147 research outputs found

    A Physical Unclonable Function Based on Inter-Metal Layer Resistance Variations and an Evaluation of its Temperature and Voltage Stability

    Get PDF
    Keying material for encryption is stored as digital bistrings in non-volatile memory (NVM) on FPGAs and ASICs in current technologies. However, secrets stored this way are not secure against a determined adversary, who can use probing attacks to steal the secret. Physical Unclonable functions (PUFs) have emerged as an alternative. PUFs leverage random manufacturing variations as the source of entropy for generating random bitstrings, and incorporate an on-chip infrastructure for measuring and digitizing the corresponding variations in key electrical parameters, such as delay or voltage. PUFs are designed to reproduce a bitstring on demand and therefore eliminate the need for on-chip storage. In this dissertation, I propose a kind of PUF that measures resistance variations in inter-metal layers that define the power grid of the chip and evaluate its temperature and voltage stability. First, I introduce two implementations of a power grid-based PUF (PG-PUF). Then, I analyze the quality of bit strings generated without considering environmental variations from the PG-PUFs that leverage resistance variations in: 1) the power grid metal wires in 60 copies of a 90 nm chip and 2) in the power grid metal wires of 58 copies of a 65 nm chip. Next, I carry out a series of experiments in a set of 63 chips in IBM\u27s 90 nm technology at 9 TV corners, i.e., over all combination of 3 temperatures: -40oC, 25oC and 85oC and 3 voltages: nominal and +/-10% of the nominal supply voltage. The randomness, uniqueness and stability characteristics of bitstrings generated from PG-PUFs are evaluated. The stability of the PG-PUF and an on-chip voltage-to-digital (VDC) are also evaluated at 9 temperature-voltage corners. I introduce several techniques that have not been previously described, including a mechanism to eliminate voltage trends or \u27bias\u27 in the power grid voltage measurements, as well as a voltage threshold, Triple-Module-Redundancy (TMR) and majority voting scheme to identify and exclude unstable bits

    Subwavelength Engineering of Silicon Photonic Waveguides

    Get PDF
    The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core building block of modern integrated photonic systems. Subwavelength structuring of silicon waveguides shows immense promise in a variety of field of study, such as, tailoring electromagnetic near fields, enhancing light-matter interactions, engineering anisotropy and effective medium effects, modal and dispersion engineering, nanoscale sensitivity etc. In this work, we are going to exploit the boundary conditions of modern silicon photonics through subwavelength engineering by means of novel ultra-low mode area v-groove waveguide to answer long-lasting challenges, such as, fabrication of such sophisticated structure while ensuring efficient coupling of light between dissimilar modes. Moreover, physical unclonable function derived from our nanoscale sidewall crystalline gratings should give us a fast and reliable optical security solution with improved information density. This research should enable new avenues of subwavelength engineered silicon photonic waveguide and answer to many unsolved questions of silicon photonics foundries

    Contributions on using embedded memory circuits as physically unclonable functions considering reliability issues

