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ABSTRACT

Smartphones and wrist-wearable devices have infiltrated our lives in recent years. Ac-
cording to published statistics, nearly 84% of the world’s population owns a smartphone,
and almost 10% own a wearable device today (2022). These devices continuously gener-
ate various data sources from multiple sensors and apps, creating our digital phenotypes.
This opens new research opportunities, particularly in mental health care, which has pre-
viously relied almost exclusively on self-reports of mental health symptoms.

Unobtrusive monitoring using patients’ devices may result in clinically valuable mark-
ers that can improve diagnostic processes, tailor treatment choices, provide continuous
insights into their condition for actionable outcomes, such as early signs of relapse, and
develop new intervention models. However, these data sources must be translated into
meaningful, actionable features related to mental health to achieve their full potential.

In the mental health field, there is a great need and much to be gained from defining a
way to continuously assess the evolution of patients’ mental states, ideally in their every-
day environment, to support the monitoring and treatments by health care providers. A
smartphone-based approach may be valuable in gathering long-term objective data, aside
from the usually used self-ratings, to predict clinical state changes and investigate causal
inferences about state changes in patients (e.g., those with affective disorders).

Being objective does not imply that passive data collection is also perfect. It has sev-
eral challenges: some sensors generate vast volumes of data, and others cause significant
battery drain. Furthermore, the analysis of raw passive data is complicated, and collecting
certain types of data may interfere with the phenotype of interest. Nonetheless, machine
learning is predisposed to address these matters and advance psychiatry’s era of person-
alised medicine.

This work aimed to advance the research efforts on mobile and wearable sensors for
mental health monitoring. We applied supervised and unsupervised machine learning
methods to model and understand mental disease evolution based on the digital pheno-
type of patients and clinician assessments at the follow-up visits, which provide ground
truths. We needed to cope with regularly and irregularly sampled, high-dimensional, and
heterogeneous time series data susceptible to distortion and missingness. Hence, the de-
veloped methods must be robust to these limitations and handle missing data properly.

Throughout the various projects presented here, we used probabilistic latent variable
models for data imputation and feature extraction, namely, mixture models (MM) and hid-
den Markov models (HMM). These unsupervised models can learn even in the presence
of missing data by marginalising the missing values in the function of the present observa-



tions. Once the generative models are trained on the data set with missing values, they can
be used to generate samples for imputation. First, the most probable component/state has
to be found for each sample. Then, sampling from the most probable distribution yields
valid and robust parameter estimates and explicit imputed values for variables that can
be analysed as outcomes or predictors. The imputation process can be repeated several
times, creating multiple datasets, thereby accounting for the uncertainty in the imputed
values and implicitly augmenting the data. Moreover, they are robust to moderate devia-
tions of the observed data from the assumed underlying distribution and provide accurate
estimates even when missingness is high.

Depending on the properties of the data at hand, we employed feature extraction
methods combined with classical machine learning algorithms or deep learning-based
techniques for temporal modelling to predict various mental health outcomes - emotional
state, World Health Organisation Disability Assessment Schedule (WHODAS 2.0) func-
tionality scores and Generalised Anxiety Disorder-7 (GAD-7) scores, of psychiatric out-
patients. We mainly focused on one-size-fits-all models, as the labelled sample size per
patient was limited; however, in the mood prediction case, it was possible to apply per-
sonalised models.

Integrating machines and algorithms into the clinical workflow require interpretabil-
ity to increase acceptance. Therefore, we also analysed feature importance by computing
Shapley additive explanations (SHAP) values. SHAP values provide an overview of es-
sential features in the machine learning models by designating the weight of predictability
of each feature positively or negatively to the target variable.

The provided solutions, as such, are proof of concept, which require further clini-
cal validation to be deployable in the clinical workflow. Still, the results are promising
and lay some foundations for future research and collaboration among clinicians, pa-
tients, and computer scientists. They set the paths to advance future research prospects in
technology-based mental healthcare.
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RESUMEN

En los últimos años, los smartphones y los dispositivos y pulseras inteligentes, común-
mente conocidos como wearables, se han infiltrado en nuestras vidas. Según las estadísti-
cas publicadas a día de hoy (2022), cerca del 84% de la población tiene un smartphone y
aproximadamente un 10% también posee un wearable. Estos dispositivos generan datos
de forma continua en base a distintos sensores y aplicaciones, creando así nuestro fenotipo
digital. Estos datos abren nuevas vías de investigación, particularmente en el área de salud
mental, dónde las fuentes de datos han sido casi exclusivamente autoevaluaciones de sín-
tomas de salud mental.

Monitorizar de forma no intrusiva a los pacientes mediante sus dispositivos puede dar
lugar a marcadores valiosos en aplicación clínica. Esto permite mejorar los procesos de
diagnóstico, adaptar tratamientos, e incluso proporcionar información continua sobre el
estado de los pacientes, como signos tempranos de recaída, y hasta desarrollar nuevos
modelos de intervención. Aun así, estos datos en crudo han de ser traducidos a datos
interpretables relacionados con la salud mental para conseguir un máximo rendimiento de
los mismos.

En salud mental existe una gran necesidad, y además hay mucho que ganar, de definir
cómo evaluar de forma continuada la evolución del estado mental de los pacientes en su
entorno cotidiano para ayudar en el tratamiento y seguimiento de los mismos por parte
de los profesionales sanitarios. En este ámbito, un enfoque basado en datos recopilados
desde sus smartphones puede ser valioso para recoger datos objetivos a largo plazo al
mismo tiempo que se acompaña de las autoevaluaciones utilizadas habitualmente. La
combinación de ambos tipos de datos puede ayudar a predecir los cambios en el estado
clínico de estos pacientes e investigar las relaciones causales sobre estos cambios (por
ejemplo, en aquellos que padecen trastornos afectivos).

Aunque la recogida de datos de forma pasiva tiene la ventaja de ser objetiva, tam-
bién implica varios retos. Por un lado, ciertos sensores generan grandes volúmenes de
datos, provocando un importante consumo de batería. Además, el análisis de los datos
pasivos en crudo es complicado, y la recogida de ciertos tipos de datos puede interferir
con el fenotipo que se quiera analizar. No obstante, el machine learning o aprendizaje
automático, está predispuesto a resolver estas cuestiones y aportar avances en la medicina
personalizada aplicada a psiquiatría.

Esta tesis tiene como objetivo avanzar en la investigación de los datos recogidos por
sensores de smartphones y wearables para la monitorización en salud mental. Para ello,
aplicamos métodos de aprendizaje automático supervisado y no supervisado para modelar



y comprender la evolución de las enfermedades mentales basándonos en el fenotipo digi-
tal de los pacientes. Estos resultados se comparan con las evaluaciones de los médicos en
las visitas de seguimiento, que proporcionan las etiquetas reales. Para aplicar estos méto-
dos hemos lidiado con datos provenientes de series temporales con alta dimensionalidad,
muestreados de forma regular e irregular, heterogéneos y, además, susceptibles a presen-
tar patrones de datos perdidos y/o distorsionados. Por lo tanto, los métodos desarrollados
deben ser resistentes a estas limitaciones y manejar adecuadamente los datos perdidos.

A lo largo de los distintos proyectos presentados en este trabajo, hemos utilizado
modelos probabilísticos de variables latentes para la imputación de datos y la extracción
de características, como por ejemplo, Mixture Models (MM) y hidden Markov Models
(HMM). Estos modelos no supervisados pueden aprender incluso en presencia de datos
perdidos, marginalizando estos valores en función de las datos que sí han sido observa-
dos. Una vez entrenados los modelos generativos en el conjunto de datos con valores
perdidos, pueden utilizarse para imputar dichos valores generando muestras. En primer
lugar, hay que encontrar el componente/estado más probable para cada muestra. Luego,
se muestrea de la distirbución más probable resultando en estimaciones de parámetros ro-
bustos y válidos. Además, genera imputaciones explícitas que pueden ser tratadas como
resultados. Este proceso de imputación puede repetirse varias veces, creando múltiples
conjuntos de datos, con lo que se tiene en cuenta la incertidumbre de los valores im-
putados y aumentándose así, implícitamente, los datos. Además, estas imputaciones son
resistentes a desviaciones que puedan existir en los datos observados con respecto a la
distribución subyacente asumida y proporcionan estimaciones precisas incluso cuando la
falta de datos es elevada.

Dependiendo de las propiedades de los datos en cuestión, hemos usado métodos de ex-
tracción de características combinados con algoritmos clásicos de aprendizaje automático
o técnicas basadas en deep learning o aprendizaje profundo para el modelado tempo-
ral. La finalidad de ambas opciones es ser capaces de predecir varios resultados de salud
mental/estado emocional, como la puntuación sobre el World Health Organisation Dis-
ability Assessment Schedule (WHODAS 2.0), o las puntuaciones del generalised anxiety
disorder-7 (GAD-7) de pacientes psiquiátricos ambulatorios. Nos centramos principal-
mente en modelos generalizados, es decir, no personalizados para cada paciente sino
explicativos para la mayoría, ya que el tamaño de muestras etiquetada por paciente es
limitado; sin embargo, en el caso de la predicción del estado de ánimo, puidmos aplicar
modelos personalizados.

Para que la integración de las máquinas y algoritmos dentro del flujo de trabajo clínico
sea aceptada, se requiere que los resultados sean interpretables. Por lo tanto, en este tra-
bajo también analizamos la importancia de las características sacadas por cada algoritmo
en base a los valores de las explicaciones aditivas de Shapley (SHAP). Estos valores pro-
porcionan una visión general de las características esenciales en los modelos de apren-
dizaje automático designando el peso, positivo o negativo, de cada característica en su
predictibilidad sobre la variable objetivo.

xii



Las soluciones aportadas en esta tesis, como tales, son pruebas de concepto, que re-
quieren una mayor validación clínica para poder ser desplegadas en el flujo de trabajo
clínico. Aun así, los resultados son prometedores y sientan base para futuras investiga-
ciones y colaboraciones entre clínicos, pacientes y científicos de datos. Éstas establecen
las guías para avanzar en las perspectivas de investigación futuras en la atención sanitaria
mental basada en la tecnología.
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CHAPTER 1

INTRODUCTION

1.1 Digital Phenotyping

Three concepts permeate all aspects of biological life: genotype, phenotype, and environ-
ment. The phenotype of an organism refers to the collection of its observable traits. These
traits are a product of the organism’s genetics and environment and the interplay between
the two (GxE interactions). The phenotype, in turn, produces the extended phenotype,
defined by Dawkins [42] in 1982, which is the organism’s impact on its surroundings to
increase the likelihood of survival. Humans’ extended phenotype can be found both off-
and online (see Figure 1.1).

Figure 1.1: Schematic definition of the digital phenotype. Source [1].

Smartphones and wrist-wearables are now ubiquitous and can be harnessed to offer a
moment-by-moment quantification of our digital phenotype during naturalistic settings.
Using such personal devices allows for the continual collection of a person’s activity,
such as step count and exercise patterns, health signals, such as sleep and heart rate, and
social behaviours (how many calls and text messages are sent). Even though it is more
challenging to analyse, the data variability offers a unique opportunity to describe the
person’s lifestyle and behaviour in-situ [2], [38].

1



1.1.1 A Mental Health Perspective

Mental health conditions are increasing worldwide. According to the World Health Or-
ganisation’s (WHO) report, in 2019, 1 in every eight people suffered from a mental dis-
order, with anxiety and depressive disorders the most common [77]. After 2020, due to
the COVID-19 pandemic, a larger than 25% increase in the number of people suffering
from anxiety and depression was estimated [144]. There is a significant prevalence of
mental health conditions among children and adolescents - around 20% worldwide have
a mental health condition, with suicide being the second leading cause of death among
15-29-year-olds [142].

Mental disorders can substantially affect all areas of life, such as school or work per-
formance, social relationships, and the ability to participate in the community. Moreover,
they are extremely costly to the global economy: depression and anxiety alone cost the
global economy USD 1 trillion each year [143]. Technology can offer positive possibil-
ities in the field of mental healthcare [96]: reduction of costs, availability at all times,
defeating stigma, and early prevention.

Traditionally mental health-related assessments are done through face-to-face meet-
ings in clinical settings. The commonly used measurement modalities (e.g., self-report,
proxy-report, clinician ratings [130]) are time-consuming and tedious to fill in on follow-
up visits [149]. In addition, several self-report methods are prone to biases [3], [5], [68],
[154]. When patients are asked to retrospectively report their feelings and the situations
which provoked those feelings during their everyday routines, they may not accurately
remember [170] or deliberately omit details of previous events [195]. Furthermore, ques-
tionnaires usually focus on a summarised version of the events within a particular du-
ration; hence, variations in behaviours and determinants over time and context may be
overlooked. Therefore, there is a great need and much to be gained from defining a way
to assess the evolution of patients’ mental states continuously, ideally in their everyday
environment, to support the monitoring and treatments by health care providers.

Ecological momentary assessment (EMA) allows for more continuous evaluation and
monitoring of patients without face-to-face appointments. It has the crucial advantage of
providing data that is more relevant to daily life [182]. It does not rely on the patient’s
memory of the events; hence, it is less susceptible to recall bias and may provide insights
into the time-varying dynamics of behaviour and its correlations. However, it still requires
active patient input leading to refusal and attrition [40], [199]. Thus, developing adequate
passive EMA tools may increase retention and help overcome the limitations of active
EMA [153].

In the field of mental health, the individuals’ unique digital phenotype can provide
clues to infer their behaviours, emotions, and feelings and, ultimately, to detect symptoms
early and prevent mental health disorders [59], [94], [128], [191] (see Figure 1.2). A
smartphone-based approach may be valuable in gathering long-term objective data, aside
from the usually used self-ratings, to predict clinical state changes and investigate causal

2



inferences about state changes in patients (e.g., those with affective disorders) [47].

Figure 1.2: Medical insights that can be assessed from the digital phenotype. Source [1].

Solutions for digital phenotyping in the mental health field aim to analyse various as-
pects of human behaviour. Several studies from the past years have shown that passively-
sensed data from smartphones and wrist-wearables were associated with symptoms of
schizophrenia, bipolar disorder, and depression [13], [104], [175], [186]. Machine learn-
ing offers the possibility to develop approaches for analysing these vast data sources.
Integrating these technologies in the clinical workflow may change the nature of identifi-
cation, follow-up, and treatment of mental disorders. For example, the early identification
of behavioural markers of psychiatric disorders may allow clinicians to react early to pa-
tients’ needs and deliver personalised treatment.

1.1.2 The Complexity and Nuances of Passive Data

Digital phenotyping involves data collection through an application the patient downloads
and installs on their smartphone after first participating in the study. It is paramount
that participants understand the nature of the collected data and for what purpose it is
collected. They can leave the study at any point and delete the application, which will stop
any ongoing data collection. We can differentiate two main categories of data: active (e.g.
taking surveys, contributing audio diary entries) and passive (originating from smartphone
sensors and logs). While active data collection imposes at least some subject burden,
passive data collection does not, as it originates from smartphone sensors (such as GPS
and accelerometers) and smartphone logs (such as communication logs and screen activity
logs). Thus passive data constitute an objective measurement of different aspects of social,
behavioural, and cognitive functioning.

Being objective does not imply that passive data collection is also perfect. It has sev-
eral challenges: some sensors generate vast volumes of data, and others cause significant
battery drain; analysis of raw passive data is complicated, and collection of certain types

3



of data may interfere with the phenotype of interest [141]. From a data analysis per-
spective, one of the most challenging aspects is propagating the uncertainties involved at
different stages of the data collection due to the differences in how each individual uses
their smartphone. For example, where people typically carry their devices varies from
individual to individual: the phone might not be on the person at all times, some peo-
ple might turn their devices off for the night, and so on. These aspects do not invalidate
inferences drawn from such data, but they do complicate them.

Missing observations are another critical point to consider in smartphone-based digital
phenotyping. Some missingness is expected by design, as sensors have varying sampling
frequencies. For example, as GPS drains the phone battery quickly, GPS data can only
be sampled at a lower frequency. In contrast, missingness can be caused by sensor non-
collection due to technological and behavioural factors. For example, participants may
forget to charge their phones, disable the GPS, or uninstall the study application. Due
to performance considerations, the operating system may also limit sensor access during
specific conditions. Missing data presents various problems: it reduces statistical power,
the lost data can cause bias in the estimation of model parameters, it can reduce the
representativeness of the samples, and it can have a significant effect on the conclusions
that can be drawn from the data. In the case of GPS data, for instance, ignoring the
missingness or using simple imputation techniques, such as linear interpolation, led to a
10-fold error variance for daily summary statistics [14].

Finally, as the variety of smartphone data (the availability of information about patient
location, movement patterns, activity level, and social engagement) is unparalleled, dis-
cerning clinically relevant or meaningful information requires careful consideration and
appropriate statistical/machine learning methods [189].

1.2 The Passive Monitoring Dataset

1.2.1 Study Participants

The data used in this study were collected from two ongoing studies involving passive
smartphone monitoring of clinical outpatients of two public mental health hospitals, Hos-
pital Universitario Fundación Jiménez Díaz and Hospital Universitario Rey Juan Carlos,
Madrid. Patients were invited to participate in the data collection process by their clini-
cians. The research followed the code of ethics defined in the Declaration of Helsinki by
the World Medical Association.

Patients were included in the study if they were at least 18 years old clinical outpatients
diagnosed by specialists at the institutions mentioned above with mental disorders or were
attending therapy groups (such as support groups for cyberbullying and relaxation) at
these institutes. They had to own a smartphone running on Android or iOS operating
systems, which they connected to a Wi-Fi network at least once weekly. None of the
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patients was paid for participating in the study.

1.2.2 Data Collection

A clinically validated eHealth platform, eB2 MindCare [21], [30], was used to collect
the participants’ passive data. After installing the app, the users undergo an onboarding
phase, where they are asked to permit specific data collection streams (the mobile phone’s
sensors, Google Fit, and wearables such as Fitbit and Garmin), depending on their pref-
erences and what is accessible within the operating system of their devices.

The eB2 MindCare app collects data from the different sources (see Table 1.1) at
varying intervals. The raw sensory data is transformed into human-understandable digital
biomarkers that can be used for further analysis. These biomarkers can then be extracted
as 48-half-hour slot daily summaries or the overall daily summary. In the following, we
describe some of the biomarkers that were used in this work.

Table 1.1: Features of interested collected by the eB2 MindCare app. Source [30].

Sensor Collected data Source
GPS Location (altitude, longitude, latitude, accuracy) Smartphone
Light sensor Environmental light detected Smartphone

Accelerometer, actigraphy Physical activity
Smartphone, Fitbit,
Garmin, Health, Google Fit

Pedometer/accelerometer Step count
Smartphone, wearables,
Health, Google Fit

Applications Applications use time Smartphone
Light sensitive photodiodes,
actigraphy, accelerometer Sleep duration

Wearable, Health,
Google Fit

Pedometer, accelerometer Distance walked
Smartphone, Google Fit,
wearable, Health

The step count information is recorded every 5 minutes, and the daily summary value
corresponds to the sum of the registered entries. The app use information is gained sim-
ilarly. The devices register sport-related activities on change, and the daily summary
encompasses the total number of times each action was performed.

Distance information is gathered every minute, whereas location data is gathered at 5-
minute intervals. Locations are obfuscated with an offset and randomly rotated to protect
users’ data. The daily travel distance and the number of visited locations are computed
from these sources. Time spent at home is computed using clustering based on the most
common user locations throughout the day.

There is a hierarchical set-up for hours of sleep for the credibility of different sources;
if data is manually introduced by the user or calculated by the phone but confirmed by the
user, that value is first considered. Otherwise, the following ordering holds: sleep data by
iOS, sleep data by Garmin, sleep data by Fitbit, sleep data calculated from light, app use
and steps data, and sleep data calculated by the phone.
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The application also allows users to record information about their medication (name,
frequency and quantity of intake), quality and duration of sleep, and emotional state (an-
gry, disgusted, scared, sad, overwhelmed, tired, grief, neutral, relaxed, motivated, happy,
and delighted) multiple times during the day. This active data source, however, requires
manual input and is usually based on the patient’s subjective perception.

In addition, clinicians used the MEmind [15], [132] electronic health tool to record
the patients’ socio-demographic and clinical information from all participants. Socio-
demographic data included age, gender, household composition, marital status, and em-
ployment status. Clinical data entailed the International Classification of Diseases, tenth
revision, psychiatric diagnoses grouped into the following categories: (1) anxiety, stress,
and trauma-related disorders; (2) unipolar or bipolar mood disorders; (3) personality dis-
orders; (4) substance use disorders; (5) psychotic disorders, and (6) other disorders. The
clinicians filled in socio-demographic information together with a first completion of the
evaluations when the patients enrolled in the study. The follow-up scores were recorded
at an in-person appointment or via a phone call.

1.2.3 Data Description

The mobile sensed data analysed in the different stages of this work were collected be-
tween January 2016 - April 2022 from 2300 individuals, yielding over 510k samples
(31.5% collected in 2019). Even though the sensory data is recorded at pre-determined
frequencies, the missingness problem due to sensor non-collection caused by technologi-
cal and behavioural factors cannot be avoided. The final data set contained a large percent-
age of missing observations. Moreover, missingness patterns can appear simultaneously
across different attributes.

Figure 1.3: An overview of the missingness in the mobile sensing database. Periods of
no collection are indicated with blue. White indicates a complete missing day, and the
lighter the red shading, the larger percentage of features is missing for that day.

Figure 1.3 illustrates a subgroup of the study population, and the missing pattern in the
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daily summary of four mobility descriptor features: step count, distance travelled, time
spent at home and exercising. The blue areas show periods of no data collection for the
specific patient (e.g. they were not enrolled yet, or they dropped out of the study). We
can see that there are almost no days with complete observations for all the features of
interest, which calls for reliable techniques to deal with the missingness.

Suppose we visualise the univariate distribution of all daily summary variables in a
dataset along with their pairwise relationships. In that case, we can understand how the
variables are distributed - their range, central tendency, skewness, and outliers. Addition-
ally, we gain insights into whether the distributions vary across subsets defined by other
variables.

Figure 1.4: Distribution of the daily summary values of the mobile sensed variables.
Distance travelled is expressed in kilometres, while the time-related measures in hours.

Figure 1.4 shows the feature distributions on the diagonals using kernel density es-
timation and their pairwise relationships using histograms. The mobile sensed data is
noisy, contains infeasible values, and the distributions are skewed in most cases. There-
fore, before applying any modelling techniques, we must clean the data, i.e., process raw
data to the usable form. We do this by replacing unfeasible values and extreme outliers
(values which lie more than 3.0 times the interquartile range below the first quartile or
above the third quartile) with NaNs; hence consider them to missing. We opt for this
approach, instead of truncating the variables due to the large distribution shift the latter
would cause.

