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ABSTRACT  

 

In the modern era we are moving towards completely connecting many useful electronic devices 

to each other through internet. There is a great need for secure electronic devices and systems. A 

lot of money is being invested in protecting the electronic devices and systems from hacking and 

other forms of malicious attacks. Physical Unclonable Function (PUF) is a low-cost hardware 

scheme that provides affordable security for electronic devices and systems. 

This thesis proposes an improved PUF design for Xilinx FPGAs and evaluates and compares its 

performance and reliability compared to existing PUF designs. Furthermore, the utility of the 

proposed PUF was demonstrated by using it for hardware Intellectual Property (IP) core 

licensing and authentication. Hardware Trojan can be used to provide evaluation copy of IP 

cores for a limited time. After that it disables the functionality of the IP core. A finite state 

machine (FSM) based hardware trojan was integrated with a binary divider IP core and evaluated 

for licensing and authentication applications. The proposed PUF was used in the design of 

hardware trojan. Obfuscation metric measures the effectiveness of hardware trojan. A 

moderately good obfuscation level was achieved for our hardware trojan. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Mobile and embedded devices are becoming ubiquitous, interconnected platforms for everyday 

tasks. Any such tasks require the mobile device to securely authenticate and be authenticated by 

another party and/or securely handle confidential information. Indeed, smartphones have become 

a unified platform capable of conducting financial transactions, storing a user’s secure 

information, acting as an authentication token for the user, and performing many other secure 

applications. The development of powerful mobile computing hardware has provided the 

software flexibility to enable convenient mobile data processing. However, comparable mobile 

hardware security has been slower to develop. 

The current best practice for providing such a secure memory or authentication source in such a 

mobile system is to place a secret key in a non-volatile electrically erasable programmable read-

only memory (EEPROM) or battery backed static random-access memory (SRAM) and use 

hardware cryptographic operations such as digital signatures or encryption. This approach is 

expensive both in terms of design area and power consumption. In addition, such non-volatile 

memory is often vulnerable to invasive attack mechanisms. Protection against such attacks 

requires the use of active tamper detection/prevention circuitry which must be continually 

powered. 

 

Physical unclonable functions (PUFs) are a promising innovative primitive that are used for 

authentication and secret key storage without the requirement of secure EEPROMs and other 

expensive hardware described above. This is possible, because instead of storing secrets in 

digital memory, PUFs derive a secret from the physical characteristics of the integrated circuit 

(IC). For example a PUF can use the innate manufacturing variability of gate delay as a physical 

characteristic from which one can derive a secret key. 
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1.2  Challenges in Hardware Security 

Integrated Circuits have become an integral part of the world we live in. The era of present 

computing world is surrounded by the host of electronic devices that facilitate different sectors 

such as banking, healthcare, supply chain and transportation. Smart card and RFID Tags which 

are used in credit and debit cards are increasingly widespread. These are all the applications of 

Hardware Security. The Smart cards which carry the ATM Pin information in it tells us the need 

to have secure cryptographic primitives in hardware.   

The integrity of authentication schemes depends on the secret key identification (ID). This ID 

needs to be protected from malicious attackers. The present system deals with storing the secret 

keys in non-volatile memory such as EEPROM’s etc. However, they are susceptible to many 

attacks like the side channel attacks to trace the key stored in digital form. So, we need a robust 

and reliable hardware mechanism to protect from these attacks. The major challenge in building 

this primitive is it should be lightweight, occupy little area and it should also consume minimal 

power.  

1.3 Physical Unclonable Function 

A Physical Unclonable Function or a PUF is a die – specific random function which is unique for 

every instance of the die. PUF’s derive their randomness from the uncontrolled random 

variations in the IC manufacturing process to create practically unclonable functions. 

PUFs are recently produced by many multinational companies and are widely being used for 

their security applications because of their randomness nature[13]. Some of the security 

applications are IP Piracy, Device Authentication, injecting a Hardware Trojan (HT) in the IC or 

an IP or an FPGA such that they can be made to use at evaluation time and then we can disrupt 

the functionality after the specified time. 