    Get PDF
    [eng] Moving towards Internet-of-Things (IoT) era, hardware security becomes a crucial research topic, because of the growing demand of electronic products that are remotely connected through networks. Novel hardware security primitives based on manufacturing process variability are proposed to enhance the security of the IoT systems. As a trusted root that provides physical randomness, a physically unclonable function is an essential base for hardware security. SRAM devices are becoming one of the most promising alternatives for the implementation of embedded physical unclonable functions as the start-up value of each bit-cell depends largely on the variability related with the manufacturing process. Not all bit-cells experience the same degree of variability, so it is possible that some cells randomly modify their logical starting value, while others will start-up always at the same value. However, physically unclonable function applications, such as identification and key generation, require more constant logical starting value to assure high reliability in PUF response. For this reason, some kind of post-processing is needed to correct the errors in the PUF response. Unfortunately, those cells that have more constant logic output are difficult to be detected in advance. This work characterizes by simulation the start-up value reproducibility proposing several metrics suitable for reliability estimation during design phases. The aim is to be able to predict by simulation the percentage of cells that will be suitable to be used as PUF generators. We evaluate the metrics results and analyze the start-up values reproducibility considering different external perturbation sources like several power supply ramp up times, previous internal values in the bit-cell, and different temperature scenarios. The characterization metrics can be exploited to estimate the number of suitable SRAM cells for use in PUF implementations that can be expected from a specific SRAM design.[cat] En l’era de la Internet de les coses (IoT), garantir la seguretat del hardware ha esdevingut un tema de recerca crucial, en especial a causa de la creixent demanda de productes electrònics que es connecten remotament a través de xarxes. Per millorar la seguretat dels sistemes IoT, s’han proposat noves solucions hardware basades en la variabilitat dels processos de fabricació. Les funcions físicament inclonables (PUF) constitueixen una font fiable d’aleatorietat física i són una base essencial per a la seguretat hardware. Les memòries SRAM s’estan convertint en una de les alternatives més prometedores per a la implementació de funcions físicament inclonables encastades. Això és així ja que el valor d’encesa de cada una de les cel·les que formen els bits de la memòria depèn en gran mesura de la variabilitat pròpia del procés de fabricació. No tots els bits tenen el mateix grau de variabilitat, així que algunes cel·les canvien el seu estat lògic d’encesa de forma aleatòria entre enceses, mentre que d’altres sempre assoleixen el mateix valor en totes les enceses. No obstant això, les funcions físicament inclonables, que s’utilitzen per generar claus d’identificació, requereixen un valor lògic d’encesa constant per tal d’assegurar una resposta fiable del PUF. Per aquest motiu, normalment es necessita algun tipus de postprocessament per corregir els possibles errors presents en la resposta del PUF. Malauradament, les cel·les que presenten una resposta més constant són difícils de detectar a priori. Aquest treball caracteritza per simulació la reproductibilitat del valor d’encesa de cel·les SRAM, i proposa diverses mètriques per estimar la fiabilitat de les cel·les durant les fases de disseny de la memòria. L'objectiu és ser capaç de predir per simulació el percentatge de cel·les que seran adequades per ser utilitzades com PUF. S’avaluen els resultats de diverses mètriques i s’analitza la reproductibilitat dels valors d’encesa de les cel·les considerant diverses fonts de pertorbacions externes, com diferents rampes de tensió per a l’encesa, els valors interns emmagatzemats prèviament en les cel·les, i diferents temperatures. Es proposa utilitzar aquestes mètriques per estimar el nombre de cel·les SRAM adients per ser implementades com a PUF en un disseny d‘SRAM específic.[spa] En la era de la Internet de las cosas (IoT), garantizar la seguridad del hardware se ha convertido en un tema de investigación crucial, en especial a causa de la creciente demanda de productos electrónicos que se conectan remotamente a través de redes. Para mejorar la seguridad de los sistemas IoT, se han propuesto nuevas soluciones hardware basadas en la variabilidad de los procesos de fabricación. Las funciones físicamente inclonables (PUF) constituyen una fuente fiable de aleatoriedad física y son una base esencial para la seguridad hardware. Las memorias SRAM se están convirtiendo en una de las alternativas más prometedoras para la implementación de funciones físicamente inclonables empotradas. Esto es así, puesto que el valor de encendido de cada una de las celdas que forman los bits de la memoria depende en gran medida de la variabilidad propia del proceso de fabricación. No todos los bits tienen el mismo grado de variabilidad. Así pues, algunas celdas cambian su estado lógico de encendido de forma aleatoria entre encendidos, mientras que otras siempre adquieren el mismo valor en todos los encendidos. Sin embargo, las funciones físicamente inclonables, que se utilizan para generar claves de identificación, requieren un valor lógico de encendido constante para asegurar una respuesta fiable del PUF. Por este motivo, normalmente se necesita algún tipo de posprocesado para corregir los posibles errores presentes en la respuesta del PUF. Desafortunadamente, las celdas que presentan una respuesta más constante son difíciles de detectar a priori. Este trabajo caracteriza por simulación la reproductibilidad del valor de encendido de celdas SRAM, y propone varias métricas para estimar la fiabilidad de las celdas durante las fases de diseño de la memoria. El objetivo es ser capaz de predecir por simulación el porcentaje de celdas que serán adecuadas para ser utilizadas como PUF. Se evalúan los resultados de varias métricas y se analiza la reproductibilidad de los valores de encendido de las celdas considerando varias fuentes de perturbaciones externas, como diferentes rampas de tensión para el encendido, los valores internos almacenados previamente en las celdas, y diferentes temperaturas. Se propone utilizar estas métricas para estimar el número de celdas SRAM adecuadas para ser implementadas como PUF en un diseño de SRAM específico

    FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis

    Get PDF
    Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.publishedVersio