Moreover, the data sources are highly heterogeneous, showing a mixture of numerical
(e.g. age, mobile sensed data), binary (e.g. cohabiting status), categorical (e.g. gender,

7



employment status) and other feature types. Heterogeneity is seen in machine learning-
based modelling as a particular source of complexity, making it challenging to build cred-
ible and consistent models. Therefore, we aim to provide technically robust solutions to
structuring such data.

In the previous section, we mentioned a series of nuances from passive data collected
in the wild, which we exemplified here with a concrete real-world dataset. The inher-
ent problems coming from the irregularly sampled, high-dimensional, and heterogeneous
time series data, which is often only partially observed, are just one side of the main dif-
ficulties we faced throughout this work. On the other hand, the lack of labelled data also
reduced the modelling possibilities. Also, the outcomes used as ground truth values are
not objective, and there are several aspects of patients’ lives that we cannot account for.

1.3 Overview of Models and Contributions

This thesis aimed to apply supervised and unsupervised machine learning methods to
model and understand mental disease evolution based on the digital phenotype of patients
collected from their smartphones and wrist-wearables and clinician assessments at the
follow-up visits, which provide ground truths. A brief overview of the proposed models
and principal contributions is provided in the following.

1.3.1 Modelling Passively-Sensed Data

Dealing with Missing Data

The best possible way of handling missing data is to prevent the problem in the first
place; however, this is a close to impossible task in real-world passive data collection.
As discussed in the previous section, the missing data problem is common in digital phe-
notyping, and the reasons for missing data is manifold. There are several methods to
handling missingness, from simple approaches, such as complete case analysis, single
imputation using constants or statistical metrics of the features (mean, median, mode),
expectation-maximisation based approaches, multiple imputation techniques, and others
[85]. Especially in the scenarios where a significant fraction of values is missing, there is
a high variance in the imputation performance and varying impact on predictive perfor-
mance in downstream ML tasks.

Here, we use simple probabilistic latent variable models for data imputation and fea-
ture extraction, namely, hidden Markov models (HMM) [156]. HMMs are a temporal
version of mixture models (MM) and are generative models characterised by observable
sequences. The discrete states of the HMM are assumed to have been generated by a
first-order Markov chain process, and each observation depends only on the paired state.
An HMM comprises an initial state probability distribution, a state transition probability
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distribution, and a symbol emission probability distribution.

Different frameworks that implement these well-known models are publicly available.
However, these implementations usually lack the features required to use these models
with real-world datasets: missing data inference, ability to manage heterogeneity, semi-
supervised training support to increase hidden states’ interpretability, and synthetic data
generation. Our contribution in this area is to provide an extension of existing HMM
implementations via a Python package, PyHMM, including the previously enumerated
features.

Temporal Data Modelling

Temporal data modelling is relevant in many fields and has been studied for decades.
Solutions vary from simple approaches focusing on manually defined features that sum-
marise the temporal sequences combined with classical machine learning models (linear
regression, support vector machines, decision trees) to complex deep learning methods
that automate the feature extraction process [87].

Throughout this work, we employ feature extraction and deep learning-based mod-
elling techniques, depending on the data at hand. The first approach is more suitable for
small data, is cheaper to perform and generally has easier to interpret outcomes. On the
other hand, the second approach is more suitable for high complexity problems, allows
for complex features to be learned, but requires significant computational power and lacks
straightforward interpretability.

1.3.2 Predicting Personalised Mental Health Outcomes

The main contributions of this thesis are the applications of existing machine learning and
deep learning techniques for predicting mental health outcomes of psychiatric outpatients
using various sources of mobile sensed data.

A commonly used disease or clinical outcome prediction approach is the one-size-
fits-all model [135]. In such models, all available patient cohort data is used to train
a global model and perform predictions for each patient. The advantage of these global
models is that they can capture the information from the whole cohort; however, they may
miss some patient-specific information (phenotype differences, the presence of different
diseases).

Albeit, patient-specific models, tailored to each individual, are essential in person-
alised medicine, as these models can improve predictive performance over global models
[32], [90], [101]. A generic framework, derived from the working process of clinicians,
consists of two steps: first, a similarity measure among patients has to be defined, and
then for each patient, a separate model has to be built based on their similarity cohorts.
In the case of longitudinal electric health record (EHR) data, the number of patient visits
varies primarily due to patients’ irregular visits and incomplete recordings. Thus, one of
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the main challenges in measuring patient similarity is deriving an adequate representation
of each patient without losing his/her historical information.

In this work, we compare global and local models when the dataset allowed (there was
more than one outcome label for most patients in the cohort), but in most experiments,
the sample size per individual only allowed for global approaches.

Emotional State Prediction

First, we worked on a generic machine learning-based approach for emotional state pre-
diction using passively collected data from mobile phones and wearable devices and self-
reported emotions by patients. Emotional state prediction and forecasting could be used
as early warning signs in clinical treatment. Detecting prominent affective episodes risk
could help catch the early onset of major depressive or manic phases that can be addressed
and handled in time, reducing the severity of symptoms and the degree of treatment.

We applied probabilistic latent variable models (MM and HMM) for data averaging
and feature extraction on the regularly sampled but frequently missing and heterogeneous
time series data. The extracted features were combined with a classifier to provide emo-
tional state predictions. Furthermore, we proposed a personalised Bayesian model to im-
prove the performance, which considers the individual differences in the data by applying
a different classifier bias term for each patient.

Probabilistic generative models proved good as pre-processing and feature extrac-
tor tools for data with large percentages of missing observations. Models which took
into account the posterior probabilities of the MM/HMM latent states outperformed those
which did not, suggesting that the underlying behavioural patterns identified were mean-
ingful for individuals’ overall emotional state. Moreover, the proposed personalised mod-
els demonstrated that accounting for individual differences through a simple hierarchical
model substantially improves emotional state prediction performance without relying on
previous days of data.

Anxiety and Functional Disability Assessment

Anxiety symptoms during public health crises are associated with adverse psychiatric
outcomes and impaired health decision-making. The interaction between real-time so-
cial media use patterns and clinical anxiety during infectious disease outbreaks is under-
explored. So in a smaller project, we aimed to evaluate the usage pattern of 2 types of
social media apps (communication and social networking) among patients in outpatient
psychiatric treatment during the COVID-19 surge and lockdown in Madrid, Spain and
their short-term anxiety symptoms (7-item General Anxiety Disorder scale) at clinical
follow-up.

A machine learning–based approach that combined a hidden Markov model and lo-
gistic regression was applied to predict clinical anxiety and nonclinical anxiety, based on
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longitudinal time-series data that comprised communication and social networking app
usage (in seconds) as well as anxiety-associated clinical survey variables, including the
presence of an essential worker in the household, worries about life instability, changes
in social interaction frequency during the lockdown, cohabitation status, and health sta-
tus. Patients who reported severe anxiety symptoms were less active in communication
apps after the mandated lockdown and more engaged in social networking apps overall,
suggesting a different pattern of digital social behaviour for adapting to the crisis. Predic-
tive modelling using digital biomarkers—passive-sensing shifts in category-based social
media app usage during the lockdown—can identify individuals at risk for psychiatric
sequelae.

The second topic tackled is functional disability assessment based on WHODAS 2.0
outcomes. Functional limitations are associated with poor clinical outcomes, higher mor-
tality, and disability rates, especially in the elderly. Continuous assessment of patients’
functionality is essential for clinical practice; however, traditional questionnaire-based as-
sessment methods are very time-consuming and infrequently used. Mobile sensing offers
a great range of sources that can assess function and disability daily.

The first part of the work aimed to prove the feasibility of an interpretable machine
learning pipeline for predicting WHODAS 2.0 outcomes using passively collected digital
biomarkers. One-month long time-series data were summarised using statistical measures
(minimum, maximum, mean, median, standard deviation, IQR), creating 64 features. We
then applied a sequential feature selection to each WHODAS 2.0 domain (cognition, mo-
bility, self-care, getting along, life activities, participation). Finally, we predicted the
WHODAS 2.0 functional domain scores using linear regression using the best feature
subsets. Our findings show the feasibility of using machine learning-based methods to
assess functional health solely from passively sensed mobile data. The feature selection
step provides a set of interpretable features for each domain, ensuring better explainability
of the models’ decisions.

Additionally, we aimed to include more information about the intra-day variability of
the digital biomarkers and also the socio-demographic background of the patients. There-
fore, we propose a Long Short-Term Memory (LSTM) neural network-based pipeline for
predicting mobility impairment based on WHODAS 2.0 evaluation from the raw digital
biomarkers that provide insights into the patients’ behaviours on a half-hour scale. We
address the missing observation problem utilising hidden Markov models and the possi-
bility of including information from unlabelled samples via transfer learning. Finally, we
also show that our multi-modal pipeline can be easily fine-tuned to predict the GAD-7
outcomes.
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1.4 Document Structure

The structure of this doctoral manuscript is divided into two main parts: Chapter 2 pro-
vides an overview of the theoretical background and proposed inference and learning
methods, while Chapters 3-5 present the different applications in the mental health field
where these methods were applied. The obtained results and the drawn conclusions are
also listed for each project. The thesis ends with an overall summary and discussion of
further work possibilities.
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CHAPTER 2

MODELLING PASSIVELY-SENSED DATA

2.1 The Missing Data Problem

A commonly faced problem in real-world applications is the occurrence of missing data.
By definition, missing data is the data value that is not stored for a variable in the observa-
tion of interest [69]. The presence of missing data can significantly affect the conclusions
drawn from the data, as it reduces statistical power, the lost data can cause bias in the
estimation of model parameters, and it can reduce the representativeness of the samples.
Accordingly, several studies have focused on handling the problems caused by missing
data and the methods to avoid or minimise the number of misses during data collection in
medical research [39], [139] and beyond [20], [102].

2.1.1 Types of Missing Data

Two types of missing data can be differentiated based on assumptions about the mech-
anism of the missingness: ignorable, with the subtypes missing completely at random
(MCAR) and missing at random (MAR), and non-ignorable or missing not at random
(MNAR) [164]. As defined by [179], “the missingness mechanism concerns whether
the missingness is related to the study variables or not“. Assuming a partially observed
dataset in matrix form, X ∈ Rn×p, where the n is the sample size and d is the number
of variables that have been measured, we denote an observed entry of variable j as Xobs

j ,
and a missing value as Xmiss

j , with j = 1, . . . , d, and use this notation to describe the
missingness mechanism in a probabilistic fashion.

The data is considered MCAR when the probability of missing data is not related to
either the observed or the unobserved features:

Pr
[
Xmiss

j | X1, ..., Xp

]
= Pr

[
Xmiss

j

]
. (2.1)

This implies that the probability of being missing is the same for all the units. If ob-
servations are missing by design due to a sensor failure or faulty transmission, they can
be regarded as MCAR. When data is missing completely at random, although statistical
power may be lost in the design, there is no bias in the estimated parameters due to the
absence of the data.

Data is assumed to be MAR when the missingness is not random. However, it is
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related to the observed features only.

Pr
[
Xmiss

j | X1, ..., Xp

]
= Pr

[
Xmiss

j | X1, ..., X j−1, X j+1, Xp

]
(2.2)

Since MAR is an assumption that is impossible to verify statistically, we must rely on its
substantive reasonableness. Although typically randomness is considered not to produce
bias, MAR does not mean that the missing observations should completely be ignored.

Suppose the data characteristics do not meet those of MCAR or MAR. In that case,
they fall into missing not at random (MNAR). One of the implications of MNAR is that
missing entries have a different distribution than the observed ones, even when they other-
wise have the same characteristics. The MNAR mechanism of missingness is non-random
and cannot be considered ignorable. The data that cause others to be missing are unob-
served, and obtaining an unbiased estimate of the parameters can only be obtained by
modelling the missing data.

2.1.2 Common Techniques for Handling the Missing Data

First and foremost, preventing the problem of missing data by designing well-defined
data collection processes is the best way to deal with missing data in clinical research
[46], [171], [201]. Even with a good study design, especially in the case of data collected
in the wild (e.g. behavioural biomarkers collected passively in the patients’ everyday
lives), it is not uncommon to have many missing observations.

Techniques for handling the missing values should be robust to the problems caused by
the missing data. Hence mild to moderate violations of the assumptions should produce
little to no bias or distortion in the conclusions drawn from the population. However,
it is not always achievable to use such techniques. Therefore, many alternative ways
of handling the missing data have been developed. Figure 2.1 provides an overview of
commonly applied methods for dealing with the problems caused by the missing data.

Figure 2.1: Common techniques for handling missing values. Source: Kaggle
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Suppose there is a large enough sample and the assumption of MCAR or MAR is
satisfied. In that case, deletion may be a reasonable strategy to remove incomplete ob-
servations. However, when there is not a large sample, or if there are many missing
observations, deletion is not the optimal strategy [93].

Imputing with a constant or the mean or median is a common approach, as it is easy
to implement, and under the MCAR assumption, it is fair to consider that the missing
values are most likely very close to the mean or median of the distribution (i.e. the most
frequent/average observation). These approaches, however, may lead to inconsistent bias
[117].

The most widely used imputation techniques are forward and backwards fill when
dealing with time-series data. These methods replace the missing value with the last ob-
served value or the next observed value. Although simple, this method strongly assumes
that the value of the outcome remains unchanged by the missing data, which seems un-
likely in many settings, so they should not be used as the primary approach to the treat-
ment of missing data unless the assumptions that underlie them are scientifically justified
[107].

Interpolation is as also commonly used for time series. It uses non-missing values
from adjacent data points to compute a value for a missing data point based on a poly-
nomial relationship. This approach avoids significantly altering the standard deviation or
the shape of the distribution; however, no novel information is added while the sample
size has been increased and the standard error is reduced.

Advanced missing data imputation methods can be partitioned into two main cate-
gories: global and local missing data imputation methods [33], [51]. Iterative imputation
[108], [150], [194] and expectation-maximisation (EM) imputation [89], [173] are con-
sidered global strategies. They use information about the whole data set’s correlation
structure to impute the missing observations encountered in the data set. Local missing
data imputation strategies, such as the k-nearest neighbour-based imputation [16], [111],
[157], use only similar entries to the missing ones to impute missing values. In general,
imputation based on similar observations is more accurate than imputation based on the
entire data set’s [158], [205].

Multiple imputation [178] is another valuable strategy for handling the missing data.
The missing observations are replaced with a set of plausible values in multiple imputa-
tion. The benefit of the approach is that it incorporates the uncertainty due to the missing
data, which results in a valid statistical inference. Furthermore, it is robust to the violation
of the normality assumptions and produces relevant results even in small data sets or in
the presence of a large amount of missing data.

15



2.1.3 Probabilistic Generative Models for Dealing With Missing
Data

Probabilistic generative models can learn the underlying distributions in a data set by
adjusting the model parameters to best account for the data to maximise the evidence,
even in the presence of missing data [45]. Mixture models (MMs) [22] and hidden Markov
models (HMMs) [156] are frequently used types of such models.

Mixture Models

MMs comprise a single state with a finite number of components, possibly different distri-
butional types, that can describe different data features, which we’ll denote 1, ...,K. The
data can then be modelled in a mixture of several components, each with a simple para-
metric form (such as a Gaussian). The model is formulated in terms of latent variables,
which represent the component each data point was sampled from. A MM assumes the
data is generated by the following process: first we sample z, and then we sample the
observables x from a distribution which depends on z, i.e

p(z, x) = p(z)p(x | z). (2.3)

In general, the probability density function (PDF) over x can be computed by marginal-
ising out, or summing out, z:

p(z, x) =
∑

z

p(z)p(x | z)

=

K∑
k=1

Pr(z = k)p(x | z = k)
(2.4)

The model parameters can be learned from the observed features, referred to as ob-
servables, by adjusting the model parameters, which define the observable emission prob-
abilities, such that the MM best accounts for the data in the sense of maximising the
evidence using the expectation-maximisation (EM) algorithm [204]. The EM algorithm
is a general method for finding the maximum-likelihood estimate of the parameters of an
underlying distribution of a given data set. The two steps of the EM algorithm are

• E-step. Compute the expectations of the latent variables

r(i)
k ← Pr(z(i) = k|x(i)) (2.5)

• M-step. Compute the maximum likelihood parameters

θ ← arg max
θ

N∑
i=1

K∑
k=1

r(i)
k

[
log Pr(z(i) = k) + log p(x(i) | z(i) = k)

]
(2.6)
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To find the model parameters θ, the two steps are iteratively repeated until a the conver-
gence criteria on the likelihood is met.

Hidden Markov Models

HMMs can be seen as temporal MMs that are commonly used for time-series analysis.
These are generative models characterised by a vector of parameters θ, and a set of discrete
states S 1:T = (S 1, ...S T ), where S t ∈ {1, 2, ...,K}. The states of the HMM are assumed to
have been generated by a first-order Markov chain process, i.e,

p(S t | S 1:t−1, θ) = p(S t | S t−1, θ), t = 2, ...T (2.7)

and that the observations Yt are conditionally independent given the paired states

p(Yt | S 1:t−1,Y1:t−1, θ) = p(Yt | S t, θ), t = 1, ...T (2.8)

where Y1:t−1 represents the output sequence (Y1,Y2, ...Yt−1), which is an uni-variate or mul-
tivariate time series of observations. Given the above conditionals, the joint distribution
of observations and states can be expressed as

p(Y1:T , S 1:T | θ) = p(S 1 | θ)p(Y1 | S 1, θ)
T∏

t=2

p(S t | S t−1, θ)p(Yt | S t, θ) (2.9)

and the marginal distribution of the observations in function of the model parameters
(likelihood function) as

L(θ | Y1:T ) =
∑

s1:T∈ST

p(Y1:T , S 1:T = s1:T | θ) (2.10)

where the summation is over all possible state sequences ST .

The parameters of HMMs are found using a special case of the EM algorithm, called
the Baum-Welch algorithm, that makes use of the forward-backward algorithm to com-
pute the statistics for the expectation step.

If the observable response variable Y has missing values, it can be partitioned into
Yobs ⊆ Y1:T , the observed part, and Ymiss ⊆ Y1:T , the missing part. We also define an
indicator M1:T with values Mt = 1 if Yt ⊆ Ymiss, and Mt = 0 otherwise.

The full likelihood, which also depends on the hidden states, can be expressed as

L f ull(θ, ϕ | Yobs,M1:T ) ∝
∑

s1:T∈ST

∫
p(Yobs,Ymiss, s1:T | θ)p(M1:T | Yobs,Ymiss, s1:T , ϕ)dYmiss

(2.11)

When the data is MAR, missingness is ignorable in the inference of θ. If the data is not
MAR, hence missingness is not ignorable, we assume conditional independence between
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M and Y given the hidden states [180]:

p(Mt,Yt | S t) = p(Mt | S t)p(Yt | S t) (2.12)

Then the full likelihood becomes

L f ull(θ, ϕ | Yobs,M1:T ) ∝
∑

s1:T∈ST

p(M1:T | s1:T , ϕ) ×
∫

p(Yobs,Ymiss, s1:T | θ)dYmiss

(2.13)∑
s1:T∈ST

p(M1:T | s1:T , ϕ) × p(Yobs, s1:T | θ

(2.14)

The number of hidden states can be chosen to allow for intricate patterns of (marginal)
dependence between M and Y at a single time point, as well as over time.

Model Order Selection

To select the optimal number of MM components/HMM states, the Akaike information
criterion [4] and the Bayesian information criterion [174] can be used. The AIC selects
the model that minimises the Kullback-Leibler divergence, i.e.,

M∗
AIC = arg min

Mi

[
−2lMi(θ

∗
i ) + 2Ki

]
(2.15)

where lMi(·) is the log-likelihood of the model Mi, θ∗i is the maximum likelihood es-
timator of θi, and Ki is the number of parameters of the underlying distribution of the
observation process. The best model is the one which has the weakest AIC. This criterion
uses maximum likelihood principle, however, unlike the latter, it penalises models with
too many variables.

The BIC uses a Laplacian approximation to select the model that maximises the
Bayesian posterior probability, i.e.,

M∗
BIC = arg min

Mi

[
−2lMi(θ

∗
i ) + Ki ln N

]
(2.16)

Like in case of applying AIC, the best model is the one with the smallest value of
BIC. This criterion penalises stronger over-parameterised models, and is more relevant
for over-learning models.

Data Imputation

Once the generative models are trained on the data set with missing values, they can be
used to generate samples for imputation.
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In the case of MMs, first, the posterior distribution p(z | x) needs to be inferred for
each observation to find which component the observation is most likely to belong to.
Just like in Bayesian parameter estimation, we can infer the posterior distribution using
Bayes’ Rule:

p(z | x) ∝ p(z)p(x | z) (2.17)

Hence, we evaluate the right-hand side for all values of z, and then renormalise so that the
values sum to 1. Then, the missing attributes can be imputed by a sample generated from
the most probable component.

When using HMMs, all observation sequences must first be decoded using the Viterbi
algorithm on the trained HMM. This method finds the most likely state sequence in the
maximum a posteriori probability sense that could have resulted in the given observation
sequence. This most probable hidden state sequence can be used for recovering the miss-
ing observations with a value generated by the distribution corresponding to the hidden
states for each time step.

Sampling from the most probable distribution yields valid and robust parameter esti-
mates and explicit imputed values for variables that can be analysed as outcomes or pre-
dictors. The imputation process can be repeated several times, creating multiple datasets,
hence, thereby accounting for the uncertainty in the imputed values and implicitly aug-
menting the data. Moreover, they are robust to moderate deviations of the observed data
from the assumed underlying distribution [83] and provide accurate estimates even when
the proportion of missingness is high [9], [113].

2.2 Temporal Data Modelling

Time series data are among the most ubiquitous types that capture information in most
areas of life. It can be defined as a special type of data set in which one or more variables
are measured over time [24]. Mathematically we can define a set of time series as D =
{xi}

N
i=0, xi ∈ R

d×ti and d, ti ∈ N
∗.

Capturing a sequence of observations indexed by time stamps allows insights into the
evolution of the measured quantity. The exponential increase in the volume of data has
generated a tremendous opportunity for modelling this type of data with machine learn-
ing (ML) methods to automate tasks such as discovering recurrent patterns, correlation
analysis, classification, clustering, outlier detection, segmentation, forecasting, and data
simulation.