PUFs also provide an interesting functionality when compared to other security devices, that is, 

we don’t need to store any of the secret bits in a volatile or a non – volatile memory instead we 

generate the responses for the PUF for evaluation. 
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1.4 Applications of PUF 

1.4.1 Low Cost Authentication 

This is one of the main applications for the PUF which is widely used with less hardware 

overhead by a challenge response protocol. As illustrated in Figure 1.1 a secure database 

that stores all the set of CRPs from each PUF pair to use. When we need to check the 

authenticity of the circuit, the set of CRPs are queried randomly from the database and 

are applied to the PUF circuit. The response which is obtained is stored in the database 

and checked whether it matches the response from the database for the IC or FPGA. If it 

matches, then we can authenticate the FPGA or the IC. The important feature of the PUF 

is we can use different CRPs and they all are random because of the manufacturing 

process of the IC or the FPGA. Since all the circuits are not doped in the same 

concentration to behave similar and give the same time delay to produce the output. We 

use this property of the PUF to build authentication for the device[17]. It is needed to 

have a strong PUF for authentication as we can have a lot of CRPs for authentication.    

 

Figure 1.1 Schematic of Low-Cost Authentication 

 

1.4.2 Secret Key and Random Number Generation Using PUFs 

Modern Cryptographic Primitives need the essentials for generating the random number 

and secret key for the message authentication and secret key generation. The use was 

proposed in [14] for the use of PUF responses as secret keys and it needs to be ensured 

that each bit of the response is reliable. The PUFs cannot fully produce the exact response 
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because of noise and environmental conditions so we need some error correction 

processes. During this process an error syndrome is evaluated when the challenge is 

applied, and this syndrome is used when its being used for reconstruction of the PUF 

response which might have some errors due to noise and environmental variations. After 

computing and evaluating the PUF response we hash the response, so we get the secret 

key that can be used officially for authentication. The most important part is we need to 

generate the random numbers based on this process with low area overhead. 

 

1.5  Thesis Contributions 

In this research, we proposed, designed and evaluated a PUF which gives improved 

reliability and performance compared to an existing PUF.  The proposed PUF was 

implemented on SASEBO G-II FPGA Board.  The utility of the proposed PUF was 

demonstrated by using it for hardware Intellectual Property (IP) core licensing and 

authentication. Hardware Trojan can be used to provide evaluation copy of IP cores for a 

limited time. After that it disables the functionality of the IP core. A finite state machine 

(FSM) based hardware trojan was integrated with a binary divider IP core and evaluated 

for licensing and authentication applications. The proposed PUF was used in the design 

of hardware trojan. Obfuscation metric measures the effectiveness of hardware trojan. A 

moderately good obfuscation level was achieved for our hardware trojan. 

 

1.6  Thesis Organization 

The organization of the thesis is as follows: Chapter 2 discusses several types of PUFs 

and their properties are briefly discussed.  

Chapter 3 describes shortcomings of an existing PUF called Anderson’s PUF and 

describes a proposed PUF design that mitigates the shortcomings. Chapter 4 describes an 

application example of the proposed PUF in hardware IP licensing and authentication.  

We conclude in chapter 5 with a summary and recommendations for future work.
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CHAPTER 2 

 BACKGROUND 

 

2.1 Physical Unclonable Functions 

 Physical Unclonable Functions (PUF) are primitives that generate unique chip specific 

signatures dynamically by using the process variations in the silicon chip during fabrication. 

PUFs can be classified into two types, namely strong and weak PUFs[9]. The strong PUFs can 

produce multiple random responses by accepting challenges as input and mapping each 

challenge to a corresponding response such that we can have a record of the unique challenge 

response pair and using those for authentication. On the other hand, weak PUFs generate only 

limited number of responses.  

Today the Internet of Things (IoT) and wireless sensor Networks (WSNs) are used in a wide 

variety of applications which requires us to use some stringent evaluation to prevent malicious 

access to access these devices or the system which control it. To ensure that we have a reliable 

and robust authentication mechanism each device should have a fingerprint signature which can 

be efficiently used for authentication. Since they are unique to each chip or device from the 

process variations inherent in the silicon at the time of fabrication. Many companies which 

produce the PUFs are in demand and their products are used because of high security[16]. They 

are a promising innovative primitive that is used for authentication and secret key storage 

without the requirement of secure EEPROMs and other expensive hardware described above. 

This is possible, because instead of storing secrets in digital memory, PUFs derive a secret from 

the physical characteristics of the integrated circuit (IC). 

