached yet: still
simpler (sub) masks fulfil the criteria set up. Some children have a higher quality because the
increase in entropy is overshadowed by the decrease in complexity.

Looking at the algorithm, one notices that the sub-optimal mask search mechanism is
conducted by a hill-climbing strategy [Winston 1992]. All children of a current node are
evaluated and only the best child is selected for further expansion. Consequently, an
optimisation is done level per level in the tree (one could talk about local optimisation in that
aspect). The search halts when all child nodes have a lower quality than their parent does. The
parent is then the sub-optimal mask.

The hill-climbing strategy is a greedy approach, and it is based on heuristics. In this way, one
can circumvent the computational complexity of the search problem, but without guaranteeing
to have found the optimal mask. Objections against the latter argument will be considered in
section 4.4.1, where a justification for the sub-optimality of the search will be given.

The tree structure is clearly visible in Figure 4.5. The root of the tree is the maximal
computationally allowable mask (here with memory depth 2). The maximal allowable mask is
set by the user. Usually, all state variables are included in the mask, but the maximal memory
depth of this mask depends on implementation parameters (such as the programming
environment or language, the type of computer with its amount of RAM, disk space,
parallellisation, etc.). Sub-nodes are formed by putting an entry zero. In fact, the tree is not
really a tree because of the redundancy of the different sub-masks (i.e., it is a lattice), but for
searching purposes (hill-climbing), one may consider it as a tree. Remark the ‘top-down’
approach as contrasted with the chosen ‘bottom-up’ approach of the exhaustive search.

80

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

 0 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

-1 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 0 1

 0 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

 0 -1 0 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

...

...

Figure 4.5 : Tree decomposition for the maximal allowable mask in Table 4.1

Because of the top-down approach, the maximal allowable mask has also a greater
significance than in the exhaustive search. It not only serves as a computational constraint
(which is its function in SAPS-II), but it also serves as a starting point for the mask search
(root of the tree).

Contrary to the exhaustive search a specific search structure is employed in the sub-optimal
approach.

4.4 Comparison of optima l and sub-optimal mask analysis

It is crucial to realise that the quality measure is in fact a kind of evaluation function, which
has to be based on a (hopefully) sound heuristic (the use of a heuristic will re-appear for tree
classifiers in chapter 6). Considering it this way, it is advisable to set up the state space for
searching the ‘best’ mask as a tree structure where the candidate mask for the system is
located at the root. In the optimal mask analysis, the search is done bottom-up ‘breadth-first’,
i.e., level by level towards the candidate mask while evaluating and retaining the best mask
for each level. In the sub-optimal search algorithm, the search is conducted top-down; away
from the candidate mask.

Unfortunately, heuristics are fallible. The heuristic used here is nothing more than an
intelligent guess of what should be the next mask to be evaluated. The heuristic cannot
foresee what will be the quality values further down in the tree and for the descendants of the
sibling nodes. Thus, the heuristic can lead to a sub-optimal mask that is different from the
optimal one, which is found by an exhaustive search. The sub-optimal masks correspond with
the near maxima3 in the quality curve (see Figure 4.3 and Figure 4.64).

3 Using the term ‘local’ maxima can be confusing as there is no order relation in the mask generation index.
With the term ‘near’ maxima, it is meant that the found sub-optimal masks can be identified with peaks nearly as
high compared with the highest peak in the quality ‘trajectory’.

4 Figures 4.6, 4.7 and 4.8 stem from the example in appendix A.

81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

mask number

Quality
max

Figure 4.6 : A linear system : first output

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

mask number

Quality
max

Figure 4.7 : A linear system : second output

82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350

mask number

Quality
max

Figure 4.8 : A linear system : third output

Note: All figures depict the quality as a function of the mask number. The mask number
increases from left to right. The simplest masks have low mask numbers. The candidate mask
corresponds with the highest mask number. An arrow indicates the optimum found by SAPS.

4.4.1 Sub-Optimal Search; is it justifiable?

One may ask if it is worthwhile and justifiable to use the sub-optimal mask search. In the
following, some reasons why this is the case, are given.

A mask doesn't necessarily represent a physical underlying principle.

The masks tested out in the search are no products of physical underlying principles. They are
just possible explanations for patterns found in the data. They are very concise means to
express time-invariant relationships in the data. No meaning is attached to a mask, anyway,
not a-priori. Of course, every physical system has physical grounds on which it is based.
Therefore, a mask for that system should preferably stand in relation with the physical
properties of the system. Nevertheless, this is not necessarily the case. For example, SAPS
can be tried out in economical systems. There, most often, one does not have even the
slightest idea what principles are responsible for the observed behaviour because of the high
degree of interactions between all the variables. Finding a pattern that allows to do forecasting
is already a big step towards the simulation of such systems.

Often, the optimum found is not significantly higher than some other points.

There is not always a practical reason to prefer one and only one optimal mask as the best. In
analysing data, it is discovered that the envelopes of many quality curves are relatively flat.
Peaks are superimposed on this envelope and the optimal mask algorithm only selects the
highest peak. However, if one looks at the other peaks, then some are found that are nearly as
high as the maximum but with a much lower complexity. Their corresponding masks could
have been selected by a human, who prefers their higher degree of simplicity and who does
not care for the very small relative deviation from the optimal mask. Therefore, the optimal
mask analysis uses brute non-intelligent force to find an optimal mask. It is not asserted that

83

the sub-optimal mask analysis finds a ‘better’ mask; it is only claimed that the optimum mask
may not be so optimal. Consequently, the use of a less expensive search technique for sub-
optimal results may be justified. This is illustrated in Figure 4.3, in Figure 4.6, Figure 4.7, and
Figure 4.8. Figure 4.6, Figure 4.7, and Figure 4.8 are determined with SAPS-II. The data
stems from the example of a linear system described in [Cellier 1991].

The optimum point is very sensitive to the quality of the data, the measures taken and the
quality function.

There is also no exact solution due to the uncertainty in every step of the data processing in
SAPS, so the use of heuristics may be motivated. Although one may select an absolute
maximum in quality and take the corresponding mask as the optimal one, there is no
guarantee at all that it is the best. As in the previous item, this is not about the technical issue
of neglecting small differences. The main reason here lies in the lack of knowledge about the
system. Even in the recoding of the data, many different ways for doing that are possible and
each way may result in another optimal mask. In the mask analysis itself, the choice of the
measures is very important. There is no objective and uniform right way to choose a specific
set of measures for different kinds of entropy measures and complexity measures are possible
and may be as justifiable as another). This poses some severe problems. A good quality
measure can only be determined empirically. The effect of the choice is important for both
algorithms.

It may seem that the implication of a certain choice of quality function with its arguments
(measures) is greater in the sub-optimal search. However, if one really takes only the
maximum quality mask, then a small change in quality determination may change the optimal
mask radically and the previous found optimal mask may be lost. The optimum mask is thus
‘context-dependent’.

In the hill-climbing search, no recovery can be done. Hill-climbing may become stuck at a
local maximum (or minimum). If the search halts, then no consideration is made anymore for
the grandchildren and no attention is ever been paid for the siblings (and their descendants).
Maxima present in these nodes will never be detected. Another drawback of hill-climbing is
that it can get stuck in infinite loops. Fortunately, this can never be the case here, because the
state space is a directed tree.

The optimal mask may be intractable.

Even under the assumption that the optimal mask would be the ‘best’, technically and
epistemologically, the computational cost of finding one may be prohibitive. The number of
masks to be considered in an exhaustive search is too high in complex systems (exponential).
For both algorithms, one can easily calculate the number of masks to be evaluated under a
given maximal allowable mask, by noting that (n is the number of m-inputs of the maximal
allowable mask M, i.e., n = #M - 1):

• for optimal mask search, there are:

1 2 3

n n n n

n

       
+ + +       

       
� (4.1)

(one-output) masks to be evaluated and,

• for sub-optimal mask analysis with a hill climbing search algorithm this number becomes:

1 3 2
1

1 2 2 1

n n

n n

−       
+ + + + +       − −       

� (4.2)

84

Thus, in an optimal mask search there are approximately 2n (one-output) masks to be
considered, whereas in the sub-optimal case, there are ‘only’ approximately n2 (one-output)
masks to be considered. The exponential time-complexity is reduced to a polynomial of the
second degree. For complex systems, this may make the difference between an intractable
system and a tractable one. For relatively simply systems, an improved execution speed is the
mere result.

The sub-optimal mask algorithm allows larger candidate masks to be tested. This has an
implication on the number of variables that can be considered and on the time constants of the
system that can be captured. In [Cellier 1991], one finds that the largest time constant that can
be captured is usually limited to three or four. This can now be relaxed to a higher number.

Even in SAPS-II, less optimal masks are used to forecast data.

This argument is a bit opportunistic for it is based on experiences with SAPS-II. When an
optimal mask is found in SAPS-II, it is possible that it doesn't contain enough predictiveness
to allow a complete forecasting. Cellier coped with this by selecting the three best masks,
where the second has a lower complexity and the third an even lower complexity. The second
and the third mask are not optimal, but they may be indispensable for the forecasting. Hence,
different kinds of sub-optimal models are used.

The optimal search strategy is not similar to the human way of searching a pattern.

When humans solve a problem, they do not evaluate all possible combinations of patterns but
use heuristics to guide them in the selection of a relevant pattern. Although, in this case a non-
exhaustive heuristic-based bottom-up way of evaluating masks is perhaps closer to their way
of looking at patterns.

In the next section, the performance of the two mask algorithms is compared for three
examples. The first is simple and is called the haunted house example. It is taken because it
was initially used to verify the new SAPS-ST version with SAPS-II. The second illustrates the
real power of the sub-optimal mask algorithm. It is a more complex example, which stems
from the medical domain. The third originates from appendix B.

4.4.2 Examples

The graph for the haunted house example that is depicted in Figure 4.3 shows that the curves
are quite flat and that a global maximum is not that better than the second best, third best, etc.
It shows that more simple masks may also be quite good for a given purpose (compare this
with the philosophical differences between machine learning and statistics about accuracy and
comprehensibility of a model in chapter 5).

The real impetus for finding a new search algorithm came from another example. A physician
was looking for a pattern in medical data [Barreto 1994]. The data consisted of 19 classes of
symptoms (input variables) for finding the disease (output variable). These 19 symptom
classes may be redundant, but this not sure. Each symptom was already classified according
to the qualitative terms like: ‘high’, ‘medium’, ‘low’, etc. by the physician. There were three
possibilities for the disease underlying the symptoms (three qualitative values). The aim of the
doctor was to discover the simplest relevant pattern between the symptoms and the disease so
that not always all 19 symptoms had to be investigated (some of them required extra
investigations, cost and time)5. Trying to use the two versions of SAPS with the optimal
search algorithm did not work. This example shows that the optimal mask synthesis fails. In

5 This problem is a prototypical example for a technique described in chapter 7.

85

this case, there are simply too many variables. The sub-optimal mask search algorithm,
however, finds a mask quite easily. It demonstrates the real necessity of a sub-optimal search
algorithm if the system is too complex.

The relative importance of the best mask is also illustrated by Appendix B section B.3,
although this appendix serves other purposes that are explained in chapter 8. The data is
generated in Matlab, [MathWorks 1999], and consists of a sine wave contaminated (added)
with random noise. The resulting signal is delivered to a switch that is controlled by a block
pulse generator. For this example, an optimal mask was sought. The optimal mask showed a
dependency of the form (quality is 0.9387):

() (out(10),sine(9),pulse(7))out i f i i i� � � �� ,

while the second best showed a dependency of the form (quality is 0.9373):

() (out(10),sine(9))out i f i i� � ��

The quality of the latter is slightly less than the former, but looking at the state-observation
matrices show that they do not differ much with regard their variability in prediction (see
appendix B). Performing a prediction on a test set shows almost a same performance with
regard to accuracy, while the latter is a simpler model. Table 4.2, which shows the Sum of
Squared Errors (SSE) and the Sum of Absolute Errors (SAE) on a validation set, confirms
these findings, see also Figure B.4 in appendix B.

SSE SAE

Optimal mask 202.4 101.7

Second best mask 199.7 100.8

Table 4.2 : Sum of Squared Errors and Sum of Absolute Errors

The forecasting method is the same for both masks and is done on the same data set, so it
makes sense to compare them. The least one can say is that there is no rigid justification for
preferring the best mask to the second best in this case, which is in concordance with the
statements made earlier about ‘optimality’ of a mask.

4.5 SAPS-ST: a prototype tool for GSPS

The sub-optimal algorithm dealt with in section 4.3 is implemented in VisualWorks 3.0©,
[ObjectShare 1999], which is a Smalltalk (object-oriented) development environment. The
SAPS-ST system is composed of independent units: a recoding module, a pattern analysis
module, and a forecasting module. In the pattern analysis section, a natural mapping from the
epistemological levels of GSPS to a class hierarchy in Smalltalk is established. In a first
version of SAPS-ST the source-system, the data system and the behaviour system were
implemented in a straightforward manner, based on the knowledge inheritance principle of the
epistemological levels, [Van Welden and Vansteenkiste 1994]. The new version is more
pragmatic in the sense that the object system is removed6, and that recoding is extended.
Additionally, for the purpose of data mining (see chapter 8), mask shifting over raw data is
now possible. Besides this, the question to whether recoding belongs to the object or to the

6 In former versions variables were set a priori and it was checked if the data complied with them. Now the
starting point is an activity matrix from which the variables are defined. I did not try to automate the data-
gathering process anymore.

86

data system cannot be resolved fully. Therefore, the new implementation is now entirely data-
driven: it starts from the reading of raw data. It is assumed that these data contain at least the
relevant variables, and that pre-processing is done already to eliminate trivial errors (see data
mining: pre-processing the data). It is also assumed that the sampling occurred at the proper
time-instances. Figure 4.9 shows the structure of the SAPS-ST program.

EDVLF

EHKDYLRU

UHFRGLQJ

PRGXOH

PHWD�QRGH

FRQVWUXFWLRQ

TXDOLWDWLYH

IXQFWLRQ

GHWHUPLQDWLRQ

VHDUFKLQJ

TXDOLW\

IXQFWLRQV

PHWD�QRGHV

TXDQWLWDWLYH

GDWD

Figure 4.9 : Structure of SAPS-ST

A training set of data is read from a file and recoded. This is the SAPS-ST implementation of
the ‘data’ system. An extra extension in the newest version of SAPS-ST is that more
recodings for a variable can be generated and used in the subsequent process of mask
searching (all recodings are present in one mask). Once data is read in, primary masks can be
set forward. A primary mask stands for a maximal allowable mask as depicted in Figure 4.5.
Different primary masks can be constructed to represent different outputs, to allow different
search methods, or simply to look at the effect of different maximal allowable masks for
certain search methods. Each such primary mask is stored in a meta-node. This is a Smalltalk
object with the possibility to generate sub-nodes, each containing a sub-mask and a
corresponding state-observation matrix. Thus, a meta-node knows how to evaluate a mask and
how to create a node for that mask. The searching among different nodes is done in a separate
module that is responsible for the mask-searching. The exhaustive search and the sub optimal
search form two primary methods in the inference module. More elaborated searches can be
plugged in easily. Although the module may change drastically during further development,
the modification will not affect the pure calculation part where the criteria are boiled down to
calculable measures. This is due to the object-oriented approach and a clearly defined
interface between inference module and quality computation module (the meta-node). The

87

searching module requests to a meta-node a set of sub nodes, and it solicits the meta-node the
quality for each node. Then, the searching module determines what to do next: what new
nodes should be generated, etc. Thus, the searching module works with nodes and their
respective qualities, but it does not look into the computation of this quality in a node. The
latter is the responsibility of the node itself (via its meta-node). The determination of the
quality function can be changed from meta-node to meta-node. The object oriented
programming style also allows for very flexible insertion of new criteria for evaluating masks,
which can be tested against already existing evaluation criteria and algorithms. This can be
changed at will without influencing the search (inference) mechanisms. Therefore, downward
compatibility is maintained in the same environment. This opens the possibility to look at the
effect of different quality functions on a certain search strategy. Hence, the system is very
versatile in exploration of different quality determinations, search techniques, mask
constructions, recoding techniques, etc.

The main interaction window in SAPS-ST is shown in Figure 4.10. The top pane represents
the data system, the middle pane allows for mask construction and for the (sub) optimal
searching process. It also gives the possibility for forecasting. In that pane, different primary
masks can be built and for each mask in the list, a separate search for the ‘optimal’ mask can
be executed. Hence, different masks and/or searching techniques can be compared and
evaluated. The bottom pane is an output pane. All what is shown there can also be dumped in
a file for later inspection or for sharing data results with other applications.

Figure 4.10 : Main SAPS-ST interaction window

88

4.6 Recoding in SAPS-ST

The recoding in SAPS-ST is similar to the recoding used in SAPS-II, but it has more
possibilities, and it has a user-friendlier interface. The latter makes recoding in SAPS-ST fully
interactive and very easy to do. It consists of making choices, clicking on buttons, and letting
the system work it out. Hence, the user does not need any programming experience anymore.

After reading the raw data, a window with all the read-in variables is opened and the user can
select each variable in turn to recode. This is depicted in Figure 4.11, where four variables are
ready to be recoded. In the activity matrix, the columns representing the variables are labelled
to maintain a better view of what happens to what variable. An entry in this matrix can be any
data-type (e.g. numbers, strings or characters). The system automatically recognises if the
variables are valid numbers or if they stand for nominal variables. This enables working with
textual identifiers like ‘low’, ‘medium’, ‘high’, etc. right away

Figure 4.11 : The data window for recoding

The recoding window for a selected variable that is taken to be recoded from Figure 4.11, is
shown in Figure 4.12.

89

Figure 4.12 : Recoding a variable

The recoding interface itself is fully window oriented. The interface is very easy to use and
restricts the user's actions to eliminate faulty user commands. The determination of landmarks
in the quantisation of the variables can be done according to equidistant intervals (fixed-sized
recoding), or by trying to keep the distribution of field values over the levels as uniform as
possible (uniform recoding). An enhancement of SAPS-ST is that one can also recode
manually. Figure 4.11 suggests indeed that putting landmarks in the horizontal oriented ‘gaps’
between the data clouds may give a good recoding. A data-dependent choice is given by the
system for the choice of the number of recoding levels. One can use crisp and/or fuzzy
recoding. Crisp recoding (Rectangular membership function) is considered as a special case of
fuzzy recoding. For each variable, one can recode Gaussian, Rectangular, or Triangular (new
in SAPS-ST). Other membership function choices can be added without much trouble due to
the object-oriented set-up of the software. Just add a new item name in an array, write the
corresponding subroutine (only a few lines), and it works. A further enhancement is shown by
Figure 4.12: one can recode differently (with another membership function) for each interval
(level) for a given variable. This is another illustration of the purpose of SAPS-ST as a
prototype tool.

After recoding a variable, the result can be inspected in a data window that shows the raw
values, the recoded values, and the membership functions (the user can select what he/she
wants to see). Different recodings can be applied for one variable and stored in a recoded
activity matrix for further processing in the mask analysis step.

4.7 Evaluating and search ing a (sub)optimal mask in SAPS-ST

The first step in mask analysis is to construct the primary or maximal allowable mask. For
this purpose, one selects from the set of variables the one that is the output, and the ones that
are the inputs for the system. Figure 4.13 shows this process. Initially, the left list contains all
the variables. By clicking arrows, one classifies a variable as system input or as system
output. The system only accepts one system output for a given primary mask. If one wants to
define other outputs, one has to add another mask for it. Variables that are not classified as
system inputs or as system output, are considered irrelevant for the dependency relation. In
other words: they will have all zeros in the mask. In the mask construction window, one
finally selects the memory depth of the mask.

90

Figure 4.13 : Construction of a mask

After this basic construction, one can still edit individually entries in the mask from the main
window (from Figure 4.10).

4.7.1 Extra measures introduced in SAPS-ST

In SAPS-II, the entropy is calculated by using confidence as an estimator of the conditional
probability, see equation (2.8). In SAPS-ST, this is denoted by ‘ShannonEntropyConf’. In
SAPS-ST, the input probabilities can also be determined by taking the ratio of number of
occurrences of the input state to the total number of states. This is an estimated probability
based on relative frequencies, i.e.,

p
n

n
i

i

i
i

m

�
1

Changing the approximation towards calculation of the input probabilities may result in large
differences in mask qualities. These may then give an impact on the choice of an optimal
mask. It illustrates the sensitivity of the search algorithm to the choice of measures. One can
indeed ponder about the relativity of the value of an optimal mask (see 4.4.1). It also
demonstrates the necessity to explore further the influence of different measure choices and
the need for a sensitivity analysis. This could be a major research topic in SAPS-ST. The
Shannon entropy where the input probabilities are based on relative frequencies is denoted by
‘ShannonEntropyProb’.

As seen in equation (2.10), the Shannon entropy is normalised by dividing it by Hmax. In
SAPS-II, Hmax is computed by H nmax log 2 . SAPS-ST supports this too under the name of
‘worstEntropySimple’. Two variants are defined in SAPS-ST, which both rely on the found
state-observation matrix. Referring to equation (2.6), one could also compute a worst entropy
for ni output levels for input state i by 2logi iH n= . What is called in SAPS-ST

worstEntropyNonWeighted, is the maximum of all these worst input state related entropies,
i.e.,

91

max, 2max max[log]non weighted i i
ii

H H n− = = .

If a certain input state i gives rise to all possible output levels, then in n= , and

max, maxnon weightedH H− = . The measure ‘worstEntropyWeighted’ is a weighted version obtained

via the mean value of all Hi (or expectation value), i.e.,

max, []weighted iH E H= .

Until now, no profound research has been done to evaluate the effect of these new definitions,
but is has been observed that they do have an effect on the found optimal mask (e.g., another
one is found when changing the normalisation factor). Extensions in SAPS-ST, which are in
the form of additional measures for under-determination (incompleteness) of qualitative data,
are defined and used in the quality expression. Under-determination stems from the principle
that if there is not enough variance in the data the system will never be able to discover some
relevant features in the data. This can be illustrated with an electronic flip-flop device. If one
generates data where the reset input port is always kept on zero, then the fact that the reset
input can reset (put out on zero) the output will never be seen in the data. The latter will never
be discovered. The resulting incompleteness can only be detected under special conditions
where one knows the input range of every input signal. In that case, one can use a measure to
determine the degree of completeness of the qualitative data for the corresponding source
system (the case where relevant variables are not detected although they play a role is a matter
of the source system). The incompleteness of the qualitative data has a lot to do with the
forecasting power of the model. To take the flip-flop example again: one will never be able to
predict what will happen if the reset input is triggered, because this behaviour never has been
seen in the data before. Thus, the predictiveness, which is a measure of the forecasting power,
of the model will be bad for this case. As a rule one can say:

The more under-determined the data the less predictive power there is.

The terms under-determination and incompleteness are closely linked to the concept of
expressiveness. The expressiveness of a model is a measure for the information content or
resolution that the model provides. The more expressiveness one wants to put in the model the
more levels one has to retain in the recoding. However, the more levels are kept for a given
data set, the more missing combinations will occur in the qualitative data set and the more
incomplete the qualitative data will be. More expressiveness gives a fine granularity in
prediction, but a lower forecasting power.

Expressiveness and predictiveness are competing measures.

Consequently, a trade-off has to be found. Cellier [1987] takes three to five levels (an odd
number is preferred). SAPS-ST is designed not to be so strict. It only puts a restriction on the
number of levels consistent with the data by guaranteeing a sufficient number of points for
each interval (at least 5). The latter principle has led Cellier to the definition of an observation
ratio as defined in equation (2.24) and a corresponding quality expression in equation (2.25)
in chapter 2. The observation ratio is denoted by ‘observationRatio’.

92

Other measures related with predictiveness are:

• ‘dataRichness’, which calculates the number of possible inputs in a state-observation
matrix, it is the number of legal states, formerly denoted by nleg.

• ‘predictiveness’, which is the ratio of the actual found number of possible input state
found in the state-observation matrix to the possible ones. It gives an estimate of the
probability that a random input state can be predicted.

• ‘stability’, which is based on entropy of input probabilities. It returns the entropy of the
input states found.

Finally, two measures for complexity can be used in composing quality expressions:

• ‘maskDepth’, which is the memory depth of the mask, i.e., ∆M - 1

• ‘nrOfStateVar’, which is the number of state variables, i.e., the number of non-zero entries
in the mask,

4.7.2 Enhancements with regard to quality function determination

The previous series enhancements concern the introduction of many new measures that can be
used in the quality function. The second enhancement is that the user can freely use all these
components and compose his/her own quality function description. The latter happens
completely via drag and drop techniques. Figure 4.14 shows the realisation in SAPS-ST. The
top pane has the quality functions that are already defined. The user can choose one of these
expressions for each mask search. The pane below is where new quality functions are
constructed (it is empty in the figure). Construction of a quality expression happens by
dragging composing measures from the left bottom pane and/or operators from the right
bottom pane to the middle pane.

These enhancements clearly show the role of SAPS-ST as a research tool.

93

Defined quality functions

Composition pane for quality functions

component measures

operators

output pane (e.g. explanations of component measures)

Figure 4.14 : Composition or selection of a quality function

Experiments showed that, for the same choice of quality function and search algorithm,
SAPS-ST is able to mimic the output of SAPS-II [Van Welden 1999]. Section 4.4 showed
that the determination of the quality of a mask is quite subjective. Hence, in SAPS-ST
modifications and extension were tried/added in two ways: in the search method and in the
determination of quality (orthogonal or independent extensions).

4.8 Forecasting in SAPS-ST

SAPS-ST has the ability to forecast with a given mask. Usually, one uses the ‘optimal’ mask,
but any mask can be tried, see Figure 4.15. The quantitative data that forms the validation data
is recoded just as the training data were (they can be two data sets or the same). A mask is
picked from the database of meta-nodes and forecasting can take place.

94

UHFRGLQJ

PRGXOH

IRUHFDVWLQJ
PHWD�QRGHV

TXDQWLWDWLYH

GDWD

IRUHFDVWHG

GDWD

Figure 4.15 : Structure of forecasting

The two forecasting methods described in chapter 2 (but without prediction error
determination for nearest neighbours) are implemented in SAPS-ST. Both methods can be
compared with each other. These, and more comparisons, are done for the examples in the
appendices. Forecasted data can be graphically depicted with the original data to see the
performance of the forecasting. The data can be saved in a file for further investigation.

4.9 Comparing SAPS-ST and SAPS-II

SAPS-ST is more of a prototype than SAPS-II. It has never been designed for speed, but for a
maximum of flexibility in changing code and trying out new things. Therefore, many internal
checks are implemented in SAPS-ST. This has severe consequences for speed of execution as
can be seen from appendix C in section C.5.

The advantages of SAPS-ST are as follows.

+ New searching paradigms are incorporated, and existing ones are functionally compatible.

+ The concept of a friendly user interface is taken further in SAPS-ST, where everything is
window-based, and pull-down or pop-up menus respond ‘intelligibly’ depending on the
progress made in the identification stage.

+ Everything is implemented in an object-oriented environment that is known to run under
almost every known operating system [ObjectShare 1999]. Hence, porting the code to
another platform is almost trivial (technically speaking, not financially).

+ Contrary to SAPS-II, no programming is required from the user.

+ More I/O variables and deeper masks can be tackled by the new sub-optimal search
algorithm. It makes finding a sub-optimal mask much faster and it allows mask sizes that
were not feasible before.

95

+ The implementation is object-oriented. The prototype is much more flexible, and even
more modular than all previous SAPS implementations. New recoding and searching
techniques can just be plugged in, and quality functions can be altered quickly and easily.

+ The mask evaluation is completely independent from the searching algorithms. The latter
work with nodes, each node corresponding with a mask, its quality, and so on. The
determination of quality happens in the node and is invisible to the searching routines.
Hence, searching happens with abstract objects that respond by giving a quality value. A
meta-node takes care of the generation of these objects [Van Welden 1999].

+ Crisp recoding is considered a special case of fuzzy recoding. Hence, recoding routines
are only written once.

The disadvantages of SAPS-ST are

- Only three levels are implemented (no reconstruction analysis is included yet). This makes
the prototype less useful at this stage.

- SAPS-ST is not as fast as SAPS-II. As a prototype, it is not intended to be. Moreover,
many internal checks are implemented for debugging purposes in case one wants to
change code. If it really has to become very fast, a conversion to C++ code may be
advisable.

It is less tested and debugged than SAPS-II (because no team of users is working with it as is
done with SAPS-II). Furthermore, as a prototype it is still prone to continuous changes. A
version with a constant layout and user-interface is less likely.

4.10 Conclusion

From the arguments presented in this chapter, it is obvious that for systems that are more
complex the optimal mask search algorithm may not be sufficiently fast, or may fail to find a
suitable mask. A new sub-optimal mask algorithm, which is justified in this chapter, alleviates
this problem to a great extent. It gives new impetus to further research where masks that are
more complex may be considered. For example, derivatives may be included in the mask,
more I/O variable systems can be tackled, and larger time constants can be captured in a
deeper mask. A primary mask, usually a maximal allowable mask, puts an upper bound on the
search space.

The sub-optimal search technique is implemented in a totally novel version of SAPS, called
SAPS-ST. SAPS-ST is a partial, object-oriented version of SAPS that comprises of the sub-
optimal mask search algorithm in juxtaposition with the exhaustive search algorithm7. SAPS-
ST is also compatible with SAPS-II, but is user-friendlier and, as a prototype, particularly
suited for extension with all kinds of new algorithms for recoding, mask quality
determination, searching, and forecasting. Consequently, SAPS-ST is a prototype that
provides fast ways to try out new things. It is by no means a competitor of SAPS-II.

7 SAPS-ST also has some other search algorithms included that are not yet fully tested (e.g., simulated annealing
and genetic algorithms)

96

References

Barreto J. [1994], Personal communication.

Cellier F.E. [1987], “Qualitative Simulation of Technical Systems by Means of the General
System Problem Solving Framework”, International Journal of General Systems, 13(4),
p. 333-344, 1987.

Cellier F.E. [1991], Continuous System Modeling. Springer Verlag, New York, 1991.

MathWorks [1999], www.mathworks.com

Objectshare [1999], www.objectshare.com

Uyttenhove H.J. [1978], Computer-Aided Systems Modelling: An Assemblage of
Methodological Tools for Systems Problem Solving. Ph.D. thesis, School of Advanced
Technology, State University of New York at Binghamton, 1978.

Van Welden D., Vansteenkiste G.C. [1994], “SAPS-ST: A Testbed For Incremental Research
on GSPS”, Proceedings of the 1994 European Simulation Multiconference, Barcelona, Spain,
June 1-3, p. 507-513, 1994.

Van Welden D., Vansteenkiste G.C. [1996], “Sub-Optimal Mask Search in SAPS”,
International Journal of General Systems, vol. 24, 1-2, p. 137-150, 1996.

Van Welden D. [1999], “Compatibility between SAPS-ST and SAPS-II (with User-Manual of
SAPS-ST), Technical Report, Universiteit Gent, 1999.

Winston P.H. [1992], Artificial Intelligence, 3rd edition. Addison Wesley, 1992.

PART II

A Data Mining Approach to Identification of Dynamical
Systems

97

Chapter 5

From Knowledge Discovery in Databases
to Classification

5.1 Introduction

This chapter provides an overview of the emerging popular domain of Knowledge Discovery
in Databases (KDD) and data mining. Although the latter is a process in KDD, it is often abu-
sively interchanged with the former. This chapter will shed light on some terminology and
furnish the necessary formalisations. KDD is described in a broad context (a ‘bird’s eye
view’): its relation with data warehousing is highlighted and it is shown that the approach is
goal driven. The life cycle (herein called virtual circle) of KDD, which is reviewed in chapter
7, is explained. The concept of supervised learning is borrowed from the field of machine
learning. It covers classification and regression. Classification is based on the values in a clas-
sifying attribute while prediction predicts some unknown or missing attribute values based on
other information. Both should preferable lead to the understanding of the variables and the
interactions that drive the phenomenon. Anticipating chapter 6, this chapter will concentrate
on classification, which basic purpose is to produce an as accurate as possible classifier or to
provide insight and understanding into the predictive structure of the problem. Many princi-
ples underlying classification can be carried over to classification and regression trees, which
form the subject of chapter 6. Some algorithmic classification methods, such as linear func-
tions, logical descriptions, decision trees, neural networks, etc, are run through. This chapter
can be compared in structure with chapter 1: it lays down the basic framework for the sequel.

5.2 Knowledge Discovery in Databases and Data Mining

Nowadays, more and more data is digitised and stored in databases thanks to the automation
in generating and collecting of data (examples are tax returns, health care transactions, con-
sumer behaviour, industrial transactions, etc.) and the maturity of database technology. The
resulting data explosion cannot be processed by humans alone anymore (one is drowning in
data) despite the fact that quite some informative patterns may be hidden in the data (but one
is starving for knowledge). Consequently, tools and techniques have been designed that assist
humans intelligently and automatically in analysing this abundant amount of raw data to ob-
tain useful information via knowledge discovery in databases (KDD). Thus, KDD is a data
exploration methodology that is defined to be the non-trivial extraction of implicit, previously
unknown, potentially useful, ‘relatively simple’, and not predefined information1 from large
databases.

1 The weight of the adjectives may vary according to the goal of the exploitation (see interestingness function)

98

KDD is employed in finance (fraud detection, stock market prediction, credit assessment),
marketing (basket analysis, target marketing, sales prediction), quality control, medicine (ef-
fect of drugs, diagnosing, hospital cost analysis), astronomy (cataloguing), molecular biology
(finding patterns in molecular structures), text mining, web mining, etc.

Economical criteria are ‘les raison d’être’ of KDD in business enterprises. Ultimately, it
should give a good return on investment. Customer retention, fraud detection, risk analysis,
management applications and market analysis applications are the driving forces behind
KDD. Practical criteria express that it must have a potential for significant impact of an ap-
plication. It should be advisable because no standard methods exist to solve the problem. In
addition, there must be domain expertise available. Juridical criteria, such as privacy and
tractability issues, play along. Technical criteria imply that there should be sufficient data
available because many data mining algorithms require large amounts of data. From what has
been described in the beginning of this section, it is clear that the presence of abundant data is
becoming more a rule than an exception. Nonetheless, the variability in the data should be
high enough and relevant attributes must be present.

In this thesis, emphasis will lie on the technical criteria.

KDD deals with ‘real world’ problems. Huge databases need scalable algorithms to be
scanned for interesting patterns. With large data sets involving many variables, more structure
can be discerned if a variety of different approaches are tried. However, the expansiveness by
itself does not necessarily imply a richness of structure. Having many variables entails a high
dimensionality, which may trigger the curse of dimensionality (sparse data). An effective
medicine for this is the use of a-priori knowledge and data reduction techniques (see section
5.4.3). The huge number of data may also give rise to finding ‘spurious patterns’: assessing
statistical significance becomes very important [Salzberg 1997]. Additionally, non-
homogeneity, missing and noisy data complicate knowledge extraction. Overfitting tends to
destroy the parsimony and the generality of a pattern. This pattern should be time-invariant in
the simple case. Time-variant patterns, present in non-stationary data such as ageing or obso-
lete data, complicate the search tremendously.

A definition of KDD is found in the glossary. Many adjectives are used to make it as precise
as possible. Still, formalisation goes a step further by defining an interestingness function.
The certainty (C), the novelty (N), the usefulness (U), the simplicity (S), the comprehensibil-
ity (V), the generality (G), and the redundancy (R) of a pattern E in a data set F are formalised
and used as arguments in its definition, i.e.,

interestingness i = I(E,F,C,N,U,S,V,G,R)

Some measures are more objective, e.g., confidence, support, while others are more subjec-
tive, e.g., novelty, usefulness. The same is true for the interestingness function itself, which is
goal dependent. A pattern is deemed knowledge if it is interesting enough, i.e.,

if I(E,F,C,N,U,S,V,G,R) > ithreshold

where the threshold is chosen by the user.

The interestingness function can be seen as a generalisation of the quality function in SAPS,
which evaluates a time-invariant pattern, a mask, with regard to certain, sometimes quite

99

subjective, criteria. Defining an interestingness function may look easy, but how to fill it in is
another matter.

5.3 KDD in a broader perspective: the virtuous cycle of data mining

KDD2 is itself a sub-process of what is called ‘The virtuous cycle of data mining’. It shows
the complete enterprise approach to KDD. It goes on where KDD ends by transforming in-
formation into actionable processes. Berry [1997] writes that ‘one must be able to respond to
the patterns, to act on them, ultimately turning the data into information, the information into
action, and the action into value’. Put it otherwise, KDD is in fact only one major step in a
process that applies knowledge gained from increased understanding of customers, markets,
products, and competitors to internal (continuously evolving) processes.

Figure 5.1 gives an integrated and broad picture showing the three main societies involved in
the virtuous cycle, i.e., the management society, the database society, and the ML-statistic
(ML stands for Machine Learning) societies (ML and statistic is grouped here). It further
shows that a data warehouse delivers data to three processes: report generation, OLAP (On
Line Analytical Processing), and KDD. Low-level data processing occurs in a data ware-
house, see section 5.4.1. It should precede report generation, OLAP and KDD.

0/

VWDWLVWLFV

GDWDEDVH

FRPSXWHU VFLHQFH

PDQDJHPHQW

RXWSXW

JHQHUDWLRQ

JRDO
LGHQWLI\ EXVLQHVV

SUREOHP

DFW RQ WKH

LQIRUPDWLRQ

PHDVXUH UHVXOWV RI

DFWLRQ
2/$3

GDWD SUH�SURFHVVLQJ

GDWD PLQLQJ

NQRZOHGJH

FRQVROLGDWLRQ

UHSRUW

GDWDEDVH

.'''DWD�ZDUHKRXVLQJ

Figure 5.1 : Decision support and the role of data mining

2 Berry[1997] calls KDD simply data mining

100

One could argue that data pre-processing and knowledge consolidation is equally present in
the other two modules: report generation and OLAP. However, the explicitness and the im-
portance of the pre-processing and knowledge consolidation are less elaborated than when
doing KDD. E.g., usually, a report generation triggers a management action, but knowledge
consolidation is less an issue for there is no new information generated. Pessimistically spo-
ken; even OLAP is nothing more than a very powerful tool for reporting on data, in contrast
to data mining that concentrates on finding new patterns in data, i.e. inducing knowledge.
OLAP is a presentation tool that can permit manual knowledge discovery, but it relies entirely
on human intelligence for the knowledge discovery piece, and this is not what is meant with
KDD.

5.4 The basic steps in KDD

The basic steps in KDD are depicted in the KDD block in Figure 5.1. In utilising these steps,
visualisation of the data is quite important (e.g., scatter plots for trend or outlier detection,
etc.). At a meta-level, one should also consider the data warehouse, which has its own merits
with regard to KDD. That is why it is included in this section as step 0. The remaining steps
match largely with what is found in [Fayyad 1996].

KDD starts with the goal definition, which must be formalised and made executable so that it
can be related to relevant data, which are hopefully present in the database. The data pre-
processing step prepares and reshapes the data for subsequent processing. It involves data and
attribute focusing, data cleaning, data projection, and data augmentation. The data mining
step induces the model. It consists of a model specification, model fitting, model evaluation,
and model refinement. Similarities with ‘classical’ modelling emerge. They will be discussed
in chapter 7. Consolidation of the newly found knowledge and output generation consists of
interpreting and documenting the found patterns, and if more model types were used, com-
paring them. Any conflicts (if any) that may arise with previous knowledge in the knowledge
base must be resolved. A priori knowledge can be used in any step.

These steps can be illustrated with what an archaeologist does, see [Brachman 1996]. When
an archaeologist wants to dig up interesting artefacts (goal definition), he looks at the (data)
landscape to decide where to dig. This is based in part on what he sees and in part on his ex-
perience and background knowledge (focusing). Once at the site, he brushes away the dust
(data cleaning and data projection), pieces fragments together that seem to fit (data mining),
and decides what to do next in order to confirm an evolving hypothesis about the creator and
the meaning of the artefacts (consolidate new found knowledge). Finally, the artefact is pre-
sented in a museum (output generation).

Remark the possible impact of different degrees of a priori knowledge in the process. More a
priori knowledge helps in all steps to achieve a better (more valid) model (is the artefact a
vase, an eating bowl, a religious symbol, etc.?). Remark that the model specification can be
purely data driven too (just try to puzzle pieces together). Thus, data analysis and model de-
velopment is highly intertwined.

Tools that only offer specific data-mining methods are plenty, but tools that do KDD (in its
full meaning) are still rare. Three examples that approximate KDD are: SAS Enterprise Miner
(from [SAS 1996], EXPLORA (from [Klösgen 1996]), and Darwin, (from Thinking Machines
Corporation, [Think 1999]). For a current overview of the suites and tools, see [Siftware
1999].

101

5.4.1 Step 0: Collecting data in a data warehouse

A data warehouse collects data from different sources and integrates them in a meaningful
way. Operational data can be stored in different databases in and different formats: relational,
transactional, object-oriented, object-relational, active, spatial, time-series, text, multi-media,
heterogeneous, etc. Hence, it is far from trivial to merge these data. When they come from
different sources, an extra complication arises from the syntactical different representations
for the same semantic data. For example, ‘yes ‘ (with an extra space at the end) is not syntac-
tical the same as ‘ yes’ (even more syntactical different may be 0 for ‘no’ and 1 for ‘yes’),
although semantically they may very well be. Hence, data warehousing converts the data into
a suitable form for report generation, for OLAP, and last but not least, for KDD.

5.4.2 Step 1: Goal definitions and problem types

A goal definition is the starting point for KDD. For a goal set forward, one has to formulate
the problem and get an understanding of the domain in which it is situated. A priori knowl-
edge, which may be present in a knowledge base, must be considered and used whenever pos-
sible. The goal should be formalised and made executable so that it can be related to relevant
data. The goal for exploring data in a database can be different from situation to situation. At
an abstract level, two high-level goal settings can be distinguished: hypothesis testing and
knowledge discovery. Both are depicted in Table 5.1 (left versus right column).

Goal setting 1: Goal setting 2:

Top-down Bottom-up

Hypothesis testing Knowledge discovery

Confirmative Explorative

Table 5.1 : Synonyms for the two main approaches in KDD

Hypothesis testing is a top-down or confirmative approach. Once a hypothesis is stated, a list
of data requirements has to be generated to test it. Unfortunately, even in the data warehouse
the collected raw data is usually not stored as such to test hypotheses directly.

Knowledge discovery is a bottom-up approach. Undirected knowledge discovery is harder
than directed knowledge discovery due to the extra level of possible class combinations.
Hence, undirected knowledge discovery tries to recognise relationships while directed knowl-
edge discovery tries to explain those relationships. Undirected knowledge discovery is often a
prelude to further investigation with directed knowledge discovery.

One may consider some typical goal types with their corresponding problem types.

A first goal type is to gain insight or to have a good model. This can be achieved through con-
firmation of a hypothesis (is insight true?) or via data exploration. It corresponds with the
Summary and Description problem type. It may also lead to refinement of an existing model
[Simoudis 1996]. The Nuggets problem type of Klösgen [1996] may be linked with this goal
type.

A second goal type aims at a correct classification (classify on attributes) and prediction (fill
in unknown values). This typical needs a data exploration approach, which corresponds with
the ‘Classification and Prediction’ problem type (when time is less the issue). This case may
also apply when the classification results are further processed by another automated method

102

(e.g. another computer program). A good example is where a qualitative model (as in SAPS)
is built, and when this model is used to forecast: the syntactic complexity doesn’t matter
much, nor does the comprehensibility of the pattern.

A third goal type emphasises a speedy classification and prediction. This mostly needs a data
exploration approach, but sometimes a hypothesis for classification may help. The corre-
sponding problem type is the ‘Quick decision’ problem type (e.g. should I give a credit or
not?). In this case, accuracy may be less important than speed and comprehensibility, e.g.,
neural networks.

Consequently, a goal setting has a significant impact on the a priori selection of data mining
techniques.

This thesis focuses on the directed knowledge discovery approach.

5.4.3 Step 2: Data pre-processing

A hypothesis needs a list of data requirements to be generated for its testing. Unfortunately,
collected data is usually not directly suitable for this purpose. Often, the data has to be pre-
pared and perhaps transformed to be of good use. In the knowledge discovery approach, one
may have not the interesting (and often unknown) data available in the database. Sometimes,
the sheer number of data levels can make things explode combinatorial, creating the necessity
for lumping data. Furthermore, one has to be aware of a possible data-suitability problem. The
data pre-processing step tries to answer these problems via the application of two main steps.
These are data cleaning and data reduction. For the latter, one distinguishes a vertical and
horizontal reduction. This is because, usually, data is represented in a matrix: the columns
represent the variables and the rows represent the data records. Consequently, data reduction
can be achieved in two dimensions: horizontal reduction or dimensionality reduction (or fea-
ture selection), and vertical reduction or numerosity reduction.

Attribute focusing involves a horizontal data reduction in the parameter space. It creates a tar-
get data set by focusing on a subset of variables. It can be compared with an action in an ex-
perimental frame (chapter 1). Attribute focusing may also imply the right selection of prede-
fined classes in supervised learning, see 5.5.2. If one is interested in only one class from many
possible ones, then one may re-code the attribute values such that only two classes remain.
This is a typical sub-problem type for the pure classification/prediction approach [Klösgen
1996].

Data focusing or numerosity reduction gives a vertical data reduction in the observation
space. One technique to achieve this is discretisation. It can be applied for very large data-
bases (terabytes). There is static and dynamic discretisation3. In data pre-processing, only
static discretisation is considered. Notice the resemblance with the recoding techniques used
in SAPS, an issue that is dealt with in chapter 8. Discretisation can also contribute to attribute
focusing via data focusing (if discretisation reduces the number of levels to 1).

Data cleaning is a double-edged sword: it is usually required to ‘clean’ poor data, but it may
throw away a crucial indicator by considering it as an anomaly. For example, when a cus-
tomer is deceased, or when fraud is involved. Some data mining tools can work with missing
values, others do not. Records with missing data fields may be thrown away, but useful in-
formation may go away too. Another solution is to put an estimate in the empty field. In more

3 In fact, it is better to speak of quantisation, but in the KDD domain, one is accustomed to ‘discretisation’.

103

seldom cases, the missing field may also contain an important indication of something. Han-
dling missing values can be combined with data cleaning (especially if the data mining
method does not support missing values). An information theoretic approach to data cleaning
is presented in [Guyon 1996].