2.2.1 Manual Feature Extraction-Based Approaches

Classical machine learning models (supervised or unsupervised) can only use a well-
defined set of feature vectors and not deal directly with data sequences. Therefore, feature
extraction must be performed before further modelling can be done. Feature extraction

19



seeks to transform an initial input raw data sequence to generate a new set of features con-
taining meaningful information about the sequence (time, frequency, statistical trends),
depending on the nature of the raw input data, the context and domain of the task.

In principle, one might decide to map the set of time series into a design matrix of N
rows and M columns by choosing M data points from each time series xi as elements of
a feature vector. However, for more comprehensive insights time series are often char-
acterised with respect to the distribution of the observations, correlation properties, sta-
tionarity, entropy, and nonlinear time series analysis [56]. Therefore the feature vector xi

can be constructed by applying feature extraction methods (e.g. statistical measures like
in Figure 2.2) f j : xi → xi, j to the respective time series xi, which results into a feature
vector xi = ( f1(xi), f2(xi), . . . fM(xi)).

Figure 2.2: Statistical feature extraction from time series. Source: tsfresh

The design and performance of the downstream models are greatly affected by feature
extraction, as reducing the information into a lower-dimensional feature space might re-
sult in the loss of relevant information, while extracting too many irrelevant features can
impair the ability of the methods to generalise. Hence, these feature extraction techniques
are often coupled with feature selection methods [65], [100] to find the most relevant
subset of features for training the ML models.

2.2.2 Deep Neural Models

Deep learning models provide means to learn temporal dynamics in a purely data-driven
manner thanks to their ability to find the appropriate complex nonlinear mathematical
functions to turn input into an output.

Recurrent Neural Networks

Recurrent neural networks (RNNs) [165] are one of the first deep neural architectures
designed for sequence learning. The outputs of RNNs are not only influenced by the
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weights associated with inputs like in the case of standard feed-forward neural networks
(NN), but the hidden state captures information and allows contextual decisions based on
prior inputs and outputs. Over time, as the sequence is processed, the hidden state gets
updated. The architecture is shown in Figure 2.3.

Figure 2.3: Architecture of a traditional RNN. Source: stanford.edu

The activation and the output at each time step t are expressed as

a<t> = g1(Waaa<t−1> +Waxx<t>]ba (2.18)

and
y<t> = g2(Wyaa<t> + by (2.19)

where Wax, Waa, Wya, ba, by are shared temporal coefficients and g1, g2 activation func-
tions.

The loss function L of all time steps is defined based on the loss at every time step as
follows:

L(ŷ, y) =
Ty∑
t=1

L(ŷ<t>, y<t>) (2.20)

During training, backpropagation is also done through time. The derivative of the loss L
with respect to the weight matrix at timestep T is expressed as

∂L

∂W
=

T∑
t=1

∂L(T )

∂W

∣∣∣∣∣∣
(t)

(2.21)

Although RNNs outperform statistical methods [79], they suffer from two significant
drawbacks: exploding or vanishing gradients, which are likely to generate instability, thus
influencing the reliability of weight updates, and the inability to exploit information from
arbitrarily long time series but only a few time steps [106].

Therefore, gated versions of RNNs, namely long short-term memory (LSTM) [81]
and gated recurrent unit (GRU) [35] cells, were proposed to deal with these issues. Figure
2.4 shows the architecture of both units.

Each ordinary node in the hidden layer is augmented with a memory cell c<t>. Com-
bining these cells with the different gates ensures that the gradient can pass across many
time points without vanishing or exploding. In GRU networks, during training the mod-
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(a) Long Short-Term Memory (LSTM). (b) Gated Recurrent Unit (GRU).

Figure 2.4: Basic architecture of LSTM and GRU cells. Notation: Γu = update gate, Γr =

relevance gate, Γ f = forget gate, Γo = output gate. Source stanford.edu

els learn when to update the hidden state, hence, “remember” important pieces of infor-
mation, by using the gating unit. In LSTMs, the hidden state a<t> acts as the model’s
short-term memory, whereas the memory cell c<t> acts as the long-term memory.

These networks are improved versions of RNNs, able to capture long dependencies
thanks to the changes introduced in the computation of hidden states and outputs using
the inputs. Consequently, most state-of-the-art applications use the LSTM or GRU model
as a basis for their design.

Temporal Convolutional Networks

Convolutional neural networks use tied weights to compute a function of a determined
local neighbourhood for each input and return an output. They are commonly used for
two-dimensional inputs, such as images, but can also be applied to sequence modelling.
They do not have to maintain long-term hidden states, so they are an easier-to-train alter-
native to RNNs.

Figure 2.5: The TCN architecture. Source: [12].

Temporal convolutional networks (TCN) [12], depicted in Figure 2.5, are built on two
essential properties: no information leakage from future to past and the ability to process
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sequences of any length and map them to the same length sequence. The first property is
achieved by using so-called causal convolutions, meaning that only past elements of the
sequence are convolved to get the output. In contrast, the second property holds due to
a 1D fully-convolutional network architecture, which results in each hidden layer having
the same length as the input layer. TCNs can be built to have a long memory; hence,
consider far past inputs when making a prediction when deep networks are augmented
with residual layers and dilated convolutions [75].

Several additional approaches combining CNNs for feature extraction and RNNs for
capturing temporal dependencies in the data have also been proposed [37], [76], [177],
[188].

Attention

A major drawback with the above architectures is that the input sequences are represented
as a single vector, which can cause information loss due to the large compression. Espe-
cially in sequence-to-sequence models, where the so called encoder-decoder architectures
are employed, it is a highly complex task for the decoder to reproduce the original signal
from the lower dimensional representation.

The basic idea behind the attention mechanism [10] is to allow the model to pay
attention to specific parts of the input that are considered important, rather than looking
only at the final output. Instead of encoding the input sequence into a single fixed context
vector, the attention model develops a context vector explicitly filtered for each output
time step.

The attention output is a sequence of vectors c<t> called context vectors. In the case
of RNNs, the context vectors at time t are defined as a simple linear combination of the
activations a<t′> weighted by the attention values α<t,t′>:

c<t> =
∑

t′
αt,t′at′ (2.22)

with
∑

t′ α
<t,t′> = 1.

The attention weights are learned using an additional fully-connected shallow net-
work. Computationally they are described as

α<t,t′> =
exp e<t,t′>∑Tx

t”=1 exp e<t,t”>
(2.23)

A large α<t,t′> attention weight causes the RNN to mainly focus on the activation a<t′>,
when predicting the output y<t>, while a small one causes the activation to be ignored.

Besides helping the models learn the most essential information from the sequences,
attention weights can also be visualised and inspected to gain insight into which parts of
the input the model thinks are most relevant for generating the corresponding output.
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Transformers

The more recently introduced transformer architecture [197] allows for sequence-to-sequence
modelling. Although it was initially introduced to tackle problems in natural language
processing, they have been repurposed for other temporal modelling problems [200].

Transformer models consist of an encoder-decoder structure composed of multiple
identical blocks. Each encoder block is built from a multi-head self-attention module
and a position-wise feed-forward network (FFN), while each decoder block inserts cross-
attention models between the multi-head self-attention module and the position-wise feed-
forward network (FFN). Thus, the need for RNNs is eliminated.

Figure 2.6: The transformer architecture. Source: [197]

While in the case of RNNs, the sequential data is processed element-wise, in trans-
formers, the entire sequence is processed at once, and the positional encoding serves to
preserve the sequential information. Processing the whole sequence at once and comput-
ing attention weights between the observations enables the model to capture long-term
dependencies in the sequence representation.
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2.3 Discussion

Passively collected mobile sensed data is noisy and often non-randomly missing; hence,
developing robust imputation techniques is a nontrivial problem. However, developing
such methods is vital if this information is used to support clinical decision-making.

Imputing missing data using statistical measures such as the mean, median, or even
interpolation fails when the percentage of missing data is very high. These approaches
can reduce variability in the data set and introduce bias. However, probabilistic gener-
ative models can learn the underlying distributions in a data set by adjusting the model
parameters to best account for the data in maximising the evidence, even in the presence
of missing data. Although these models are simple, they can easily combine different data
distributions and can accurately impute values that are far from the overall mean of the
data.

This work used probabilistic generative models not only for data imputation but for
latent state (feature) extraction too. We will show in the following chapters how in specific
set-ups, the latent representation provided by such models can be used as a proxy for the
noisy temporal data for different prediction tasks.

Feature extraction from time-series data is time-consuming and complex, challenging
the machine learning-based analysis of such data sets. The recent unfolding of deep
learning has led to a vast increase in time series models. The ability of deep neural
networks to alleviate the preliminary feature engineering requirements and capture not
only linear relationships but also complex patterns from high dimensional data makes
them powerful assets for time series modelling.

However, deep learning methods need large amounts of training data; they require
more substantial computational power, such as graphics processing units (GPUs) for
training, and are time-consuming. In contrast, feature extraction-based models are still
popular because of their ease of use and robustness, making them particularly suitable
for non-expert users. Besides, deep neural networks lack interpretability, which is espe-
cially problematic in the medical field. Several post-modelling interpretable models were
proposed to analyse feature importance; however, these usually ignore sequential depen-
dencies [129]. Alternatively, analysing the attention weights in models with strategically
placed attention layers provides insights into the relative importance of features at each
training time step.

Throughout this work, we tried to design data-driven pipelines for predicting different
clinical outcomes. When the data sets at hand allowed, we addressed the problems using
deep learning-based methods. At the same time, in other cases, we followed the more
traditional feature extraction-based route. The next three chapters provide a complete
overview of the contributions of different clinical applications.
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CHAPTER 3

PREDICTING EMOTIONAL STATES

The work presented in this chapter was published in JMIR Mhealth Uhealth 2021;9(3):
e24465. DOI: 10.2196/24465. Moreover, it was presented at the CA2MH 2021 workshop,
and during poster sessions at EEML2021 and MLSS2021.

3.1 Introduction

3.1.1 Passively Sensed Behavioural Biomarkers

The subjective experience of mood is one of the most valuable sources of information
about an individual’s mental health [146]. Self-reported mood is a critical component
of the mental status exam interview, which is to psychiatry what the physical exam is
to other fields of medicine [70]. Furthermore, clinicians routinely ask questions about
mood during clinical encounters. The presence of a specific mood state is a required cri-
terion for many psychiatric diagnoses according to the Diagnostic and Statistical Manual
of Mental Disorders, fifth edition (e.g., depressed mood to diagnose a major depressive
episode; elevated, expansive, or irritable mood for a manic episode). Mood is a predictor
of psychiatric outcomes, and mood changes can be a harbinger of psychiatric decompen-
sations. Therefore, accurate monitoring of mood states is a crucial component of mental
health care. For example, both valences of mood states [147], and their variability [7]
have been shown to predict important outcomes, such as several binge-eating episodes in
bulimia nervosa [7] and treatment adherence in patients with bipolar disorder and opioid
use disorders [63], [147].

Until recently, information about mood was only available to clinicians by directly
questioning patients in person, either over the phone or via telepsychiatry video plat-
forms. However, technological advances over the last few decades have allowed real-time
monitoring of patients’ self-reported mood states. Smartphone-delivered ecological mo-
mentary assessment (EMA), also known as experience sampling, “assesses individuals’
current experiences, behaviours, and moods, as they occur in real-time and in their real-
world settings” [27]. However, despite these technological advances, this form of mood
state assessment relies on an individual’s current level of insight, willingness, and abil-
ity to interact with the EMA platform. Many psychiatric disorders cause behavioural
changes that may decrease an individual’s likelihood of interacting with an EMA tool
(demotivation, apathy, and survey fatigue), causing missing data, not at random. There-
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fore, identifying objective behavioural biomarkers of mood states that can be passively
sensed without patient participation is a research priority.

Through patients’ mobile phones and other wearable devices, continuous sensor data
can be collected in a non-invasive manner, providing valuable information about everyday
activity patterns. The possibility of inferring emotional states by analysing smartphone
use data [6], [105], [123], GPS traces of movement [29], [124], social media data [43],
and even sound recordings [112], [115] has become growing research focus over the past
decade. Such approaches can analyse individuals’ emotional patterns, enabling better
self-management of one’s activity and behavioural choices. Moreover, for patients with
mental illnesses and their caregivers and health care providers, these models could provide
a means to predict mental health crises and maladaptive behavioural patterns and allow
for early intervention.

3.1.2 Related Work

In recent years, numerous studies have demonstrated the potential of exploiting mobile
sensing data to infer users’ emotional states and well-being. In an older study, LiKamWa
et al. [105] developed MoodScope, a statistical inference model for predicting the users’
daily mood average based on the circumplex mood model [166], [167], from communi-
cation history and app use patterns. They collected data from 32 participants over two
months and reported an initial accuracy of 66%, which improved over time for person-
alised models.

Jaques et al. [86] conducted a study using physiological signals, location, smartphone
logs, and survey responses from 206 college students over a month to model students’
happiness. They applied classical machine learning methods, such as support vector ma-
chines (SVMs), random forests (RFs), neural networks, logistic regression (LR), k-nearest
neighbour, naive Bayes, and Adaboost to perform the classification task and reported 70%
accuracy. Another study focusing on predicting college students’ stress and mental health
status was conducted by Sano et al. [169]. They compared lasso regression and SVM with
linear and radial basis function kernels for two classification tasks: low or high stress and
low or high mental health categories. They reported over 70% accuracy and showed a
significant performance increase when data from wearable sensors (such as skin conduc-
tance and temperature) were used, compared with behavioural data derived from phone
sensing.

Umematsu et al. [192] compared non-temporal (SVM and LR) and temporal (long
short-term memory [LSTM]) machine learning methods to forecast the stress level of the
upcoming day using a predefined number of days of previous data (physiological signals,
mobile phone use, location, and behavioural surveys). A more recent study by Morshed
et al. [131], using the StudentLife [198] and Tesserae [121] data sets, demonstrated that
mood instabilities (computed from the mapping of moods on the photographic affect me-
ter scale [152] to arousal and valence values) are predictable from features derived from
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passive sensor measurements.

In a large-scale study conducted by Servia-Rodríguez et al. [176], the researchers used
passive sensing data and self-reported moods collected for about three years from 18,000
users to build a predictive model for users’ moods. They trained a deep neural network of
stacked restricted Boltzmann machines for a 2-class classification problem (positive and
negative mood). They reported above 60% prediction accuracy for weekdays and 70%
for weekends. An LSTM recurrent neural network (RNN)–based analysis, performed
by Suhara et al. [183], showed that applying a temporal model for forecasting severe
depressive states outperformed non-temporal models. Their study relied on a large-scale
longitudinal data set of self-reported information about mood, activity, and sleep of 2382
self-declared depressed people over 22 months.

Cho et al. [34] conducted a prospective observational cohort study to evaluate the
mood of 55 patients with major depressive disorder and bipolar disorder types 1 and
2. They collected light exposure data passively via mobile phones of patients and self-
reported daily mood scores. Activity, sleep, and heart rate data were collected using
activity trackers. This information was then processed into 130 features based on circa-
dian rhythms, and mood prediction was performed using the RF method. Their approach
showed good sensitivity and specificity for mood state and episode prediction.

Taylor et al. [185] focused on building personalised models for forecasting the next
day’s mood (good or bad), health (fair or poor), and stress intensity (low or high). The
multitask learning-based approach used data about the physiology and behaviour of 206
undergraduate students and the weather of the current day, collected for 30 days. Their
results showed that tomorrow’s well-being could be predicted with 78% to 82% accuracy
using a personalised model based on the present day’s data. Busk et al. [28] proposed a
hierarchical Bayesian approach for forecasting mood for up to 7 days from smartphone
self-assessments of 84 patients diagnosed with bipolar disorder. Their best-performing
model used a history of 4 days of self-assessment, indicating that short-term historical
mood is a significant predictor.

Another recent observational study by Darvariu et al. [41] combined user-reported
emotional information, passive sensing data, and visual context information from indi-
viduals’ surroundings in the form of images to develop deep learning techniques for emo-
tional state inference. Their findings showed context-dependent associations between
self-reported emotional states and the objects surrounding the individuals.

These studies provide insight into the potential of using mobile sensor data to infer
individuals’ mental well-being. However, none of these studies reported working with a
data set consisting of observations from a non-experimental setting or dealing with large
amounts of missing data. Moreover, in most of these studies, the problem they are trying
to solve is a 2-class classification problem. Here, the problem is approached from a more
refined perspective (i.e., predicting emotional state in valence and arousal dimensions).
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3.1.3 Objectives

This study applies machine learning algorithms to predict mood states based on passively
sensed behavioural patterns. Specifically, we aim to assess which behavioural features
provide the most important information about daily emotional valence. The study was
conducted using data collected via a clinically validated eHealth platform (eB2 Mind-
Care) [21], [30]. This app is designed to run unobtrusively in the background of an
individual’s smartphone, and it automatically and continuously gathers information about
behaviour via both the individual’s smartphone and wearable devices. It also provides an
electronic diary-type interface for users to register information about their emotions and
other important events.

3.2 Methods

3.2.1 Data

Daily summary values of 6 passively collected observations were considered: step count,
distance travelled, hours of sleep, phone use, time spent at home, and the number of
locations visited. An additional binary variable indicated whether the patient practised
sports during the day.

A subset of 943 users (patients and non-pathological subjects) was selected with at
least 30 days of passively sensed data in the eB2 database between January 2019 and
March 2020. The number of recorded days per patient varied from 30 to 487, with a
mean of 190 (SD 122). Demographic information was available only for 871 users. All
the users were Spaniards. Of these, 63.5% (553/871) were female, and 25.1% (219/871)
were male, and gender information was not available for the remaining 11.4% (99/871).
All age groups were adequately represented in the data set, with a mean age of 41 years
(range 18-77 years) computed at the beginning of the measurement period. The patient
population came from 2 main categories: 61.3% (534/871) were outpatients from external
psychiatric consultancy, and 22.1% (192/871) were suicidal high-risk outpatients. The
remaining 16.6% (145/871) users were non-pathological. Note that neither demographic
nor diagnostic information was used in the rest of the study.

A well-known framework for dealing with emotional experience characterises emo-
tions in a 2-dimensional space defined by Russel [166], [167]. The arousal and valence
are combined, with valences ranging from highly negative to highly positive and arousal
ranging from low to high. Daily emotional valence and arousal metrics were determined
using raw emotion data entered by patients. Valence was then computed as the sign of the
difference between positive and negative emotion counts, whereas arousal was determined
based on the categories in the study by Scherer [172].

The left subfigure in Figure 3.1 shows the projection of emotions to the arousal-
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Figure 3.1: Projection of emotions into the arousal-valence plane and their distribution
in the data set. HA-NV: high arousal-negative valence; HA-PV: high arousal-positive
valence; LA-NV: low arousal-negative valence; LA-PV: low arousal-positive valence.

valence plane. The emotions listed on the graph are those patients can register via the
eB2 app. As the right subfigure in Figure 3.1 shows, there is a significant imbalance be-
tween the different emotional labels. The majority corresponded to negative emotional
valence (9105 entries), followed by positive emotions (5271 entries) and only 3495 neu-
tral entries in the entire data set. Moreover, as emotions are self-reported, with users not
being prompted to fill in this information, these entries are scarce compared with passively
sensed behavioural data.

As data have been collected from several sources and received in different formats,
the raw daily summary data have many anomalies, unwanted information, and noise. The
presence of noise in the data can degrade the performance of machine learning methods.
Therefore, it is essential to preprocess the data before using it as an input to any machine
learning algorithm. The first step of preprocessing was removing any negative values,
thresholding the time-related variables to 24 hours, the step count to 30,000 steps per
day, and the distance to 500 km. Data were then standardised over all patient sequences,
making each input feature 0 mean (SD 1).

Moreover, the data set contained a large percentage of missing observations (Figure
3.2): approximately 84% of the observations were partial, a bit over 5% was complete,
and the remaining 10% were entirely missing. Slightly less than 10% of the observations
were labelled by an emotion entry. A total of 271 patient sequences were observed for
all seven summary variables. Close to half of them did not have information about the
time spent at home and the number of locations visited. The app use information was also
wholly missing for 226 patients. In addition, 114 patients had more than 30 consecutive
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Figure 3.2: The distribution of missing data in the selected observation sequences. Black
indicates the presence of observations, and white the lack of them.

days of completely missed observations (range 31-372).

3.2.2 Probabilistic Generative Models for Dealing With Missing
Data

Imputing missing data using statistical measures such as the mean, median, or even in-
terpolation fails when the percentage of missing data is very high. These approaches can
reduce variability in the data set and introduce bias. However, probabilistic generative
models can learn the underlying distributions in a data set by adjusting the model pa-
rameters to best account for the data in the sense of maximising the evidence, even in
the presence of missing data. Mixture models (MMs) [22] and hidden Markov models
(HMMs) [156] are frequently used types of such models.

MMs comprise a finite or infinite number of components, possibly different distribu-
tional types, that can describe different data features. The data can then be modelled as
a mixture of several components, where each component has a simple parametric form
(such as a Gaussian). The model is formulated in terms of latent variables, which rep-
resent the component each data point was sampled from and learned from the observed
features, referred to as observables, by adjusting the model parameters, which define the
observable emission probabilities, such that the MM best accounts for the data in the sense
of maximising the evidence.

HMMs are temporal MMs that are commonly used for time-series analysis. These are
generative models characterised by a set of observable sequences. The discrete states of
the HMM are assumed to have been generated by a first-order Markov chain process, and
each observation depends only on the paired state. An HMM comprises an initial state
probability distribution, a state transition probability distribution, and a symbol emis-
sion probability distribution. Both MMs and HMMs were trained using the expectation-
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maximisation algorithm.

In this study, the observed data were heterogeneous. Practice sport and emotional
state are categorical, and the rest of the variables are assumed to be real-valued. Both
MMs and HMMs can deal with missing data without requiring imputation before training
via marginalisation. For the Gaussian parameters, the diagonal covariance matrices were
considered. Furthermore, both generative models were trained semi-supervised for emo-
tional valence and arousal-valence discrete observations. Namely, the different emotional
states’ emission probabilities were fixed for some components, whereas others were ad-
justed during training, such as the other model parameters. For instance, in a 5-component
MM with binary label emissions, the emission probability for label 0 of the three compo-
nents can be set to 1, forcing the components constantly to emit label 0. In contrast, the
other two components can always be forced to emit label 1.

3.2.3 Emotion Prediction Models

A series of experiments were conducted for emotional status prediction using both non-
temporal and temporal machine learning models. The underlying motivation was to anal-
yse whether there were long-term dependencies in the data concerning patients’ daily
emotional states.

