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1 Abbreviations 

STR Short tandem repeats
FDP Forensic DNA phenotyping
EVCs Externally visible characteristics
ML Machine learning
MLR Multinomial logistic regression 
SVM Support vector machines
RF Random forest
ANN Artificial neural networks
AUC Area under curve
PCR Polymerase chain reaction 
SNPs Single nucleotide polymorphisms
NGS Next generation sequencing
GWAS Genome wide association studies
CODIS Combined DNA index system
BGA Biogeographical ancestry
AIC Akaike information criterion 
MPB Male pattern baldness
GIANT Genetic investigation of anthropometric traits
RBF Radial basis function
PPV Positive predictive value
NPV Negative predictive value
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7 Summary

Human identification through DNA has played an important role in forensic science and in the criminal justice 
system for decades. It is referring to the association of genetic data with a particular human being and has 
facilitated police investigations in cases such as the identification of suspected perpetrators from biological traces 
found at crime scenes, missing persons, or victims of mass disasters [1]. Currently there are two main methods 
developed: the genotyping through short tandem repeats (STR profiling) and the forensic DNA phenotyping (FDP). 
Despite the fact that these two methods are aiming in identifying a person through its genetic material, their 
approach and consequences that come up are completely different. STR profiling compares allele repeats at 
specific loci in DNA and aims at a match with already known to the police authorities DNA profiles, while FDP, 
which is the focus on the current study, aims in the prediction of appearance traits of an individual [2, 3]. In 
contrast with STR profiling, information that arise out of FDP cannot be used as sole evidence in the court [4]. 

The ability of predicting EVCs from DNA can be used as ‘biological witnesses’ that can only provide leads for the 
investigative authorities and subsequently narrow down a possible large set of potential suspects. The use of FDP 
begins a new era of ‘DNA intelligence’ and holds great promise especially in cases where individuals cannot be 
identified with the conventional method of STR profiling and also in cases where there is no additional knowledge 
on the sample donor. So far in FDP, traits such as eye, hair and skin color can be predicted reliably with high 
prediction accuracy and predictive models have already been forensically validated [5-7]. Regarding other 
appearance traits, the current lack of knowledge on the genetic markers responsible for their phenotypic 
variation and the lower predictability, especially of intermediate categories, has prevented FDP from being 
routinely implemented in the field of forensic science. 

The majority of the predictive models developed for appearance trait prediction were based on multinomial 
logistic regression (MLR) while only few used other methods such as decision trees and neural networks. Machine 
learning (ML) approaches have become a widely used tool for classification problems in several fields and they are 
known for their potential to boost model performance and their ability to handle different and complex types of 
data [8]. However, within the context of predicting EVCs, a systematic and comparative analysis among different 
ML approaches that could possibly indicate methods that outperform the standard MLR, has not been conducted 
so far. In addition, incorporation of priors in the EVC prediction models that may have potential to improve the 
already existing approaches, has not been investigated in the context of forensics yet. These priors indicate the 
trait category prevalence values among biogeographic ancestry groups, and their use would allow us to leverage 
Bayesian statistics in order to build more powerful prediction models.  In our case, incorporation of such priors in 
the model could reflect the additional information from all yet unknown causal genetic factors and act as proxies 
in the prediction model. Therefore, those two approaches were conducted throughout my PhD project in order to 
improve the already existing approaches of FDP which was the main aim of my study. 

In the first study, I aimed to collect a comprehensive data set from previously published sources on the spatial 
distribution of different appearance traits. I conducted a literature review in order to assemble this information, 
which later on could be incorporated as priors in the EVCs prediction models.  Due to the lack of available and 
reliable sources, our resulting data set contained only eye and hair color for mostly European countries. More 
specifically, I collected data on eye color from 16 European and Central Asian countries, while for hair color I 
collected data from seven European countries. For countries outside of Europe, where the variation is low, it was 
not possible to assemble trustworthy and population-representative data. Afterwards, I calculated the association 
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of those two traits and obtained a moderate association between them. Interpolation techniques were applied in 
order to infer trait prevalence values in at least neighboring countries. Resulting prevalences and interpolated 
values were presented in spatial maps. 

The subject of the second study was to incorporate the trait prevalence values as priors in the prediction model. 
However, due to the lack of reliable data that was observed in the first study, the incorporation of the actual 
priors that would give us the actual insight of their impact in the EVC prediction was not feasible with the current 
existing knowledge and the available data. Therefore, I assessed the impact of priors across a grid that contained 
all possible values that priors can take, for a set of appearance traits including eye, hair, skin color, hair structure, 
and freckles. In this way, I aimed to assess potential pitfalls caused by misspecification of priors. Results were 
compared and evaluated with the corresponding prior-free' previously established prediction models. The effect 
of priors was demonstrated in the standard performance measurements, including area under curve (AUC) and 
overall accuracy. I found out that from all possible prior values, there is a proportion that shows potential in 
improving the prediction accuracy. However, possible misspecification of priors can significantly diminish the 
overall accuracy. Based on that, I emphasize the importance of accurate prior values in the prediction modelling 
in order to identify the actual impact. As a consequence of the above, the use of prior informed models in 
forensics is currently infeasible and more studies on the topic are necessary in order to extend the current 
knowledge on spatial trait prevalence.

Finally, the focus of the third study was exploring and comparing the performances of methodologies beyond 
MLR. MLR is considered the standard method for predicting EVCs, since the majority of the predictive models 
developed are based on that method. Due to the fact that there is still potential for improvement of MLR models, 
especially for traits such as skin color or hair structure, I aimed at applying different ML methods in order to 
identify whether there is a potential classifier that outperforms the conventional method of MLR. Therefore I 
conducted a systematic comparison between MLR and three alternative ML classifiers, namely support vector 
machines (SVM), random forests (RF) and artificial neural networks (ANN). The traits that I focused on here were 
eye, hair, and skin color. All models were based on the genetic markers that were previously established in 
IrisPlex, HIrisPlex and HIrisPlex-S [5-7]. Overall, I observed that all four classifiers performed almost equally well, 
especially for eye color. Only non-substantial differences were obtained across the different traits and across trait 
categories. Given this outcome, none of the ML methods applied here performed better than MLR, at least for the 
three traits of eye, hair, and skin color. Ultimately, due to the easier interpretability of the MLR, it is suggested at 
least for now and for the currently known marker sets, that the use of MLR is the most appropriate method for 
predicting appearance traits from DNA. 

Throughout my PhD project, it became apparent that the available knowledge on spatial trait prevalence values 
was quite restricted not only in certain appearance traits but also in continental groups. More specifically, most 
available and reliable data were focused on European populations and the traits that were available were mostly 
for eye and hair color. For other traits, such as skin color, hair structure, and freckles, the data were either 
extremely few or nonexistent. This was a significant obstacle throughout the project, since it prevented me from 
applying and testing the actual impact of the accurate trait prevalence values as priors in EVC prediction. 
However, the lack of data presented an opportunity to perform in-depth theoretical research, in particular testing 
the impact of priors within a spatial grid that included its possible values. I found out that there is a proportion of 
priors that showed potential to improve EVC prediction. However, caution is advised regarding misspecification of 
priors that can significantly deteriorate the models' performance. Furthermore, the application of different ML 
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approaches did not show any significant improvement on the prediction performance against the standard MLR. 
This could be due to the nature of the traits, since some of them are multifactorial and affected by various 
external independent factors or due to possible limitations of the currently known predictive markers. With the 
available knowledge so far, it is emphasized throughout this study that for the time being, priors are refrained 
from being incorporated in the EVC prediction models while from the different classifiers applied, MLR is 
considered as the most appropriate method for EVC prediction due to its easier interpretability. In addition, the 
presented study highlights the importance of reference data on externally visible traits and the identification of 
more genetic markers that contribute to certain traits and I hope that the present work will motivate the 
emergence of these certain types of data collections that potentially may improve the current EVC prediction 
models. 
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8 Introduction

8.1 Human identification from DNA markers

Human identification through DNA markers is considered to be the gold standard in the field of forensic science. It 
is referring to the analysis of the genetic data of an individual, which creates a unique DNA profile and can 
provide likelihoods of the involvement of the individual in unsolved cases [1, 9]. Substantial and continuous effort 
has been made to identify missing persons, human remains after wars, and analyzing the remains found at crime 
scenes in order to identify potential trace donors. The biological samples found at a crime scene can lead the 
investigating authorities in obtaining a DNA profile that can be compared with potentially large groups of suspects 
and subsequently can narrow it down or even identify the trace donor. 

Identification can be done by extracting the DNA evidence found mostly at blood stains, buccal swabs or body 
fluids [10]. Its history starts back in 1986 by Alec Jeffreys, who used it for the case of two rapes and murders that 
happened in 1983 and 1986 [11]. In these cases, which took place in the United Kingdom, the fingerprints were 
collected and connected with semen stains that were found at the crime scenes. In 1987, genetic fingerprinting 
was first used in the USA in the case of Tommie Lee Andrews, a rapist from Florida, who was caught and 
sentenced into 22 years in prison [12]. Another important case was the one of missing children in Argentina 
where Mary-Claire King compared genetic material from children who were kidnapped by the Argentinian military 
between 1970’s and early 1980’s. Ultimately, she identified 59 children and helped them return back to their 
biological families [13].

 Thus far there are two main approaches developed, namely the STR profiling and the Forensic DNA Phenotyping 
(FDP). The first method aims at human identification by matching profiles in DNA databases. In other words it 
focuses on the quantification of how likely is to obtain such a match by chance [10]. On the other hand, FDP aims 
in the prediction of appearance traits that subsequently can aid police investigations by narrowing down a 
possible large set of suspects [3]. Results from STR profiling are used in court almost routinely and therefore 
exonerate people who were wrongly convicted and establish or exclude paternity, while FDP outcomes have not 
reached thus far and likely they will not reach a scientific consensus that will allow them to be used as sole 
evidence in criminal courts [4]. This is due to the several issues that surround FDP such as the existing 
uncertainties in predictions, the current insufficient spatial resolution for inferring biogeographic ancestry and the 
fact that some appearance traits can be easily covered or changed, such as eye and hair color. For the sake of 
completeness it is important to mention here, despite the two aforementioned methods, other markers have also 
been used. One example is the recently developed method of long-familial DNA searches which shows potential 
for DNA matching techniques. However, this is out of the scope of the current study and for further details the 
study of Erlich et al. is advised [14]. 

8.1.1  STR profiling for human identification 

Genetic fingerprinting which was the earliest established method for routine DNA identification and is considered 
to be a gold standard, is based on genetic profiles from DNA polymorphisms (short tandem repeats [STRs] or 
microsatellites) [15]. STRs are DNA segments ranging from two to six bases that are repeated numerous times and 
are distributed abundantly through the DNA sequence [16]. In this method DNA is amplified via Polymerase Chain 
Reaction (PCR) and electrophoresis in order to target the sequence specific primers and subsequently construct a 
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DNA profile (Figure 1). The generated STR profile is then compared with database of DNA profiles (e.g. the U.S. 
national DNA database). The purpose of this method is either to exclude or confirm the identity of a suspected 
perpetrator and it can be used as evidence in the court. One example of a standard marker set that is currently 
used by FBI for STR profiling is the Combined DNA Index system (CODIS). CODIS is a software project that began in 
1990 in FBI’s laboratories and in 1994 was established for law enforcement purposes. It offers investigative leads 
in cases where biological traces are found and recovered in crime scenes and contains multiple databases 
regarding the type of information that is being searched. Such examples are information on missing persons, 
convicted offenders and forensic samples collected from crime scenes [10]. A set of 13 loci was initially included 
in CODIS software including CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, 
FGA, TH01, TPOX and vWA, while in January 2017 seven more loci were included, namely: D1S1656, D2S441, 
D2S1338, D10S1248, D12S391, D19S433 and D22S1045 [17, 18]. Another example of a marker set used for STR 
profiling is the AmpFISTR Profiler Plus kit (Applied Biosystems, Foster City, CA) which includes nine markers 
already included in CODIS (D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820) and a 
gender identification locus, the Amelogenin, which has been already validated by FBI and SWGDAM guidelines 
[19]. Furthermore, the PowerPlex 16 BIO STR system which contains the 13 loci of CODIS, the Amelogenin and 
two pentanucleotide loci (Penta D and Penta E) and its extension to PowerPlex 21 BIO STR system that includes all 
CODIS loci and additional loci that are commonly used in Asia and Europe [20, 21]. 

The advantage of STR profiling is that these markers are highly informative due to their high allele diversity, 
making the probability of a random match 1 ~ 3 trillion [22, 23]. In practical terms, these values ensure that each 
individual, except from identical twins, has a unique genetic profile.  However, the disadvantage of this method 
lies in the fact that it is a comparative method which always requires a DNA database that contains the suspect in 
order to obtain a match. In other words, it requires that the suspect has already been ‘seen’ by the investigative 
authorities. Furthermore, the base pairs of the repetitions are not always available since the DNA from crime 
scenes is most of the times degraded. 
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Figure 1: (adapted from: yourgenome, (2016). Copyright information. [Online] Available at: https://www.yourgenome.org/copyright 
[Accessed 22.12.2020]): Illustration showing the steps in DNA profiling. Image credit: Genome Research Limited

8.1.2 Forensic DNA Phenotyping for human identification

Forensic DNA Phenotyping (FDP), which is the main focus of the current study, is a method which is mostly based 
on the single nucleotide polymorphisms (SNPs) at least when it comes to the inference of appearance traits. A 
SNP is a variation in the DNA sequence which occurs when a single nucleotide adenine (A), thymine (T), cytosine 
(C), or guanine (G) in the genome differs among individuals. If more than 1% of the population does not carry the 
same nucleotide at certain DNA position then this variation can be considered as SNP [24]. SNPs can influence 
visible characteristics and other phenotypes, since different alleles can result in different gene products or 
differential gene expression. They can be obtained from biological traces collected at crime scenes by either 
microarray genotyping or Next Generation Sequencing (NGS).  Afterwards, selected genetic markers responsible 
for specific appearance traits that have been identified either via genome wide association studies (GWAS) or 
linkage analysis, are used and through statistical methodologies, prediction results are obtained regarding an 
individual’s appearance traits, ancestry or age (Figure 2) [25].
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Inference of traits from genetic markers obtained from samples can provide significant information on the EVCs of 
an individual and can improve investigative processes. FDP may not yet predict in all appearance traits of an 
individual with certainty, since some traits can be multifactorial and a result of a complex interplay among 
different genetic markers and external environmental factors. They can, however, predict the phenotypic traits of 
an individual at a certain degree of probability that might provide important information to the investigating 
authorities in narrowing down the number of potential suspects into a smaller group. Unlike with genotype 
matching-based methods, such as STR profiling, FDP provides evidence i.e. probabilities of characteristics for an 
unknown individual and it can be used as a part of a wider investigation to identify a perpetrator. It cannot be 
used so far as a sole evidence in the court, therefore it can only aid police investigations in solving crimes [4]. So 
far, several studies have already identified and evaluated SNPs that are associated with the prediction of 
appearance traits such as eye, hair and skin color, hair structure, freckles, baldness and height. 