Data projection accomplishes a dimensionality reduction. However, there is often also the ne-
cessity for data augmentation. The resulting use of more variables is not considered contra-
productive. Berry [1997] states: “Instead of carefully choosing the few independent variables
that you expect to be important, the data mining approach calls for throwing them all into the
hopper and letting the data mining tool itself determine what is important”.

5.4.4 Step 3: Data mining

The data mining step comprises model specification, model fitting, model evaluation, and
model refinement. This section is not elaborated much because data mining will be discussed
in more detail from section 5.5 on.

Model specification involves deciding whether to use classification, regression, neural net-
works, or other techniques. Hence, it determines the model type on which the goal type has a
significant impact. Model fitting determines the values of some specific model parameters
based on a chosen training set. Model specification and fitting deals with the model represen-
tation. The latter supplies a language for describing discoverable patterns. For example, a de-
cision tree representation using univariate (single-field) node-splits cannot discover y = x no
matter how much data is given. Thus, representational assumptions inherent to a particular
method need to be understood. This is much related to model search, which is used in a ‘re-
stricted’ family of considered models (e.g., classification trees). Implementations of model
search methods tend to use heuristic search techniques. Then, a parameter search is used to
optimise the parameters with regard to a model evaluation criterion. For models that are more
complex, a closed form is not available; greedy methods are used; e.g., see the approach in
[Van Welden 1996; Van Welden 1998].

Model evaluation estimates how well a particular pattern meets the criteria of the KDD proc-
ess. Evaluation on predictive accuracy is based on cross-validation or on a simple training-test
set paradigm. Both concepts are explained in section 5.9.6. Evaluation of descriptive quality
involves predictive accuracy, novelty, and comprehensibility of the fitted model via the inter-
estingness function.

Model refinement, depending on the evaluation results, iteratively refines the initial model or
tries other model paradigms.

5.4.5 Step 4: Data post-processing or knowledge consolidation

Many data mining methods exist. Examples are classification, regression, clustering, prob-
ability density estimation, summarisation, dependency modelling (this is what SAPS does),
change and deviation detection, basket analysis (the list is not exhaustive).

Each candidate data mining method is post-processed to achieve the goal as optimal as possi-
ble. Discovered knowledge can be consolidated by selecting the best method from the differ-
ent paradigms, by summarising and documenting the selected method(s) and by resolving
possible conflicts with previous knowledge.

Before interpreting the found patterns one should determine whether they represent interest-
ing knowledge and if the found knowledge is consistent with the goal setting. The latter is not
as trivial as it seems. As an example, suppose that the goal is to find a comprehensible knowl-
edge structure. Rules and decision trees fulfil this requirement better than neural networks.

104

Often, this can be dealt with in the initial steps. Nevertheless, even a decision tree (e.g., which
was chosen to be the most comprehensible knowledge form) may be correct and computa-
tionally efficient, but not understandable by humans. Many authors [Gaines 1996] state that
such a structure does not qualify as knowledge. This is a typical problem with inductive mod-
els: they do not give insight into the basis of decision making. Smaller coherent and familiar
structures that give a better mapping with human cognitive models should be put forward (a
ML viewpoint).

It is of paramount importance to realise that data mining results change over time (model
change). Especially in the business domain, models expire and become less useful as time
goes by. This is related to the fact that data age quickly. Markets and customers change
quickly as well. Even scientific discovery is an ongoing process.

5.5 Learning Systems and KDD

The knowledge discovery approach in KDD, which tries to recognise patterns in data, is a
form of inductive learning. Therefore, one can speak of learning systems. The latter term
originates from the domain of machine learning (ML). However, KDD and ML differ in some
aspects:

• KDD is about finding understandable knowledge, while ML is more concerned with im-
proving performance of an agent (e.g., training a neural network to balance a pendulum is
part of ML, but not of KDD)

• The efficiency of the algorithm and scalability is more important in KDD, because it is
concerned with very large, real world databases, while ML typically looks at smaller data
sets. Hence, associated real world problems such as missing values, large databases, noise,
etc., are more studied in KDD.

• On-line learning is more familiar in ML than in the statistics domain (a sub-domain of
KDD). The latter works often with off-line learning.

Clearly defined relationships are hard to specify, because KDD uses methods from ML.
Hence, for all practical purposes, one could argue that ML is a sub-domain of KDD (in the
large).

In learning systems, one starts from the point that expertise or accumulated experience is of-
ten in the form of records of (hopefully) correctly solved cases that form the sole source of
knowledge. A drawback, however, is that heterogeneous knowledge or experience from an
expert, which may help in solving a problem, is often not accounted for in this paradigm. This
can be contrasted, on the other hand, with an expert system, which solves problems using a
computer model of expert human reasoning. It this approach, it is easy to codify the ‘rules of
thumb’ of an expert. A comparison between learning and expert systems is given in Table 5.2.

105

Learning system Expert System

data-driven knowledge-based

any type of algorithm usually based on models of human
expert reasoning

can exceed performance of experts limited ability to exceed performance
of experts

induce knowledge and may discover
new relationships among concepts

deduce knowledge

difficult to insert heterogeneous
knowledge from expert

codes expert knowledge, which may
be very heterogeneous

constructed by data-mining engineers constructed by knowledge engineers

Table 5.2 : Learning systems versus expert systems

Both approaches are complementary and should be combined to have a more powerful ap-
proach. One possible approach is described by Heckerman [1996], who examines a knowl-
edge representation form, called Bayesian network, which integrates the best of both worlds.
The method starts with an encoded representation of an expert’s knowledge. The database of
cases is then used to update this knowledge (inductive correction). Hence, the original expert
knowledge is refined and new relationships may be discovered. The approach appears to be
robust to errors in the initial a priori scheme. The result is an inductive, easy interpretable cor-
rected a priori expert knowledge representation.

ML people soon reckoned the problem of induction. It suggests (Karl Popper) that scientific
hypotheses can only be falsified. (Un)fortunately, when falsified, a new theory has to be built
and usually this is done by aid of induction. The fact that one is never certain in an infinite in-
put space that the correct hypothesis is reached has a great impact on computational learning.

5.5.1 Computational learning

The primary concern of computational learning is the development of learning algorithms. No
programming is required during the learning phase. Computational learning roughly divides
into three different areas: ML, connectionism (parallel-distributed processing or neural net-
works) and statistical learning techniques.
The learning process itself consists of choosing or adapting parameters within a chosen model
type that work best on the samples at hand and others like them. Most current theory of ma-
chine learning rests on the crucial assumption that the distribution of the training examples is
identical to the distribution of the test examples. In choosing the samples, one further distin-
guishes:

• Direct training examples versus indirect training examples. This can be compared with di-
rected and neutral systems (chapter 1).

• The degree to which the learner controls the sequence of training examples; the sequence
of examples may be under control of the learner or just given to him. This is comparable
with actively or passively obtained data (chapter 1).

When the learning task is prediction, the goal of a learning system is prediction on new cases,
not discrimination between the existing sample cases. Discrimination (a type of classification)
is an easier process than prediction (overfitting is less a problem in that case). The examples

106

in the appendices all look at the prediction performance on a test set, which is representative
for the new cases. Features that are no more predictive than chance can be considered noise.
A problem is that such features, which appear noisy on their own, may prove to be highly
predictive when combined with other features. For example, the entropy may decrease very
suddenly by removing an attribute; a goodness-of-fit may also change drastically by adding or
removing a predictor4; or a decision tree may become much simpler by removing a feature.
Hence, performance of a learning system can be drastically affected by the choice and specifi-
cation of the features (source system considerations in GSPS).

5.5.2 Supervised learning, unsupervised learning and target mapping

Unsupervised learning has as its objective to establish the existence of classes or clusters in a
given data set. Supervised learning tries to induce a rule whereby one can classify a new ob-
servation into one of a set of existing predefined classes. In supervised learning, computa-
tional learning boils down to the construction of a target mapping that enables correct outputs
to be returned for inputs that do not appear in the training set [Thornton 1992]. Each example
is a training pair and shows a single association in the mapping and is divided up into two
parts:

1. the first part is a list of symptoms or attribute values for a certain case,

2. the second part contains the desired output or target output.

The set of data records, which provides the necessary examples, is supplied to a suitable
learning algorithm. The examples should enable the derivation of a general rule that allows
correct diagnoses to be produced for any particular case, not just the ones explicitly shown.
That is to say, they should enable to make an inductive leap from the specific to the general
case. The target mapping guides in the search for the general rule just described. However,
most target mappings are non-operationally defined. They have to be put in an operational
form (evaluation function) that is easier to learn. Hence, the learning task is reduced to the
problem of discovering an operational description of the ideal target mapping, usually in a
functional representation (function approximation), i.e., a kind of optimisation. This can be
compared with SAPS, where the general rule is the (sub)optimal mask and the optimisation
process is the mask search.

5.5.3 Inductive bias

The power of a model depends on its specification. For example, a conjunctive expression is
represented in the instance space (feature space) by a simple rectangle, while a disjunctive ex-
pression is represented in the instance space by a union of two simple rectangles. If only
conjunctions are used, patterns that efficiently can be represented by e.g. disjunctions cannot
always be represented. It is said that the learner is biased to consider only conjunctive hy-
potheses. The obvious solution is to enrich the hypothesis space to include also disjunctions
and negations.

This leads to a very important fundamental property of inductive inference [Mitchell 1997]: A
learner that makes no a priori assumption regarding the identity of the target concept has no
rational basis for classifying unseen instances. This a priori assumption is what Mitchell calls
the inductive bias. Its role is depicted in Figure 5.2. It is the policy by which a learner gener-
alises beyond the training data.

4 Terminology changes according to the domain (statistics, machine learning, system dynamics).

107

WUDLQLQJ

H[DPSOHV '

QHZ

LQVWDQFHV

FODVVLILFDWLRQ

LQGXFWLYH

ELDV %

FODVVLILFDWLRQ

UXOH /

WDUJHW

FRQFHSW F

D SULRUL DVVXPSWLRQ

WUDLQLQJ GDWD

Figure 5.2 : Inductive bias

Hence, inductive bias characterises different approaches to inductive inference. Example:

• for a candidate-elimination algorithm, the inductive bias is that the concept c to be learned
is included in the hypothesis space H.

• for tree classifiers (the subject of chapter 6), the inductive bias is a preference for small
trees over large trees.

5.5.4 Classifiers

Classifiers are kinds of learning systems. There are two very different ways a classifier can be
constructed. On the one hand, the classifier might be obtained by interviewing the expert(s).
Alternatively, numerous recorded classifications might be examined and generalised by dis-
covering and analysing patterns in them, from which a classifier may be constructed induc-
tively. The former approach is knowledge-based while the latter is data-driven (see Table
5.1). In classification theory, it is assumed that a classification procedure is needed that will
be applied to a continuing sequence of cases, in which each new case must be assigned to one
class on the basis of observed attributes or features. Usually, it cannot be answered in advance
which classifier performs best for a given real problem (this problem is of course equally pre-
sent in KDD). Especially when the data are not well known, one has to try out a variety of
methods on the available data and empirically compare the results. Furthermore, different
problems have different characteristics and may require different classifiers. In searching for
the best classifier, one has to express the goal type clearly.

5.6 Classification principles

Usually, sample data consists of a finite set of samples of solved cases. They imply a pattern
of observations and the corresponding correct classification. The simplest view of the task of
classification is that a specific pattern of observations is associated with a specific class. This
is the pattern recognition perspective. The key requirements for a classifier that are assumed
in this thesis are

• attribute-value description: all information about one case must be expressible in terms of
a (fixed) collection of properties or attributes (attribute value learning).

108

• crisp discrete classes: the categories to which cases are to be assigned is established be-
forehand as in supervised learning. The classes must be sharply delineated (crisp); each
case belongs or does not belong to one class (mutually exclusive classes). Fuzzy member-
ships are not considered. A classification rule should mimic this (unknown) function as
much as possible.

• non-parsimony: there must be far more cases than classes. Specifically, there must be
more than one case per class. Otherwise, classification does not make sense.

Other requirements are found in KDD: e.g., sufficient data, relevant attributes, etc.

1 2

Figure 5.3 : Two distinct separators

In Figure 5.3 two distinct separations are drawn, one which could be the result of a linear dis-
criminant analysis (1), and one which could stem from a split in a decision tree (2). Which
one is the best for forecasting when new data will become available? From Figure 5.3 it can
be noticed that a different boundary and consequently, a different interpretation is possible.
The question is then whether a simple explanation for the split is more important than good
forecasting. This, of course, is linked with the form of the interestingness function.

In practice, some (partial) requirements are often taken as a criterion for the quality of a clas-
sifier. Some theoretical requirements (accuracy, resemblance, etc) are formalised rigorously in
[Van Welden 1998], but will not be discussed here. This section treats practical aspects that
will be equally applicable when comparing GST and KDD.

A first important requirement of a classifier is its comprehensibility. Comprehensibility has to
do with the colour of a classifier model. Accuracy, often the most important requirement, will
be formalised later in section 5.9.4. It is important to consider accuracy classifications not
only on a training set, but also on a test set. Only the latter is unbiased and truly a good meas-
ure. In some applications, speed is more important than accuracy if the difference in speed
does not correspond with a too drastic difference in accuracy. An example is the automatic
reading of postal codes in a large post centre. Adaptability or time to learn: in a rapidly
changing environment, a classification rule must be constructed quickly with only a relatively
small number of observations (model switching in control processes). In this context, one can
distinguish between eager evaluation and lazy evaluation. These concepts come back in
chapter 8. Cost of classification: The cost of test should be taken into account when con-

109

structing classifiers. Sometimes, not all tests are necessary. Especially when tests are rela-
tively expensive, it may be advisable to lower (total) costs by alternating test and classifica-
tion decisions as can be done in tree-classifiers. The robustness of a classifier plays a central
role when noisy data is present. Finally, scalability of a classifier is an essential but relatively
new concept in the context of data mining. A classifier can perform well on small data sets,
but may fall short when trying to classify the typical huge data sets in KDD.

5.7 Classification approaches

If unlimited data were available, each pattern could be stored in a table for look-up purposes.
One would simply look up in the table the corresponding class that had previously been asso-
ciated with it (efficient look-up techniques such as hashing could be used to speed up the pro-
cess). However, even the most systematic and long-term record keeping is unlikely to cover
all the possible combinations of values that can arise in nature, see section 5.5. Thus, the
learning task becomes one of finding some solution that identifies essential patterns in the
samples that are not overly specific to the sample data (see section 5.9.2). The machine
learning approach to this task is somewhat different from the statistical approach.

5.7.1 The machine learning approach versus the statistical approach to classification

The machine learning approach has some emphasis shifts compared to the statistical ap-
proach. They relate to the mental fit of the found models, the handling of noise, and the type
of variables they focus most on.

Machine learning was first applied in agriculture to develop rules for diagnosing soybean dis-
eases [Michalski and Chilausky 1980]. Rules derived by experts and those generated by a ma-
chine-learning algorithm were put side by side. When tested in an expert system, the machine-
generated rules outperformed distinctly those generated by experts. It did not only give a good
fit to the data, but also a good mental fit [Michie et al. 1994]. This ‘knowledge’ orientation is
so important that data-derived classifiers, however accurate, are not ordinarily acceptable in
the absence of mental fit, [Feng 1994].

The statistician viewpoint to classification is expressed in [Breiman 1984]: “Depending on the
problem, the basic purpose of a classification study can be either to produce an accurate
classifier or to uncover the predictive structure of the problem”.

Hence, machine learning drives the mental fit concept much further than the statistical ap-
proach does. That is why ML gained earlier acceptance and why decision trees became more
popular in that field despite the emphasis on noiseless cases. However, the statistical approach
is more realistic in considering the presence of noise. Contrary to the noiseless situation,
measurement points do belong to different classes and no unique membership is guaranteed.

This thesis adheres to the statistical approach.

Accordingly, a way to look at classification, is by starting with the assumption that the design
set is a random sample from the overall population. An overlap between the probability dis-
tributions of the different classes is an inherent aspect of the statistical approach. A decision
surface or line will be based on a threshold. The best one can do is to approximate the Bayes'
classification rule.

110

One thus considers the density function p j X x(|)
� �
� , which represents the discrete class distri-

bution conditional on a measurement vector
�
x . In the case of the ideal situation the density

function would be a Dirac function on the classes, i.e., the probability is 1 when
�
x belongs to

class j, otherwise it is 0. The difference between the two approaches is depicted in Figure 5.4.

What are searched for are estimators of p j X x(|)
� �
� that are as close to the true values as pos-

sible. However, it can not be done by looking at some measure of difference between estimate
and true value, because the latter is not known. Information about the true values can only be
obtained via the design samples. Consequently, many classification methods are based on es-
timation of p j X x(|)

� �
� or f x Y j(|)

G

 (via the Bayes rule). The latter density is often denoted
by f xj ()

�
.

• Parametric methods assume certain distributional forms (e.g. discriminant analysis in gen-
eral assumes multivariate normal distributions).

• Non-parametric methods do not make the latter assumption; they are based on vicinity
considerations (e.g. nearest neighbours).

• Intermediary methods are methods that have a very large number of parameters. An exam-
ple is neural networks, [Hand 1997].

 j1 2 3 4 5

p j X xa(|)
G

G=

 j1 2 3 4 5

p j X xb(|)
G

G=

 j1 2 3 4 5

δ(|)j X xb

G

G=

 j1 2 3 4 5

δ(|)j X xa

G

G=

x1

x2

�
xa

�
xb

Figure 5.4 : Machine Learning (top) versus Statistical Approach (bottom)

111

A smaller emphasis shift is that statisticians often think in terms of continuous variables. In
contrast, the ML community are more used to discrete (and binary) variables. Fortunately, this
has not restricted too much the applicability because most problems are categorical or can be
categorised. An illustration of this is found in chapter 6, where the most prominent decision
tree algorithm from the ML world works with discrete classes (e.g., classification trees), while
in the statistics world an extension to regression trees is made.

5.7.2 Taxonomy of classificat ion methods

The methodological differences between machine learning and statistics are found back in a
taxonomy of classification methods. Their strands of research that can be identified for classi-
fication can be found back in Figure 5.5.

• Statistical pattern recognition :

• Bayes rule

• Discriminant analysis

• Nearest neighbour method

• Density estimates

• Tree classifiers: CHAID, CART

• neural networks (connectionist approach)

• machine learning methods

• Concept learning and rules

• Tree classifiers: ID3, C4.5, C5.0

• Case based reasoning

• Genetic algorithms

Figure 5.5 : Taxonomy of classification methods

The taxonomy can be elaborated upon by distinguishing between

• linear, quadratic, and logistic discriminant analysis,

• the kinds of neural networks : backpropagation network, Kohonen network, …

• genetic algorithms and evolutionary algorithms,

• variants on existing algorithms such as CART and C4.5,

• etc.

Other taxonomies can be devised. For example, Quinlan [1993] takes neural nets and genetic
algorithms as a part of machine learning. Yet other taxonomies are found in [Henery 1994]
and [Info. Disc. 1998].

112

5.8 Popular classifiers

In comparing classifiers, a clear distinction is made between the performance of a classifier
rule, induced on a particular design set, and the performance of the classifier method itself
(compare with the difference between estimate and estimator accuracy). The former has to do
with how well this particular rule performs given a certain classifier model, while the latter
has to do with what type of rule (model) is constructed. Thus, the former is conditional on the
latter (model). The methods for solving the classification problem are domain independent.
They assume little or no knowledge of the semantics of the application area. All the observa-
tions are merely treated as symbols that are manipulated by a computer.

5.8.1 Concept learning

Concept learning encompasses acquiring the definition of a general category given a sample
of positive and negative training examples of the category. It infers a Boolean-valued function
from training examples of its input and output.

The target concept c to be learnt is a Boolean function c X: { , }� 0 1 , where X is the set of
items over which the concept is defined. The training examples D consist of an instance x
from X, along with its target concept value c(x), i.e., x c x, () . Positive examples are instances
for which c(x) = 1, negative examples are instances for which c(x) = 0. Given D and examples
of c, estimate c or find a hypothesis h in a hypothesis space H such that
� � �x X h x c x� �� �() () . The only information available about c is its value over the training

examples. Therefore, inductive learning algorithms can at best guarantee that the output hy-
pothesis fits the target concept over the training data. Concept learning can now be viewed as
the task of searching through a large space of hypotheses implicitly defined by the hypothesis
representation, where the goal is to find the hypothesis that best fits the training examples.

Patterns are used to characterise a hypothesis. Taking as a convention that the hash character
'#' is a wild-card that stands for any valid symbol from a certain alphabet ({0,1} in the binary
case), the hypothesis [1 #] matches the mapping in Table 5.3 in which the output for [1 #] is
considered 1 or true.

input output

< [0 0] [0] >

< [0 1] [0] >

< [1 1] [1] >

< [1 0] [1] >

Table 5.3 : The mapping corresponding with [1 #]

By selecting a hypothesis representation, the space of all hypotheses is defined.

5.8.2 Linear classifiers

A linear classifier assumes that a class can be expressed as a linear combination of the attrib-
ute values. It tries to find a particular linear combination that gives the best fit over the train-
ing cases. Linear discriminant analysis uses weighted contributions of attributes that are com-
bined arithmetically and compared to a threshold. In linear discriminant analysis, one assumes

113

that all f xj ()
�

 are multivariate normal densities with common covariance matrix and different

means vectors. Other methods, which require fewer assumptions about the form of the un-
derlying distribution, are the nearest neighbour and density estimate methods.

5.8.3 Tree classifiers

A tree classifier is a structure that is either

• a leaf indicating a class (or distribution of classes), or

• a decision node that specifies some test to be carried out on a single attribute value, with
one subtree for each possible outcome of the test.

A tree classifier is used to classify by starting at the root, moving down and performing a test
(decision) at each node until a leaf node is reached. The unique path from the root to each leaf
can be considered as a rule classifying the records. Many different leaves may produce the
same classification, but the path from the root is different, thus the reason for that classifica-
tion is different too.

Tree classifier applications are not limited to the development of accurate predictors: they
should also be intelligible to humans. In the latter case, unwieldy trees are out of the question.
A possible solution is one in which a large tree is broken down in a hierarchy of smaller trees
that are individually and collectively better to understand. Chapter 7 elaborates on tree classi-
fiers, so a detailed description is postponed until chapter 7.

5.8.4 Relational learning models or rules

Relational learning models are based on first-order logic. Logic expressions can work well
with both numeric and non-numeric data. Patterns expressed as logical languages are readable
and understandable. They are good for representing crisp boxes.

There are conditional rules, where statements are of the form

if A then B

There are also association rules, where statements are of the form

when A also B

Association rules express statements like ‘x % of people that do this also do that’. Agrawal
[1996] explains two new algorithms that outperform older algorithms by an order of magni-
tude for large problems and scale up linearly with the number of transactions (scalability is-
sue). The prototypical application is analysis of sales data. Decision trees cannot express as-
sociations.

Attribute logic compares attributes. This kind of logic is usually embedded in conditional or
association logic. Attribute expressions are of the form

A = B

or, A < B, or, A > B, or, A ≤ B, or, A ≥ B. Attribute logic cannot be expressed in decision
trees, because there is no explicit naming of values.

Of course, combinations of all above type of rules are possible, like

(if A then (when B also C)) with confidence D %

114

5.8.5 Non-linear classification methods

Non-linear classification (and regression) fit linear and non-linear combinations of basis
functions to combinations of input variables. Examples are neural networks, adaptive spline
methods, non-linear discriminant analysis, (and non-linear regression), etc.

Neural networks are based on a model of the human brain. They are like black box systems.
The patterns they learn are stored in the weights of the interconnection between the neurones.
Neural networks of an appropriate size can approximate any smooth function.

Genetic algorithms are based on evolutionary models in which ‘survival of the fittest’ is in
order.

Both methods are very powerful in representational power, but difficult to interpret.

5.8.6 Example-based methods

Example-based or instance-based classifiers rely on similarity properties. A case can be clas-
sified as belonging to a class that has cases that are most similar to it. Ideally, prototypical
cases should be retained that summarise all the important information. Generalisation beyond
the training examples is postponed until a new instance must be classified. The similarity of a
new instance with instances in the training set is usually based on a metric on important at-
tributes. So, there is no natural or simple way to handle categorical variables and missing
data. Example-based methods use representative examples to approximate a model. Prediction
on new examples is based on similarities with existing examples whose prediction is known.
Nearest-neighbour classification, kernel density estimation, locally weighted regression algo-
rithms and case-based reasoning belong to the example-based methods. Finding a well-
defined distance metric is not always an easy chore. Example-based methods are very power-
ful in their representation but difficult to interpret since the model is implicit in the data. Ex-
ample-based methods are sometimes referred to as ‘lazy’ learning methods. Hence, they do
not construct a general, explicit, description of the target function from a training set. Instead,
they estimate it locally and differently for each new instance.

Of particular interest in this thesis is the kth nearest neighbour rule (kNN). For a chosen metric
and a fixed positive integer k, the k nearest neighbours are searched and the data point is clas-
sified in class j if more of these neighbours are in class j than in any other class. This data re-
tention approach has no natural or simple way to handle categorical variables and missing
data. Furthermore, the approach is computationally expensive and gives very little usable
model information regarding the structure of the data. The kNN method is applied in SAPS. It
will be discussed in chapter 8.

5.8.7 Probabilistic graphical dependency models

Probabilistic dependencies underlying a particular model can be put in graphical models that
specify which variables are dependent on which other ones. In the AI (Artificial Intelligence)
community, this approach was knowledge driven: the conditional probabilities attached to the
links of the graph were elicited from experts. Now these probabilities can be learnt from the
data itself. The graphical form leans itself for easy interpretation.

A Bayesian network is an example of a probabilistic graphical dependency model. It encodes
(a priori) expert knowledge and refines this representation from induced knowledge (from the
data). In contrast with e.g. neural networks, Bayesian networks have a great advantage con-
cerning its interpretability and its encoding ease of a priori expert knowledge [Heckerman
1996]. The use of causal relationships is what makes the Bayesian network so easy to com-

115

prehend. A problem with Bayesian networks is that it depends on variable order. The order is
chosen by an expert; it shows the role of the expert knowledge in exploiting causal relation-
ships among variables. If, however, the expert knowledge is unreliable or incomplete, the data
can be used to update the structure or learn probabilities.

5.8.8 Temporal pattern detec tion

Much of the data stored in databases is temporal, i.e.; the variables evolve in time. A descrip-
tive approach consists of analysing patterns, while a predictive approach is about forecasting
of events. Of course, the former can sometimes be used for the latter. In general, one distin-
guishes three kinds of approaches to time series, which shows how KDD looks at temporal
(dynamic) data.

In trend and deviation analysis, one seeks to characterise an evolution in trend, sequential
patterns, similar sequences, and deviation data, e.g., stock analysis

In similarity-based pattern-directed analysis, one attempts to find and characterise user-
specified (sub) patterns in large databases. Typical applications are found in the financial
market, in basket data analysis, in scientific databases, in medical diagnoses, etc. Comparison
is done of characteristic features such as the Fourier transform, see [Faloutsos et al. 1994] or
via time warping, [Berndt 1996]. Even a special pattern language to encode queries about
‘shapes’ is described in [Agrawal et al. 1995].

In cyclicity/periodicity analysis, one tries to find segment-wise or total cycles or periodic be-
haviours in time-related data

5.9 Validation of classifiers via train and test samples

When a classifier rule is invoked, it will classify a proportion of the future (new) samples in
the right class, but it may also misclassify another proportion. If the classes are not separable
and if the precision is not perfect there are bound to be an inherent proportion of misclassified
cases. In addition to just counting the number of misclassifications, one can weight them in
importance.

The concept of train and test samples allows a distinction between apparent and true estimates
of error rate of a classifier. The next subsections formalise and elaborate on this distinction.
First, some basic definitions are given from the viewpoint of statistics (in agreement with the
statement in section 5.7.1).

5.9.1 Definitions and formalisations

The aim of a classifier is to decide to which class a case, characterised by a measurement
vector, should be assigned. The measurement (feature) space X is defined as containing all
possible measurements vectors

�
�x x xn� (, ,)1 , where xi is a measured variable (feature, at-

tribute).

Suppose that the cases fall into J classes and that these are numbered from 1 to J. Let C be
this set of classes, i.e., C J� { ,2, , }1 � . A classifier or classification rule is a function d x()

G

 de-
fined on X so that for every

�
x , d x()

G

 is equal to one of the number 1, 2, …, J.

d X C

x j d x j C

:

()

�

� � �
� � (5.1)

Hence, it is a rule that assigns a class membership in C to every measurement vector in X. The
rule can also be defined for a random variable (vector). The actual class of a measurement

116

point
�
x is defined by C x()

G

. It is either that d x C x() ()
� �= (a right classification), or

d x C x() ()
� �≠ (a misclassification). In systematic classifier construction, past experience is

summarised by a learning sample5 L consisting of data already observed and classified. Thus,

L x C x x C x x C x x C xn n N N= {(, ()) ;(, ()) ; ; (, ()) ; ; (, ())}
� � � �

�
� �

�
� �

1 1 2 2

The learning sample consists of cases that are independently drawn from the relevant popula-
tion. It is used to construct the classifier rule d in equation (5.1). Another sample is employed
to validate the classifier model.

Alternatively, a classifier can be defined as a partition of X into J subsets, say A AJ1, ,� , such
that for every

�
x Aj� the predicted class is j, i.e.,

A x d x jj � �{ | () }
� �

(5.2)

For a two-dimensional measurement space X, a partition may look like in Figure 5.6.

A1

A2

A6
A3

A4

A7

A5

Figure 5.6 : A two-dimensional partition example

A case drawn at random from a relevant population has a probability of P(A , j) that its meas-
urement vector

�
x is in A and its class is in j :

P A j P X A Y j A X j C(,) (,) ,� � � � �
�

A probability model can then be defined on the space X C� consisting of all couples (,)
�
X j ,

i.e.,

P X C

X j P A j A X

: [,]

(,) (,)

� �

� �

0 1
� (5.3)

where (,)
�
X j is independent of L.

Often, and especially in the statistical domain, for a given measurement vector
�
x , one wants

to have an estimate of the probability that the case is in a certain class j. Thus, one likes to
construct estimates for the density

5 A learning or design sample (domain dependent terminology)

117

p j x p j X x j J(|) (|) , ,
� � �

�= = =1

Hence, instead of constructing classification rules as in equation (5.1), one has

d X C

x d x p x p J x

J:

() �(|), , �(|)

�

� �
� � � �

�
�

1� �
(5.4)

where

� � �

�
� �
x X p j x

j

J

, �(|)
1

1 (5.5)

These rules are called class probability estimators, [Breiman 1984]. The Bayes estimator is
the best achievable estimator. It is given by the true distributions (see section 5.7.1)

� � �
�

�
d x p x p J xB () (|), , (|)= 1� � (5.6)

5.9.2 Overfitting

5 10 15 20 25
-100

-80

-60

-40

-20

0

20

40

60

80

100

data 7 obs.
n = 1
n = 7

Figure 5.7 : Polynomial fit and overfit

In classification (and regression), one has to select the relevant variables (high predictive
power). Selecting too many variables may overfit a model to the data, leading to low errors
for the samples from the design set, but high errors on new test samples. This paradigm
equally applies to fitting a polynomial on a number of data points: the polynomial will go
through all the points if it has an order equal to the number of points (n = 7 in Figure 5.7), but
it may be inadequate in interpolation and extrapolation. Hence, a line (n = 1 in Figure 5.7)
may be appropriate to acquire a good forecasting behaviour.

Initially, it is often unknown which features have a high quality and which ones are noisy or
redundant. Some methods perform well with good predictive features, but they break down
when weak features are present. Hence, the goal is to find the best fit to the sample data with-

118

out overspecialising. Often, an additional parameter is used to measure the complexity fit. The
fit with the lowest error in prediction is preferred. It is experienced that in practice simpler
classifiers can do a better job than more complex ones (Occam’s razor). The example in ap-
pendix B illustrates this in section B.3.1.

Overfitting from a statistical viewpoint corresponds with modelling of the unknown idiosyn-
crasies of the sample that fail to reflect aspects of the true underlying probabilities. Hence, a
too complex model may fit the design fit perfectly and thus the underlying true distribution,
but it may as well fit the superimposed noise. Models that are more complex will thus intro-
duce additional variance by looking at more variables or by imposing a more complex deci-
sion surface (e.g. linear discriminant versus quadratic discriminant analysis). One may con-
clude that simpler models are more effective in most cases (this is to be compared with Oc-
cam’s razor).

Minimising the mean squared error can be achieved by minimising the bias and variance. One
way to do this is to start with a flexible rule, which will induce a low bias, and then to in-
crease the size of the design set, [Hand 1997]. However, design sets are finite and limited to
certain size, thus a compromise between bias and variance has to be found. Hand [1997] de-
scribes several strategies for this.

1. The simplest approach is to chose the number of parameters not too large to prevent over-
fit. In that approach, a design set is used to construct a model, which is then evaluated on
a second data set. The model that appears to perform well will be selected. Because the
second data set is used to select the best model, it is part of the design of the (near)optimal
model: it will also give overly optimistic biased results for it was chosen for that. A third
data set is then necessary to measure the model’s performance. Changing the number of
parameters can be done by forward and/or backward stepwise methods.

2. Another way to obtain a good compromise between bias and variance is the use of a pen-
alty measure. A compromise is sought between accuracy and complexity. For example, a
popular penalisation function is the Akaike information criterion (AIC).

3. A third way, which is much related to the second one, seeks a compromise smoothing an
overfitted function. Examples are found in the CART methodology, where pruning and
averaging tree techniques are used. One can also implement the smoothing of an overfit-
ted function by averaging different predictions from different classifiers.

4. A last method is to smooth the data itself in the hope that this will reduce overfitting
problems.

The first method, which relies on a design and test set, is formalised in the next section. This
method is used in combination with the third method for tree classifiers. Tree classifiers are
discussed in chapter 6. The second method is used in the quality function that SAPS uses
(chapter 2).

5.9.3 Error rate and its extens ions

If all misclassifications weight equal, then a very simple measure for inaccuracy is error rate.
The empirical error rate is the ratio of the number of errors to the number of samples, i.e.,

error rate
number of errors

number of cases
proportion of misclassifications� �

The empirical error rate can be read off from a confusion matrix.

119

The apparent error rate of a classifier is the error rate of the classifier on the sample cases that
were used to design or build the classifier, [Weiss 91]. This error rate is also known as the re-
substitution error rate, [Breiman 84]. Hence, the classification rule has been chosen to opti-
mise some measure of performance relative to the training set.

The true error rate is statistically defined as the error rate of the classifier on an asymptoti-
cally large number of new cases whose classification has been observed and that converge in
the limit to the actual population distribution. These new cases constitute a test sample.

Hence, one has to distinguish between two sets in prediction: the training or design set, and
the test or evaluation set. While it is often easy to build classifiers that perform with few or no
errors on the original training samples (internal accuracy), it is much harder to have this per-
formance generalised to new test cases (true accuracy). In such situations, it is said that the
classifier overfits the training data. It is desirable to have an as reliable as possible estimate of
the ‘true’ error rate, which would be observed on new cases. A corresponding estimator may
be biased and thus tend to estimate, or too low (optimistic), or too high (pessimistic). Error-
rate estimation techniques can be based on statistical resampling theory, which provides a ba-
sis for objectively comparing the error rates of the learning systems on the same data and then
estimating their future performance on new data. Additionally, resampling techniques give a
sense of the variability in error estimates that one might expect in practice. The only implicit
assumption is that the learning samples are at least representative of future samples.

Often, distinctions among different types of error become essential when some predictions
that fail are more catastrophic than others are, or occur more frequently than others do. In that
case, a confusion matrix is considered indispensable. Correct predictions fall along the diago-
nal of the confusion matrix, but off-diagonal elements now emphasise the different types of
errors with their frequency. If different types of errors have a different impact on the cost of
misclassification, then a cost matrix should be used. Taking into account costs, one chooses
the decision surface such, that it minimises the expected cost rather that the expected number
of misclassifications. Suppose a classifier assigns a class i to a case (i.e., predicts class i)
when the actual class was j, then the cost of misclassification, denoted by C i j(|), is defined as

(|) 0

(|) 0

C i j i j

C i j i j

≥ ≠
= =

(5.7)

The second equation assumes that a correct classification incurs no cost. A cost for misclassi-
fying a certain class j is defined as

cost()j C i j E i j
i

n

�

� (|) (|)
1

where the notation E(i | j) stands for the number of classifications that are actual of class j, but
are classified as class i. E(i | j) is found in a confusion matrix.

Special cases arise if one has a constant class conditional cost, or equal costs for misclassify-
ing a class j object, i.e., C i j c ij(|) ()� 	1 � , or in the unit cost situation (c = 1). Generalisations

of cost matrices are found in risk and utility matrices. In risk or decision analysis one also
computes the expected gains arising form correct classifications. Utility matrices form an
even larger generalisation of risk matrices. In a utility model, risk measures (or costs) are
variable.

120

5.9.4 Formalisation of accuracy for a classifier

The true misclassification error is defined by

()* () () |R d P d X y L= ≠
�

(5.8)

for an independent sample of the same population. The probability that a case in j is classified
in i by a classification rule d in that sample is formally denoted by

Q i j P d X i Y j*(|) (() |)� � �
�

(5.9)

This probability can be estimated the proportion E(i | j)/N , where N is the total number of
classifications. Standard errors can be computed via a binomial probability model. The ex-
pected cost of misclassification for class j items is

R j C i j Q i j
i

* *() (|) (|)� � (5.10)

Consequently, the expected misclassification cost for the classifier is given by

R d R j j
j

* *() () ()� � � (5.11)

R*(d) is the proportion of cases in the sample that are misclassified by d. It is given by:

R d C i j Q i j j
ij

* *() (|) (|) ()� �� � (5.12)

where the priors are defined by

S () ()j P Y j (5.13)

5.9.5 Internal error estimates

Often, because of limited availability of data, L must be both used to induce a model and to
estimate its prediction error. In the case of classification theory, this means that L is used to
construct d x()

G

 and to estimate R*(d). This is called testing on the training cases. After a
model (classifier) is constructed, the cases in L are run through the model. The resubstitution
estimate is the most obvious starting point in estimating the true error rate. Formally,

�() (())R d
N

I d x j
n

N

n n
�

�

�
1

1

G (5.14)

where I is the indicator function.

Drawbacks:

− it is the least accurate when tested on new data, because it is based on the design data

− it is computed with the same data used to construct d, instead of an independent sample
(clearly a violation of independence).

− hence, it gives an overly optimistic biased picture of the accuracy of d. In other words: it
is not an honest estimate.

Overall, it makes no sense to design a classifier that does well on the design samples, but fails
on new samples: a resubstitution estimate is likely to overestimate future performance. This is
illustrated in Figure 5.8, where the resubstitution error rate R(d) keeps decreasing when used

121

on the design set. However, use of the classifier on new cases gives another picture for the
true error rate R*(d), which decreases and increase again. Both error rates are high when the
complexity of the classifier is very low (underfit). They decrease when the complexity of the
classifier increases, but whereas the resubstitution error gives an overly optimistic picture
(overfit) for high complex classification models (it keeps decreasing), the true error rate in-
crease again. Hence, an optimum has to be sought. Furthermore, when two classifiers give
approximately the same true error rate estimate, the simpler solution is usually taken. The
one-standard-error heuristic selects the simplest solution that falls within one error of the
minimum error rate. This issue comes back in chapter 6. An illustration of this behaviour can
be found in appendix A, section A.4.

complexity
classifier

R

R*(d)

R(d)

underfit overfit

Figure 5.8 : Resubstitution versus true error rate

If the number of sample points would become infinite, the resubstitution estimate converges
to the real error rate. Hence, one may wonder how many design cases are needed to be confi-
dent at a certain level that the resubsitution estimate is close enough to the true error rate.

Even when an estimate is a very good (unbiased) estimate of the true error rate for a finite
number of sample points, a simple table lookup as classifier (the observed samples themselves
would become the classifier) would still have the problem that a new sample may not have a
matching sample in the classifier. It overfits the classifier to the data (modelling noise).

5.9.6 True error estimates

A popular approach to obtain the true misclassification rate is to divide the total number of
samples into two groups: a training (design) set and a testing set. The latter constitutes the
new cases.

1. A first assumption to be taken is that the design sample data and the training sample data
are independent random samples from a certain larger (and same) population, i.e., the
samples are representative for the population and the true misclassification rate will be
honest. The assumption of a same population may not be always true for, due to evolving
things, a population drift may occur. If the population drift can not be modelled, any at-
tempt to have a good classifier performance will fail.

2. Furthermore, the classifications for the design (training) samples are correct (as in ML).

122

Resampling is a good method to extract the maximum from the data. To get the most out of
the data via resampling one has to consider the number of samples available, [Weiss 91].

1. For very large samples size (larger than 1000) the train-and-test paradigm can be used. In
the context of large databases of data, this method will have our preference.

2. For sample sizes larger than 100 cross-validation can be used.

3. For sample sizes less than 100 use leaving-one-out.

4. For very small sample sizes (less than 50) the bootstrap and 2-fold cross-validation can be
used in addition to the leave-one-out method.

Methods 2,3 and 4 are resampling methods. Resampling methods (training on the test cases)
may provide better estimates of the true error rate, especially when the number of cases is
moderate. In resampling many randomly generated train-and-test partitions are used. The es-
timated error rate is then the average of the error rates obtained with each partition. This
method also allows determining standard errors. Estimates obtained via resampling methods
are nearly unbiased. In resampling, nearly all the cases are used for training and for testing (be
it at different times or in different partitions).

Working under the premise that data sets are large enough (this is the case for all examples in
this thesis), a restriction to the first two methods is done.

Train and test paradigm (hold-out method)

The data is divided in two (independent) sets, say L1 and L2. L1 plays the role of training or
design set and L2 acts as testing set. The former is used to construct the classifier (model) and
the latter to validate it. Hence, an estimate of the error rate is found by applying the classifier
to independent test cases. The test sample error-rate is

� () (())
(,)

R d
N

Its
ts d x j

x j L
n n

n n

= ≠
∈

∑1

2

G

G

(5.15)

where the test sample L2 is composed out of Nts cases.

Under the assumption made at the beginning of this section, one may ask how many test cases
are needed for accurate error rate estimation. Regardless of the true population distribution,
the accuracy of the error rate estimation is governed by the binomial distribution. Confidence
intervals can then be constructed where one notes that the quality (variance) of the test sample
estimate directly depends on the number of test cases.

For a classifier d, take Nij
ts to be the number of class j cases in the test sample whose predicted

classification by d is class i. An estimate for the probability that a case with class j is classi-
fied with class i by a classifier d, is given by the proportion of test sample class j cases that d
classifies as i (see (5.9)):

Q i j
N

N
ts ij

ts

j
ts

(|) � (5.16)

where N j
ts cases are in class j. In case there are no i class cases in the test sample, put

Q i jts (|) � 0.

123

An estimate for the expected cost of misclassification for class j items can now be computed
(see also (5.10)) and the expected misclassification cost for the classifier is found by using
prior estimates (see (5.11)):

� () (|)R d
N

C i j Nts
ts ij

ts

ij

= ∑∑1
(5.17)

It can be proven that, except for N j
ts � 0, the estimates Q i jts (|) are unbiased. So are the esti-

mates � ()R dts . In the unit cost case, � ()R dts is the proportion of test cases misclassified. Hence,

the standard error on � ()R dts is given by

se R d
R d R d

N
ts

ts ts

ts
(� ())

� ()(� ())
�

	1
(5.18)

Remark that this standard error decreases with increasing size of the test set. When the num-
ber of test samples equals 1000, the standard error is certainly below 2 % (in the worst case
where � ()R dts � 1

2).

Usually, the training set contains 2/3 or 1/2 of the data, while the testing set contains the re-
maining part of the data (holdout method). When there are at least 1000 test cases available,
larger percentages for training can be retained.

Advantages and drawbacks

+ it is computationally efficient

+ it is preferable when there are many cases available

+ it is virtually unbiased (except when some classes are missing).

+ it is philosophically a sound concept (truly new cases are evaluated)

− it reduces the effective sample size, which may be especially a problem in small data sets.

− information contained in the test set is not used to construct the model.

K-fold cross-validation

K-fold validation is a resampling method. For K-fold cross-validation, the original learning
(training) sample is divided by random selection into K subsets, and K auxiliary classifiers are
constructed on L. The kth classifier is constructed based upon the learning sample L(-k) = L \ Lk

(= L ∩ co(Lk)) and the corresponding test set is Lk. Hence, K-fold cross-validation is a way
of resampling. Algorithmically, it can be stated as:

1. Split the data into K roughly equal parts

2. For the kth part (Lk plays the role of test set), fit the model to the other K-1 parts of the data
(L(-k) = L \ Lk plays the role of training set), and compute the misclassification rate or pre-
diction error of the fitted model when predicting or classifying the kth part of the data.

3. Do the above for k = 1,2, …, K mutually exclusive test partitions and gather the K esti-
mates of misclassification or prediction error (rotate the roles).

4. The average error of all K partitions is the cross-validated error rate.

124

Formally, denote d(-k) as the classifier for the data set without part k. � ()()R dts k� is a test sample
estimate for R*(d(-k)), then (step 2)

� ()
(\)

()

(())
(,) \

()R d
L L

Its k

k
d x j

x j L L

k
n n

n n k

�

�

°

�
��

1
G

G

(5.19)

Hence, each of the classifiers d(-k) (step 3) is using almost all information in L and has a mis-
classification rate nearly equal to R*(d). The K-fold estimate is then defined to be (step 4)

� () ()()R d
K

R dCV ts k

k

K

�
�

�
1

1

(5.20)

Due to the computational expensiveness of the method, it is mainly used when sample size is
relatively small.

To compute the estimated expected misclassification cost, one proceeds as in the train-and
test paradigm. First, define Nij

k() as the number of class j cases in the test sample Lk classified

as i by d(-k). The total number of class j test cases classified as i is then

N Nij ij
k

k

= ∑ () . (5.21)

As each case appears in only one test sample, the total number of class j cases is the number
of class j cases in L, i.e. Nj.

If K is sufficiently large, d(-k) should have about the same classification accuracy as d. Thus,
one assumes that the estimated misclassification error probability is given by

Q i j
N

N
CV ij

j

(|) � (5.22)

Working analogous as in the train-and test paradigm, one finds, when using or estimating
prior estimates that

� () (|)R d
N

C i j NCV
ij

ij

= ∑∑1
(5.23)

The computation of the standard error on the test cases, via an analogous equation as in the
train-and test paradigm, is a bit optimistic because the test cases are not completely independ-
ent anymore.