Probabilistic generative models (MM and HMM) were used to perform the imputa-
tion. Note that only the input features were imputed, and the emotion labels were not.
When using MMs, first, for each observation, the posterior distribution needs to be in-
ferred to find which component the observation is most likely to belong to; then, the miss-
ing attributes are imputed by a sample generated from that component. Information about
the emotional state of the current observation was not included in the posterior computa-
tion (otherwise, the model would overfit). When using HMMs, all observation sequences
were first decoded using the Viterbi algorithm on the trained HMM. This method finds
the most likely sequence of components that could have resulted in the given observation
sequence. Once the state sequence was determined, the missing data were imputed by the
samples generated from the corresponding states for each time step. The state posterior
probabilities were computed by applying the forward algorithm [156], leaving out the
current emotional observation.

For non-temporal machine learning methods, LR, support vector classifier (SVC),
random forest classifier (RFC), and multilayer perceptron (MLP) were considered. These
models allow comparison with previous emotional state studies [34], [86], [169], [192].
A grid search was performed for each case for hyper-parameter tuning.

RNNs [165] have recurring inputs to the hidden layer; this allows them to remember
input states from previous time steps, which can carry important information for future
time-step predictions. There are three common types of RNNs: vanilla RNN, LSTM [81],
and gated recurrent units (GRUs) [35]. Vanilla RNNs have short-term memory. If the
observation sequence is rather long, these models have difficulty remembering relevant
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information from earlier time steps. LSTM and GRU cells, which contained gates that
regulate the information flow, were designed to solve this problem.

In this experiment, RNNs of each of the three types were tested. A single layer with
64 hidden units was used, whose output was connected to a dense layer. Finally, the
softmax activation function provides the predictions. The model was trained using the
Adam method and the negative-log-likelihood loss for 50 epochs, using early stopping.
One-layer RNNs with vanilla RNN, LSTM, and GRU cells were trained using 64 hidden
units for each case. More complex models have also been tried, such as dilated RNN,
multilayer RNN, and temporal convolutional networks. However, they did not improve
performance, proving that simpler RNNs could explain the data’s temporal correlations.

3.2.4 Personalised Models

Hierarchical Bayesian regression models were proposed to improve the above models
by accounting for individual differences to predict the emotional state of patients. This
technique is proper because it includes information from the population via partial pooling
of the data. The proposed model allows intercepts to vary across patients according to a
random effect while having a fixed slope for the predictor (i.e., all patients will have the
same slope).

Figure 3.3: The proposed Bayesian network of the hierarchical linear regression model.

In our model, showed in Figure 3.3, for individual j, observation i, target variable y ji,
and input features x ji:

y ji = Categorical(α j + βxi j)

where the random intercept effect is drawn from the population distribution:

α j ∼ Normal(µα, σ2
α)

Moreover, the population mean and SD are independent normal and half-normal pri-
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ors. By setting a separate bias term for each patient, rather than fitting separate regression
models for each patient, multilevel modelling shares strength among patients, allowing
for a more reasonable inference in patients with little data. The models were trained with
Stein Variational Gradient Descent [109], [110] for 50 epochs using the Adam optimiser.

3.2.5 Evaluation and Interpretability

Accuracy, area under the receiver operating characteristics curve (AUC-ROC), and area
under the precision-recall curve (AUC-PRC) were used as the evaluation metrics. AUC-
ROC is commonly used for balanced and imbalanced classification problems because it
is not biased toward the majority or minority class. However, AUC-PRC scores provide
more insight into the minority class when the problem is skewed. As the AUC-ROC
and AUC-PRC scores are computed for binary classification problems, different types of
averaging can be performed on the data in the case of multiclass targets. The reported
results were micro-averaged, meaning that the metrics are global, computed by counting
the total number of true positives, false negatives, and false positives.

Based on several model interpretability methods, Lundberg and Lee [114] defined the
Shapley Additive Explanations (SHAP) value, a modality to explain any machine learn-
ing model’s output. The SHAP values can provide global interpretability to the machine
learning models by showing how much each feature contributes, positively or negatively,
to the target variable. This study used this approach to analyse the model’s feature im-
portance. Moreover, this method can be applied to analyse the decisions for individual
predictions, which provides better insights into the relationships between passively col-
lected mobile data and self-reported emotions.

3.2.6 Experiments

For MM and HMM training, only those patient sequences with at least partial observa-
tions for each of the seven features and emotions were used. Moreover, the maximum
sequence length was limited to 365 days, and sequences with more than 30 days of con-
secutive missing data for all variables were discarded. After this elimination process, 233
sequences were used to train both the MMs and HMMs with different numbers of states.
These patient sequences were excluded from the training and test sets of the later mod-
els. For the global models, the data set containing the remaining 710 patient sequences
were divided into training and test sets using 80% of the sequences for training and 20%
for testing. These data sets were kept independent. The train-test split cannot be done
for the personalised models by randomly selecting a given percentage of the patients for
training while leaving the others for testing, but all 710 patients must be included. There-
fore, the patient sequences themselves were split into training and test sections. The first
80% of the labelled observations, in chronological order, were used for training, and the
remaining samples were used for testing.
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As the LR, SVC, RFC, and MLP cannot directly exploit time-series data, we created
the following 2 cases as inputs for these models. First, the input-output pairs consisted of
1 day of labelled observation. Second, three days a week before the entered emotion was
considered and concatenated into a single feature vector. In the case of the temporal mod-
els, training was performed with 30-day, 3-month, and 6-month long sequences. Before
creating the above feature vectors, the missing data in each patient sequence were imputed
by the MM or HMM samples. For models trained with mini-batch stochastic gradient de-
scent, every data point is imputed every time it enters the optimiser. The sequences were
decoded multiple times, and missing data were imputed by samples generated from the
corresponding state.

We designed two types of experiments. The first type is limited to the projection of
the recorded emotions to a single axis of the arousal-valence plane, and the second set
of experiments considered 2-dimensional projections. A total of 3 different settings were
analysed for the classifiers’ input features:

• using the imputed raw data

• using the MM or HMM posterior probabilities instead of the raw input features

• using the raw inputs concatenated with the MM or HMM posterior probabilities

3.3 Results

3.3.1 Generative Models

After experimenting with several hidden state setups, seven hidden components captured
the data’s underlying patterns well, leading to the best results when a classifier was applied
to the data later to predict the emotions and provide interpretable states. In this case, the
emission probabilities of the five states were fixed such that two pairs of states always emit
negative and positive emotions, and one always emits a neutral emotion. The different
components turned out to be specialised, capturing contrasting behaviours, as Figure 3.5
shows. In terms of features, "steps total" refers to step count, "distance" refers to the
distance travelled, "sleep" refers to the hours of sleep, "app use" refers to the hours spent
using different apps, and "home cluster" refers to the time spent at home, "clusters count"
refers to the number of visited locations, and "practised sport" is an indicator of whether
the patient practised any sports. Of note, the negative mean values were a result of the
normalisation of the features.

Focusing on the three components that mainly emit negative emotional valence (1, 2,
and 3), it can be seen that the corresponding modelled behaviours are contrasting. Com-
ponent 1 represents days when the patients are quite active, visit multiple locations, spend
a significant amount of time using their phones, and sleep very few hours. Component 2
is characterised by fewer steps and low app use. Component 3, however, captures days
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with low activity and is mostly spent at home. The corresponding sport-related discrete
emissions show that the patients practice some sport (>15 minutes of walking, biking,
running, other, or a combination of those) in components 1 and 2, but less likely in com-
ponent 3. Components 0, 5, and 6 correspond to positive emotional valence. They also
seem to capture significantly different behavioural patterns.

Figure 3.4: The 7-component mixture model structure was used for emotional valence
modelling with each Gaussian mean in each component and indicating discrete emission
probabilities. The size of the icons indicates the magnitude of the discrete emission prob-
abilities (emotion and sport).

Figure 3.5: The 7-state hidden Markov model structure was used for emotional valence
modelling with each Gaussian mean in each component and indicating discrete emission
probabilities. The size of the icons indicates the magnitude of the discrete emission prob-
abilities (emotion and sport). Only the transitions with a higher than 0.1 probability are
shown in the graph.
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In component 0, the patients seemed to sleep less and did not spend much time at
home; component 5 captured days with more time spent at home and excessive phone
use. Component 6 captures the days of travel. Finally, the component capturing neutral
emotions indicates days with medium activity and more app use.

Including the temporal properties of HMMs, the trained generative model with seven
hidden states and the same fixed emotional state emissions led to very similar inter-
pretable outcomes as the MM (Figure 3.5). The temporal characteristics were not very
strong. States 2 (with fixed negative emotional valence emission) and 1 (with mainly
negative emotional valence emission) had the highest self-transition probabilities. If the
self-transition probabilities are large, it indicates a stable state. States 0, 3, 4, and 5 have
somewhat large self-transition probabilities, suggesting that days with positive and nega-
tive but neutral emotions following each other are common in the patient population.

In the arousal-valence case, the 7-state generative models had one state assigned to
all the emotional state emissions, and the other two were trained with the rest of the
parameters. Similarly, as before, the states appear to capture specific behaviours, such
as days of medium activity but mostly spent at home, more active days, days with more
travel, and so on (Figures 3.6 and 3.7 provide the sketches of the 7-component MM and
HMM, respectively).

Figure 3.6: The 7-component mixture model structure was used for emotional arousal-
valence modelling with each Gaussian mean in each component and indicating discrete
emission probabilities. The size of the icons indicates the magnitude of the discrete emis-
sion probabilities (emotion and sport).
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Figure 3.7: The 7-state hidden Markov model structure was used for emotional arousal-
valence modelling with each Gaussian mean in each component and indicating discrete
emission probabilities. The size of the icons indicates the magnitude of the discrete emis-
sion probabilities (emotion and sport). Only the transitions with a higher than 0.1 proba-
bility are shown in the graph.

3.3.2 Predicting Emotional Valence

Figure 3.8 compares the accuracy and the micro-average AUC-ROC and AUC-PRC scores
for the trained classifiers in the three experimental setups, as described in the Experiments
section1. Most classifiers achieved significantly higher performance than random guess-
ing (AUC-ROC=0.5). As the figure shows, the models perform the worst on the raw data.
Using the HMM or MM posteriors as input features or combining the raw data with the
posteriors increases the performance.

Table 3.1 compares the best-performing models using the MM and HMM posteriors.
The difference in the results obtained with the MM posteriors and HMM posteriors is
minimal. This indicates that the temporal dimension is not very relevant to the problem
at hand; hence, a simpler generative model is sufficient for the problem.

The best performing model was the MLP with the posteriors of 7 days of observations
as input features. Concatenating the posterior probabilities for three days or seven days of
observations significantly improves the performance; however, training RNNs with longer

1Model notations: LR/SVC/RFC/MLP - x = LR/SVC/RFC/MLP classifiers trained with input features
formed of x-days of observations concatenated to create a single feature vector. RNN/LSTM/GRU - x =
RNN/LSTM/GRU - RNNs with different cells using x-months-long input sequences. Input feature nota-
tions: w/o posteriors = raw features used as classifier input; only posteriors = the MM component posterior
probabilities used as classifier input features; w/ posteriors = raw features concatenated with the MM com-
ponent posterior probabilities used as classifier input features. Model abbreviations: LR = logistic regres-
sion, SVC = support vector classifier, RFC = random forest classifier, MLP = multilayer perceptron, RNN
= recurrent neural network, LSTM = long short term memory, GRU = gated recurrent unit.
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Figure 3.8: Classifier performance comparison plot - Emotional valence case.

Model and classifier input features Accuracy (%) AUC-ROC AUC-PRC
Multilayer perceptron using 7 days of observations as input features

Mixture model posteriors 65 0.81 0.70
Hidden Markov model posteriors 64 0.80 0.69

Table 3.1: Performance comparison of the best performing models using mixture model
and hidden Markov model posteriors as classifier input features.

observation sequences leads to decreased performance. This suggests no substantial sea-
sonality or long-term trend of the self-reported emotions; thus, time-series models are not
needed for the emotional state prediction task.

Generally, the most misclassified emotional state is the neutral state (refer to Table A1
in Appendix A for confusion matrices). In most cases, it is confused with a negative emo-
tional state and reasonably often with a positive one. There is some confusion between
positive and negative emotional states, but somewhat fewer for negative emotions. This
suggests that the models are more sensitive to detecting negative emotions, which can be
desirable; for example, if the app’s goal is to detect periods when the patient is feeling
down.

3.3.3 Predicting Emotional Arousal-Valence

In the second experiment, the target variables were the emotion projections into the 2-
dimensional arousal-valence space, based on the categories in the study by Scherer [172].
Hence, the problem becomes a 5-class classification task. Here, we aimed to test the
possibility of predicting daily emotions on a finer scale than the 2-class valence analysis
presented above. Figure 3.9 provides a comparative overview of the model performance.

The best performance for the emotional arousal-valence prediction, with 48% accu-
racy (compared with the baseline of 20%), 0.77 AUC-ROC, and 0.50 AUC-PRC, was
obtained by the RFC with seven days of data concatenated with the MM posteriors. The
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Figure 3.9: Classifier performance comparison plot - Emotional arousal-valence case.

GRU network trained on 30-day sequences reached results closest to those from the tem-
poral models: 42% accuracy, 0.69 AUC-ROC, and 0.36 AUC-PRC. In this setting, the
added MM posteriors’ effect was more significant than the emotional valence prediction
case. Using the posteriors as input features led to a 23% performance increase in some
models. Table A2 in Appendix A provides a detailed performance comparison of the
models.

Predicting more refined emotional states is a difficult task, as there are more classes
to distinguish, and the class imbalance is also more accentuated. The trained models be-
came somewhat biased toward the majority classes, causing the wrong classification of the
minority classes (high arousal-positive valence and low arousal-positive valence). Gener-
ally, when the predictor variable is well separable, and there are no overlaps between the
different classes, this separation can compensate for the imbalance; however, in this data
set, that is not the case. Standard techniques to combat the imbalance problem, such as
upsampling of minority classes, down-sampling of majority classes, and one-versus-rest
training, were applied; however, these only improved slightly. Therefore, these results
have not been reported.

3.3.4 Personalised Models

The previously presented models try to explain the variability of the observations by con-
sidering the patient population. As shown before, these models do not provide enough
diversity when the classifier takes 1-day worth of data as input. Personalised models can
provide a more scalable and accurate way to better representations for individual patients.

The posterior probabilities obtained from the MM components were used as input fea-
tures for the personalised models because they proved to improve the prediction outputs of
earlier experiments. In the global models presented previously, features representing one
day of data led to insufficient classifier accuracy, especially in the LR models, which only
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reached a maximum of 43% for the 3-class problem and 16% for the 5-class problem. The
proposed hierarchical Bayesian LR method led to a significant increase in performance,
reaching 64% accuracy, 0.81 AUC-ROC, and 0.70 AUC-PRC for the 3-class problem and
52% accuracy, 0.82 AUC-ROC, and 0.55 AUC-PRC for the 5-class problem. This demon-
strates that accounting for individual differences through a simple hierarchical model can
substantially improve emotional state prediction performance without relying on previous
days of data.

3.3.5 Feature Importance Analysis

Figure 3.10 provides an overview of which features are most important for the emotional
valence MLP models using the raw data and using the raw data and MM posteriors as in-
put features. In terms of features, "steps total" refers to step count, "distance" refers to the
distance travelled, "sleep" refers to the hours of sleep, "app use" refers to the hours spent
using different apps, "home cluster" refers to the time spent at home, "clusters count"
refers to the number of visited locations, "practised sport" is an indicator of whether the
patient practised any sports, and P(si|xt) refers to the posterior probability in component
i. The mean SHAP values (Evaluation and Interpretability section) of every feature for
every sample were computed to obtain an overview of which features are most important
for the models. The plot below sorts features by the mean absolute value of the SHAP
value magnitudes over all samples.

Figure 3.10: Summary plot of feature importance for the multilayer perceptron models
for emotional valence prediction, showing raw data and raw data concatenated with mix-
ture model posteriors. The following class labels were used: 0=negative; 1=neutral; and
2=positive emotional valence. MM: mixture model; SHAP: Shapley additive explana-
tions.

The hours of sleep and the time spent using their phone (app use) influenced all
classes’ outcomes the most. The other features have an almost similar influence on the
positive and negative classes. The negative output (class 0) is also strongly influenced
by the step count, sports indicator, and time spent at home. If the posterior probabilities
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are combined with the raw features as inputs to the model, some outweigh the raw fea-
tures in the decision-making process. For instance, the MLP relies heavily on the hours
of sleep, the posterior probability of state 2, and the step count. The other classes seem
more involved, requiring several posterior probabilities and raw values to form the pre-
diction. The importance of posterior probabilities underlines the robust feature extraction
provided by MM.

Similarly, the arousal-valence classifiers can be analysed. In the raw data case (Fig-
ure 5), although the model emphasises the hours of sleep and the step count, the other
parameters become slightly less important. In the second case (Figure 3.11), some of the
posterior probabilities seem to weigh more in the decision-making process than the raw
features, as in the first experiment.

Figure 3.11: Summary plot of feature importance for the random forest models for emo-
tional arousal-valence prediction, showing raw data and raw data concatenated with mix-
ture model posteriors. The following class labels were used: 0=neutral; 1=high arousal-
positive valence; 2=high arousal-negative valence; 3=low arousal-negative valence; and
4=low arousal-positive valence. MM: mixture model; SHAP: Shapley additive explana-
tions.

3.4 Discussion

3.4.1 Principal Findings

A variety of different machine learning methods were used to analyse passively sensed
behavioural data from 6 sources (step count, distance travelled, hours of sleep, hours
of phone use, time spent at home, number of locations visited, and a binary variable
indicating whether the patient practised sports during the day). These models were used
to predict self-reported emotional state (valence or combination of valence and arousal)
in a large, international sample of treatment-seeking patients with clinically significant
psychological and emotional symptoms. Preliminary inspection of this data set revealed

43



that the data exhibited significant missingness (approximately 84% of the observations
were partial). This represents real-world clinical data sets, which usually contain many
missing samples and are sparsely labelled. The fact that this kind of data is both noisy
and often non-randomly missing means that developing robust imputation techniques is a
nontrivial problem. However, developing such methods is vital if this information is used
to support clinical decision-making.

We addressed this problem by training generative models to handle missing data.
These models were then used for data imputation and latent state (feature) extraction for
emotional state prediction. Predictive models performed significantly better when MM or
HMM posterior probabilities were included alongside the raw behavioural input features.
This suggests that the latent representation of the passively sensed behavioural variables
discovered by the probabilistic generative models contains information relevant to daily
emotional experience fluctuations. However, using HMMs over MMs did not improve the
classification performance, implying that there are no strong temporal correlations in the
daily observations that an HMM can capture. Furthermore, the nonlinear models outper-
formed the other static models in both experiments. RNNs did not improve daily emotion
predictions, suggesting that long-term behaviour does not significantly influence patients’
everyday emotional states.

When using raw data alone as input features, the hours of sleep had the most influence
on the emotional state predictions. The importance of activity-related features varied be-
tween the two experimental setups. When posterior state probabilities were included in
the model, some proved to be more important than the raw features. This indicates that the
MM provided excellent feature representation and filtering of the observed behavioural
signals. Interestingly, an inspection of the confusion matrices for the best performing
models revealed that, for the valence prediction analysis, models were more sensitive to
detecting negative, compared with positive or neutral emotional states. This is a use-
ful feature as this is the domain of emotional experience most likely to be relevant for
clinicians or self-monitoring trends in overall mental health.

Finally, we proposed a hierarchical Bayesian regression with varying intercepts and
a common slope to personalise the models. This approach performs personalised predic-
tions while accounting for population-level characteristics. The personalised models us-
ing 1-day long feature vectors achieved similar performance to the nonlinear variants us-
ing 3-day long feature vectors. Moreover, they performed significantly better than global
linear LR models. Personalised models outperforming the generalised models are intu-
itively reasonable as the mood is very personal, and its perceptions among individuals
differ.

3.4.2 Limitations

This study has some limitations. As previously mentioned, the data analysed here contain
a large percentage of missing observations: approximately 84% of the observations are
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partial, only a bit over 5% are complete, and the remaining 10% are entirely missing.
Some of the patient sequences had large chunks of consecutively missing observations,
possibly because of sensor or software errors or the patients not using their devices for an
extensive amount of time. Moreover, information about emotional states was sporadically
reported. Therefore, only 10% of the behavioural data were labelled with respect to the
outcome of interest.

Recording emotions is a subjective process; the regular reflection of the emotional
state may influence how one answers. Most registered emotions were negatively valenced,
meaning that the prediction models were somewhat biased toward negative emotional
states. As a result, the models were most sensitive in the negative domain, and the overall
prediction accuracies were not high in some cases. In addition, this study did not analyse
mood variability, another important point in psychiatric disorders. However, it will be
important to explore in the future to differentiate better whether it is a pathological mood
state or a mood within the normal range.

3.4.3 Conclusions

This work is an initial step toward developing more robust and informed models for pre-
dicting emotional states from passively sensed data. It presents a sound basis for further
exploration by proposing a solution to missing and sparsely labelled data, allowing the
future focus to be directed toward developing more advanced models. Further research
options include examining other deep learning models to improve prediction accuracy and
analysing effects at a more refined time scale. Another intriguing question is to consider
the effect of seasonality (weekdays and weekends, seasonal variation) on patients’ emo-
tional states. Moreover, the possibilities of specialised models for different patient groups
or individual patients will be further investigated.
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CHAPTER 4

PREDICTING CLINICAL ANXIETY FROM SOCIAL
MEDIA APP USAGE DURING COVID-19 LOCKDOWN

Parts of the work described in this section were published in JMIR Mental Health 2021;8(9):
e30833, DOI: 10.2196/30833, and it was presented in the format of a contributed talk at
IBC2022.

4.1 Introduction

During the early peaks of casualties from the first wave of the COVID-19 pandemic, gov-
ernmental lockdown measures generated anxiety, and physical isolation among a large
portion of the global population [95]. The mental health consequences of these lockdown
measures are only beginning to be understood on a larger scale as more population data
and clinical outcomes are becoming available. Quarantine and lockdown measures have
been linked with short- and long-term adverse psychiatric consequences such as suicidal
ideation, depression, and post-traumatic stress disorder (PTSD) in current and previous
outbreaks [74], [78], [160]. Physical isolation can also increase the intensity and per-
ception of threat, especially when its uncertain nature is explicit such as a high-mortality
novel virus outbreak [61], [203]. Anxiety can cause maladaptive coping behaviour such
as substance use, which can, in turn, lead to adverse mental health outcomes in a nega-
tive feedback loop [159]. It can also compromise effective health-related social decision-
making, as seen in panic buying, hoarding, and excessive online information search during
the COVID-19 pandemic [88], [162].