Figure 2: (adapted from: [25]Application of Next-generation Sequencing Technology in Forensic Science. Copyright © 2014 The Authors. 
Production and hosting by Elsevier B.V.): Information extracted by next-generation sequencing (NGS) for forensic DNA phenotyping 
purposes.

8.2 Legal and ethical issues around human identification through DNA

Advances in DNA profiling, as well as application of predictive DNA markers in FDP, have on the one hand helped 
police authorities in solving cases but on the other hand have raised a number of legal and ethical issues and the 
methodology has been challenged by various interest groups. Most of those objections were raised on legal 
grounds, motivated by protection of the rights of victims and suspects involved in a case. 

The different nature of STR and FDP and as well the different types of data that they use, give rise to different 
types of ethical concerns. Understanding the way that genetic data are obtained and analyzed as well as the 
information that those data provide, plays an important role in  perceiving the way that those data are used and 
the real ethical and legal impact of forensic genetics to the society. It is a very sentitive topic and everyone should 
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be aware of the ethical limitations that surround human identification through DNA. In the present study, I briefly 
discuss the basic limitations that surround FDP, while for further information and the limitations of STR the 
literature should be advised [26-30].  

8.2.1 Legal and ethical issues of FDP

FDP methodology poses a range of ethical and social issues that are referring not only to the nature of 
information that the data of FDP can provide but also several issues regarding privacy and data protection [26]. 
Currently within the EU, FDP is not widely used. The only countries where FDP is explicitly regulated are Slovakia 
and the Netherlands, while for the rest of the countries legislation on use of FDP is ambiguous or absent [31]. 
More specifically, in the Netherlands, prediction of eye and hair color as well as sex and biogeographic ancestry 
are allowed and practiced, while in Slovakia testing for “visible phenotypic traits” is also permitted [31]. On the 
other hand, for other countries such as Germany and Belgium, the current legislation is interpreted as it 
completely forbids the use of FDP. However for Germany and Switzerland there are ongoing discussions that aim 
to change the current regulation on FDP [31]. 

According to the literature, there are eight different ethical and societal issues that are associated with the 
implementation of FDP [26]. Those are:

1) Discrimination
2) Privacy
3) Data protection
4) FDP as ‘biological witness’
5) Stakeholders’ inflated reliability, inaccurate test results
6) Cost-benefit of FDP
7) Bias
8) Misuse of the technology

Of those, the most dominant issues appear to be discrimination and privacy. Here I am going to analyze and 
discuss briefly in an integrated manner the two main issues that are surrounding FDP, especially when predicting 
appearance traits, age and biogeographical ancestry (BGA). It is important to mention that here only basic and 
indicative issues regarding FDP are presented, while for further details on the topic the study of Samuel and 
Prainsack should be advised  [26]. 

8.2.1.1 Discrimination

Discrimination is one of the most prominent ethical and societal issue which is not associated only with FDP, but 
also in general with the implementation of forensic technologies (e.g. STR profiling) in the criminal justice system. 
It is referring to the ethnic or religious biases that might result from the use of FDP as an attempt to find the 
perpetrator of a crime, which as a result could lead to a stigmatization of minority groups in the society, especially 
when BGA is about to be predicted [32-34].

Discrimination can occur due to the unconscious biases that some people hold, even if they endeavor to ‘do the 
right thing’ and act morally. Unconscious biases are beliefs and social stereotypes that have been formed over the 
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years for certain groups of people or communities and enhance someone’s tendency to categorization. Concerns 
regarding FDP are related to possible unconscious biases of members of law enforcement or criminal justice 
system that in case that a prediction reflects those beliefs, they might be quicker in accepting the finding than 
otherwise [26]. Furthermore, the probabilistic nature of FDP outcomes could lead police officers in search for 
members of the wrong population groups due to false leads, and as a result could lead in accusing innocent 
individuals. 

Another difficult and controversial question is whether FDP outcomes should be public or not. Especially when 
referring to BGA, which is a very sensitive social topic, caution should be advised on how those outcomes should 
be communicated to the public, since they might have harmful effects in terms of community relations. One 
characteristic example is the famous case of ‘Phantom of Heilbronn’ where a female Polish worker contaminated 
cotton swabs with her own DNA at the factory where she was working while packaging them. For several years 
(1993-2009) her DNA was connected to several crimes and burglaries in Germany, France, and Austria and the 
DNA analysis conducted at that time showed an Eastern European woman as the source of the samples. Due to 
the fact that the same DNA was connected with a series of crimes that covered a large geographic district, some 
police officers falsely tended to suspect that the perpetrator belonged to a ‘traveler population’ such as Roma or 
Sinti [35].  

As a response to the above concerns, the forensic molecular geneticists Manfred Kayser and Peter Schneider 
argue that similar outcomes and reactions can be obtained in a case where an eye witness connected the 
suspected perpetrator with a minority group [36].  Therefore the problem does not lie with FDP itself, but rather 
with the consideration whether or not should we make FDP outcomes public, especially when predicting BGA that 
can have further consequences [32].  

8.2.1.2 Privacy

Issues of privacy have been discussed thoroughly in the literature and have raised questions regarding EVC, age 
and BGA prediction. Those questions pertain mostly to the outcomes that genetic markers can provide, which 
often can be used for non-EVC prediction, such as proneness for certain diseases or stigmatizing characteristics 
i.e. violence or predisposition to homosexuality [37].  In the literature, there is support for the argument that this 
should not be considered as a privacy data violation as long as the data are not stored in any central police or 
criminal justice data base. Especially when we are talking about FDP for EVC prediction, we should not consider 
that any aspect of the suspects’ privacy is violated, since those traits are known not only to the person itself but 
also to all the people who have seen him or her and therefore it cannot be considered as private data [36-40]. 

However, some scholars are more cautious and argue that we cannot say that this information does not belong to 
personal/ private data, since it comes from genetic traces. In addition, a very sensitive issue of privacy appears 
especially in cases where the face of an individual does not reflect his genetic composition. Such examples are 
when individuals participated in hair dying or plastic surgeries in order to alter some of their visible attributes and 
when they have done so, they might prefer to keep this information private [41]. 

Another ethically problematic aspect is a possible BGA prediction through FDP. While BGA can be visible for some 
people to some extent, especially when there are low levels of admixture, this does not apply in cases of mixed 
BGA and people who have ancestors from different geographic regions and therefore it can be considered as 
private information [38]. This information might affect the suspect, especially in the case that the results are not 
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in accordance with his personal beliefs based on his own cultural or familial identity or it reveals information 
about his relatives that until that time was unknown[34, 42]. 

Ultimately, issues are also raised when the traits or BGA to be predicted can provide information about health 
issues and proneness to certain diseases. In this case, is highly possible that the person is not aware, especially 
when the disease has not appeared yet or it has not yet revealed its symptoms. Some scholars suggest that this 
probabilistic health-related information should be refrained from being communicated to the affected individual, 
while others suggest an approach in which the suspect is asked whether they are willing to be informed about any 
health-related information that might be revealed throughout the testing. In any case, it is prominently expressed 
in the literature that the privacy and the right not to know is not universal and different values and rights should 
be taken into consideration [26].

8.3 SNPs as a causal factor for variations in human appearance traits

Humans exhibit a remarkable variety of appearance traits. These include many external features such as eye, hair, 
skin color, hair structure, freckles, height, nose size, head shape, and brow area [43-45]. Each of these 
characteristics can be partially explained by genes and partially by other external or environmental factors. 

In FDP, the main aim is to predict different appearance traits based on variants throughout the genome. SNPs are 
the most common type of genetic variation and are results from the substitution of only a single base at a specific 
position in the DNA sequence [46]. Some variations have been found to be responsible for diversity in humans 
within and across various population groups. Diversity conferred by SNPs is not limited to appearance traits but 
extends to other characteristics such as drug response and susceptibility to certain diseases [47]. SNPs can occur 
either in the coding or in the non-coding regions of the DNA. Protein-coding region or coding sequence is a 
portion of the genes that encodes protein sequences while non-coding regions do not encode proteins, but can 
be involved in regulatory processes. SNPs found in the coding region are separated in synonymous and non-
synonymous SNPs, and the difference between them is that the non-synonymous affect the encoded amino acid 
while the synonymous variants do not result in a change of the protein product. SNPs can also affect the gene 
expression, the messenger RNA degration and the subcellular localization of proteins causing in this way 
variations associated either with diseases or traits [47]. In the genome, the distribution of the SNPs is not 
homogenous as most of the SNPs are obtained in the non-coding region of the DNA and natural selection, genetic 
recombination and mutation rate are factors that affect their density [48]. Furthermore it is obtained that SNPs 
can differ among the population groups, meaning that certain alleles can be common in some population groups 
and rare for some others. The minor allele frequency within different populations has been of crucial importance 
in the identification of population structures and development of ancestry prediction models [49, 50]. 

In the field of forensic genetics, SNPs were initially used for matching DNA profiles but were quickly replaced by 
the STRs due to their higher mutation rate[51]. Later on, with the development of the next-generation sequencing 
technologies (NGS), SNPs were used in forensics for predicting phenotypic traits of an individual such as eye, hair, 
skin color, and biogeographic ancestry providing potentially significant leads in police investigations by narrowing 
down a set of suspected perpetrators. This can be used especially in cases where DNA samples are degraded, as 
SNPs are less prone to degradation, or when there is no genetic match with the conventional method of STR 
profiling. However, in contrast with the STR profiling, the phenotypic predictions obtained by SNPs are more 
uncertain, so that the outcomes cannot be used as sole evidence in the court but can only provide aid in police 
investigations [4]. 
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In this study, I am focused on the use of FDP for predicting a set of appearance traits. Of all traits, only eye, hair 
and skin color can currently be predicted from crime-scene DNA through forensically validated tools. However, 
studies have already been conducted in order to identify markers that are correlated with more appearance traits 
including hair structure, freckles, male pattern baldness, and height [52-57]. Although a set of genetic markers has 
already been identified for those traits, there are so far no forensically validated tools for their prediction. This is 
due to the fact that these traits are complex and the phenotypic variations explained by genetic variants remains 
low. Here I am going to discuss briefly for the predictive models and the genetic markers that have already been 
identified so far for each one of the traits within the framework of FDP.

8.3.1 Genetic variants associated with eye color 

Human eye color is one of the traits with high variability, with colors ranging from light shades of blue, 
intermediate shades such as grey, green and hazel, to dark shades of brown or black. These variabilities are found 
mostly in people of European descent, and to lesser degree in people from other geographic regions such as 
Middle East, Asia, or Africa [58]. Brown eye color is considered to be the ancestral human trait and it is found in 
all the geographic regions in the world, although with a lower frequency in Northern Europe [59]. On the other 
hand, non-brown eye color is considered to have emerged in Europe first, with a subsequent positive selection 
[60, 61] possibly as a result of environmental adaptation [61, 62].

Eye color is a quantitative trait that has been shown to be predictable with high accuracy by using only a small set 
of genetic markers [63]. Several GWAS and linkage studies have revealed genes that are associated with human 
eye pigmentation [53, 59, 60, 64-71]. The OCA2 gene on chromosome 15 and more specifically the SNP rs1800407 
was initially considered to be the most informative predictor for eye color due to its association with the protein 
that is required for the processing of the melanosomal proteins [72].  A base change from cytosine (C) to thymine 
(T) can cause a change from brown to non-brown eyes. However, recent studies showed that another SNP, 
namely rs12913832 in HERC2 gene is also strongly associated with human eye color. More specifically, the 
promoter region for OCA2 is located in HERC2 gene, therefore HERC2 regulates the expression of OCA2 [73]. The T 
allele of rs12913832 is likely to co-occur with brown eyes, as opposed to the C allele, which is strongly associated 
with blue eyes. In addition, deletions in HERC2 region may cause a decrease in the amount of melanin 
(hypopigmentation) (Figure 3) [73]. Additional work is needed in order to understand the full biological function 
and interaction between these two genes. Apart from HERC2 and OCA2, SNPs in other genes appear to be 
involved in human eye color, however with much lower variant effects. Such examples are SLC24A4 [65, 66], TYR 
[53], TYRP1 [66], SLC45A2 [65], IRF4 [65], ASIP [67], LYST [74] and DSCR9 [74]. Of those, six SNPs from six genes, 
namely HERC2, OCA2, SLC24A4, SLC45A2, TYR, and IRF4, can predict the eye color with high accuracy, especially 
for the categories of blue and brown. Based on these genetic variants, IrisPlex, one of the first phenotyping tools 
was developed and validated. This tool allows the differentiation between blue and brown eyes with accuracy 
greater than 90% [5, 75], for both homogenous and admixed populations. Regarding the prediction of 
intermediate eye color, it is lower compared with the other two categories and probably further research is 
needed in order to identify new genetic variants that contribute to these shades. Thus far, one study from 
Pospiech et al. [76] showed some gene-gene interactions that are related to the intermediate eye color, from the 
genes that are mainly related to pigmentation (HERC2, OCA2 and TYRP1), motivating and aiding deeper 
investigations of future studies on the topic .       



18

Another topic that is discussed in the literature is that if sex is a factor that influences eye color pigmentation. 
Thus far, some studies have shown that there is an unknown sex-related factor that contributes to human eye 
pigmentation [77, 78]. More specifically, there is a tendency that males are more likely to have blue eyes than 
females, who show higher frequencies in prevalences of brown and intermediate eye colors, especially in specific 
populations. However, further research is required in order to identify the gene-related factors that are 
responsible for this differentiation between females and males. 

     

Figure 3: Hypothesized scenario for genetic determination of brown and blue eye colors showing the impact of the 6 SNPs include in 
IrisPlex for eye color prediction. Adapted from:[5] 

8.3.2 Genetic variants associated with hair color

Hair color, similarly as eye color, is a trait with a wide range of phenotypes, especially in people of European 
descent and nearby regions, such as Western Asia and Middle East [58]. People from other geographic regions 
exhibit predominantly black hair color, which is considered the ancestral phenotype together with brown eye 
color.