PUFs are modelled as CRP’s (Challenge Response Pairs), which means that when we give a 

challenge(c) to the PUF we get a response(r). So, depending on the challenge we can we get 

different response. The mathematical representation is given as: 

r = f(c), where the function represents the unique property of PUF. 
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2.2 Classification of PUF 

PUFs totally depend on variations in the circuit behavior. They are classified as silicon based PUFs where 

the PUFs are made up of digital circuits. These PUFs are used commercially which are designed and 

fabricated like any other Integrated circuit. Recently we use the fabric of the FPGA to make the silicon 

based PUFs. The other type of PUF is the non- silicon based PUF like the optical PUFs that are described 

in the literature [2]. But due to their limitation in integrating with the circuit design they are not used  

commercially. As mentioned earlier PUFs are classified into two distinct types: strong PUF and weak 

PUF.   

2.2.1 Strong PUF 

 Strong PUFs are the most important and are widely used for authentication. Since they 

can support enormous number of CRPs. They can be authenticated without any cryptographic 

hardware devices. The requirements of a Strong PUF are as follows: 

• They should be able to generate substantial amount of CRPs in fixed time interval. 

• It should not be feasible to clone a PUF device and make it work like the original PUF. 

• The responses that are generated should not reveal any details about how the internal 

functionality of the PUF works. 

• Responses should be reliable and stable with respect to the environment. 

 

2.2.2 Weak PUF 

 Weak PUF is usually used for key storage. A weak PUF (also called as Physically 

Obfuscated PUF) has a very small range such that we can have collisions with one or other 

challenges that give the same response. We define the Weak PUF function as r=F(.) where F(.) 

means it has only very small domain. Even though it can be used as a fingerprint to generate 

cryptographic functions, the number of responses of the weak PUF is related to the number of 

components subject to manufacturing variation. A weak PUF can have only some secret keys (i.e 

the domain range is less). 
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2.3 Types of PUF 

 PUFs are designed in such a way that they can re-generate the responses later at any time. 

We are going to see the most widely used PUFs all over the world in current scenario and discuss 

their advantages and disadvantages. 

 

2.3.1 Arbiter PUF 

Silicon implementations of strong PUFs were described in the literature beginning in 

2002 using manufacturing variability in gate delay as the source of unclonable randomness. 

 In one implementation, a race condition is established in a symmetric circuit. This is 

shown in Fig. 2.5. An input edge is split to two multiplexors (muxes). Depending on the input 

challenge bits (x[0] - x[127]), this path will vary. Although the layout is identical (propagation 

time should be the same for each edge no matter what challenge bits are chosen), manufacturing 

variability in the gate delay of each mux will result in one edge arriving at the latch first, and the 

latch acts as the ‘‘arbiter.’’ The output will, therefore, depend on the challenge bits. 

In Fig. 2.5, there are 128 challenge bits and one response bit. Of course, one typically 

operates multiple identical circuits in parallel to achieve 128 response bits. In this way, the 

arbiter PUF can be scaled to an almost arbitrary number of CRPs. 
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 Figure 2.1 Schematic of Arbiter PUF 

The security of the arbiter PUF is based on assumptions regarding manufacturing 

capabilities and ultimately metrology of the individual gate delays. Because the design is 

symmetric, the design does not contain any ‘‘secret’’ information. An adversarial manufacturer 

that has the PUF design cannot manufacture a duplicate PUF, because the behavior of the PUF is 

defined by the inherent variability in the manufacturing process. Even the original manufacturer 

of the PUF could not produce two identical PUFs, since this would require a significant 

improvement in manufacturing control.  

The second security assumption is that the individual gate delays are difficult to measure 

directly. It assumes that an invasive attacker would have difficulty in extracting the individual 

delays even with physical access. This assumption is based on the hypothesis that an invasive 

attacker would destroy the gate delay properties using his/her measurement techniques. 

The last security assumption is that given a set of CRPs from an arbiter PUF, an 

adversary could not calculate the internal delays of the gates. For the architecture described 

above, this is not the case. Each delay is independent from all other delays, and the delays add 

linearly. As a result, one can use standard linear system analysis to intelligently gather data about 

the gate delays from the response bits.  

Finally, in both optical and arbiter PUF architectures, it should be noted that 

environmental factors play a significant role. For the optical PUF, calibration of the input 

location is a concern. In the case of the arbiter PUF, one can easily recognize that environmental 

variations such as temperature, supply voltage, aging, and even random noise will affect the 

delay of each edge through the arbiter PUF. In addition, if the delays are close enough, the 

latch’s setup time will be violated, potentially resulting in an unpredictable output. In this case, 
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error-correcting techniques are used to increase the stability of the PUF while maintaining its 

security. 