Advantages and drawbacks of cross-validation

+ It is quite general and it gives similar answers as standard methods in simple problems

+ It is robust; it works also when the model is not entirely correct. It uses all cases and pro-
vides information regarding the stability of the tree structure.

+ Simulation studies shows it is nearly unbiased but has a large variability for small samples

− The use of cross-validation is computationally less efficient

Remark:

In both the test sample and the cross-validation approach, selections are done in L to achieve
the test samples or cross-validation test samples. One can randomly divide L in the respective
sets but this may lead to random class representations in the samples. Constructing test sam-

125

ple(s) to contain fixed fractions of the classes may produce more accurate estimates [Breiman
1984].

5.10 Conclusion

It has been demonstrated that data-mining is an essential step in the overall process of KDD.
The knowledge-discovery approach is compared with inductive learning. Supervised learning,
a term borrowed from the domain of machine learning, will prove to be the underlying para-
digm for SAPS. Classification and regression are methods that belong to the supervised
learning paradigm, which itself is an answer to the ‘Classification and Prediction’ problem
type. However, a restriction to classifiers is done because the tree classifier approach, which is
the main topic of chapter 6, form a natural stepping stone to regression trees [Breiman 1984].

Classifiers all do a successive partitioning of a feature space of predictors into subsets, where
the partition is done on a design sample and the validation on a test sample. The hope is to
partition the feature space such that the resulting regions are simple enough to be understand-
able and yet as homogeneous as possible with regard to the outcome. Computerised classifi-
cation methods are much faster than humans and can process much more information. In clas-
sification, one usually works with crisp classes where each class corresponds with an out-
come. Furthermore, the usual restriction to attribute-value decomposition is applied. Accuracy
of a classifier is formalised, and the resubstitution error rate versus the true error rate shows
that internal validation gives optimistic biased error rate estimations. The latter applies for
SAPS: it is illustrated by the example in appendix B.

Resubstitution error estimates can be seen as a measure for replicatively validity in chapter 1,
while true error estimates can be seen as a measure for predictively validity.

Finally, this chapter explained the train-and-test paradigm and the use of cross-validation in
classification. The one-standard-error heuristic is described and the typical form of the true er-
ror estimate is explained.

126

References

Agrawal R., Psaila G., Wimmers E. L., and Zait M. [1995], “Querying shapes of histories”,
VLDB’95, p. 502-514, Zurich, Switzerland, September 1995.

Agrawal R., Mannila H., Srikant R, Toivonen H., Verkamo I. [1996], “Fast Discovery of As-
sociation Rules”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Pi-
atetsky-Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, Eng-
land, p. 307-328, 1996.

Berndt D. J., Clifford J. [1996], “Finding Patterns in Time Series: A Dynamic Programming
Approach”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatet-
sky-Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England,
p. 229-248, 1996.

Berry M. J. A., Linoff G. [1997], Data Mining Techniques For Marketing, Sales and Cus-
tomer Support, Wiley Computer Publishing, 1997.

Brachman R. J., Anand T. [1996], “The Process of Knowledge Discovery in Databases”, Ad-
vances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-Shapiro G.,
Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England, p. 37-58, 1996.

Breiman L., Friedman J. H., Olshen R. A., Stone C. J. [1984], Classification and Regression
Trees, Chapman & Hall, 1984.

Faloutsos C., Ranganathan M., and Manolopoulos Y. [1994], “Fast subsequence matching in
time-series databases”, Proceedings ACM SIGMOD, Minneapolis MN, May 25-27, p. 419-
429, 1994

Fayyad U. M., Piatetsky-Shapiro G., Smyth P. [1996], “From Data Mining to Knowledge
Discovery: An Overview”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad
U. M., Piatetsky-Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cam-
bridge, England, p. 1-34, 1996.

Feng C., Michie D., [1994] “Machine Learning of Rules and Trees”, Machine Learning, Neu-
ral and Statistical Classification, ed. Michie D., Spiegelhalter D. J. and Taylor C.C., Ellis
Horwood, chapter 5, p. 50-83, 1994.

Gaines B. R. [1996], “Transforming Rules and Trees into Comprehensible Knowledge Struc-
tures”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-
Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England,
p. 205-226, 1996.

Guyon I., Matic N., Vapnik V. [1996], “Discovering Informative Patterns and Data Clean-
ing”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-
Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England,
p. 181-204, 1996.

Han J. [1999], personal communication, Tutorial given in UIA in April 1999.

Hand D. J. [1997], Construction and Assessment of Classification Rules. John Wiley & Sons,
1997.

Heckerman D. [1996], “Bayesian Networks for Knowledge Discovery” Advances in Knowl-
edge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-Shapiro G., Smyth P. and
Uthurusamy R., AAAI Press/MIT Press, Cambridge, England, p. 273-306, 1996.

127

Henery R.J. [1994], “Classification”, Machine Learning, Neural and Statistical Classification,
ed. Michie D., Spiegelhalter D. J. and Taylor C.C. , Ellis Horwood, chapter 2, p. 6-16, 1994.

Information Discovery Inc. [1998], “A Characterization of Data Mining Technologies and
Processes”, on the web page www.datamining.com/datamine/techwp.htm

Klösgen W. [1996], “Explora, A Multipattern and Multistrategy Discovery Assistant” Ad-
vances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-Shapiro G.,
Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England, p. 249-271,
1996.

Michalski, R.S., Chilausky R. L. [1980], “Learning by Being Told and Learning from Exam-
ples: An Experimental Comparison of the Two Methods of Knowledge Acquisition in the
Context of Developing an Expert System for Soybean Disease Diagnosis”, International Jour-
nal of Policy Analysis and Information Systems, Vol. 4, No. 2, p. 125-161, 1980.

Michie D., Spiegelhalter D.J., Taylor C.C. [1994], Machine Learning, Neural and Statistical
Classification. Ellis Horwood, 1994.

Mitchell T.M. [1997], Machine Learning. McGraw-Hill, 1997.

Quinlan J.R. [1993], C4.5: Programs for Machine Learning. Morgan Kaufmann series in Ma-
chine Learning, 1993.

Salzberg S. L. [1997], “On Comparing Classifiers: Pitfalls to Avoid and a Recommended Ap-
proach”, Data Mining and Knowledge Discovery, 1, p. 317-328, 1997.

SAS Institute [1996], “Data Mining with the SAS System: From Data to Business Advantage”
(SAS Institute White Paper), 1996, see also www.sas.com

Siftware [1999], See www.kdnuggets.com/tools.html

Simoudis E., Livezey B., Kerber R. [1996], “Integrating Inductive and Deductive Reasoning
for Data Mining”, Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M.,
Piatetsky-Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge,
England, p. 353 - 373, 1996.

Think [1999], See www.think.com

Thornton C. J. [1992], Techniques in Computational Learning; An Introduction. Chapman &
Hall, 1992.

Van Welden D., Vansteenkiste G.C. [1996], “Sub-Optimal Mask Search in SAPS”, Interna-
tional Journal of General Systems, vol. 24, 1-2, p. 137-150, 1996.

Van Welden D. [1998], Tree Classifiers as Data Mining Tools. MSc. Thesis, Catholic Univer-
sity of Leuven, Belgium, 1998.

Weiss S. M., Kulikowski C. A. [1991], Computer Systems That Learn. Morgan Kaufmann
Publishers, 1991.

129

Chapter 6

Classification and Regression Trees

6.1 Introduction

Tree classifiers are a special kind of classifiers that rely on a hierarchical recursive partition-
ing scheme. Tree induction starts with a root node to create a tree of depth 1 by partitioning
the training set among the leaves just created. Then, the same algorithm is applied to each leaf
until some criterion is met. The leaves form the final partition of the measurement space. A
tree classifier classifies starting at the root, moving down and performing a test (decision) at
each node until a leaf node is reached. The unique path from the root to each leaf1 can be con-
sidered as a rule classifying the records. Depending on the nature of the response, tree classi-
fiers are referred to as classification trees (discrete response), regression trees (continuous re-
sponse), survival trees (censored positive response), or tree-structured vector quantisation
(when the predictors and response are the same), see [Armitage 1997]. Only classification and
regression trees are considered in this chapter.

Induction techniques for tree classifiers have been developed in parallel both within the ma-
chine learning community, motivated by knowledge acquisition for expert systems, and
within the statistical community as a response to the perceived limitations of classical linear
discrimination techniques. Hence, two representative classifiers, C4.5 and CART2, will illus-
trate the tree classifier approach. Regression trees are very similar to classification trees: the
latter are a kind of logical prerequisite for the former. Hence, classification trees will be dis-
cussed in more depth and only the changes that apply for regression trees are highlighted at
the end of the chapter.

6.2 Classification tree examples

Classification trees can be classified into decision trees (a leaf contains only one class) or
class probability trees (a leaf contains a class distribution). However, this distinction is not
always made and pruning can convert a decision tree into a class probability tree. Decision
trees can be considered as a special case of class probability trees, which are more realistic in
the presence of noise.

C4.5© is the representative classification tree method in the machine learning domain. It has
been devised by Quinlan [1993]. It typically uses a standard structure and the goal attribute is
usually categorical. Non-goal attributes or predictors can be any type. C4.5 is briefly de-
scribed in section 6.8.2. Meanwhile, a successor, called See5, entered the market [Rulequest

1 A leaf is also called a terminal node.
2 CART in an acronym for Classification And Regression Trees, but it is as well a software package that does
classification and Regression. The abbreviation refers to the software package.

130

1999]. The representative classification and regression methods in the domain of statistics are
implemented in a software package, named CART© [Salford 1999]. It is based on [Breiman et
al. 1984].

An example, which is situated in the domain of statistics and which originates from [Breiman
et al. 1984], demonstrates some basic properties of classification trees. The example describes
the problem of early detection of hart attack risk patients on the basis of 19 measured vari-
ables (blood pressure, age, …) for the first 24 hour data of their arrival. As in C4.5, predictors
can be any type. The classes, one is interested in, are low-risk or high-risk patient. The in-
duced tree only retains only 3 from the 19 variables; the others appear to be irrelevant. This
leads to the conclusion that if a variable is never split on in the final tree, one may assume it
has no importance in determination of class membership. Consequently, tree classifiers can be
used for relevance analysis or feature selection. One should be careful though, because a vari-
able's effect may be masked by other variables. A method for ranking variables in terms of
their potential effect on the classification may indicate if masking effects are present or not.
More information about ranking of variables is found in section 6.9.4.

Tree classifiers that use univariate splits have a simple interpretation if the trees are not too
large. A monothetic tree classifier divides the measurement space by creating with each divi-
sion a hyperplane orthogonal to the axis of the tested attribute, and which is parallel to all
other axes. The regions thus produced by such divisions are hyperrectangles. When the prob-
lem is such that the class regions can not very well be represented by hyperrectangles, the best
a monothetic (or orthogonal) tree classifier can do is to approximate the regions by hyperrec-
tangles. This is illustrated in Figure 6.1. Despite this extra inductive bias to hyperrectangles,
orthogonal splits are not that restrictive (with regard to accuracy) as it may seem from first
sight, and as can be noticed from Figure 6.1.

a b c

d

e

i x1

x2

Figure 6.1 : Example of divisions for monothetic tree classifiers (full lines)

Suppose that in Figure 6.1 the circles belong to class ‘circle’, and the squares to class
‘square’, then a monothetic division looks like Figure 6.2 (remark the re-use of a same vari-
able for splitting).

131

�������

�������

������ ������

����	�

�������
�	
��

������ ������

�������

�������

�	
��

�	
��

����	���	
��

�	
�����
��

�����
 �����

����	�

������ ���
��

������������

Figure 6.2 : Example of monothetic tree classifier

A classification tree can be represented in conjunctive-disjunctive form: all attribute-name
nodes become disjunctive relations and all attribute-value nodes become conjunctive rela-
tions. The decision tree is in fact an AND-OR tree. This is shown in Figure 6.3.

132

if x1 > c then 'square'

else

if x2 > e then 'circle'

else

if x1 > b then 'square' (80%) or 'circle' (20%)

else

if x2 > d then 'circle'

else

if x1 > a then 'square'

else 'circle'

Figure 6.3 : Example of rules obtained by a monothetic tree classifier

As the number of training cases increases, the approximation of an oblique division by a col-
lection of hyperrectangles becomes better. However, this is at the expense of a serious in-
crease in the number of smaller regions, which renders the interpretation more difficult. If an
unlimited growth of the tree occurs as more training cases are used, coupled with a more or
less constant error rate on the same training cases, then this is an indication that orthogonal
hyperplanes do not perform well.

The use of threshold splits parallel to the feature axes limits the type of classification bounda-
ries that can be induced (e.g., where the class structure depends on combinations of variables).
Figure 6.4 illustrates Breiman’s statement that oblique trees are competitive or better than lin-
ear discriminant analysis, [Breiman et al. 1984].

a b

c

i x

y

Figure 6.4 : A more complex partitioning

For the example in Figure 6.1, the equation for the dashed line becomes

x x i2 1 0� � !

and the other (orthogonal on the axes) lines are the instantiations

133

x c x e x b x d x a1 2 1 2 10 0 0 0 0� ! � ! � ! � ! � !, , , ,

It is obvious that oblique trees are more efficient and accurate when the concepts to recognise
are defined by a polygonal partition of the measurement space. This partition is easier ap-
proximated by non-linear hypersurfaces, but is computationally more complex. This is why,
after the pioneering work of Breiman, one had to wait for the 90s to obtain practical methods
for the induction of oblique trees. Such methods are explained in [Murthy 1997].

Model space enlargement increases the model power, e.g. via multivariate hyperplanes at ar-
bitrary angles, but decreases the comprehensibility of the model. Consequently, one could ask
whether the partition of each node should be based on just one variable (univariate or mono-
thetic) or on a combination of variables (multivariate or polythetic). Some people reject the
use of oblique trees because they also may become uninterpretable [Kodratoff 1997]. This is a
personal viewpoint of some authors, for in principal component analysis a combination of
variables is taken too to describe variance components. A sensible approach is to make use of
(whatever) meaningful combinations of variables that facilitate the induction. In this way, a
kind of model is set forward (like in factor analysis) and the tree searches the best splits. As a
result, the interpretability is enhanced and the power of the model is increased.

6.3 Tree induction princip les

At each node in a tree, different things can be measured to assist its construction:

• the number of cases in a node and the distribution of the classes in a node,

• the classification done at a node if the node is considered a leaf, and how well the classifi-
cation performs (error rate, cost of misclassification, etc.).

In the actual construction of a tree, three basic questions have to be answered:

1. How to split a node? This is elaborated in section 6.4.
a) What is the splitting rule? This is related with the distribution of classes in nodes.
b) What is the arity of the splitting?

2. When to declare a node terminal, i.e., what is the stopping rule? A stopping rule can be
based on the distribution of classes in a node; on the number of cases left in the node; and
on how good the classification performs. This forms the topic of section 6.5.

3. What inferences to make for the various (uniform, not-uniform) terminal (leaf) nodes, i.e.,
what is the assignment rule? This is of course related to how the classification is done at a
leaf. This is described in section 6.6.

134

6.4 How to split a node: splitting rule?

The purpose of splitting a node is to generate offspring who are more preferred than the root
node in some sense. Desirable splits are the ones for which the distributions of the outcome in
the child nodes are more homogeneous (purer) than in the root node. This is depicted in
Figure 6.5. Put in other words: the measure to evaluate a potential splitter is diversity, [Berry
1997]. It can be formalised by an impurity function. The impurity in a node t is formally de-
noted by i(t).

class 1 : 1/4
class 2 : 1/4
class 3 : 1/4
class 4 : 1/4

class 1 : 1/2
class 2 : 1/2
class 3 : 0
class 4 : 0

class 1 : 0
class 2 : 0
class 3 : 1
class 4 : 0

class 1 : 0
class 2 : 0
class 3 : 0
class 4 : 1

PD[LPDOO\ LPSXUH

PD[LPDOO\ SXUHPD[LPDOO\ SXUHUHODWLYHO\ SXUH

Figure 6.5 : Example of purity in nodes

Starting at the root node, each node is split with the help of a splitting criterion. For a given
splitting criterion, one could try to find directly the smallest decision tree consistent with a
training set. This problem is, however, NP-complete, [Hyafil 1976]. Consequently, most tree
induction methods use greedy algorithms and, hence, do not backtrack. A heuristic that evalu-
ates impurity (reductions) is used to select the next most appropriate split. This implies that a
test, which is used at a node to partition the training cases, must be evaluated without explor-
ing subsequent divisions lower in the tree. Consequently, the only information available for
guidance is the distribution of classes in the training set, in the parent node, and in the child
nodes (along with the respective number of cases). The goodness of a split s in a node t is de-
fined to be a weighted decrease in impurity, i.e.,

�i s t i t p i descendant sdescendant s
descendants

(,) () . (|)|� � � (6.1)

where pdescendant|s is the proportion of cases that go into the corresponding descendant node for
a given split s. Impurity of a tree T can be defined as the sum of the (weighted) impurities of
the terminal nodes, where the weighted node impurity in a node t with probability of occur-
rence of p(t) is given by I t p t i t() () () , where p(t) is the probability of occurrence of the node
t. In the case of a binary tree, the set of questions is binary and some things simplify. The
words ‘left’ and ‘right’ descendants make sense now. By convention, cases answering “yes”
go to the left descendant node, those answering “no” go to the right descending node.

135

At each node t, all candidate splits s are explored. The split s* that gives the largest decrease
in impurity is then applied, i.e.,

� �i s t i s t
s S

(,) max (,)*
�

°

(6.2)

where S is the set of all possible splits at node t.

The greedy algorithm looks only one step ahead, but it has a major drawback, which can be
seen by a checkerboard configuration. This configuration is an example for which no impurity
function can be found that results in a good splitting. Therefore, tree classifiers are easily
stuck in local minima (some other methods such as genetic algorithms are not, but this is out-
side the scope of this thesis). Another disadvantage of any splitting rule is that it is subjective
to the sampling variation. The influence of the sampling variation is more pronounced when
there are fewer cases in a node. Thus, especially at the bottom of a tree classifier, splits are
less reliable than at the top. This, of course, is linked with overfitting. Pruning back an over-
fitted tree solves this problem to a great extent, see section 6.5 and section 6.9.

To compute the decrease in impurity, a specific impurity function has to be agreed on. This
thesis is limited to the case of standard structure data.

6.4.1 The relation between possible splits and variable type

For nominal variables, the test at each node takes the form x b bL°¥({ , , })1 " (℘ ()A is the
level power set of A), where the set inside the brackets is the set of values x can take (levels of
x). Hence, this may yield soon enough too many splitting possibilities to be explored exhaus-
tively.

From ordinal variables on, one cannot amalgamate levels together just like that. The ordering
has to be respected3. In C4.5 and CART, only binary splits are considered. Then, for n ordered
levels of a variable, only n-1 possible splits are considered.

For a continuous variable, there is normally no ‘space’ between the levels to split. However,
each variable is quantised when measured and stored. Sorting a variable on its values will re-
sult in a finite (perhaps very large) set of values. A split can occur between any of these val-
ues, and the situation for an ordered set of levels is applicable. Thus, for the levels
{ , , , }v v vn1 2 � one can split at each midpoint of an interval of two adjacent values, which re-
sults in a threshold between classes of the form ()v vi i�

�1 2. The appearance of continuous
variables may thus impose a heavy load on computation time. Fortunately, efficient algo-
rithms are devised that alleviate this problem, [Quinlan 1993]. Oblique trees come into play
when continuous variables are present. The test at each node can then take the form of a linear
combination approach, i.e.,

a x ci i
i

n

threshold

� � �
1

0 ai
i

n
2

1

1

� �

where a an1, ,� , and cthreshold are real valued coefficients (or weights as in [Quinlan 1993]) that
are determined such as to maximise the performance of a split. Nominal variables are ex-
cluded for linear combination, but the form can be modified to included Boolean variable
combinations via conjunction and/or disjunction.

Whatever the type of variable, if one can choose appropriate groups of attribute levels based
on domain knowledge, then this should be done. It reduces computational complexity and it

3 Not always: what about extreme and medium (author’s opinion)?

136

may give a more natural interpretation while giving sufficient data to split further than in the
non-grouped case. This kind of grouping can hardly be automated, except perhaps with some
help from an expert system that knows about variables and their meaning. For example, when
a variable is water temperature and the range is from - 10 degrees Celsius to + 200 degrees
Celsius, then a grouping may be based on the state of the matter: ice (solid), liquid, and va-
pour (gas).

6.4.2 Node probability determ ination

In the definition of impurity measures, conditional probabilities are used. Often, frequency
estimates are needed for the corresponding probabilities. For the root node, one often takes as
prior probabilities (priors), denoted by π(j), the proportions Nj/N (frequency approach), where
Nj is the number of cases in class j and N the total number of cases, i.e.,

π()j
N

N
j= (6.3)

Another possibility is to let experts fix these numbers. π(j) is interpreted as the probability
that a class j will be presented to the tree. It may not necessarily reflect proportions to be ex-
pected in future cases because the data may be filtered in one way of another.

A node t has a probability of occurrence of p(t). If a node t has N(t) cases, for which Nj(t) is
the number of cases that correspond with class j, the estimate for the conditional probability
p(j|t) is estimated by the class proportions for a node t, i.e.,

p j t
p j t

p t

N t

N t
j(|)

(,)

()

()

()
= = (6.4)

p(t) can also be estimated immediately by

p t
N t

N
()

()= (6.5)

Hence,

p j t p j t p t
N t

N
p t j j

N t

N
jj j

j

(,) (|) ()
()

(|) ()
()

()� � � �� � (6.6)

Denote the set of terminal nodes or leafs by
~
T , then p t

t T

()
~

°

� � 1.

Contingency tables aid in the determination of impurity reductions. They can be represented
in a joint distribution form or in a row-conditional form. The latter is the most logical one be-
cause the classes form the response.

For a given (parent) node t with J classes, a test X or a split s that results in splitting on a cer-
tain attribute may produce, say, I child nodes labelled 1 2, , , It t t� . The classes are labelled by

1,2, , J� . A row-conditional contingency table, which corresponds with a generalisation of
Figure 6.5, is depicted in Table 6.1.

137

Child\class class 1 … class j … class J

Child t1 p(1| t1) p(j| t1) p(J| t1) 1

…

Child ti p(1| ti) p(j| ti) p(J| ti) 1

…

Child tI p(1| tI) p(j| tI) p(J| tJ) 1

Table 6.1 : Contingency table for splitting in row conditional form

6.4.3 Measures of impurity

A measure of impurity for a node t is a non-negative function φ of the node conditional prob-
abilities p(j|t), i.e., i t p t p t p J t() ((|), (|), , (|)) I 1 2 " , such that

• it is maximal if these probabilities are equal, i.e.

�
1 1 1

J J J
, , ,�

�
�

�
� is maximum

• it is zero if one probability is 1 and the others zero, i.e.

I I I(, , ,) (, , ,) (, , ,)1 0 0 0 1 0 0 0 1 0" " " "

• it is symmetrical, i.e.

I I(((|), (|), , (|))) ((|), (|), , (|))* p t p t p J t p t p t p J t1 2 1 2" "

with Γ a permutation operator.

Hence, node impurity is maximal when all classes are equally mixed, and smallest when the
node contains only one class. To reward purer nodes enough, one has to add a strictly con-
cavity condition, i.e.,

� ' ' (|), , (|)p t p J t1 0�� � �

see [Breiman et al. 1984; Van Welden 1998]. A fundamental property of such impurity func-
tions is that for any node t and split s, one has that 'i s t(,) � 0. A proof, based on a property of
convex functions, can be found in [Van Welden 1998]. Another reason to select this class of
impurity function is found in [Breiman et al. 1984], where the authors note an important com-
putational advantage for nominal variables. A disadvantage is that such impurity functions are
not good indicators for stopping further splitting. Hence, backward pruning should be applied
when using such a criterion.

A good choice for impurity is based on a quadratic polynomial function, which fulfils the
above requirements for a impurity function for the two-class problem. Extension to multiple
classes results in the Gini-index, which is defined as

2

1 1 1

() (|) (|) 1 (|)
J J J

i j j
j i

i t p j t p i t p j t

�

� � ��� � (6.7)

The Gini-index can be interpreted as an estimated probability of misclassification under ran-
dom assignment, or as a variance for dichotomous classification.

138

Another good choice for impurity measure relies on the utilisation of the Shannon entropy. It
is given by

2
1

() (|) log (|)
J

j

i t p j t p j t
=

= −∑ (6.8)

Impurity (in a node t) is often associated with the average amount of information needed to
identify the class of a case in a given set cases (in the node t). Consequently, it is often de-
noted by info(t). A node t can be regarded as an instantiation of a random number Y. Y has
then as (finite) population all possible nodes in a tree.

H Y p j p j YY Y
j

J

() () log () ()� � �

� 2
1

info (6.9)

where p jY () is the density distribution in a node Y.

Each child node Y in a split corresponds with an element in the level power set of an attribute
X for its parent node, see section 6.4.1. The acceptable partitions on this set form a population
of possible splits. For a given partitioning, the representative components4 can be labelled to a
finite set of integers, e.g., {1,…,I}. Consequently, X = i denotes a certain choice from a test or
split. It corresponds with a certain child node for which the value of the attribute X is known.
Hence, one can determine the information in a child node by the conditional entropy of Y
given X = i, i.e.,

=(|) info () info(| =)X iH Y X i Y Y X i= = = (6.10)

The average child info is then given by the conditional entropy of Y given X, i.e.,

1

(|) () (|)
I

X
i

H Y X p i H Y X i
=

= =∑ (6.11)

Equation (6.11) corresponds with equation (2.7). The average reduction in uncertainty about Y
that results from learning the value of X can then be expressed by the mutual information
between X and Y, i.e., (;)H Y X .

Many other rules can be devised, see [Breiman et al. 1984; Mingers 1989], but only the Gini
rule and the Shannon rule are further necessary in this thesis. The former is used implicitly in
the appendix examples, while the latter shows a remarkable resemblance with SAPS (see
chapter 2).

6.5 How to declare a node terminal: stopping rule?

In this section, two strategies for deriving stopping rules are described and explained. It is
known that the splitting process has to terminate because the number of cases is finite. Re-
gardless that, continuing splitting too much would yield a generally too large tree to be useful
(overfitting) and this not only with regard to the comprehensibility, but also with regard to
classification errors. A pruning strategy has to be designed to prevent overfitting because a
tree classifier is important, not because it summarises what is known (the training set), but be-
cause it hopefully classifies new cases correctly (see section 5.10.2).

4 The term equivalence class might confuse the reader in this context.

139

There are essentially two pruning techniques available:

1. forward pruning

2. backward pruning

Deepening a tree can be stopped when the purity measure exceeds a certain threshold. How-
ever, this rule may be never fired if, e.g., a node cannot be made purer anymore. Setting the
threshold too low may lead to too much splitting (large trees) and setting it too high may lead
to premature stopping although further splitting of descendant nodes could give a valuable in-
crease in purity even above the threshold.

A more practical and yet simple rule for determining if a node is a leaf, could be to look if a
significant decrease in impurity is still possible, see equation (6.2). This is done by setting a
threshold on the decrease in impurity. A node is then declared terminal (a leaf) if the maxi-
mum decrease in impurity in a node is smaller than the chosen threshold β, i.e.,

max (,)
s S

i s t
°

�� �

This rule is called the decrement threshold rule.

The above stopping rules are part of an approach called forward pruning. In that case, leaves
may no longer contain pure nodes, but instead a frequency distribution over classes, i.e., one
has class probability trees.

Often, another rule is added to prevent overfitting: one may split further and further until one
arrives at single-class subsets, even if all or most of them contain a single training case. This
is prohibited for it would model the idiosyncrasies of the training set. Hence, a significant
number of cases at each leaf must be retained. Put it another way, the partition must have as
few blocks as possible, i.e., the tree should be compact (and comprehensible) and not overfit
the data. The forward approach has as an advantage that it is faster in computation time.

In backward pruning, it is argued that the (prune) stopping rules are difficult to get right. Con-
sequently, the tree is grown as far a possible (e.g., when the nodes are still impure) without
any regard to overfitting. Then, one looks if some nodes can be pruned away. To be able to do
this, a quality for a tree has to be defined in which the size of the tree also plays a role, as it
stands for the complexity of the tree. More details follow in section 6.9.2. Hence, a trade-off
has to be sought. The terminal nodes are assigned misclassification costs that have to be
minimised, taking into account the complexity of the tree. The backward pruning approach is
slower in computation time, but a more thorough exploration of possible partitions can be
made, resulting in a better class probability tree. The latter makes that it is the most popular
approach in C4.5 and CART.

Experience with growing trees in [Breiman et al. 1984] led to the conclusion that for the dec-
rement threshold rule, the number of misclassification were unrealistic low and the tree be-
came too large with regard to the information in the data. The use of more complicated stop
rules did not improve this situation: the forward pruning approach failed. Stopping when a
threshold was met, may result in a large tree for which the resubstitution estimate of misclas-
sification would approximate zero (overfit). On the other hand, a very small tree will not use
some of the classification information available giving rise to an increased misclassification
rate (underfit). Therefore, Breiman et al. advocated pruning instead of stopping: grow an ini-
tial tree that is much too large and then prune it upward (backward pruning).

140

6.6 Inferencing on termina l nodes: assignment rule?

When class probability trees are used, the distributions in the terminal nodes represent the es-
timated distribution under the conditions valid for the node (path from root). When one works
with decision trees, where preferable a unique class should be assigned to each node, a class
assignment rule is trivial. In the more general case of class probability trees, the assignment of
which class each (non-uniform) leaf node should correspond to, can be done in different
ways.

Depending on the priors (class distribution in training set) and the misclassification costs, a
certain class may be picked at the (impure) leaf: this is cost-based classification. The esti-
mated expected misclassification for a case classified as class i is given by

C i j p j t
j

J

(|) (|)

�
1

A class assignment rule is to select the i that minimises the expected misclassification. The re-
substitution estimate, r(t), of the expected misclassification for a given node t is given by

r t C i j p j t
i

i C j

J

() min (|) (|)�

°

�
1

The estimate of the overall misclassification cost for a tree T is then determined by the quality
of its terminal nodes weighted by the proportion of subjects falling into node t, i.e.,

R T R t r t p t
t T t T

() () () ()
~ ~

� �
° °

� � (6.12)

Under the assumption of equal cost in misclassifying a class j object, a simple rule can be
used. For a terminal node, one could take as decided class the one for which the conditional
probability in that node is maximal, i.e.,

decided class argmax�
j

p j t(|) (6.13)

If the frequency approach is used, this becomes the plurality rule (use equation (6.4) for es-
timates)

decided class argmax argmax argmax� � �
j j

j

j
jp j t

N t

N t
N t(|)

()

()
() (6.14)

The estimate of the probability of misclassification r(t) given that a case falls into node t is
then for a unit cost expressed by

r t p j t
j

() max (|)� �1 (6.15)

Thus, a simple way to pick the representing class is to take the majority class. Another way is
to set thresholds for selecting a class. These thresholds may vary from class to class and one
may end up with — when no class exceeds the threshold — an undecided node.

141

6.7 Advantages and disadvantages of tree classifiers

The advantages are as follows.

+ Classification trees are attractive in that they present a simple and easily understandable
structure. The final classification can be cast into rules, which may facilitate acceptance of
the model.

+ Classification trees can be applied to any data structure through an appropriate formula-
tion of the questions used for splitting.

+ Classification trees can be used for all kind of predictors.

+ Classification trees use conditional information in handling non-homogeneous relation-
ships.

+ Classification trees do automatic stepwise variable selection and complexity reduction: a
search is done at each node for the best split.

+ Classification trees give an estimate of the misclassification probability.

+ In a standard structure, it is invariant under all monotone transformations of individual or-
dered variables. This is very important for a pattern recognition approach.

+ Classification trees are extremely robust with respect to outliers and misclassification
points: one essentially counts cases in a split (frequency based).

+ An important advantage of classification trees over a nearest neighbour method is that the
former are based on a procedure for distinguishing between those variables useful for
classification and those which are not, [Breiman et al. 1984].

The disadvantages are listed below.

− Classification trees may be too complex, what makes them difficult to comprehend.

− Classification trees may be unstable: if one variable masks another, a small change in (the
priors) of the training set may shift a split from one variable to another. Although these
splits may almost have the same goodness of split, they can be very dissimilar (see section
6.9.4).

− If one wants to include polythetic splits and Boolean combinations of the variables, the
computational burden becomes much higher.

− Classification trees are likely to be more susceptible to unrepresentative data and to over-
fitting than traditional parametric models. This problem is illustrated in Quinlan [1993],
where the author considers an extreme example of a training set of random data in which
the class of each case is unrelated to its attribute values. The artificial data set had 10 at-
tributes, each taking a value between 0 and 1 with equal probability. The class was binary
with P(yes) = ¼ and P(no) = ¾. A training and test set of each 500 cases was generated.
C4.5 build a tree with 119 nodes and had an error rate larger than 35 %. Just choosing ‘no’
all the time would have lead to an error rate of 25 %.

− Greedy algorithms are used to reduce the computational burden. These kinds of algo-
rithms do not guarantee an optimal solution. However, Breiman et al. favour the ‘honesty’
more than the ‘optimality’, [Breiman et al. 1984].

142

6.8 Machine Learning approaches

ID3 and C4.5 are typical examples from the machine learning domain, where splits are
monothetic. Splits are only binary for continuous variables, but they can have any arity for
categorical variables. Pruning is forward in ID3 and backward in C4.5. Probabilistic classifi-
cation is accounted for, and prediction errors are treated heuristically.

6.8.1 ID3: A ‘Primitive’ Tree C lassifier

The ID3 (Inductive Dichotomizer 3) algorithm was devised by Quinlan [1986]. The algorithm
is not complex and can process quite large data sets. It uses a splitting rule based on the Shan-
non entropy. A stopping rule is triggered when the entropy of a leaf node is zero (determinis-
tic determination). Hence, forward threshold-based pruning is used. A ‘windowing’ process
was introduced that enables ID3 to cope with very large data sets by gradually perfecting the
tree by looking for instances that are not properly represented and thus by modifying the tree
accordingly (on-line learning). The splitting rule in ID3 is based on information gain, which is
always positive, see Table 6.2.. The correspondence between the notation of Quinlan and the
notation in this thesis is depicted in Table 6.2.

ID3 Impurity measure

S = set of cases5 in a node Y is a node

info(S) () info()H Y Y= (equation (6.9))

info ()X S (|)H Y X where X is a split for a node Y
(equation (6.11))

gain() info() info ()XX S S= − (;)H Y X

 Table 6.2 : Correspondence between ID3 notation and entropy notation

ID3 may derive decision trees that are absolutely correct, but nevertheless too complicated to
understand by humans. Very complicated rules and decision trees are intrinsic to the consid-
ered paradigm, see [Gaines 1996].

Deepening of a tree is stopped when the purity measure exceeds a certain threshold. In that
case, leaves may no longer contain pure nodes, but instead a frequency distribution over
classes. Classification is cost-based or done via the plurality rule.

6.8.2 C 4.5: A ‘Classic’ Tree C lassifier

C4.5 is an extension of ID3 that accounts for missing values, continuous attribute value
ranges, (backward) pruning of monothetic decision trees, rule derivation, incremental tree
building, and so on [Quinlan 1993]. The splitting rule in C4.5 tries to maximise the informa-
tion gain ratio. The latter should solve a serious deficiency of the information gain criterion,
which has a strong bias in favour of tests with many outcomes. This behaviour becomes obvi-
ous if some unique identifier is included in the training set. The gain criterion will select the
split where each subnode contains just one case, because infoX S() 0. To alleviate this prob-
lem, a kind of normalisation can be used. For that purpose, Quinlan defines the term ‘split
info’ by looking at the potential information generated by the child node distribution. The

5 In CART, S stands for the set of possible splits.

143

gain ratio is then defined to be the proportion of useful information generated by the split, i.e.,
the information relevant to classification divided by potential information gain, via

gain() (;)
gain ratio()

split info() ()

X H Y X
X

X H X
= = (6.16)

Hence, the distribution over the child nodes themselves plays a role via H(X). This gives a
kind of complexity penalisation in the splitting.

C4.5 uses backward pruning. An overfitted tree is produced after which irrelevant branches
are pruned away by looking if the predicted error rate is better if a branch is replaced by a
leaf. Quinlan calls this error-based pruning. The predicted error rate computation is based on
internal estimates, which are too optimistic. Therefore, Quinlan decided to do a ‘statistical’
correction to make the prediction errors less optimistic (pessimistic estimate). Due to the
backward pruning, a class distribution is often present in a leaf. The plurality rule is used for
class assignment.

C4.5 clearly illustrates the link with the rule-paradigm (and the ML world). It comes with a
companion program for generating a set of rules from the decision tree. It goes further than
just listing the paths from the root node as rules. It also tries to generalise each rule, and it can
create default rules. Even conflict resolution is implemented. All this is aimed at a more com-
prehensible model (simple rules).

6.9 A Statistical Domain Tree Classifier: CART

In this section, attention is solely devoted to the CART methodology, the motivation of which
is statistical prediction. This section is based primarily on the book of [Breiman et al. 1984].
CART is the acronym for ‘Classification and Regression Trees’. There is another much less
popular statistical tree classifier called CHAID, which is an acronym for ‘Chi-squared Auto-
matic Interaction Detection’. However, CHAID only works with categorical variables. It al-
lows higher arity than 2 for splits, but this implies some drawbacks such as a bias toward
variables with more splits and the fact that a variable can only be used once for a split. There-
fore, CHAID will not be described here.

In the CART methodology, a response variable can be quantitative or nominal while predic-
tion variables can be nominal, ordinal or continuous. A unique backward pruning method is
used. It is called minimal cost-complexity pruning. The trees are always binary. The size of a
final binary tree is determined by cross-validation and backward pruning. Class assignment in
a leaf happens by the plurality rule (or cost based).

6.9.1 Splitting rule

Breiman et al. [1984] conclused that the overall misclassification rate of the tree constructed
is not sensitive to the choice of a splitting rule, as long as it is within a reasonable class of
rules. A white paper from [Salford 1999], however, claims the contrary. Fortunately, this dis-
cussion is of no importance for this thesis, because the Gini rule is always used in class prob-
ability trees (see section 5.10.1) or in regression trees (see section 6.10). The Gini rule favours
a split into one small, pure node and a large, impure node. The final conclusion from Breiman
et al. is that ‘Gini splits generally appear to be better’. Hence, the Gini rule will be taken. The
Gini rule assumes unity misclassification costs. An extension of the Gini rule to include mis-
classification costs can be obtained, but this extension is not necessary in this thesis.

144

6.9.2 Stopping rule

In CART, an initial tree, Tmax, is grown that is much too large. Selectively pruning this tree
upward, results in a decreasing sequence of sub-trees. Subsequently, cross-validation or test
sample estimates are employed to pick out that subtree having the lowest estimated misclassi-
fication cost. The criterion to prune or recombine upward is based on misclassification cost.

So, the first step is to grow a very large tree by letting the splitting procedure to continue until
all terminal nodes are either very small (default is N < 5 or 10) or contain only one class. The
initial tree should be large enough and preferable contain pure nodes. The initial tree can be
improved somewhat by pruning away descendant nodes tR and tL which are such that
R t R t R tL R() () () � . Continuing this process, results in a new Tmax, that has the same misclas-
sification cost as the original maximal tree.

In a second step, a nested sequence of subtrees is created by backward pruning of Tmax. A
‘selective’ greedy pruning procedure is employed in which each subtree selected is the ‘best’
subtree in its size range. A complexity measure (or penalty function) is used in this effort. The
corresponding process is called (minimal) cost-complexity pruning. A natural way to intro-
duce the required complexity penalty is to look at the number of nodes in the tree, which has
the same order as the number of terminal nodes. In minimal cost-complexity pruning, a cost-
complexity measure R T

D
() is defined as a linear combination of the misclassification cost of

the tree and its complexity penalty (determined by the number of leaves T�):

R T R T T
D

�() ()
~

� � (6.17)

where α is a positive real number, called the complexity parameter (complexity cost per leaf)
and where R(T) is determined by equation (6.12). The goal is to find for each α that subtree
T(α) that minimises R T

D
(), i.e.,

R T R T
T T

α αα(()) min ()
max

=
≤

The smallest minimising subtree can then uniquely be defined. It can be proven that for every
value of α, there exists a smallest minimising subtree. The algorithm has the tendency to re-
move at first large subtrees with many terminal nodes. The result is a nested sequence of
minimal cost-complexity subtrees starting from Tmax up to the root node. Each subtree Tk is
considered as a classifier on its own.

The final step consists of picking one of these subtrees as optimal. The resubstitution estimate
will always yield the largest tree, Tmax, as optimal. Hence, a better method is to use true esti-
mates to select the right sized tree from among the pruned substructures. These more accurate
estimates can be obtained by an independent test sample in case the sample size is large or by
cross-validation with smaller sample sizes. As a tree is pruned upward, behaviour like the one
in Figure 5.8 is to be expected. Consequently, an optimum must be sought as described in
section 5.10.4. The right sized tree is selected by taking the (sub)tree Tk (k is a labelling index)
that has the minimum misclassification cost with regard to honest estimates:

R T R Tts

k

ts
k() min ()candidate selected � (6.18)

Most simulations of R Tts () as function of the number of terminal nodes reveal a graph with a
reasonably rapid initial decrease followed by a long, flat valley, and then a gradual increase as
the number of terminal nodes increase. The position of the minimum in this valley is unstable.
Therefore, as in section 5.10.4, a 1 SE (one standard error) rule is used to reduce this instabil-

145

ity and to choose the simplest tree, Tselected, whose accuracy is comparable to min ()
k

kR T within

one standard error, i.e.,

R T R T se R T() () (())selected candidate selected candidate selected� �

6.9.3 Class probability trees and oblique trees

The use of class probability trees does not change much to the methods used for classification
trees. In class probability trees (see section 5.10.1 for a formalisation of class probability es-
timators), one does not decide on a class in a terminal node, but one retains a class distribu-
tion. Class probability trees look very much like classification trees. Only the Gini index plays
a double role: as splitting rule, and as misclassification estimate. For more details, the reader
is referred to [Breiman et al. 1984; Van Welden 1998].

The use of oblique trees does not change the methodology either (apart from inserting extra
variables for splitting). Accordingly, in CART, oblique trees can be induced. Breiman et al.
consider three approaches to splitting

1. use a linear combination of continuous predictors

2. use a combination of Booleans (conjunctive form). It works only for binary variables.

3. add features or predefined combinations

A problem is that their algorithms may be trapped in a local maximum. Another problem is
that there are too many terms and hence the split may become uninterpretable. Therefore, a
backward and stepwise deletion of terms is proposed by deleting the least important terms
first (give smallest decrease) until the effect of the deletion is a certain (predefined) fraction of
the most important term (determined before). Hence, it is a subjective approach.

6.9.4 Surrogate splits

In standardised data, missing values can automatically be handled in tree construction and in
prediction. The concept of surrogate splits, which is typically for CART, makes this possible.
A surrogate split is a split that is strongly associated with the best split: it sends cases to the
descendant nodes in the same way as the best split. This association remains, if the surrogate
split just reverses the roles of left and right node. Hence, to encompass this situation, com-
plementary splits have to be included.

Besides the best split s* (see equation (6.2)), consider a split sm on a variable xm for the same
node t. If sm is used to predict s*, then the probability that this happens correctly is given by
the probability that both, send cases to the same descendant node. This probability is denoted
by , p s sm(,)* . The error probability is then 1− p s sm(,)* . The best split sm, i.e., the one that
has the best similar behaviour in sending cases to the descendant nodes is a surrogate split
(delivered by attribute xm), i.e., p s s p s sm

s
m

m

(,~) max (,)* *= . A surrogate split should do at least

better than in the naïve case. A measure of association is based on the ratio of the error prob-
ability by the surrogate split and the error probability by the naïve split:

error probability by surrogate split

error probability by naive split
= −1 p s s

p p
m

L R

(, ~)

min(,)

*

For a surrogate split to make sense, it must outperform the naïve choice, thus
1− <p s s p pm L R(,~) min(,)* . Consequently, Breiman defines the predictive measure of asso-
ciation between ~sm and s* by

146

λ (|~)
(,~)

min(,)
*

*

s s
p s s

p pm
m

L R

= − −
1

1

Hence, a good surrogate split must result in λ (|~)*s sm > 0 .

A surrogate split is searched for each attribute xm. However, depending on the attribute, some
may give a better split than other attributes. The idea is to compute the predictive measure of
association for each variable and to order them from best to worst. The algorithm looks as
follows:

1. for all variables xm (main loop)
find ~sm (secondary loop) and determine λ (|~)*s sm

2. retain all surrogate splits with λ (|~)*s sm > 0

3. sort them in descending order according to λ (|~)*s sm

Surrogate splits and missing data

Surrogate splits are not used in the tree construction.

The situation is different for prediction purposes. A case with missing values, such that s*

cannot be used, will be processed by a surrogate split in sending it further down the tree.
From all candidate surrogate splits, the best that can process the case, is taken (if the first one
cannot, take the second one, …).

This looks much like the case of using several masks in SAPS !

A higher percentage of missing values in the design set may give less accurate trees, and the
prediction may be less accurate when missing values come into play.

Surrogate splits and variable ranking

When a best split is chosen, based on impurity reduction, other splits in the same node may
give nearly the same impurity reduction. Hence, should the initial variable not be present, the
second best would have been chosen. It is said that the second is masked by the first variable.
It would be interesting to know how important variables are in splitting and to have a possi-
bility to assign a rank to these variables. For that purpose, two situations can be distinguished:

1. the second best split is possibly not associated much with the best split. For example, it
sends other cases to the child nodes, but the reduction in impurity is nearly the same as for
the best split. This is called a competitive split. It explains why tree classifiers may be sus-
ceptible to relatively small changes in the data.

2. the seconds best split is a surrogate split, i.e., it must have a strong association with the
best split and it must give a good impurity reduction too.