Variations in hair pigmentation, similarly as in eye pigmentation, are considered to be influenced by sexual 
selection [61]. The main differences among the various hair color categories are the result of expression of two 
types of melanin: the brown/black eumelanin and the red/yellow pheomelanin [79, 80]. These are the two 
different types of melanin synthesized by the melanocytes, and their ratio determines hair pigmentation. 
Eumelanin is a dark pigment that is responsible for brown and black color and therefore is predominant in people 
that have this pigmentation. There are two types of eumelanin; brown and black. The brown eumelanin in small 
amounts without co-occurrence with other pigments leads to blond hair color, while large amounts of brown 
eumelanin or black eumelanin results in brown and black hair colors respectively. On the other hand, 
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pheomelanin is a lighter pigment that impacts red and yellowish hair color. In cases where small amount of brown 
eumelanin is mixed with red pheomelanin, the phenotypic result is red hair color. Pheomelanin is expressed in the 
redder areas of the skin as well, such as human lips and people with higher expression of pheomelanin cannot 
produce high amounts of eumelanin. On the other hand, people with dark hair color may still produce the lighter 
pigmented pheomelanin, but it might be covered by the darker eumelanin and therefore is not or only subtly 
visible, resulting in auburn tones of brown hair. The color categories influenced by different types of melanin are 
defined, at least within the forensic framework, as follows: blond, brown, red, and black. So far, several genes and 
their SNPs have been identified by various studies for their contribution in the expression of different hair 
pigments [53, 65-68, 81-85]. One example is the MC1R gene, which is primarily responsible for the melanin 
produced in the human body, and its activation can cause the melanocyte to produce pheomelanin instead of 
eumelanin. Its activation is also associated with other human appearance traits, such as freckles and fair skin 
color, and diseases such as skin cancer. Its high accuracy for predicting red hair color (84%) has been known for 
about twenty years ago [86]. 

Later, other genes responsible for hair color variation were identified and the first predictive model was 
developed by Branicki et al. based on 13 SNPs [87]. This model reached an overall accuracy that ranged from 81% 
to 93% for each hair color category. More specifically the accuracy was 81% for blond, 82% for brown, 87% for 
black and 93% for red hair color. In 2013, another predictive tool was developed for hair and eye color. This tool, 
called HIrisPlex, comprises 22 SNPs from 11 genes, namely MC1R, HERC2, OCA2, SLC24A4, SLC45A2, IRF4, EXOC2, 
TRYP1, TYR, KITLG, and ASIP and includes the six markers that were already included in IrisPlex [6]. This model 
reached an overall accuracy for hair color prediction ranging from 75% to 92%, similar to the model already 
developed by Branicki et al.[87]. One difference between those two models was that the first one was trained in 
one single country in Eastern Europe, namely Poland, while HIrisPlex was trained in a dataset with more diverse 
phenotypes that contained DNA samples from three different European countries, namely Ireland, Greece and 
Poland. From the aforementioned genes, the TYRP1 was identified by Kenny et al. [88] to contribute to the blond 
hair pigmentation in Melanesian individuals. More specifically, its mutation in the 93C allele encodes an enzyme 
for melanin biosynthesis and is therefore related to pigmentation. However, this specific mutation does not 
contribute equally when it comes to the blond hair phenotype in Europeans [88].  

One issue that the current hair prediction models are facing and is discussed in the literature is the age-related 
hair color darkening. This phenomenon is referring to the changes of the hair color from childhood to adulthood. 
More often, children tend to have lighter hair color at younger age, which gradually changes to darker shades 
when they are growing up. Most prediction models were trained on phenotypic information of adults, therefore 
they are not taking into account possible informative markers that are responsible for this phenomenon. That 
partially explains the lower prediction accuracy for blond hair, compared with the rest of the categories. Only one 
study on the subject was conducted including individuals from 6 to 13 years old and showed that HIrisPlex fails to 
correctly predict the trait in individuals that were blond at younger age [89]. This indicates the need to identify 
more markers in order to improve the current predictions for hair color, especially for blond hair, which shows 
the lowest prediction accuracy compared with other categories.



20

8.3.3 Genetic variants associated with skin color 

Skin color is a trait that, similarly with the eye and hair color, has a wide range of phenotypes and it is considered 
to be an adaptive and a genetically complex trait. Its phenotypic variations are a consequence of the quantity and 
size of the melanin particles that are located in the epidermis and are produced by the melanocytes [90]. The two 
aforementioned types of melanin, namely eumelanin and pheomelanin, also appear in this part of the human 
body, with the first type, eumelanin to be expressed in individuals with darker skin tones, while pheomelanin to 
be expressed in people with lighter skin tones. It is known that differentiations in skin color are affected by 
environmental factors as well such as age, drugs, diseases, or the levels of exposure to UV radiation [91]. 
Although the phenotype is variable within the lifetime of an individual, it is hypothesized that UV exposure was 
one of the environmental factors driving inborn pigmentation background in humans. Individuals from regions 
close to the equator, where UV radiation is higher, tend to have darker shades of pigmentation while in more 
distant regions where UV is less intense, fairer skin tones are dominant. Melanin works as a protector and tends 
to absorb UV radiation, which in high levels could cause DNA damage and health problems such as skin cancer 
[92]. 

In the context of forensic genetics, there are five established categories for skin color prediction, namely very 
pale, pale, intermediate, dark and dark to black. Despite the current lack of consensus regarding external factors 
contributing to skin pigmentation, there are several studies that focused on skin color prediction based on the 
most strongly associated SNPs. Early studies started by analyzing skin color variation in single homogenous 
population groups, such as the study of Stokowski et al. that included South Asians [93] and the study of Jacobs et 
al. that was focused on Europeans [94]. Later on, other studies were conducted that tried to identify associations 
between genotypes and phenotypes either in admixed or in homogenous populations. The result was, that 
associations were identified in admixed individuals, but they appeared to be less discriminative for more 
homogenous populations [95, 96].    

More recently, in 2018 the first predictive tool for skin color was developed and forensically validated. This tool, 
called HIrisPlex-S was an extension of the aforementioned tools IrisPlex and HIrisPlex for eye and hair color 
prediction [7]. It comprises 36 SNPs in total, located in 16 genes such as SLC24A5, HERC2, SLC45A2, KITLG, and 
IRF4. In addition, it includes the 22 SNPs that were previously used for eye and hair color prediction. HIrisPlex-S 
can predict the five previously mentioned skin color categories with accuracies ranging from 72% to 97%, and 
together with IrisPlex and HIrisPlex are publically available at https://hirisplex.erasmusmc.nl/. 

Similarly to hair color, the MC1R gene appears to be responsible for the skin color, since its mutations are 
affecting the production of a certain type of melanin in the human body [97]. Other examples are the KITLG and 
the ASIP genes with mutations that are associated with lighter skin colors in European and Asian populations [98].  

Despite the fact that skin color can be predicted with high accuracy, as with hair and eye color, more studies are 
needed in order to identify more genetic variants or environmental influences that can possibly improve the 
already existing approaches and provide an insight of their mechanisms and interactions. 

8.3.4 Genetic variants associated with hair structure 

Hair structure or hair shape variation is a visible trait that shows a strong diversity among different continental 
groups. More specifically, non-straight hair is more dominant in individuals of African origin and less dominant in 
Europeans. On the other hand, Asian populations show high prevalence of straight hair [99]. Differentiations in 

https://hirisplex.erasmusmc.nl/
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hair structure are also obtained within the continental groups, where people from the same group can have 
different levels of curliness. It is considered a high heritable trait and the heritability of curly hair in Europeans is 
estimated to be up to 95% [100]. As previous studies showed, hair shape variability can be classified into eight 
main groups, starting from classic to more sophisticated verbal descriptions, with terms such as straight, wavy, 
curly, frizzy, woolly, kinky, helical among others [101]. However, in the context of forensic genetics, where 
precision is necessary, the above scale could lead to confusions because of the unclear definitions and limits of 
each category. For this reason, more simplified scales are used and mostly the one that categorizes hair shape in 
three types namely straight, wavy and curly [102]. 

Regarding the genetic basis of hair structure, several genome-wide association studies (GWASs) have already 
identified eight genes that are responsible for the differentiations in human hair shape among different 
continental groups. These are TCHH [103-105], EDAR [105-107], GATA3 [105], PRSS53 [105], WNT10A [103, 104], 
FRAS1 [103, 104], OFCC1 [103] and LCE3E [103]. From them, variants of the TCHH gene are identified to be 
associated with hair straightness in Europeans while for the same phenotype in other populations, other genes 
might be responsible. One example of the above is the EDAR gene which is the predominant gene for straight hair 
and hair thickness in Asian populations [106]. This gene interacts with a protein called ectodysplasin A1 and they 
trigger a series of chemical signals that affect several cell activities such as growth [108]. Other genetic variants 
such as the ones found at GATA3 and PRSS53 genes are highly expressed in the hair follicle and were found to 
affect the hair structure mostly in Native Americans and in Latin Americans or mixed Europeans [105].

These genetic variants explain only a small proportion of the hair shape variation in humans and only few recent 
studies so far have been conducted in order to develop a predictive model for this trait. One of the first studies 
was the one of Pospiech et al. in 2015, where three different models were compared and evaluated (logistic 
regression, regression and classification trees and neural networks) [109]. This model was based on six SNPs 
located in TCHH, FRAS1 and WNT10A genes and the dataset used comprised of samples of Polish origin. Later on, 
in 2018 Pospiech et al. developed another model based on an extended set of 90 SNPs and a dataset containing 
individuals from Europe, Asia and admixed Europeans and Asians [102].  The model included additionally sex and 
age as predictive factors, which slightly improved the overall accuracy, however more studies are necessary in 
order to identify more markers that contribute to hair structure. In this way we might improve the predictive 
accuracy of the already existing models for hair structure prediction and allow a predictive tool to be established 
and used in FDP expanding the current set of the FDP models beyond pigmentation traits.

8.3.5 Genetic variants associated with freckles 

Freckles or ephelides is an appearance trait that is observed on the skin surface as hyperpigmented spots. It 
mostly appears in European and Asian populations and especially to those who have fair skin color and red hair. 
Typically they appear in childhood but they can increase or disappear in adolescence [110, 111]. Despite the fact 
that this appearance trait is affected by the exposure to UV radiation, its occurrence has a strong genetic 
background. So far, several genes and their variants have been established for their association with freckles that 
overlap with other pigmentation traits [53, 66, 103] or are associated with skin cancers as well [112-115]. These 
genes that have already been identified include MC1R, IRF4, TYR, ASIP, OCA2, and BNC2 [53, 66, 103]. Out of 
those, the MC1R provides the major contribution in freckles occurrence, especially for individuals of European 
origin [116, 117] and its variants contribute to a more severe phenotype that includes fair skin, red hair and 



22

freckles, the so called RHC phenotype. These MC1R variants include D84E, R151C, R142H, R160W, D294H, and 
I155T [83, 117] and they are known as R alleles, since they have high penetrance and they restrain the function of 
MC1R. Other variants that have lower penetrance are known as r alleles, while the ones that do not have a 
significant effect on MC1R function are called pseudoalleles [118].

The first study for freckles prediction was conducted by Hernando et al. in 2018 [119] and it was based on the 
variation in four pigmentation genes adjusted for sex and the additional information of whether the individuals 
obtained freckles during childhood or adolescence. In addition, information on age and pigmentation traits was 
included in the study. The dataset comprised of individuals of Spanish origin and the model was based on 
multivariate logistic regression. A model selection was then conducted according to the lowest Akaike 
Information Criterion (AIC) in order to find the appropriate marker set. The analysis showed that a prediction 
model for freckles can be built based on five genetic predictors, namely R and r variants in MC1R, IRF4 
rs12203592, ASIP rs4911442 and BNC2 rs2153271. The model was able to predict freckles incidence with a 
sensitivity up to 60% and an area under curve (AUC) equal to 78% for two categories, non-freckled and freckled. 

A recent study from Kukla-Bartoszek in 2019 revealed 19 DNA variants that are associated with the freckles 
phenotype and additionally 12 independently contributing predictors [120]. Two different models were 
developed and compared for two different category scales. The first one was a simplified binomial logistic 
regression model with 12 predictive variables that classifies individuals in two categories, freckled and non-
freckled. The second one was a multinomial logistic regression model based on 14 predictors and the individuals 
are categorized into three categories, non-freckled, medium freckled and heavily freckled. In this case, the 
categories of non-freckled and freckled were predicted with an AUC value of 75% and 79%, respectively, while the 
medium freckled phenotype appeared to be more complex reaching a level of 65% of AUC. 

Of course, there is a need for greater understanding of the genetic basis of freckles especially for building a 
predictive tool for forensic investigations where prediction accuracy is of utmost importance. However, the 
current findings and the prediction accuracies achieved so far should not be underestimated. The number of 
correct predictions could possibly be improved by setting a threshold when interpreting the predictions. 
Furthermore, additional studies, genome-wide analyses or larger cohorts of individuals could possibly help in 
expanding the already existing marker sets and identify those genes that explain the variability of this trait. 

8.3.6 Genetic variants associated with male pattern baldness 

Androgenic alopecia, also known as male pattern baldness (MPB) is a trait that is more frequently observed 
among men of European origin. It affects approximately 20% of men aged 20 and increases steadily by age 
reaching 90% for men around 90 years old [121]. Is a trait that has not only alterations in the physical appearance 
but also has substantial effects on psychological functioning and social processes [122]. Other studies showed 
that MPB is also associated with certain diseases such as cardiovascular diseases [123-125] and prostate cancer 
[126-128]. Whilst the etiology of MPB is still not fully understood, current studies show that genetic proneness 
and hormonal dependence is behind the occurrence of this appearance trait. More specifically, around 80% of the 
variability of MPB can be explained by genetic factors [121, 129]. One gene that is found to be associated with 
MPB is the HDAC9 gene, which is expressed in hair follicles [130]. It can have a direct or indirect interaction with 
the AR protein in the AR gene and plays a role in the regulation of the AR gene and subsequently can affect the 
phenotypic expression of the MPB [130, 131]. 
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In the study of Marcinska et al. a set of 50 SNPs for MPB were analyzed in order to identify their predictive ability 
for this trait [132]. MPB prediction was based on the Norwood-Hamilton scale which contains eight main 
categories (Table 1) and identified markers with the major contribution to MPB were among those in region q12 
on X chromosome, on 20p11 and in the genes HDAC3, EBF1 and TARDBP. From them, the first predictive model 
was made, containing the following SNPs: rs5929324 near AR, rs1998076 in the 20p11 region, rs756853 in HDAC9, 
rs929626 in EBF1 and rs12565727 in TARDBP. This model reached an overall accuracy expressed in AUC equal to 
76% and with threshold value of 50%, the number of corrected predictions was equal to 66%. When increasing 
the threshold value to 65% then the number of corrected predictions was raised up to 75.8%.