The initial implementation of silicon PUFs had known security issues since the delays 

were linearly added to produce the resultant response bit. As a result, they could be learned with 

relative ease. This issue naturally led to the introduction of other ‘‘nonlinear’’ effects to make 

such modeling attacks more difficult. These efforts included xor arbiter PUFs, lightweight secure 

PUFs, and feedforward arbiter PUFs. In a xor arbiter, multiple arbiter PUF outputs are xor’ed to 

form a single response bit. This is shown in Fig. 2.6 These structures have shown greater 

resilience against machine learning attacks. 

 

 

 

 

 

  

                                 Figure 2.2 Arbiter PUF Circuit Topology 

2.3.2 Ring Oscillator PUF 

The manufacturing variability intrinsic to circuit gate delay can also be used to instantiate 

a ‘‘ring-oscillator PUF’’. This PUF architecture contains N identically designed ring oscillators 

synthesized onto a field-programmable gate array (FPGA) or an application-specific integrated 

circuit (ASIC). 

Due to the variation in delay of the inverters in the ring oscillator, each will have a 

slightly different frequency. The frequencies of two oscillators are measured and compared to 

reveal one of the PUF output bits. If there are N oscillators, there are N(N-1)/2 possible pairings. 

However, the number of output bits is limited due to correlations (if ring oscillator A is faster 

than B, and B is faster than C, then clearly A is faster than C). For N oscillators, there is a 

specific ordering of fastest to slowest. If the oscillators are truly identical and manufacturing 
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variation dominates, then each of these N! orderings are equally likely. Therefore, there are a 

maximum of log(N!) bits that can be extracted from the PUF. 

Note that the ring-oscillator PUF is a weak PUF, since there are a limited number of 

‘‘challenge bits’’ that can configure the PUF’s operation. Once fabricated, the ring oscillators’ 

frequency is set, so the output bits of the PUF will always remain constant. Because the ring-

oscillator PUF measures differences in gate delay like the arbiter PUF, the ring-oscillator PUF is 

susceptible to the same set of environmental variations and noise sources. Therefore, error 

correction will be equally important in this application. 

In this architecture, several oscillator PUF banks are instantiated, with each oscillator 

bank comprising 2k ring oscillators. A k-bit challenge is applied to each bank, to determine 

which oscillators correspond to the top delays, and which oscillators correspond to the bottom 

delays. The top and bottom rows are summed to produce x and y, respectively. These values are 

used to produce a single bit PUF output and associated ‘‘soft-decision’’ information 

corresponding to a PUF challenge. Specifically, the output bit is the sign of x–y. 

 

 

 

 

 

 

  

Figure 2.3 Working of RO PUF 

2.3.3 SRAM PUF 

 Both the arbiter PUF and the ring-oscillator PUF ultimately depend on variations in the  

propagation delay of gates. However, this is not the only physical property on which a PUF can 

be built. A popular weak PUF structure exploits the positive feedback loop in a SRAM or SRAM 

like structure shown in Fig. 2.2. A SRAM cell has two stable states (used to store a 1 or a 0), and 
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positive feedback to force the cell into one of these two states and, once it is there, prevent the 

cell from transitioning out of this state accidentally. 

A write operation forces the SRAM cell to transition toward one of the two states. 

However, if the device powers up and no write operation has occurred, the SRAM cell exists in a 

metastable state where theoretically, the feedback pushing the cell toward the ‘‘1’’ state equals 

the feedback pushing the cell toward the ‘‘0’’ state, thereby keeping the cell in this metastable 

state indefinitely. In actual implementations, however, one feedback loop is always slightly 

stronger than the other due to small transistor threshold mismatches resulting from process 

variation. Natural thermal and shot noise trigger the positive feedback loop, and the cell relaxes 

into either the ‘‘1’’ or ‘‘0’’ state depending on this process variation. Note that since the final 

state depends on the difference between two feedback loops, the measurement is differential. 

Therefore, common mode noise such as die temperature, power supply fluctuations, and 

common mode process variations should not strongly impact the transition. 