A measure of importance should not be based on competitive splits (first case), because they
may still have a large impact lower in the tree. Consequently, the importance of these kinds of
alternative splits could be too optimistic. This drawback is less likely in the second case, be-
cause the second best is like the one that is actually used (its effect is more local and thus less
optimistic). Hence, it is in the second case that one defines a measure of importance of a vari-
able xm by (in case of a association strength tie, take the one with largest reduction of impu-
rity) by

() (,) ()m m
t T

M x i s t p t
∈

= ∆∑ �

147

Importance is related with ranking, so a kind of normalisation can be done; e.g., set the most
important to 100. Furthermore, the more correlation there is between variables the better sur-
rogate splits can be, and this may raise the importance of a variable. It is commented in [Van
Welden 1998] that it is a bit strange that the sum over all nodes is taken. A variable can have a
low impact in, say all nodes, or it can have a high impact in fewer nodes. The measure of im-
portance defined above will not distinguish between these two situations. A suggestion is
given in the reference.

6.10 Regression trees

If the output (response) variable Y is continuous, regression trees can be used. They can be
though of as a histogram estimate of a regression surface. Many procedures, such as variable
combinations, surrogate splits, missing value handling, and variable importance for tree clas-
sifiers just carry over without any modification. Regression trees are simpler because the
same impurity criterion is used to grow and prune the tree, and each case has the same weight
in ‘misclassification’.

An example is given in the book of Breiman et al. [1984]. It is based on a paper from 1978
from Harrison and Rubinfeld. Boston housing values data were gathered to see if there was
any effect of air pollution concentration on housing values. Fourteen variables were meas-
ured. The response was the median value of homes (in thousands of dollars). Hence, the re-
sponse is clearly continuous. A regression tree was grown from which a part is shown in
Figure 6.6.

A number within each node is the average of the response. The numbers in the middle of the
arcs show the cases that go left or right, and the numbers below the leaves are their standard
deviations of the corresponding response. The test at each internal node, which is denoted by
a circle, is written just below it. The example showed that only 4 of the 13 predictors were
retained for splits. Surrogates can be determined to assess the importance of each variable.

In regression trees, the classification rule becomes a real-valued function. Its accuracy is now
measured for a large test sample in the least absolute deviation (LAD) case by

R d
N

y d xts
ts n n

x y Ln n

() ()
(,)

� �
°

�
1

2
G

or in the least squares (LS) case (mean squared error) by

R d
N

y d xts
ts n n

x y Ln n

() ()
(,)

� �
°

�
1 2

2

� �
G

where in both cases, L2 is the test set and Nts its number of objects (similar replacements can
be done for the cross-validation approach).

148

����

���� ����

��������

���� ����

���� ����

��� ���

� ���

��� ��

��� ��

/67$7 � ��

',6 � ���

50 � ���

&5,0 � ���

���

��� ���

��� ���

Figure 6.6 : Regression tree example (part from figure in [Breiman et al. 1984 p 219])

While a misclassification rate has an intuitive interpretation, the mean squared error has not.
To remove scale dependency, an estimated relative mean squared error, ()tsRE d , is defined

by dividing the mean squared error by the sample variance, i.e., RE d R d R yts ts ts() () ()= ,
where y is the sample mean.

The splitting rule is now based on minimising the resubstitution estimate of misclassification.
Hence, the best split is the one that minimises the weighted variance (over the child nodes) in
the LS regression and that minimises the sum of the absolute deviations from the node medi-
ans in the LAD regression. More details can be found in [Breiman et al. 1984].

Backward pruning is based minimal error cost-complexity, which is very similar to the tree
classifier case, but with the misclassification rate simply replaced by the error measure. It is
typical that the valley containing the minimum value of the misclassification error is flatter
and wider than in classification trees. As for tree classifiers in CART the 1 SE rule (one stan-
dard error rule) is used for selecting the best tree.

Regression trees are reported to be competitive with linear regression. They can be more ac-
curate on non-linear problems, but less on linear problems (which is consistent with the gen-
eral principle of using parametric models when the parametric assumptions hold).

149

6.11 Conclusion

The general principles of tree classifiers were explained. From the two basic pruning ap-
proaches, forward and backward pruning, the latter is the most popular. An optimal tree can-
not be found, hence, (greedy) heuristics are necessary to find a sub-optimal tree. The same
methodological optimality problems are present in SAPS, see chapter 4.

Breiman et al. [1984] state that within a wide range of splitting criteria the properties of the
final tree selected are surprisingly insensitive to the choice of splitting rule. Murthy [1997]
shows that the use of more extensive search heuristics than the traditional greedy heuristic is
unnecessary, and often harmful. Therefore, a restriction to the two most popular tree classifi-
ers, C4.5 and CART, which use greedy heuristic evaluation functions combined with back-
ward pruning, is a representative and meaningful choice to illustrate a data mining approach
to SAPS. However, CART has the additional advantage that it provides regression trees as
well as oblique trees, that it penalises complexity, and that it gives a variable ranking. In ad-
dition, CART’s theoretical fundaments are more statistically sound.

Research is still very active in classification and regression trees, see [Murthy 1997; Shang
and Breiman 1996; Blockeel 1998] for example. Including all this new research in this thesis
is virtually impossible and it would obscure the main line followed (since this thesis is not
about how to improve the performance of tree classifiers). In that sense, one could say that
CART is the ‘worst’ performer when comparing tree classifiers with SAPS. The reader should
bear this in mind when reading chapter 8 and the appendices.

150

References

Armitage P., Colton T. [1997], Encyclopedia of Biostatistics. Wiley, 1997.

Berry M. J. A., Linoff G. [1997], Data Mining Techniques For Marketing, Sales and Cus-
tomer Support. Wiley Computer Publishing, 1997.

Blockeel H. [1998], Top-Down Induction of First Order Logical Decision Trees, Ph.D. thesis
(in English), Katholieke Universiteit Leuven, Leuven, Belgie, 1998.

Breiman L., Friedman J. H., Olshen R. A., Stone C. J. [1984], Classification and Regression
Trees. Chapman & Hall, 1984.

Gaines B. R. [1996], “Transforming Rules and Trees into Comprehensible Knowledge Struc-
tures” Advances in Knowledge Discovery and Data Mining, ed. Fayyad U. M., Piatetsky-
Shapiro G., Smyth P. and Uthurusamy R., AAAI Press/MIT Press, Cambridge, England,
p. 205 - 226, 1996.

Hyafil, Rivest [1976], cited in [Quinlan 1993].

Kodratoff Y. [1997], “From the Art of KDD to the Science of KDD”, Learning, Networks and
Statistics, CISM Courses and Lectures no 382, ed. Riccia G. D., Lenz H-J., Kruse R.,
Springer, Wien, p. 135-160, 1997.

Mingers J. [1989], “An Empirical Comparison of Selection Measures for Decision-Tree In-
duction”, Machine Learning, 3(4), 319-342, 1989.

Murthy K. V. Sreerama [1997], On growing better decision trees from data. Ph.D. thesis,
Johns Hopkins University, Baltimore, Maryland, 1997.

Quinlan J.R. [1986], “Induction of Decision Trees”, Machine Learning, vol. 1, p 81 - 106,
1986

Quinlan J.R. [1993], C4.5: Programs for Machine Learning. Morgan Kaufmann series in Ma-
chine Learning, 1993.

Rulequest [1999], see www.rulequest.com

Salford [1999], see www.salford-systems.com

Shang, N., Breiman L. [1996], “Distribution Based Trees Are More Accurate”, Proceedings
of the International Conference on Neural Information Processing, Hong Kong, p. 133-138,
1996.

[Shapiro 1987] cited in [Quinlan 1993].

Van Welden D. [1998], Tree Classifiers as Data Mining Tools. MSc. Thesis. Catholic Univer-
sity of Leuven, Belgium, 1998.

151

Chapter 7

Relationship between General System
Theory and Knowledge Discovery in Data-
bases via Meta-Modelling

7.1 Introduction

General System Theory and Knowledge Discovery in Databases have a lot in common. In this
chapter, this commonality is described from a high abstract level to a more concrete level. At
an intermediate level, a comparison between GSPS and KDD is done. Further focus will be
given to the used paradigm in GSPS (already described in chapter 3) and the supervised
learning paradigm (described in chapter 5).

The comparison starts by considering the philosophical aspects of GST and KDD. Next, their
life cycle is compared and emphasis shifts are explained. At the next level of comparison, it is
shown how in GSPS, a time-invariant pattern or mask ‘flattens’ input-output data into the
state-observation space (chapter 3), such that the state-observation records are static. Still,
many masks could be tried for the mapping. Fortunately, taking the idea used in the sub-
optimal mask search, which starts the search from a maximum allowable complex mask, a
step further, a stream of data records that leans itself perfectly for a KDD approach can be
obtained. As mentioned in part one of this thesis, the line of research that is being pursuit, is
one of system identification of directed systems. It corresponds to the supervised learning
paradigm in KDD where outputs of a system under investigation form the responses known at
each time instance. Consequently, different data-mining methods can now be applied to find
patterns in the state-observation matrix. They may constitute a new powerful approach to the
identification of dynamical systems, which extends the possibilities of SAPS in dealing with
different type of variables, in handling larger databases, in effectively coping with missing
values, and so on.

7.2 Comparing General System Theory and Knowledge Discovery in Data-
bases

7.2.1 Abstraction of a model

In the sequel, a model is defined as any formalisation that aids in understanding a system un-
der investigation. This definition is very abstract, which makes it applicable to the GST and
the KDD domain. Hence, a model in its most general form can be (the list is not exhaustive):

1. a set of differential (or difference) equations, a block diagram, a Petri net, a Bond graph,
any qualitative model (e.g., confluences), a time series model, …

152

2. a classification or regression tree, a dependency network, a hypothesis, a regression model
(linear, non-linear, logistic, …), a discrimant function, …

3. a set of rules (if-then rules, association rules, …), a Markov chain, a look-up table or con-
tingency table, a set of data (for lookup), a clustering model, a neural net, a genetic algo-
rithm, …

The first types of models are mainly known in the domain of GST, the second type in the do-
main of KDD, and the third types are commonly used in both domains. The above definition
of a model is consistent with the definition of Minsky [1965] that states: “An object 'A' is a
model of an object 'B' for an observer, if the observer can use 'A' to answer questions that in-
terest him about 'B' “.

7.2.2 Philosophical issues

In GST, system observations may be obtained either actively or passively. In KDD, the latter
situation is the rule (although ML considers both cases, see chapter 5), while in GST both set-
tings deserve equal attention.

The top-down approach to modelling is a deductive approach. It can be compared to hypothe-
sis testing in KDD. In both cases, one has a priori knowledge that has to be cast in a formal-
ised form (a model in its most general meaning). A difference in the deductive approach is
that general systems theory has a long tradition to handle systems and sub-systems (decompo-
sition of systems and coupling of sub-systems), while KDD usually tackles one (indivisible)
system.

The bottom-up approach to modelling is better known in general systems theory as system
identification (chapter 1). Klir calls the bottom-up approach ‘investigative’, [Elzas 1984]. The
latter term adheres more to terminology used in KDD, where such an approach is known as
data exploration (chapter 5). Hence, an inductive approach starts from the data and tries to in-
duce a model (in its most general meaning). Both approaches are depicted in Figure 7.1.

LQGXFWLYH

DSSURDFK

GHGXFWLYH

DSSURDFK

*67 .''

PRGHOLQJ

V\VWHP

LGHQWLILFDWLRQ

K\SRWKHVLV

WHVWLQJ

GDWD

H[SORUDWLRQ

Figure 7.1 : Deductive and inductive approach in GST and KDD

In general, KDD emphasises more the inductive approach, which makes it better suited for
‘black box’ and ‘dark-grey’ systems. Consequently, its success is mainly found in the corre-
sponding domains of science, where little or no a priori knowledge is available. By using the
rainbow of Karplus in Figure 7.2, one notices that most applications of KDD lie in the field of

153

economics, sociology, ecology and physiology. Additionally, Figure 7.2 shows that this re-
striction is not crisp.

Electric
Systems

Aircraft
Control

Hydrological
Processes

Ecology

Sociology
Dynamics

Chemical
Systems

Pollution
ProcessesPhysiology

Economics

Product
Design

Performance
Prediction

Prediction
for Action

Experimentation with
Control Strategies

Test
Theories

Gain
Insight

Arouse
Public
Opinion

Psychology

Philosophy

KDD

Figure 7.2 : Spectrum of modelling

With regard to the black box aspect, it is interesting to look at the definition of a system given
by Klir in chapter 1. It allows for both the deductive or inductive approach. From this defini-
tion, it can be seen that a class of systems can be uniquely defined by given activity (series of
I/O records). This corresponds with a system identification approach in GST and with the
starting point of data exploration in KDD. The first three traits are commonly used in KDD,
while the latter two, UC and ST structure, are more devoted to GST.

7.2.3 The life cycle of GST and KDD

Klir [1985] considers meta-data in GSPS, but meta-data has more semantic richness in KDD.
A first aspect of this richness can be illustrated by looking at the data types in a data ware-
house, which are shown in Figure 7.3.

Operational data

Metadata

Database schema

Summary data

Business
rules

Figure 7.3 : The use of meta data in data warehousing (from [Han 1999])

Operational data is the data itself. In data warehousing, this also means where it comes from,
when it was stored, etc. Summary data gives summaries of the data, so it is a kind of meta-
data already. The database scheme gives the physical layout of the data. The meta-data level
itself is the logical model. The meta-data repository also encompasses business terms and
definitions, ownership of data, and charging policies. For example, operational meta-data
concerns:

154

• data lineage: history of migrated data and sequence of transformations applied

• currency of data: active, archived, purged

• monitoring information: warehouse usage statistics, error reports, audit trails

A second aspect of the richness of the term meta-data in KDD, is found in the data mining ap-
proach. Here, meta-data says something about the measurement scale; whether variables are
derived from others (data projection); if there are bounds on data; if there are structural zero’s;
whether there are distributional assumptions made (parametric versus non-parametric), etc.
Meta-data is thus much related to the use of a-priori knowledge in data-pre-processing
(structural zero’s, derived variables), and in model specification and selection (which data
mining method to use). Remark that the distinction between data and meta-data may be
blurred.

The quality of the data structure on the database determines to a large extend the success of
the application on the functional level as well as on the management level. A general frame-
work that serves this purpose, and which is a synergy of the life cycle of ‘classical’ modelling
(see Figure 1.5) and KDD (see Figure 5.1), is depicted in Figure 7.4. It shows the similarity
between general systems theory and KDD in a broad context.

Goal formulation

All problem statements start with the identification of the problem. They try to set a goal in
order to solve the problem at hand. To be able to meet a goal, it has to be formalised so that a
rigorous approach to problem solving can be obtained. For that purpose, a focus on part of re-
ality has to occur, i.e., one has to define a system. Defining a system is studied in the general
systems theory by Karplus [1976], by Klir [1969], and by Zeigler [1976] (list is not exhaus-
tive). It involves defining the boundaries of the system, the interaction of the system with the
environment, and last, but not least, defining the relevant variables (space-time resolution).
These are concepts that are described in GST, and which are as well applicable to KDD be-
cause general system theory is applicable for any model (thus also to data mining).

With regard to goal formulation, more similarities are present: e.g., gaining insight (in KDD)
corresponds with understanding (in Systems Theory). Both domains stress the principle that a
model should not be more complicated than absolutely necessary (Occam’s razor). The three
distinguished broad levels of intervention in GST, i.e., management, control and design, are
equally applicable to the domain of KDD. Obviously, data mining can be used for gaining in-
sight (model purpose), and the pattern found in KDD provides an opportunity to intervene at
some level (as in modelling). However, GST puts some more emphasis on a correct classifi-
cation and prediction. To have a speedy or less costly classification and prediction is less the
issue in GST (except perhaps in the domain of control theory), but of more importance in
KDD. This can be viewed implicitly in the interestingness function defined in chapter 5.
Hence, the ‘Quick decision’ problem type, where accuracy may be less important than com-
prehensibility, is less stressed in classical modelling1. A similar argument applies for the cost
of a model.

With regard to the goal formulation, both domains have a lot in common. Hence, it is better to
speak of emphasis shifts in the goal type that is considered most prominent.

1 Although it has been considered very briefly in [Elzas 1984].

155

RXWSXW

JHQHUDWLRQ

JRDO
LGHQWLI\

SUREOHP

DFW RQ WKH

LQIRUPDWLRQ

PHDVXUH

UHVXOWV RI

DFWLRQ

GDWD

SUH�SURFHVVLQJ�

H[SHULPHQWDO

IUDPH

NQRZOHGJH

FRQVROLGDWLRQ�

PRGHO HYDOXDWLRQ

VWUXFWXUH �

PRGHO�SDUDP�

LGHQWLILFDWLRQ

NQRZOHGJH

EDVH

VWUXFWXUH Q

PRGHO�SDUDP�

LGHQWLILFDWLRQ

PRGHO

VSHFLILFDWLRQ�

VWUXFWXUH

LGHQWLILFDWLRQ

UH�FKRRVH

RU VWRUH

�JRRG PRGHO�

UH�FKRRVH

UH�GHILQH

�EDG PRGHO�

D
S
UL
R
UL
N
Q
R
Z
OH
G
J
H

Figure 7.4 : General modelling and KDD

Data pre-processing versus experimental frame definition

Defining a system has as much to do with the definition of the object system (as defined by
Klir), as with an experimental frame (as defined by Zeigler). An experimental frame isolates
specific input/output behaviour both of the real system and its model, [Elzas 1984]. In KDD,
this corresponds with the data pre-processing step. Attribute focusing is in fact nothing more
than defining what are supposed to be relevant variables for the system under investigation.
This is consistent with the notion of an experimental frame and with what Klir calls an obser-
vation channel. It also fits in the viewpoint, taken in systematic modelling, which states that a
model is conceived as a collection of variables and relations among them, [Ören 1984]. The
collection of relevant variables is attribute focusing, while identifying the relations is part of

156

the data-mining step. The KDD approach to attribute focusing is more related to the philo-
sophical viewpoint of Klir than that of Zeigler. This can be induced from what Elzas [1984]
wrote: “Imagine that we are able to prove that the model is not sufficiently detailed in its sys-
tem description for some goal that was set beforehand. Confronted with this situation Klir
will remark that the reason for this deficiency is a lack of knowledge, while Zeigler will con-
sider the observation-frame to be insufficiently detailed”2. Data focusing is less used in sys-
tems theory, because the nature of data is often different than for KDD. In KDD, one usually
starts with a collection of static independent records. Taking a relevant subset poses no major
problems. However, in general systems theory, taking a subset of time-depending data is usu-
ally not done: data records do depend on each other. This does not mean that GST has no way
of dealing with an abundance of data records. A kind of data reduction can be done in GST
via the determination of the Nyquist frequency and via filtering techniques. Still, it illustrates
the static(KDD)/dynamic(GST) modelling aspects of the respective domains. On the contrary,
data projection can be applied for both domains. It can be meaningful to create a new vari-
able, which summarises the behaviour of a set of other variables, and to use that new variable
in the modelling phase that follows later (data projection also fits in the definition of an ex-
perimental frame). Finally, data cleaning is appropriate whenever values are missing. Missing
values are not really considered in systems theory. Nevertheless, they may appear in real sys-
tems. This is especially true when considering system identification. For many problems in
systems theory (think about controllers, and other man-made devices), there are no missing
values by design. Hence, modellers in the domain of systems theory do rarely meet systems
for which there are missing values.

Model specification versus structure identification

The data-mining step in KDD is much related to modelling in system theory. Model specifi-
cation can be compared with model structure identification. It involves deciding what type of
model to use (in system theory: Bond graphs, Petri nets, block diagrams, … in data mining:
classification trees, hierarchical clustering, linear regression, neural networks, etc.). The
model specification step is straightforward applicable to both domains and can be considered
at different abstraction levels. On a very abstract level this involves choosing if one wants to
use Bond graphs, Petri nets, block diagram, rules, neural nets, etc. (for systems theory) or
trees, clustering, rules, neural nets, regression models, etc. (for KDD). On a more concrete
level, one has to further specify the model. Examples are: linear, logistic, or non-linear regres-
sion (KDD), linear or non-linear models (GST), state-space or transfer functions in block dia-
grams (GST), kind of neural net (both domains), kind of tree (decision, regression, …)
(KDD), order of a differential equation (GST), type of clustering (KDD), etc. In both do-
mains, the goal has a large impact on the used model types: when comprehensibility is more
important certain representations may be more preferred than others. For example in GST, a
block diagram may be more comprehensible than a Bond graph (it is also relative to the field
of expertise). A tree structure is more comprehensible than a neural network (KDD). Rules
are more comprehensible than some other model types (both domains), and neural networks
are usually the least comprehensible (both domains). The issue about comprehensibility has a
lot to do with the greyness of the model: black box models are always less comprehensible
than white box models (if complexity issues of a particular model type are ignored).

The amalgamation of terminology from GST and KDD may shed new light on the terms
‘model specification’, ‘model structure’, and ‘model complexity’. Model specification has a
lot to do with the goal setting, while the model structure is more determined by the experi-

2 Some text between brackets or ‘--‘ in Elzas [1984] has been deleted.

157

mental frame. Model complexity is related to validation and parameter estimation. This is not
to be confused with model evaluation (evaluating model specifications).

An example of a potential (not complete) taxonomy is found in Table 7.1. It shows the terms
in relation to each other and it gives an idea of the degree of abstraction that comes into play.
Finishing Table 7.1 requires the experience of many domain experts3, especially if one bears
in mind that Table 7.1 only shows one dimension of a larger taxonomy from which Table 7.2
picks another dimension.

Model
specification

Rules Differential
equations

Tree classifiers Neural
networks

Time
series

…

Model
structure

Conjunctive,
disjunctive,

…

Linear,
non-linear,
time-invariant,
…

Classification,
regression,
survival

 …

Kohonen,
backpropa-
gation,

 …

AR,
ARMAX,
MA,

 …

Model
complexity

Rule size Order Number of
nodes

Number of
neurones

Order

Table 7.1 : Model specification, structure and complexity

Another aspect is that the KDD society is used to handle all kind of variables (nominal, ordi-
nal, continuous, etc). The GST society also knows about this taxonomy of variables4, but they
do not have such a systematic approach to constructing appropriate models for them. In the
KDD society (especially statistics), one uses different models for nominal variables, ordinal
variables and continuous variables (e.g., linear regression versus logistic regression, chi-
squared based models on contingency tables versus other). Furthermore, the size of the data
set is used as a guideline too. For small data sets, exact methods are used, while for larger data
sets, asymptotic methods can be used.

With respect to the model structure, principles of good architecture [Klir 1985], such as con-
sistency, parsimony, transparency, generality, and completeness,… are equally applicable in
KDD. This is because a model is an abstract concept, which is so general that it encompasses
the patterns that are sought, or the hypotheses tested in a KDD environment. Overfitting is-
sues are very important in the context of model complexity (chapter 8).

Data mining or parameter estimation

Model fitting involves parameter estimation (identification) in modelling. It is also called
model calibration, [Elzas 1984]. This reduces to estimating parameters or coefficients in dif-
ferential equations (GST), parameters in state-space models (GST), regression models (KDD),
etc.

Model validation consists of comparing the behavioural data of the system under investigation
and the calibrated (fitted) model. Usually, a train-and test method is used. A rule of thumb is
that 2/3 is used for fitting the model (training) and 1/3 for validation (testing). Cross-
validation is commonly used in KDD, while it is not so popular in GST. Even more specifi-
cally, bootstrapping is known too in KDD, but almost unknown in GST. Replicatively validity
is known in GST: it consists of fitting the model on the training set. In KDD, this is better

3 This is not a major concern of this thesis, but it may give an impetus for completion.
4 The methodological types of Klir, which are described in chapter 1, do a similar thing

158

known as internal estimates (resubstitution estimates, [Breiman 1984]). Predictively validity
is done on a test set; it gives true estimates. What Elzas calls ‘realism’, i.e., looking at struc-
tural isomorphisms at different degrees of lumping of sub-systems (and corresponding sub-
models), is not considered in KDD. There is usually only one global level, and the validation
takes place for the total (indivisible) system.

Knowledge consolidation and model evaluation

KDD uses an interesting function for evaluating a model. In this respect, the more general
concept of an interesting function is used. The evaluation can be based on more than just ac-
curacy performance. For example, KDD can take into account what is economically interest-
ing (cost of model) or it can take the faster model with regard to prediction. This may prove
an important point for the modelling society when they want to evaluate their models in an
economic context (cost of modelling), or when speed is of the utmost importance. KDD pro-
vides a more general framework for dealing with these situations.

Model refinement is equally applied in GST and KDD; when a model does not validate well,
another model (structure) is chosen. When this fails too, one can go one step further back and
redefine the experimental frame or even adjust the goal. The refinement of an existing model
is a major issue in modelling. The systems theory as developed by Zeigler (use of a SES
(System Entity Structure) and model base) has as purpose to construct and refine models,
[Zeigler 1976], [Van Welden and Vansteenkiste 1992].

From Figure 7.4, it can be seen that many models may be used in parallel. The models can be
of a different specification (e.g., neural nets and genetic algorithms), and they can be situated
on different epistemological levels (e.g., rules versus decomposed models). In the latter case,
one speaks of shallow or deep models (in GST). The concept of shallow and deep models is
also found in the KDD environment: report generation is shallower than OLAP, and OLAP is
shallower than KDD. In KDD, much attention is paid to comprehensibility of models, so a
rule model can be investigated in juxtaposition to a tree classifier. They do not differ much in
their expressiveness (modelling power), but the machine learning society does make a differ-
ence with regard to how easy they can be understood. Hence, the GST and the KDD commu-
nity focus a bit different on the models (decomposed models, comprehensibility issues with
regard to the model representation).

shallow deep

Report
generation

OLAP Neural nets, Genetic
Algorithms, and lazy
methods

rules Tree classifiers
and regression
trees

decomposed
models

Table 7.2 : Shallow models versus deep models

Models are not only evaluated with regard to an interesting function, or validated with regard
to a goal setting, but in KDD, model specifications/paradigms are also compared with each
other. This belongs to the knowledge consolidation step. Here, model evaluation is on another
epistemological level than in the data-mining step. Models are not only compared on a test set
to validate the parameter estimation, but they are compared on yet another (independent) test
(or evaluation) set to evaluate the chosen model specification. The GST community has not
done so much work in this aspect as the KDD community, which focused and implemented
this right away (see SAS-enterprise miner, [SAS 1999]). Model switching is used in GST, but
there, it is more the purpose to see if a model is still valid for time-dependent behaviour (se-
quential model replacement). One may remark that SAPS can use different masks in parallel

159

to improve on the forecasting, but the models are of the same type. Hence, the underlying
paradigms are different. They can be considered orthogonal (one deals with comparing mod-
els for a same behaviour, the other deals with models for changing behaviour), but they can be
used both when studying time-variant behaviour. Consequently, the term ‘model switching’ is
somewhat vague. One can switch from a state-space model to a neural net when the behaviour
goes outside the specifications of the state-space model (i.e., when another structure is more
appropriate). It could even be that, when the system goes out of the pre-set specifications (and
thus the specific model fails), the goal settings change accordingly (e.g., speed becomes more
important than accuracy, or robustness is more important than speed). In GST, it is known
that under certain circumstances, for example, linear models may have to be replaced by non-
linear models or that PID controllers are replaced by fuzzy controllers. However, this is more
because of the limitations of the former with regard to a certain experimental frame.

In both GST and KDD, the consolidation with regard to storing the found knowledge is pres-
ent. In GST, the newly found model is stored in a model base (called modelling in the large,
see also [Van Welden et al. 1991]), while in KDD this is not stated so explicitly. Output gen-
eration has a lot to do with appropriate graphical representations of the data. In that aspect
GST can learn from KDD, because the latter is well acquainted with all kinds of graphs (e.g.,
multidimensional graphs such as Trellis graphs). Multi-dimensional visualisation techniques
are considered very important in KDD (e.g., in statistics, see [Friendly 1991]).

Hence, there is room for elaboration from both sides.

Remarks

• The ‘management’ part of Figure 7.4 (acting on the information, measuring the results of
the action and storing them, perhaps recognise another problem type) is very general.
Thus, it is valid for any modelling attempt, be it via GST or via KDD.

• In Figure 7.4, the knowledge base is not split up in a model base and a database of records
because a matrix of records can be considered as a model too. Rules, which may serve as a
priori knowledge, or even written information in plain English, can be considered as mod-
els too, be it of a less formalised level (for the latter). Therefore, a general term could be
‘model base’, but the option is made to make it even more general by using the term
‘knowledge base’.

• When many models compete in the model evaluation step, one has to decide what to do
with them: store/use them all in parallel or take only one. Model evaluation does not ex-
clude the use of more models in parallel.

• Both GST and KDD acknowledge the necessity of feedback from steps that appear later in
the cycle to steps that appear earlier. This is indicated in Figure 7.4. Therefore, the steps in
the life cycle are more intertwined than one should expect at first sight.

7.2.4 Emphasis shifts between GST and KDD

The emphasis shifts are already described in the previous section. Summarised, one can say
that

• GST focuses more on accuracy of a model, sometimes speed and less the cost of a model.
It does not lay emphasis on data reduction as KDD does. Modelling of dynamical systems
is the primary focus of research. Decomposition of models is common place.

• KDD puts more emphasis on static systems (temporal databases can be used and sequen-
tial patterns detected, but this is not the same as modelling dynamical systems). KDD fo-

160

cuses more on model comparison in the large (via a third test set), on data warehousing
and relies on a richer semantic meta-data structure. In KDD, one has more experience
with very large databases and with high dimensionality problems. Data reduction is com-
monly used. The interestingness function is more general than the evaluation functions
used in GST.

7.3 Integrating GSPS and Data Mining

This section concentrates on the data mining process itself. The data mining approach that is
proposed in this thesis goes further than the hill-climbing approach for mask searching. It uses
the idea of ‘data-flattening’ from GSPS and the idea of a maximum allowable mask of SAPS-
ST with its use of a (tree) structure. The maximal mask still sets an upper bound on the pat-
tern search space, but now different structures (with different inductive biases) can be used.
The step further, thus sits in the plethora of new techniques for pattern identification, which
stems from the domain of data mining. When discussing regression trees in chapter 8, a lot
more analogies with the hill-climbing approach will spring up.

7.3.1 Converting trajectories to static data in GSPS

Classification, which is discussed in chapter 5, typically works with static records. Hence, to
be able to use classification on something like system identification, one has to be able to
convert the dynamics in the activity matrix somehow to static data. This can be realised by a
mask, because a mask is a time-invariant pattern that typically ‘flattens’ the dynamical rela-
tionship into a static one. For example, consider a candidate output-input dependency with
depth 2 in time, i.e., the dependencies between output and inputs (or previous outputs) do not
go further than 2 time instances back in time (mask memory depth is 2):

1 1 2 3() ((2), (), (1), (1))y i f u i u i u i u i= − − −�

with f� a qualitative function, which is represented by a state-observation matrix that is gen-
erated by applying the pattern. The mask for the previous equation above is given by Table
7.3.

inputs output

 time u1 u2 u3 u4 y

 i-2 -1 0 0 0 0

 i-1 0 -1 -1 0 0

 i -1 0 0 0 1

Table 7.3 : A proposed time-invariant pattern or mask

Applying this pattern by sliding it over the data gives a static (time-invariant) relationship in
the state space, which has the general form as shown in Table 7.4. The index stands for the
observation number, or reference time instance that is used in the mask sliding process.

161

index state output

x1 x2 x3 x4 y

1 x1(1) x2(1) x3(1) x4(1) y(1)

2 x1(2) x2(2) x3(2) x4(2) y(2)

…

Table 7.4 : ‘Static’ matrix

The state vector at the reference time i is given by (see equation (1.9)).

1 2 3 4 1 1 2 3((), (), (), ()) ((2), (), (1), (1))x i x i x i x i u i u i u i u i= − − −

and the new relationship is now expressed as

1 2 3 4() ((), (), (), ())y i f x i x i x i x i= �

As a matter of fact, the i index can be dropped altogether, thus obtaining simply

1 2 3 4(, , ,)y f x x x x= �

The raw recoded data matrix in Table 7.5 gives a concrete example.

i u1 u2 u3 u4 y

0 low medium high low High

1 high low medium high low

2 low low low high low

3 medium low medium low medium

4 high high high low very low

5 low medium low high very high

6 medium medium low low medium

7 medium high high high low

8 low high high low very high

9 high low medium low medium

10 medium low high high low

… … … … … …

 Table 7.5 : Recoded data matrix

With the mask from Table 7.3, the data matrix in Table 7.5 flattens to the static matrix given
by Table 7.6.

162

x1 x2 x3 x4 y

 low high

 high medium high low

 low low low medium low

 high medium low low medium

 low high low medium very low

 medium low high high very high

 high medium medium low medium

 low medium medium low low

 medium low high high very high

 medium high high high medium

… … … … …

Table 7.6 : Example of a static matrix

All sub-masks from Table 7.3 can be found back in the static matrix in Table 7.6 via the dele-
tion of certain columns. Consequently, Table 7.3 acts as a primary mask. To enlarge the
search space, it is better to work with a maximal allowable mask to generate a static data ma-
trix with a maximal number of generating variables (most complex model that gives overfit).
In addition, the output of a record in the static data matrix is assumed to depend only on the
corresponding generating variables, which are now considered as inputs. Hence, the outputs
are regarded as conditionally independent (cf. chapter 3) of each other. The newly obtained
data matrix will normally be very large with regard to its number of (new) variables (see
chapter 8 for realistic examples). In fact, one has achieved some form of data-augmentation.
This is exactly what a data mining method is designed for, see the statement of Berry in sec-
tion 5.4.3. Hence, finding a pattern in this matrix seems a job for a data- mining method.

7.3.2 Working on static data in data mining

Classification happens by simplifying a matrix of static records by searching only relevant
(sampling) variables, which can be identified with sub-masks of the original proposed maxi-
mum allowable mask. A static matrix, such as the one in Table 7.4, serves as a, usually wide,
starting table of static records that is given to the classification algorithm.

Making an attribute (generating state) irrelevant for the classification task implies ignoring the
corresponding column. Hence, all time-invariant patterns less complex than the one corre-
sponding with the maximum allowable mask can be found, but ones that are more complex
never will5. This may seem a severe restriction, but it is not as severe as in the hill-climbing
approach of SAPS-ST because the maximum allowable mask can now be taken much deeper.
This is thanks to the ability of data mining methods to handle many attributes. Of course, the
deeper the maximal allowable mask, the more new variables emerge for the data mining
method to process. It is quite easy to determine how many new variables come into play via
this method.

5 It is shown in appendix D how this can be dealt with.

163

For m variables (output included), a maximal mask of depth d generates (m × d) extra col-
umns besides the original m columns of raw data. This leads to a total of (m × (d + 1)) col-
umns or new attributes, i.e.,

� � � �1 1 1 2 (1) 2 (1) 1 (1), , , , , , , ,flattening
m m d m d m du u y x x x x x
� � � � � �

������ � .

The number of new (state) variables is computed in Table 7.7. Consequently, one may end up
with a lot of variables, which may even become too many in number, to be processed by a
data mining algorithm. In the conclusion of this thesis, a way to cope with this will be men-
tioned.

memory depth (d)

m inputs 2 7 12 52 365

4 3 12 32 52 212 1464

7 6 21 56 91 371 2562

11 10 33 88 143 583 4026

21 20 63 168 273 1113 7686

51 50 153 408 663 2703 18666

Table 7.7 : Number of variables for a given number of inputs
 and a given memory depth (one output)

Assuming n records for each column, the total number of data entries is given by
((1))n m d d� � � � . Knowing this number is important for data-mining methods that put a

maximum on this number (see chapter 8). Of course, there is also a lower limit on the number
of data records. It should exceed the maximal mask depth by a multiple of at least five (see
chapter 2), but usually this will always be the case for more complex real-world systems. Too
low a number of data records leads to a restriction on the maximum allowable mask depth.

7.3.3 Analogies between KDD and GSPS

The life cycle from Figure 7.4 can be made more concrete for GSPS. In the sequel, focus will
lie on the KDD approach as shown in the KDD block of Figure 5.1. Figure 7.5 shows the re-
lationship with the epistemological levels of GSPS.

The goal setting and formalisation are situated in the source system, as is the knowledge con-
solidation (and output generation). The latter two are consistent with the general picture of
GSPS (see Figure 1.10) that describes the interface between the general methodology and the
domain dependent knowledge.

Attribute focusing can be done a priori and independent of the data values. Therefore, it
should be put in the source system. Data cleaning is situated in the data system, because it re-
lies on the data themselves. For dimensionality reduction, one should set or determine derived
variables beforehand, so it should be put in the source system. This is consistent with the
viewpoint of Kodratoff [1997]. In data focusing, one knows what kind of records to look for
(source system), but one needs the actual data records to effectively pick out the relevant data
records (data system). Consequently, it belongs to both source and data system. This shows
some relation with the recoding issues in SAPS: fixed recoding belongs to the source system,
but uniform recoding in the data system? Apparently, the GSPS framework has not accounted
for this.

164

�����������	
����
�

�������
�
�

�
	������

	
�	������	

	�����

��
�����	

�	��

������������

�	��
��������
�����������	
���
�

������	
���
�

�����
���
�
�

����
��	
������

����
��	

�����������

������	���������

�	��
��������

Figure 7.5 : GSPS’s role in KDD

The data mining step in KDD belongs to the behavioural system. Before entering this level,
the data is pre-processed, so one is left with the KDD task of finding an interesting time-
invariant pattern in the pre-processed data. This time-invariant pattern is just that what is
called a mask in GSPS.

A maximal allowable mask ‘flattens’ the data into a static matrix (such as the one in Table
7.4). On these ‘flattened’ data, many classification methods stemming from the KDD applica-
tion domain are applicable. Therefore, the GSPS method can now borrow concepts and meth-
ods from three major scientific domains as illustrated in Figure 7.6.

165

machine
learning

systems
theory

statistics

GSPS

Knowledge Discovery in Databases

Figure 7.6 : SAPS and KDD

It is out of the scope of this thesis to explain all data mining methods in detail. Consequently,
only an overview of the ones that are readily applicable will be given. In addition, the specific
domain these methods are situated in, is mentioned.

• Rule-learning: rule learning techniques, which originate from the field of machine learn-
ing, can be used. Rules are easy to understand for domain experts, and they can be easily
coded into a rule base of an expert system. A nice and very desirable side effect is that a
rule base of dynamical behaviour can be automatically built. In chapter 8, a way for auto-
matic generation of rules (via tree classifiers) will be illustrated. It is not the only way:
other packages exist that find rules straight from the data and not via a tree classifier, see
[Segal and Etzioni 1994].

• Tree classifiers are good candidate models [Van Welden 1998]. They adhere to what al-
ready has been done with SAPS (e.g. the hill climbing approach). They also show the
links with the domain of machine learning and the domain of statistics in an explicit way.
Tree classifiers and regression trees constitute a major part of chapter 8.

• Neural networks are well adapted to find patterns in data very fast. However, tractability
(and the corresponding legal) issues may exclude their use in certain applications. A de-
scription of a tool that uses neural networks (among others) is found in [Khabaza and
Shearer 1995].

• Regression analysis: the state components can be considered as regressors and the output
as the dependent variable. Of course, distributional assumptions are quite unlikely to be
fulfilled in general. Hence, the use of non-parametric regression techniques may be re-
quired.

• Genetic algorithms are other candidate techniques, but due to the non-positional impor-
tance of a state, techniques like crossover are unlikely to result in a good classification,
[Goldberg 1989]. Mutation may play a more important role; hence, the use of evolutionary
algorithms may prove to be more beneficial.

• Non-parametric discriminant analysis is another technique that may be applied. Usually, a
multivariate normal distribution cannot be assumed to hold. Of course, when normality

166

assumptions prove to be applicable, a corresponding parametric technique should be ap-
plied to achieve better results.

• The nearest neighbours method is in essence a non-parametric technique. It is based on
proximity measures, and when recoding is not used, it may be applied (note the relation-
ship with the discussion of the influence of the type of variables on certain classification
methods). In chapter 8, this method will be used and compared with regression trees.

• When recoding is used, one may end up with ordinal or nominal variables. Case-based
reasoning may then be more appropriate because it can deal with lower type variables.

The summary above is not meant to be complete. Its only purpose is to show the enormous
area of further research about the applicability of existing techniques in other domains of sci-
ence that now become available (e.g., other paradigms like Bayesian networks may be well
applicable).

The consequences of using a data mining approach to GSPS are thus numerous. They will be
highlighted in the conclusion part of this thesis, because they open the field for a whole new
range of research that can be done.

7.4 Advantages and disadvantages of data mining approach

There are many advantages by applying the data mining approach.

+ Recoding can be handled automatically by some data mining methods: tree classifiers will
illustrate this in detail in chapter 8. Any kind of data can now be tackled, because some
methods from the field of KDD that are well equipped for handling certain variable types,
can now be applied. A plethora of different methods for different circumstances, e.g., type
of variables, distributional assumptions, etc., is now available.

+ Databases can now be large, both in the number of variables and in the number of records.
Putting derivatives in the raw data matrix allows detecting more relationships. One can
obtain this by differencing. The latter method is also used in time series to remove the ef-
fect of a trend. Hence, taking the first order (or higher) differences may reveal interesting
patterns in the data, but at the expense of more computational power. Fortunately, data
mining methods are more suited to handle a large number of variables (and records). An
example of differencing and trend removal appears in chapter 8.

+ Prediction models can be built that are more comprehensible or more accurate. Rule-bases
can be automatically generated. Again, this will be illustrated in chapter 8 by the use of
examples.

+ The concept of a training and test set is now automatically applicable, because it is a fun-
damental concept of the data-mining field. Extra validation tools, such a cross-validation,
can now be used for smaller data sets. Chapter 8 illustrates this via examples, where cross-
validation for accessing the (internal) validity of the generated prediction model is used

+ Missing values can be automatically handled by some methods. Examples will be given
when tree classifiers are discussed in more detail in chapter 8.

+ Cleaning of data is also a fundamental concept in data mining. There was not enough em-
phasis placed on this process in the field of system identification approached such as
GSPS. Now it becomes an integral part of the whole approach.

167

+ A plethora of techniques now becomes available, and thus many different methods can be
compared with each other and validated. Hence, the methods themselves are evaluated
too. This is also comprised in the data mining approach.

There is one major ‘drawback’.

− The only major ‘disadvantage’ lies in the complexity of the approach. The newly added
complexity of the data-mining approach with its plethora of techniques must be kept un-
der control. The multi-paradigm approach requires knowledge of both domains, which is
not easy to obtain6 when one knows that GST and KDD themselves constitute quite some
knowledge.

7.5 Resulting paradigm sh ift for SAPS

GSPS is related to KDD. More specifically, the bottom-up approach in GSPS corresponds
with the knowledge discovery approach in KDD. The latter corresponds with inductive
learning (in ML). SAPS works with directed systems and one-output masks. Hence, while
GSPS was still related to inductive learning, SAPS restricts itself to supervised learning.

Consequently, SAPS can be enhanced with classification and regression methods after flat-
tening the raw data via a maximal allowable complex mask. SAPS inherits all advantages
from the data-mining approach to GSPS. As an extra advantage, (pre-)recoding (which may
result in a worse system identification) is not necessary anymore (it can be handled more op-
timally), and metrics can be kept. An example of this is found in chapter 8, in which a new
and simplified nearest neighbour method is evaluated.

Application of classification and regression techniques in the context of SAPS, constitutes
quite an area of research for which the newly established links with KDD provide the neces-
sary feed for further investigations, (see Figure 7.6). Many of these techniques and their per-
formance are still under investigation. Figure 7.7 contrasts the data mining approach to the ap-
proaches in SAPS-II and SAPS-ST.

The exhaustive mask search in SAPS-II has as the obvious advantage that it will always find
the ‘best’ mask (according to the chosen criteria). However, the search space can become very
large because of the high cardinality of a maximal allowable mask. The depth of this mask
cannot be taken too deep, because the exhaustive search limits the number of state variables
that can be used in the optimal mask searching. The computational complexity limits the ap-
plicability of the exhaustive search technique to data with not many variables (typically less
then 10) and to restrictive mask depths. So, one could ask the question if, in these circum-
stances, the optimal mask can be found (is it not out of range of the possibilities of the
search?). Alternatively, one could ask if exhaustive search is still feasible for real complex
systems?

6 Personal experience of the author.

168

GDWD

H[KDXVWLYH

VHDUFK

G\QDPLF

UHSUHVHQWDWLRQ

VWDWLF

UHSUHVHQWDWLRQ

�IODWWHQHG�GDWD

UHFRGLQJ

FDQGLGDWH

PDVN PD[� PDVN

GDWD

KLOO�FOLPELQJ

G\QDPLF

UHSUHVHQWDWLRQ

VWDWLF

UHSUHVHQWDWLRQ

�IODWWHQHG�GDWD

UHFRGLQJ

PD[� PDVN

GDWD

VXSHUYLVHG

OHDUQLQJ

G\QDPLF

UHSUHVHQWDWLRQ

VWDWLF

UHSUHVHQWDWLRQ

�IODWWHQHG�GDWD

SAPS-II implementation Hill-climbing implementation Data-mining approach

Figure 7.7 : Transforming I/O behaviour into static records

The hill-climbing approach allows tackling more complex systems than SAPS-II can. It puts
the different patterns in relation with each other via a tree structure. It emphasises the concept
of a maximal allowable mask (as constraint and as starting point) and it introduces a structure
in the hypothesis space. The depth of the mask could be set much higher now, because of the
new searching algorithm. Hence, masks of higher cardinality (deeper of wider) can be tackled.
However, the global optimum may not be found, see chapter 4. The latter is noticed in many
classification techniques also.

This concept of maximal allowable mask comes back in the data mining approach. The
structure of the hypothesis is now determined by the model specification. The latter can be
chosen such that very large data sets can be dealt with. This is much related to the scalability
of the selected model. Scalability is a major issue in KDD. It will be shown that SAPS-II is
not scalable, SAPS-ST can tackle larger data sets and it is more scalable. The new data min-
ing approach is suitable for very large data sets. Data mining techniques exist for all kind of
variables, so the data mining approach is quite powerful. This issue comes back in the final
conclusion of this thesis.

7.6 Conclusions

The emphasis in GST is more on the dynamical structure of models, while KDD is more fo-
cused (until now) on the static structure of models (both terms, i.e., dynamical and static, are
defined in [Ören 1984]).