The second predictive model was an extension of the first one and included the aforementioned five SNPs with 
the major association in MPB and additionally 15 SNPs, namely rs1041668, rs6625163, rs6625150, rs962458, 
rs12007229, rs2180439, rs913063, rs1160312, rs6113491, rs6461387, rs6945541, rs7349332, rs4679955, 
rs9668810, and rs10502861 [132]. In this case, the AUC was raised up to 86%, but for the age group of 50 years 
and older. That demonstrated that when combining lower prediction markers with the ones that have a stronger 
association, the prediction accuracy can be improved. However, further studies are necessary in order to identify 
more markers that possibly contribute to MPB and also more information is needed on the genetic background of 
the senescent alopecia. 

Table 1 Simplified phenotypic description of the Norwood-Hamilton baldness categories [133]

The Norwood-Hamilton scale of male-pattern 
baldness

Phenotypic description

Grade I No recession of the hair line

Grade II Minor recession of the frontal hairline

Grade III Deep symmetrical recession at the temples

Grade III vertex Significant frontal hair loss coupled with hair loss 
at the crown of the head

Grade IV Deepening frontal recession in the temples and 
progressively more hair loss at the crown

Grade V Hair loss at the vertex and front temporal areas 
are extended  

Grade VI The frontal and vertex regions of hair loss  
merge into one area and increase in size

Grade VII The most advanced stage of male-pattern 
baldness, in which all hair is lost along the front 
hairline and crown
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8.3.7 Genetic variants associated with height

Adult height is an appearance trait that has been studied extensively, since is helpful not only for forensic 
investigations but also for several areas including pediatric endocrinology [134]. Four GWAS studies focused on 
tall stature conducted by the Genetic Investigation of Anthropometric Traits (GIANT), demonstrated that this trait 
has a very high genetic complexity, meaning that many hundreds and probably thousands of independent genetic 
loci are contributing, which can be characterized by several SNPs that have a small effect on height [56, 135-137]. 
It is considered to be a highly heritable trait, with heritability estimated up to 80% [138-140]. 

Currently there is no forensically validated tool for predicting height; however studies have identified a set of the 
SNPs that explain a certain variance of the tall stature. In 2013, a study conducted by Liu et al. showed a 
prediction model containing 180 markers associated with human height [134]. Those 180 genetic markers were 
previously identified by the first GIANT study on Europeans [141]. In this model the prediction accuracy, 
expressed by AUC, was equal to 75% for binary classification of tall stature. 

In the second GIANT study, an extended set of height-associated SNPs was identified. More specifically, 697 
variants were identified that explain one-fifth of the heritability of the adult height [136]. Furthermore, it was 
shown that ~2000, ~3700 and ~9500 associated SNPs explain only ~21%, ~24% and ~29% of height variability, 
respectively, highlighting the complexity of the trait, with each SNP explaining only a small fraction of its 
variability. Those 697 genetic markers were used in the more recent study of Liu et al. in 2019 in order to predict 
human height in a set of Dutch Europeans [141]. In this study, quantitative analysis and logistic regression models 
were applied for binary height prediction. The results of this study showed that a fairly accurate prediction was 
achieved, with AUC equal to 79%. Furthermore, an additional model with a reduced number of SNPs, namely 412, 
was also presented that showed a slightly inferior AUC equal to 76%. Despite the slight improvement obtained in 
the full model, tall stature prediction still remains a challenging task, especially in FDP. In order to improve the 
prediction accuracy for adult height, probably more independent SNPs needed to be identified and also 
identification and incorporation of possible external or environmental factors that contribute to height are 
necessary, especially in non-European populations.  
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8.4 Statistical classification problem and its applications

Statistical classification is referring to the problem of training a model in order to separate new observations into 
classes (or categories) according to their common characteristics. It is a problem of either supervised or 
unsupervised learning. Supervised learning means that it determines the predictive model by using data points 
with already known outcomes. In other words, the model is trained not only by the input data but also with the 
correct output data [142]. On the other hand, unsupervised learning is performed with unlabeled data and the 
model tries to detect the unknown, hidden structure of the data [143]. The history of classification starts back at 
1940s where discriminant analysis was developed based on the multivariate normal distribution [144]. Later on, 
with the increase of computing power, more so-called machine learning (ML) approaches came up and 
classification became understood in a larger context of learning algorithms. ML algorithms are mathematical 
models that have the ability to recognize patterns and features in the datasets and use this information for 
prediction [145]. In general, the more data is available for training, the more accurate the predictions of ML 
models become. Today, ML is applied in a wide range of applications such as bioinformatics, education, and 
robotics. Some examples of the ML approaches include linear and logistic regression, decision trees, random 
forests, k-nearest neighbors, and artificial neural networks. 

Some of the ML classifiers have already been applied in forensic science. However, regarding EVC prediction, 
which is the main focus of this study, the majority of the models were based on the logistic regression. 
Throughout this study, I am going to apply other methods for predicting appearance traits, including support 
vector machines, random forests and artificial neural networks, and I will compare their performances with the 
standard MLR. Here I discuss briefly each of the methods.

8.4.1 Multinomial logistic regression

MLR is probably the most widely used method for classification, especially in EVC prediction. The majority of the 
available and forensic validated tools are based on MLR [5-7]. It is used to predict the probabilities of the different 
categorical outcomes of a dependent variable based on a set of independent variables. The number of categories 
of the dependent variable can be two or more. In case of two categories, binomial logistic regression is applied, 
while for more than two categories its extension to MLR is used. MLR maximizes the likelihood in order to 
evaluate the probability of each category. Unlike other methods, MLR does not assume normality, linearity or 
homoscedasticity and it does not require hyperparameter tuning. The MLR model for 3 categories is defined as 
follows [63]:

 ln (𝑝2

𝑝1
) = 𝛼2 + ∑𝑘

𝑗=1 𝛽2 (𝜋2)𝑗𝑥𝑗                  (1)

ln (𝑝3

𝑝1
) = 𝛼3 + ∑𝑘

𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗                    (2)

Where 𝛼𝑖,𝛽𝑖 (𝑖 = 2,3) are the regression coefficients and 𝑝𝑖 (𝑖 = 1,2,3) are the probabilities for each observation 
that belong to a category j. These probabilities are defined as:

𝑝2 =
𝑒𝑥𝑝 (𝛼2 + ∑𝑘

𝑗=1 𝛽2 (𝜋2)𝑗𝑥𝑗)
1 + 𝑒𝑥𝑝(𝛼2 + ∑𝑘

𝑗=1 𝛽2 (𝜋2)𝑗𝑥𝑗) + 𝑒𝑥𝑝(𝛼3 + ∑𝑘
𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗) (3)
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𝑝3 =
𝑒𝑥𝑝 (𝛼3 + ∑𝑘

𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗)
1 + 𝑒𝑥𝑝(𝛼3 + ∑𝑘

𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗) + 𝑒𝑥𝑝(𝛼2 + ∑𝑘
𝑗=1 𝛽2 (𝜋2)𝑗𝑥𝑗) (4)

𝑝1 = 1 ― 𝑝2 ― 𝑝3 (5)

Here, 𝑥𝑗 are the values of the predictive variables used in the model and j is an index for the number of the used 
input variables. Observations are classified to the category which maximizes the probability 𝑝𝑖 obtained.

8.4.2 Support vector machines 

SVM is a supervised machine learning approach which was devised by Vapnik et al. [146, 147] and is used for 
classification problems. It can handle two or more outcome classes and its basic idea is to separate the data into 
classes by finding the optimal hyperplane in the space of input features.  The optimal hyperplane is the one that 
has the maximum distance between the data of different classes and its dimensions always depends on the 
number of classes. SVM can transform from the original feature space to non-linear feature space in order to 
simplify the computation. Kernel functions that can be used include the linear, non-linear, polynomial, sigmoid 
and radial basis function (RBF). RBF is the most widely used and is defined as follows:   

𝐾(𝑋1,𝑋2) = 𝑒𝑥𝑝 ( ― 𝛾‖𝑋1 ― 𝑋2‖2) (6)

where ‖𝑋1 ― 𝑋2‖ is the Euclidean distance between the data points 𝑋1, 𝑋2 and 𝛾 denotes the shape and 
smoothing of the hyperplane.  In order to obtain the optimal performance of an SVM, hyperparameter tuning is 
required and the hyperparameters that are needed to be tuned differ according to the kernel function that is 
applied. In case of RBF, the hyperparameters that need tuning are 𝛾 and C, where C indicates the cost of 
misclassification of the observations. In SVM, the hyperplanes are decision boundaries for classification of the 
data points. From the data points, the support vectors are formed and the ones that are closer to the hyperplane 
define its optimal position. 

8.4.3 Random forests 

RF is a method that can be applied to classification problems. It was first proposed by Breiman and it combines 
classification trees and bagging [148]. It is an extension of the decision trees method and it consists of a number 
of individual trees that operate as an ensemble. Decision trees is a predictive model that consists of nodes and 
branches and is expressed as a recursive partition of the feature space to subspaces that constitute a basis for 
prediction [149]. More specifically, in each node, one feature of the data is evaluated for maximizing the split of 
the observations during the training procedure. Despite the advantages of the decision trees, such as their easy 
interpretability, one of its disadvantages is the large variance due to its strong dependence on the given dataset 
each time. Slight changes in the dataset can significantly affect the performance of a decision tree. This was a 
main motivation for the development of RF. In RF, each of the trees makes a class prediction for the random 
samples of the training data, i.e. bootstrapped samples, and in the end the class with the majority of the votes is 
chosen as the final prediction. Together, trees can provide ensemble predictions that can be more accurate than 
the individual tree predictions. The basic idea behind RF is that a set of low correlated classifiers can build up a 
stronger classifier with lower variance [150, 151]. 
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In order to increase the predictive power of the RF there is a set of hyperparameters that needs to be tuned. 
Hyperparameters include the number of trees, the number of features at each split, the weight assigned to each 
class, and maximum number of leaf nodes. The first two are considered the most important, however this always 
depends on the problem and the available dataset. Regarding the number of trees, several studies have been 
conducted in order to find an optimal number, which always depends on the problem and the dataset. One of 
these studies by Liaw and Wiener, which argued that the more trees we add, the more stable the results of 
variable importance are [152]. However, in contrast to this study, others claimed that the large numbers do not 
always improve prediction results and instead a smaller number of trees can be sufficient. One example is the 
study of Oshiro et al. that applied RF in 29 different datasets and tried different number of trees [153]. They 
found out that a range of trees from 64 to 128 can provide good results and additional number of trees did not 
significantly improve the prediction outcomes. For the optimal number of features at each split, the conventional 
wisdom states that selecting bigger numbers can increase the strength of the individual trees, but on the other 
hand, when reducing this number could lead to lower correlation between the trees, which as a result can 
increase the predicting power of the RF as a whole [154].  Suggested values for classification are 𝑝  or log 𝑝, 
where 𝑝 denotes the number of predictive variables included in the model [154]. However, due to the fact that 
these values can vary depending on the problem, they should be considered and treated as tuning 
hyperparameters. 

8.4.4 Artificial neural networks

ANN are computational models that are designed to simulate the functioning of the human brain. Their history 
started in the late nineteenth and early twentieth century and since that time several approaches have been 
developed [155]. ANN can handle a wide range of problems and are widely applied in several fields such as 
pattern recognition [156], quantum chemistry [157] and finance [158]. The basic idea behind ANN is that, just as 
the human brain, they consist of interconnected units, the so-called artificial neurons.  These neurons are 
arranged in one or more layers, they are processing the information and their combined effect is activating 
neurons in a subsequent layer, if existing. The input data are transferred through the network in the forward 
direction to the neurons in other layers, until an outcome is obtained. Each node has its own weight that is 
adjusted during training.     

Although ANN form an approach that is able to be applied in several problems and can handle various types of 
data, finding its optimal hyperparameters that can maximize its performance can be sometimes challenging. This 
is because there is no explicit method for selecting hyperparameters and the optimal ANN architecture depends 
on the problem. In general, there is a group of hyperparameters that can be tuned that are either related to the 
network structure, such as the number of hidden layers and nodes, or they can be related to the algorithm 
training, such as the number of epochs, which is the number of complete passes through the dataset. In any case, 
finding the optimal hyperparameters for an ANN can be challenging, however it can significantly improve the 
model performance. 

8.5 Bayesian classification

Bayesian classification is a statistical method for classification that is based on the Bayesian theorem. The main 
principle behind Bayesian modelling is that prior probabilities are used in order to represent uncertainties or prior 
beliefs. Combination of prior information with the data-based likelihoods results the posterior probabilities.  The 
basic idea behind Bayesian classification is [159, 160]:
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𝑑𝑎𝑡𝑎 ― 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝑠 × 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 = 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠              (7)

The use of prior probabilities is fundamental for the Bayesian approaches. It represents all information or 
subjective beliefs about unknown parameters before any data are taken into account. Priors can be obtained 
either from outcomes of previous experiments or assumptions. In case no previous information on a parameter is 
available, priors can be non-informative, meaning that they can express the lack of available information, but in a 
principled way. By including priors to our prediction model we obtain as a result the posterior probabilities, which 
are the revised, or updated, probabilities that occur after considering new information. The data-dependent 
likelihoods represent the probability that an observation belongs to a certain category. 