    An Improved Public Unclonable Function Design for Xilinx FPGAs for Hardware Security Applications

    Get PDF
    In the modern era we are moving towards completely connecting many useful electronic devices to each other through internet. There is a great need for secure electronic devices and systems. A lot of money is being invested in protecting the electronic devices and systems from hacking and other forms of malicious attacks. Physical Unclonable Function (PUF) is a low-cost hardware scheme that provides affordable security for electronic devices and systems. This thesis proposes an improved PUF design for Xilinx FPGAs and evaluates and compares its performance and reliability compared to existing PUF designs. Furthermore, the utility of the proposed PUF was demonstrated by using it for hardware Intellectual Property (IP) core licensing and authentication. Hardware Trojan can be used to provide evaluation copy of IP cores for a limited time. After that it disables the functionality of the IP core. A finite state machine (FSM) based hardware trojan was integrated with a binary divider IP core and evaluated for licensing and authentication applications. The proposed PUF was used in the design of hardware trojan. Obfuscation metric measures the effectiveness of hardware trojan. A moderately good obfuscation level was achieved for our hardware trojan

    Energy Harvesting and Sensor Based Hardware Security Primitives for Cyber-Physical Systems

    Get PDF
    The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system\u27s vulnerabilities. Previously, existing systems could more or less be considered a closed system with few potential points of access for attackers. Security was thus not typically a core consideration when these systems were originally designed. The cumulative effect is that these systems are now vulnerable to new security risks without having native security countermeasures that can easily address these vulnerabilities. Even just adding standard security features to these systems is itself not a simple task. The devices that make up these systems tend to have strict resource constraints in the form of power consumption and processing power. In this dissertation, we explore how security devices known as Physically Unclonable Functions (PUFs) could be used to address these concerns. PUFs are a class of circuits that are unique and unclonable due to inherent variations caused by the device manufacturing process. We can take advantage of these PUF properties by using the outputs of PUFs to generate secret keys or pseudonyms that are similarly unique and unclonable. Existing PUF designs are commonly based around transistor level variations in a special purpose integrated circuit (IC). Integrating these designs within a system would still require additional hardware along with system modification to interact with the device. We address these concerns by proposing a novel PUF design methodology for the creation of PUFs whose integration within these systems would minimize the cost of redesigning the system by reducing the need to add additional hardware. This goal is achieved by creating PUF designs from components that may already exist within these systems. A PUF designed from existing components creates the possibility of adding a PUF (and thus security features) to the system without actually adding any additional hardware. This could allow PUFs to become a more attractive security option for integration with resource constrained devices. Our proposed approach specifically targets sensors and energy harvesting devices since they can provide core functions within cyber-physical systems such as power generation and sensing capabilities. These components are known to exhibit variations due to the manufacturing process and could thus be utilized to design a PUF. Our first contribution is the proposal of a novel PUF design methodology based on using components which are already commonly found within cyber-physical systems. The proposed methodology uses eight sensors or energy harvesting devices along with a microcontroller. It is unlikely that single type of sensor or energy harvester will exist in all possible cyber-physical systems. Therefore, it is important to create a range of designs in order to reach a greater portion of cyber-physical systems. The second contribution of this work is the design of a PUF based on piezo sensors. Our third contribution is the design of a PUF that utilizes thermistor temperature sensors. The fourth contribution of this work is a proposed solar cell based PUF design. Furthermore, as a fifth contribution of this dissertation we evaluate a selection of common solar cell materials to establish which type of solar cell would be best suited to the creation of a PUF based on the operating conditions. The viability of the proposed designs is evaluated through testing in terms of reliability and uniformity. In addition, Monte Carlo simulations are performed to evaluate the uniqueness property of the designs. For our final contribution we illustrate the security benefits that can be achieved through the adoption of PUFs by cyber-physical systems. For this purpose we chose to highlight vehicles since they are a very popular example of a cyber-physical system and they face unique security challenges which are not readily solvable by standard solutions. Our contribution is the proposal of a novel controller area network (CAN) security framework that is based on PUFs. The framework does not require any changes to the underlying CAN protocol and also minimizes the amount of additional message passing overhead needed for its operation. The proposed framework is a good example of how the cost associated with implementing such a framework could be further reduced through the adoption of our proposed PUF designs. The end result is a method which could introduce security to an inherently insecure system while also making its integration as seamless as possible by attempting to minimize the need for additional hardware