It is demonstrated that modelling in its most general meaning consists of the same steps in
both the domains of general systems theory and knowledge discovery in databases. Some
paradigm shifts are revealed, but nothing prevents a better merging of both domains. KDD fo-
cuses a bit more on the comprehensibility and interestingness of a model, hence making it
more general in that aspect. GST focuses more on time-dependent data and on model decom-
position. For complex problems, the decomposition aspect can be used in KDD too. It may be

169

better to split a very complex system in sub-systems, and to tackle each subsystem in turn and
then to cast the information found in a framework that keeps count of the coupling between
the sub-systems.

The bottom-up approach in GSPS can be seen as a learning paradigm. The mapping relies on
the transformation of dynamical to static data with the aid of a maximal allowable mask. The
different data-mining methods to be applied should be preferably non-parametric in nature (in
the statistical sense). Hence, tree classifiers, neural networks, non-parametric regression, ge-
netic algorithms, non-parametric discriminant analysis, rule generators, nearest neighbours,
etc., can now be applied to dynamical systems to find patterns in their behaviour. A merging
of both domains seems feasible and the resulting meta-modelling methodology seems to be
very powerful for both domains.

SAPS in related to supervised learning. Hence, the corresponding data mining approach carry
over to SAPS. The tree classifier method forms a natural extension of the hill-climbing ap-
proach used in SAPS-ST. From the hill-climbing approach, the principle of a maximum al-
lowable mask that represents the most complex allowable pattern is borrowed, and the ex-
ploitation of a tree structure to search for good sub masks (via a criterion) is utilised.

In this thesis, it is virtually impossible to demonstrate all data-mining methods, so we restrict
our consideration to tree classifiers. It implies automatic rule generation. As a spin-off of the
data mining approach, the nearest neighbours method used in SAPS-II will be shown in a new
promising perspective.

170

References

Breiman L., Friedman J. H., Olshen R. A., Stone C. J. [1984], Classification and Regression
Trees. Chapman & Hall, 1984.

Elzas M.S. [1984], “System Paradigms as Reality Mappings”, Simulation and Model-Based
Methodologies: An Integrative View, ed. Ören T.I., Zeigler B.P. and Elzas M.S., NATO ASI
Series, Series F: Computer and System Sciences, vol. 10, Springer Verlag, p. 41- 68, 1984.

Friendly M. [1991], The SAS System for Statistical Graphics. Cary, NC: SAS Institute Inc,
1991.

Goldberg D. E. [1989], Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

Han J. [1999], Personal communication, (from a lecture for the IBM chair in Antwerp 1999).

Karplus W.J. [1976], “The Spectrum of Mathematical Modelling and Systems Simulation”,
Simulation of Systems, ed. Dekker L., North-Holland Publishing Company, p. 5 – 13, 1976.

Khabaza, T., Shearer, C. [1995], Data Mining by Data Owners: Presenting Advanced Tech-
nology to Non-Technologists through the Clementine System, Intelligent Data Analysis '95,
Baden-baden, 1995.

Klir G.J. [1969], An Approach to General System Theory. Van Nostrand Reinhold, 1969.

Klir G.J. [1985], Architecture of Systems Problem Solving. Plenum Press, 1985.

Minsky M.L. [1965], “Matter, Mind, and Models”, Proceedings of the IFIP Congress, 1,
Spartan Books, p. 45-49, 1965

Ören T.I. [1984], “Model-Based Activities: A Paradigm Shift”, Simulation and Model-Based
Methodologies: An Integrative View, ed. Ören T.I., Zeigler B.P. and Elzas M.S., NATO ASI
Series, Series F: Computer and System Sciences, vol. 10, Springer Verlag, p. 3-40, 1984.

SAS [1999], see web page from SAS Institute, www.sas.com

[1994] Segal R., Etzioni O., “Learning decision lists using homogeneous rules”, Proceeding
of the 12th Nat. Conference on A.I., p. 619-625, 1994. More info on www.isl.co.uk

Van Welden D., Verweij D., Vansteenkiste G.C. [1991], “A Proposal for Incorporating Heu-
ristic Knowledge in a Multifaceted System”, Proceedings of EUROCAST 91 - 2nd Interna-
tional Workshop on Computer Aided Systems Theory, Krems (Wachau), Austria, April 15-
19, p. 295-306, 1991.

Van Welden D., Vansteenkiste G.C. [1992], “A Mixed Deductive-Inductive Approach to
Model Recognition”, Proceedings of the 1992 European Simulation Multiconference, York,
UK, June 1-3, p. 112-118, 1992.

Van Welden D., Kerckhoffs E.J.H., Vansteenkiste G.C. [1998], “Extending a Fuzzy Inductive
Reasoner with Classification Procedures”, Simulation Technology: Science and Art, Pro-
ceeding of the 10th European Simulation Symposium and Exhibition, ESS 98, ed. A. Bargiela
and E. Kerckhoffs, October 26-28, Nottingham, UK, p. 111- 116, 1998.

Van Welden D. [1998], Tree Classifiers as Data Mining Tools, MSc. thesis, Catholic Univer-
sity of Leuven, Belgium, 1998.

Zeigler B.P. [1976], Theory of Modelling and Simulation. John Wiley & Sons, 1976.

171

Zeigler B.P. [1984], “System Theoretic Foundations for Modelling and Simulation”, Simula-
tion and Model-Based Methodologies: An Integrative View, ed. Ören T.I., Zeigler B.P. and
Elzas M.S., NATO ASI Series, Series F: Computer and System Sciences, vol. 10, Springer
Verlag, p. 91-118, 1984.

173

Chapter 8

The Use of Classification and Regression
Trees for SAPS

8.1 Introduction

This chapter demonstrates the data mining approach, which was introduced in chapter 7, by
showing how tree classifiers can be used in SAPS. Four examples, two synthetic and two real-
world are worked out in more detail in the appendices. They illustrate different aspects of the
tree classifier approach to SAPS. It will be established that the application of tree classifiers
offers some significant benefits compared to the approach in SAPS. For example, the subjec-
tive way of recoding in SAPS is resolved via dynamic discretisation, and missing values can
now easily be handled.

Eager learning via tree classifiers is contrasted with lazy learning via the nearest neighbour
method in most appendix examples. A spin-off result of the data mining approach concerns
automatic rule-generation. Tree classifiers can also do feature selection, which is a necessary
step for the nearest neighbour algorithms that follow. Moreover, the selected features can be
fed back to SAPS to construct a new primary mask.

Finally, an alternative five nearest neighbours method is introduced and compared with the
existing method in SAPS-II. In addition, a further comparison is done with the introduced tree
classifier approach.

8.2 Recoding and quantisation issues

The qualitative aspect of SAPS arises from (re)coding of all variables (inputs and outputs)
into lower type variables. A taxonomy of variable types is depicted in Figure 8.1. Variables at
the top are more mathematically ‘rich’ than variables at the bottom, in the sense that higher
type variables1 contain more ‘information’ in their levels than lower type variables. For ex-
ample, nominal variables are categorical variables that have no natural ordering, while ordi-
nal/rank variables do possess an ordering, but distances between the levels are unknown or
not applicable. Only for interval variables and higher types, one has a distance measure. All
operations for variable types with a lower ‘information content’ work for variables with a
higher ‘information content’, while the inverse is not true. For a more detailed description, see
[Van Welden 1998].

Evidently, recoding gives information loss, and thus it would be nice if one has at least the
possibility to look for patterns in data without recoding first. The loss of accuracy is not, how-

1 It is better to use “higher type” than “higher level”, because the latter here has another meaning in this thesis
(e.g. level of an attribute)

174

ever, in forecasting, because the use of fuzzy measures allows quantitative predictions by us-
ing membership and side values. The information loss is thus in the recoding itself and the
way in which it is done. The number of levels is determined by a rule of thumb (chapter 2),
which renders recoding quite subjective: one could ask if the recoding is optimal. A better
solution would be to include the recoding in the data mining method itself.

WUXH � UDWLR

LQWHUYDO

UDQN � RUGLQDO

QRPLQDO

LQIRUPDWLRQ

ORVV TXDOLWDWLYH

TXDQWLWDWLYH

DEVROXWH

Figure 8.1 : Variable types

Chapter 2 explains two recoding techniques (equidistant or uniform recoding) in SAPS, which
can be used to obtain good categorisations (statistical term) or quantisations (system-theoretic
term). However, it is important to remark that recoding can break a metric associated with the
raw data types. For example, under uniform recoding, the intervals may have not the same
width and thus, although ordinality is kept (ordinal variables), there are no interval variables
anymore. This may have negative consequences for the data-mining methods to be applied
later. If recoding has to happen anyway it is better that recoding is postponed as much as pos-
sible and that it keeps as much relevant information as it can without excessive expressive-
ness. Section 8.2.2 shows how this can be done with tree classifiers.

8.2.1 Known quantisation methods in KDD that are applicable to SAPS

The most straightforward discretisation method in KDD is equal-width (distance) partitioning,
which divides the range into N intervals of equal size (uniform grid). If x1 and xn are the low-
est and highest values of an attribute, the width of intervals will be: w = (xn-x1)/N. It has some
disadvantages, such as the fact that outliers may dominate, and that skewed data is not han-
dled well. This quantisation is already being used in SAPS, and one has the additional draw-
back that it results in a considerable knowledge loss.

Newer in KDD is equal-depth (frequency) partitioning, which divides the range into N inter-
vals, each containing approximately the same number of samples. This gives better data scal-

175

ing, (see chapter 2), but managing categorical attributes can be tricky. The latter problem is of
less importance in SAPS, where attributes are usually continuous.

Finally, two other discretisation techniques may come into play. The first is Chi-Merge, [Ker-
ber 1992], which is a quantisation technique that relies on a chi-square test to discretise nu-
meric attributes repeatedly. Chi-Merge’s basic principle is that relative class frequencies
should be fairly consistent within an interval (otherwise they should split), and two adjacent
intervals should not have similar relative class frequencies (otherwise they should merge). It
is implemented via a statistical measure, the χ2 test, to test the hypothesis that two discrete at-
tributes are statistically independent. For two intervals, if the test concludes that the class is
independent of the intervals, the intervals should be merged. If the test concludes that they are
not independent, i.e., the difference in relative class frequency is statistically significant, the
two intervals should remain separate. Hence, the algorithm consists of two steps:

1. Compute the χ2 value for each pair of adjacent intervals

2. Merge the pair of adjacent intervals with the lowest χ2 value

Repeat (1) and (2) until the χ2 values of all adjacent pairs exceeds a threshold, which is de-
termined by the significance level.

The second discretisation method known in KDD is based on entropy. A given set of samples
S is partitioned into two intervals S1 and S2 using a boundary T. The entropy H after parti-
tioning is (# denotes the cardinality of the sample)

1 2
1 2

#
(|) () ()

#

S S
H S T H S H S

S S
� �

The boundary that minimises the entropy function over all possible boundaries is selected as a
binary discretisation. The process is recursively applied to partitions obtained until some
stopping criterion is met, e.g., () (|)H S H S T �� � . Experiments show that it may reduce
data size and improve classification accuracy. However, a better quantisation method is pre-
sented in the next section.

8.2.2 Dynamic quantisation fo r SAPS

Some classification algorithms have a built-in mechanism to discretise continuous attributes.
The two ‘classical’ tree classifiers that were discussed in chapter 6 do possess that possibility.
During the growth of the tree, an attribute is split binary2. In that process, many splits are tried
and the best split chosen to decompose the node into child nodes (see equation 6.2). A similar
thing happens for oblique trees, where a combination of variables is taken. Consequently, the
partitioning of the variables into distinct level ranges is done in a dynamical manner. The lev-
els do not necessarily have the same width or the same number of points. One could say that it
is a kind of entropy based splitting (for C4.5) or a kind of misclassification probability split-
ting (for CART). Therefore, tree classifiers provide a powerful mean to quantise continuous
variables. For categorical variables, a grouping is done to obtain the binary split. Evidently,
this way of obtaining splits is clearly superior to the quantisation schemes available in SAPS.
The attribute levels are not equal-width or uniform distributed, nor does each attribute have
the same number of levels. Hence, the benefits are threefold:

• Recoding is done automatically and driven by the data in the learning sample,

2 This is not entirely true in C4.5 for categorical variables, but it can be ignored because CART will be used in
the sequel.

176

• Each attribute can have a different number of levels,

• The recoding scheme is more flexible because the width of each level is tailored on the
pattern found (each level in an attribute can have a different width).

The power of quantisation by tree-classifiers can also be noticed from the numerous applica-
tions of tree classifiers for feature selection (e.g. see [Quinlan 1993 ; Breiman 1984]). This
feature selection property is exactly what is desired for SAPS, because a good mask is nothing
more than a matrix representation of which variables are deemed important for the predictive
model (state-observation matrix) or 5NN method.

Hence, tree classifiers do an excellent job in selecting the important state variables for predic-
tion. Consequently, they can be used in two modes:

1) use them to grow a tree and utilise that tree as a predictive model. This is an eager
method.

2) use them to do feature selection only, and employ another, but lazy, method for prediction

In the first case, a tree classifier or regression tree is used to select the important variables and
to predict as well. C4.5 and CART have this ability built in. An example of an induced tree
classifier, which corresponds with the qualitative function

1 1 2 3() ((), (1), (), (3), (1))y i f u i u i u i u i y i� � � ��

or with the mask (suppose there are five inputs) given in Table 8.1, is depicted in Figure 8.2.

u1 u2 u3 u4 u5 y

0 0 -1 0 0 0

0 0 0 0 0 0

-1 0 0 0 0 -1

-1 -1 0 0 0 1

Table 8.1 : Mask for 1 1 2 3() ((), (1), (), (3), (1))y i f u i u i u i u i y i� � � ��

In the second case, a tree classifier is used only to pick out the most important variables.
These are represented by the non-zero entries in a mask. A mask gives a good visual picture
of the feature selection, e.g., see Table 8.1. This principle is already used in SAPS-II and
SAPS-ST as a prerequisite for the 5NN prediction. CART adds to this that it can set up a
ranking of variables via surrogate variables. The latter have a similar function as the utilisa-
tion of secondary masks for prediction purposes (section 2.3.4). So, one gets a battery of
masks that do the necessary feature selection for a lazy algorithm such as 5NN (5 Nearest
Neighbours), see section 8.4.1.

Performance3 comparisons, between the eager and lazy case, are found in the appendices and
in section 8.5. In the lazy case, predictions that are more precise may result.

3 With ‘performance’ is meant ‘accuracy in prediction’

177

\�L ��� � E

y(i) =
high

y(i) =
low

X��L� � F

X��L � � D

\HV QR

X��L ���

� G
X��L� � H

y(i) =
high

y(i) =
medium

X��L � ��

� I

y(i) =
medium

y(i) =
low

X��L �

� J

y(i) =
high

y(i) =
medium

\HV QR

\HV QR \HV QR

\HV QR \HV QR

Figure 8.2 : SAPS example of tree classifier

In the conclusion of chapter 6, a motivation for using CART over C4.5 is given. In all exam-
ples in the appendices, the response is continuous. This is often the case for dynamic systems.
Therefore, the primary motive for selecting CART over C4.5, is the requirement for regres-
sion trees. Regression trees do not require a priori recoding of the output: the latter is quan-
tised during the tree induction.

In addition, surrogate splits, which are only available in CART, form the backbone in han-
dling missing data, and they give a ranking of what are supposed to be the most important
variables. This is better than simple feature selection. It also gives an idea of the importance
of a feature, which is put on a scale from 0 to 100. Surrogate variables can be put in a separate
mask. Hence, the concept of surrogate variables allows us to use a battery of predictive mod-
els for forecasting.

178

8.3 Machine learning approaches to SAPS

The machine learning approach to SAPS is the most obvious to begin with, because it gives
the right focus towards understandable models, it attaches great importance to rules, and it
emphasises algorithmic performance. The ID3 algorithm, which is introduced in chapter 6, is
a relatively simple algorithm to start the comparison with SAPS-ST. The latter is not done
with SAPS-II because SAPS-II does not use any tree structure.

8.3.1 Comparison of the ID3 algorithm and the SAPS-ST algorithm

The ID3 algorithm is a tree induction program, which is based on forward pruning and which
uses a splitting rule based on the Shannon entropy, see section 6.8.1. Comparing this algo-
rithm with the way SAPS-ST does sub-optimal mask searching, large similarities are per-
ceived.

In SAPS-ST, a tree is grown from the root until some stopping criterion is triggered. The
stopping criterion is based on a decrease in mask quality. When the best node quality on a
level in the tree is lower than the current maximum quality, the expansion stops and the best
node is retained as a sub-optimal mask. The degree of determinism (or ‘purity’) of a node in
SAPS-ST is based on the Shannon entropy. Hence, if only entropy would be used as quality
measure, one has a similar kind of tree induction as in ID3: both use a threshold decrement
rule, which looks at the decrease in ‘quality’, and both algorithms are greedy. However, the
‘quality’ used in a split is based on a mixture of normalised entropy and complexity in SAPS-
ST, and on information gain in ID3. Thus, there is some difference in the evaluation of node,
but both methods look very much alike. The similarities between SAPS-ST and ID3 are made
explicit in Table 8.2.

SAPS-ST ID3 C4.5

Structure tree tree tree

Purity distribution based (en-
tropy)

distribution based
(entropy)

distribution based
(entropy)

Pruning forward forward backward

Splitting/
grow

greedy greedy greedy

Node
evaluation

quality based on entropy
and complexity

information gain
based on entropy

gain ratio based on
entropy and complexity

Stopping threshold decrement
rule on quality

threshold decrement
rule on information
gain

-

Predictors rule-of-thumb quantisa-
tion of continuous vari-
ables and categorical

categorical variables automatic quantisation
of continuous variables
and categorical

Table 8.2 : Comparison of SAPS-ST, ID3 and C4.5

Chapter 6 showed that the splitting rule is quite important in forward pruning, so it must be
based on a good heuristic. Therefore, the quality definition in SAPS-ST and the information
gain definition in ID3 are crucial. The disadvantage of ID3 in favouring splits with many out-
comes does not apply to SAPS, because the complexity component in the evaluation function

179

will penalise this kind of splitting. In that aspect, SAPS more resembles C4.5, which uses a
better splitting rule to cope with this shortcoming.

The above considerations, together with Table 8.2, would lead to the conclusion that ID3 and
SAPS-ST are very much alike. This is true from an algorithm viewpoint, but not from a con-
ceptual viewpoint: the content of the nodes is different. SAPS-ST has masks in its nodes,
while ID3 has data distributions in its nodes.

In ID3, each node corresponds to a non-goal attribute (predictor) and each arc to a possible
value of that attribute, i.e., one is working in the measurement space. A leaf specifies the ex-
pected value of the goal attribute (response) for the records described by the path from the
root to that leaf.

In SAPS-ST, each node corresponds to a mask and each arc to a mask-submask relationship,
i.e., one is now in the model space. It is thus not so that the path from the root gives a classifi-
cation for an outcome. Therefore, the use of the tree structure and the forward threshold-based
pruning is not done on the same data structure. Consequently, paths from the root should not
be interpreted as rules for classification.

The extensions and improvements that Quinlan made by going from ID3 to C4.5 do not make
sense for the sub-optimal mask algorithm, except when the model search itself is considered
important (meta-modelling). If the model search itself is to be modelled, then one can expand
the tree slightly further to have an ‘overfit’ tree of models. ‘Overfit’ in this context means ex-
actly the opposite as what is normally meant in tree classifiers, i.e., down the tree, models are
less complex and thus underfit the data. With regard to that aspect, it would be better to com-
pare SAPS-II with ID3, because both go from underfit to overfit models. Pruning back in
SAPS-ST yields more complex models, and this is what one usually wants to avoid (Occam’s
razor). However, around a certain ‘optimal’ expansion of the tree (where the hill-climbing al-
gorithm stops), it may be worthwhile to evaluate a ‘band’ of models on a test set to pick the
best one. Such an approach is already found in chapter 4 (see Table 4.2) for an optimal mask
search.

The situation becomes different when applying ID3 on the transformed data as described in
chapter 7. In that case, one can apply any supervised data mining algorithm for SAPS. ID3 is
just one of them. Nonetheless, there are better algorithms, such as C4.5 (or See5) to induce a
tree classifier on the transformed data.

8.3.2 Using C4.5 for SAPS

The use of C4.5 for SAPS is nothing more than a concrete type of classifier, which is used on
the static data generated by the ‘flattening’ transformation described in chapter 7. The advan-
tages with regard to ID3 are stated in section 6.8.2. The reasons why CART is chosen instead
of C4.5, are listed in 8.2.2.

The successor of C4.5, called See5, has some extra advantages: it allows boosting, it incorpo-
rates several new facilities such as variable misclassification costs, and it uses ‘soften’ thresh-
olds [Rulequest 1999]. These enhancements will not be investigated further in this thesis.

180

8.4 Forecasting in SAPS v ia ‘Nearest Neighbours’

The nearest neighbour and the locally weighted regression method are prototypes of an exam-
ple-based method (see chapter 5). They can model very complex target functions by local ap-
proximations. One drawback of example-based methods is that computing takes place during
classification of new instances itself, raising the computational cost of predicting. Another
drawback is that they tend to use all attributes when looking for similar instances in the train-
ing set. However, the role of a mask in SAPS is to perform the necessary feature selection re-
quired for subsequent example-based forecasting. Thus, the problem of using irrelevant fea-
tures is avoided.

8.4.1 Introduction of two new nearest neighbour methods

In SAPS-II, the five nearest neighbours method is used for forecasting. Section 2.3.4 explains
that the closest point is used to forecast the class and side value of the new output, (see Figure
8.3), while the membership value is determined by the five nearest neighbours.

Referring to [Mitchell 1997], one should consider this as a mixture of 1 Nearest Neighbour
(for class and side values) and distance-weighted 5 Nearest Neighbour for real-valued target
functions. Consequently, in this thesis, this method is referred to as 5+1NN. One could as
well apply the remark made by Mitchell to allow all training examples in the computation of
the latter to have a global method instead of a local method. However, there are some compli-
cations involved, which are already present in the five first neighbours. The first is how ex-
actly to determine the relative weights (see section 2.3.4). This discussion is not a major issue
in this thesis.

�

���

��

FODVV "

0HPE"

VLGH"

�

����

��

�

���

��

�

����

��

�

���

��

GLVWDQFH

ZHLJKWHG

DYHUDJH

Figure 8.3 : 1+5NN algorithm in SAPS

A second, but more essential issue is that some nearest neighbours may lay in different re-
coded levels, giving another class and side value and thus raising the need to adjust member-
ship values to allow a sensible computation of (2.20). This situation is depicted in Figure 8.3

181

where the closest neighbour has a set value of 3 and a side value of -1 (all values are for out-
puts in the static matrix, i.e. outi). Consequently, the new output will be assigned set value 3
and side value -1. The membership value of the new output will be the distance weighted sum
of all five neighbours, where care has to taken in combining membership values of neighbours
with different set values. Besides, when looking at Figure 8.3, can one not take the set value 2
instead of 3 (three neighbours have set value 2)?

This methodological problem can be solved by a simplified five nearest neighbour method,
which is proposed in this thesis. The new method relies on the raw transformed ‘static’ data
for distance computing. Equation (2.18) can directly be applied to the raw data it can be ap-
plied to unit-rescaled data. The former method is denoted by 5NN and the latter by 5UNN.
Both methods are implemented in SAPS-ST, together with the (5+1NN) method from SAPS-
II. The (non-rescaled) 5NN method computes the distance between the points via

� �
2

,
1

(,)
n

i j i j
j

d v v v v

� ��� �
(8.1)

where v
G

 is the m-input vector of the current data record to be predicted (see equation 2.17),
and iv

�
 is the ith m-input vector from the training set (see equation 2.16). However, one is left

with possible scaling effects (on the relative weights) in which variables from a higher mag-
nitude may contribute more than variables with a lower magnitude. Usually, this is not de-
sired, so the 5UNN method, which uses a kind of normalisation, is often preferred. Unit-
rescaling or normalisation4 is obtained via

min

max min
scaled

v v
v

v v

�
�

�
.

In determining the distances, values of the same variable are subtracted. This simplifies in
equation (8.1) to

2

,

1 max, min,

(,)
n

j i j
i

j j j

v v
d v v

v v

� ��
� � 	�
 �
� (8.2)

The determination of the relative weights is similar as for SAPS-II, but now the distances are
computed by equation (8.2) for the 5UNN method or equation (8.1) for the 5NN method.

It is clear from a theoretical viewpoint that the procedure is conform to the distance-weighted
k-Nearest Neighbour algorithm (here k = 5). Again, all training examples could be used to
have a global method, but at the cost of more computing time, although much less severe than
with the 5+1NN method. Furthermore, it is also conceptually sound because it uses immediate
the raw (unit-rescaled) data. If the results are as good or better than what is obtained via re-
coded data (as done in SAPS-II), one has a quicker way to do forecasting, because much
computational overhead can then be eliminated. This computational overhead concerns

• The recoding for the test set,

• The regeneration,

• The interpolation to get membership value right. This is theoretically difficult to justify.

4 The term ‘normalisation’ can be used, but it is often associated (in the field of statistics) with making the mean
0 and the variance 1 for a distribution. Hence, it is preferred to use the term ‘unit-rescaling’.

182

Appendix A demonstrates that the 5UNN method performs at least as good as the 5+1NN
method. This is shown in Figure 8.4, which is in fact Figure A.4.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

5UNN

Figure 8.4 : Forecasting results under fixed recoding

The original (known) values for the test set are put on Figure 8.4, together with the forecasted
values by the 5+1NN method and by the new 5UNN method. Both methods perform very
well (see Figure A.6).

Table 8.3 shows clearly that the 5UNN method performs at least equally well as the 5+1NN
method under the optimal mask. The table shows the Sum of Absolute Errors (SAE) and the
Sum of Squared Errors (SSE) for the different forecasting methods.

SSE SAE

State-observation forecasting 1.53245 7.601

5+1NN (fixed recoding) 0.00061 0.117

5UNN (fixed recoding) 0.00040 0.105

5+1NN (uniform recoding) 0.00416 0.099

5UNN (uniform recoding) 0.00202 0.074

Regression tree 0.00096 0.213

Simplified regression tree 0.03666 1.486

Table 8.3 : Comparing different forecasting methods for the example in appendix A

183

Appendix B equally does a comparison between the 5+1NN method with the newly intro-
duced 5(U)NN methods. The results are shown in Table 8.4 (Table B.8 in appendix B). It
shows the much better accuracy of the predictions made with the 5(U)NN methods (both unit-
rescaled and not). These numbers are confirmed by figures B.7, B.8 and B.10. Table 8.4
shows how the use of an optimal mask improves the forecasting.

SSE SAE

State-observation with sub-optimal mask 3485 455

5+1NN with sub-optimal mask 3723 369

5NN with sub-optimal mask 932 243

5UNN with sub-optimal mask 1011 249

5UNN with optimal mask 202 102

5UNN with second best mask 200 101

Regression tree 655 185

Table 8.4 : Comparing different forecasting methods for the example in appendix B

8.4.2 Comparing nearest neighbours with state-observation forecasting

The use of the nearest neighbour method, which relies on a metric, implies that only numeric
attributes can be handled5. This restriction does not apply when a state-observation matrix is
used. However, the prediction performance of the latter is quite bad. This is illustrated in ap-
pendix A by Figure A.13, which is reproduced here as Figure 8.5. It shows the results of an
exhaustive mask search after which the 5+1NN method and the state-observation method are
compared on a test set (together with the regression tree approach).

5 However, Cost and Salzberg [1993] claim that the NN method can also be applied to non-numerical attributes.
This issue is not investigated further here.

184

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

regression tree

state-observation matrix

Figure 8.5 : Forecasting with 5+1NN, regression trees and state-observation method

From Figure 8.5, it is clear that the state-observation method performs less than the 5+1NN
method. This is confirmed by Table 8.3. The example in appendix B (Figure B.6) shows a
similar result. Inspecting Table 8.4 confirms the bad forecasting behaviour of the state-
observation method, especially when compared to the newly introduced 5(U)NN methods.
This is to be expected, because the latter are lazy methods that use the entire training set and
that perform local fits. So, when a switch was made from state-observation matrix prediction
[Cellier and Yandell 1986] to a nearest neighbour method [Cellier 1991], this was a good
choice with regard to forecasting accuracy.

8.4.3 Conclusion about the new nearest neighbour methods

The 5(U)NN methods based on the static (raw) data are preferable from an algorithmic com-
plexity viewpoint. It is also preferable from a conceptual viewpoint because it is simpler and
theoretically sound. Finally, as the examples have shown, it is preferable because of forecast-
ing performance with regard to accuracy. The new 5(U)NN methods perform at least as accu-
rately as the original 5+1NN method, which is based on recoded values. Moreover, all this
comes at a lower computational cost.

8.5 Advantages of tree classifiers for SAPS

+ Recoding for all kind of predictors can be handled automatically (dynamic discretisation).
This is shown in all examples in the appendices.

+ In addition, no recoding is required for a continuous output when regression trees are
used. This is the case for all examples in the appendices.

+ Rule sets can be generated automatically. This is shown explicitly in appendix A.

+ Tree classifiers can be used as prediction model (eager method) or they can serve as the
necessary feature selectors for a lazy evaluation such as 5NN. A comparison of the (eager)
regression tree method with the 5NN method is done in section 8.5. Section 8.6.4, which
is based on appendix C, demonstrates how this can be done.

185

+ The sample size can vary and different techniques (test-train or cross validation) are tai-
lored to this. The examples in appendices A, B and C use cross-validation, while the ex-
ample in appendix D uses an internal test set.

+ Missing values can be handled. This is demonstrated in section 8.6.3, which is based on
appendix C.

+ Additionally, CART ranks variables with regard to their importance. This is shown in all
examples in the appendices.

+ Oblique trees with more expression power can be used (in CART). They were tried on the
examples in the appendices, but they did not deliver better results. Other examples may
benefit.

+ Many other tree classifiers can be applied that give a better performance or that have more
expression power. This issue is touched in the conclusion of chapter 6.

8.6 Comparing regression tree performance with SAPS

In all examples in the appendices, the output is continuous. Hence, regression trees should
preferably be used. Comparing the performance of regression trees with the nearest neighbour
methods is always a bit unfair, because the latter are lazy methods that do a local fit on the
whole training set. A regression tree is an eager method, which is more parsimonious, even
when the tree is quite deep (it is still smaller than retaining the whole training set).

KDD uses an interestingness function for evaluating a model (or pattern). This can not always
be formalised rigorously if aspects like comprehensibility come into play. Therefore, in the
examples the option is taken to consider also much simpler regression trees with regard to
their complexity (defined as the number of terminal leafs). Of course, the prediction accuracy
will suffer from this, but the resulting rule base that can be generated automatically is more
concise and thus better comprehensible. It is not the aim of the examples to do a rigorous in-
vestigation on complexity issues related with growing trees. This kind of research is the topic
of more focused research. In this section, it is only the aim to demonstrate that regression
trees do work: they can give good and yet parsimonious models.

The accuracy performance of a regression tree is measured on a separate test set for which the
original values are known. Consequently, a basis of comparison is present. The accuracy is
measured by looking at the Sum of Squared Errors (SSE) or by looking at the Sum of Abso-
lute Errors (SAE), as was the case in section 8.4. These measures can always be applied re-
gardless of model type or structure. Other measures of complexity are not used in compari-
sons, because they do not apply for different model paradigms. Regression tree performance
will mostly be compared with the nearest neighbour methods, because it has been demon-
strated in section 8.4.2 that the state-observation forecasting method delivers poor results in
general.

For these comparisons one needs a (sub)optimal mask. Unfortunately, execution of an optimal
or sub-optimal approach is not always possible. The reason for the former lies in the algo-
rithmic complexity, while the reason for the latter concerns the practical implementation. Ex-
perience learnt that the sub-optimal approach, as it is encoded in the prototype, is too slow to
cope with maximal allowable masks that have a high cardinality. One can call these kinds of
masks entry-complex. Equation (4.2) can be used to compute the number of sub-masks that
need to be evaluated. The number of negative entries (generating variables), denoted by n, is
computed by (1)*n m d m� � � , where m is the number of inputs for the system and d the

186

memory depth of the mask. Equation (4.2) implies that the total number of masks to be evalu-
ated is given by

(1)

2

n n
T

+=

where n denotes the number of m-inputs, i.e. n = #M - 1.

Table 8.5 shows the n values and the T values for various combinations of memory depth and
number of system inputs (not m-inputs).

n T

number of inputs m → m = 3 m = 6 m = 3 m = 6

memory depth d

↓

d = 12 51 90 1326 4095

d = 24 99 174 4950 15225

d = 36 147 258 10878 33411

d = 48 195 342 19110 58653

d = 60 243 426 29646 90951

d = 72 291 510 42486 130305

Table 8.5 : The effect of entry-complexity in the sub-optimal approach

The evaluation of a mask involves determination of the Shannon Entropy (via a state-
observation matrix) and the determination of a complexity value. By measuring the time to
evaluate one mask, one can have an idea how long it would take to do a complete sub-optimal
search. Timing was done on a PC (PII-333Mhz, 128 MB under NT4SP3). It shows that, when
taking 6 inputs, one needs approximately 55 seconds for one mask evaluation if the memory
depth is 12, 95 seconds if the memory depth is 24, and 132 seconds if the memory depth is 36.
The corresponding estimates for total evaluation is then approximate 62 hours, 401 hours, and
1225 hours. If one takes only 3 inputs with a memory depth of 48, then the time to evaluate
one mask is approximate 72 seconds, so a complete run would take approximate 382 hours.
These numbers are only rough estimates because

• the evaluation time is not equal for all levels

• they depend heavily on the hardware configuration

• they depend if graphical output is desired at the same time or not (here not desired).

• swapping and garbage collection in the Smalltalk environment is not included in the esti-
mates.

E.g., it took approximate 3 days to finish a run with 6 inputs and a memory depth of 12,
which corresponds nicely with the estimate.

These considerations led to the conclusion that only regression trees (up to now) can tackle
very (entry) complex masks. Consequently, this is the reason why in appendix C and D only
regression trees are tried.

187

8.6.1 Applying regression trees to synthetic data sets

Mostly, an optimal regression tree is selected within one standard error (see section 6.9.2).
Such a tree will be referred to as a 1SE tree. The 1SE tree for the example in appendix A is
selected from Figure 8.6. It consists of 25 terminal nodes.

Figure 8.6 : Relative (cross-validated) error for the example in appendix A

The variables that are used for the best split are shown in the internal nodes of the tree in
Figure 8.7. The notation that is generally used in the examples is that a variable x_1 stands for
x(i-1) because indices cannot be used in CART. Therefore, a number appearing at the end of
any variable always tells how many time steps this variable is situated back in time (_0 is not
depicted).

Figure 8.7 : The 1SE tree for the example in appendix A

Another plot, which may come handy, shows the box plots for the leaves sorted by target
variable prediction. Such a plot is Figure 8.8. It shows the variability present in a leaf. The ef-
fect of this variability will re-appear in predictions.

Figure 8.8 : Box plots for terminal nodes sorted by target variable prediction

188

Figure 8.5 displays the forecasting results from applying the regression tree in Figure 8.7 to a
test set. It is hard to see any difference with the 5+1NN method. Table 8.3 confirms that the
regression tree can compete with the 5+1NN method, despite its eager character. Regression
trees (and classification trees) inherit all the advantages of eager methods.

• They are concise (compared to the data set a nearest neighbour method needs).

• They are much faster in prediction because their model is ‘global’ and fixed, once testing
begins (eager method) and because they are more parsimonious in the sense just men-
tioned.

The good accuracy for the regression tree is to be expected when looking at Figure 8.8: notice
the small variability in the terminal nodes. The conclusion is that the 1SE regression tree is to
be preferred for the case in appendix A.

One could try a simpler regression tree. This is also done in Appendix A, where, if one takes
the relative cross-validated error to be just under 1%, one obtains a ‘<1%’ tree with only 7
leaves, see Figure 8.6. Figure 8.9 shows the (expected) larger variability in the leaves.

Figure 8.9 : Box plots for terminal nodes sorted by target variable prediction for the
less-than-one percent tree

The forecasting is less accurate, which can be seen by comparing Figure 8.5 and Figure 8.10.
Still, from a ML viewpoint, when one attaches a lot of importance to the lesser number of
rules (only 7 rules), the resulting prediction is still quite well. The automatically generated
rules are found in appendix A, Figure A.20.

Remark that the simplified regression tree still performs much better that the state-observation
matrix prediction.

189

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

simplified regression tree

state-observation

Figure 8.10 : Forecasting with 5NN, ‘<1%’ trees and state-observation method

These findings are confirmed by Table 8.3. An interesting picture for comparisons can be
found in Figure 8.11. It illustrates where deviations of predicted values (with regard to the
known ones) occur.

Predicting with regression trees always imply ‘activating’ a terminal node. Hence, it is to be
expected that forecasting is categorised by the terminal nodes. The corresponding predicted
values are shown as horizontal lines on Figure 8.11. In this figure, the support (values that do
occur in the test set) is indicated to explain why there are gaps in the plot. Additionally,
Figure 8.11 reveals, in a graphical manner, why simpler regression trees give worse predic-
tions in general.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
original

pr
ed

ic
te

d

diagonal

5+1NN

regression tree

support

Figure 8.11 : Plot of predicted versus original data for the example in appendix A

Appendix B provides another comparison between regression tree forecasting and the 5UNN
method. Figure 8.12 shows that regression tree predicts worse for small values of the target
variable. For more details, the reader is referred to appendix B.

190

-12

-7

-2

3

8

-12 -7 -2 3 8
original

pr
ed

ic
te

d

5UNN

regression tree

Figure 8.12 : Predicted versus original output values for the 5UNN method under the
optimal mask and for the 1SE regression tree

Table 8.4 confirms the better performance of the 5UNN method, but also shows that it is not
an order of magnitudes different. If one compares the regression tree performance with the
nearest neighbour methods based on data obtained from a sub-optimal mask, then the former
gives even better predictions. Hence, the worse prediction is only valid when comparing the
(eager) regression tree method with the 5UNN (lazy) method used on data obtained from an
optimal mask (which is sometimes impossible to obtain).

Therefore, this thesis claims that a regression tree provides a good predictive model, which
can compete with the (lazy) nearest neighbour methods

8.6.2 Applying regression trees to real-world examples

Appendix C describes observations coming from a database of economic data, [Crombez
1999]. In this data set, two variables contain a trend. Hence, appendix C provides the oppor-
tunity to explore the pattern-recognition approach in the presence of a trend.

Appendix C demonstrates that SAPS’ prediction on a test set fails completely (Figure C.3 in
the appendix). This was expected due to the nature of the pattern recognition approach
(something has to be observed to be able to be learnt). It is shown in appendix C that a regres-
sion tree induced on the same training set, was able to give a very good resubstitution fore-
casting, but its prediction also fails when predictions are done on a test set. This is observed in
Figure C.5. This finding is not in contradiction with the principle that a good internal fit (in-
terpolation) does not guarantee a good extrapolation. To be able to use regression trees (or
SAPS), one has to do a fit on recurring patterns in the training set. For that to be possible, one
must detrend the training set (and test set).

In methodological set-ups, it is always desirable to have a very general method for solving
problems. Such a method is found by taking differences. Hence, the first thing tried was to
differentiate the data by taking the first order differences. Unfortunately, it did not work out,
neither for mask searching (Figure C.6), neither with regression trees (Figure C.8).

Because of the failure of the first detrending method, the data has been detrended ‘manually’
via a polynomial fit. It proved only necessary to detrend the variables MSC and IP. Their de-
trended curves are displayed in Figure 8.13 (which is Figure C.9 from appendix C).

191

0 50 100 150 200 250 300 350 400 450 500
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

time instance

de
tr

en
de

d
m

ea
su

re
m

en
ts

msc quadr. detrend
ip lin. detrend

Figure 8.13 : Detrended curves

MSC was detrended by a quadratic curve and output IP by a linear curve, hence, giving the
new ‘detrended’ variables msc2d and the output ip1d.

Figure 8.13 illustrates that a pattern recognition approach is doomed to fail, because the de-
trended output curve shows in its last part something that is not present in the first 2/3 of the
curve, i.e. the training set.

A regression tree is grown from a maximal allowable mask with a memory depth of 60. The
1SE tree is depicted in Figure C.12. The forecasting results on the test set are depicted in
Figure 8.14 (Figure C.13). They confirm the failure of the pattern recognition approach.

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91

time instance

ip1d

original

predicted

Figure 8.14 : Original and predicted output ip1d

192

Remarks:

• Maximal allowable masks with a memory depth of 60 for 4 variables is something un-
thinkable in SAPS-II. With the new data mining approach, such (entry) complex masks
are now within reach. Consequently, systems that are more complex can be identified.

• Appendix C illustrated in addition that scatter plots of output versus m-inputs can not help
much for detecting relevant patterns. Only if a splitter is near the top of the tree, one sees a
pattern that is easily recognisable by regression trees.

8.6.3 The effect of missing va lues on forecasting

It is claimed in chapter 6 that an advantage of the data mining approach is that one can easily
handle missing values. A kind of worst-case scenario is used in appendix C to show how re-
gression trees perform in the presence of missing values. This worst-case scenario is based on
the importance of variables (see Table C.1, Table C.2). Hence, as an experiment, quite some
values from the variable ip1d(i-1) were removed directly from the static matrix of the test set.
This is depicted in Figure C.15. If one realises how many times this variable is used for split-
ting (see Figure C.12), then a very bad forecasting may be expected at the corresponding time
instances. Figure 8.15 shows that the forecasting is not as bad as may have been expected.
Hence, the surrogate split performs quite well.

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91

time instance

ip1d

ip1d

pred. with missing values

Figure 8.15 : Prediction with missing values

193

8.6.4 Feedback from tree classifiers to SAPS

Knowing which variables are important can give useful feedback to SAPS for constructing a
candidate (primary) mask. Table 8.6 comes from appendix C (Table C.2). It shows the rank-
ing of the variables according to their importance as primary splitters (no surrogate roles are
considered). Additionally, Figure 8.16 (Figure C.12) shows where these variables are used in
the tree.

Ranking 1(very high) 2 (very low, < 3 %) 3 (extremely low, < 1 %)

ip1d(i-1) ip1d(i-48) ip1d(i-50), ip1d(i-18), msc2d(i-36)

Table 8.6 : Variable importance when only primary splitters are considered

Figure 8.16 : The regression tree and its splitters

This information is fed back to SAPS in the form of a primary mask. The latter is given in
Table 8.7 (Table C.4).

Reference index CCP FFR msc2d ip1d

-50 0 0 0 -1

-49 0 0 0 0

-48 0 0 0 -1

…

-36 0 0 -1 0

…

-18 0 0 0 -1

…

-3 0 0 0 0

-2 0 0 0 0

-1 0 0 0 -1

0 0 0 0 1

Table 8.7 : Generating a mask via data mining

194

From this primary mask, an optimal search is done. The resulting optimal mask corresponds
with the very simple relationship

ip1d() (ip1d(1))i f i= −�

The prediction with the 5UNN method based on the optimal mask is shown in Figure 8.17. It
shows a good prediction. Additionally, Appendix C shows the forecasting with the 5+1NN
method, which offers equally good forecasts.

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91 101

time instance

ip1d

5UNN

Figure 8.17 : Prediction 5UNN from optimal mask obtained via feedback

8.6.5 Looking at large data se ts

Appendix D portrays data coming from a water distribution system in Portugal. The aim of
this experiment is to try out how far one can go in the cardinality of maximal allowable
masks. The example contains 15 input variables and 1 output. Each variable has 13128 obser-
vations.

A maximal allowable mask with memory depth 7 was created. It was also the computationally
maximal allowable mask. Much deeper masks fell outside the specification of the CART ver-
sion that was available (a 32MB version) [CART© 1999]. Hence, the option is taken to just
show the principle on how one could try to extend a mask beyond the initial maximal allow-
able mask.

In inducing the tree, no cross-validation is used because the number of records is above the
standard value (3000) for cross-validation. Hence, a (randomised) fraction of the data is used
for testing. This fraction is set to 0.3333, so 2/3 is used for the learning set and 1/3 for the
(internal) test set. From Table D.1 and Table D.2, it can be perceived that the variable n2
seems very important. The forecasting performance is good (Figure D.6).

A primary mask with a memory depth of at least 24 may give interesting results, because a
pattern valid over 24h seems sensible for a water demand system (the measurements were
taken hourly). To avoid violation of the computational limits of the CART implementation, a
gap was created in the mask to reduce the cardinality. The earlier found pattern, which in-

195

cludes n2, is available in the new primary mask. In addition, a band of ‘-1’ entries around a
lag of 24h is created. A tree was grown from this primary mask. Except for some outliers, the
forecasting seems quite good (Figure D.8). Both trees, which are grown in appendix D, give
comparable forecasting results (Table D.6). Apparently, in the tree induction of the second
tree the variable p24 is taken as first splitter instead of n2. This results in a slightly worse pre-
diction and shows again that one should be careful towards induced models. A similar effect
is present in the thesis of Nebot [1994].

8.7 Conclusion

This chapter demonstrates that the application of data-mining techniques, here embodied by
regression trees, works. If one focuses on regression trees, then the rule-of-thumb approach
towards recoding can be replaced by a dynamic quantisation that better exploits the informa-
tion in the data. Even when one wants to do a-priori recoding, the KDD field shows two extra
ways of doing that (in addition to the existing ones in SAPS). The ID3 algorithm is compared
with the sub-optimal mask search. Although they behave alike (their functionality is quite
similar), the former works in the measurement space and the latter in the model space (that is,
it uses meta-modelling). Hence, refinement for the former can not be ported to the latter with-
out careful consideration.

A major part of this chapter illustrates the benefits of applying regression tree to SAPS. Four
examples, all of which are described in detail in the appendices, prove that the regression tree
approach shows promising perspectives. Besides their benefits, they can give feed-back to the
‘classical’ SAPS tool by providing a primary mask of lower cardinality. A desirable by-
product is that regression trees can automatically generate rule bases.

If comprehensibility is the major concern, regression trees can be simplified by pruning them
back. As demonstrated, they still yield a reasonable good forecasting when compared with a
sub-optimal search in SAPS.

A spin-off of the KDD framework is that two simplified and conceptually sound nearest
neighbour methods are introduced, which work immediately on the ‘flattened’ raw data. The
algorithms are very simple when compared to the original mixed nearest neighbour method
from SAPS-II. Last but not least, the newly introduced algorithms perform equally well
(sometimes better) with regard to forecasting accuracy.