In classification problems, it is necessary to evaluate the cost of the different types of errors in order to make a 
rational decision on the category prediction. Similarly as in its fundamental idea, the decision making in Bayesian 
classification combines both priors and likelihoods in order to achieve the minimum probability of error. If we 
have a probabilistic variable ω for the different classes, a variable c representing the number of classes and 𝑎𝑖 
denoting the predictions, then the loss function is defined as follows [161, 162]:

𝜆(𝛼𝑖│𝜔𝑗) = {0       𝑖 = 𝑗 
1       𝑖 ≠ 𝑗                                (8)

where 𝑖,𝑗 = 1,…, 𝑐. This is the so-called zero-one loss function and quantifies the cost of a prediction. Hence, the 
Bayesian risk can be defined accordingly:

𝑅(𝛼𝑖│𝑥) =
𝑐

𝑗=1
𝜆(𝛼𝑖│𝜔𝑗) 𝑃(𝜔𝑗│𝑥)              (9)   

If we consider a decision rule 𝑎(𝑥) then the overall risk can be defined as:

𝑅 = 𝑅(𝑎(𝑥)│𝑥)𝑃(𝑥) 𝑑𝑥                     (10)

We are looking for the rule 𝑎(𝑥) that minimizes 𝑅(𝑎(𝑥)|𝑥) for all 𝑥, therefore:

𝑎 = arg min 𝑅(𝑎𝑖│𝑥)

= arg min
𝑐

𝑗=1
𝜆(𝛼𝜄│𝜔𝑗)𝑃(𝜔𝑗│𝑥)          (11)

With the calculation of the posterior probabilities, a decision rule is necessary in order to classify the observations 
into the different categories. In our case, this is being made according to the maximum posterior probability. That 
means that for the 3-class problem, an observation is classified according to the maximum posterior 𝜋𝑖,  𝑖 = 1,2,3. 
Namely, an observation 𝛼 is classified according to:

max{𝜋1,𝜋2,𝜋3}   →   {1,2,3}          (12)

In FDP, prior information can be extracted from the trait prevalences within the population groups. Hence, 
inferring the biogeographic ancestry might be helpful in order to identify these prevalence values, which 
incorporation in the prediction model may improve the already existing prediction accuracies. Here, I 
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incorporated prior information on the standard MLR model and in this case the posterior probabilities for the 3-
class problem will be defined as follows: 

    𝜋2 =

exp (ln (𝑝2
𝑝1) + 𝑎2 +  ∑𝑘

𝑗=1 𝛽2(𝜋2)𝑗𝑥𝑗)
1 + exp(ln (𝑝2

𝑝1) + 𝑎2 + ∑𝑘
𝑗=1 𝛽2(𝜋2)𝑗𝑥𝑗) + exp(ln(𝑝2

𝑝1) + 𝑎3 + ∑𝑘
𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗)

               (13)

𝜋3 =

exp (ln (𝑝3
𝑝1) + 𝑎3 +  ∑𝑘

𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗)
1 + exp(ln (𝑝3

𝑝1) + 𝑎3 + ∑𝑘
𝑗=1 𝛽3(𝜋3)𝑗𝑥𝑗) + exp(ln(𝑝3

𝑝1) + 𝑎2 + ∑𝑘
𝑗=1 𝛽2(𝜋2)𝑗𝑥𝑗)

                 (14)    

                                                               𝜋1 = 1 ― 𝜋2 ― 𝜋3                                                                                   (15)

 where 𝑝𝑖  (𝑖 = 1,2,3) are the prior probabilities for each of the three categories and 𝛼𝑖 and 𝛽𝑖 (𝑖 = 2,3) are the 
model coefficients. In a similar way, this model can be extended to more than 3 categories and each observation 
is classified to the category that yielded the higher posterior probability, as previously mentioned in (12).  

Of the already established tools and the studies conducted so far for EVC prediction in FDP, the majority of them 
are based on MLR, with only few exceptions that used alternative methods, while prior information into the 
prediction modelling was barely used. Some of these examples are the Snipper [163] and the models developed 
by Maroñas et al. [164] and Söchtig et al. [165] for eye, skin and hair color prediction, respectively, which were 
based on naïve Bayesian likelihood classification. Among them, the Snipper is the only model that makes use of 
prior information, in particular.  It is the so-called LOCPRIOR information, which refers to the distribution of 
specific characteristics within a population group and their frequencies in the populations. Such characteristics 
can be linguistic, geographical, or phenotypic information among others. Other alternative approaches are the 7-
Plex and 8-Plex [166] for eye and skin color prediction which were based on binomial proportion tests as well as 
the classification tree approaches developed by Allwood et al. [167].

8.6 Performance evaluation with standard metrics

Evaluation metrics are measurements that help us quantify the performance of different statistical or machine 
learning models. There are several metrics available in order to test whether a model operates correctly and 
these include sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), area under 
curve (AUC), confusion matrix, and overall accuracy among others. Here I am going to briefly discuss the 
definitions of each of those metrics that are used throughout the study. 

A confusion matrix defines basic quantities that are relevant for performance evaluation of a trained model 
performed on a test dataset, and from which entries performance measurements are derived (Table 2). 
Sensitivity, or true positive rate, is a measurement that refers to the proportion of the actual positive samples 
that are correctly identified by the model, while specificity, or true negative rate, is the proportion of the actual 
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negative samples that were correctly classified by the model. PPV, or precision, measures the proportion of the 
correct classifications among all predictions of the category tested, while the NPV measures the proportion of the 
correct classifications in all predictions other than the category that is being tested (Table 2). Area under curve 
(AUC) is a performance measurement for classification problems that quantifies the ability of the model to 
separate the observations into the different classes. Ultimately, the overall prediction accuracy is the ratio of the 
correct predictions to the total number of input samples.    

Table 2: Table demonstrating the derivation of sensitivity, specificity, positive and negative predictive value 
from a confusion matrix

9 Aims of the PhD Thesis

Prediction of EVCs through DNA has become a topic of major focus in FDP in the last decades. So far, there are 
established and forensically validated tools that focus on the prediction of traits such as eye, hair, and skin color. 
Available tools can predict these traits with high accuracy from a relatively small number of genetic markers, 
especially for eye and hair color. For the rest of the traits, there are currently fewer studies focusing on their 
prediction due to their genetic complexity and the limited knowledge on the genetic markers or the 
external/environmental factors that contribute to the phenotypic variations of these traits.
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Motivated by the current state and the shortcomings in EVC prediction, the aim of my project was mainly the 
testing of the impact of prior information for an extended set of EVCs including not only eye, hair and skin color, 
but also hair structure and freckles. In our case, prior information indicates the prevalence data for each trait 
category among different population groups. Furthermore, a comparison of four different machine learning (ML) 
classification methods was conducted for eye, hair, and skin color, in order to see whether any of them 
outperforms the standard MLR method. 

Thus, in the first study I aimed at the compilation of the prevalence values, which later on were supposed to be 
incorporated in a Bayesian MLR model for EVC prediction. During the literature review on trait prevalences, I 
found out that the amount of available and reliable data was quite limited. Therefore, I managed to collect 
trustworthy and population-representative data only for eye and hair color for specific population groups, mostly 
European. Given the lack of accurate prevalence data, their incorporation into the EVC prediction was not feasible 
at this stage. Subsequently, in order to assess the impact of priors I proceeded in the second study with a prior-
based prediction model, which considers a grid in the complete space of all possible prior values for each trait 
category, checking in this way the possible effects, including also cases of prior misspecification.  The appearance 
traits that this model was applied to included eye, hair, skin color, hair structure, and freckles. The prior 
incorporated model was based on the already reported marker sets from previous studies [5-7] for each trait and 
its performance was compared with the prior-free approach. 

In the third study, I aimed at the evaluation and the comparison of four different ML classification methods. ML is 
a widely used set of methods applied in a wide range of fields. In the context of forensic genetics, one ML method 
that is mostly used so far, especially for EVC prediction, is the MLR, while other ML methods such as support 
vector machines (SVM), random forests (RF) and artificial neural networks (ANN) have not been thoroughly 
applied in this field. Therefore, I aimed at a systematic quantitative comparative analysis between the standard 
method of MLR and the three aforementioned ML methods, namely SVM, RF, and ANN. The traits that I covered 
here were eye, hair, and skin color. All models were compared according to the standard performance 
measurements, namely overall accuracy, sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), and area under curve (AUC) in order to evaluate whether the alternative ML methods 
outperform the conventional method of MLR for DNA-based EVC prediction. 
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10  Major findings 

10.1     Published results

● Available trait prevalence information is restricted for eye and hair color and is available mostly for 
European populations.

● Moderate associations between eye and hair color.

● Lighter pigmentation dominates in Northern Europe while darker pigmentation dominates in Eastern 

countries.

● Lack of available and reliable data makes incorporation of spatial trait prevalence as prior knowledge in 

EVC prediction not feasible at this stage.

● A proportion of priors shows potential to improve EVC prediction.

● Misspecification of priors can significantly deteriorate the model’s performance.

● Impact of priors is likely inversely related to genetic determination.

● None of the three ML methods outperformed MLR, at least with the currently available set of predictive 

markers. 

● No significant differences among the four classifiers might be due to the nature of the traits or due to 

unknown factors.
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11 Published main investigations

11.1 True colors: A literature review on the spatial distribution of eye and hair 
pigmentation

This text was published as an article in Forensic Science International Genetics in 2019, 39; 109-118, 
https://doi.org/10.1016/j.fsigen.2019.01.001,  
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11.2 Testing the impact of trait prevalence priors in Bayesian-based genetic 
prediction modeling of human appearance traits

This text was published as an article in Forensic Science International Genetics in 2021, 50,  102412, 
https://doi.org/10.1016/j.fsigen.2020.102412,  Copyright © 2020 Elsevier Inc.)

License: Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0)
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11.3 Evaluation of supervised machine-learning methods for predicting 
appearance traits from DNA

Submitted in Forensic Science International Genetics. 

Current state: Under revision. 
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Highlights

- Comparison of machine-learning (ML) classifiers for pigmentation trait prediction.

- Multinomial logistic regression and ML methods perform highly similar.

- ML classifiers provide no advantage with current limited marker sets.
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Abstract
The prediction of human externally visible characteristics (EVCs) based solely on DNA 
information has become an established approach in forensic and anthropological genetics in 
recent years. The main purpose of forensic DNA phenotyping is to trace individuals unknown 
to the investigating authorities who cannot be identified with the current comparative 
methods of DNA profiling. While for a large set of EVCs, predictive models have already 
been established using multinomial logistic regression (MLR), the prediction performances of 
other possible classification methods have not been thoroughly investigated thus far. 
Motivated by the question to identify a potential classifier that outperforms these specific trait 
models, we conducted a systematic comparison between MLR and three popular machine 
learning (ML) classifiers, namely, support vector machines (SVM), random forest (RF) and 
artificial neural networks (ANN). As examples, we used eye, hair and skin color categories as 
phenotypes and genotypes based on the previously established IrisPlex, HIrisPlex, and 
HIrisPlex-S DNA markers. We compared and assessed the performances of each of the four 
methods, complemented by detailed hyperparameter tuning that was applied to some of the 
methods in order to maximize their performance. Overall, we observed that all four 
classification methods showed rather similar performance, with no method being 
substantially superior to the others for any of the traits, although performances varied slightly 
across the different traits and more so across the trait categories. Hence, based on our 
findings, none of the ML methods applied here provide any advantage on appearance 
prediction, at least when it comes to eye, hair, and skin color and the IrisPlex, HIrisPlex, and 
HIrisPlex-S DNA markers used here.
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Introduction
In recent years, Forensic DNA Phenotyping (FDP), used to predict Externally Visible Characteristics 
(EVCs) of unknown crime scene sample donors or unknown deceased persons directly from DNA, has 
become a suitable addition to the forensic genetics toolbox. In criminal cases where suspects are 
unknown to the investigating authorities and therefore cannot be identified by comparative forensic 
DNA profiling, FDP can be used to generate investigative leads to help find unknown suspected 
perpetrators, and can also help in missing person identification when known relatives or ante 
mortem samples are not available [1-3]. By using FDP outcomes, police investigators can narrow 
down a large number of potential suspects, as is the case without known suspects, and they can 
subsequently proceed to generate standard forensic STR profiles for a reduced set of individuals that 
visually share such EVC FDP predicted outcomes. 

As a prerequisite for developing FDP markers, in the past decade many studies have 
identified genetic markers involved in pigmentation traits [4-11]. Moreover, other studies have used 
them for developing lab tools and statistical tools for predicting eye, hair and skin color through DNA 
markers [12-20]. Most widely used predictive marker sets, lab tools and statistical models include in 
the IrisPlex system [13, 17, 21] for eye color prediction, the HIrisPlex system [20] for hair (and eye) 
color prediction, and the HIrisPlex-S system [19] for skin (and hair and eye) color prediction. The 
aforementioned statistical models are based on multinomial logistic regression (MLR) using 
established genetic marker panels, resulting in posterior probabilities for each trait category i.e., 
three eye color, four hair color, and five skin color categories [19], and are publically available for 
use via https://hirisplex.erasmusmc.nl/. Almost all previously established pigmentation prediction 
models were based on MLR. Some exceptions include fuzzy logic, artificial neural networks and 
classification trees used by Liu et al. [13] for eye colour prediction modelling and Snipper [14], 
which is a Bayesian classifier that provides the prediction results as likelihood ratios. Further 
exceptions include the iterative naïve Bayesian approach from Maroñas and Söchtig [22, 23] for skin 
and hair color respectively, and classification trees  and partition modeling applied by Allwood et al. 
[24] (see [25] for a further review). 

Currently, machine learning (ML) has become a powerful and widely used method for 
solving classification and clustering problems. It is a field in data analytics that focuses on the 
development of mathematical models that have the ability to recognize patterns in the datasets and 
use this information to predict future events. In parts inspired by the human brain, these algorithms 
can be trained on the data (training data) [26]. The training data is actually a set of examples which 
are used in order to fit, or estimate, the parameters of the model. The use of these algorithms is 
motivated by problems with large numbers of classes, linear and non-linear boundaries between 
them and can be implemented for different applications in versatile areas such as such as those 
observed in medicine, education, robotics and many others [27-29]. These boundaries refer to the 
decision boundaries, a hyper-surface that separates the vector space in mutually exclusive sets, one 
for each class. They can be either straight lines or non-linear curves. Some indicative examples of ML 
algorithms are linear and logistic regression [30], decision trees, random forests (RF) [31], k-nearest 
neighbors (k-NN) [32], support-vector machines (SVM) [33] and artificial neural networks (ANN) [34]. 
Despite the fact that these methods have huge potential in different fields, and an ability to handle 
various types of data, selecting a ML algorithm for specific data sets (problems) as well as their 
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optimal hyperparameters to gain maximal performance can be challenging. A comparative analysis is 
often necessary in order to arrive at a method that provides the best prediction accuracy for the 
data set used. 

In the context of forensic sciences, various classifiers have been used and compared for 
different purposes, such as the inference of biogeographic ancestry from DNA, file type detection - 
the identification of evidential files that criminals hide in order to mislead police authorities, glass 
identification etc. [35-40]. To the best of our knowledge, a systematic quantitative comparative 
performance analysis of different classification methods for DNA-based prediction of different 
appearance traits has not been conducted thus far, except for some Naïve Bayes approaches [14, 
16]. In this study, we focused on the evaluation and comparison of three different popular ML 
approaches, namely SVM, RF and ANN, and compared them with MLR, for the set of EVCs most 
widely used in FDP, namely eye, hair and skin color and by using the previously established DNA 
predictors from the IrisPlex, HIrisPlex, and HIrisPlex-S systems. These methods were applied and 
results were compared according to two different datasets, namely one containing samples from 
different continental ancestries and one including only the European samples thereof. For all four 
methods, we assessed the standard performance for each trait category, and for each trait overall, 
with the aim to investigate whether ML is superior, or not, over conventionally used MLR for DNA-
based appearance prediction using pigmentation traits as examples.   