    Printed Electronics-Based Physically Unclonable Functions for Lightweight Security in the Internet of Things

    Get PDF
    Die moderne Gesellschaft strebt mehr denn je nach digitaler Konnektivität - überall und zu jeder Zeit - was zu Megatrends wie dem Internet der Dinge (Internet of Things, IoT) führt. Bereits heute kommunizieren und interagieren „Dinge“ autonom miteinander und werden in Netzwerken verwaltet. In Zukunft werden Menschen, Daten und Dinge miteinander verbunden sein, was auch als Internet von Allem (Internet of Everything, IoE) bezeichnet wird. Milliarden von Geräten werden in unserer täglichen Umgebung allgegenwärtig sein und über das Internet in Verbindung stehen. Als aufstrebende Technologie ist die gedruckte Elektronik (Printed Electronics, PE) ein Schlüsselelement für das IoE, indem sie neuartige Gerätetypen mit freien Formfaktoren, neuen Materialien auf einer Vielzahl von Substraten mit sich bringt, die flexibel, transparent und biologisch abbaubar sein können. Darüber hinaus ermöglicht PE neue Freiheitsgrade bei der Anpassbarkeit von Schaltkreisen sowie die kostengünstige und großflächige Herstellung am Einsatzort. Diese einzigartigen Eigenschaften von PE ergänzen herkömmliche Technologien auf Siliziumbasis. Additive Fertigungsprozesse ermöglichen die Realisierung von vielen zukunftsträchtigen Anwendungen wie intelligente Objekte, flexible Displays, Wearables im Gesundheitswesen, umweltfreundliche Elektronik, um einige zu nennen. Aus der Sicht des IoE ist die Integration und Verbindung von Milliarden heterogener Geräte und Systeme eine der größten zu lösenden Herausforderungen. Komplexe Hochleistungsgeräte interagieren mit hochspezialisierten, leichtgewichtigen elektronischen Geräten, wie z.B. Smartphones mit intelligenten Sensoren. Daten werden in der Regel kontinuierlich gemessen, gespeichert und mit benachbarten Geräten oder in der Cloud ausgetauscht. Dabei wirft die Fülle an gesammelten und verarbeiteten Daten Bedenken hinsichtlich des Datenschutzes und der Sicherheit auf. Herkömmliche kryptografische Operationen basieren typischerweise auf deterministischen Algorithmen, die eine hohe Schaltungs- und Systemkomplexität erfordern, was sie wiederum für viele leichtgewichtige Geräte ungeeignet macht. Es existieren viele Anwendungsbereiche, in denen keine komplexen kryptografischen Operationen erforderlich sind, wie z.B. bei der Geräteidentifikation und -authentifizierung. Dabei hängt das Sicherheitslevel hauptsächlich von der Qualität der Entropiequelle und der Vertrauenswürdigkeit der abgeleiteten Schlüssel ab. Statistische Eigenschaften wie die Einzigartigkeit (Uniqueness) der Schlüssel sind von großer Bedeutung, um einzelne Entitäten genau unterscheiden zu können. In den letzten Jahrzehnten hat die Hardware-intrinsische Sicherheit, insbesondere Physically Unclonable Functions (PUFs), eine große Strahlkraft hinsichtlich der Bereitstellung von Sicherheitsfunktionen für IoT-Geräte erlangt. PUFs verwenden ihre inhärenten Variationen, um gerätespezifische eindeutige Kennungen abzuleiten, die mit Fingerabdrücken in der Biometrie vergleichbar sind. Zu den größten Potenzialen dieser Technologie gehören die Verwendung einer echten Zufallsquelle, die Ableitung von Sicherheitsschlüsseln nach Bedarf sowie die inhärente Schlüsselspeicherung. In Kombination mit den einzigartigen Merkmalen der PE-Technologie werden neue Möglichkeiten eröffnet, um leichtgewichtige elektronische Geräte und Systeme abzusichern. Obwohl PE noch weit davon entfernt ist, so ausgereift und zuverlässig wie die Siliziumtechnologie zu sein, wird in dieser Arbeit gezeigt, dass PE-basierte PUFs vielversprechende Sicherheitsprimitiven für die Schlüsselgenerierung zur eindeutigen Geräteidentifikation im IoE sind. Dabei befasst sich diese Arbeit in erster Linie mit der