From the two eager prediction methods, the state-observation matrix prediction method does
not give accurate forecasts, but a regression trees can. In that aspect, the latter can stand up
quite well against the lazy approach of the nearest neighbour methods.

196

References

CART © [1999], version 3.6 from Salford Systems, 1999 (www.salford.com).

Cellier F.E. [1991], Continuous System Modeling. Springer Verlag, New York, 1991.

Cellier F.E. and Yandell D.W. [1986], “SAPS-II, Raw Data Analysis in CTRL-C”, User’s
manual and Progress Report, Department of Electrical and Computer Engineering, University
of Arizona, Tucson, USA, 1986.

Cost S. and Salzberg S. [1993], “A weighted nearest neighbor algorithm for learning with
symbolic features”, Machine Learning, 10(1), p. 57-78, 1993.

Crombez J. [1999], personal communication, Universiteit Gent.

Kerber R. [1992], “ChiMerge: Discretisation of Numeric Attributes”, Proceedings of the 9th
National Conference on Artificial Intelligence, p. 123-128, MIT Press, July 1992.

Mathworks [1999], Matlab© version 5.3 from Mathworks (www.mathworks.com)

Mugica F. and Cellier F. [1993], “A New Fuzzy Inferencing Method for Inductive Reasoning”,
Proceedings of the Sixth Int. Symposium on Artificial Intelligence, and Intelligent Systems in
Industry and Business, Monterrey, Mexico, p. 372-379, 1993.

Rulequest [1999], see www.rulequest.com

Siftware [1999], see www.kdnuggets.com

Van Welden D. [1998], Tree Classifiers as Data Mining Tools. MSc. Thesis, Catholic Univer-
sity of Leuven, Belgium, 1998.

197

Conclusion and Further Research

This thesis contributes to the induction of predictive models for black box systems, which has
been inspired by GSPS and SAPS-II, in three major ways.
The first contribution is in the domain of general systems. It concerns the introduction of a
sub-optimal mask search, which may give a new impetus to further research where masks that
are more complex will be considered. In these it may be that derivatives may be included in
the mask, more variables can be set forward (data augmentation), and larger time constants
can be captured to find more valuable patterns. Not only has the new approach been theoreti-
cally justified, a prototype tool that supports the new search strategy has been implemented as
well. It is intended as a research tool that can easily be modified and extended: it permits dif-
ferent recoding techniques to be combined, it implements different search methods, and it al-
lows a diversity of quality functions to be dynamically constructed. The much-increased
flexibility, however, comes at the cost of computing performance, which has proved to be a
drawback when using masks with a very high cardinality.
The contributions in part two of the thesis transcend the boundaries of the GSPS framework: a
bridge is laid from GST to the KDD. For this to be possible, a transformation of dynamic data
to static data by means of a maximal allowable mask, results in a high dimensional data set,
ripe for data mining. A wealth of available data mining methods can now be applied for sub-
sequent data exploration. Chapter 5 and 6 briefly run through some of them. However, this
plethora of methods can not be all explored. Therefore, this thesis concentrates on tree-
classifiers (in particular regression trees) to illustrate the data mining approach to SAPS1. The
benefits, which are plenty, are described in chapter 7 and 8. Surprisingly, regression trees,
which do eager learning, perform very well in their forecasting when compared with the near-
est neighbour methods. They forecast distinctly better than the state-observation method,
which is another eager prediction method in SAPS. Taking further into account the compre-
hensibility of the tree classifiers, they can compete with the (lazy) nearest neighbour methods,
which require the total learning set for each prediction. In addition, tree classifiers are at least
equally worthy as masks, in their role as feature selectors for subsequent nearest neighbour
prediction methods.
Another contribution concerns a strong improvement of the established (5+1NN) nearest
neighbour method in SAPS. The newly introduced nearest neighbour methods, i.e. 5(U)NN,
are competitive, and often better with regard to the forecasting accuracy than the existing
5+1NN method of SAPS. Because of their straightforward, sound underlying principles and
their simple implementation, they have more potential for faster predictions.
While the former contributions lead to practical implications, the thesis contributes also to the
pure theoretical domain. The link with hidden Markov models allows a rigorous formalisation
and a clear defining of the underlying SAPS paradigm (chapter 3). The comparison between

1 From now on, no further distinction is needed between SAPS-II and SAPS-ST

198

GST (and GSPS in particular) and the KDD domain opens a new world of research from
which both fields can benefit via cross-fertilisation (chapter 7). Regrettably, it is impossible in
this thesis to explore all the new fascinating possibilities for further research that are outlined
in chapter 5. Nonetheless, the illustration with regression trees and the new nearest neighbour
methods should give quite a good idea of the promising research opportunities.

When to use what?

���
���
���
	
	
�	
��

RSWLPDO

PDVN

VHDUFK

VXE�RSWLPDO

PDVN VHDUFK

�	
	���
�
��

	����	��

QXPEHU RI YDULDEOHV
P
D
[
LP

D
O
G
H
S
WK

LQ
WL
P
H

Figure 0.1 : Scope of techniques for different database sizes

At this point, three main methods to search for a predictive model are possible: the optimal
mask search, the sub-optimal mask search, and the data mining approach (here represented by
tree classifiers). They should be used in accordance with the data set size. The sub-optimal
approach was invented to be able to tackle masks of higher cardinality, but the data mining
approaches scale-up better. Figure 0.1 gives a suggestion of when to use which approach.

Further research

From the viewpoint of SAPS, the established link with the KDD domain results in some bene-
ficial and useable concepts that are well known in this domain and that could be investigated
further. Hence, the most obvious starting point for further research concerns the use of neural
networks, genetic algorithms, and non-linear regression. Consequently, different model speci-
fications can be tried. Figure 0.2 shows only some of them while giving an idea about the
stepwise development of the research done in this thesis. For example, KDD includes unsu-
pervised learning, which implies that clustering techniques may be utilised to find meaningful
structured systems on epistemological level 3 of GSPS (structure level).
Surprisingly, appendix A showed that, on a test-set, fixed recoding can give more accurate
forecasting results than uniform recoding. This is somewhat in contradiction with the fact that
the latter retains more information (cf. chapter 2). Nevertheless, the dynamic discretisation
done by tree classifiers appears to be better than these two recoding methods. However, this

199

effect is obscured because of the different validation paradigms used by SAPS and tree classi-
fiers. The former relies on internal validation, while the latter uses external validation in its
model induction. Therefore, an unbiased comparison is difficult without further research.

6$36�67 &$57

*67 .''

PRGHOLQJ
V\VWHP

LGHQWLILFDWLRQ

K\SRWKHVLV

WHVWLQJ

GDWD

H[SORUDWLRQ

*636

GLUHFWHG XQGLUHFWHG

GHGXFWLYH LQGXFWLYH

VXSHUYLVHG

XQVXSHUYLVHG

H[KDXVWLYH
VXE�

RSWLPDO

WUHH

FODVVLILHUV

QHDUHVW�

QHLJKERUV

QHXUDO

QHWZRUNV

JHQHWLF

DOJRULWKPV

GHGXFWLYH LQGXFWLYH

SDWWHUQ UHFRJQLWLRQ EDVHG

UXOH

LQGXFWLRQ

VWUXFWXUHG

OHYHO"

Figure 0.2 : The contributions, put in their context

Even when one stays with the tree classifier approach, additional research can be done.
Though the examples in the appendices all had continuous output variables, this does not ex-
clude the use of classification trees. For certain types of systems, some output ranges may be
prohibited because they cause malfunctions of a component, or because they tend to destabi-
lise the system itself. In that case, the output can be quantised in regions where some particu-
lar regions are more important than others. Consequently, the effect of a misclassification is
different for these regions. Hence, an extension of error rate to cost matrices, risk matrices, or
perhaps utility matrices can prove to be very beneficial.

APPENDICES

201

Prelude to the appendices

General issues that hold for all appendix examples
The data in every appendix is divided into a training set and a test set. The training set con-
sists of 2/3 of the whole data set, while the test set contains the remaining 1/3*. Forecasting is
always done on the test set.
If the quality of a mask is computed, it is always determined by the classical equation, given
by (see chapter 2)

Q H OR
H

H
ORr

m
� � � �

�
��

�
��
�1

max

For all predictions, the Sum of Squared Errors (SSE) and the Sum of Absolute Errors (SAE)
is computed. When necessary, a plot of the predicted versus the original values for the test set
is given to show the kind of deviations (Figure c). Such a plot always contains a ‘diagonal’ as
reference line and sometimes the support. If all points lie on the diagonal, then there is a per-
fect forecasting.

original

predicted

reference line
(diagonal)

support

Figure c : General form of a ‘predicted versus original’ plot

In many examples, a multiple of forecasting methods is compared. The ‘classical’ SAPS-ST
five nearest neighbour method is denoted by 5+1NN. The unit-rescaled five nearest neigh-
bours method (based on raw data) is denoted by 5UNN. The simple non-unit-rescaled five
nearest neighbours method (based on raw data) is denoted by 5NN.

* This is an often used rule of thumb. No investigation is done here to see the effect of other train-test partition-
ings.

202

Note about compatibility of SAPS-II and SAPS-ST
Van Welden [1999] established that SAPS-ST delivers the same results as SAPS-II in recod-
ing, mask searching and forecasting, except for some small details. These are accounted for
by transferring the recoding landmarks from SAPS-ST to SAPS-II. A perfect compatibility
for mask searching can then be guaranteed. The forecasting delivers approximately the same
results (within round-off errors). Consequently, it is justifiable to use SAPS-ST instead of
SAPS-II for all comparisons made in the appendices.

Notations
Some output comes directly from the software package CART. Because of the restrictions it
poses on variable names, the relative time indication is denoted in a shorthand manner. A
variable x on time instance (i-k) will be abbreviated as x_k, e.g., var2(i-3) becomes var2_3.

Sources of data
The data in appendix A originates from the book of Cellier F., Continuous System Modeling,
Springer Verlag, p. 586 - 593.

The data in appendix B is simulated via Simulink that accompanies Matlab (from Mathworks)

The data in appendix C is given by Crombez John, Universiteit Gent, Faculteit Economie. By
this, the author likes to thank him for his contribution.

The data in appendix D is given by Cellier François. By this, the author likes to thank him for
his contribution.

203

Appendix A

A Synthetic Linear System

A.1 Aim of the experiment

The aim of this experiment is

(a) to check if a different recoding results in a different optimal mask. If this is the case, one
has an extra illustration of the subjectivity of an optimal mask, see sections A.3- A.3.2.

(b) to verify whether a newly introduced five nearest neighbours method forecasts on a test
set as well as the ‘classical’ implementation of the 5+1NN method in SAPS, see sections
A.3- A.3.2.

(c) to investigate if regression trees deliver equally good results as the ‘classical’ 5+1NN
method from SAPS, see section A.4.

(d) to further compare the two eager methods: state-observation matrix forecasting and re-
gression tree forecasting, see section A.4.1.

(e) to compare a simplified regression tree with other forecasting methods (especially the
other eager method from (d), see section A.4.2.

(f) to demonstrate the automatic rule generation from within CART, see section A.4.3.

A.2 Description of data

Data is observed from a linear system that is described in [Cellier 1991]. The output variables
are var2, var3 and var4, but only var2 will be considered as desired output (to forecast). Vari-
ables var3 and var4 are treated similar, but no relationship between var2, var3 and var4 on the
same time instance is allowed. There are 201 observations in the training set and 100 obser-
vations in the test set (from 301 observations).

Inputs: var1: binary (0 or 1)

Outputs: var2, var3, and var4 are continuous variables, but only var2 will be considered here.

204

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

time

var2

var1

var3

var4

Figure A.1 : All signals (only part shown) as function of time

Figure A.2 shows all observations in the training set for output variable var2.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200

time

va
r2

Figure A.2 : Plot of the response for the whole training set as function of time

A.3 Using an optimal mask search

A.3.1 Fixed recoding in SAPS-ST

Variable var1 is binary, which is recognised by SAPS-ST. Consequently, var1 is recoded
automatically with rectangular membership functions for each interval. In this experiment,
var2, var3 and var4 are recoded with a Gaussian membership function for each interval (see
also chapter 4). The top of each interval corresponds with the respective quantitative values of
the variable. Table A.1 shows the recoding specifications for variable var2. The leftmost col-

205

umn contains the set values of the interval. The second column gives the recoding function
used (G = Gaussian, R = Rectangular, T = Triangular). The third column gives the top for the
respective interval. The ‘low Bound’ column gives the lower bound, i.e., where the member-
ship value should be zero for the neighbouring interval. A similar meaning is true for the
‘high Bound’. ‘landMark low’ is the lower landmark, and ‘landMark high’ is the higher
landmark for the interval in column 1. The recoding for var3 and var4 happens via the same
algorithm. This is not shown here.

Interval function top low Bound high Bound landMark low landMark high

1 G -0.076037 -0.076037 0.249977 -0.076037 0.141305

2 G 0.249977 0.032634 0.467319 0.141305 0.358648

3 G 0.57599 0.249977 0.57599 0.358648 0.57599

Table A.1 : Three-level fixed Gaussian recoding of var2

The primary mask put forward, is given by Table A.2. The mask search trajectory is depicted
in Figure A.3. Remark that some peaks have approximately the same height.

var1 var2 var3 var4

-1 -1 -1 -1

-1 -1 -1 -1

-1 1 0 0

Table A.2 : Primary mask (maximum allowable mask) for search

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301 351
mask number

qu
al

it
y

Figure A.3 : Quality trajectory in optimal mask search for fixed recoding

The optimal mask is found in Table A.3.

206

var1 var2 var3 var4
-1 -1 0 0
-1 0 0 0
-1 1 0 0

Table A.3 : Optimal mask under fixed recoding (quality = 0.9482)

The mask in Table A.3 stands for the qualitative dependency relation

var 2() (var1(2), var 2(2), var1(1), var1())i f i i i i= − − −�

Its corresponding state-observation matrix is listed in Table A.4. The input state vector com-
ponents are found in column 1, 2, 3, and 4. Column 1 is var1(i-2), column 2 is var2(i-2), col-
umn 3 is var1(i-1), and column 4 is var1(i). Column 5 contains the probabilities of occurrence
of the input state vector. The remaining columns are the observed output values. Each one is
of the form ‘set value; (recoding manner: membership value) (confidence & conditional prob-
ability)’.

2 3 2 1 (0.07) --> 2;(G:0.842) (11.24&1.0)

2 1 1 1 (0.03) --> 1;(G:0.975) (3.37&1.0)

2 2 2 2 (0.06) --> 3;(G:0.966) (7.8&1.0)

1 3 1 1 (0.03) --> 1;(G:0.968) (3.28&1.0)

1 2 1 2 (0.02) --> 2;(G:0.680) (2.53&1.0)

2 3 1 1 (0.06) --> 1;(G:1.0) (11.28&1.0)

1 2 2 1 (0.03) --> 3;(G:0.525) (3.13&1.0)

2 2 1 2 (0.04) --> 1;(G:0.522) (3.63&0.88) 2;(G:-0.553) (0.55&0.13)

1 1 2 2 (0.05) --> 3;(G:1) (9.62&1.0)

2 2 2 1 (0.02) --> 2;(G:0.679) (2.36&1.0)

2 1 2 2 (0.02) --> 3;(G:0.968) (1.65&1.0)

1 2 1 1 (0.05) --> 1;(G:0.967) (6.94&1.0)

1 1 1 2 (0.08) --> 2;(G:0.845) (13.11&1.0)

1 3 2 2 (0.02) --> 3;(G:0.975) (2.29&1.0)

1 1 2 1 (0.08) --> 3;(G:0.611) (8.64&1.0)

2 2 1 1 (0.04) --> 1;(G:0.989) (6.37&1.0)

2 1 1 2 (0.03) --> 2;(G:0.794) (2.92&1.0)

2 3 2 2 (0.05) --> 3;(G:0.924) (8.11&1.0)

2 1 2 1 (0.03) --> 2;(G:0.595) (3.39&1.0)

1 3 1 2 (0.03) --> 2;(G:0.596) (3.34&1.0)

1 3 2 1 (0.03) --> 2;(G:0.559) (2.7&1.0)

1 1 1 1 (0.05) --> 1;(G:0.922) (8.14&1.0)

1 2 2 2 (0.05) --> 3;(G:0.988) (6.82&1.0)

2 3 1 2 (0.06) --> 1;(G:0.612) (7.03&1.0)

Table A.4 : State-observation matrix 1 under fixed recoding

207

Figure A.4 shows almost no difference between the original (test set) values and the fore-
casted values by the 5+1NN and the 5UNN method: forecasting is excellent in all cases.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

5UNN

Figure A.4 : Forecasting results under fixed recoding

Figure A.5 zooms in on the differences between the original data and the forecasted ones. It
shows that all methods perform equally well.

-0.01

-0.005

0

0.005

0.01

0.015

0.02

10 20 30 40 50 60 70 80 90

time instance

var2

residuals 5NN

residuals 5UNN

Figure A.5 : Zooming in on differences

On the average, the 5UNN forecasting method performs at least as well as the 5+1NN fore-
casting method. Table A.5 and Figure A.6 confirm these findings.

208

SSE SAE

5+1NN 5UNN 5+1NN 5UNN

0.000606 0.000398 0.117 0.105

Table A.5 : Looking at SSE and SAE for fixed recoding

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

original

pr
ed

ic
te

d

5+1NN

5UNN

diagonal

support

Figure A.6 : Plot of predicted versus original data for fixed recoding

A.3.2 Uniform recoding in SAPS-ST

Again, three intervals are taken for var2, var3 and var4. Variable var1 is recoded as in the
fixed recoding experiment. Table A.6 displays the recoding results for variable var2.

Interval function top low Bound high Bound landMark low landMark high

1 G -0.076037 -0.076037 0.249766 -0.076037 0.135128

2 G 0.249766 0.0295457 0.470197 0.135128 0.364404

3 G 0.57599 0.249766 0.57599 0.364404 0.57599

Table A.6 : Three-level uniform Gaussian recoding of var2

The primary mask is the same as in the fixed recoding case, but the quality trajectory for the
optimal mask search, which is depicted in Figure A.7, differs.

209

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 51 101 151 201 251 301 351
mask number

qu
al

it
y

Figure A.7 : Quality trajectory in optimal search for uniform recoding

The optimal mask search results in optimal mask depicted in Table A.7.

var1 var2 var3 var4

-1 0 0 -1

-1 0 0 0

-1 1 0 0

Table A.7 : Optimal mask under uniform recoding (quality = 0.9464)

The mask in Table A.7 corresponds with the qualitative dependency relation

var 2() (var1(2), var 4(2), var1(1), var1())i f i i i i= − − −�

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

5UNN

Figure A.8 : Forecasting results under uniform recoding

210

A comparison of forecasting of the 5+1NN method (see Figure A.8) with the 5UNN method
shows again that the last is at least as good as the former one. Table A.8 and Figure A.9 con-
firm these findings.

SSE SAE

5+1NN 5UNN 5+1NN 5UNN

0.00416 0.00202 0.0991 0.0735

Table A.8 : Looking at SSE and SAE for uniform recoding

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
original

pr
ed

ic
te

d

diagonal

5+1NN

5UNN

support

Figure A.9 : Plot of predicted versus original data for uniform recoding

Figure A.9 displays the predicted values versus the original values for the 5+1NN method and
the 5UNN method. As for Figure A.6, the original values are also depicted on the x-axis to
show why gaps occur in the plot.

Conclusion

One sees that the optimal mask under uniform recoding is different from the one under fixed
recoding and vice versa. This experiment shows the influence of recoding (only fixed versus
uniform is demonstrated here). Consequently, this confirms the justification for a sub-optimal
approach. Obviously, when the number of intervals changes, one would also obtain different
optimisation results.

When comparing the forecasting based on recoded (and regenerated) values or on unit-
rescaled raw data, it is observed that the latter performs at least equally good (perhaps even a
bit better).

211

A.4 Using regression trees

A.4.1 Use of the 1SE regress ion tree

The 1SE tree is selected, see chapter 6 and chapter 8. It has a cross-validated relative error of
0.05 %. Figure A.10 shows its position in the (cross-validated) relative error curve, together
with the optimal and the simple, less than 1% error, tree.

Figure A.10 : Relative cross-validation errors for different regression trees

The 1SE tree, which has 25 terminal nodes, is depicted in Figure A.11. The splitters are
shown in the internal nodes.

Figure A.11 : The 1SE regression tree with its splitters

The variability in the terminal nodes (denoted by the small squares in Figure A.11 is shown in
Figure A.12 (notice the support set depicted in Figure A.6 or inspect Figure A.9 for an expla-
nation of the gaps).

Figure A.12 : Box plots for terminal nodes and sorted by target variable prediction

212

A ranking of variables can be obtained from CART. The ranking can give feedback to SAPS,
but this issue is postponed until appendix C. The ranking is shown in Table A.9. Remark that
if surrogates are included, then no direct relationship can be detected with Figure A.11.

Ranking 1 (high) 2 (high) 3 (low) 4 (low) 5 (very low)

var1(i-1) var3(i-1) var1 var4(i-1) var2(i-2), …

Table A.9 : Ranking of most relevant variables (role as surrogates included)

If only the primary splitters are retained, var1(i-1) and var1 become high ranked (this can be
seen from Figure A.11). This means that the others play a significant role as surrogates. The
ranking gives a more pronounced description of the importance of variables compared to a
mask.

Figure A.13 shows that the state-observation matrix method delivers the worst predictions.
Despite its eager nature, the regression tree method performs equally well as the 5+1NN
method (under fixed recoding).

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

regression tree

state-observation matrix

Figure A.13 : Forecasting with 5+1NN, regression trees and state-observation method

The differences between the two best forecasting methods are magnified largely in Figure
A.14.

213

-0.0200

-0.0150

-0.0100

-0.0050

0.0000

0.0050

0.0100

0.0150

1 11 21 31 41 51 61 71 81 91

time instance

var2
residuals 5+1NN

residuals regression tree

Figure A.14 : Zooming in on the 5+1NN method and the regression tree differences

SSE SAE

State-
Observation

5+1NN, fixed
recoding

Regression
tree

State-
Observation

5+1NN, fixed
recoding

Regression
tree

1.532450 0.000606 0.000962 7.601 0.117 0.213

Table A.10 : SSE and SAE for the three methods

Table A.10 and Figure A.15 confirm the conclusion drawn from Figure A.13 and Figure
A.14. They show the good prediction performance of the 5+1NN method under fixed recod-
ing and of the regression tree approach (the state-observation forecasting method was dropped
because of its bad performance).

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

original

pr
ed

ic
te

d

5+1NN

regr. tree

diagonal

support

Figure A.15 : Plot of predicted versus original data for the regression tree approach

214

A.4.2 Use of a simple regress ion tree

One could also try an alternative tree with a relative cross-validation error of less than 1 %.
The corresponding tree can be determined by Figure A.10. In this case, there are only seven
terminal nodes. The tree structure, which shows the effect of further backward pruning of
Figure A.11, is depicted in Figure A.16.

Figure A.16 : Smallest tree with a relative cross-validation error less than 1 %

The model is simpler and its accuracy is less. This can be observed from a comparison be-
tween Figure A.12 and Figure A.17.

Figure A.17 : Box plots for terminal nodes sorted by target variable prediction for the
less-than-one percent tree

The variable importance is the same as the previous tree, but var2(i-2) drops out because of
the pruning.

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

time instance

var2 original

5+1NN

simplified regression tree

state-observation

Figure A.18 : Forecasting with the 5+1NN, the regression tree and the state-observation
method

215

Figure A.18 shows the forecast on the test set. It demonstrates that the state-observation ma-
trix method again gives the worst predictions, the regression tree is much better, and the
5+1NN method gives the best predictions. This is not surprisingly, because the former two are
eager methods and the latter is a lazy method. Despite its simplicity, the regression tree fore-
casting still outperforms the state-observation forecasting.

SSE SAE

State-
Observation

5+1NN, fixed
recoding

Regression
tree

State-
Observation

5+1NN, fixed
recoding

Regression
tree

1.532450 0.000606 0.0366620 7.601 0.117 1.486

Table A.11 : SSE and SAE for the usage of a simpler regression tree

Table A.11 confirms the conclusions drawn from Figure A.18. It is in concordance with the
intuitive feeling that a simpler tree performs worse. It performs worse than the 5+1NN
method, but this is not surprisingly because of the nature of the method (eager) and the parsi-
mony of the regression tree.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
original

pr
ed

ic
te

d

diagonal

5+1NN

regression tree

support

Figure A.19 : Plot of predicted versus original data for the simplified regression tree ap-
proach

Figure A.19 confirms that the simplified regression tree does not predict as well as the opti-
mal regression tree and the 5+1NN method. This expected behaviour could also be explained
from Figure A.17, which shows the larger variability in the terminal nodes around the relevant
mean value.

A.4.3 Automatically generating rules from trees

CART can automatically generate rules for a given tree. Figure A.20 shows the output from
CART for the tree in Figure A.16. These rules give implicitly a kind of quantisation of the
relevant variables, tailored on the model.

216

/*Terminal Node 1*/

if

(

 VAR1_1 <= 0.500000 &&

 VAR1 <= 0.500000 &&

 VAR3_1 <= -0.102523

)

{

 terminalNode = -1;

 mean = -0.058293

}

/*Terminal Node 2*/

if

(

 VAR1_1 <= 0.500000 &&

 VAR1 <= 0.500000 &&

 VAR3_1 > -0.102523

)

{

 terminalNode = -2;

 mean = -0.016031

}

/*Terminal Node 3*/

if

(

 VAR1_1 <= 0.500000 &&

 VAR1 > 0.500000 &&

 VAR3_1 <= -0.050086

)

{

 terminalNode = -3;

 mean = 0.133416

}

/*Terminal Node 4*/

if

(

 VAR1_1 <= 0.500000 &&

 VAR1 > 0.500000 &&

 VAR3_1 > -0.050086

)

{

 terminalNode = -4;

 mean = 0.187156

}

/*Terminal Node 5*/

if

(

 VAR1_1 > 0.500000 &&

 VAR1 <= 0.500000 &&

 VAR3_1 <= 0.050068

)

{

 terminalNode = -5;

 mean = 0.313584

}

/*Terminal Node 6*/

if

(

 VAR1_1 > 0.500000 &&

 VAR1 <= 0.500000 &&

 VAR3_1 > 0.050068

)

{

 terminalNode = -6;

 mean = 0.365919

}

/*Terminal Node 7*/

if

(

 VAR1_1 > 0.500000 &&

 VAR1 > 0.500000

)

{

 terminalNode = -7;

 mean = 0.530348

}

Figure A.20 : Rule generation from CART

217

A.5 Conclusion

Table A.12 gives an overview of all prediction methods used in this appendix.

SSE SAE

State-observation forecasting 1.53245 7.601

5+1NN (fixed recoding) 0.00061 0.117

5UNN (fixed recoding) 0.00040 0.105

5+1NN (uniform recoding) 0.00416 0.099

5UNN (uniform recoding) 0.00202 0.074

Regression tree 0.00096 0.213

Simplified regression tree 0.03666 1.486

Table A.12 : Overview of all forecasting methods

Regression trees have good forecasting capabilities. In this experiment, they are comparable
with the nearest neighbour methods with regard to their forecasting abilities. However, the
former is eager, so it is preferable over the nearest neighbours if a fast classifier with a com-
prehensible structure is desired. A disadvantage is that a ‘full’ regression tree model is quite
complex, but a nearest neighbour method does not provide insight at all. The regression tree is
at least more comprehensible (with regard its model colour) than a nearest neighbour method.
Even when simplifying trees, one still gets good predictions. Consequently, the use of regres-
sion trees for the purpose of prediction is promising. As eager method, it is also fast in fore-
casting.

If one intends to use a nearest neighbour method, then it is better to utilise one that is based on
the raw (unit-rescaled) data (5UNN method) instead of on recoded triples. The latter gives
theoretical complications that are not present in the former.

Surprisingly, although uniform recoding appears to be better from an information point of
view (with regard to recoding), the fixed recoding gave (on the average) better forecasting re-
sults on the test set.

Eventually, the subjectivity of an optimal mask is demonstrated.

219

Appendix B

A Switched Noise-contaminated
Sine System

B.1 Aim of the experiment

For this example, it is still possible to use both the optimal and the sub-optimal mask search.
Hence, comparisons in which the two are relevant, can and will be done.

The purpose of this experiment is

(a) to demonstrate that even the second best optimal mask, which has a lesser quality, per-
forms better on a test set than the optimal mask, see section B.3.1.

(b) to verify if the forecasting with the state-observation matrix related to other forecasting
methods is really bad as seen in Appendix A, see section B.3.2.

(c) to see how the forecasting with the newly introduced 5UNN method compares with the
existing 5+1NN method for the sub-optimal mask, see section B.3.2.

(d) to see how regression trees perform with regard to the other forecasting methods in SAPS,
see section B.4.

B.2 Set-up and data generation

Data is generated from a sine wave (amplitude 10, frequency 1 rad/sec) on which random
noise (mean 0 and variance 1, see Figure B.2) is added. The resulting signal is delivered to a
switch, which is controlled by a block pulse generator that periodically blocks the passing of
the by noise contaminated sine.

Inputs:

1. sine, rand : continuous

2. pulse: binary (0 or 2)

Output:

1. out: a continuous variable, which is periodically blocked by the switching

220

output

out

Switch

Sum

sine

rand

pulse

Figure B.1 : (Simplified) Simulink program that generated the data

The training set consists of 399 records. An excerpt from this data set (only the first 20 rec-
ords are shown) is found in Table B.1, and a plot in Figure B.2. The test data contains 193
points.

Index sine rand pulse out ref

1 9.093 0.0751 2 9.1681

2 1.4112 0.3516 2 1.7628

3 -7.568 -0.6965 2 -8.2645

4 -9.5892 1.6961 0 0

5 -2.7942 0.0591 0 0

6 6.5699 1.7971 0 0

7 9.8936 0.2641 0 0

8 4.1212 0.8717 0 0

9 -5.4402 -1.4462 2 -6.8864

10 -9.9999 -0.7012 2 -10.7011 i-10

11 -5.3657 1.246 2 -4.1197 i-9

12 4.2017 -0.639 2 3.5627 i-8

13 9.9061 0.5774 2 10.4834 i-7

14 6.5029 -0.36 0 0 i-6

15 -2.879 -0.1356 0 0 i-5

16 -9.614 -1.3493 0 0 i-4

17 -7.5099 -1.2704 0 0 i-3

18 1.4988 0.9846 0 0 i-2

19 9.1295 -0.0449 2 9.0846 i-1

20 8.3666 -0.7989 2 7.5676 i

Table B.1 : First 20 records of raw data

221

0

10

20

30

40

50

-2
.87

28

-2
.55

28
15

7

-2
.23

28
31

5

-1
.91

28
47

3

-1
.59

28
63

1

-1
.27

28
78

9

-0
.95

28
94

7

-0
.63

29
10

5

-0
.31

29
26

3

0.0
07

05
78

9

0.3
27

04
21

0

0.6
47

02
63

1

0.9
67

01
05

2

1.2
86

99
47

3

1.6
06

97
89

4

1.9
26

96
31

5

2.2
46

94
73

6

2.5
66

93
15

7

2.8
86

91
57

8
M

or
e

-10

-8

-6

-4

-2

0

2

4

6

8

10

time instance

sine

rand

pulse

out

Histogram of rand First 20 records of raw data

Figure B.2 : Description of data

A plot of the output for the whole training set is found in Figure B.3.

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 100 200 300 400

time instance

ou
t

Figure B.3 : Plot of the response for the whole training set

B.3 Recoding and maximal allowable mask setting

Gaussian uniform recoding is used with 3 intervals for each variable, except for the pulse
variable, where the systems detects that there are only two levels and no recoding is necessary
(rectangular membership function). The maximal allowable mask has a depth of 11.

From this mask, two things will be done:

1. To perform an optimal mask search with SAPS-II (SAPS-ST was too slow for this, see
section B.3.1), and to investigate its forecasting performance.

2. Start a sub-optimal mask search in SAPS-ST (see section B.3.2), because this method still
works for deep maximal allowable masks. Hence, it is more universally applicable.

222

B.3.1 Optimal mask search and its relative optimality

For the optimal mask search there are 43 132 10� possible sub-masks1 and this was bearably
feasible on a Pentium-II 350Mhz (128MB) computer (it had to run for one night under SAPS-
II). The sub-optimal mask search needs to generate 946 sub-masks, which takes much less
time (but took a long time on the prototype in SAPS-ST).

The optimal mask, which has a quality of 0.9387, corresponds to the qualitative function

() (out(10),sine(9),pulse(7))out i f i i i�
� � � �

The second best optimal mask, which has a quality of 0.9373, corresponds with

() (out(10),sine(9))out i f i i�
� � �

The quality difference is very small. Comparing the respective state-observation matrices,
which are shown in Table B.2 and Table B.3, reveals that for the second best optimal mask
the state-observation matrix is most parsimonious. Furthermore, all combinations of the in-
puts are represented, so its predictiveness is 1.

1 1 1 (0.08) --> 3;(G:1) (23.36&1.0)

1 1 2 (0.06) --> 3;(G:0.999506) (16.74&1.0)

1 2 1 (0.05) --> 3;(G:0.976319) (12.24&0.85) 1;(G:0.554048) (1.62&0.15)

1 2 2 (0.03) --> 3;(G:0.938695) (6.5&0.83) 1;(G:0.590596) (1.14&0.17)

1 3 1 (0.02) --> 1;(G:0.853634) (4.6&1.0)

1 3 2 (0.02) --> 1;(G:0.768323) (3.59&1.0)

2 1 1 (0.07) --> 2;(G:0.5) (13.5&1.0)

2 1 2 (0.1) --> 2;(G:0.5) (19.0&1.0)

2 2 1 (0.07) --> 2;(G:0.5) (13.0&1.0)

2 2 2 (0.1) --> 2;(G:0.5) (20.0&1.0)

2 3 1 (0.06) --> 2;(G:0.5) (12.5&1.0)

2 3 2 (0.1) --> 2;(G:0.5) (19.5&1.0)

3 1 1 (0.02) --> 3;(G:0.770285) (4.13&1.0)

3 1 2 (0.01) --> 3;(G:0.808437) (2.99&1.0)

3 2 1 (0.05) --> 1;(G:0.953463) (10.37&0.79) 3;(G:0.625206) (2.11&0.21)

3 2 2 (0.03) --> 1;(G:0.967086) (8.66&0.92) 3;(G:-0.638205) (0.52&0.08)

3 3 1 (0.08) --> 1;(G:1.0) (25.11&1.0)

3 3 2 (0.05) --> 1;(G:0.995151) (14.86&1.0)

Table B.2 : State-observation matrix of optimal mask

1 Luckily, the search stopped earlier because all masks with 4 m-inputs gave a lower quality. Hence, ‘only’ ap-
proximately 137000 masks were computed (about 3 masks/sec were computed).

223

1 1 (0.13) --> 3;(G:1) (40.1&1.0)

1 2 (0.08) --> 3;(G:0.976319) (18.74&0.84) 1;(G:0.590596) (2.76&0.16)

1 3 (0.04) --> 1;(G:0.853634) (8.19&1.0)

2 1 (0.17) --> 2;(G:0.5) (32.5&1.0)

2 2 (0.17) --> 2;(G:0.5) (33.0&1.0)

2 3 (0.16) --> 2;(G:0.5) (32.0&1.0)

3 1 (0.03) --> 3;(G:0.808437) (7.12&1.0)

3 2 (0.08) --> 1;(G:0.967086) (19.03&0.84) 3;(G:0.638205) (2.63&0.16)

3 3 (0.13) --> 1;(G:1.0) (39.97&1.0)

Table B.3 : State-observation matrix of second best optimal mask

Therefore, the second optimal mask may be slightly preferable over the optimal mask (which
also has a predictiveness of 1). Further sub-masks, which gave much less quality values, are
not listed anymore. To investigate this further, one may look at the forecasting performance of
the optimal and ‘second’ optimal mask. The 5UNN method is used for both masks. Figure B.4
shows that both give good predictions.

-7

-2

3

8

-12 -7 -2 3 8

original

pr
ed

ic
te

d5UNN for optimal mask

support

diagonal

5UNN for second best optimal mask

Figure B.4 : Predicted versus original output values for the 5UNN method under the op-
timal and second best optimal mask

The sum of squared errors and the sum of absolute errors for the optimal mask predictions is
slightly less than the second best. The second best is simpler than the first, so it is preferable
due to its greater simplicity (and less errors).

SSE SAE

Optimal mask 202.4 101.7

Second best mask 199.7 100.8

Table B.4 : SSE and SAE of optimal and second best mask

This again proves that the optimal makes no sense; the second best performs even slightly
better in prediction on a test set.

224

B.3.2 Comparing forecasting under a sub-optimal mask search

The quality trajectory for the sub-optimal mask search is found in Figure B.5.

0.0

0.2

0.4

0.6

0.8

1.0

749 799 849 899
generated mask number

quality

Figure B.5 : Trajectory of quality

The sub-optimal mask, which has a quality of 0.8973, corresponds with

() (sine(9), rand(7),pulse(5), pulse(3))y i f i i i i= − − − −�

Four forecasting methods are compared: the state-observation matrix method (Figure B.6), the
5+1NN method (Figure B.7), the 5NN method (Figure B.8), and the 5UNN method (Figure
B.9 and Figure B.10).

-20

-15

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15

original

pr
ed

ic
te

d

Figure B.6 : Predicted versus original output values for the state-observation matrix
method under the sub-optimal mask (SSE = 3485, SAE = 454.9)

If a state could not be observed, the second, third, … best sub-optimal masks (and accompa-
nying state-observation matrices) were used instead. They correspond with

• () (sine(9), pulse(5), pulse(3))y i f i i i= − − −� (quality = 0.8923)

• () (sine(9), rand(7),pulse(5))y i f i i i= − − −� (quality = 0.8920)

• …

225

Figure B.6 shows that the forecasting is not good at all.

-20

-15

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15
original

pr
ed

ic
te

d

Figure B.7 : Predicted versus original output values for 5+1 NN method under the sub-
optimal mask (SSE = 3723 and SAE = 369.4)

The forecasting in Figure B.7 is comparable with the state-observation-based forecasting in
Figure B.6. The SSE is somewhat worse (larger) and the SAE better (lesser), which indicates
that there are less deviations, but of a larger magnitude.

-20

-15

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15

original

pr
ed

ic
te

d

Figure B.8 : Predicted versus original output values for 5NN method under the sub-
optimal mask (SSE = 932 and SAE = 242.9)

Forecasting with the 5NN method is much better than the previous methods. There are no
large systematic deviations. Figure B.9 and Figure B.10 show the forecasting performance of
the 5UNN method. It can be seen that the 5UNN method is comparable with the 5NN method.
This is confirmed in Table B.5.

226

-20

-15

-10

-5

0

5

10

15

20

11 61 111 161

time instance

out
original

5UNN

Figure B.9 : Predictions by the 5UNN method under the sub-optimal mask

-20

-15

-10

-5

0

5

10

15

20

-15 -10 -5 0 5 10 15

original

pr
ed

ic
te

d

Figure B.10 : Predicted versus original output values for 5UNN method under the sub-
optimal mask (SSE = 1011 and SAE = 249.3)

Conclusions for forecasting

SSE SAE

State-observation based 3485 454.9

5+1NN 3723 369.4

5NN 932 242.9

5UNN 1011 249.3

Table B.5 : Table of SSE and SAE under the sub-optimal approach

The forecasting methods based on the raw data are much better than the state-observation
method and the 5+1NN method under the sub-optimal approach.

Comparison of Table B.4 and Table B.5 shows the obvious result that the optimal mask can
do a better forecasting than the sub-optimal one.

227

B.4 Using a regression tree for identifying a model

The ‘flattening’ transformation, with a maximal allowable mask of depth 11, results in 389
‘static’ records for the learning set. CART is used to find the 1SE tree. The latter is a regres-
sion tree with 14 terminal nodes, which is depicted in Figure B.11.

Figure B.11 : Selected tree in CART

The ranking of the variables in Figure B.11 is given by Table B.6.

Ranking 1 (very high) 2 (medium) 3 (very low)

out(i-10) sine(i-9) sine, sine(i-10), pulse(i-10), out(i-9), rand

Table B.6 : Ranking of variables (only primary splitters)

Apparently, the output on 10 time steps before appears to play a crucial role, which is not sur-
prising if one considers Table B.1. The sine plays a less, but still important role at a lag of 9
time steps. The pulse signal plays a lesser role, and the random variable has no real influence.
This is consistent with Figure B.11.

Figure B.12 : Box plots of terminal nodes sorted by target variable prediction

Figure B.12 shows that there will be some inaccuracies, especially between -1 and -5, because
the variability is relatively large. A similar remark can be made for values around 2.5.

The predictions done by the 1SE tree in Figure B.11, and by the 5UNN method, are depicted
in Figure B.13, which shows a reasonably good fit for both methods.

228

-12

-7

-2

3

8

11 61 111 161

time instance

out

out
5UNN
regression tree

Figure B.13 : Predicted values by the 5UNN method under the optimal mask and by the
optimal regression tree

SSE SAE

5UNN under
optimal mask

Regression
tree

5UNN under
optimal mask

Regression
tree

202.4 655.2 101.7 184.5

Table B.7 : SAE and SSE values for 5UNN and regression tree prediction

Table B.7 shows that the 5UNN method performs better than the regression tree, but it is not
an order of magnitudes different. The better performance of the former is to be expected when
comparing a lazy and eager method. The differences become more distinctive when consid-
ering Figure B.14.

Figure B.14 is in concordance with Figure B.12. It shows the worse prediction for output val-
ues between -5 and 0 and in the middle of 0 and 5.

229

-12

-7

-2

3

8

-12 -7 -2 3 8
original

pr
ed

ic
te

d

5UNN

regression tree

Figure B.14 : Predicted versus original output values for the 5UNN method under the
optimal mask and for the 1SE regression tree

B.5 Conclusion

SSE SAE

State-observation with sub-optimal mask 3485 455

5+1NN with sub-optimal mask 3723 369

5NN with sub-optimal mask 932 243

5UNN with sub-optimal mask 1011 249

5UNN with optimal mask 202 102

5UNN with second best mask 200 101

Regression tree 655 185

Table B.8 : Overview of the used forecasting methods

Appendix B confirms that the state-observation matrix method of forecasting is not a good
performer with regard to accuracy.

In agreement with the findings in appendix A, it can be claimed that the 5UNN method per-
forms at least as well as the 5+1NN.

The prediction performance of the tree regression model is somewhat between the best five
nearest neighbour methods with the sub-optimal mask and the 5UNN with the optimal mask
(which is sometimes not attainable). Hence, regression trees show promising perspectives.

In addition, the example demonstrated that sometimes the second best optimal mask could
actually be better than the optimal one, which confirms the subjectivity of the former.

231

Appendix C

A Real-World Economic System

C.1 Aim of the test

The aim of this experiment is

(a) to see how regression trees perform with regard to forecasting in SAPS,

(b) to investigate what can be done when a trend is present, see section C.3 - C.5,

(c) to find out how high the cardinality of maximal allowable masks may be, see section
C.5.2,

(d) to demonstrate how missing values can be tackled with the regression tree approach, see
section C.6,

(e) to look if scatter plots may help in determining a pattern a priori, see section C.7,

(f) to illustrate how feedback from the latter approach to SAPS can happen, see section C.8.

For relatively large primary masks, an optimal mask search is out of the question, while a re-
gression tree approach still works. In addition, this example will demonstrate the limitations
of a pattern recognition approach.

C.2 Description of data

The data comes from a database of economic data [Crombez 1999]. It stands for the monetary
control and the implications for the economy. The records, which describe the change in in-
dustrial production, are recorded monthly from February 1959 until February 1999. The first
variable is the US changes in consumer prices (CCP), the second variable is US federal funds
rate (%) (monthly average FFR), the third variable is US money supply currency (MSC),
while the output is US industrial production (IP). From 481 records, 321 were retained for
training.

Inputs: CCP, FFR, MSC (continuous)

Output: IP (continuous)

Figure C.1 shows a plot of each variable versus time. Finally, Figure C.2 shows the output.
Remark the trend in the MSC and IP variables.

232

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 6 11 16 21 26 31 36 41 46 51 56
time instance

C
C

P

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 6 11 16 21 26 31 36 41 46 51 56
time instance

F
F

R
250
270

290
310

330
350

370
390

410
430

1 6 11 16 21 26 31 36 41 46 51 56
time instance

M
SC

30000

32000

34000

36000

38000

40000

42000

44000

46000

1 6 11 16 21 26 31 36 41 46 51 56
time instance

IP

Figure C.1 : First 60 records of the four variables

0

20000

40000

60000

80000

100000

120000

140000

Fe
b-

58

Fe
b-

61

Fe
b-

64

Fe
b-

67

Fe
b-

70

Fe
b-

73

Fe
b-

76

Fe
b-

79

Fe
b-

82

Fe
b-

85

Fe
b-

88

Fe
b-

91

Fe
b-

94

Fe
b-

97

date

IP

Figure C.2 : IP (output) in function of time

The data that is offered to SAPS-ST consists not only of the three input variables CCP, FFR,
and MSC, but also of the derived variables DCCP, DFFR, and DMSC which are the first or-
der differences. This is to see if a relationship includes the ‘derivatives’ of the original input
variables.

C.3 Looking for a pattern in the original data (without detrending)

A pattern recognition approach is based on the recognition of existing patterns in the training
set. These approaches cannot extrapolate outside what is observed at least once. Hence, when
a trend is present it becomes difficult to use the pattern recognition approach to find a predic-
tive model. The next subsection illustrates this limitation, even under more idealised circum-
stances where first order detrended input variables are added (data-augmentation)

233

C.3.1 Sub-optimal mask searching

Gaussian uniform three-levelled recoding for each variable is done. A maximal allowable
mask with a memory depth of 12 (1 year) is used. In this experiment, CCP, FFR, MSC,
DCCP, DFFR, and DMSC are inputs for determining IP. It took the prototype quite some time
(approximately 3 days) to find the sub-optimal mask. It has a quality of 0.4876 and it corre-
sponds to

() ((12), (11))IP i f MSC i DFFR i�
� � � .

Figure C.3 shows the very bad forecasting with the 5+1NN method on the test set.