Materials and Methods
Data sets

For the present study, part of the previously used datasets for the establishment of IrisPlex model 
for eye color [17], the HIrisPlex model for hair color [20], and the HIrisPlex-S model for skin color [19] 
were applied for the prediction of those EVCs. More specifically, we used phenotype and genotype 
datasets from 1095 samples for eye, 1702 for hair, and 1318 for skin color prediction (complete 
dataset; CD), originating from Europeans, Americans, South and East Asians, African, Middle Eastern 
and few admixed samples. Furthermore, we used the European subset (ES) of this collection in order 
to restrict the analysis to a more homogenous population, comprising 821 samples for eye, 1429 for 
hair, and 980 for skin color prediction and originating from Ireland, Poland, Russia, Germany and 
Spain. Samples from which these data were previously obtained had been collected for the purpose 
of appearance genetic research under written informed consent, and sample collections were 
approved by the Ethics Committee of the Jagiellonian University (KBET/17/B/2005), the Commission 
on Bioethics of the Regional Board of Medical Doctors in Krakow (48 KBL/OIL/2008), the Clinical 
Research Ethics Committee of the Cork Teaching Hospitals (ref ECM 4 (dd) 11/01/11 ) and by the 
Indiana University Ethical Institutional Review Board (#1409306349).  These datasets were randomly 
split into 80% for model training and 20% for model evaluation (Table 1) for all four methods (see 
below).

As previously described in detail [17, 19, 20], eye colour was classified into three categories 
(blue, intermediate, brown) and hair colour into four categories (red, blond, brown, black), while 
skin colour was classified into five categories (very pale, pale, intermediate, dark, dark to black), 
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following previously established categories. Since the European subset did not comprise samples 
with dark or dark to black skin colour, analyses in this subset were based on three categories only 
(very pale, pale, intermediate). The 41 HIrisPlex-S DNA markers were previously described by 
Chaitanya et al. [19]. In brief, for eye colour, hair colour, and skin colour, we applied the 6 SNPs from 
the previously established IrisPlex model for eye color prediction [17]; the 22 SNPs used for hair 
color prediction from the previously reported HIrisPlex model [20], and the 36 SNPs applied for the 
skin color prediction from the previously described HIrisPlex-S model [19], respectively. 

Appearance trait categories

Trait categories were coded as categorical variables and ascendingly named as ‘1’, ‘2’, ‘3’ etc. up to 
the corresponding number of categories for each trait:

● Eye color:  Blue (1), Intermediate (2), Brown (3)

● Hair color:  Blond (1), Brown (2), Red (3), Black (4)

● Skin color:  Very Pale (1), Pale (2), Intermediate (3), Dark (4), Dark to Black (5); the latter two 

were considered only for the complete dataset

Total samples of each color category for each trait are described in detail in Supplementary Table S1. 
The genetic markers included in the model were converted from their initial form of the bases 
adenine (A), cytosine (C), guanine (G) and thymine (T) and coded numerically as 0, 1, 2 where 0 
indicates homozygosity of the major allele, 1 heterozygosity and 2 homozygosity of the minor allele. 
For example, for an autosomal marker with major allele C and minor allele T, an individual’s 
genotype CC, CT and TT would be converted to 0, 1 and 2, respectively. In all models no interaction 
terms were taken into account, thus only the additive effects of the corresponding genetic markers 
were included, similar to the previously established models [17, 19, 20]. Given the simple nature of 
our data and their final coding form as described above, we did not pursue feature engineering, such 
as considering squared variables or their products, since this would most likely not strongly affect 
our final outcomes. All data sets were previously quality controlled [17, 19, 20], including deviations 
from Hardy-Weinberg equilibrium, excessive heterozygosity, low minor allele frequencies, genetic 
outlier detection using principal-components analysis etc., and could therefore be directly used for 
prediction modelling. Samples with missing genotype data were excluded from our analysis.

Statistical Analysis

The analysis was conducted in R version 3.4.3 [41] and ‘RStudio’ version 3.5.1 [42] using the 
packages ‘nnet’ [43], ‘caret’ [44], ‘e1071’ [45] and ‘randomForest’ [46]. Samples with missing 
genotype information were excluded. 
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Classification algorithms and hyperparameter tuning

We conducted a comparative statistical analysis in order to obtain the efficacy and classification 
accuracy of four different classification methods, namely Multinomial Logistic Regression (MLR), 
Support Vector Machines (SVM), Random Forest (RF) and Artificial Neural Networks (ANN). Tuned 
hyperparameters play an important role in obtaining the optimal performance and accuracy results 
when using SVM, RF and ANN. Each classifier requires different tuning steps and hyperparameters 
that need tuning and tuned values depend each time on the training dataset. For each classifier, we 
tested a series of values for the tuning process with the optimal hyperparameters determined based 
on the lower out-of-bag (OOB) prediction error. OOB is an estimation that measures the prediction 
error of each method. The classified results based on the optimal set of hyperparameters were used 
afterwards for the comparison of all classifiers. In order to assess the accuracy of classification 
performances, we report metrics such as sensitivity, specificity, positive predictive value, negative 
predictive value, area under curve, confusion matrix and overall accuracy were reported. 

Multinomial Logistic Regression (MLR)

The MLR approach is a classification method that is used to predict a nominal dependent variable 
based on multiple independent variables. The independent variables can be either continuous or 
dichotomous. It is a simple extension of the binary logistic regression that allows the dependent 
variable to have more than two categories. Like binary logistic regression, multinomial logistic 
regression uses maximum likelihood estimation in order to evaluate the probability of each 
category. The model can be defined as follows for the 3-class traits [30]:

𝑙𝑛(𝑝2

𝑝1
) = 𝛼2 + ∑𝑘

𝑗=1𝛽2(𝑝2)𝑗𝑥𝑗 (1)

𝑙𝑛(𝑝3

𝑝1
) = 𝛼3 + ∑𝑘

𝑗=1𝛽3(𝑝3)𝑗𝑥𝑗 (2)

Where 𝛼𝑖,𝛽𝑖 (𝑖 = 2,3) are the regression coefficients and 𝑝𝑖 (𝑖 = 1,2,3) are denoting the probabilities 
for each individual sample to belong to a certain category. The latter can be calculated as follows: 
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𝑝1 = 1 ― 𝑝2 ― 𝑝3 (5)

where 𝑥𝑗 is the number of minor (less frequent) allele of the jth SNP and j is an indicator for the 
number of the genetic markers included for trait prediction. For this method no parameter tuning 
was done. Individuals were classified to the colour category with the maximum probability 𝑝𝑖 
without any threshold values to be taken into account. 
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Support Vector Machines (SVM)

SVM [33] is a machine learning approach which finds the optimal hyperplane that separates the 
different classes with the maximum margin i.e. the maximum distance between the data points that 
belong to the different categories. It can solve linear or non-linear problems regarding the kernel 
function used each time [47]. In our case, we applied the Gaussian radial basis function (RBF) which 
is a widely used kernel appropriate for non-linear classification. It can be defined as follows:

𝐾(𝑋1,𝑋2) = 𝑒𝑥𝑝 ( ― 𝛾‖𝑋1 ― 𝑋2‖2) (6)

where ‖𝑋1 ― 𝑋2‖ is the Euclidean distance between the data points 𝑋1, 𝑋2. There are two 
parameters that need to be tuned when using SVM classifier with RBF kernel: the parameters of cost 
(C) and the kernel width parameter (γ). The parameter C determines the influence of the 
misclassification on the objective function and γ the shape and the smoothing of the optimal 
hyperplane obtained. These two parameters can significantly affect the performance of an SVM 
model. More specifically, large C values may lead to over-fitting models while large γ could affect the 
shape of the hyperplane which, as a result, can affect the classification outcomes. In order to find 
the optimal parameters for both CD and ES, we applied the grid-searching process between ten 
values of γ (2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24) and ten values of C (2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 
27). This procedure was applied for all three traits tested and the optimal values were chosen 
according to the lowest OOB error (Supplementary Figures S1& S4). 

Random Forest (RF)

The RF [31] is a ML method for classification and regression tasks. It operates by constructing 
multiple decision trees during training and, in order to classify a new instance, each decision tree 
provides a classification for input data. The majority-vote classification is then chosen as the 
prediction. In its implementation we chose to tune two hyperparameters: the number of trees 
(ntree) and the number of features at each split (mtry). Several studies have already been published 
that focus on the appropriate number of trees for which one could obtain optimal results from the 
RF model. However, different opinions have been voiced during these studies. One typical example 
is the study of Liaw and Wiener [46] which states that larger numbers of trees provide more stable 
results of variable importance. On the other hand, studies such as those by Latinne et al. [48], and 
Hernandez-Lobato [49] found that smaller numbers of trees can also be sufficient. The study of 
Oshiro et al. [50] comprehensively addressed this question by applying the RF model to 29 different 
data sets and comparing their Area Under Curve (AUC) values. The main conclusion of this study was 
that the performance of an RF model does not necessarily improve when number of trees is 
increased, suggesting that a range between 64 and 128 trees can provide satisfactory results. 

For optimal tree number (ntree), we checked and compared the OOB error rate for a range 
of 1-1000 trees and chose, separately for each trait, that number which resulted in the lowest OOB 
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error rate. In Supplementary Figures S2 and S5 the best values for each trait for both CD and ES are 
presented. For optimal mtry hyperparameter values, we used the default of the integer-rounded 
value of 𝑝, where p denotes the number of variables in the model, i.e. the number of genetic 
markers. The corresponding mtry values for the two datasets for eye, hair and skin color therefore 
equaled 2, 4 and 6, respectively.

Artificial Neural Networks (ANN) 

ANN [34, 51] is a family of approaches for classification and clustering that was inspired by the 
human brain in order to recognize patterns in data sets. Its history starts from the early 1940s where 
McCulloch and Pitts [52] wrote a paper on the functionality of human brain neurons and modeled a 
simple neural network by using electrical circuits. Later on 1949 Donald Hebb [53] introduced the 
fundamental idea of learning by supporting that neural pathways are strengthened every time that 
are used (Hebbian learning). In the 1950s when computers became more advanced, many ANN 
approaches were developed and simulated. Some examples were the approach of Farley and Clark 
[54], who simulated the aforementioned Hebbian Network and also the approach of Rosenblatt [55], 
who created the perceptron, an algorithm for pattern recognition. The interest of ANN continued 
also in the 1970s where Werbos [56] introduced the backpropagation algorithm that enabled the 
training of multi-layer networks. More recent approaches have already been established, and 
successfully addressed the previous challenges of deep neural networks [57-59]. 

The ANN consists of connected units, or nodes, called artificial neurons and these 
connections, just as the functionality of the human brain, can transmit signals or activate other 
neurons [60]. Most ANN are organized in layers and neurons, and the input data are “moving” 
through them only in the forward direction until some final output is obtained. Each node has its 
own weight which is continuously adjusted during the training procedure until data with same labels 
consistently yield similar output. 

A number of parameters need to be tuned in order to obtain the maximum performance of 
the ANN model. Here, we started by tuning the number of hidden layers. At first, we looked at a 
range of values, starting from 1 till 10 for the hidden layers. We obtained no significant differences in 
the model performance for eye color prediction when we increased the number of layers. For hair 
and skin color prediction, we noticed some deterioration in the model performance as we increased 
the number of layers. Therefore, for all three traits considered here we trained our models using 
only one hidden layer and used the logistic function as the activation function. Other parameters 
that required tuning were the layer size, referring to the number of units in the hidden layer, and the 
decay value, acting as a regularization parameter to avoid over-fitting. Supplementary Figures S3 and 
S6 give the optimal values for CD and ES respectively, according to the lowest OOB error, chosen for 
each of the traits.  
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Accuracy assessment and comparisons

In order to compare the performance of the different classifiers we presented the model 
measurements evaluated on the corresponding test datasets. More specifically, for each model we 
calculated the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), 
area under curve (AUC), confusion matrix and overall accuracy. Sensitivity (true positive rate) 
measures the proportion of the actual positive samples that are correctly identified by the model 
while specificity (true negative rate) refers to the proportion of the actual negative samples that 
were correctly identified. In addition, PPV denotes the proportion of the correct classifications 
among all predictions of the trait category tested each time, and NPV refers to the proportion of the 
correct classifications among all predictions other than the trait category of interest. AUC is a 
performance measure of a classification model across all possible classification thresholds while the 
confusion matrix describes the performance of a classification model on the test dataset for which 
the true values are known. Ultimately, the overall accuracy refers to the proportion of all samples 
that were classified correctly. 
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Results 
Parameter Tuning
For three out of the four methods applied, namely SVM, RF and ANN, we proceeded into parameter 
tuning for each of the two datasets and for the three traits (i.e. eye, hair and skin color) in order to 
obtain the optimal performance of the classifiers. The best parameters were chosen according to the 
lowest out-of-bag (OOB) error. For SVM, the parameters that needed to be tuned were γ and C. We 
found out that the optimal value for γ was 0.03125 for all three traits and for both CD and ES. The 
optimal C in the CD was equal to 2 for eye and skin color and equal to 16 for hair color 
(Supplementary Figure S1). For the ES, optimal value of C was equal to 1 for eye and skin color and 
equal to 8 for hair color (Supplementary Figure S4). For RF, we needed to tune the number of trees 
(ntree) and the optimal values for each of the traits tested. We obtained 141 trees for eye color, 713 
for hair color, and 589 for skin color for CD, respectively (Supplementary Figure S2). For the ES we 
obtained 349 trees for eye color, 319 for hair color and 572 for skin color (Supplementary Figure S5). 
Regarding ANN, the parameters that needed to be tuned were the layer size and the regularization 
parameter of decay for avoiding over-fitting. For the size, we obtained optimal values of 2 for eye 
color, 6 for hair color, and 3 for skin color for the CD, while for the ES we obtained optimal values of 
7 for eye and hair color and 1 for skin color (Supplementary Figures S3 & S6). For the decay in the 
CD, the optimal values were equal to 0.5 for hair and skin color, while for eye color it was 0.4 
(Supplementary Figure S3). For the ES we obtained the optimal values for decay equal to 0.5 for eye 
and hair color and 0.1 for skin color (Supplementary Figure S6).