On the other hand, positive public health outcomes are driven by individuals’ sound
health decisions based on accurate perceptions of the costs and benefits to self and society
[206]. Therefore, identifying the severity of short-term anxiety symptoms in the popula-
tion exposed to lockdown measures is a significant public health agenda, and it may lead
to early detection of those at risk for psychiatric sequelae.

When in-person communication is diminished, individuals experiencing anxiety symp-
toms may turn to the digital world to connect with others [18]. In recent years, passive
smartphone sensor data have been utilised in empirical studies to identify various psy-
chiatric presentations and mental health-related behaviours [64], including social anxiety
severity, through rich real-time analysis of users’ functioning in the digital world within
their natural environment [84].
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There are conflicting perspectives concerning the role of social media use in develop-
ing anxiety during crises. Although much literature on social media has been produced
regarding their adverse effects on mood and mental health, the interplay network among
social media use, user characteristics, and the manifestation of anxiety is likely more
complex and layered [98], [196]. Excessive time searching for news on social media
has been linked with higher anxiety during COVID-19, and Ebola outbreaks [58], [62],
[136]. Conversely, social media exposure to public health information during the MERS
outbreak was positively related to forming appropriate risk perceptions in the population,
moderated by users’ information processing style and self-efficacy traits [36]. A recent
report suggested that increased social media usage predicts increased physical activity,
possibly promoting healthy behaviour during COVID-19 [138]. In other words, finding
models to describe how users engage in social media, as opposed to whether or not they
are using it, appears to be highly relevant to clinical and public health.

4.2 Methods

4.2.1 Data

From February 1 through May 3, 2020, passive smartphone usage data were collected
using eB2 Mindcare [23], [30], [49], a clinically validated eHealth platform. On March
14, a country-wide state of emergency was declared due to rising mortality rates from
the coronavirus pandemic, and the government-mandated a lockdown of all individuals
who were not essential workers (i.e., they were restricted to their residences, except when
purchasing food and medicines or attending emergencies). On May 4, Madrid entered the
first step in de-escalating the lockdown, which allowed the reopening of small businesses
and walking outside within set time slots [181].

Daily time (in seconds) automatically logged on communication apps and social net-
working apps were extracted and analysed during the pre-lockdown (i.e., February 1
through March 13) and the lockdown periods (i.e., March 14 through May 3). Social
media app categories—communication and social networking—were based on the labels
designated in the Google App store. Communication apps included messaging, chat/IM,
dialer, and browser apps such as WhatsApp, Telegram, Facebook Messenger, and Gmail;
social networking apps were primarily those for sites such as Instagram, Twitter, and
TikTok.

A clinical psychologist collected short-term mental health outcomes, including self-
reported intensity of psycho-social stressors during the lockdown and Generalised Anxi-
ety Disorder 7-item scale (GAD-7), by phone follow-up between May 12 and June 3 after
the initial lockdown measures had been lifted [137]. Clinical anxiety was defined as a
GAD-7 score of 10 or greater, given its diagnostic value in screening for severe GAD,
panic disorder, and social phobia [97]. COVID-19 exposures, risk perception, and social
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Figure 4.1: Distribution of temporal (mean and 95% confidence interval) and static vari-
ables in the data set consisting of the patients (n=95) are grouped by anxiety. Usage data
collected in seconds were logarithmically transformed and scaled. Abbreviations: LTD =
Long-term disability, UEwS = Unemployed with subsidy, UEwoS = Unemployed with-
out subsidy, TI = Temporarily incapacitated.

behaviours during the lockdown period were also assessed during the phone call.

Figure 4.1 provides an overview of the data distribution in the studied population.
A pronounced increase in time logged on communication apps in the nonclinical anxi-
ety group (GAD-7<10) versus clinical anxiety group (GAD-7>10) after March 14, and
increased overall time logged on social network apps in the clinical anxiety group.

4.2.2 Machine Learning Pipeline

We designed a 2-step approach that combined a probabilistic generative model, namely
a hidden Markov model (HMM) [156] for temporal data processing and aggregation,
with logistic regression to predict the binary outcome (clinical anxiety versus nonclinical
anxiety) by dichotomised GAD-7 (Figure 4.2).

Nonclinical anxiety outcome (n=51) was encoded as the negative label, and clinical
anxiety outcome (n=44) was encoded as the positive label. The class imbalance problem
was insignificant. Continuous longitudinal daily communication and social networking
app usage in seconds were chosen as independent variables, with anxiety-associated clin-
ical variables as additional predictors.

HMMs are commonly used for time-series analysis. HMMs model generative se-
quences, which are characterised by a set of observable sequences. A first-order Markov
chain process generates the states of the HMM. The following components specify an
HMM: S = s1, s2...sN , a set of N states; A = a11...aNN , a transition probability matrix;
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Figure 4.2: The proposed hidden Markov model-based anxiety prediction pipeline. No-
tations: HMM - hidden Markov model, LR - logistic regression, Ot - observation at time
point t, S i - state i, Pi j - transition probability from state i to state j, fi(Ot) - emission
probability of Ot from state i, where i, j ∈ {1, 2, 3}.

O = o1, o2...oT , a sequence of T observations; B = bi(ot), emission probabilities, express-
ing the probability of an observation ot being generated from state i; and π = π1, ...πN , an
initial probability distribution over states.

The state-space of the applied HMM is discrete, while the observations can be discrete
or continuous. This study treats communication and social networking app usage as con-
tinuous variables from a Gaussian distribution. The parameters of an HMM can be trained
with the Baum-Welch algorithm, a variation of the expectation-maximisation algorithm.
The model can deal with missing data using marginalisation without requiring imputation
before training. To select the optimal number of hidden states, we computed the Akaike
information criterion and the Bayesian information criterion [151] after training HMMs
with 2-19 states.

Once the optimal HMM state sequence was selected for each temporal sequence, we
computed the state posterior probabilities P(si = k|x) (the probability of being in state k
at position i of the sequence x) for each time point and aggregated them by summing over
time for each patient. This feature vector of length N was then concatenated with non-
temporal clinical features of length Nclinical to form the feature vector of length N+Nclinical.
Hence the data set of size for the logistic regression was Npatients × (N + Nclinical). Age,
gender, self-reported worries about life instability during the lockdown, health status,
presence of an essential worker in the household, changes in the frequency of social inter-
actions during quarantine, and current employment status were chosen as non-temporal
features for the model training. These features were selected because of the differences
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between the clinical and non-clinical anxiety groups and correlations with GAD-7. Given
the clinical association between social isolation and anxiety disorder in the literature,
[187] and the impact of the lockdown impacting the social media app usage for those
living alone in our sample, we also included cohabitation status.

4.2.3 Performance Evaluation

The evaluation was performed using k-fold cross-validation [71], due to the limited data
samples. Ten train-test splits were created from the dataset. Similarly, ten logistic re-
gression models were created and trained for evaluation. Since we had 95 patients, this
means that in the first five splits, we trained the model on data from 85 patients and tested
the model on data from 10 patients, while in the last five splits trained the model on 86
patients and tested the model on nine patients. The results are summarised with a mean
and standard deviation of the model accuracy and area under the receiver operating curve
(AUC-ROC) scores.

Finally, we also performed feature importance analysis by computing Shapley additive
explanations (SHAP) values [114], which provide an overview of important features in
the machine learning models by designating the weight of predictability of each feature
positively or negatively to the target variable. We averaged the SHAP values over the
10-fold cross-validation for every feature for each patient.

4.3 Results

4.3.1 Predicting Clinical Anxiety

Only the patients with any communication and social network app usage data during
both the pre-lockdown (≥1 out of 42 days) and lockdown period (≥1 out of 51 days)
were considered for the model training. This resulted in 95 patients in the model with
varying individual app usage data sequences. In these sequences, 8.76% (655/7476) of
the communication app and 30.26% (2262/7476) of the social network app usage data
were missing in the data set.

After experimenting with several set-ups (2-19 hidden states) of hidden Markov mod-
els, an HMM with three hidden states proved to capture the underlying patterns in the
data the best according to the AIC and BIC analysis, leading to the most interpretable
states. Subfigures A and B in Figure 4.3 provide a sketch of the transition probabilities
and means of the 3-state HMM. Temporal variables were normalised before model train-
ing, providing the negative means. Large state transition probabilities suggest that the
states were relatively stable.

State 2 was the most stable (self-transition probability of 0.88) while transitioning
between states 1 and 3 was more likely. State 3 captured days with relatively low commu-
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Figure 4.3: The 3-state Hidden Markov model parameters used for temporal data mod-
elling and most probable HMM states applied to daily communication and social media
app usage of example individuals with clinical and non-clinical anxiety.

nication app usage and average social networking usage in the sample, while states 1 and 2
captured days with lower and higher app usage, respectively. When applied to individual
observation sequences, state 3 preferentially represented the missing observations (i.e.,
days the apps were not consistently used). State 2 preferentially represented the days of
active and consistent social media usage, and state 1 preferentially represented the days of
still active (but less so) and volatile usage (Figure 3C). For example, for patient 7053 with
clinical anxiety, most days were in state 2, punctuated with three missing/inactive days
(state 3), and social networking app usage increased after the lockdown. In the case of pa-
tient 9105 with nonclinical anxiety, days after the lockdown were marked with increased
communication app usage (state 2), but during the overall period, social networking app
usage was less, capturing missing (state 3) and inactive or volatile (state 1) days.

Our model achieved a mean accuracy of 62.30% (SD=16%) and the AUC-ROC score
of 0.70 (SD=0.19) on the left-out test sets. Performance metrics in Table 4.1 show that
the model performs well on most splits; however, it underperforms on splits 6, 7, and 10.
This was partly due to containing non-representative demographic features for the clinical
anxiety group (Figure A1 in Appendix B). For example, in case of Split 10, which had the
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lowest predictability with an AUC-ROC score of 0.40 for the model, we found that clinical
anxiety individuals had either atypical risk perception (only one individual reported the
presence of essential workers in the household) or self-report patterns (reported clinical
anxiety despite having relatively good health and few worries about life instability during
the lockdown).

Fold Accuracy % AUC-ROC
Training set Test set Training set Test set

1 53.61 87.50 0.67 0.88
2 70.57 60.00 0.80 0.76
3 69.40 60.00 0.79 0.76
4 69.51 80.00 0.77 0.88
5 69.20 70.00 0.77 0.84
6 74.23 45.00 0.81 0.50
7 76.90 47.50 0.80 0.65
8 66.96 77.50 0.77 0.80
9 74.73 55.00 0.80 0.60

10 75.82 40.00 0.81 0.30
Mean (SD) 70.10 (6.70) 62.30 (16.00) 0.78 (0.04) 0.70 (0.19)

Table 4.1: Achieved accuracy and area under the receiver operating curve (AUC-ROC) in
the 10-fold cross-validation of the pipeline.

4.3.2 Feature Importance Analysis

To get an overview of which features were most important for the models, we computed
the SHAP values of every feature for every sample in each phase of the 10-fold cross-
validation and averaged the SHAP values. Figure 4.4 shows the summary plot of feature
importance and direction of effects in predicting the clinical anxiety group. The features
are ordered downwards by their descending importance and coloured by their values from
low to high. Each point is a SHAP value for a feature and an instance, and overlapping
points are jittered in the y-axis direction. Positive SHAP values encode the feature’s
predictability to classify the subject in the clinical anxiety group and negative values in
the non-clinical anxiety group.

The majority of non-temporal features, led by the presence of essential workers in the
household, outweighed the aggregated representation of the temporal features in impor-
tance. Among temporal features, the aggregated posterior probability of state 2 (higher
social networking app use) was the most important predictor of the clinical anxiety group.
Despite their lower feature importance, states 1 and 3 still provided significant insight into
users’ longitudinal behaviour, such that inactive and volatile social media usage patterns,
specifically in lower communication app usage, predicted the clinical anxiety group. This
is also consistent with our finding that the clinical anxiety group’s communication app
use was significantly lower during the lockdown period.
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Figure 4.4: Summary plot of feature importance for the logistic regression model trained
for the anxiety prediction task. Notations: Covid34 - essential worker in the household,
Covid37 - worries about life instability during the lockdown, Covid43 - changes in the
frequency of social interactions, Covid25 - self-rating of physical health,

∑
S i- the sum

of posterior probabilities of the state i over time, i ∈ 1, 2, 3.

4.4 Discussion

Our ML-based model trained on the temporal series of communication and social network
app usage and clinically important features of self-report and demographic variables ac-
curately predicted the clinical anxiety group from higher social network app usage and
lower communication app usage. Taken together, our ML-based model results suggest
that passive tracking of decreased communication app usage and increased social net-
work app usage through the lockdown period can predict users reporting clinical anxiety
symptoms, at risk for impaired decision-making, maladaptive coping, and psychiatric se-
quelae during public health crises and lockdown periods. Early remote detection of at-risk
individuals would, in turn, allow allocating limited mental health resources to serve those
with the highest need and prevent or ameliorate adverse mental health outcomes.

The analysis was based on observing a small number of patients and should be in-
terpreted with the following limitations. First, the data cannot explain the causal link
between app usage and the severity of anxiety. Secondly, besides "general worries about
life instability during the lockdown," there were no other independent variables that may
reflect the evolution of subjective emotions included in the model to predict the anxiety
states at clinical follow-up. Study participants had a daily mood self-reporting option on
their smartphones, but such reporting was voluntary, and mood data were largely missing
during the lockdown. We acknowledge that our study participants were in an unprece-
dented and anxiogenic natural circumstance at the time. The lockdown likely increased
all users’ anxiety and stress levels (mean GAD-7 was high at 9.6, with a clinical cut-off
of 10). However, we did not have their baseline GAD-7 collected before the lockdown to
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make a comparison statement. Therefore, the utility of our model is limited to detecting
those whose anxiety symptoms were registering at the clinical severity, i.e., GAD-7≥10.

Our work is the first to suggest that category-based passive sensing of a shift in smart-
phone usage patterns can be markers of clinical anxiety symptoms. Novel studies to
digitally phenotype short-term reports of anxiety using granular behaviours on social me-
dia are necessary for public health research when in-person psychiatric evaluations are
limited during mandated physical isolation.
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CHAPTER 5

ASSESSING WHODAS 2.0 SCORES FROM
BEHAVIOURAL BIOMARKERS

The first part of the work presented in this section was submitted to SAGE Digital Health.
At the same time, the results of the deep learning-based solution are only preliminary and
will be ulteriorly published.

5.1 Introduction

Functional limitations are associated with poor clinical outcomes, higher mortality, and
disability rates, especially in the elderly [31]. Moreover, they are closely related and used
for predicting transitions in daily living/instrumental activities of daily living (ADL/IADL)
disability, significantly impacting the quality of life of the elderly and other age groups
[127]. COVID-19 has been associated with functional limitations in post-COVID pa-
tients, further increasing an already present problem for older adults [52], [161], [190].
Just examining sarcopenia, a progressive loss of muscle due to ageing, the estimated cost
of hospitalisations for adults in the United States was USD 40.4 billion [66]. Early de-
tection of an increase in disability is of great importance for clinical practice, as it can
still be stabilised or even reversed in the early stages, as in the case of sarcopenia, which
can be prevented, treated, and reversed by exercise. Moreover, one of the cornerstones of
rehabilitation research is the reduction of disability and restoration of function [55].

There is a great need and much to be gained from defining a way to measure function-
ing and disability on a relevant scale, ideally daily. However, assessing everyday function-
ing and disability is complicated due to current measurement modalities (e.g., self-report,
proxy-report, clinician ratings) [149]. These reports are time-consuming and tedious to
fill in on follow-up visits. In addition, there are disagreements between disciplines about
what constitutes a disability and the methods to measure this disability, especially in a
clinical setting [122]. Ecological momentary assessment (EMA) allows for more contin-
uous assessment and monitoring of patients without face-to-face appointments and has
the crucial advantage of providing data that is more relevant to daily life [126]; however,
it still requires active patient input leading to refusal and attrition. Developing adequate
passive EMA tools may increase retention and help overcome the limitations of active
EMA [153].

Patient-reported outcome measures (PROMs) and patient-reported experience mea-
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sures (PREMs) are increasingly recognised as tools providing valuable information about
patients’ health status and perception of treatment at a particular point in time [80]. In-
cluding such tools in the healthcare workflow aims to provide a patient-centred, value-
based healthcare system [17]. A commonly used PROM for disability assessment is the
second version of the World Health Organisation Disability Assessment Schedule (WHO-
DAS 2.0) [193]. This 36-item questionnaire provides a generic tool to measure health
and disability. It assesses difficulties due to health conditions, including diseases or ill-
nesses, short or long-lasting health problems, injuries, mental or emotional problems, and
substance-use disorders [92]. WHODAS 2.0 captures the level of functioning in six do-
mains of life: (i) cognition – understanding and communicating, (ii) mobility – moving
and getting around, (iii) self-care – attending to one’s hygiene, dressing, eating, and stay-
ing alone, (iv) getting along – interacting with other people, (v) life activities – domestic
responsibilities, leisure, work, and school, (vi) participation – joining in community ac-
tivities, participating in society. Respondents are asked to reflect over the last 30 days and
answer a set of questions, thinking about how much difficulty they had doing the given
activities. Using WHODAS 2.0, there is a possible maximum score of five points for all
items, indicating a rising level of difficulty in performing the activity in situations expe-
rienced over the previous 30 days, and taking into account current health conditions: 1
- none, 2 - mild, 3 - moderate, 4 - severe, and 5 - extreme. A higher final score value,
calculated as a total score or score by domain, indicates a higher level of disability [148].

Mobile sensing offers various sources, such as GPS, accelerometer, gyroscope, and
light sensor, that can be used to implement behavioural measures [116]. Unlike tradi-
tional assessment tools, these technologies enable long-term passive and ecological mea-
surement of patient function that is non-intrusive. While there has been some work in
digital mental health and machine learning [82], no studies predict WHODAS 2.0 func-
tionality score changes using smartphone sensor data. These approaches are particularly
important since they may enable the analysis of individuals’ functioning and disability
evolution and provide a clinical tool to monitor the progression and efficacy of treatment.
In addition, they provide the opportunity to build targeted just-in-time adaptive interven-
tions in a designated population [133]. Such frameworks deliver interventions within the
context of daily life. Including passive data-driven solutions as part of the typical PROM
frameworks could enrich existing information and better inform decisions.

5.2 A Baseline Approach

This work aimed to provide a baseline analysis of the feasibility of using machine learning
to predict patients’ WHODAS 2.0 functionality scores from passively gathered digital
biomarkers. Furthermore, we aimed to determine which behavioural features are the most
important for predicting different WHODAS 2.0 domains.
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5.2.1 Data Selection and Preprocessing

The eB2 MindCare [21], [30] mobile application collects data from different sources (the
mobile phone’s sensors and wearables) at different intervals. For this work, we focused on
the data streams related to patient mobility (daily step count, distance travelled, the num-
ber of locations visited by the patient, time spent at home, time spent performing activities
such as walking, running, exercising), and time spent asleep. Daily summaries were cal-
culated on the values of these variables, which were then used to extract 64 descriptive,
statistical features for characterising the patients’ behaviour in a 30-day interval.

Figure 5.1 shows the data selection and feature extraction process. For each domain’s
score: incomplete answers - if some questions were not answered within a specific do-
main, incorrect scores for the individual questions - if the registered score was out of
the range of the possible scores. After our data filtering, 1526 WHODAS 2.0 domain
entries of 396 participants collected between 01/2017 and 04/2021 were selected for our
analysis. The cohort of patients had a median age of 44 (IQR: 33, 53) years at baseline,
63.13% (250/396) were female, and 29.04% (115/396) were male. Age and gender in-
formation was unavailable for 8.08% (32/396) and 7.83% (31/396) of the participants.
Socio-demographic information was not inputted into the model.

Figure 5.1: Data selection and feature engineering flowchart.

The particular questions’ scores from 1 to 5 were scaled as suggested by the WHO to
either value from 0 to 4 or 0, 1, 1, 2, 2 [148]. Finally, the score by domain was computed
as the sum of the scores of the respective questions. These scores will serve as our target
for the supervised prediction problem. Figure 5.2 insights about the distribution of the
scores for all WHODAS 2.0 domains in the overall population.

To build the input dataset, we cropped a 30-day window of the data sequences for each
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Figure 5.2: The distribution of WHODAS 2.0 functionality scores per domain in the
patient cohort.

WHODAS 2.0 entry. For the baseline WHODAS 2.0 score, due to it being registered at
enrolling in the study, we consider the next 30-days of observations because no previ-
ous mobile sensed data was collected. For follow-up scores, which are usually collected
bi-annually, we centred the window on encapsulating 15-days before and after the score.
The time-series dataset must first be transformed to be modelled as a supervised learning
problem. Therefore, we extracted statistical summary features (count, minimum, maxi-
mum, mean, standard deviation, IQR) from the sequences for each variable and obtained a
dataset of 64 features. We filtered sequences by requiring every feature to contain at least
two counts (days) of data for comprehensive statistics calculation and removing missing
values.

We divided the datasets for each domain into two independent subsets based on the
patients, ensuring no overlap. The first subset is the training dataset, consisting of 80%
of the entries used to fit the feature selection and predictive models. The second dataset
was held-out for testing the model performance. The training set was split into four equal
folds of 20% for cross-validation. The train-test and cross-validation splits were done
by ensuring the grouping of entries of the same user within the same set/fold since the
model is user-independent and stratifying by the interquartile range of the WHODAS
2.0 scores. The stratification ensures that the model can train and test low, middle, and
high WHODAS 2.0 scores within the population. Then the features were standardised.
Moving features to a similar scale helps avoid feature weight problems and provides an
interpretable bias in the case of linear regression.

5.2.2 Feature Selection and Predictive Modelling

We used sequential forward selection (SFS) [53], also known as a sequential feature selec-
tion or stepwise forward selection, a greedy search algorithm for feature selection, which
reduces an initial d-dimensional feature space to a k-dimensional feature subspace where
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k < d. SFS avoids the feature selection stability problems of the lasso with a similar idea
as best subset selection but on a reduced set of subsets, which is computationally feasi-
ble [72]. In SFS, features are sequentially added to an empty set of features until extra
features do not reduce the criterion. To find the best set of features in the case of each
domain, we performed a search by iterating from k=1 to 20 with 4-fold cross-validation
over the training set and selecting the k with the highest average performance across folds
with the same model design as our final model. Finding the best features for predicting
each domain provides greater interpretability to our models, which is essential in a clinical
setting where clinicians need reliable and straightforward decision rules [145].