70000

80000

90000

100000

110000

120000

130000

140000

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169
time instance

IP

original

5+1NN

Figure C.3 : Predicted (via 5+1NN) and original values for the output IP

C.3.2 Using regression trees on non-detrended data

The former experiment showed that, under a trend, the pattern-recognition approach fails. Re-
gression trees are from another paradigm: they partition the measurement space. This experi-
ment will illustrate that regression trees can model a trend. Here, it is opt to take the original
(non-detrended) inputs and output, but to apply a maximal allowable mask of memory depth
24. Hence, the inputs are now CCP, FFR, and MSC. A simple tree with 13 terminal nodes is
selected, because its cross-validation error is just below 1% (it is 0.9 %). A prediction on the
training set is shown in Figure C.4. Hence, the regression tree can model the training set very
well with a relatively simple model.

234

30000

40000

50000

60000

70000

80000

90000

100000

1 26 51 76 101 126 151 176 201 226 251 276
time instance

IP

original

predicted

Figure C.4 : Predicting on the training set with a depth of 24 months

70000

80000

90000

100000

110000

120000

130000

140000

1 26 51 76 101 126 151 176

time instance

IP

original

predicted

Figure C.5 : Predicting on the test set with a depth of 24 months

However, test set predictions, displayed in Figure C.5, clearly show that the fit is not good at
all, except for some initial points, which are in common (overlap) with the training set.

C.3.3 Conclusion

To be able to find a pattern, it has to occur in the training set (be it disguised or not). Neither
the sub-optimal nor the data-mining approach can cope with a trend. A possible and general
solution to improve forecasting is to take differences of the output to remove the trend from
the output. The same is done for the inputs, and just to play it safe, they are all kept (original
and detrended inputs) in the maximal allowable mask. Section C.4 elaborates on this ap-
proach.

A less general solution is to remove the trend by trying to fit all kind of functions. In that
case, one usually tries polynomial functions. Section C.5 does exactly that.

235

C.4 Detrending by first order differencing

In this section, a good model is searched after first order detrending of the output variable IP,
i.e., by creating the detrended variable DIP, given by () (1)DIP IP i IP i� � �). Using the same
recoding and maximal allowable mask as in section C.3.1, SAPS-ST finds the sub-optimal
mask with a quality of 0.2088, which corresponds with

() ((11), (10), (12), (11))DIP i f CCP i DCCP i DCCP i DIP i�
� � � � �

The low quality is due to the low degree of determinism (0.313) and relatively low observa-
tion ratio (OR = 0.667). The lowest SSE and SAE are found for the 5UNN method. Therefore,
only this one is put in Figure C.6, which shows the original and predicted values.

-1400

-900

-400

100

600

1100

1600

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

time instance

DIP
original

5UNN

Figure C.6 : Forecasting and original values for the output DIP

One sees that the prediction appears to be bad. Hence, using first order differences does not
help.

Note: Another attempt with a recoding of five levels for each variable was tried. The resulting
optimal mask (with a quality of 0.2509) did not improve the forecasting significantly.

A last attempt was tried with a regression tree on the same maximal allowable mask, but to no
avail. When a regression tree is grown on the training, the cross-validated relative error starts
increasing again too soon for a regression tree curve (see Figure C.7). This indicated an over-
all poor prediction.

236

Figure C.7 : Growing a tree on DIP for a maximal mask depth of 12

Using the minimum cost tree on the test set gives a very bad prediction. This is shown in
Figure C.8.

-1500

-1000

-500

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

time instance

IP

original

regression tree

Figure C.8 : Original and prediction values of DIP

Conclusion about the differencing

The sub-optimal approach does not find a good prediction model for memory depth up to 12
time steps (months of 1 year). Two reasons can be found for this:

- there is no pattern for the given data set

- the maximal allowable mask is not deep enough

Some deeper maximal allowable masks were tried (memory depth of 36) with the regression
tree approach, but to no avail. This suggests that there is no recognisable pattern in the given
data set up to memory depths of 36 deep.

There is still another option that can be tried to remove a trend. It consists of fitting a linear or
higher order curve, and to subtract the fit curve from the original signal. The residual signal is
then kept for subsequent pattern recognition. This approach is described in section C.5

237

C.5 Detrending with a polynomial fit

The original data were read in MATLAB© (see [MATLAB 1999]) and a linear and/or quad-
ratic fit has been used to remove the trend. All variables were investigated with MATLAB to
see if there was a trend1, but only MSC and IP were found to contain one. Hence, it was only
necessary to detrend the variables MSC and IP. Their detrended curves are displayed in Figure
C.9. MSC is detrended by a quadratic curve and IP by a linear curve. Hence, the detrended
variables are denoted respectively by msc2d and ip1d. The detrending is done on the whole
data range, while it should normally be done only on the training set. Luckily, this will not
change the end result much (only a very small positive bias for prediction errors may be in-
troduced).

0 50 100 150 200 250 300 350 400 450 500
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

time instance

de
tr

en
de

d
m

ea
su

re
m

en
ts

msc quadr. detrend
ip lin. detrend

Figure C.9 : Detrended curves

The detrended data were then used to find a pattern. However, it is doomed to fail (at least
partially). This can been seen with the aid of Figure C.9 that already shows why the prediction
will go wrong for the latest time instances (although all data is used to bias the linear and
quadratic trend removal). The curve for the detrended output variable ip1d shows in its last
part something that is not present in the first 2/3 of the curve. Therefore, one cannot expect
the pattern-recognised paradigm to find any pattern for predicting this phenomenon in the
very last part of the test set.

C.5.1 Comparing the effect of the detrending method

One might expect that the previous ‘strange’ relative error curve behaviour is due to the lim-
ited mask depth. Figure C.10 shows that this is not true. The new detrended variables ip1d1
and msc2d are used, but the maximal allowable mask is the same as in Figure C.7. Now, the
curve has a normal decay in the relative error curve. Hence, the detrending method does mat-
ter. More research is needed to dig for its underlying cause(s).

1 This has been achieved by using the MATLAB functions polyfit and detrend.

238

Figure C.10 : Growing a tree on ip1d for a maximal mask depth of 12

C.5.2 The pessimistic approach: using a very deep maximal allowable mask

The first thing one could investigate further is if a prediction model can be found if the maxi-
mal allowable memory depth is increased to, say 24 months, or even more. However, in the
latter case, one sees from the small simulation that the prototype is too slow to perform very
deep mask evaluations. Even when rewriting the prototype, such that the average computing
time per mask decreases, it will still have its limitations because evaluation of a mask in-
volves a lot of matrix manipulations (to generate the state-observation matrix). So even the
sub-optimal mask search has its limitations. Consequently, regression tree approach will be
used to look for masks with memory depth larger than 12.

For a maximal allowable mask of 60 deep, a 1SE tree with 13 terminal nodes (and 5% relative
cross-validation error) is found. The variability in the terminal nodes is depicted in Figure
C.11.

Figure C.11 : Terminal nodes sorted by target variable prediction

The importance of variables is given by Table C.1 and Table C.2. The former incorporates
contributions of variables as first surrogate. The latter only considers primary splitters.

Ranking 1 (very high) 2 (very high) 3 (very low < 3%)

ip1d(i-1) ip1d(i-2) CCP(i-31), ip1d(i-48), …

Table C.1 : Variable importance (includes role as first surrogate)

Ranking 1(very high) 2 (very low, < 3 %) 3 (extremely low, < 1 %)

ip1d(i-1) ip1d(i-48) ip1d(i-50), ip1d(i-18), msc2d(i-36)

Table C.2 : Variable importance when only primary splitters are considered

239

The information from Table C.2 is visible in Figure C.12. The latter shows in addition where
the primary splitters are used in the tree.

Figure C.12 : The regression tree and its splitters

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91

time instance

ip1d

original

predicted

Figure C.13 : Original and predicted output ip1d on test set

Figure C.13 illustrates the bad prediction for the last years.

240

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

-10000 -5000 0 5000 10000 15000

original

pr
ed

ic
te

d

Figure C.14 : Predicted versus original output ip1d

The bad forecasting performance for large values, which appear at the end of the test set, is
also visible in Figure C.14. This is to be expected from Figure C.9.

C.6 Using missing values

When some values are missing, the regression tree still performs very well. As an experiment,
some values from the variable ip1d(i-1) were removed directly from the static matrix. This
variable was the first one on which splitting occurs. Consequently, the worst possible case is
simulated. Figure C.15 shows that a lot of missing values are present in the test set.

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91

time instance

ip1d1

all values

with missing values

Figure C.15 : ‘Inserting’ missing values

241

Figure C.16 displays a reasonably good forecasting.

-10000

-5000

0

5000

10000

15000

1 11 21 31 41 51 61 71 81 91

time instance

ip1d

ip1d
predicted

pred. with missing values

Figure C.16 : Prediction with missing values

All data Missing values

SAE SSE SAE SSE

216995 1259 106 233534 1295 106

Table C.3 : SAE and SSE for prediction with all data and with missing values

Table C.3 confirms the finding that the prediction with the missing values do not suffer much
from the missing values. Hence, the surrogate split performs very well.

C.7 Trying scatter plots to have a hint about patterns

The sought patterns can be hidden in the dependencies between the output and multiple in-
puts. Scatter plots, as in Figure C.17 until Figure C.20, can be tried to detect simple patterns.
However, no clear pattern can be seen (maybe FFR, MSC and/or DMSC with regard to IP?).

242

3 8 13

CCP

40000

80000
IP

4 10 16

FFR

40000

80000

IP

200 1400

MSC

40000

80000

IP

-0.9 0.2 1.3
DCCP

40000

80000

IP

-6 -2 2
DFFR

40000

80000

IP

0 20 40
DMSC

40000

80000
IP

Figure C.17 : Scatter plots of IP versus the inputs (no detrending for output)

2 4 6
ccp

-8000

4000

ip
1d

4 7
ffr

-8000

4000

ip
1d

-300 0 300
msc2d

-8000

4000

ip
1d

Figure C.18 : Scatter plots of output ip1d (linear/quadratic detrended data)

243

-9000 -3000 3000
ip1d1

-10000

0

ip
1d

-9000 -3000 3000
ip1d

-100

300

m
sc

2d

-10000 -5000 0 5000
ip1d

0

10

20

ffr

-10000 -5000 0 5000
ip1d

6

14

cc
p

Figure C.19 : Looking for patterns in the state space (part 1) for ip1d

-9000 -3000 3000
ip1d18

-10000

0

ip
1d

-6000 -1000 4000
ip1d48

-10000

0

ip
1d

-6000 -1000 4000
ip1d50

-10000

0

ip
1d

-180 -60 60
msc2d36

-10000

0

ip
1d

Figure C.20 : Looking for patterns in the state space (part 2) for ip1d

Conclusion

If a splitter is near the top of the tree, then one sees a pattern that is easily recognizable by re-
gression tree in the scatter plot. Deeper in the regression tree, the pattern cannot be seen from
the scatter plots anymore, because of their context and locality.

244

C.8 Feedback from the da ta mining method to SAPS

The information contained in Figure C.12 (or Table C.2) with regard to the splitters used in
the tree induction, can be used to compose a mask in SAPS. The corresponding mask is given
in Table C.4. The ranking information gets lost when performing the feedback into a primary
mask.

Reference
index

CCP FFR msc2d ip1d

-50 0 0 0 -1

-49 0 0 0 0

-48 0 0 0 -1

…

-36 0 0 -1 0

…

-18 0 0 0 -1

…

-3 0 0 0 0

-2 0 0 0 0

-1 0 0 0 -1

0 0 0 0 1

Table C.4 : Generating a mask via data mining

Hence, the mask in Table C.4 can be used in SAPS as a primary mask on which an optimal
search is done (the recoding of the data is ccp (5G), ffr (5G), msc2d (3G) , ip1d (5G)). The re-
sulting optimal mask has a quality of 0.696 and corresponds with the very simple relationship
given by

ip1d() (ip1d(1))i f i= −�

The second best optimal mask has a quality of 0.394 and corresponds with

ip1d() (ip1d(36),ip1d(1))i f i i= − −�

The prediction with the optimal mask for the 5+1NN and the 5UNN method is shown in
Figure C.21. Their forecasting performance is approximately the same. It shows the same
good forecasting as with regression trees.

245

Prediction with 5UNN Prediction with 5+1NN

Figure C.21 : Forecasting on the test set

This is also expressed in Table C.5 and Figure C.22.

SSE SAE

1+5NN 5UNN 1+5NN 5UNN

764 106 822 106 176 103 175 103

Table C.5 : SAE and SSE for 5NN after feedback from CART

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

-10000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000 10000

original

pr
ed

ic
te

d

5+1NN

5UNN

Figure C.22 : Predicted versus original values after feedback from CART

246

C.9 Conclusion

When detrending with a linear trend for the output IP, and a quadratic for the variable MSC, a
good and very simple predictive model can be obtained. The new regression tree approach
allows quite large maximal allowable masks (here 60 deep) to start with, which were simply
impossible with the SAPS-II version. The approach is quite fast in execution time and it finds
good models when appropriate pre-processing is done. However, it cannot predict unseen
patterns, but this is because of the used pattern recognition paradigm.

Missing values can be treated very well in regression trees. A regression tree can also be used
to give feedback to SAPS. This appendix demonstrates this possibility. In this case, the re-
sulting optimal mask was very simple, but this may not necessarily always be the case.

247

Appendix D

A Real-World Water Demand System

D.1 Aim of the experiment

The water demand data set comes from the team of Cellier [1999]. It consists of data gathered
from a water distribution system in Portugal. There are six points where water is taken (at
Cotao, Mabrao, Merces, Pimenta, Ranholas, and Rinchoa). This example demonstrates that
very entry-complex masks are possible for data sets with quite some records. Unfortunately,
the limitation of the CART version used in the regression tree approach will limit the number
of entries in a mask. Therefore, a way to copy with these limitations is illustrated. It also
shows how one can go beyond the initial maximal allowable mask. Hence, the aim of this ex-
periment is

(a) to illustrate the regression tree approach for a large databases of records.

(b) to show how deeper masks can be tackled,

(c) to demonstrate that deeper masks not always give a better forecasting,

It is not the aim of this appendix to exploit the data completely by trying all kind of masks.

D.2 Setup and data genera tion

There are 16 variables, each with 13128 records. The data is read in from different files with
MATLAB and merged into a single matrix. The inputs consist of

• The water demand in Mabrao is stored in the variable d1.

• The water demand in Pimenta is stored in the variable d2.

• The water demand in Cotao is stored in the variable d3.

• The water demand in Ranholas is stored in the variable d4.

• The water demand in Rinchoa is stored in the variable d5.

• The water demand in Merces is stored in the variable d6.

• The pump data is stored in two variables (two pumps), n2 and n3 respectively (no data
about pump1 is available).

• The data about the valves is stored in u1, u2, u3, u4, u5, u6 and u7.

The output is the pressure p at a certain point in the distribution network.

248

Hence, there are 15 inputs and 1 output. The system works within a certain operating range,
so no trends are expected a priori (in contrast to appendix C). The whole set of observations
for the output is depicted in Figure D.1. The first 48 records for all signals are shown in
Figure D.2.

p

75

80

85

90

95

100

1 2001 4001 6001 8001 10001 12001
time instance

Figure D.1 : Variable p

249

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
time instance

d1

d2

d3

d4

d5

d6

n2

n3

u1

u2

u3

u4

u5

u6

u7

p

Figure D.2 : Zooming in on the first 48 records (each variable is rescaled to [0,1])

250

Data mining approach with maximal allowable mask of memory depth seven

As the records are very long and there are many variables, the limitations of the CART ver-
sion begins to count. The maximum memory depth of a maximal allowable mask is deter-
mined by the dimensions of the raw data matrix, because the CART version used here (ver-
sion 3.6 for 32MB) uses no more than 32MB RAM. The CART documentation says that this
corresponds with approximately handling one million entries. Hence, knowing that the cardi-
nality c of a maximal allowable mask with a depth d for n variables is given by

c n d �

The number of mask entries is also the number of state variables in the static matrix that is
handed over to CART for subsequent processing.

The training set consists of 2/3 of the total set of 13128 observations. Hence, the total number
of entries in the data matrix given to CART is

2
13128

3
c� �

Filling in n by 16 and setting the total number of entries equal to the maximum number of en-
tries, which is approximately 1000000, d is obtained from

2
13128 16 1000000

3
d� � � �

Solving for d gives a maximum depth of 7.14. Therefore, a maximal allowable mask of mem-
ory depth 7 is tried, because it may be still feasible for the software package. When applying a
maximal allowable mask with a memory depth of seven, one obtains an optimal tree (within
one standard error) consisting of 114 terminal nodes (and a relative error of 1.1%). No cross-
validation is used (the number of records is above the standard threshold value of 3000 for
CART), so a (randomised) fraction of the data is used for testing the internal model validity.
This fraction is 0.3333, so 2/3 is used for the learning set and 1/3 for the (internal) test set.
The train-test paradigm for backward pruning the tree applies. Consequently, two box plots
can be drawn: one for the training set (in the training set), which is depicted by Figure D.3,
and one for the test set (in the training set), which is depicted by Figure D.4. The latter re-
places the role of the cross-validation error determination.

Figure D.3 : Terminal Node Box plots for the learning set

251

Figure D.4 : Terminal Node Box plots for the (internal) test set

The variable importance, with the top 1 surrogate splitters included, is depicted in Table D.1.

Ranking 1 (very high) 2 (high) 3 (low) 4 (very low < 10 %) 5 (extremely low)

n2 u2 u1 u1(i-2), u4 u1(i-3), u1(i-1), …

Table D.1 : Variable importance ranking (with first surrogates)

The variable importance, with only the primary splitters included, is depicted in Table D.2

Ranking 1 (very high) 2 (low) 3 (low) 4 (extremely low)

n2 u1, u1(i-2) u4 n3, …

Table D.2 : Variable importance ranking for primary splitters

Table D.1 and Table D.1 show that n2 is very important, while u2 and u1 play an important
role as surrogate. The forecasting on the originally split-off test set is depicted in Figure D.5,
which zooms in on the first 400 records.

252

75

80

85

90

95

100

1 201
time instance

p original

predicted

Figure D.5 : Predictions under the primary mask with memory depth seven (first 400
observations)

Comparing the predicted values with the known values in the originally split-off test set is
done by the scatter plot in Figure D.6. It shows that the fit is reasonably good.

75

80

85

90

95

100

75 80 85 90 95 100

original

pr
ed

ic
te

d

Figure D.6 : Predicted versus original values for the regression tree based on a maximal
allowable mask of memory depth 7 (MSE = 0.742 and MAE = 0.464)

D.3 Introducing a gap in the maximal allowable mask

The most logical thing to do, would be to make the mask as deep as possible. Unfortunately,
this cannot be done because of the limits of the bought CART version. An alternative is to use
a primary mask that has a gap in time. An example is the primary mask listed in Table D.3.

253

The motivation for this is based on a common sense idea that says that recurring patterns may
happen over 24 hours. Therefore, the mask is chosen as such to comprise the instance (i-24).
This is only one possible primary mask with a gap. It serves as an illustration on how one
could investigate for deeper patterns. Other primary masks can be devised as well, but they
will not be tried in this dissertation.

ref d1 d2 d3 d4 d5 d6 n2 n3 u1 u2 u3 u4 u5 u6 u7 p

-26 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-25 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-24 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1

Table D.3 : Primary mask for second experiment

The primary mask in Table D.3 is chosen such that it includes the states that were found im-
portant under the first primary mask (see Table D.1 and Table D.2).

254

The resulting 1SE regression tree has 122 terminal nodes and a relative error of 1.7%. The
variable importance, with the top 1 surrogate splitters included, is depicted in Table D.4.

Ranking 1 (very high) 2 (high) 3 (low) 4 (very low)

p(i-24) n2(i-24) n2, u2, u1 u4, n3, …

Table D.4 : Variable importance ranking (with first surrogates)

The variable importance, with only the primary splitters included, is depicted in Table D.5.

Ranking 1 (very high) 2 (low) 3 (very low)

p(i-24) n2 u1, u4, n3, u2, …

Table D.5 : Variable importance ranking for primary splitters

It appears that the output strongly depends on its value, 24 time instants before (if that infor-
mation is made available through a deeper mask). Comparing Table D.4 and Table D.5 re-
veals that the variable u2, which was so important in the previous section, plays the role of
surrogate.

The forecasting on the originally split-off test set is depicted in Figure D.7, which zooms in
on the first 400 records.

75

80

85

90

95

100

1 201

time instance

p
regression tree

original

Figure D.7 : Predictions under the primary mask with a gap (first 400 observations)

The predicted versus original values are shown in Figure D.8. It shows a reasonable good pre-
diction.

255

75

80

85

90

95

100

75 80 85 90 95 100
original

pr
ed

ic
te

d

Figure D.8 : Predicted versus original values for the regression tree with a gap (MSE =
1.048 and MAE = 0.558)

MSE MAE

Memory depth 7 0.742 0.464

Mask with gap 1.048 0.558

Table D.6 : MSE and MAE for both regression trees1

From Table D.6, it can be seen that although the regression tree used here has more terminal
nodes than the previous one from section 0; its predictions are slightly worse.

D.4 Conclusion

The usage of gaps in primary masks allows to go beyond the maximal computable mask.
However, what happens if two entries would be important as a whole, but if they are sepa-
rated by the gap? Thus, more research is needed to untangle some problems associated with
this approach. This example shows that a priori knowledge has to be used to propose mean-
ingful, albeit high in cardinality, primary masks.

1 The number of points differs when applying the different masks. Hence, it is opt to use the mean squared error
and mean absolute error.

257

Abbreviations

5+1NN 5+1 Nearest Neighbour methods that applies for SAPS-II

5NN 5 Nearest Neighbour method

5UNN 5 Unit-rescaled Nearest Neighbour Method

AI Artificial Intelligence

AIC Akaike Information Criterion

ARMA Auto-Regressive (AR), Moving Average (MA)

C4.5 Name invented by Quinlan, no abbreviation

CART Classification and Regression Trees

CHAID Chi-squared Automatic Interaction Detection

DBMS Data Base Management System

DM Data Mining

FIR Fuzzy Inductive Reasoning

FSA Finite State Automaton

FST Finite State Transducer

GSPS General System Problem Solving

GST General System Theory

I/O Input/Output

ID3 Inductive Dichotomizer 3
KDD Knowledge Discovery in Databases

LAD Least Absolute Deviation

LS Least Squares

MAE Mean Absolute Error

MGC Membership Grade Coefficient

MIMO Multiple Input Multiple Output

MIS Management Information System

MISO Multiple Input Single Output

ML Machine Learning

MSE Mean Squared Error

NP Nondeterministic Polynomial

258

OLAP On-Line Analytical Processing

OR Observation Ratio

SAE Sum of Absolute Errors

SAPS System Approach Problem Solver

SISO Single Input Single Output

SQL Structured Query Language

SSE Sum of Square(d) Errors

ST State-Transition

UC Universal Coupling

GLOSSARY

259

Glossary

Note: References in the glossary contain in front the chapter number. For example: the refer-
ence [1: Klir 1969] can be found at the end of chapter 1.

Activity: The ensemble of the variations in time of all the quantities under consideration at a
given resolution level will be called the activity of the system, [1: Klir 1969, p. 41]. The ac-
tivity of a system is a record of data for a given time interval, or the ensemble of the varia-
tions in time of all the quantities under consideration at the given resolution level. If integers
are used after abstraction of the system quantities to obtain system variables, then the activity
matrix is called normalised, [1: Klir 1969, p. 115].

Akaike information criterion (AIC): A criterion that attempts to prevent overfitting by pe-
nalising each extra parameter. Used for model selection.

APL: APL is a programming language originally created by Ken Iverson in the 1960's. APL
began as a notation to describe mathematical ideas. The notation consists of a set of symbols
and a syntax to describe the processing of data. The power of APL comes from its direct ma-
nipulation of n-dimensional arrays of data. The APL primitives express broad ideas of data
manipulation. These rich and powerful primitives can be strung together to perform in one
line what would require pages in other programming languages, [from
www.acm.org/sigapl/apl.htm]

Attribute focusing involves a (horizontal) data reduction in the parameter space. It creates a
target data set by focusing on a subset of variables — restrict the parameters used to do the
analysis. Examples: possible relevant variables are occupation, marital status, possessions,
bank accounts with amount of money on them, age, other loans, etc., while irrelevant vari-
ables are hobbies, religion, race, etc. Thus, attribute focusing is mainly done manually to re-
strict the search space by elimination of (what are assumed) irrelevant dimensions. One could
try different sets of attributes and run the whole process to see if useful patterns emerge (be-
cause some data mining algorithm can detect irrelevant variables), but this may become im-
possible due to computational complexity in high dimensional spaces. Hence, usually a
maximum acceptable set is used and during the pattern search irrelevant attributes are elimi-
nated (e.g., they do not contribute to the information contents).

Backward stepwise methods: see forward stepwise methods

Base model: a model, which description can never be fully known, although certain aspects
of its description may be accepted as known. The base model provides a complete explanation
of the behaviour of a real system; it may be expected to comprise many, many components
and interactions.

Basket analysis: a method of analysing customers’ behaviours and looking for patterns in
their buying preferences.

260

Bayes error rate: In the statistical approach, an overlap between the probability distributions
of the different classes (near decision surface) is an inherent aspect of the approach. A deci-
sion surface or line will be based on a threshold. The overlap has as effect that there will be
always a lower bound to the error rate of classification (Bayes error rate) no matter what clas-
sification method is used. The lower bound can theoretically be reached by the optimal attain-
able classification rule, i.e., the Bayes' classification rule, which is defined as such. The only
way to get rid of the overlap and thus the inherent minimum bound on the error rate is to im-
port extra information.

Boosting: Boosting is a technique for generating and combining multiple classifiers to give a
superior prediction accuracy. For example, when a new case is to be classified, each classifier
votes for its predicted class and the votes are counted to determine the final class. Unfortu-
nately, boosting doesn't always help.

Case (synonym: example, instance, object): see object.

Causal dynamical system: the outputs of a system at a certain time instance t0 are not influ-
enced by inputs at t ≥ t0.

Certainty measure (evidence measure): indicates the significance of a pattern. This signifi-
cance is often measured by a statistical criterion. Certainty is related with accuracy. In other
domains (fuzzy set theory), confidence measures are used. Related with this is also a measure
of support.

Change and deviation detection discovers the most significant changes in data from previ-
ously measured values; e.g. fraud detection.

Classes: They can be defined in some different ways. Classes can be pre-defined by a parti-
tion of the sample space, i.e., as a function of the attributes themselves (unsupervised learn-
ing). Another definition is that classes correspond to labels for different populations (classifi-
cation), e.g. dogs and cats are two classes and it can be said whether an animal is a cat or a
dog (crisp). Finally, they can be defined as resulting from a prediction problem (a class is an
outcome that must be predicted from knowledge of the attributes). The latter case will be the
definition applied in the dissertation.

Clustering seeks to identify a finite set of categories or clusters to describe the data. The
categories may be mutually exclusive and exhaustive or consist of a hierarchy of overlapping
categories. It is the task of segmenting a heterogeneous population into a set of more homo-
geneous clusters. The grouping is based on self-similarity. It is often used as a first step in
market segmentation.

Complex (black-box) systems: systems with many I/O variables and with a deep memory.
Complex systems can also be defined in other ways, e.g., on UC-structure, but this disserta-
tion restricts the definition to parameters that relate to mask cardinality (see chapter 1 for a
definition). For a finite memory machine, it can be defined as the relevant number of argu-
ments in the output equation.

Comprehensibility is not necessarily the same as simplicity, but often shows the same ten-
dency. Comprehensibility is hard to formalise.

Conditional Entropy: The conditional entropy of Y given X = i is given by

| 2 |
1

(|) (|) log (|)
J

Y X Y X
j

H Y X i p j X i p j X i
=

= = − = =∑
where the summation is over all possible outcomes of Y, which is set to {1,2, …, J}.

261

The conditional entropy of Y given X is given by the average of the conditional entropy of Y
given X = i, i.e.,

1

(|) () (|)
I

X
i

H Y X p i H Y X i
=

= =∑
where the summation is over all possible outcomes of X, which is set to {1,2, …,I}

Confusion matrix: A confusion matrix lists the correct classification against the predicted
classification for each class (cross-classification of predicted versus true class). A confusion
matrix is a two dimensional matrix that contains on its diagonal elements the number of cor-
rectly classified cases and on its off-diagonal elements the number of wrongly classified
cases. As accuracy is a measure for the overall correctness of the classifier, it may be defined
via a confusion matrix. From a confusion matrix some new measures can be deduced, e.g.
sensitivity = true positives / actual positives.

Cost matrix: If different types of errors have a different impact on the cost of misclassifica-
tion, a cost matrix should be used. This is expressed by simple multiplication of an error with
its misclassification cost. Usually, a correct classification costs nothing (no penalty). The
multiplication factors can be represented in a misclassification cost matrix. The assignment of
cost factors is still a difficult decision usually made by an expert.

Cost of classification: it may be very well the case that construction of a classifier requires
such cost in obtaining a valuable training set that it is prohibitive. Examples can be found in
the medical field where human guinea pigs are not ethical (and economical) justifiable. A less
obvious illustration occurs when the decision to do a test is based on both the cost of test and
the cost of misclassification. If a test costs more than the corresponding misclassification,
then there is no point in doing it. Hence, the cost of test should be taken into account when
constructing classifiers. A special case arises when tests are inexpensive, relative to the cost
of classification errors. This may be the case in the medical domain, where the live of a pa-
tient is at stake. Sometimes, not all tests are necessary. Especially when tests are relatively
expensive, it may be advisable to lower (total) costs by alternating tests and classification de-
cision. Hence, do a test, examine the result and the classification error cost, and then decide if
further testing is feasible or justified.

CTRL-C: an interactive matrix manipulation language developed originally for computer-
aided control system design, and enhanced later for other purposes such as signal analysis and
statistical operations. It is another Matlab dialect, which basically extends the Pascal pro-
gramming style, operating conveniently on matrix data structures [from
www.ece.arizona.edu/~cellier], and [2: SCT 1985],

Curse of dimensionality: The higher the dimensionality in a data set, the sparser and more
spread the data points are, while the number of parameters needed to specify a distribution in-
creases. If the variables are not independent, correlation has to be taken into account raising
the number of parameters involved even higher.

Customer retention: All actions, which rely on knowledge of the customer, to inspire loyalty
from a customer. This knowledge consists of the specific needs and preferences of the cus-
tomer, which are learnt from (past) personal interactions. Large firms have too many custom-
ers to keep this up. Hence, they want to learn automatically the lifetime value of each cus-
tomer to know which ones are worth investing money and effort into. They try to achieve this
via noticing (in an automatic fashion) via all kinds of registration machines (e.g., bar code
readers, surveys, …) what the customer does.

Data augmentation: The data is augmented with additional variables (fields) derived from
existing ones. This is natural in hypothesis testing where the additional variables may arise

262

naturally, but also in knowledge discovery it may be advisable, for example, to define a body
mass index in certain studies about overweight and other variables.

Data cleaning concerns the removal of noise, the analysis of outliers if appropriate, or trying
to construct a model to account for the noise. A strategy for handling missing data has to be
chosen. In data pre-processing all available a priori knowledge should be used (e.g., what
about an outlier?).

Data focusing involves a (vertical) reduction in the observation space if the data set may
contain too many records. It may be obtained by looking at data samples that are relevant for
the problem at hand. It is not to be confused with sampling the data for computational rea-
sons, which can be applied too. For example, only look at (previously or) existing customers
who have a mortgage loan when the goal is to seek a pattern for credibility assessment. Data
focusing can be done by resampling from the databases. Different sampling techniques may
be presented. The alternative is to select manually a subset of data records to process in the
next steps (e.g. do not select records with missing values). Data focusing is also used to re-
duce computing time in the successive steps of KDD. If one has a representative sample of the
whole database, then the number of records to work with is only a fraction of the total number
of records. Finally, clustering techniques may also help by grouping the data records and thus
inducing an aggregation.

Data mining refers to a class of methods that are used in some of the steps making up the
overall KDD process. A general definition of data mining and the link between data mining
and KDD is given in [5: Fayyad 1996]: “Data mining is a step in the KDD process consisting
of particular data mining algorithms that, under some acceptable computational efficiency
limitations, produces a particular enumeration of patterns over the data set”.
This enumeration of patterns can not be done exhaustively over the entire infinite space of
patterns. Computational restrictions are used to delimit this space. Thus, data mining involves
fitting models to, or determining patterns from observed data. The fitted models play the role
of inferred knowledge whether or not they reflect useful or interesting knowledge. The latter
issue belongs to the domain of KDD. The terms ‘KDD’ and ‘data mining’ are often used in-
terchangeable. Fayyad [5: 1996], however, makes a clear distinction between KDD and data
mining: “KDD process is the process of using data mining methods (algorithms) to extract
(identify) what is deemed knowledge according to the specifications of measures and thresh-
olds, using the database of facts along with any required pre-processing, subsampling, and
transformations of the facts”. Some institutions like SAS consider the data mining process as
the whole KDD process (see [5: SAS Inst. 1996], page 6). Management Information System
(MIS) people also tend to call the whole KDD process a data mining process, see [5: Berry
1997], page 5: “Data mining, as we use the term, is the exploration and analysis, by auto-
matic or semiautomatic means, of large quantities of data in order to discover meaningful
patterns and rules”. It is interesting to note that the term ‘automatic’ or ‘semiautomatic’ is
used. In data mining according to SAS and Berry the goal is defined, the data is pre-
processed, a model is specified, fitted, evaluated, and new knowledge is consolidated. These
steps are exactly the basic steps in KDD. See [5: Berry 1997] page 5, where he writes: “We
assume that the goal of data mining is to allow a corporation to improve its marketing, sales,
and customer support operations through better understanding of its customers”. The goal
has to be specified out and the understanding of its customers is the consolidation of the
newly gained knowledge. The term ‘data mining’ has been mainly used by statisticians1, data
analysts and the community. KDD has been used more by AI (Artificial Intelligence) and the

1 These boundaries are not that crisp

263

ML (Machine Learning) people (recently, there is a Special Interest Group in KDD, which is
abbreviated by SIGKDD). As KDD systems typically draw upon methods, algorithms, and
techniques from diverse fields such as machine learning, statistics, AI, exploratory data analy-
sis, etc., it is not unusual to find data mining methods from these fields.

Data projection: Dimensionality reduction or transformation methods that further reduce the
number of variables under consideration. Two examples are principal component analysis and
Fourier analysis.

Data set: a set of facts e.g., cases in a database.

Data warehouse: Data coming from many sources (billing records, scanning data, registra-
tion forms, etc.) are gathered together and organised in a consistent and useful way (common
format) in a so called data warehouse. The latter plays the role of enterprise memory. These
gathered and merged data is still not information, thus another step consists of analysing and
understanding the data, and to turn it into actionable information. This is the KDD process,
which plays the role of enterprise intelligence. Data warehouses are relatively new (since the
90’s) and the term data warehousing has become very popular in MIS environments. They
consider a data warehouse as a suitable repository that contains data that is analysed for busi-
ness decisions. It stands for collecting and cleaning transactional data and preparing it for on-
line retrieval for decision support (typical report generation or OLAP). Its function is to han-
dle missing data, to keep historical data (which operational databases do not maintain), and to
consolidate data (aggregation, summarisation) from heterogeneous sources, which typically
use inconsistent data representations, codes and formats which have to be reconciled. Data
warehouses cannot be bought off the shell because each company is different and has its own
specific requirements, end-user needs, etc. It is clear that the database community has a large
hand in this area of research. Notice that a data warehouse is also much different from a pro-
duction database: a data warehouse stores historical data. Furthermore, the structure of a data
warehouse is not static. Common database techniques such as normalisation are not very well
applicable anymore. This is tight related to OLAP, where the performance of queries is of the
uttermost importance. Hence, the design of a good data warehouse is an art on itself. It is not
surprisingly to see that a whole field with regard to data warehousing has emerged (with its
own terminology).

Data warehousing is the process of bringing together data from throughout an organisation
for decision-support purposes. The latter term should be taken very generally, i.e., gathering
reports, OLAP, and data mining. Data brought together is dirty: there are semantic and syn-
tactic conflicts; there are missing values, wrong values, etc. The data warehouse facilitates the
data mining efforts by doing a low-level data pre-processing of such data. Low level cleaning
of data happens in the data warehouse. Some actions are amalgamation of operational data
from different sources, checking of redundancy, removal of duplicates, correction of typo’s,
indication of missing values, verification of data and comparison of scales. Semantically
equivalent values should preferable be expressed by syntactically equivalent values (same
data model). Detecting data anomalies and rectifying them early in the data warehouse has
huge payoffs in the whole process, but it still takes up from 60 - 70 % of the total effort of
virtuous cycle, [5: Han 1999]. Hence, this practical and low-level data cleaning step should
happen always and independent of any goal setting. All data in the database should be con-
sistent, verified and use a same data model. Furthermore, a first kind of data reduction can al-
ready happen in the data warehouse (data cube aggregation) by eliminating unwanted resolu-
tion (e.g., precision for numbers, address details for addresses, string compression).

Data-suitability problems: Data-suitability can best be explained with some examples. If,
for example, one wants to analyse buying habits of customers in order to market differentially

264

to new customers and to long-standing customers then one needs data over a sufficient long
period. If a database is purged every six-months or year, then long-standing customers who
have not bought anything during the last six months or year will be overlooked. Another ex-
ample can be found in fraud detection. It is unlikely to have a data set with known fraudulent
cases from which one may extract useful patterns for fraud detection. Only deviation from
normal patterns can be used to suspect fraud.

Decision surfaces: Hypersurfaces that separate the measurement space in regions that corre-
spond with classes. Moving across a decision surface changes the decision taken.

Dependency modelling finds a model that describes significant dependencies between vari-
ables. At the structural level, it is specified which variables are locally dependent on which
other ones. At the quantitative level, the strength of the dependencies is indicated. This is
what SAPS tries to do.

Design set (synonyms: training set, learning set): A data set used for inducing a model.

Directed knowledge discovery: In directed knowledge discovery, the task is to explain the
value of some particular field (target, response, and dependent variable) in terms of all the
other fields (input, explanatory, and independent variables or stimuli).

Dynamic discretisation (KDD): Quantisation happens during the model induction. Tree
classifiers do dynamic discretisation. Discretisation in KDD is what is quantisation in GST
(although it is also called discretisation in certain fields).

Eager evaluation/classifier: Contrary to lazy learning methods, eager methods construct a
model beforehand for classification. A parsimonious classifier is built that allows very fast
classification on a test set. All necessary knowledge for classification is built in during the
construction of the classifier. It takes the classifier more time to learn compared to a lazy
classifier, but the classification is much faster. Examples of eager classifiers are neural net-
works, classification trees, regression trees, etc.

Expressiveness: measure of the information content in a variable, related with resolution.

Finite automaton (deterministic version) (DFA): A DFA is defined as a quintuple
� !6, , , ,S s F0 G , where
(1) Σ is the input alphabet (a finite nonempty set of symbols),
(2) S is a finite nonempty set of states
(3) s0 is the start (or initial) state, s S0 ° ,
(4) δ is the state transition function; G:S S� �6

(5) F is the set of final (or accepting) states, F S� (possibly empty).
from [3: Carroll and Long 1989, p. 30]. See also non-deterministic finite automaton.

Finite-memory machine (FMM): A FMM is a discrete system with a specified finite set of
stimuli and responses and a given function

y h u u u y y yi i i i i a i i i b
� � � � �

(, , , , , ,)1 1 2" "

where u u ui i i a, , ,
� �1 " are stimuli at time instances t t ti i i a, ,

� �1 " , respectively, and
y y yi i i b� � �1 2, ," are responses at time instances t t ti i i b, ,

� �1 " , respectively (i = 0, 1, …). A
probabilistic finite-memory automaton (PFMM) can be defined by assigning several values of
yi with different probabilities to a single set of values given by u u u y y yi i i a i i i b, , , , , ,

� � � � �1 1 2" " .

Forward stepwise methods: Forwards stepping makes the model more complex by adding
an extra variable, while backward stepping simplifies the model by throwing out variables
that are least relevant. Both methods do not necessary lead to the same end-model for both
represent a different limited search in the search space.

265

Generality determines the fraction of the population a pattern refers to.

Good mental fit: Typical the aim of ML. It can be used as a definition of ML. As described
in [5: Michie et al. 1994]: ML is interested primarily in models that are “simple enough to be
understood easily by humans”, i.e., in models that give a good mental fit. The latter term is
also another expression for the high degree of comprehensibility (and thus acceptability) with
the cognitive model of an expert.

Greyness spectrum: White-box and black-box systems are situated at the end of a spectrum
of intermediate system colours. This results in shades of grey that indicate (qualitatively) how
much a priori knowledge is available. This situation is nicely summarised by Karplus [1:
1976] in a spectrum of modelling, which is depicted in chapter 8. Remark the shift from
quantitative to qualitative when going more into the darker regions of the spectrum.

Hypothesis testing is a top-down approach. It consists of substantiation or disapproval of
preconceived ideas. The goal is to confirm the correctness of a priori knowledge2, e.g., are
young people more likely to respond to a given offer? A hypothesis is a proposed explanation
whose validity can be tested. Hypothesis testing is popular in the statistical society. A hy-
pothesis is a formalisation of an idea or mental model, which usually follows from a clear
statement of a problem. In ML: a hypothesis is a candidate representation of a target mapping.

Indicator function: The indicator function is denoted in general by I(statement). It is defined to
be 1 if the statement inside the parentheses is true, otherwise it is zero. E.g.

I
x A

x Ax A()°

�
�

�

�
�
�

1

0

Induction by enumeration states that, after observing that something is the case quite some
number of times, it is always the case. It is the one but worst scientific method of induction
(even worse is not looking at all at the data and take a default decision).

Inductive bias: Formally, for a learning algorithm L, instances X, a target concept c, and
training examples D x c x� , ()� � , let L x Di(,) denote the classification for xi learning after

training on D, then the inductive bias of L is any minimal set of assertions B such that for any
target concept c and corresponding training examples D, � � � �x X B D x L x Di i i� �� �() (,)� ,
where P Q� stands for P logically entails Q, or Q is inductively inferred from P. One may
regard the inductive bias as a piece a priori knowledge, so that the classification rule can be
considered as deduced from B and D. This corresponds with an inductive leap.

Inductive learning hypothesis: “Any hypothesis found to approximate the target function
well over a sufficiently large set of training examples will also approximate the target
function well over other unobserved examples” [5: Mitchell 1997].

Knowledge Discovery in Databases (KDD): Both Fayyad [5: 1996] and Berry [5: 1997]
give definitions. They all come down to the same thing, except for the degree of automation
involved in the KDD process (see data mining) Hence, the definition of KDD taken here is,
[5: Fayyad 1996, page 6]: “Knowledge discovery in databases is the non-trivial process of
identifying valid, novel, potentially useful, and ultimately understandable patterns in data
(from large databases3)”

2 More strictly said: one tries to falsify a hypothesis (cf. Popper).

3 Added by the author

266

Knowledge discovery is a bottom-up approach. It starts with data and tries to get previous
unknown knowledge, e.g., which target group of customer is more likely to buy our product,
what kind of customers group (clusters) are there? The goal is to discover useful relationships
or clusters in the data. It tries to find patterns without a predetermined idea or hypothesis
about what the pattern may be. The machine learning society has since long been interested in
knowledge discovery.

Lazy learning/evaluation/classification: Little time is needed for the construction of the
classifier, but the classification on a test set takes more time than an eager classifier. Most of
the necessary knowledge for classification still resides in the data set, which is used during
classification. Example-based methods are sometimes referred to as ‘lazy’ learning methods
because they delay processing until a new instance pops up to for classification. This can be
contrasted to ‘eager’ learning methods. Another example is classification by enumeration.

Learning set (synonyms: Design set, training set): see design set.

Lumped model: Due to the complexity of a base model, a relatively more practical model
has to be found under a given set of conditions (experimental frame), [1: Zeigler 1976, chap-
ter 2].

Machine learning: A definition of can be found in [5: Mitchell 1997]. Mitchell states that “a
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E”. The field of machine learning is concerned with the question of how to
construct computer programs that automatically improve with experience, i.e., computer pro-
grams that learn. Machine learning attempts to answer questions such as
(1) How does learning performance vary with the number of training examples presented?
(2) Which learning algorithms are most appropriate for various types of learning tasks?
(3) What algorithms exist, which is best, convergence for sufficient training data, how much

data points to have sufficient data?
(4) How to include a priori knowledge?

One has to determine exactly what type of knowledge will be learned and how it will be used
by the performance program. Usually this boils down to searching in a vast search space of
choices to the best solution for the learning problem at hand, but for which the best search
strategy is not known (optimisation problem).
In addition, the concept of a good mental fit is of paramount importance in ML.
In Knowledge Discovery, machine learning is most commonly used to mean the application
of induction algorithms, which is one step in the knowledge discovery process. This is similar
to the definition of empirical learning or inductive learning in Readings in Machine Learning
by Shavlikand Dietterich. Note that in their definition, training examples are ``externally sup-
plied,'' whereas here they are assumed to be supplied by a previous stage of the knowledge
discovery process. Machine Learning is the field of scientific study that concentrates on in-
duction algorithms and on other algorithms that can be said to “learn”.

Maximal allowable mask: a special kind of primary mask for which the cardinality is maxi-
mal. Informally, except for the output entry (+1 in the mask), all other entries are -1. This is
contrary to a primary mask, which may have some entries set to zero (thus a lower cardinality
for a given number of variables and mask depth).

Mealy machine or finite state-transducer (FST): A FST is defined by a sextuple
� !6 *, , , , ,S s0 G Z , where the specifications are as for a DFA, but with
(5’) Γ denotes the output alphabet
(6) ω denotes the output function; Z :S � �6 *

267

This corresponds with what Klir [1: 1969] referred as a finite state machine (terminology is
not always consistent when developed in different domains).

Measurement space (synonyms: feature space, instance space): (multivariate) space
spanned by the variables. Each vector of measurements for a particular object corresponds to
a point in the measurement space.

Missing values: One has a missing value when the value for a variable is unknown or does
not exist. For example, absence of a co-ordinate in a measurement vector.

Model structure: it may have different meanings, but the one in this dissertation defines it as
the type of the system description: e.g., differential equation form, etc.