Overall prediction accuracy

As shown in Table 2, in terms of overall accuracy, the four classification methods performed equally 
well in predicting each of the three considered EVCs. For eye color and the CD, we found that MLR 
and ANN were able to predict the trait with an overall accuracy of 0.79, while SVM and RF 
performed almost at the same level with 0.78. Similarly, for the ES the highest performance was 
obtained with MLR and ANN (0.69), followed by SVM and RF which overall accuracy values of 0.68 
and 0.67, respectively. For hair and skin color, the discrepancies among the classifiers were higher 
compared to eye color for both datasets. More specifically, in the CD the highest overall accuracy for 
hair color was obtained with MLR (0.60), while SVM and ANN performed almost equally well with 
accuracies of 0.57 and 0.58, respectively. The RF classifier, however, appeared to have a slightly 
inferior performance compared to the other classifiers, reaching the lowest overall accuracy of all 
classifiers at 0.55 for hair color. Similarly, for the ES the MLR had the highest performance of 0.59, 
followed by ANN and SVM which accuracies were equal to 0.56 and 0.55, respectively. The RF 
classifier appeared to have a deteriorated performance compared to the other three classifiers. 
Similar behavior was observed also for skin color prediction in the CD, where the MLR classifier 
yielded the highest performance with an accuracy of 0.63 compared to the other methods. The SVM 
classifier yielded an overall accuracy equal to 0.60, while RF and ANN yielded the lowest 
performances of 0.59 and 0.56, respectively. For the ES both MLR and SVM raised the accuracy to 
0.65 for skin color, while the ANN had the lowest accuracy performance of 0.57. 
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Predictive measurements

Similar to the results of the overall accuracies, the prediction accuracy measurements for eye color 
presented very little to no differences between the four methods regarding blue and brown eye 
color, while a few deviations between the methods were seen for intermediate eye color (Table 3). 
For example, the sensitivity of the intermediate eye color prediction for the CD equaled 0.20 for 
ANN but dropped to 0.18, 0.13 and 0.15 for MLR, SVM and RF, respectively. Another example is the 
PPV of the intermediate eye color prediction, which obtained its highest value of 0.63 for SVM, while 
it dropped to 0.58 for MLR. For the ES the PPV value of intermediate eye color was raised to 0.59 for 
ANN while for RF it dropped to 0.42. The confusion matrices for eye color showed, for both CD and 
ES, small deviations among the four classifiers. Blue and brown eye colors appeared to be better 
predicted by the model in comparison with the intermediate eye color (Supplementary Tables S2 & 
S3). AUC values were at similar levels, especially for SVM, RF and ANN, while MLR slightly 
outperformed (Supplementary Tables S4 & S5).

For hair color, we also observed rather similar prediction performances for all four methods, 
although more pronounced differences were seen for some trait categories (Table 4) compared to 
eye color (Table 3). In particular, the sensitivity of Red hair color prediction in the CD reached its 
highest value with MLR (0.66), followed by ANN (0.58), while its value was almost halved to 0.28 for 
RF, and for SVM it reached 0.21 (Table 4). The sensitivity of Black hair color prediction completely 
dropped to zero for SVM, while its highest value was equal to 0.31 for ANN. Another example was 
the PPV for Black hair color, where we obtained the highest values with MLR and RF (0.58 and 0.47, 
respectively), while it dropped to 0.34 for ANN. We observed a similar behavior to the CD in the ES 
for the sensitivity of red hair color prediction where its highest values were yielded by MLR and ANN 
(0.69 and 0.62, respectively), while for RF and SVM the value was halved to 0.31 and 0.23, 
respectively. Sensitivity of black hair color dropped to zero for SVM and RF, while its highest value 
was obtained with MLR (0.26). PPV for black hair color reached its highest value with MLR, while it 
dropped to zero for RF. The confusion matrices for hair color showed similar patterns for CD and ES 
where the categories with fewer samples in the datasets, such as red and black hair color categories, 
showed higher deviations compared to blond and brown hair color (Supplementary Tables S6 & S7). 
AUC values for MLR outperformed for most category comparisons compared to the other ML 
classifiers (Supplementary Tables S2 & S3).

For skin color, as with hair color, we also observed uneven differences between classifiers 
for some predictive measurements and trait categories (Table 5). For example, in the complete 
dataset the sensitivity of the Very Pale skin color category prediction was 0.11 for both MLR and 
SVM but zero when RF and ANN were applied. Similar diminution was also observed for the 
sensitivity and the PPV of RF in predicting Dark skin color. RF was the only classification method 
where these values equaled zero (Table 5). Higher discrepancies were also observed for the 
specificity of pale skin color where its highest values were obtained for both MLR and RF (0.60); with 
SVM was applied the value dropped to 0.40. Sensitivity of dark to black category dropped to 0.66 for 
ANN, while for SVM and RF it reached the highest value of 0.96. In the ES, the sensitivity of very pale 
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skin color reached the highest value of 0.25 with MLR, while for the rest of the classifiers it was 
almost equal to zero. The specificity of pale skin color yielded its highest value of 0.65 with MLR but 
dropped to 0.40 for RF. For most of the other skin color categories and predictive measurements, 
the four classification methods performed almost equally (Table 5). In the confusion matrices for 
skin color, the categories with the highest number of samples, namely Pale and Intermediate 
categories, were better predicted in comparison to the other categories (Supplementary Tables S8 & 
S9). Also and similar to eye and hair color prediction, the AUC values for MLR mostly outperformed 
the other classifiers (Supplementary Tables S2 & S3).



71

Discussion
In the present study, we compared four different ML classification methods, namely MLR, as widely 
used for EVC prediction from DNA in general, and pigmentation prediction in particular, in addition 
to SVM, RF and ANN with respect to their ability to predict various eye, hair and skin color categories 
based on the previously established IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers. The basic 
motivation for this study was to investigate and to identify, for each of the tested EVCs, the optimal 
classifier yielding the highest performance. In order to obtain the maximum performance of the 
SVM, RF and ANN methods, we first needed to perform hyperparameter tuning. Parameters such as 
cost and gamma for SVM, ntree for RF and size and decay for ANN were tuned and their optimal 
values were chosen according to the lowest OOB error (Supplementary Figures S1-S6). 

Our results showed that when it comes to overall accuracy, all four classifiers performed 
almost equally well for all pigmentation traits tested, with almost no variation across the classifiers 
for eye color and slight variation for hair and skin color. Thus, none of the other ML methods 
outperformed the conventional method of MLR in predicting eye, hair and skin color based on the 
IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers, respectively. When looking at the full suite of 
prediction measurements per each of the three pigmentation traits, we noted slight differences 
between some classifiers for several trait categories, somewhat more for hair and skin color than for 
eye color. However, these differences do not allow a conclusion that any of the three ML classifiers 
perform superior over MLR, which is supported by our conclusion derived from the overall accuracy 
results. This pattern was also observed when we compared the prediction performances between 
the two datasets, CD and ES, where highest deviations were observed for hair and skin color 
compared to eye color. This was to be expected since European samples represent the major part of 
the CD, implying that our model was trained mostly on European samples and therefore, when we 
compare the performance of the CD-derived model with the one trained on the ES, we do not expect 
to see high differences in the overall performance.  

For eye color and for both datasets, we saw a small but noticeable deviation between the 
four classification methods for the intermediate eye color category, while for blue and brown eye 
color categories, all four methods performed almost identically. As obtained with all four methods, 
prediction accuracies were high for blue and brown eye color, but low for intermediate eye color. 
This finding is in line with previous results obtained mostly based on MLR [13, 17, 19-21, 24]. As 
emphasized in all previous IrisPlex publications [17, 19, 20], the six IrisPlex DNA markers used here 
are very suitable for predicting blue and brown eye color, while their ability to predict non-blue and 
non-brown eye colors, which are all grouped into the intermediate eye color category, is limited. 
Currently, it is proposed that the limitation to predict intermediate eye color with all four 
classification methods is more likely explained by missing DNA predictors as opposed to the 
modeling type. Similarly, it may be caused by phenotype definition, as the intermediate eye color 
category can be expected to be more heterogeneous than the blue and brown eye colour categories 
that both reflect the two extremes of the eye colour phenotype distribution. A large-scale genome-
wide association study (GWAS) on eye color is currently underway, aiming to increase the number of 
independently eye color associated DNA variants. Thus, their future use in prediction modelling of 
categorical eye color will help ascertain if it is the number of DNA predictors that underlies the 
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currently limited prediction accuracy of intermediate eye color, which based on our current findings 
appears to be independent of the classification method used.

Regarding hair color, the prediction performances among the four classifiers were also quite 
similar for the two datasets; however, the deviations were higher compared to eye color, while skin 
color was the trait with the highest deviations among the model measurements for some categories. 
This could possibly be explained by the fact that these traits and especially hair and skin color are 
adaptive traits that can be affected by some external or environmental factors that are not included 
in the genetic prediction models and consequently can affect the prediction outcomes of the 
different methods at various extents. In other words, each classification method has probably a 
different level of sensitivity in detecting such external factors, which possibly leads to higher 
deviations between the results. Another explanation could be the much larger number of predictors 
included in the hair and skin color model compared to the few markers in the eye color model, giving 
the ML models more freedom to pick up local patterns in the parameter space, although such 
patterns may represent random events that deteriorate the performance of such approaches. 

Τhe non-substantial differences obtained in the overall accuracies of the four classifiers 
could be explained by the fact that we only look at the additive effects of the genetic markers and 
not at potential interaction effects. This may be due to the underlying genetic mechanisms, but may 
be equally well explained by the way those genetic markers included in the established MLR models 
were identified in the first place. The latter has been usually done in GWAS, which mostly focuses on 
additive independent marker contributions to the traits. Possible incorporation of interactive effects 
could add some additional information that might affect the prediction performances of each 
classifier and probably distinguish some prediction methods that are more sensitive to the addition 
of interactive effects. Previous studies have already identified and incorporated SNP-SNP 
interactions in MLR-based modelling for eye color prediction [18, 61]. However, the previously noted 
predictive effects of SNP-SNP interactions were small, maybe because of the use of MLR, which 
requires active intervention by the analyst to consider two-way or higher-order interaction effects, 
whereas other ML methods often do this automatically. In our case, since with the currently 
available DNA predictors the interaction effects were small and no substantial differences were 
obtained among the four classifiers, we would not recommend interaction effects at this stage.  
Future ML-based pigmentation prediction studies using elongated lists of DNA predictors that 
already are available from large-scale GWASs for hair [62], skin color [63] and will soon be for eye 
color shall consider these interaction effects which might improve the overall prediction 
performance. 

Another possible explanation for the non-substantial differences between the four 
classification methods could be the data sizes used for each trait and the number of samples for 
each trait category. Since ML methods are computational methods that ‘learn’ directly from the 
data, the amount of the datasets used for model training can affect the model performance. When 
increasing the datasets, more information regarding the patterns of each group is incorporated into 
the model and therefore allows the observations to be separated into the different classes more 
accurately. This is due to them being based on data patterns and not on weak correlations that can 
occur in small datasets. Thus, we could expect that this may have affected, to some extent, the 
prediction performances of the methods applied due to the use of these currently available datasets 
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that may not represent all combination patterns of alleles. This can be confirmed to some extent by 
our case where we noticed that prediction performance was higher when using the complete 
dataset in comparison with the European subset which appears to have a slightly deteriorated 
performance, especially for eye and hair color prediction. Larger datasets in general are often 
necessary and interesting to be considered for future pigmentation prediction studies, in order to 
release the full potential of these differing ML approaches. 

In summary, our results did not show substantial differences between the four ML-based 
methods tested to predict appearance prediction, in particular eye, hair, and skin color using the 
previously established IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers, respectively. Given this 
outcome and because of the easier interpretation of MLR with respect to the modelled function 
compared to other ML approaches, we suggest, at least for now, the use of the MLR as the most 
appropriate method for predicting appearance traits from DNA, especially with regards the three 
pigmentation traits used here. MLR describes a simple relationship between the inputs and the 
outputs, which makes the outcomes of the predictions more interpretable compared to ML 
methods. Contributions and feature interactions can also be easily represented by the coefficients in 
the MLR but require active pursuit of such interactions by the analyst, while the inner workings of 
SVM, RF and ANN are harder to understand and interpret, although they do offer more automated 
consideration of interaction terms. The latter three ML methods also do not provide a direct 
estimate of the importance of each feature for the model’s prediction performance, although 
secondary, resampling-based approaches exist that may provide such an assessment. Thus, for ML 
methods it is harder to understand the interaction between the different features in the model. 

Notably, our findings and conclusions obtained are based on a relatively small number of 
established DNA predictors and we did not consider interactions between them. Once more 
appearance DNA predictors and interactions between them have been established, it would be 
interesting to use them in a classifier method comparison as performed here, to find out, if the 
results we obtained here may have been affected by the type and number of DNA markers used, or 
the classification of the phenotype being predicted. However, for the time being, and with the 
established pigmentation DNA predictors currently available, MLR remains the preferred 
classification method of choice for predicting categorical pigmentation traits from DNA. 
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12 Discussion 

The discussion is focused on the two published manuscripts and the manuscript that is currently 
being peer reviewed.

During the last decades, FDP which is the prediction of EVC through DNA markers has become a 
focus of forensic genetic research. In cases where the conventional method of DNA matching 
methods, such as STR profiling, cannot provide matches with already available reference profiles, 
FDP can result in actionable leads by narrowing down a possible large set of suspects.  Certain traits, 
namely eye, hair and skin color may be predicted with high accuracy by only a relatively small 
number of genetic markers. Forensically validated tools that focus on prediction of these traits have 
already been developed and established. Concerning the prediction of other appearance traits, the 
current lack of knowledge on the genetic markers or other factors that have an impact on their 
phenotypic variation, is still an obstacle for their further application in the area of forensics. So far, 
the majority of the currently developed EVC prediction models were based on the conventional MLR 
approach, while only few others applied alternative ML methods. Furthermore the incorporation of 
the biogeographic distribution of traits as priors within the prediction models was barely 
demonstrated. Motivated by the fact that the existing approaches for EVC prediction still have 
potential for improvement and due to the aforementioned shortcomings, I aimed at assessing the 
impact of trait prevalence informed priors and also applied and compared various ML approaches 
for EVC prediction. The main aim was to address whether priors of other classification methods can 
provide additional information for predicting appearance traits and subsequently improve the 
performance of the already existing models.    

For the appearance traits tested here all categories were based on established scales as defined in 
previous studies that focused on EVC prediction. These scales indicate well-defined categories that 
serve for a clear distinction among them and are appropriate for forensic purposes. More 
specifically, within the context of forensics, such distinction among the categories might be more 
beneficial for the police investigations rather than some sort of continuum scales that contain highly 
detailed color categories. In the latter case, the trait categories are likely closer genetically to each 
other and probably more difficult to be distinguished and predicted with high accuracy by the 
prediction models. Furthermore, they might cause difficulties in interpreting by the police 
authorities. For this reason, color categories i.e.  for hair color are defined as blond, brown, red and 
black, while categories such as light/dark brown or brown with auburn shades are incorporated into 
the simplified scale. In a similar manner this is done for the rest of the appearance traits.