Once the best features were found, we trained linear regression models to perform the
prediction task. To better suit the ordinal classification problem, we performed a simple
modification after the regressor by thresholding the predictions between the minimum
(0) and maximum values of the specific domain and rounding. The final models were
evaluated on the held-out test set. We computed test mean absolute error (MAE) and
test mean absolute percentage error (MAPE) as performance evaluation metrics. MAPE
provides a metric to compare the different domains with a different number of questions
and different total scores. We applied this approach separately for the different WHODAS
2.0 domains, using all the extracted features and the best subset of features.

5.2.3 Results

We performed the feature selection using SFS, followed by training unregularised linear
regressors with the best feature subset for each domain. We then compared the perfor-
mance to linear regressors trained on the entire feature set.

Figure 5.3: Selected features per WHODAS 2.0 domain.

Figure 5.3 provides a graphical summary of the best feature subsets selected across
all six domains (see Table A3 in Appendix C for a detailed overview). In each case, the
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Figure 5.4: The feature importance of the linear regressor with all features per WHODAS
2.0 domain overlaid with the selected ones.

model discarded most of the input features, reducing the feature space to 19, 19, 5, 6, 17,
and 13 features from the total of 64 respective to the above domains. Figure 5.4 shows
the feature weights of the linear regressor trained with all features per domain overlaid
with the best subset features denoted by a grid. Note that the absolute value of regres-
sion coefficients per domain model was normalised (0,1) to compare feature importance.
While each feature statistic is not shared, it can be seen that the models coincide in the
feature groups important to the all feature model. Both models capture the relevant data
from each feature group but use different statistics. All the statistics (count, mean, min,
max, quartiles) are interrelated, so a selection of a few could be sufficient to summarise
the relevant information for the regressor.

Across all domains, at least one statistic of distance travelled and time spent at home
was selected. The time spent at home and distance travelled features impart information
on daily movement patterns. These movement patterns may indicate many elements of
an individual’s lifestyle, including work (or lack of work), socialisation (in and out of the
home), and isolation, among many others. This focus on movement patterns was further
reinforced by including vehicle time, step count, and walking time statistics in multiple
domains. Step count and walking time also double physical activity descriptors with ex-
ercise time. Physical activity biomarkers proved important in the cognition, mobility, life
activities, and participation domains, while sleep-related biomarkers were only selected
for the cognition and participation domains. Physical well-being in both exercise and
sleep is reasonably related to these domains. The self-care domain and getting along do-
main were described with the lowest amount of important features compared to the four
other domains.

Table 5.1 shows the domain prediction errors as MAE and MAPE for both experimen-
tal set-ups. Note that these are negatively-oriented scores, which means lower values are
better.
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WHODAS 2.0
domain

Score
range

Predicting with all 80 features Predicting with selected features

MAE (SD) MAPE (SD) [%] No. of features
selected MAE (SD) MAPE (SD) [%]

Cognition 0-20 3.76 (3.21) 18.84 (16.09) 19 3.55 (2.90) 17.76 (14.54)
Mobility 0-16 3.50 (2.44) 21.91 (15.26) 19 3.40 (1.98) 21.26 (12.42)
Self-care 0-10 1.56 (1.75) 15.69 (17.54) 5 1.48 (1.50) 14.86 (15.09)
Getting along 0-12 3.13 (2.72) 26.11 (22.74) 6 2.44 (1.79) 20.37 (14.96)
Life activities 0-24 7.57 (6.40) 31.56 (26.66) 17 6.53 (5.40) 27.21 (22.52)
Participation 0-24 3.88 (3.14) 16.16 (13.10) 13 3.73 (2.69) 15.54 (11.23)

Table 5.1: Regression evaluation metrics. Notation: MAE=mean absolute error,
MAPE=mean absolute percentage error, SD=standard deviation.

The regression models trained on the reduced feature space outperformed, even if only
by a small margin, those that were trained on all features. Regression models estimate
parameters for every term in the model; therefore, non-informative variables may add
uncertainty to the predictions, reducing the overall performance. However, this small
margin implies that relevant information is being captured for both models even if the
model trained on all features is forced to regress with a larger number of features with no
regularisation.

The overall model performance can be explained by the distribution of the outcome
variable in the respective data sets: mid-range values dominate in each domain; therefore,
it becomes harder for the models to predict the more extreme scores. The performance of
a regression model may suffer from the fact that the distribution of the target variable is
not normally distributed and skewed. Moreover, the above-elaborated problem is particu-
larly challenging due to missing values and a target better suited for ordinal classification.
While linear regression has downsides in this setting, it does have the advantage of not
overfitting, in general, and particularly to the noise in real-world data. Using multiple lin-
ear regression and a large feature space also allows more flexibility to the linear regression
concerning linearity. Non-linear models may perform better, but they are more prone to
overfitting and loss in interpretability and ease of explainability, which is important when
applying machine learning to a clinical setting [73], [103].

5.2.4 Discussion

Principal Findings

In this work, we addressed the problem of predicting WHODAS 2.0 functionality scores
per domain from solely passively collected digital biomarkers. Statistical feature engi-
neering followed by a simple machine learning approach of selecting features through
SFS for linear regression showed the feasibility of predicting functionality from passively
sensed data. Moreover, using a simple linear regression model for prediction ensured the
interpretability of the model’s decisions.

Extracting statistical measures of the time series sequences allowed dealing with miss-
ing data without applying imputation techniques; however, several entries had to be dis-
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carded due to their limited information content (e.g., sequences with completely missing
observations per feature). We searched for the most relevant features from an ample fea-
ture space, removing non-informative or redundant predictors from the model for each
domain. We found that 5-19 features were sufficient for each domain, the most relevant
ones being the distance travelled, time spent at home, time spent walking, exercise time,
and vehicle time. These features that were most informative for linear regression are
biomarkers for daily movement patterns and individuals’ physical activity.

Our machine learning–based models, trained on the best feature subsets per domain,
outperformed the ones trained on the entire feature space and predicted patients’ WHO-
DAS 2.0 functionality scores per domain with a maximum MAPE of 27.21% on the life
activities domain and a minimum MAPE of 14.86% on the self-care domain. These are
reasonable errors for a linear regression performing a complicated ordinal classification
task. The lowest and highest MAPE was seen in the domains with the least features
selected and the smallest range of possible scores. Compared to the all-feature model,
feature selection did not cause a change in the error ranking of the domains.

Limitations

Although this approach showed promising results, it also has limitations. The automatically-
generated wearable device data was passively collected in a real-world setting. This is a
strength in ecological validity but has the downside of considerable missing data and noise
commonly present in real-world passive data acquisition. A few data quality problems
are missing data due to users not wearing the device or incorrect data due to malfunction-
ing. This may have lowered the predictive performance and biased the variable impor-
tance. Missing data also posed a problem in the features used from the eB2 database, as
other helpful features, such as app usage and phone unlocks, were filtered out, causing
a severely reduced dataset. These features would provide information directly related to
social domains. Even with removing these features, our sample size is still quite limited.
Overall, the dataset presents many challenges because it is an inclusive combination of
two real-world databases with missing values, erroneous entries, and noise.

In many cases, individuals have only a single score, which does not allow for training
personalised models that could better account for the intra-individual variations. Although
step data should be relevant to determining mobility, an individual’s lifestyle, work con-
ditions, and other factors greatly influence step count. We hypothesise that a model that
learns individual variability and patterns and then examines the population would be bet-
ter suited, but having longitudinal large population datasets combining clinical data and
wearable data would be a challenge.
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Conclusion

This work is the first to suggest a machine learning-based approach for assessing WHO-
DAS 2.0 functionality from passively sensed data. The findings indicate the feasibility
of designing a pipeline to monitor patients’ functionality over time passively. However,
the different results between different WHODAS 2.0 domains show that it is difficult to
predict each domain’s scores equally well. Nevertheless, the feature selection approach
provides an insight into relevant behavioural measures for yielding the predictions, lead-
ing to better interpretability of the results, which is important for real-world and clinical
application.
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5.3 A Deep Learning Approach

Another possible line of work addressing the problem is using deep learning-based tem-
poral methods with the data at a more refined time scale. Instead of statistical feature
engineering and selection, these models can learn a representation from a raw input se-
quence that is most relevant for the prediction problem. As wearable or mobile sensor
data collected in the wild are noisy and frequently missing, it is also necessary to apply
adequate imputation methods and time-series models to capture underlying patterns in the
data. Moreover, including socio-demographic information about the patients can improve
the predictions since these features strongly correlate to the individuals’ functionality, and
groups of patients can share typical behavioural patterns based on these factors.

5.3.1 Data Selection and Preprocessing

We considered 48-half-hour daily summaries of 4 passively collected observations: step
count, distance travelled, time spent at home, and exercise time. The mobile sensed
data was collected between January 2016 - April 2022 from 2,348 individuals, yield-
ing 516,604 entries (31.5% collected in 2019). The final data set contained many missing
observations, as illustrated in Figure 5.5. The overall missingness percentage was over
60% for each variable: distance - 72.13%, step count - 79.04%, time spent at home -
73.64%, and time spent exercising - 60.55%.

Figure 5.5: Missingness pattern in the mobile sensed data. The shaded areas correspond
to the presence of the observation. Each column represents a 30 minutes time slot.

A subgroup of 2011 patients from the two studies had clinical evaluations for the out-
comes of interest. Table 5.2 provides an overview of the distribution of socio-demographic
information at baseline and the mental health outcome scores in the two study groups. The
two health outcomes that we focus on here are the World Health Organisation Disability
Assessment Schedule 2.0 (WHODAS 2.0) [122] and the Generalised Anxiety Disorder
Assessment (GAD-7) [181] scores.
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Table 5.2: The study cohorts.

Variable Value Study group
A

N = 283
B

N = 1728
Socio-demographic information at baseline
Age (years), mean (SD) 42 (14) 43 (15)
Gender, n (%) Male 102 (36.04%) 526 (30.44%)

Female 179 (63.25%) 1184 (68.52%)
Not known 2 (0.71%) 18 (1.04%)

Cohabitating, n (%) No 50 (17.66%) 177 (10.24%)
Yes 216 (76.34%) 1517 (87.79%)
Not known 17 (6.00%) 34 (1.97%)

Family status, n (%) Single 115 (40.64%) 620 (35.88%)
Separated 55 (19.43%) 231 (13.37%)
Widowed 7 (2.47%) 42 (2.43%)
Married or cohabiting for >6 months 104 (36.75%) 822 (47.57%)
Not known 2 (0.71%) 13 (0.75%)

Employment status, n (%) Employed, student or homemaker 122 (43.11%) 811 (46.94%)
Unemployed without subsidy 45 (15.90%) 272 (15.74%)
Unemployed with subsidy 14 (4.95%) 149 (8.62%)
Permanently incapacitated 26 (9.19%) 106 (6.14%)
Temporarily incapacitated 55 (19.43%) 286 (16.55%)
Retired 15 (5.40%) 92 (5.32%)
Not known 6 (2.12%) 12 (0.69%)

Clinical information, median (IQR)
WHODAS 2.0 mobility score [%] 13 (0, 38) 19 (6, 44)
GAD-7 score 9 (6, 12) -
Entry statistics, median (min, max)2

No. entries per patient 1 (1, 1) 1 (1, 4)
No. score changes per patient WHODAS 2.0 mobility 0 0 (0, 2)

GAD-7 0 -

In Study group A, 417 patients have two or more entries, 161 have one change in the score, and 2 have two changes
over the study period. In the dichotomised case, this translates to 54 patients having a single change.

We dichotomise the WHODAS 2.0 mobility and GAD-7 scores to create the target
outcomes. For the WHODAS 2.0 mobility scores, the cut-off for the negative label is set
at 25% of the overall domain score. In contrast, for the GAD-7 score, a cut-off at 10 is
considered. In both cases, there is an imbalanced distribution between the two categories,
as shown in Figure 5.6.

Figure 5.6: The distribution of dichotomised target outcomes.

To build the input data set for the classification task, we cropped a 30-day window
of the data sequences for each target label entry. For the baseline score, due to it being
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registered at enrolling in the study, we consider the next 30-days of observations because
no previous mobile sensed data was collected. For follow-up scores, usually collected bi-
annually, we centred a 30-day window on encapsulating the most complete observation
sequence around the score.

In the case of the socio-demographic covariates, the categorical data were one hot
encoded. At the same time, the patient age was binned into ten categories, then one-hot
encoded. We introduced an additional category to indicate missingness for covariates that
were not reported.

5.3.2 The Proposed Pipeline

Figure 5.7 shows the framework of our approach, consisting of an HMM for data impu-
tation, the LSTM- and self-attention-based temporal encoder, coupled with a dense layer
acting as a logistic regressor on the temporal embeddings concatenated with the static
covariates.

Figure 5.7: The overall structure of the designed pipeline.

Due to the high percentage of missing data, imputing statistical measures such as
the mean, median, or even interpolation fails. These approaches do not generalise to
wearable characteristics or participant behaviour, can reduce variability in the data set, and
introduce bias. Probabilistic generative models, such as hidden Markov models (HMMs)
[156] can learn the underlying distributions in a data set by adjusting the model parameters
to best account for the data to maximise the evidence, even in the presence of missing data.

Only those 48-slot daily patient sequences with at least 80% of observations were
considered for HMM training. After this elimination process, 91047 sequences were used
to train the HMMs with different numbers of states, n = {2, 3, ...23}. The best model was
selected using the Bayesian and Akaike information criteria [48] on a randomly selected
subset of 10000 sequences with varying missingness. Given this model, we imputed the
missing observations repeatedly during the the mini-batch stochastic gradient descent.
Every time a new batch of data was generated,the sequences were decoded using the
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Viterbi algorithm [54], and the missing observations were imputed by samples generated
from the corresponding most probable state.

Our proposed pipeline performs feature encoding for the daily information by apply-
ing Time2Vec [91], followed by two LSTM [81] encoders with self-attention [197] for
the 30-day input sequence. A feed-forward layer on top of the second attention layer’s
outputs concatenated with a simple embedding of the socio-demographic data is then used
to get the predictions.

Time2Vec gives a model-agnostic vector representation for time. Consisting of a pe-
riodic activation function and a linear term, it can capture the periodicity of time series
signals and the non-periodic patterns that depend on time. Mathematically, for a given
scalar notion of time τ, Time2Vec of τ, denoted as t2v(τ), is a vector of size k + 1 defined
as:

t2v(τ)[i] =

ωiτ + ϕi, if i = 0

F (ωiτ + ϕi), if 1 ≤ i ≤ k
(5.1)

where t2v(τ)[i] is the ith element of t2v, F is a periodic activation function, and the ωi

and ϕi parameters are learnable.

The LSTM layers encode the input sequences into a fixed-length internal represen-
tation. In contrast, the attention layers learn to pay selective attention to the inputs and
relate them to items in the output. While this increases the computational burden of the
model, it results in a more targeted and better-performing model. In addition, the model
can also show how attention is paid to the input sequence when predicting the output.

Understanding the relationship between input and output, namely, which within-day
and within-month temporal patterns contribute to correct predictions in a model like we
proposed here, is complicated since massive non-linear operations are involved. There-
fore, we used the self-attention weights to interpret the importance of the input signals
in the functionality assessment task. We visualised self-attention as heat maps to under-
stand the overall importance of features and time. Besides understanding which temporal
patterns contribute to the outcome, these self-attention weights can provide insights into
relevant changes over time, which is paramount to determining worsening of patient state.

5.3.3 Experiments

The data from Study B was used for cross-validation in all experiments, except in the task
transfer learning set-up. We kept the data from Study A as a held-out test set and in the
cross-validation of the mentioned experiment. All models were trained for 35 epochs,
using an Adam optimiser with a learning rate of 1e − 3 and batch size of 64.

We evaluated prediction performance using the area under the receiver operating char-
acteristic curve (AUC-ROC) and area under the precision-recall curve (AUC-PRC) scores
[168] to gain valuable insights into the classification performance on the imbalanced prob-
lems. We report the average score and the corresponding standard deviation from the
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cross-validation for all evaluations unless mentioned otherwise. Furthermore, we report
the performance on the unseen data set, except for the task transfer learning experiment.

Defining the Baseline

We started by re-using the pipeline defined in [184] as a baseline for prediction perfor-
mance. We applied sequential forward selection (SFS) and logistic regression with L2-
regularisation on the manually extracted statistical summary features (count, minimum,
maximum, mean, standard deviation, IQR) from the sequences for each variable and com-
bined them with the socio-demographic information. After the feature extraction, there
were 20% missing values in the dataset (24.49% in the step count, 11.13% in the dis-
tance travelled, 52.58% in the time at home and 6.51% in the time at exercising feature),
which we imputed using simple mean imputation. These values occur because we do not
discard sequences with a single measurement in the features in order to be able to directly
compare the results.

Nested Cross-validation

We first performed model hyper-parameter optimisation and model selection using a
nested cross-validation approach [99]. As such, a k-fold cross-validation procedure for
model hyper-parameter optimisation is nested inside a k-fold cross-validation procedure
for model selection. This way, the risk of the search procedure overfitting the original
data set is reduced, and we gain insight into the average model performance. By ran-
domly sampling possible model architecture candidates from a pre-defined search space
of possible hyper-parameter values [19], we try to discover a set of hyper-parameters that
perform well on the data set.

Table 5.3: The search space for the model hyper-parameters.

Hyper-parameter Search space
Time2Vec
Embedding dimension {4, 6, 8, 10, 12}
Activation function {sin, cos}
LSTM
Hidden dimension - Block 1 {x + 8 | x ∈ N ∩ [32, 128]}
Hidden dimension - Block 2 {x + 8 | x ∈ N ∩ [64, 256]}
Bidirectional {True, False}
Number of layers {1, 2, 3}
Dropout {0.1, 0.2, 0.3}

We used k = 5 for the hyper-parameter search and tested 10 random combinations of
model hyper-parameters from a pre-defined search space (see Table 5.3). Nested cross-
validation with k = 5 folds in the outer loop would fit and evaluate 250 models. The final
model is configured by applying the outer loop to the entire data set. This model is then
used to make predictions on the unseen data.
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Ablation Study

When creating a complex machine learning model, it is helpful to understand the impact
of each of its components separately [125]. Therefore, we defined an ablation study,
systematically eliminating parts of the model, and analysed its effect on overall model
performance. We used 3-fold cross-validation to estimate how the models are expected
to perform when used to make predictions on data not used during training and to find
the optimal number of epochs to train the model to avoid overfitting. The models were
then trained on the entire data set for the found number of epochs and evaluated on the
held-out test set in each case.

Temporal Encoder Pre-training

Given the limited labelled sample size, we propose using a transfer learning approach
for the temporal encoder. First, we pre-train the temporal encoder weights to perform a
generic task, such as predicting the average mobility biomarkers of the next day based on
the previous 30-days. Then we use the model fit on this auto-regressive task as the starting
point for a model in the functionality prediction setting, such that it would lead to better
general embedding of the time series sequences regardless of the target label of interest.
We extracted 20,272 30-day sequences with 7-day overlap, for which observations were
collected for all the features. The pre-training was run for five epochs.

We compare two transfer learning approaches: feature extraction and fine-tuning. In
the first setting, we freeze the weights of the temporal encoder part; hence we solely use
it for temporal feature extraction, and we train the classification layer of the network. The
second approach consists of training the whole model on the task-specific dataset and
adjusting the weights of the temporal encoder. By slightly changing the temporal encoder
weights, we expect the network to be better adjusted to the specific 30-day periods around
the evaluation.

Task Transfer Learning

The core symptom of general anxiety disorder is chronic, excessive, and uncontrolled
worry [163], which is reflected in individuals’ behavioural patterns. Therefore, it is rea-
sonable to expect that we can apply the above-defined pipeline to predict GAD-7 out-
comes from the same behavioural biomarkers. However, in this case, we are facing a
significantly lower labelled sample size, which makes it difficult for such complex mod-
els to learn to generalise well to unseen data instead of simply overfitting the training
set. Therefore, we propose fine-tuning the model trained on the WHODAS 2.0 outcome
prediction task to predict the GAD-7 scores. This way, the new task can be learned by
transferring knowledge from a related task that has already been learned [140].
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5.3.4 Results

Finding the Model Architectures

After analysing the elbow points of both the AIC and BIC information criteria, we found
that five hidden components best captured the data’s underlying patterns. Therefore, we
used that HMM in the following experiments to infer the most probable state sequence
for each daily data sequence and impute the missing observations from samples generated
from the corresponding state each time a mini-batch is loaded.

The hyper-parameter tuning for the resulted in the following architecture:

• Time2Vec with embedding dimension 4 and sine activation

• 2-layer uni-directional LSTM blocks with 64 recurrent units each, incorporating 0.1
recurrent dropout rate in each block

Baseline, Ablation and Temporal Pre-training

In Table 5.4, we summarise the model performance results of the baseline approach along
with the ablation and transfer learning experiments. The DL pipeline outperformed the
baseline approach in the AUC-ROC score, but achieved slightly worse performance in
AUC-PRC scores in the cross-validation. On the held-out test set the DL model outper-
formed the baseline in the AUC-PRC sense.

We will now examine the results of the ablation study in reference to the full pipeline.
Removing the attention layer, but keeping the Time2Vec layer led to a significant per-
formance decrease in cross-validation and hold-out test. Removing the Time2Vec block
led to lower AUC-ROC and slightly higher AUC-PRC in cross-validation, while in test
provided the best performance. The model without the Time2Vec and self-attention layer
performed similarly to the model without Time2Vec in cross validation; however, while in
test it did improve upon the full model it performed worse than the former model. It can
be seen that removal of Time2Vec is overall helpful to the DL pipeline, but retaining the
self-attention layer provides the greatest performance while also providing the advantage
of greater interpretability.

With respect to transfer learning compared to without, pre-training the temporal en-
coder block of the entire model using all the available data sequences led to a slight im-
provement in the model performances. With the fine-tuning approach, the average cross-
validation model performance increased to 0.558 AUC-PRC, as opposed to the 0.532
AUC-PRC achieved without pre-training. In contrast, the model only reaches 0.545 av-
erage AUC-PRC after training with the feature extraction approach. Nonetheless, the
feature extraction approach reaches a slightly higher AUC-PRC on the held-out test set.

As Figure 5.8 shows, more attention is paid on average to the activity in the evening
hours (slots 36-47), very low attention weights are associated with the night activity, and
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Table 5.4: Model performance comparison for the binary WHODAS 2.0 mobility impair-
ment prediction task.