Moore machine: A Moore machine with a distinguished start state is a sextuple
� !6 *, , , , ,S s0 G Z defined in the same way as a Mealy machine, but where
(6’) ω denotes the output function; Z :S � *

Non-deterministic variants of a Mealy or Moore machine could be defined by relaxing the
determinism of the state-transition function and the output function. One has then for
- the state transition function: G: ()S S� �¥6

- the output function: Z : ()S � �¥6 * (Mealy) or : ()Sω →℘ Γ (Moore)
In this way one can define a non-deterministic Mealy and non-deterministic Moore machine.

Mutual information: The mutual information between two random variables X and Y is de-
fined by H Y X H Y H Y X(;) () (|) � . It measures the average reduction in uncertainty about y
that results from learning the value of x., or vice versa. A fundamental inequality first shown
by Shannon states that H Y H Y X() (|)� , thus the mutual information is always positive. It is
also symmetrical, i.e., (;) (;)H Y X H X Y= .

Noiseless cases (or noiseless situation): An ideal situation for learning is where every meas-
urement vector in the measurement space exactly belongs to one and only one class. In that
case, the classes are said to be perfectly separable and the situation is called noiseless or de-
generate. The classification problem encompasses then the generalisation of the known class
memberships of the samples in the design set to other points. The noiseless approach is very
typical for the machine learning domain.

Non-deterministic finite automaton (NDFA): A NDFA is a quintuple � !6, , , ,S S F0 G ,
where the specifications are the same as for a DFA, but
(3’) S0 is the set of start (or initial) states, S S0 ¯ ,
(4’) G: ()S S� �¥6 (�()S is the power set of S)
from [3: Carroll and Long 1989, p. 119].

Non-homogeneity can be interpreted in several ways:
(1) A mixture of data types (categorical or interval).
(2) A standard or non-standard data structure.
(3) Non-homogeneity in its strict meaning indicates that different relationships hold between
variables in different parts of the measurement space.

Novelty: implies the (often unexpected) deviation of a pattern from prior knowledge.

Nuggets problem type: This is a problem type described in [5: Klösgen 1996], which is
prominent when data is highly inconclusive or when the distribution of cases to classes is far
from uniform. Some classes may have almost no representants. Depending on the goal this
may or may not be a problem (e.g., taking classes together that are not interesting for the
goal).

268

Off-line learning: A training set is offered as a whole.

OLAP: OLAP (On Line Analytical Processing) is a multi-dimensional data analysis that
computes summaries and breakdowns along many dimensions. OLAP is superior and better
than the SQL (Structured Query Language) for analysis of data. The data is usually stored in a
data cube, which shows three chosen dimensions of the data. A specific terminology is then
used to summarise data (roll up), to go from higher level summary to lower level summary or
detailed data (roll down, drill down, drill through), to select and project (slice and dice), etc.

On-line learning: A training set is offered on a pair by pair basis. The passing in of a par-
ticular training pair is called a presentation.

Parameter space: support space

Pattern: an expression in a certain formal language describing facts in a subset of a data set.
A pattern should be simpler than the enumeration of all facts in the subset (parsimonious).

Period sampling: the sampling instants are equally spaced in time, [2: Åström and Witten-
mark 1997].

Permanent behaviour: intrinsic behaviour. This kind of behaviour stems from an absolute
relation, i.e., a relation valid for any activity and for all time (all modes of the system). In
practice, this behaviour is difficult to distinguish from a relatively permanent behaviour (a
specific mode (activity) of the system).

Physical systems: In physical systems, the quantities are measurable, otherwise, one has ab-
stract systems.

Predictiveness: measure of the forecasting power (usually measured by accuracy).

Primary mask: called candidate mask in SAPS-II. The mask search will only generated sub-
masks from this primary mask for evaluation and comparison. It limits the search space (not
to be confused with a maximal allowable mask). The cardinality of a primary mask can be
less than a maximal allowable mask, because a primary mask may be based on a priori
knowledge. Examples are found in Appendix A (some entries are set zero beforehand), Ap-
pendix C (after feedback from another method) and Appendix D (a mask with a gap).

Probability density estimation consists of techniques for estimating the joint multivariate
probability density function. It can be used in conjunction with classification techniques.

Problem of induction: When a general rule (no matter how complex) is learnt from observa-
tions, e.g., via induction by enumeration. It may very well be that the next observation refutes
the general rule, even after observing a same case many times until then. This is known as the
problem of induction. It implies that there is no secure foundation for inductive generalisa-
tions in an infinite universe.

Quantisation: mapping of sampled continuous values to a finite set of qualitative values.
This is similar to digitalisation of a signal.

Raw data: real data, i.e., measured data (attributes) coming from the system

Redundancy has to do with the similarity of patterns with other (already found) ones and to
what degree one pattern follows from another.

Relatively closed: the paths over which the environment acts on the system — the inputs or
stimuli — as well as the paths over which the system acts on the environment —the outputs
or responses — are accurately defined, [1: Klír and Valach 1967].

269

Richness of structure: the variability in the data should be high enough and some data at-
tributes must capture relevant knowledge.

Robustness of a classifier: how well can a classifier cope with noise and missing values.

Sampling theorem by Whittaker in 1915 and described in [1: Klir 1969, p 71] states that
“Every continuous function of time which has a frequency spectrum with an upper frequency
limit fmax can be accurately substituted by a finite number of its values recorded at time inter-

vals of t
f

�
1

2 max

” This theorem is also known as the Nyquist theorem. Later it was explored

in more depth by Shannon in 1949, [2: Åström and Wittenmark 1997].

Sampling: (in the context of dynamical systems) the determination of the (optimal time) step
in the case of continuous support. [2: Åström and Wittenmark 1997] gives a definition in the
context of control and communication: sampling means that a continuous-time signal is re-
placed by a sequence of numbers, which represents the values of the signal at certain times.
The inverse process is called signal reconstruction.

Selectivity condition, [1: Karplus 1976]: The selectivity condition can best be illustrated with
a simple example. When considering a simple resistor we may use Ohm’s law, but we know
this is only a linear approximation of a more complex behaviour. Going into more detail, one
could opt to look at heat effects too and chemical composition. Even size effects may play a
role when the dimensions are very small (like in IC’s). Besides these static considerations,
one may look at the time variant behaviour of the resistor concerning the just mentioned prop-
erties (e.g., ageing effects, burning out of the resistor). Thus, when one considers a reasonably
complex system that consists of many components (complex structure), one clearly has to
limit the investigation of the system to the observation of certain attributes (values of certain
quantities characteristic for the system). This is related to the relative closedness of a system.

Separability: The separation between the system under investigation and the environment in-
duces boundaries, which may be hard to define, [1: Karplus 1976].

Simplicity refers to the syntactical complexity of a pattern.

Smalltalk: an object-oriented programming environment. It is exemplary for object-oriented
thinking. Many dialects are available, some of them are for free, see also www.bsug.org

Soften threshold: Implemented in See5© by breaking each threshold into three ranges. If the
attribute value in question is in the outer ranges, classification is carried out using the single
branch corresponding to the `<=' or '>' result respectively. If the value lies in the middle
range, both branches of the tree are investigated and the results combined probabilistically.

Space-time resolution level: Accompanying the space-time specification we need the space-
time resolution level, which concerns the level of detail in measuring the attributes (e.g. accu-
racy and sampling rate/frequency of measuring).

Space-time specification: When observing what are deemed relevant attributes of a system,
one must also take into account the time frame of the observations (beginning and end of
measurement, sampling,…). The previous specifications that apply for a system under inves-
tigation is what Klir [1: 1969] calls the space-time specification.

Standard structure data: In a standard structure, the dimensionality of the measurement
vectors is fixed. For tree classifiers, this implies that the class of questions for splitting in a
tree can be standardised. It is assumed that the measurement vectors have the form
G

"x x xM (, ,)1 with M fixed and each split depends on the value of only one variable.

270

Static discretisation: E.g., continuous values can be quantised by the use of an equal-width
partitioning (uniform grid) or via equal-depth (frequency) partitioning [5: Han 1999].

Summarisation results in a compact description for a subset of data, e.g. mean, range, me-
dian, variance, etc. for all field (summary statistics, report generation with corresponding
graphs, …).

Summary and Description problem type: Problem type that emphasises gaining insight:
comprehensibility is important and the level of generalisation should be high enough [5:
Klösgen 1996]. Few classes are often preferred, which can be obtained by attribute focusing.

Supervised learning (ML): A process in which the learner searches in the hypothesis space a
hypothesis that agrees with all the examples in the training set. In KDD, this is called directed
knowledge discovery approach.

System: In the investigation of ‘something’, we have to confine our research to a certain part
��������	�
��	����
	��	����������	�	���������	����
���������������������	��������	��S as a set of
pairs of sequences of input and output symbols generated by an automaton by the application
of P and G on a given input sequence. The automaton is defined as a quintuple (A, B, Z, P, G)
such that A is the set of input symbols, B is the set of output symbols, Z is the set of states, P
is the next state function, i.e. P A Z Z: � 	 , G is the output function, i.e. G Z A B: � 	

Zeigler states in [1: Zeigler 1976] that a system consists of a static structure (a time base, in-
put stimuli, output responses, and a state set (memory of the system)) and a dynamic structure
(the functions between outputs and inputs)

Target mapping: In supervised learning, computational learning aims to produce an imple-
mentation of a mapping between two sets of objects. This is called the target mapping. Hence,
computational learning is a process in which a learner produces a representation of a target
mapping working from training information derived from some environment [5: Thornton
1992]. Based on a training set a target mapping must be constructed that enables correct out-
puts to be returned for inputs that do not appear in the training set. However, depending on
the learning algorithm the constructed representation will vary. The concept of a target map-
ping allows for definitions for inductive learning hypothesis, connectionist learning, etc.

Target marketing: In advertising, an advertiser wants to reach a certain target public (pro-
spective customers). Target marketing involves the identification of the variables that are im-
portant in identifying these customers with a higher responsiveness.

Test set: Set on which the validation of the induced model happens, also called validation set.

The virtuous circle of data mining is described by a cycle that consists of [5: Berry 1997]:
(1) identifying the business problem. This results in setting the goal in KDD module.
(2) using data mining techniques to transform the data into actionable information. This is the

remainder of the KDD process module.
(3) acting on the information. This action is not considered in the KDD.
(4) measuring the results and put them in the database for possible further processing. This

action is not considered very explicitly in the KDD, i.e., one may consider two kinds of
feedback from the results to the goal.

(a) does it satisfy the goal?
(b) will the action satisfy the goal (is the action wrong, does the goal need adjustments)?

Only item (a) is considered in KDD. Notice that item (1) and (3) are pure enterprise issues,
which are taught in management courses. The module ‘measure results of action’ thus refers
specifically to measures of business value that go beyond response rates and costs, beyond
average and standard deviations. It is more than just knowledge consolidation; it is looking at

271

the real world effect of applying the information. Based on the results of the actions under-
taken, one can define new goals or discover new business problems that have to be investi-
gated further. The virtuous cycle can also be applied to scientific discovery, where found in-
formation can often be tested by experiments (act on the information) and where as a result
new goals (lines of research) can be set forward.

Training set (synonyms: Design set, learning set): see design set.

Undirected knowledge discovery: In undirected knowledge discovery, there is no target
field. This is contrary to directed knowledge discovery.

Unsupervised learning/classification refers to the process of defining classes of objects: the
goal is to formulate a class structure (deciding how many classes and the assignment of the
objects to the classes). A typical example is clustering analysis. In KDD, this is called undi-
rected knowledge discovery [5: Berry 1997].

Usefulness: relates a pattern to the goal set forward.

DUTCH SUMMARY

1

Nederlandstalige Samenvatting

Dit doctoraatswerk levert twee fundamentele bijdragen voor een op patroonherkenning
gebaseerde inductie van voorspellingsmodellen voor dynamische tijdsinvariante ‘black-box’
systemen. De eerste bijdrage betreft een methodologisch-theoretische uitbreiding van de
mogelijkheden van een experimenteel software pakket, SAPS-II genoemd, die niet-
parametrische systeemidentificatie van dynamische systemen beoogt. SAPS-II is ontworpen
door Cellier [2: 1991]4 en zijn team. De andere bijdrage betreft het opzetten van een
veelbelovende link van de onderliggende methodologie van SAPS-II met een steeds
populairder wordend wetenschappelijk domein dat, abusievelijk, ‘data-mining’ wordt
genoemd. Bovenstaande link heeft tot gevolg dat een arsenaal van additionele methoden
beschikbaar komt voor SAPS-II.

1 Initiële probleemstelling

De motivatie om vanuit SAPS-II te starten, had te maken met een fundamenteel probleem in
verband met de complexiteit van de te identificeren ‘black-box’ dynamische systemen. De
term ‘black-box’ verwijst naar het ontbreken van a priori kennis over het systeem. Voor zo
een type systemen zijn enkel de in- en uitvoer waarden bekend als functie van de tijd (Figuur
1).

Het gedrag van een systeem kan gemodelleerd worden via patronen. Elk patroon staat voor
een bepaalde afhankelijkheidsrelatie tussen een uitvoer en de andere in- en uitvoeren.

u1(t)

u2(t)
u3(t)

u4(t)

y(t)
?

Figuur 1 : Een ‘black-box’ systeem met 4 invoeren en 1 uitvoer

Voor het systeem in Figuur 1 zou het volgende patroon kunnen gelden (hierbij stelt f� een
niet nader gespecificeerde afhankelijkheid voor):

1 3 2 3() ((3), (3), (), ())y t f u t t u t t u t t u t�
 �
 �
 �� (1)

Bovenstaand patroon stelt dat een uitvoer y op een tijdstip t afhankelijk is van

• een invoer u1 op 3 tijdstappen terug ten opzichte van het beschouwde tijdstip t,

4 Omdat de referenties in het doctoraat per hoofdstuk staan, wordt het hoofdstuknummer hier ook aangeven in de
referentieverwijzingen. Eigen publicaties vindt men in de Engelstalige introductie.

2

• een invoer u3 op 3 tijdstappen terug ten opzichte van het beschouwde tijdstip t,

• een invoer u2 op 1 tijdstap terug ten opzichte van het beschouwde tijdstip t,

• een invoer u3 op hetzelfde beschouwde tijdstip t.

De uitvoer y is niet afhankelijk van de invoer u4 in dit patroon.

Met een ‘complex systeem’ wordt dan een systeem bedoeld met een groot aantal in- en
uitvoeren en/of waarvoor het afhankelijkheidspatroon diep terug gaat in de tijd. Dit stemt

overeen met een groot aantal argumenten voor f� in vergelijking (1). Bij het patroon in
vergelijking (1) werd geen enkele specifieke wiskundige structuur verondersteld (een lineaire
vergelijking, een differentiaalvergelijking, e.d.), waarvoor bepaalde parameters dienen te
worden geschat. In dit verband spreekt men, in de systeemtheorie althans, van een niet-
parametrische benadering5. Tenslotte wordt verder verondersteld dat het patroon in
vergelijking (1) niet verandert in de tijd, m.a.w. het is tijdsinvariant. Dit betekent dat de
inwendige structuur en/of de intrinsieke parameters van het systeem niet tijdsafhankelijk zijn,
of dat observaties in ieder geval geen drift in de tijd vertonen (stationariteit) gedurende de
tijdspanne waarin de systeemidentificatie-benadering van toepassing is (opstellen en gebruik
van het model).

Men kan nu de probleemstelling die ten grondslag ligt aan het totstandkomen van dit
doctoraat als volgt omschrijven: SAPS-II was niet in staat om zeer complexe (systeemgedrag)
patronen te identificeren.

2 Doelstelling van het doctoraat

Uit het voorgaande mag men stellen dat dit doctoraat een methode zoekt die de mogelijkheid
biedt tot een niet-parametrische, op patroonherkenning gebaseerde, systeemidentificatie van
complexe realistische dynamische tijdsinvariante ‘black-box’ systemen. Deze thesis beoogt de
inherente beperkingen van SAPS-II, wat betreft de identificatie van complexe systemen,
drastisch te verminderen. Dit was mogelijk door de probleemstelling vanuit verschillende
invalshoeken te benaderen en vervolgens twee fundamentele wijzigingen door te voeren in de
onderliggende methodiek.

De eerste wijziging situeert zich in het domein van algemene systeemtheorie (General System
Theory), afgekort door GST. De oplossing in dit domein betreft een verandering van
zoekstrategie. Deze wijziging vormt het onderwerp van hoofdstuk 4, waar ook een
rechtvaardiging voor de toepassing van de nieuwe methode wordt gegeven.

De tweede wijziging is veel ingrijpender. Hierbij wordt de initiële probleemstelling
getransformeerd naar een equivalente probleemstelling in het domein van kennisextractie in
gegevensbanken (Knowledge Discovery in Databases), afgekort door KDD. Dikwijls wordt
de term KDD vervangen door de meer populaire (maar onjuiste substitutie) term ‘data-
mining6’. De oplossing in het ‘data-mining’ domein is van fundamentele aard. Zij grijpt terug
naar de principes die aan de basis liggen van SAPS, en die terug te vinden zijn in GSPS
(General System Problem Solving) [1: Klir 1985]. Dit heeft eveneens als gevolg dat alle
verdere modelleeracties nog maar weinig te maken hebben met de oorspronkelijke benadering
in het systeemtheoretisch domein (hoofdstuk 7). De transformatie zorgt ervoor dat een
verscheidenheid aan nieuwe methoden kunnen worden toegepast, die elk op zich het

5 In statistiek slaat ‘niet-parametrisch’ op het al dan niet aanwezig zijn van distribuele veronderstellingen

6 Data-mining is een proces in de KDD levenscyclus (hoofdstuk 5)

3

onderwerp kunnen vormen van diepgaand onderzoek. Daarom is er in hoofdstuk 8 van dit
doctoraat één representatieve en populaire methode uitgekozen om de nieuwe benadering te
illustreren.

Deze doctoraatsthesis overbrugt derhalve een kloof tussen twee belangrijke wetenschappelijke
domeinen, namelijk General System Theory en Knowledge Discovery in Databases. GST
behandelt dynamische systemen met de bijbehorende modelconstructie-problematiek. KDD
probeert bruikbare en niet-triviale patronen te herkennen in observaties, of vooropgestelde
hypotheses via diezelfde observaties te bevestigen. Bijna alle applicaties in KDD die dit
bewerkstelligen werken met statische gegevens. Tijdsafhankelijkheid wordt, behalve in
tijdsreeksen, op een ‘statische’ manier behandeld. Op het eerste gezicht is een verband tussen
beide domeinen voor de identificatie van dynamische systemen niet vanzelfsprekend. Het is
dankzij het gebruik van een basistransformatie uit GSPS, in combinatie met de ingevoerde
topdown benadering uit hoofdstuk 4, dat de mogelijkheid ontstaat om data-mining methoden
uit het KDD domein toe te passen op SAPS.

3 Opbouw van het doctoraat

Dit doctoraatswerk wordt ingeleid met een overzicht van de twee wetenschappelijke
domeinen waarin het onderzoek zich voltrekt. Het verband tussen deze twee domeinen wordt
gradueel verfijnd naar het einde van de thesis toe (Figuur 2). Het doctoraatswerk bestaat dus
logischerwijze uit twee hoofddelen. Het eerste deel past volledig in het domein van de
algemene systeemtheorie (GST), het tweede deel in het domein van kennisextractie uit
gegevensbanken (KDD) waarbij het verband tussen KDD en GST eveneens aan bod komt.
Deze dualiteit wordt afgebeeld in Figuur 3. In de figuur staan de aparte hoofdstukken
vermeld. Er zijn acht hoofdstukken in totaal, introductie en eindconclusie niet meegerekend.
Een hoofdstuk dat in essentie een eigen wetenschappelijke bijdrage van de auteur behelst, is
vet omkaderd in Figuur 3. Merk op dat deze eigen bijdragen zich situeren in beide domeinen.

0HWKRGHQ HQ SDNNHWWHQ

(HQ VSHFLILHNH

VXE�PHWKRGRORJLH

2QGHUOLJJHQG

WKHRUHWLVFK NDGHU

*HQHUDO 6\VWHP 7KHRU\ �*67�

HQ

*HQHUDO 6\VWHP

3UREOHP 6ROYLQJ �*636�

�KIGVW ��

6\VWHP $SSURDFK 3UREOHP

6ROYHU

�6$36�

�KIGVW ��

6XE�RSWLPDDO

PDVNHU]RHNHQ

�KIGVW ��

5HJUHVVLH

ERPHQ HQ

'LFKWVWH

QDEXUHQ

PHWKRGHQ

�KIGVW ��

&ODVVLILFDWLH� HQ

5HJUHVVLHERPHQ

�&$57�

�KIGVW ��

.QRZOHGJH 'LVFRYHU\ LQ

'DWDEDVHV �.''�

HQ 6XSHUYLVHG OHDUQLQJ

YLD FODVVLILFDWLH

�KIGVW ��

systeem-theoretisch standpunt data-mining standpunt

Figuur 2 : De graduele focus voor beide wetenschappelijke domeinen

4

+RRIGVWXN �� 9DQ .QRZOHGJH

'LVFRYHU\ LQ 'DWDEDVHV QDDU

&ODVVLILFDWLH

+RRIGVWXN �� 9DQ *HQHUDO

6\VWHP 7KHRU\ QDDU *HQHUDO

6\VWHP 3UREOHP 6ROYLQJ

+RRIGVWXN �� 6\VWHP

$SSURDFK 3UREOHP 6ROYHU

+RRIGVWXN ��)RUPDOLVDWLH YDQ

0RGHO &RQVWUXFWLH LQ 6$36

PHW +LGGHQ 0DUNRY 0RGHOV

+RRIGVWXN �� 6XE�RSWLPDDO

0DVNHU]RHNHQ LQ 6$36

+RRIGVWXN �� &ODVVLILFDWLH� HQ

5HJUHVVLHERPHQ

+RRIGVWXN �� &RQFUHWLVHULQJ YDQ

GH 'DWD�0LQLQJ %HQDGHULQJ QDDU

6$36 PHW &$57 HQ 'LFKWVWH�

1DEXUHQ

+RRIGVWXN �� *HQHUDOLVDWLH YDQ KHW

YHUEDQG WXVVHQ *HQHUDO 6\VWHP

7KHRU\ HQ .QRZOHGJH 'LVFRYHU\ LQ

'DWDEDVHV YLD 0HWD�PRGHOHUHQ

������

Figuur 3 : Overzicht van het doctoraatswerk (vet omlijnde rechthoeken zijn originele bijdragen)

5

3.1 Deel I: General System Theory (GST)

Deel I van het doctoraat bestaat uit vier hoofdstukken (zie Figuur 2), die zich gaandeweg
meer focusseren (zie Figuur 1) op de bouw van een nieuwe applicatie die de beoogde
doelstelling uit sectie 2 kan waarmaken. Uiteraard begint dit eerste deel met een overzicht van
het wetenschappelijk domein GST, waarna de aandacht wordt verlegd naar het subdomein
van GSPS. In hoofdstuk 2 wordt de bestaande SAPS applicatie beschreven. Hoofdstuk 3
formaliseert de constructie van een voorspellingsmodel en bakent de probleemstelling
duidelijk af. Hoofdstuk 4 introduceert tenslotte de nieuwe suboptimale benadering van de
patroonherkenningsinductie, rechtvaardigt deze, en illustreert deze met enkele voorbeelden.
De eerste vier hoofdstukken worden in het navolgende meer in detail overlopen.

Hoofdstuk 1 brengt het theoretisch kader aan waarin de bestaande implementatie zich situeert.
In dit hoofdstuk wordt een overzicht van het domein van GST gegeven en wordt de
noodzakelijke terminologie verklaard. Er wordt naar een evenwicht gestreefd tussen een strikt
formele en een meer beschrijvende benadering. Een begin van focussering is gemaakt door de
klemtoon te leggen op black-box systemen. De inductieve benadering voor modelconstructie
wordt kort uitgelegd en gecontrasteerd met de deductieve benadering. Van inductief
modelleren naar systeemidentificatie is slechts een kleine stap. Systeemidentificatie bestaat
meestal uit twee grote delen. Het eerste deel is structuuridentificatie. Bij parametrische
systeemidentificatie volgt ook nog een tweede deel, namelijk parameterschatting. In deze
thesis wordt deze benadering echter niet gevolgd. Er wordt wel een specifieke niet-
parametrische benadering vooropgesteld die terug te vinden is onder de naam GSPS (General
System Problem Solving). Deze methodologie is gebaseerd op patroonherkenning. Het
tweede deel van hoofdstuk 1 gaat vervolgens dieper in op GSPS [1: Klir 1985]. GSPS wordt
meer gedetailleerd beschreven en de nodige formalisaties worden ingevoerd. De
epistemologische onderliggende gelaagde structuur van GSPS wordt uitgelegd waarbij de
nadruk op de eerste drie lagen gelegd wordt. Deze zullen later essentieel blijken te zijn voor
de KDD benadering. De epistemologische gelaagde benadering geeft de mogelijkheid tot een
stapsgewijze inductieve (en ook deductieve) benadering van systeemproblemen. In de
inductieve benadering worden de gegevens getransformeerd naar een vorm waarin
tijdsinvariante patronen tussen de geobserveerde signalen op een eenvoudige manier tot
uitdrukking komen [1: Klir 1969]. Het belangrijk begrip masker wordt hier voor het eerst ten
sprake gebracht. De uitwijding over GSPS omvat formele concepten die in SAPS
terugkomen.

In hoofdstuk 2 wordt een populaire versie van SAPS, die ontworpen is door Cellier en
vervolgens de naam SAPS-II kreeg, uitgebreid beschreven, [2: Cellier 1991]. De
basisbegrippen die de grondslag vormen voor de implementatie van SAPS-II worden in meer
detail besproken en geïllustreerd met voorbeelden. Concepten die belangrijk zijn voor de rest
van dit doctoraatswerk, zoals ‘recoding’, ‘optimal mask search’, ‘quality measures’, etc.
worden besproken en geformaliseerd. Het belangrijke begrip ‘masker’ wordt nu concreet
voorgesteld. Een masker is namelijk gewoon een andere representatie van een tijdsinvariant
patroon in de vorm van een matrix. Het masker dat overeenstemt met vergelijking (1) is te
vinden in Tabel 1. Dit masker heeft een geheugendiepte van 3 tijdstappen en een cardinaliteit
(dit is het aantal niet-nul elementen) van 5. De kolommen corresponderen met de
veranderlijken van het systeem (in- en uitvoeren). De rijen stellen de relatieve tijdsas voor
t.o.v. de laatste rij die als referentietijdstip dient.

6

1 2 3 4

3 1 0 1 0 0

2 0 0 0 0 0

0 1 0 0 0

0 0 1 0 1

u u u u y

t t

t t

t t

t

� �
� �� � � �� �
� �� �
� �

� � �� �
� ��� �

Tabel 1 : Masker dat overeenstemt met het patroon in vergelijking (1)

Met een dergelijk masker kan een toestands-observatie tabel worden aangemaakt. Men kan
dan aan elk masker een bepaalde kwaliteit toewijzen, die een afweging vormt van de graad
van determinisme (via Shannon Entropie) en de graad van complexiteit die bij het masker
horen. Verschillende definities voor de complexiteit van een masker zijn terug te vinden in
hoofdstuk 2.

Het masker van Tabel 1 is maar één uit vele. De bedoeling van de systeemidentificatie is een
masker te vinden dat een optimale kwaliteit heeft (hierbij kan de toestand-observatie tabel ook
een rol spelen). Het zoeken naar dit optimaal masker gebeurt op een uitputtende (exhaustive)
manier. Vertrekkende van ondiepe maskers worden alle mogelijke maskers gegenereerd en
geëvalueerd (waarbij de cardinaliteit telkens wordt opgetrokken als alle maskers van een
bepaalde cardinaliteit geëvalueerd zijn). Het masker dat de hoogste kwaliteit vertoont, wordt
beschouwd als het ‘beste’ of optimale masker. Elk masker dat wordt gegenereerd in dit proces
is een submasker van een ‘kandidaat’ of primair masker. Dit zoekproces is eindig omdat een
primair (kandidaat) masker de zoekruimte beperkt. Dikwijls kan er eerder gestopt worden
doordat de complexiteit van het voortgebrachte masker te hoog wordt, en de graad van
determinisme nauwelijks of niet meer stijgt. Met het aldus gevonden optimale masker kan
men nu op verschillende manieren voorspellingen doen. De eerste mogelijkheid steunt op het
toestand-observatie model, de tweede is een dichtste-buren benadering (k-nearest neighbours)

Hoofdstuk 3 introduceert toestandsmodellen. Aan de hand hiervan wordt het concept van een
toestandstransitiematrix uitgelegd. Deze stochastische tijdsinvariante matrix is afgeleid van
gediscretiseerde en gekwantiseerde observaties door hercodering. Dit suggereert dat een
specifiek onderliggend stochastisch proces aan de oorsprong ligt. Dit proces, namelijk
‘verborgen Markov modellen’ (hidden Markov models), wordt hier uit de doeken gedaan.
Doordat ‘gecontroleerde verborgen Markov modellen’ (nog) niet identificeerbaar zijn, werd
een gegeneraliseerde toestand gedefinieerd waarbij men overgaat naar verborgen Markov
modellen. Deze tonen duidelijk een formele overeenkomst met SAPS. Een nieuw
probleemtype dat de opbouw van de belangrijke toestandsobservatie matrix in SAPS
formaliseert, wordt in het kader van verborgen Markov modellen gedefinieerd en
geanalyseerd. Dit probleemtype is, net als een ander verwant en bestaand type, analytisch
oplosbaar. Het hoofdstuk eindigt met de conclusie dat een gelijkaardige problematiek de
grondslag vormt voor de modelleerproblemen in verborgen Markov modellen en SAPS. De
formalisatie toont aan dat correlatie tussen de argumenten in een patroon niet belangrijk is
[Van Welden 20xx]. Bepaalde terminologie wordt duidelijk gedefinieerd.

7

Het eerste deel van hoofdstuk 4 betreft de introductie en rechtvaardiging van een, op
heuristiek gebaseerde, suboptimale zoekstrategie [Van Welden and Vansteenkiste 1996]. De
stelling dat het zoeken naar het beste masker op zich zinloos is, wordt opgeworpen en
verdedigd. Eén van de argumenten hierbij is dat voor sommige (voldoende complexe)
systemen er eenvoudigweg geen beste masker kan gevonden worden. Het bestaande algoritme
vertoont namelijk een exponentiële complexiteit (2n). Daardoor wordt het aantal mogelijke
maskers dat moet onderzocht worden zo groot dat het rekenkundig niet meer haalbaar is om
ze allemaal te evalueren. De bestaande uitputtende (exhaustive) zoekmethode volstaat dus
geenszins om realistische complexe dynamische systemen te identificeren. Andere
argumenten slaan op de subjectieve betekenis van ‘beste’ masker. Als gevolg hiervan wordt
een nieuwe methode geïntroduceerd die niet meer het ‘beste’ masker zoekt (optimaal), maar
een ‘goed’ masker (suboptimaal). Deze nieuwe zoekmethode is topdown en gebaseerd op een
heuristiek (hill-climbing). Het corresponderende algoritme heeft een polynomiale
complexiteit (n2), wat uiteraard rekenkundig toelaat om een veel grotere maskerruimte te
doorzoeken (zie ook Figuur 4). De bovengrens van de zoekruimte is gedefinieerd door een
maximaal toegelaten masker (maximal allowable mask). Een voorbeeld van zo een masker
vindt men in Tabel 2.

invoeren uitvoer

 tijd u1 u2 u3 u4 u5 y

i-2 -1 -1 -1 -1 -1 -1

i-1 -1 -1 -1 -1 -1 -1

i -1 -1 -1 -1 -1 1

Tabel 2 : Voorbeeld van een maximaal toegelaten masker

De boomstructuur gebruikt voor de hill-climbing methode is getekend in Figuur 4.

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

 0 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

-1 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 0 1

 0 0 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

 0 -1 0 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 1

...

...

Figuur 4 : Gebruikte boom in de zoektocht voor het suboptimaal masker van Tabel 2

8

Het tweede deel van hoofdstuk 4 gaat dieper in op de implementatie-aspecten van de
suboptimale masker zoekmethode. Een prototype is ontwikkeld in Smalltalk [4: ObjectShare
1999], vanwaar het programma zijn naam ontleent: SAPS-ST. Het prototype is functioneel
verenigbaar met de bestaande SAPS-II versie7 van Cellier, maar bevat uiteraard ook de
nieuwe algoritmen om een suboptimaal masker te zoeken [Van Welden and Vansteenkiste
1994]. SAPS-ST is enorm gebruikersvriendelijk en hoeft geen programmering om gebruikt te
worden. Vanwege zijn functie als prototype kunnen er ook andere hercoderingsalgoritmen
eenvoudigweg ingevoegd worden en kan de maskerkwaliteitsfunctie eenvoudig gewijzigd
worden via een ‘drag and drop’ mechanisme.

3.2 Deel II: Knowledge Discovery in Databases

De suboptimale zoekmethode, geïntroduceerd in deel I van de thesis, lijdt echter wel nog
onder een aantal nadelen die ook van toepassing waren op de reeds bestaande uitputtende
(exhaustive) methode. Hieronder bevinden zich: het efficiënt omgaan met ontbrekende
waarden in de inputstroom van de observaties; het automatisch kwantiseren van de
veranderlijken; het ongetekend (unbiased) valideren van het voorspellend vermogen van het
model, enz. Een paradigma dat hier wel aan tegemoet komt, werd gevonden in het KDD
domein door twee kernideeën, waarvan één reeds inherent in de oorspronkelijke GSPS
methodologie aanwezig is, en de andere uit de suboptimale benadering over te nemen en in
een nieuwe context te gieten. Het resultaat leent zich uitermate voor allerlei ‘data-mining’
methodes.

Hoofdstuk 5 geeft een kort overzicht van het KDD domein. Tevens wordt aangetoond dat
data-mining een proces is in KDD dat in een grotere context dient geplaatst te worden. De
knowledge-discovery (bottom-up) benadering wordt beschreven en gecontrasteerd met de
hypothese benadering (topdown). Datawarehousing wordt besproken en ingekaderd in de
levenscyclus van KDD, die stap voor stap bekeken wordt in hoofdstuk 5. Het machinaal leren
(machine-learning) domein wordt kort toegelicht om er verhelderende concepten aan te
ontlenen. Leren onder toezicht (supervised learning) zal blijken van toepassing te zijn op de
systeemidentificatietaak als gesteld in het begin van dit doctoraat. Hoofdstuk 5 geeft verder
een overzicht van de modellen die kunnen worden gebruikt voor deze vorm van leren, waarin
classificeerders een belangrijke rol spelen. Zij leiden de boomclassificeerders in, die
belangrijk zijn in de uiteindelijke toepassing van data-mining op SAPS-II. Dit past in het
klassieke ‘classificatie en voorspelling’ probleemtype (‘Classification and Prediction’
problem type), waarin niet de snelheid van classificatie van belang is, maar wel de
nauwkeurigheid. Nauwkeurigheid kan zowel op trainingsgegevens als op testgegevens
gebaseerd zijn. De corresponderende classificatiefouten voor de trainingsobservaties (R(d) in
Figuur 5) zullen in aantal afnemen voor een meer complex model, maar het foutenaantal voor
de testobservaties (R*(d) in Figuur 5) zal, na een initiële daling (underfit), terug een stijging
(overfit) vertonen voor meer complexe modellen. Dit patroon is weergegeven in Figuur 5.

Wat betreft classificatiemodellen zal gestreefd worden naar begrijpbare (comprehensible)
modellen. Zulke modellen vindt men in classificatie- en regressiebomen, die van pas komen
in hoofdstuk 8 wanneer enkele voorbeelden de gemaakte sprong van GST naar KDD moeten
verduidelijken.

7 De SAPS versie van Cellier bevat wel nog toepassingen op het structureel niveau van GSPS

9

complexiteit
classificeerder

R

R*(d)

R(d)

underfit overfit(classificatie-
 fouten)

Figuur 5 : Resubstitutie versus werkelijke foutverhouding

Hoofdstuk 6 gaat dieper in op voornoemde classificatie- en regressiebomen. Dit hoofdstuk
geeft de noodzakelijke achtergrondkennis om de toepassing van deze bomen in het kader van
SAPS (hoofdstuk 8) te begrijpen. De onderliggende principes worden blootgelegd en
verklaard. De verschillende constructiemethoden van classificatiebomen wordt behandeld. Er
wordt verder uitgelegd hoe knopen in een boom zich splitsen, wanneer dit splitsen eindigt, en
hoe een te ver gegroeide boom gesnoeid kan worden. De voordelen van dit snoeien worden
toegelicht. Twee toonaangevende softwarepakketten worden beschreven. Elk pakket heeft zijn
eigen implementatie van de basisprincipes die gelden voor classificatie- en regressiebomen.
Het eerste softwarepakket, C4.5 [6: Quinlan 1993], heeft zijn wortels in het subdomein van
machinaal leren. Omdat C4.5 niet verder wordt gebruikt in hoofdstuk 8, is de beschrijving
ervan summier. Het andere softwarepakket, CART© [6: Salford 1999], afkomstig uit het
subdomein van de statistiek, wordt wel verder in detail bekeken omdat het gebruikt wordt in
hoofdstuk 8. Vooral de toepassing van surrogaatregels in de behandeling van ‘missing values’
en de mogelijkheid om regressiebomen te gebruiken gaven voor deze keuze de doorslag.

Hoofdstuk 7 behandelt de relatie tussen GST en KDD. Deze wordt beschreven op
verschillende abstractieniveaus. Het eerste deel van hoofdstuk 7 vergelijkt de filosofische
aspecten van GST en KDD. Hun respectievelijke levenscycli worden samengevoegd.
Klemtoonverschillen tussen beide domeinen worden verder uitgelegd en aangetoond wordt
hoe een wetenschappelijke kruisbestuiving kan plaatsvinden. Het tweede deel van dit
hoofdstuk vergelijkt GSPS en KDD in meer detail waarbij het ‘leren onder toezicht’
paradigma beschouwd wordt. Een methodologische toepassing van data-mining technieken
naar SAPS wordt summier besproken. Een meer gedetailleerde beschrijving met classificatie-
en regressiebomen wordt uitgesteld tot het navolgende hoofdstuk 8.

Hoofdstuk 8 toont de toepasbaarheid van data-mining met behulp van classificatie- en
regressiebomen voor SAPS. De sterke functionele gelijkenis tussen SAPS-ST en het relatief
eenvoudig boomclassificatie-algoritme ID3 [6: Quinlan 1986] wordt bondig uitgelegd. Verder
toont hoofdstuk 8 aan dat (manuele) hercodering met de nieuwe benadering niet meer nodig
is. Classificatie- en regressiebomen doen dynamische discretisering. Deze maakt optimaal

10

gebruik van de aanwezige informatie in de veranderlijken. Regressiebomen, die kunnen
opgebouwd worden met CART©, hebben het bijkomend voordeel dat ook de uitvoer niet
gehercodeerd hoeft te worden. Het gebruik van regressiebomen laat toe om zeer complexe
patronen te evalueren en in een voorspellingsmodel te gieten. De toepassingsvoorbeelden in
de appendices A,B,C en D illustreren dit. CART© geeft tevens een rangschikking van
veranderlijken. Deze rankschikking maakt een goede terugkoppeling naar SAPS, in de vorm
van een primair masker, mogelijk. Het voorbeeld uit appendix C illustreert dit. Het gebruik
van surrogaatsplitsingen laat een goede aanpak toe van observaties waarin waarden
ontbreken. Dit wordt met een voorbeeld uit appendix C geïllustreerd. Tenslotte wordt ook het
dichtste-buren (nearest neighbour) algoritme, aanwezig in SAPS-II, vergeleken met een
nieuwe, krachtige en eenvoudige versie die geen hercodering behoeft van de testobservaties.
De voorbeelden uit appendices A, B en C tonen aan dat de nieuwe methode effectief beter en
sneller werkt. Tenslotte wordt ook geïllustreerd met een voorbeeld uit appendix B dat regels
eenvoudig gegenereerd kunnen worden.

4 Besluit

De toegepaste wetenschappelijke bijdrage van dit doctoraatswerk is drievoudig.

De eerste bijdrage situeert zich in het domein van GST. Het betreft de introductie van een
suboptimale zoekstrategie, die het mogelijk maakt om naar meer complexe patronen te zoeken
dan dat met SAPS-II mogelijk is. Men kan bijvoorbeeld afgeleiden in een masker bijvoegen
en grotere tijdsconstanten bekijken. Niet alleen is een rechtvaardiging voor de nieuwe
benadering gegeven, maar ze is ook geïmplementeerd in een software prototype. Dit
prototype laat toe om verschillende zoekstrategieën uit te proberen en om de invloed van
verschillende kwaliteitsfuncties te onderzoeken.

De bijdrage in het domein van KDD overstijgt de grenzen van het GSPS raamwerk. Een brug
is gelegd van GST naar KDD. Een simpele (bestaande) transformatie, gecombineerd met een
maximaal toelaatbaar masker, ligt aan de grondslag hiervan. Een reeks nieuwe methoden, die
reeds aanwezig waren in KDD, komen nu aan bod als mogelijke kandidaatmethoden. Het is
uiteraard onmogelijk om al deze kandidaatmethoden te onderzoeken op hun geschiktheid
m.b.t. de probleemstelling beschreven in sectie 1. Daarom werden boomclassificeerders
gebruikt omdat ze het meest aanleunen bij de suboptimale benadering in deel I van de thesis.
De voorbeelden in de appendices werden allemaal met regressiebomen gemodelleerd. Uit de
experimenten blijkt dat ze goede voorspellende eigenschappen bezitten. De hogere
voorspellingsnauwkeurigheid t.o.v. de toestands-observatie voorspellingsmethode is
overduidelijk. Zelfs tegenover de dichtste-nabuurmethoden houden ze goed stand wat betreft
hun voorspellingsnauwkeurigheid. Dit is goed nieuws, want regressiebomen geven een
compact globaal model dat snel kan voorspellen (eager evaluation). De dichtste-
buurmethoden maken gebruik van lokale interpolatie. Ze hebben typisch de gehele
gegevensverzameling nodig bij elke voorspelling (lazy evaluation).

Een derde bijdrage betreft de verbetering van de dichtste-nabuurmethoden. De nieuwe
geïntroduceerde methoden zijn theoretisch beter onderbouwd, eenvoudiger, en sneller. Zij
kunnen nog steeds samen met een (sub)optimaal masker of met een boomclassificeerder
gebruikt worden. Deze laatste spelen dan de rol van feature selectors.

Deze thesis levert, naast de toegepaste wetenschappelijke, ook een theoretische bijdrage. Het
formele verband met hidden Markov Models geeft meer inzicht in de onderliggende
problematiek die gepaard gaat met niet-parametrische systeemidentificatie. De
methodologische koppeling van GST en KDD creëert ruimte voor een vruchtbare uitwisseling
van ideeën.

11

Tenslotte kunnen er nog richtlijnen gegeven worden in verband met de toepasbaarheid van de
drie onderzochte methoden (optimale zoekstrategie, suboptimale zoekstrategie, en data-
mining methode). Dit is voorgesteld in Figuur 6 die een voorkeur aangeeft voor hun gebruik.
Hierbij dient wel opgemerkt te worden dat, bijvoorbeeld, regressiebomen ook nog toepasbaar
zijn voor minder complexe systemen. Vooral hun externe validatiemethoden zijn interessant
vanwege hun minder getekend (biased) karakter.

JU
RR
WW
H
YD
Q
GD
WD
ED
VH

RSWLPDOH

]RHN�

VWUDWHJLH

VXERSWLPDOH

]RHNVWUDWHJLH

������������

	
���
����

DDQWDO YHUDQGHUOLMNHQ
P
D
[
LP

D
OH

G
LH
S
WH

LQ
WL
MG

Figuur 6 : Toepasbaarheid van de verschillende strategieën

5 Richtlijnen voor verder onderzoek

Appendix A toonde aan dat het effect van de wijze van hercoding niet gemakkelijk in regels
vast te leggen is. ‘Fixed-recoding’ gaf in het voorbeeld van appendix A een nauwkeuriger
voorspelling dan ‘Uniform-recoding’. Dit was niet te verwachten op theoretische gronden
(hoofdstuk 2). Regressiebomen voldoen in ieder geval beter, maar daar wordt de validatie van
het model gedaan via cross-validatie. Het is dus moeilijk om de vergelijking van ‘fixed’ en
‘uniform’ recoding door te trekken naar regressiebomen.

Dankzij de link met KDD kunnen nu nog andere data-mining methoden onderzocht worden
op hun performantie voor SAPS. Dit wordt voorgesteld in Figuur 7. Neurale netwerken,
genetische algoritmen, en niet-lineaire regressie behoren tot de mogelijkheden. Clustering
technieken kunnen mogelijk worden toegepast om subsystemen te identificeren
(structuurniveau in GSPS).

Zelfs als men bij boomclassificeerders blijft, dan nog zijn de mogelijkheden tot verder
onderzoek legio. Het hercoderen van een uitvoer laat toe om bepaalde waarden als ‘kritisch’
te beschouwen (bijvoorbeeld: te hoge straling, te hoge of te lage temperatuur, enz.). Een
kostgebaseerde classificeerder zou dan met een hogere nauwkeurigheid de ongewenste
waardenzones kunnen voorspellen (of identificeren). Dit is maar één van de vele
mogelijkheden tot verder onderzoek. Andere omvatten foutdetectie, betere discretisatie van
veranderlijken, enz.

12

Men mag dus gerust stellen dat dit doctoraatswerk niet het einde, maar het begin is voor
verder onderzoek.

6$36�67 &$57

*67 .''

PRGHOOHUHQ
V\VWHHP

LGHQWLILFDWLH

K\SRWKHVH

WHVW

GDWD

H[SORUDWLH

*636

GLUHFWHG XQGLUHFWHG

GHGXFWLHI LQGXFWLHI

VXSHU�

JHYLVHHUG

QLHW�VXSHU�

JHYLVHHUG

RSWLPDOH

]RHN�

VWUDWHJLH

VXE�

RSWLPDOH

]RHN�

VWUDWHJLH

ERRP

FODVVLIL�

FHHUGHUV

GLFKWVWH

QDEXXU�

PHWKRGHQ

QHXUDOH

QHWZHUNHQ

JHQHWLVFKH

DOJRULWPHQ

GHGXFWLHI LQGXFWLHI

SDWURRQKHUNHQQLQJVJHEDVHHUG

UHJHO

LQGXFWLH

VWUXFWXXU

QLYHDX"

Figuur 7 : Inductiemethoden in hun context