Entwicklung, Untersuchung und Bewertung von PE-basierten PUFs, um Sicherheitsfunktionen für ressourcenbeschränkte gedruckte Geräte und Systeme bereitzustellen. Im ersten Beitrag dieser Arbeit stellen wir das skalierbare, auf gedruckter Elektronik basierende Differential Circuit PUF (DiffC-PUF) Design vor, um sichere Schlüssel für Sicherheitsanwendungen für ressourcenbeschränkte Geräte bereitzustellen. Die DiffC-PUF ist als hybride Systemarchitektur konzipiert, die siliziumbasierte und gedruckte Komponenten enthält. Es wird eine eingebettete PUF-Plattform entwickelt, um die Charakterisierung von siliziumbasierten und gedruckten PUF-Cores in großem Maßstab zu ermöglichen. Im zweiten Beitrag dieser Arbeit werden siliziumbasierte PUF-Cores auf Basis diskreter Komponenten hergestellt und statistische Tests unter realistischen Betriebsbedingungen durchgeführt. Eine umfassende experimentelle Analyse der PUF-Sicherheitsmetriken wird vorgestellt. Die Ergebnisse zeigen, dass die DiffC-PUF auf Siliziumbasis nahezu ideale Werte für die Uniqueness- und Reliability-Metriken aufweist. Darüber hinaus werden die Identifikationsfähigkeiten der DiffC-PUF untersucht, und es stellte sich heraus, dass zusätzliches Post-Processing die Identifizierbarkeit des Identifikationssystems weiter verbessern kann. Im dritten Beitrag dieser Arbeit wird zunächst ein Evaluierungsworkflow zur Simulation von DiffC-PUFs basierend auf gedruckter Elektronik vorgestellt, welche auch als Hybrid-PUFs bezeichnet werden. Hierbei wird eine Python-basierte Simulationsumgebung vorgestellt, welche es ermöglicht, die Eigenschaften und Variationen gedruckter PUF-Cores basierend auf Monte Carlo (MC) Simulationen zu untersuchen. Die Simulationsergebnisse zeigen, dass die Sicherheitsmetriken im besten Betriebspunkt nahezu ideal sind. Des Weiteren werden angefertigte PE-basierte PUF-Cores für statistische Tests unter verschiedenen Betriebsbedingungen, einschließlich Schwankungen der Umgebungstemperatur, der relativen Luftfeuchtigkeit und der Versorgungsspannung betrieben. Die experimentell bestimmten Resultate der Uniqueness-, Bit-Aliasing- und Uniformity-Metriken stimmen gut mit den Simulationsergebnissen überein. Der experimentell ermittelte durchschnittliche Reliability-Wert ist relativ niedrig, was durch die fehlende Passivierung und Einkapselung der gedruckten Transistoren erklärt werden kann. Die Untersuchung der Identifikationsfähigkeiten basierend auf den PUF-Responses zeigt, dass die Hybrid-PUF ohne zusätzliches Post-Processing nicht für kryptografische Anwendungen geeignet ist. Die Ergebnisse zeigen aber auch, dass sich die Hybrid-PUF zur Geräteidentifikation eignet. Der letzte Beitrag besteht darin, in die Perspektive eines Angreifers zu wechseln. Um die Sicherheitsfähigkeiten der Hybrid-PUF beurteilen zu können, wird eine umfassende Sicherheitsanalyse nach Art einer Kryptoanalyse durchgeführt. Die Analyse der Entropie der Hybrid-PUF zeigt, dass seine Anfälligkeit für Angriffe auf Modellbasis hauptsächlich von der eingesetzten Methode zur Generierung der PUF-Challenges abhängt. Darüber hinaus wird ein Angriffsmodell eingeführt, um die Leistung verschiedener mathematischer Klonangriffe auf der Grundlage von abgehörten Challenge-Response Pairs (CRPs) zu bewerten. Um die Hybrid-PUF zu klonen, wird ein Sortieralgorithmus eingeführt und mit häufig verwendeten Classifiers für überwachtes maschinelles Lernen (ML) verglichen, einschließlich logistischer Regression (LR), Random Forest (RF) sowie Multi-Layer Perceptron (MLP). Die Ergebnisse zeigen, dass die Hybrid-PUF anfällig für modellbasierte Angriffe ist. Der Sortieralgorithmus profitiert von kürzeren Trainingszeiten im Vergleich zu den ML-Algorithmen. Im Falle von fehlerhaft abgehörten CRPs übertreffen die ML-Algorithmen den Sortieralgorithmus
    corecore