Like other strong and weak PUF implementations, the SRAM PUF is also sensitive to 

noise. If the two feedback loops of the SRAM cell are sufficiently close, then random noise or 

other small environmental fluctuations can result in an output bit flip. Therefore, error correction 

of this output will be necessary. 

Like the ring-oscillator PUF, the architecture of the SRAM PUF can be used to make 

intelligent decisions regarding error coding. The key recognition is that the relative strengths of 

the two feedback loops in a SRAM cell are relatively static. A cell strongly biased toward ‘‘1’’ 

or ‘‘0’’ will remain strongly biased toward ‘‘1’’ or ‘‘0,’’ respectively. 

Therefore, by using repeated measurements, one can assess the stability of a SRAM PUF output 

bit and selectively use the most stable bits as the PUF output. This process is used in conjunction 

with traditional coding techniques to mitigate the noise inherent to SRAM PUFs. 
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 Figure 2.4 Schematic of SRAM PUF 

2.3.4 Anderson PUF 

 Anderson PUF is a glitch PUF which generates random signature based on the glitches 

that are produced within the FPGA fabric. We design the Anderson PUF by having two shift 

registers and two carry chain adders and two flip flops. We have two LUTs that generate the 

opposite patterns of sequence such that as follows referred from[1]. 

LUT A:0101010010101010(0*5555) 

LUT B:1010101010101010(0*AAAA) 

 

 

 

 

 

 

 

  Figure 2.5 Model of Anderson PUF[1] 
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These are the initial values for the LUTs. The IN pin makes sure that this pattern 

continues every 16 cycles for the 2 LUTs and the OUT pins are used to drive the select input 

pins on carry chain multiplexers. Both carry multiplexer have their ‘0’ input tied to logic-0 and 

the bottom carry chain multiplexer has ‘1’ data input tied to logic-1.  

Consider the initial case LUTA is at logic-0 so we get N2 at logic-0. The output pin of LUT B is 

‘1’. At rising edge, the OUTPUT pin of LUTA will change from logic-0 to logic-1 and the 

output pin of LUT B will change from logic-1 to logic-0. Although LUT A and the multiplexer it 

drives as same as the LUT B, the two pieces of circuitry in fact experience different delays due 

to random process variations.  

We have two cases to look upon. First case when LUT B and the multiplexer is faster than LUT 

A and its multiplexer. In this case, LUT B transitions from logic 1 to 0, similarly N1 also 

transitions from logic 1 to 0. Following that slower LUT A transitions from logic 0 to 1,such that 

signal N2 is kept constant at logic 0 throughout the process. The second case is the opposite one 

where LUT A and its multiplexer is faster than LUT B and its multiplexer. In this case, LUT A ‘s 

OUT pin transitions from logic 0 to 1 and net N1 has not yet transitioned from logic 1 to logic 0. 

Therefore, we have a short positive spike(glitch) will appear on N2 for the period before N1 

transitions to logic-0. The presence or absence of a positive spike on N2 and the length of the 

spike pulse, are due to the process variations that impact LUT A and LUT B. This variation in 

N2 is used to determine the PUF signature bit. Whenever there is a glitch we get a logic-1, 

otherwise it’s at logic 0. If the pulse is always generated and its width is too wide ,it’s more 

likely to reach the flipflop preset input, making PUF bit ‘1’. 

We need to keep in mind that the pulse width is more to create a good PUF design. For this, we 

have made LUT B as far as it can so that we get a longer pulse width to be produced within the 

proposed PUF design. 
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   Figure 2.6 Tuned PUF bit generator 

 

 

2.4 Metrics for PUF Evaluation 

 To understand the PUFs utility as a proper authentication source, we have two different 

metrics they are Intra-distance P UF variation and Inter-distance variation[2]. 

2.4.1 Inter distance variation 

 Its defined as the number of bits in a PUF response that vary between different devices 

for a set of same challenges[9]. This is because every device or the chip is fabricated with 

different doping levels as the doping concentration cannot be controlled at fabrication. This 

metric gives us the measure of uniqueness of an individual PUF circuit.  
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2.4.2 Intra distance variation 

 Its defined as the number of bits in a PUF response that varies when the same challenge 

is given to the same chip in  different environmental and noise conditions. Its usually measured 

as a statistical distribution. Intra- PUF variation is a measure of the reproducibility of responses 

from the PUF device. Usually Intra distance PUF variation measures the reliability of the circuit. 