12.1 Limitations on assembling spatial distribution data of appearance traits 
among different populations

Within my PhD project I initially aimed at compiling trait prevalences among different population 
groups for a set of appearance traits. The main motivation was to collect these data and 
subsequently use it as prior information within the EVC prediction model and to investigate their 
final impact on the prediction accuracy. In other words, the goal was to find out whether 
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biogeographic-ancestry-informed priors improve the prediction accuracy for some traits, especially 
in cases where not all causal genetic factors have been identified and included in the current 
models. In order to collect information on trait prevalences, I went through old anthropological 
studies and also more recent ones, including both genome-wide association studies as well as 
candidate gene studies. After the literature review, it became obvious that there was a significant 
lack of available and reliable data on trait prevalences. The majority of the studies available failed to 
meet the criteria of providing trustworthy sources of the data and population representativeness of 
their samples, and were excluded from the analysis. Furthermore, I noticed that despite the fact that 
human pigmentation has been a topic of major interest for many decades, most of the studies were 
focused on the pigmentation of European populations, neglecting other population groups. 

In addition, most of the studies provided prevalence data on eye and hair pigmentation, while data 
for other traits such as skin color were barely available. Regarding other traits such as hair structure 
and height there were not available data at all.

Due to lack of data availability, the scope of my project became somewhat limited, since I had to 
focus only on eye and hair color in mostly European and not worldwide populations. However, the 
limitation of data availability presented an opportunity to do a rather in-depth theoretical research 
on the subject.

12.2 Current knowledge on spatial prevalence of eye and hair color

Due to the above mentioned restrictions, the initial part of my work was the compilation of data for 
eye and hair color among different populations. The prevalences that could be collected for eye 
color comprised 16 European and Central Asian countries, while for hair color, data from only seven 
European countries were available.

At first, I focused on the investigation of association patterns between the two traits. For this 
purpose, I used the available dataset on the German population from the old anthropological study 
of Virchow, which comprised the largest sample of approximately 6 million individuals [168]. In this 
dataset, I found that there is a moderate association between eye and hair color. The highest 
association was between blond hair and blue eyes. These outcomes were also confirmed in the 
spatial maps presented in the study where high prevalences of blond hair and blue eyes were found 
in the northern part of Europe. Interestingly, red hair color did not show any specific pattern of 
association with any of the other traits. 

Throughout this study, I aimed at assessing the prevalence in countries for which data were not 
available. For this purpose, interpolation was applied, however due to the fact that the data were 
quite limited, only the outcomes of the neighboring countries were estimated and presented in 
spatial maps. These values should be treated with caution, since they might deviate from the actual 
prevalence values.  However, the data obtained from interpolation has its merits and represents the 
most recent state of knowledge on the biogeographic distribution of the traits under investigation. 
Further studies on the spatial distribution are necessary in order to expand the current knowledge 
for worldwide population groups and for an extended set of appearance traits, including skin color, 
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hair structure, freckles, height and male pattern baldness among others. This is of particular 
importance for completing the picture of spatial distribution of traits, which can be used as priors for 
testing their actual impact on EVC prediction.

12.3 Impact of priors on EVC prediction

 According to the aforementioned restrictions, namely the lack of reliable data, the attempt to apply 
and test the actual impact of priors of EVC prediction was deemed to be infeasible at this stage. 
Motivated by the question whether such prior information has potential to improve the prediction 
accuracy of the previously established models, I exhaustively investigated the impact of priors 
defined on a fine-grained grid that contained all its possible values from 0.01 to 0.99. Therefore, I 
investigated the general behavior of priors on all possible values and tested the impact in case of 
misspecification. During this study I used a set of specific appearance traits that included eye, hair, 
skin color, hair structure, and freckles. Prior incorporated models were compared with the prior-free 
models. The models applied here were based on multinomial logistic regression (MLR) or binomial 
logistic regression (BLR), depending on the number of the trait tested each time.  

According to my results, trait prevalence has an impact on the performance of the EVC prediction, at 
least for the traits tested here and for the selected set of markers. More specifically, I found out that 
for all traits, there is a certain proportion of priors that seems to outperform the prior-free 
approaches. The impact differed regarding each trait category, since certain categories appeared to 
be more susceptible in prior changes compared to others. Importantly, it also turned out that there 
was a significant proportion of values that yielded worse performance than the prior-free models. 
This indicates that there is a risk of misspecifying the priors, which can lead to deterioration of the 
model performance. Therefore it is critical to apply accurate trait prevalence values in order to see 
the actual impact on EVC prediction. 

Given the lack of knowledge on these priors, I investigated not only the possible benefit that priors 
may have in predicting EVCs but also the cost of their misspecification. This provided a first 
important insight on the incorporation of priors, which hopefully will motivate further studies that 
through the collection of accurate prevalence values can discover the possible benefits of this 
approach on appearance trait prediction. 

Within the different traits tested here it was obtained that some trait categories showed lower 
susceptibility to prior variations. This likely reflects the large extent of genetic determination of 
these traits that is already included in the model through the predictive markers. Such example is 
the red hair color category which is determined mainly by one gene, the MC1R. Its DNA variants are 
acting as causal factors and affect the type of melanin produced in the human body and lead to this 
certain phenotype when pheomelanin is produced. For all other traits and their categories, 
especially hair and skin color, several GWAS studies have demonstrated their phenotypes are 
complex and is affected by large numbers of genes [169, 170], while GWAS for other traits such as 
hair structure and freckles were not in such a large scale so far. For the last two traits several genes 
have been identified but they appear to have only small effects on their prediction.  This indicates 
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the need for larger studies that might identify more markers that contribute on their phenotypic 
variations. 

The use of priors, if specified correctly, and especially for genetically complex traits might be 
beneficial and improve the prediction accuracy of the already existing approaches. This might be 
because they can incorporate information into the model that either reflects the effect of external 
or environmental factors that so far cannot be incorporated in the model, or the effect of additional 
variants that are not yet identified but show variation in their spatial distribution. In any case, both 
observations, namely the potential to improve prediction accuracy and the cost of misspecification, 
are two important findings that motivate further studies. One important approach for further 
studies, would be to conduct larger scale GWAS in order to identify more causal genetic factors that 
contribute to the different phenotypes. Due to the fact that these factors might have small or even 
moderate effects, large studies are necessary to identify genetic variants. Another issue that is 
highlighted throughout this study, is the collection of population-based trait prevalence values on 
different EVCs that are to be predicted. Such data will be useful in order to obtain the actual impact 
on EVC prediction, which currently shows potential for improvement. In forensic cases, such priors 
will only be applicable when biogeographic ancestry of the trace donor is inferred with high accuracy 
from the DNA sample. Although even if the current issues are overcome in the future, caution 
should be taken into account regarding the trait variation within biogeographic groups. Prior 
incorporation could be considered either in a continental level by averaging all countries that belong 
to this continent or a population group level. For continents such as Europe, where phenotypic 
variation is high between populations from different parts, such averaging of the prevalence values 
might not be beneficial and will likely lead to misspecification of priors. This problem could be solved 
by increasing the levels of detail in biogeographic ancestry testing through DNA from continental to 
population or even sub regional level, which is currently not available for the small sets of markers 
that can be considered in forensic genetics to date. 

To sum up, this study provided a first approach on the possible impact of trait prevalence informed 
priors for a set of specific EVCs. My results showed that such priors have potential to improve the 
prediction accuracy for EVC prediction, however there is a certain need for accurate prevalence 
values in order to perform accordingly. Further studies are needed for the collection of such data on 
a worldwide level and also for the identification of more causal genetic factors. Only in this way we 
will be able to identify the actual impact that priors have on EVC prediction.  

12.4 Non-substantial differences in the prediction performance among all 
classifiers

In this study, I aimed at comparing four ML classifiers for predicting EVCs including eye, hair & skin 
color. The classifiers that were applied were MLR, SVM, RF and ANN with the set of predictive 
markers as were previously established for each trait [5-7]. So far, MLR has been widely used for EVC 
prediction and many models developed are based on it. Motivated by the question whether any of 
the aforementioned methods outperform the standard MLR, I applied and then compared those 
classifiers with the standard performance metrics for classification. Comparative analysis was 
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conducted in two different datasets, the first one including only European samples while the other 
one comprised of data samples in a worldwide level. The results obtained from this study showed in 
general that all classifiers tested here performed almost equally well for the three appearance traits. 
Especially for eye color almost no variations were obtained while for hair and skin color the 
variations were slightly higher, however they were not substantial. The same pattern of behavior 
was obtained in both datasets which leads to the conclusion that none of the three classifiers 
applied here outperformed MLR, at least for the currently known marker sets. This was expected if 
we consider that European samples represent the majority of the complete dataset and therefore in 
both cases the model was trained mostly in European samples.

For eye color, I obtained that for brown and blue categories, all four classifiers performed almost 
identically while for intermediate eye color I observed small deviations for some performance 
measurements. This is likely explained by the lower prediction performance of intermediate eye 
color compared with the other two eye color categories, which was also confirmed by previous 
studies and is probably due to the lack of knowledge on markers that contribute to this 
pigmentation trait [5-7, 63, 75, 167]. Future studies that aim for the identification of such markers 
are necessary in order to improve the prediction accuracy of intermediate eye color.  

Regarding the prediction of hair color, I obtained slightly higher deviations among the four 
classification methods, however they were not substantial. Similar behavior was obtained also for 
skin color prediction, which was the trait with the highest deviations between model performances 
compared with the previous two. This could be possibly explained by the fact that there is a larger 
number of predictors contributing for these traits that are either not yet identified or they are some 
external or environmental factors that so far cannot be incorporated in the prediction models. This 
can affect the outcomes of the classifiers, meaning that each method might have a different level of 
sensitivity in detecting the impact of external factors, which subsequently leads to differentiations in 
the results of the different methods. Another possible explanation is the fact that for hair and skin 
color, a larger number of predictors are contributing, that affects the ability of the classifiers to pick 
up local patterns, and in combination with the relatively small datasets this could lead to some 
random events which subsequently deteriorates the overall model performance.

To give an overview, the systematic comparison of the four classification methods showed non-
substantial differences between the model performances. This could be due to the fact that we look 
at the additive effects of the genetic markers and not at potential interactions. This could be possibly 
explained by the way that these genetic markers were identified. The identification of such markers 
is usually done by GWAS which mostly focus on the additive effects of each marker to the trait 
tested. By looking at possible interaction effects of the predictive markers, some additional 
information that affects the current prediction performances might be obtained. However, with the 
currently known markers and due to the fact that ML approaches applied here look implicitly at  
interaction effects and the already established studies that have shown small effects on SNP-SNP 
interactions, it is not recommended at least for this stage to incorporate interaction effects. 
Additional knowledge for predictive markers is required in order to see whether such interactions 
could actually affect the performance of the different classifiers. Furthermore, according to the 
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results, it was obtained that the performance metrics of all classifiers reflect the genetic 
determination of the trait categories. This means that categories such as red hair color which are 
strongly determined by certain genes tended to have higher performance metrics compared to 
other categories.  Another explanation for the results obtained among the four classifiers, could be 
the relatively small data sizes used here for EVC prediction. By nature, ML approaches use the 
information from the data, they ‘learn’ from it and subsequently use this information in order to 
classify new observations. That means that the more information is available to the model during 
training the more accurate the predictions will be. This was also confirmed with the two datasets 
that I used, where in the complete dataset we had more observations and the performance 
measurements were overall higher, compared to the smaller European dataset. In ML approaches, 
large datasets are generally preferable in order to provide more information in the training model 
and avoid possible random patterns that can often occur in smaller datasets. 

To sum up, according to the current findings and the currently known predictive markers, it is 
suggested that MLR is the most appropriate and preferable method for EVC prediction due to its 
easier interpretation compared to the other classifiers. MLR gives a clearer insight of the interactions 
between the features and as well the importance of each feature to the outcomes while for the rest 
of ML approaches this is difficult to obtain. However, in the future this statement might require re-
evaluation, as we make more progress towards the identification of more genetic markers and their 
possible interactions that contribute to appearance traits.   

13 Outlook

The results of my PhD showed that there is a proportion of priors that show potential to improve the 
prediction accuracies of the already existing EVC models. Furthermore, I found that ML approaches 
including SVM, RF and ANN did not show any substantial differences and performed almost equally 
well with the conventional method of MLR. However, it is of utmost importance to collect accurate 
prevalence data on pigmentation traits of different populations in order to see the actual impact of 
priors on EVC prediction. On the other hand, the identification of novel DNA markers that possibly 
explain at a higher extent the phenotypic variations of the traits will improve their prediction 
accuracy. 

Based on the preliminary study of the literature review on appearance traits, I managed to collect 
data on eye color for 16 European and Central Asian countries and on hair color for 7 European 
countries. For the rest of the appearance traits, data were either not sufficient or non-existent. It is 
obvious that only with the aforementioned data available, the incorporation of accurate prior values 
in the EVC prediction model was not feasible at this stage. Therefore, further studies that focus on 
the spatial distribution of pigmentation traits are necessary in order to see whether the accurate 
priors do actually improve the current prediction models. In a next step, it would be important to 
identify more genetic markers that contribute to different appearance traits and have not been 
identified so far. Since the current approaches for EVC prediction have potential for improvement, 
the addition of new genetic markers and possibly their interactions might be necessary in order to 
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achieve that. Large scale GWAS are necessary to be conducted in the future for the identification of 
such markers. Incorporation of novel genetic markers, their SNP-SNP interactions, epigenetic or 
other features into the prediction model might not only improve the overall prediction accuracy but 
also might indicate whether other ML approaches outperform the conventional MLR. Furthermore it 
would be necessary for future studies to generate and apply larger and well defined datasets in 
order to obtain more accurate outcomes especially in case of comparing various classifiers. ML 
approaches are learning from “experience”, that means that the more data you provide, the more 
information is incorporated in the model which subsequently can lead to more accurate predictions. 
The relatively small data size available for eye, hair and skin color in my study was likely an obstacle 
in order to see the actual performance of all four classifiers. With the knowledge that is currently 
available on the genetic markers and the current datasets, the recommended method for EVC 
prediction is MLR due to the fact is a more interpretable method that provides information on the 
feature interaction and contribution to the outcome. 

Notably, the results obtained throughout my PhD project, despite the limitations of available data 
that I faced, provide a significant insight of novel approaches and systematic comparison of various 
established classifiers. These results can motivate further studies on the spatial distribution of 
appearance traits and the identification of novel genetic markers in order to improve the already 
existing approaches for EVC prediction. 
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