Experiment Model
Cross-validation performance

score - mean (SD)
Performance on held-out

test set
AUC-ROC AUC-PRC AUC-ROC AUC-PRC

Baseline Random 0.500 (0.000) 0.369 (0.000) 0.500 0.411
SFS + LR [184] 0.684 (0.028) 0.553 (0.032) 0.603 0.536
DL pipeline 0.693 (0.023) 0.532 (0.051) 0.586 0.542

Ablation study DL pipeline 0.693 (0.023) 0.532 (0.051) 0.586 0.542
No self-attention 0.666 (0.035) 0.528 (0.062) 0.596 0.541
No Time2Vec 0.677 (0.021) 0.538 (0.037) 0.605 0.570
No Time2Vec & self-attention 0.681 (0.040) 0.539 (0.066) 0.591 0.552

Transfer learning DL pipeline
- feature extraction approach 0.674 (0.029) 0.545 (0.055) 0.575 0.538
- fine-tuning approach 0.675 (0.027) 0.558 (0.075) 0.579 0.533

varying patterns during the day in both cohorts. As for the monthly sequences, the atten-
tion weights are pretty uniform over the 30-day interval in both groups, with occasionally
more attention being assigned to the last days of the period.

Figure 5.8: Daily and monthly average attention weights for 160 randomly selected pa-
tients grouped by their mobility difficulty levels.

When analysing the attention weights at the patient level (Figure 5.9), we can see
different patterns arise based on mobility impairment and possibly individual-level differ-
ences. In the case of the healthy patient, the larger daily attention weights consistently
appear in the second half of the day. In contrast, some days, more attention is paid to the
night hours for the patient with mobility difficulty. Finally, we also analysed but did not
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find a clear correlation between the data missingness and the attention weights, which in-
dicates that the weights are assigned in the function of the observation values rather than
driven by the missingness factor.

Figure 5.9: Daily and monthly attention weights for 2 randomly selected of patients with
different mobility difficulty levels. We indicate with 1 the presence of a sample, while
with 0 its missingness.

Task Transfer Learning

Table 5.5 shows the dichotomised GAD-7 classification performance scores with and
without transfer learning, respectively. The performance achieved by the simple base-
line model is almost equivalent to random guessing. The DL model overfitted the training
data when we tried learning the GAD-7 prediction task from scratch since the sample size
was relatively small. The achieved performance is slightly better than random, but the
variance between splits is relatively large.

Table 5.5: Performance results of predicting the dichotomised GAD-7 scores with and
without transfer learning.

Experiment Model
Cross-validation performance

score - mean (SD)
AUC-ROC AUC-PRC

Baseline Random 0.500 (0.000) 0.392 (0.011)
SFS + LR [184] 0.505 (0.077) 0.450 (0.068)
DL pipeline 0.518 (0.143) 0.463 (0.148)

Task transfer learning DL pipeline
- feature extraction approach 0.530 (0.107) 0.504 (0.148)
- fine-tuning approach 0.603 (0.121) 0.556 (0.148)

When we fine-tuned the model trained on the mobility impairment classification task,
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a significant performance increase was reached. This process works because the features
are suitable for both base and target tasks and because the other data set is more extensive
and covers a broader range of covariates. Hence the starting weights of the network
are more representative. However, the overall model performance still leaves room for
improvement.

5.3.5 Discussion

Principal Findings

This work tackled common problems in modelling mental health outcomes from passively
sensed digital biomarkers. One of the main difficulties we faced was dealing with the
large amounts of missing data in a meaningful way. We used HMMs trained on the 48-
half-hour time slot sequences describing patients’ daily activities, which we then used for
imputation.

Then we aimed to leverage deep learning techniques to automatically learn the under-
lying patterns in the monthly patient sequences to predict mobility difficulty and gener-
alised anxiety outcomes. We showed that the proposed transfer learning methods could
improve the performance of target outcome estimation, especially in the case of data sets
with few samples. Our results showed that even though the binary classification perfor-
mance varies on each split, which is expected partly due to the non-uniform representation
of certain socio-demographic features in the data set, the variance was not especially sig-
nificant; hence the models are quite robust to the data shifts.

Applying a pre-training step for the temporal encoder block of the model helped with
a more meaningful initialisation of the model weights for the classification task at hand.
Moreover, as the data set from Study B covered a more comprehensive range of socio-
demographic representations, that might have helped to avoid covariate shifts between
training and test sets in the task transfer set-up on the much smaller data set of Study A.

The self-attention heatmaps showed different general within-day and within-month
patterns emerging in the healthy versus mobility-impaired cohorts. In addition, we could
analyse the different emerging patterns over time of patients’ who manifested a change
in their mobility difficulty level between visits. These simple visualisations provide a
helpful tool for clinicians to gain insights into the individuals’ activity patterns and what
led to the decline. They can trigger proper interventions to help slow down or reverse the
decline.

Limitations

Although our approach showed promising results, it faces additional challenges and leaves
room for improvement. One of the limitations of our work comes from the large percent-
age of missing observations in the mobile data and the sparsity of labels. Another limi-
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tation commonly occurring in health applications is the relatively small labelled sample
size. A larger patient cohort and multiple labels per patient could help train more robust
models and even allow for a data-driven personalisation, thus accounting for inter- and
intra-individual differences in behavioural patterns.

Moreover, we interpreted the temporal patterns found significant by the model via
visualising the self-attentions. However, such interpretation only explains the variation
of the behavioural patterns regarding the outcome of interest. This work could further be
extended to bring more interpretability to the decision-making, providing better insights
for clinicians.

Conclusion

Previous work on the topic used manually extracted features from the mobile sensed se-
quences, avoiding the missingness and intra-day variations. In this work, we investigated
using a deep learning model with multimodal inputs, complemented by a hidden Markov
model for missing value imputation, for the prediction tasks. Applying this pipeline re-
sults in accurate predictions and interpretability of intra-day and intra-month variations
concerning the outcome of interest, thanks to the self-attention layers. Moreover, our
transfer learning approach shows promising results in efficiently diversifying the predic-
tion tasks, even to smaller data sets.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1 From Digital Phenotyping to Healthcare Solutions

Digital phenotyping and machine learning provide an unprecedented opportunity for men-
tal health specialists to benefit from in-situ and continuous patient information. In the
digital era that we live in, evidence-based psychiatry tailored to each individual based
on objectively measured behavioural patterns could allow for personalised predictions of
early diagnosis, treatment selection, and dose adjustment in order to reduce the burden
of disease. Machine learning is predisposed to address these issues in psychiatry’s era of
personalised medicine.

Machine learning uses quantitative models to learn general patterns from a series of
observations without explicit instructions [25], [67]. These methods make few a priori
assumptions, allowing the data to "speak for themselves" and can process vast amounts of
data. We can differentiate between supervised and unsupervised methods. The former is
specialised in the best possible outcome prediction given a labelled dataset, while the lat-
ter effectively discovers statistical configurations in an unlabelled dataset. The increasing
data availability, computing power and cheaper data storage have encouraged a continu-
ous surge in research for new algorithms and applications in various fields [118], and the
field of mental health is no exception.

This work aimed to contribute to the state-of-the-art with three main ML applications
in the mental health domain while also tackling the missing data problem. We addressed
the problems of mood, general anxiety and functionality prediction, proving feasibility
and drawing baselines. We tried to answer relevant questions, such as how to process
appropriately and impute these mobile sensed data streams to predict mental health out-
comes and what data types are necessary and relevant for the different predictive tasks.

The first project focused on emotional state prediction from behavioural markers de-
rived from passively sensed data. These regularly sampled but frequently missing and
heterogeneous time series were analysed using probabilistic latent variable models for
data averaging and feature extraction: mixture model (MM) and hidden Markov model
(HMM). The extracted features were combined with a classifier to predict the emotional
state. Finally, a personalised Bayesian model was proposed to improve the performance
by considering the individual-specific differences in the data by applying a different clas-
sifier bias term for each patient.

Probabilistic generative models proved to be good preprocessing and feature extrac-
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tor tools for data with large percentages of missing observations. Models that considered
the posterior probabilities of the MM and HMM latent states outperformed those that
did not by more than 20%, suggesting that the underlying behavioural patterns identified
were meaningful for individuals’ overall emotional state. The best performing gener-
alised models achieved a 0.81 area under the receiver operating characteristic curve and
a 0.71 area under the precision-recall curve when predicting self-reported emotional va-
lence from behaviour in held-out test data. Moreover, the proposed personalised mod-
els demonstrated that accounting for individual differences through a simple hierarchical
model can substantially improve emotional state prediction performance without relying
on previous days’ data.

Next, the aim was to predict clinical anxiety based on the Generalised Anxiety Dis-
order 7-item scale from time-series data of communication and social networking app
usage during the COVID-19 lockdown in Madrid, and anxiety-associated clinical survey
variables, including cohabitation with essential workers, worries about life instability,
changes in social interactions, and health status. We designed a 2-step approach that
combined a probabilistic generative model, namely a hidden Markov model for temporal
data processing and aggregation, with logistic regression to predict the binary outcome
(clinical anxiety versus nonclinical anxiety) by dichotomised GAD-7.

The pipeline achieved 62.30% (SD=16%) mean accuracy and 0.70 (SD=0.19) area
under the receiver operating curve in the 10-fold cross-validation in predicting the clin-
ical anxiety group. Patients who reported severe anxiety symptoms were less active in
communication apps after the mandated lockdown and more engaged in social network
apps overall, suggesting a different pattern of digital social behaviour in adapting to the
crisis. Passive-sensing of a shift in category-based social media app usage during the
lockdown can predictively model digital biomarkers of individuals at risk for psychiatric
sequelae.

The subsequent project focused on developing a machine learning-based model to
passively follow up on patients’ functionality over time from mobility descriptor digital
biomarkers and socio-demographic data. The WHODAS 2.0 Questionnaire was used
as a functionality measurement tool, which queries whether the individual had difficulty
performing a set of tasks over the past 30 days.

To start, we applied a sequential feature selection to each WHODAS 2.0 domain (cog-
nition, mobility, self-care, getting along, life activities, participation) on statistical mea-
sures (minimum, maximum, mean, median, standard deviation, IQR) extracted from the
one-month long time-series data statistical measures (minimum, maximum, mean, me-
dian, standard deviation, IQR). Finally, we predicted the WHODAS 2.0 functional domain
scores using linear regression using the best feature subsets. Our machine learning-based
models for predicting patients’ WHODAS functionality scores per domain achieved a
mean absolute percentage error varying between 14.86% and 27.21% among the domains
with a set of interpretable features for each domain. Our findings show the feasibility of
using machine learning-based methods to assess functional health solely from passively
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sensed mobile data. The feature selection step provides a set of interpretable features for
each domain, ensuring better explainability of the models’ decisions.

Then, we proposed a pipeline that performs temporal sequence embedding using
LSTM and attention layers and then merges the socio-demographic data to perform the
predictions. Given the limited labelled sample size, we proposed a transfer learning ap-
proach. First, we pre-trained the temporal encoder weights to perform a generic task,
such as predicting the average mobility biomarkers for the next 30-days. After that, we
used the model fit on this auto-regressive task as the starting point for a model in the
mobility difficulty prediction setting, leading to the better general embedding of the time
series sequences. In addition, we suggested a simple task transfer learning approach to
fine-tune the model for predicting anxiety outcomes. HMMs are used again to deal with
the missing data, similar to the emotional state prediction case.

Applying this pipeline results in more accurate predictions and interpretability of
intra-day and intra-month variations concerning the outcome of interest, thanks to the
self-attention layers. Moreover, our transfer learning approach shows promising results
in efficiently diversifying the prediction tasks, even to smaller data sets. However, these
results are preliminary, and further improvements are needed for the model performance
to become clinically relevant.

As such, these works contribute to this relatively new and heterogeneous field of dig-
ital phenotyping for mental health, attempting to make a step towards developing such
tools that could improve clinical workflow and passive patient monitoring. We acknowl-
edge that psychiatry is very complex, intertwined with difficult questions and dilemmas
that are not easily solvable. Digital phenotyping can bring us closer to finding the answers
and analysing the problems from a different perspective.

6.2 Challenges

Several challenges must be considered when using ML techniques in mental health appli-
cations. As such, rather than replacing other research or analytic approaches, ML has the
potential to add value to mental health research.

The quality and availability of training data inevitably limit such models’ perfor-
mance. The size of cohorts in most studied datasets is considerably small, and their
phenotypic descriptions (medical history, comorbidities, progression in symptoms, ques-
tionnaire evaluations, treatment and response) are insufficient. Within the medical field,
the mental health domain was claimed to capture the most extensive amounts of data [50].
However, the sample sizes are still significantly smaller than the millions of samples in
non-medical domains where ML methods achieve state-of-the-art performance. Besides
the limited sample size, insufficient specificity and granularity of the patients’ behavioural
information also hinder exploiting ML technologies.

Retrospective collection of data across sites faces the problems of differences in data
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quality, acquisition parameters, preprocessing procedures, assessment methods and ques-
tionnaires, missing data and socio-demographic aspects of the cohorts. This heterogeneity
often leads to reduced prediction performance as the amount of available data increases
[202]. On the other hand, prospective data collection, which standardises data acquisition,
ensures higher data comparability.

Notably, in the case of digital phenotyping, massive longitudinal data can be accumu-
lated; however, in addition to privacy concerns, the digital sensors are constantly changing
and improving, which increases heterogeneity in the collected data. Moreover, missing
observations are frequent due to intended or unintended user behaviour, loss of commu-
nication, sensor failure, or insufficient energy [11]. These factors significantly influence
ML models’ trustworthiness and efficiency; hence, robust methods need to be developed
to account for these issues.

Accumulating observational data without identifying and accounting for influences
of the possible confounding factors can inflate the prediction performance if the training
and test data are mutually dependent, regardless of how subtle this dependence is. Fur-
ther bias might arise due to recruitment specifications, for example, if the study restricts
recruitment to subjects exposed to mental health institutions rather than also including
individuals without diagnosed mental problems.

Collaboration between researchers and clinicians to share and harmonise data is there-
fore a crucial bottleneck in accessing the training data. Moreover, minimal research
demonstrates the efficacy of the developed models in real-world settings. Thus further
research is needed to ensure that models that appear promising in lab settings will still be
efficient when deployed, mainly if applied across different contexts (across data acquisi-
tion means, geographic locations, populations, and different clinical settings) [202].

Finally, we cannot ignore that ML algorithms are prone to biases and other limitations,
which can negatively impact the study results’ validity, objectivity and reproducibility.
These errors and biases mainly result from the data or the sample selection. The data used
for model training reflects the real world, which leads to concerns about how societal
structural inequalities appear in this data and how the models will potentially pick these
up. Moreover, ML algorithms and most currently defined and investigated tasks strongly
rely on self-reported measures and questionnaire-based clinical assessment for ground
truth, i.e. classification labels that the ML algorithm can learn from and evaluate. This
introduces a certain level of undesired subjectivity to the digital phenotyping problem.
Further, performing analysis on small study groups does not imply that the results will
generalise well to the entire population because these samples might not accurately reflect
the diversity of the population. Hence, such biases should always be considered and
accounted for to train fair models.
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6.3 Directions for Future Work

Future studies should build upon the current thesis to continue exploring the potential for
digital personalised medicine by integrating digital phenotyping and digital interventions
in the mental health field. Predicting the specific questionnaire outcomes could allow for
early intervention and relapse prevention, possibly the two most promising early warning
services that could be offered to individuals who would otherwise find it hard to sustain
self-monitoring.

Additional research should address the problem of representation learning from unla-
belled data, allowing a better analysis of patient-specific patterns. Moreover, speech and
language content aspects can inform mental disorders’ diagnosis and outcome prediction.
Hence, combining the passively sensed data with audio speech samples and text-based
information (e.g. diary entries, doctors’ notes) could provide a more descriptive and dis-
criminative representation of patients to make predictions.

Lastly, as more data becomes available, shifting the focus towards personalised mod-
els becomes more relevant. These approaches can learn an explicit parameter set for each
individual instead of focusing on global patterns over the whole population. As such,
the predominant patterns of variation among patients could be better captured. Like in
the emotional state prediction case, significant improvements could be achieved using
personalised approaches.

When it comes to predictive modelling, especially in the clinical setting, interpretabil-
ity, i.e. understanding why the model made a particular decision, becomes crucial —
knowing ’why’ can provide insights into the problem, the data and also the reason why
a model might fail. Unlike linear models, which are well studied and understood, DL
models with millions of parameters are less well understood, and more research should
be focused on this problem. Collaboration with psychologists also plays a crucial role
here.

6.4 Ethical Considerations

All of the challenges discussed above raise critical ethical issues, including the ethics of
collecting, storing and sharing mental health data, as well as the level of autonomy and
privacy afforded to ML systems. Therefore, there is a need to consider these issues, espe-
cially in such vulnerable groups as people with mental health conditions, when conducting
research using digital phenotyping.

Besides the generic guidelines for ethical conduct, such as the World Medical Asso-
ciation’s Declaration of Helsinki [8] or the United States Belmont Report [155], specific
guidelines for research involving mobile sensing in mental health have recently been in-
vestigated [26], [119], [120].

When designing a mobile sensing-based study, an important issue is what device to
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use. It is essential to balance the risk of using commercial devices, the inherent lack of
control over the data, and the device’s obtrusiveness for participants. The Digital Health
Decision-Making Checklist [134] calls upon researchers to review the privacy policies
and terms of service of the chosen commercial devices carefully and to consider how “the
technology can be tailored to the end user” and how “technology is accessible to diverse
populations”.

Study participants should always be informed about what information is collected and
with whom this information could be shared during the consent process. Participants
should have as much control over the data collection process as possible, and the option
to temporarily stop data collection on the refusal to enter/continue participating.

A significant body of research focuses on ethical problems around adequate data
anonymisation [44], [57], [60]; however, anonymisation does not exclude the risk of sen-
sitive personal information leaks. Participants may not be aware of the detail and scope
of information that can be inferred from the mobile sensed or even missing data [57].
Discussing such risks must be an essential part of the informed consent process.

Lastly, one cannot ignore concerns regarding the potential impact of digital phenotyp-
ing - based solutions on the clinical workflow, and the patient experience of continuous
monitoring. These topics remain relevant and need further investigation as digital pheno-
typing increasingly infiltrates clinical practice.

6.5 Conclusions

In clinical care, digital phenotyping, which captures a variety of objective data streams
in patients’ everyday lived experiences, is a constantly surging topic expected to improve
mental health early prevention, diagnosis and treatment. With the help of machine learn-
ing, behavioural fluctuations can be captured and used to provide additional insights into
the disease evolution at the individual level. This additional knowledge could provide
solid ground for interventions, early detection of symptom worsening, or predicting re-
lapses.

Many studies have emerged in this context. This work aimed to enrich the state-of-
the-art by developing pipelines that can serve passive patient monitoring. The provided
solutions, as such, are proof of concept, which require further clinical validation to be
deployable in the clinical workflow. Still, the results are promising and lay some foun-
dations for future research and collaboration among clinicians, patients, and computer
scientists. Nevertheless, as with any promising new approach, the risks and unintended
consequences must be considered to ensure the safe and trusted development of digital
phenotyping-based clinical solutions.
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APPENDIX A

Model notations: LR/SVC/RFC/MLP - x = LR/SVC/RFC/MLP classifiers trained with
input features formed of x-days of observations concatenated to create a single feature
vector. RNN/LSTM/GRU - x = RNN/LSTM/GRU - RNNs with different cells using x-
months long input sequences. Input feature notations: w/o posteriors = raw features used
as classifier input; only posteriors = the MM component posterior probabilities used as
classifier input features; w/ posteriors = raw features concatenated with the MM com-
ponent posterior probabilities used as classifier input features. Model abbreviations: LR
= logistic regression, SVC = support vector classifier, RFC = random forest classifier,
MLP =multilayer perceptron, RNN = recurrent neural network, LSTM = long short term
memory, GRU = gated reccurent unit.

Table A1: Classifier performance overview - Emotional valence case. Class labels: 0 =
negative, 1 = neutral, 2 = positive emotional valence.

Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

LR-1 w/o posteriors 0.38 0.52 0.35

0 1 2
0 690 596 557
1 201 177 176
2 340 176 367

w/ posteriors 0.37 0.52 0.35

0 1 2
0 692 597 554
1 201 175 178
2 338 185 360

only posteriors 0.46 0.56 0.36

0 1 2
0 1038 0 805
1 296 0 258
2 406 0 477

LR-3 w/o posteriors 0.39 0.55 0.37

0 1 2
0 622 687 500
1 188 170 175
2 238 170 450

w/ posteriors 0.54 0.7 0.53

0 1 2
0 1050 467 292
1 173 196 164
2 197 181 480

only posteriors 0.59 0.73 0.57

0 1 2
0 1235 297 277
1 213 147 173
2 234 131 493



Table A1 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

LR-7 w/o posteriors 0.38 0.56 0.37

0 1 2
0 592 699 458
1 185 149 168
2 233 155 430

w/ posteriors 0.56 0.73 0.58

0 1 2
0 1074 403 272
1 158 193 151
2 180 176 462

only posteriors 0.6 0.76 0.62

0 1 2
0 1226 275 248
1 192 159 151
2 211 149 458

MLP-1 w/o posteriors 0.56 0.7 0.51

0 1 2
0 1837 4 2
1 554 0 0
2 878 2 3

w/ posteriors 0.52 0.69 0.51

0 1 2
0 1572 110 161
1 478 30 46
2 741 27 115

only posteriors 0.56 0.69 0.48

0 1 2
0 1843 0 0
1 554 0 0
2 883 0 0

MLP-3 w/o posteriors 0.56 0.71 0.54

0 1 2
0 1474 188 147
1 414 43 76
2 557 38 263

w/ posteriors 0.63 0.77 0.63

0 1 2
0 1515 102 192
1 333 82 118
2 403 51 404

only posteriors 0.64 0.79 0.66

0 1 2
0 1595 33 181
1 358 44 131
2 439 14 405

MLP-7 w/o posteriors 0.54 0.7 0.52

0 1 2
0 1418 97 234
1 397 27 78
2 564 35 219

w/ posteriors 0.64 0.79 0.66

0 1 2
0 1474 96 179
1 310 88 104
2 369 61 388

only posteriors 0.65 0.81 0.7

0 1 2
0 1533 51 165
1 307 66 129
2 368 45 405



Table A1 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

RFC-1 w/o posteriors 0.45 0.63 0.45

0 1 2
0 1072 350 421
1 306 99 149
2 461 128 294

w/ posteriors 0.45 0.64 0.46

0 1 2
0 1097 314 432
1 320 68 166
2 472 98 313

only posteriors 0.39 0.58 0.41

0 1 2
0 856 421 566
1 251 119 184
2 409 170 304

RFC-3 w/o posteriors 0.56 0.73 0.58

0 1 2
0 1240 257 312
1 287 85 161
2 307 70 481

w/ posteriors 0.62 0.78 0.67

0 1 2
0 1355 160 294
1 246 101 186
2 259 67 532

only posteriors 0.6 0.77 0.64

0 1 2
0 1258 213 338
1 190 137 206
2 221 113 524

RFC-7 w/o posteriors 0.58 0.75 0.61

0 1 2
0 1256 211 282
1 283 55 164
2 290 50 478

w/ posteriors 0.65 0.82 0.73

0 1 2
0 1369 76 304
1 228 89 185
2 238 50 530

only posteriors 0.64 0.82 0.73

0 1 2
0 1327 107 315
1 194 99 209
2 196 73 549

SVC-1 w/o posteriors 0.56 0.7 0.51

0 1 2
0 1837 4 2
1 554 0 0
2 878 2 3

w/ posteriors 0.39 0.7 0.53

0 1 2
0 775 563 505
1 221 149 184
2 378 156 349

only posteriors 0.24 0.71 0.53

0 1 2
0 0 1048 795
1 0 297 257
2 0 409 474



Table A1 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

SVC-3 w/o posteriors 0.41 0.71 0.54

0 1 2
0 714 616 479
1 222 156 155
2 267 162 429

w/ posteriors 0.59 0.78 0.65

0 1 2
0 1271 286 252
1 231 157 145
2 276 132 450

only posteriors 0.59 0.79 0.66

0 1 2
0 1259 285 265
1 225 146 162
2 253 124 481

SVC-7 w/o posteriors 0.4 0.72 0.55

0 1 2
0 679 634 436
1 198 126 178
2 237 150 431

w/ posteriors 0.58 0.81 0.69

0 1 2
0 1170 321 258
1 176 169 157
2 196 166 456

only posteriors 0.61 0.81 0.69

0 1 2
0 1274 239 236
1 203 144 155
2 235 122 461

RNN-30 w/o posteriors 0.5 0.67 0.48

0 1 2
0 1283 142 263
1 387 31 80
2 597 32 185

w/ posteriors 0.53 0.69 0.51

0 1 2
0 1468 57 163
1 432 12 54
2 687 10 117

only posteriors 0.56 0.71 0.53

0 1 2
0 1661 0 27
1 490 0 8
2 789 0 25

RNN-91 w/o posteriors 0.5 0.67 0.47

0 1 2
0 1411 150 188
1 449 31 54
2 684 25 132

w/ posteriors 0.51 0.67 0.48

0 1 2
0 1440 170 139
1 459 33 42
2 688 25 128

only posteriors 0.56 0.71 0.53

0 1 2
0 1749 0 0
1 534 0 0
2 841 0 0



Table A1 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

RNN-182 w/o posteriors 0.51 0.67 0.46

0 1 2
0 1382 115 279
1 419 33 84
2 637 27 187

w/ posteriors 0.53 0.68 0.48

0 1 2
0 1508 139 129
1 459 32 45
2 707 23 121

only posteriors 0.56 0.71 0.53

0 1 2
0 1705 0 71
1 512 0 24
2 770 0 81

LSTM-30 w/o posteriors 0.51 0.67 0.48

0 1 2
0 1336 139 213
1 401 30 67
2 626 27 161

w/ posteriors 0.5 0.67 0.48

0 1 2
0 1303 146 239
1 408 17 73
2 585 44 185

only posteriors 0.56 0.72 0.55

0 1 2
0 1688 0 0
1 498 0 0
2 814 0 0

LSTM-91 w/o posteriors 0.52 0.68 0.49

0 1 2
0 1483 82 184
1 444 28 62
2 709 18 114

w/ posteriors 0.51 0.68 0.5

0 1 2
0 1418 134 197
1 441 31 62
2 681 18 142

only posteriors 0.57 0.7 0.52

0 1 2
0 1669 0 80
1 492 0 42
2 729 0 112

LSTM-182 w/o posteriors 0.52 0.68 0.49

0 1 2
0 1520 100 156
1 470 31 35
2 750 22 79

w/ posteriors 0.53 0.68 0.49

0 1 2
0 1583 71 122
1 487 25 24
2 756 21 74

only posteriors 0.56 0.71 0.53

0 1 2
0 1776 0 0
1 536 0 0
2 851 0 0



Table A1 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

GRU-30 w/o posteriors 0.51 0.68 0.48

0 1 2
0 1363 114 211
1 401 32 65
2 649 24 141

w/ posteriors 0.53 0.69 0.51

0 1 2
0 1379 77 232
1 418 17 63
2 613 18 183

only posteriors 0.56 0.71 0.53

0 1 2
0 1663 0 25
1 490 0 8
2 791 0 23

GRU-91 w/o posteriors 0.5 0.67 0.47

0 1 2
0 1414 144 191
1 441 35 58
2 689 36 116

w/ posteriors 0.56 0.7 0.52

0 1 2
0 1742 3 4
1 531 1 2
2 826 0 15

only posteriors 0.56 0.71 0.53

0 1 2
0 1743 1 5
1 533 0 1
2 840 0 1

GRU-182 w/o posteriors 0.52 0.67 0.47

0 1 2
0 1518 93 165
1 465 28 43
2 726 37 88

w/ posteriors 0.53 0.68 0.5

0 1 2
0 1527 94 155
1 467 30 39
2 707 34 110

only posteriors 0.56 0.72 0.55

0 1 2
0 1774 0 2
1 535 0 1
2 851 0 0



Table A2: Classifier performance overview - Emotional arousal-valence case. Class la-
bels: 0 - neutral, 1 - high arousal - positive valence, 2 - high arousal - negative valence, 3
- low arousal - negative valence, 4 - low arousal - positive valence.

Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

LR-1 w/o posteriors 0.27 0.52 0.22

0 1 2 3 4
0 155 165 6 181 47
1 124 271 5 206 47
2 150 138 0 168 24
3 431 397 2 438 95
4 48 74 0 76 32

w/ posteriors 0.27 0.52 0.22

0 1 2 3 4
0 155 165 6 181 47
1 124 271 5 206 47
2 150 138 0 168 24
3 431 397 2 438 95
4 48 74 0 76 32

only posteriors 0.16 0.54 0.21

0 1 2 3 4
0 314 123 0 13 104
1 308 139 0 26 180
2 292 81 0 19 88
3 798 260 0 41 264
4 114 67 0 10 39

LR-3 w/o posteriors 0.27 0.53 0.22

0 1 2 3 4
0 177 134 27 87 108
1 111 240 22 134 123
2 158 129 19 98 66
3 422 337 43 349 188
4 45 58 9 50 66

w/ posteriors 0.29 0.56 0.24

0 1 2 3 4
0 206 122 68 80 57
1 129 230 50 140 81
2 117 108 128 82 35
3 338 334 218 311 138
4 61 65 16 36 50

only posteriors 0.34 0.63 0.29

0 1 2 3 4
0 174 69 81 96 113
1 99 142 63 154 172
2 90 55 155 108 62
3 225 132 283 540 159
4 49 28 19 55 77

LR-7 w/o posteriors 0.26 0.53 0.22

0 1 2 3 4
0 151 120 15 121 95
1 99 237 19 148 92
2 153 126 19 104 53
3 427 343 50 321 153
4 51 59 5 51 57



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

w/ posteriors 0.28 0.56 0.24

0 1 2 3 4
0 183 98 55 78 88
1 109 211 34 142 99
2 115 85 133 66 56
3 340 288 218 268 180
4 52 59 16 40 56

only posteriors 0.36 0.65 0.31

0 1 2 3 4
0 169 78 72 78 105
1 96 185 55 108 151
2 82 54 163 102 54
3 210 107 291 504 182
4 46 27 16 45 89

MLP-1 w/o posteriors 0.37 0.69 0.34

0 1 2 3 4
0 41 47 0 465 1
1 23 81 0 549 0
2 51 46 0 383 0
3 156 101 0 1105 1
4 20 14 0 196 0

w/ posteriors 0.38 0.69 0.35

0 1 2 3 4
0 29 85 0 440 0
1 15 148 0 490 0
2 37 75 0 368 0
3 99 191 0 1073 0
4 15 26 0 189 0

only posteriors 0.42 0.69 0.35

0 1 2 3 4
0 0 28 0 526 0
1 0 56 0 597 0
2 0 21 0 459 0
3 0 45 0 1318 0
4 0 17 0 213 0

MLP-3 w/o posteriors 0.36 0.68 0.33

0 1 2 3 4
0 77 89 2 359 6
1 41 169 9 402 9
2 63 99 2 304 2
3 211 216 6 887 19
4 29 28 1 169 1

w/ posteriors 0.4 0.72 0.4

0 1 2 3 4
0 91 108 2 332 0
1 54 200 2 372 2
2 50 88 19 313 0
3 148 192 14 984 1
4 29 50 2 147 0

only posteriors 0.44 0.73 0.42

0 1 2 3 4
0 130 81 12 310 0
1 69 159 12 390 0
2 55 42 30 343 0
3 134 93 38 1074 0
4 39 35 0 154 0



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

MLP-7 w/o posteriors 0.34 0.66 0.3

0 1 2 3 4
0 94 75 0 332 1
1 37 142 0 412 4
2 88 74 0 293 0
3 317 175 0 798 4
4 40 22 0 161 0

w/ posteriors 0.41 0.72 0.4

0 1 2 3 4
0 74 122 19 278 9
1 46 258 6 284 1
2 48 80 52 275 0
3 158 163 87 870 16
4 32 59 1 128 3

only posteriors 0.46 0.74 0.45

0 1 2 3 4
0 74 70 3 355 0
1 43 160 0 392 0
2 26 35 0 394 0
3 56 54 1 1183 0
4 12 27 0 184 0

RFC-1 w/o posteriors 0.29 0.62 0.27

0 1 2 3 4
0 127 149 41 227 10
1 119 220 53 236 25
2 113 123 35 195 14
3 374 290 96 543 60
4 53 55 10 100 12

w/ posteriors 0.3 0.63 0.28

0 1 2 3 4
0 126 145 31 245 7
1 116 209 51 261 16
2 108 112 32 213 15
3 364 282 81 592 44
4 52 54 11 98 15

only posteriors 0.19 0.57 0.23

0 1 2 3 4
0 313 98 41 74 28
1 331 119 65 85 53
2 291 62 24 71 32
3 791 244 89 172 67
4 120 43 10 46 11

RFC-3 w/o posteriors 0.33 0.66 0.3

0 1 2 3 4
0 156 154 43 158 22
1 73 269 35 224 29
2 89 126 58 185 12
3 304 327 110 554 44
4 48 82 7 74 17

w/ posteriors 0.44 0.74 0.44

0 1 2 3 4
0 126 133 50 140 84
1 72 394 33 86 45
2 61 92 86 214 17
3 169 212 146 735 77
4 37 55 17 52 67



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

only posteriors 0.41 0.71 0.4

0 1 2 3 4
0 140 127 63 88 115
1 90 351 52 47 90
2 67 89 129 147 38
3 179 200 242 600 118
4 48 38 19 39 84

RFC-7 w/o posteriors 0.35 0.67 0.33

0 1 2 3 4
0 131 134 13 214 10
1 58 228 8 288 13
2 85 95 27 243 5
3 305 250 46 666 27
4 55 56 1 101 10

w/ posteriors 0.48 0.77 0.5

0 1 2 3 4
0 116 156 18 148 64
1 56 402 17 95 25
2 50 89 67 232 17
3 128 186 91 820 69
4 33 59 5 64 62

only posteriors 0.46 0.77 0.49

0 1 2 3 4
0 107 143 38 125 89
1 60 382 26 73 54
2 42 91 90 209 23
3 116 168 160 756 94
4 28 46 6 56 87

SVC-1 w/o posteriors 0.28 0.69 0.35

0 1 2 3 4
0 179 102 7 251 15
1 174 138 23 295 23
2 177 76 6 212 9
3 505 203 18 600 37
4 66 38 10 106 10

w/ posteriors 0.28 0.69 0.35

0 1 2 3 4
0 175 98 20 238 23
1 187 138 14 274 40
2 176 74 6 205 19
3 499 198 23 582 61
4 68 39 6 105 12

only posteriors 0.14 0.69 0.35

0 1 2 3 4
0 314 76 0 0 164
1 308 55 0 0 290
2 292 53 0 0 135
3 798 168 0 0 397
4 114 36 0 0 80

SVC-3 w/o posteriors 0.28 0.69 0.35

0 1 2 3 4
0 148 125 78 144 38
1 96 212 62 194 66
2 135 117 49 137 32
3 384 297 127 448 83
4 44 53 27 73 31



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

w/ posteriors 0.31 0.71 0.38

0 1 2 3 4
0 200 103 54 110 66
1 123 207 33 176 91
2 104 92 102 123 49
3 317 243 175 443 161
4 58 52 23 55 40

only posteriors 0.35 0.72 0.42

0 1 2 3 4
0 192 45 80 125 91
1 112 88 60 209 161
2 99 31 144 145 51
3 237 56 267 632 147
4 58 21 17 72 60

SVC-7 w/o posteriors 0.27 0.68 0.34

0 1 2 3 4
0 156 95 45 149 57
1 111 187 50 187 60
2 161 93 47 124 30
3 428 264 105 411 86
4 60 47 23 64 29

w/ posteriors 0.3 0.71 0.39

0 1 2 3 4
0 176 112 39 100 75
1 112 202 22 148 111
2 103 86 97 106 63
3 280 246 165 392 211
4 62 53 11 55 42

only posteriors 0.36 0.75 0.45

0 1 2 3 4
0 151 102 71 78 100
1 83 195 54 131 132
2 78 51 158 111 57
3 189 129 287 503 186
4 37 35 14 52 85

RNN-30 w/o posteriors 0.4 0.69 0.35

0 1 2 3 4
0 5 53 0 440 0
1 12 77 0 530 0
2 3 50 0 395 0
3 4 114 0 1122 0
4 1 17 0 177 0

w/ posteriors 0.36 0.67 0.31

0 1 2 3 4
0 50 93 0 355 0
1 11 177 0 431 0
2 68 75 0 305 0
3 200 195 0 840 5
4 28 33 0 131 3

only posteriors 0.41 0.69 0.36

0 1 2 3 4
0 0 0 0 498 0
1 0 0 0 619 0
2 0 0 0 448 0
3 0 0 0 1240 0
4 0 0 0 195 0



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

RNN-91 w/o posteriors 0.35 0.67 0.31

0 1 2 3 4
0 35 87 0 397 15
1 14 173 0 434 8
2 86 66 0 311 2
3 197 171 0 857 59
4 14 29 0 156 13

w/ posteriors 0.36 0.68 0.32

0 1 2 3 4
0 38 85 0 403 8
1 19 172 1 435 2
2 60 64 0 340 1
3 163 181 0 894 46
4 14 24 0 164 10

only posteriors 0.42 0.7 0.35

0 1 2 3 4
0 5 22 0 507 0
1 1 52 0 576 0
2 3 10 0 452 0
3 3 24 0 1257 0
4 0 5 0 207 0

RNN-182 w/o posteriors 0.36 0.67 0.32

0 1 2 3 4
0 43 42 0 451 0
1 36 74 0 518 1
2 33 48 0 385 1
3 154 120 0 1035 0
4 23 17 0 182 0

w/ posteriors 0.39 0.67 0.33

0 1 2 3 4
0 35 54 3 444 0
1 17 114 8 489 1
2 32 53 0 382 0
3 111 124 0 1074 0
4 17 16 0 189 0

only posteriors 0.42 0.69 0.35

0 1 2 3 4
0 0 22 0 514 0
1 0 53 0 576 0
2 0 10 0 457 0
3 0 25 0 1284 0
4 0 3 0 219 0

LSTM-30 w/o posteriors 0.33 0.67 0.3

0 1 2 3 4
0 59 75 0 361 3
1 55 136 0 426 2
2 82 69 0 296 1
3 257 184 0 780 19
4 30 32 0 131 2

w/ posteriors 0.36 0.67 0.32

0 1 2 3 4
0 50 84 0 362 2
1 39 154 0 424 2
2 69 62 0 317 0
3 211 162 0 861 6
4 28 32 0 134 1



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

only posteriors 0.42 0.69 0.37

0 1 2 3 4
0 0 4 0 494 0
1 0 31 0 588 0
2 0 1 0 447 0
3 0 10 0 1230 0
4 0 1 0 194 0

LSTM-91 w/o posteriors 0.33 0.68 0.32

0 1 2 3 4
0 50 67 0 415 2
1 38 126 0 459 6
2 71 52 0 341 1
3 242 171 0 868 3
4 29 27 0 156 0

w/ posteriors 0.33 0.67 0.32

0 1 2 3 4
0 62 80 0 389 3
1 51 174 0 400 4
2 85 67 0 312 1
3 265 217 0 790 12
4 28 27 0 156 1

only posteriors 0.41 0.69 0.35

0 1 2 3 4
0 0 5 0 529 0
1 0 9 0 620 0
2 0 0 0 465 0
3 0 2 0 1282 0
4 0 0 0 212 0

LSTM-182 w/o posteriors 0.35 0.65 0.3

0 1 2 3 4
0 50 80 0 399 7
1 23 149 3 443 11
2 46 70 0 347 4
3 177 197 0 905 30
4 27 26 1 163 5

w/ posteriors 0.36 0.68 0.33

0 1 2 3 4
0 50 19 0 467 0
1 43 59 0 527 0
2 36 26 0 405 0
3 182 90 0 1037 0
4 28 6 0 188 0

only posteriors 0.42 0.69 0.37

0 1 2 3 4
0 0 22 0 514 0
1 0 51 0 578 0
2 0 12 0 455 0
3 0 19 0 1290 0
4 0 8 0 214 0

GRU-30 w/o posteriors 0.34 0.67 0.31

0 1 2 3 4
0 54 92 0 349 3
1 32 156 0 428 3
2 70 79 0 297 2
3 211 213 0 793 23
4 29 39 0 123 4



Table A2 continued from previous page
Model Input Features Accuracy AUC-ROC AUC-PRC Confusion Matrix

w/ posteriors 0.34 0.67 0.31

0 1 2 3 4
0 44 93 4 350 7
1 18 175 1 418 7
2 74 69 0 300 5
3 201 187 1 810 41
4 29 37 0 124 5

only posteriors 0.42 0.69 0.36

0 1 2 3 4
0 0 22 0 476 0
1 0 59 0 560 0
2 0 13 0 434 1
3 0 29 0 1211 0
4 0 8 0 187 0

GRU-91 w/o posteriors 0.33 0.67 0.32

0 1 2 3 4
0 74 63 0 396 1
1 60 107 0 459 3
2 87 54 0 324 0
3 279 152 0 851 2
4 31 23 0 158 0

w/ posteriors 0.34 0.67 0.32

0 1 2 3 4
0 56 73 0 399 6
1 35 184 0 408 2
2 75 55 0 330 5
3 253 182 0 819 30
4 29 26 0 152 5

only posteriors 0.41 0.69 0.35

0 1 2 3 4
0 6 1 0 527 0
1 9 2 0 618 0
2 5 0 0 460 0
3 8 1 0 1275 0
4 1 0 0 211 0

GRU-182 w/o posteriors 0.33 0.65 0.29

0 1 2 3 4
0 57 70 0 406 3
1 40 138 0 451 0
2 77 60 0 326 4
3 243 174 0 856 36
4 24 25 0 172 1

w/ posteriors 0.36 0.67 0.33

0 1 2 3 4
0 56 36 0 444 0
1 50 96 0 483 0
2 41 42 0 384 0
3 211 117 0 975 6
4 28 8 0 186 0

only posteriors 0.41 0.68 0.35

0 1 2 3 4
0 0 0 0 536 0
1 0 0 0 629 0
2 0 0 0 467 0
3 0 0 0 1309 0
4 0 0 0 222 0



APPENDIX B

Figure A1: Data distribution in the different splits of the 10-fold cross-validation of our
HMM+LR model.
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APPENDIX C

Table A3: Lists of selected features per domain after applying sequential feature selection.
Notations: SD = standard deviation, Q25/50/75 = 25th, 50th, 75th quantile.

WHODAS 2.0
domain

Number of
features selected

Selected features

Cognition 19 Mean distance travelled
Minimum distance travelled
Number of time spent at home entries
Q75 of time spent at home
Maximum time spent at home
Minimum step count
Q25 of step count
Q50 of step count
Q75 of step count
Number of exercise time entries
Minimum time spent exercising
Number of vehicle time entries
SD of vehicle time
Minimum vehicle time
Number of walking time entries
Q75 of time spent walking
Q50 of sleep duration
Q75 of sleep duration
Maximum sleep duration

Mobility 19 Number of distance travelled entries
Maximum distance travelled
SD of number of visited locations
Q75 of number of visited locations
Minimum time spent at home
Number of step count entries
SD of step count
Minimum step count
Maximum step count
Mean time spent exercising



Table A3 continued from previous page
WHODAS 2.0

domain
Number of

features selected
Selected features

Minimum time spent exercising
Q50 of time spent exercising
Number of vehicle time entries
Mean vehicle time
Minimum vehicle time
Q25 of vehicle time
Number of walking time entries
Q25 of time spent walking
Maximum time spent walking

Self-care 5 SD of distance travelled
Q50 of distance travelled
Minimum time spent at home
Number of vehicle time entries
Minimum vehicle time

Getting along 6 Mean distance travelled
Minimum distance travelled
Minimum time spent at home
Q25 of time spent at home
Minimum time spent exercising
Maximum time spent exercising

Life activities 17 SD of distance travelled
Minimum distance travelled
Minimum number of visited locations
Maximum number of visited locations
Q50 of time spent at home
Q75 of time spent at home
Minimum time spent exercising
Q25 of time spent exercising
Number of vehicle time entries
Mean vehicle time
SD of vehicle time
Minimum vehicle time
Q75 of vehicle time
Maximum vehicle time
Number of walking time entries



Table A3 continued from previous page
WHODAS 2.0

domain
Number of

features selected
Selected features

Minimum time spent walking
Q25 of time spent walking

Participation 13 SD of distance travelled
Maximum number of visited locations
Mean time spent at home
Minimum step count
Minimum time spent exercising
Maximum time spent exercising
Number of vehicle time entries
Q50 of vehicle time
Q75 of vehicle time
Number of walking time entries
Q75 of walking time
Maximum time spent walking
Number of sleep duration entries
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