For a secure authentication usage , Intra PUF variation should be very low( almost 0%) and the 

Inter- PUF variation should be on an average of around( 50%) so that they can be verified.  
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CHAPTER 3 

PROPOSED PUF 

 

3.1 Limitations of Anderson PUF 

 As mentioned in a previous research paper, when the Andersons PUFs intra-distance 

variation was measured for 90 bits, we were able to see an error of around 30 percent in 

SASEBO G II (Virtex-5 FPGA )[2].The error continues over time and does not stop there. It not 

only violates the basic requirement of a PUF but also makes the PUF impractical for real time 

usage. When the PUF is not reliable it cannot be used for any anti-counterfeiting or IP Piracy  

applications.   

The reason for this is found out to be that the routing path from the output of the carry chain 

multiplexers to the flip flop preset input are acting a as a low pass filter. This gives us a 

convincing evidence that the glitches of short duration are not enough to trigger the preset input 

of the flip flop. So that the preset input of the flip flop will always remain at 0.  

Figure 3.1 shows the responses for a 320-bit Anderson PUF when measured at different points in 

time. When we take the readings at a later point of time we can see that the number of bits 

changing to 1 increases eventually. This tells us that the glitches that are of short duration are not 

able to trigger the preset input of the flip flop. Andersons PUF is designed keeping the FPGA 

fabric in mind and using the components that are there in the FPGA[6]. We should try to find a 

solution keeping the FPGA fabrics in mind too. 
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Figure 3.1 Saturation test on Anderson PUF [2]  

 

 

Figure 3.2 Intra distance and Inter distance metrics for the 320 bit Anderson PUF [2] 

 

 



 

18 
 

3.2 Recommendations to overcome the glitch effect 

In this section we will see how to overcome the glitch effect for the Andersons PUF. 

Here we will discuss two recommendations that can effectively mitigating the glitch effect. 

3.2.1 Solution 1 

This solution eradicates the glitch width transition between the bottom and the top LUT 

by adding an additional carry chain[2]. The problem that was pertaining to the previous model 

was there was a considerable bias towards 0. Since the glitches of short duration are damped out 

before they reach their top LUT, this additional carry chain option proved to be a suitable 

alternative. This implies that a trade-off between area (an additional LUT is required, per 

instance, to support the extended carry chain) and flexibility(range of variation possible). 

 

 Figure 3.3 Solution 1 Saturation test [2] 

Figure 3.3 shows the Hamming weight of responses from the 208-bit PUF design on four 

virtual devices. The results are related to sampling the PUF at power on. We can see increased 

hardware component as a result we could get only fewer testing bits. Whenever new samples 

were taken at that time, the LUTs should be re-initialized. Figure 3.4 shows the intra and inter 
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distance variation with the SASEBO G 2 board with better results of just 5 % with intra distance 

variation. 

  

 Figure 3.4 Solution 1 Intra distance and Inter distance metrics [2] 

 3.2.2 Solution 2 

  This solution eliminates the saturation problem to latch the PUF output and can 

capture a stable PUF output. Figure 3.1 shows that there is a considerable bias towards bias 0 in 

the PUF response. The results tell us that there is no uniformity, so it makes the PUF unusable 

for security purpose[7]. This idea gives a solution to capture the response later, so the response 

gets settled uniformly without the need for key extraction. This  gives us a drawback towards 

latency( time) and quality. The PUF not being able to be used directly after power on. 
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 Figure 3.5 Solution 2 Saturation Test [2] 

  

Figure 3.6 Solution 2 Intra distance and Inter distance metrics [2] 

Figure 3.5 and 3.6 gives us the Hamming weight of the responses from the 320-bit PUF design. 

The results were generated after a time of 0.5 sec and then sampled and used for generating the 

results. The stability of the response looks better with intra variation of 4 percent[2]. 
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3.3  Description and Evaluation of the Proposed PUF 

 3.3.1 The proposed PUF 

  We have re-designed the Anderson PUF by changing the glitch value from active 

high to active low as recommended in the previous published paper[2]. The proposed design is 

shown in Figure 3.7. 

 

Figure 3.7 One Bit Proposed PUF 

The above figure interchanges the logic 0 and the logic 1 from the multiplexers value in such a 

way that the we will get logic-1 when the bottom LUT works faster and we can expect a glitch 

when the top LUT works faster. The other important change which we are introducing here is the 

signal N2 is being connected to the Clear input to the flip flop instead of the preset input of the 

flip flop. This variation is also proven to be effective in generating efficient results and a robust 

design. Here, we will improve the PUF design by integrating with the solution 1( also called as 

the one-shot approach) of the recommendation that was discussed earlier. This will be suitable in 

making a strong PUF design with low power[8] for the Xilinx FPGAs. 
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 3.3.2 Experimental Setup for Evaluation 

 

 

Figure 3.8 Experimental Setup  

We used a SASEBO G II FPGA Board which houses both the powerful FPGA devices the 

Virtex-5 and the Spartan 3A series[18]. We used a 4 GB RAM Windows OS System with the 

Xilinx ISE Software. We used the Xilinx ISE Design Suite for this research because the Xilinx 

Vivado doesnot allow us to use it with Virtex-5 as it supports only higher end Virtex and the 

Zynq series only.   

 3.3.3 Analysis of the proposed PUF 

  We instantiated 90 instances of our PUF design to generate a 90 Bit signature. We 

evaluated the design using virtex-5 FPGA on SASEBO G2 board. The Board houses a Xilinx 

Virtex-5 (XC5VLX30 – FFFG324)[5]. A total of 19200 LUT cells are available and 

approximately a quarter of which can be used in shift register mode which gives ~ 4800 

LUTs[2]. The board has a Xilinx Platform Connector which we used to communicate the PUF 

Signature to a connected PC. We clocked the PUF using the 24 MHz clock signal available on 

the board.  
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In addition to comparing PUF signatures across different FPGA chips, we can also implement a 

PUF multiple times on a single chip, each time in a different region of the chip. Naturally, we 

expect that any two FPGA chips should differ more than any two regions on a single chip. 

Consequently, if PUF signatures for different regions on a single chip are subsequently unique. 

We have convincing evidence that the signatures between chips will be at least as unique.  We 

investigated 4 PUF implementations, one implementation in each of the 4 regions. PUF 

placement was constrained to regions using range constraints provided to Xilinx synthesis tool. 

To analyze signature uniqueness, we consider the hamming distance between all PUF pairs 

producing (4*3)/2 = 6 data points. If logic-0 and logic-1 were equally probable one would expect 

the distribution to be clustered around an expected value of 45 bits. The average between any 

two pairs is 43 which is almost equal to 45.   

We divide the FPGA into four regions and evaluate the FPGA on all the four regions of the 

FPGA which are mentioned here as follows in the underlying Virtex-5 architecture: 

 Region 1 -"X0Y0:X28Y40" 

Region 2 -"X0Y41:X28Y79" 

Region 3 -"X32Y0:X52Y40" 

Region 4 -"X32Y41:X52Y79" 

We will briefly discuss the implementation results in the next section based on these four regions 

in the next chapter. 
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          Figure 3.9 xc5vlx30 Virtex-5 FPGA divided into 4 regions 

 

3.4 Implementation Results of the Proposed PUF in SASEBO G II 

We evaluated the Anderson and the proposed PUF in these 4 regions of the Xilinx FPGA with 

the challenge as (hex)“x11FFFFFFFFFFFFFFFFFFFFFF” and have got unique signatures for 

both the Anderson as well as the proposed PUF as shown below in Figures 3.10 and 3.11 for the 

region 1 in FPGA.   

 

 Figure 3.10 Anderson PUF result for 90 bits 
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 Figure 3.11 Proposed PUF result for 90 bits 

The results shown in the Figures 3.10 and 3.11 gives us a convincing result that both are 

producing unique responses even though the same challenge is given to them. Moreover, we 

observed the results in different regions for the Anderson as well as the proposed PUF and found 

that the signatures were unique. So, we can conclude that the glitches that originate are from 

inside the FPGA and cannot be found easily by any common man to trace the response. When 

measuring the Andersons PUF response on region 2, we recognized that the response is 

fluctuating over time as follows shown in figure 3.12 

 

Figure 3.12 Change in bit values for region 2 of Anderson PUF 
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The change in bit values here tells us that it takes some time for the PUF to settle its values 

because the glitch width is not enough to trigger the flip flop. We integrate the proposed PUF 

with the one-shot approach method so that the glitch gets enough time to reach the top carry 

chain multiplexer. We demonstrated  the experiment and have captured the responses for the 

proposed PUF by overcoming the glitch effect which is shown in Figure 3.13 for the same 

region. 

 

Figure 3.13 Error Overcome by Proposed PUF 

We have not only overcome the error, but we managed to get a reliable PUF by this design 

model by using the proposed PUF with the one-shot approach. Now, we have plotted the design 

for the intra-distance variation and got the results for Anderson and the Proposed PUF as almost 

identical. The results of the graph are shown I Figures 3.12 and 3.13 
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Figure 3.14 Intra Distance Metrics for Anderson PUF 

 

Figure 3.15 Intra Distance Metrics for the Proposed PUF 

 

We plotted the results for both the PUFs 90-bits and we were able to generate the average 

Hamming weight for the Andersons PUF to be 35 where the smallest hamming weight was 28 

and the largest hamming weight measured as 42. The average was almost to the half of the 
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maximum number of bits. Whereas for the proposed PUF we were able to generate the average 

hamming distance as 34.5 with the Largest and  the smallest Hamming distances as 42 and 27 

respectively which is almost similar to the Andersons PUF.  

 3.4.1 Discussion 

 We conclude that the proposed PUF has generated unique signatures in all the regions of 

the FPGA which is the need for the being the PUF to be random in nature so that the attacker 

does not have any clue to predict the response of the PUF. We can also infer that the proposed 

PUF model is reliable and can reduce the intra distance variation that was happening previously 

with the Anderson PUFs model.  

We know the well-known Intrinsic ID company which commercially started making 

PUFs for strengthening the IoT security as well as the IP cores. Right now, the SRAM PUFs 

which are used in Intel Stratix 10 are from Intrinsic ID. They integrate the PUF to the fuzzy 

extractor to generate the helper data . Since the response of the PUF is usually noisy because of 

environmental conditions so the fuzzy extractor helps in reconstructing the response with the 

helper data. As how the major tech companies are using the PUF we can integrate the proposed 

PUF model similarly with the fuzzy extractor to create a commercial PUF usable model.      
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CHAPTER 4 

HARDWARE TROJAN BASED PUF AUTHENTICATION 

 

4.1 Finite State Machine Based Hardware Trojan 

  Utilization of IP cores has become a pervasive practice in today’s industry. IP 

cores are vulnerable to many security threats like cloning, counterfeiting or re-marking of ICs by 

many third-party vendors without the notice or permission of the IP design companies. 

Many companies allow the users to use the IP for an evaluation period and afterwards they will 

make it infeasible for the IP to be used[11]. Several attackers used this evaluation period to make 

copies of their own design or try to do some side-channel attacks to break down the security. 

Since companies cannot stop giving their IP for the evaluation period because it will depreciate 

their business profits and will make them  lose on improving their IP based on feedback from 

users after the evaluation period. 

In this chapter we will discuss a novel low-cost method for IP protection during evaluation. This 

will allow the designers to embed a trojan inside the IP which cannot be traced and allows them 

to fix an expiry date on the evaluation copy of the hardware IP[3][4]. This trojan is specially 

crafted by the finite state machines. Hardware trojans are malicious modifications of a circuit 

that can fail the functionality by extreme rare conditions. Here the trojan circuits follow a 

sequence of finite state machine for the rare event to occur. The design flow in shown in figure 

4.1  
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Figure 4.1 Trojan Evaluation [19] 

The illegal IP would cease to work after the evaluation period like a hardware time-bomb. The 

FSM trojan has low hardware overhead which makes it hard for the attackers to isolate it. We are 

going to use the obfuscation metrics to evaluate effectiveness of trojan and implement low-

overhead design obfuscation techniques. Here we can give the key that is used to evaluate the 

PUF such that if the PUF matches we can de-activate the trojan and make it possible for the users 

to use the IP. 

  

4.2 Operation of FSM Based Hardware Trojan 

 We follow this methodology for building an effective Trojan to prevent illegal usage of he 

evaluation version of the Hardware IP. The three major steps are:  

1. Trojan Design 

2. Trojan Insertion 

3. Trojan Obfuscation 
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Figure 4.2 Operation of Trojan[19] 

4.2.1 Trojan Design 

 In the first step, we will design the trojan that needs to be inserted into the IP. The trojan 

should be designed to let the circuit function properly during the evaluation phase and trigger 

after substantial number of clock cycles have been elapsed.  

So, we are going to use FSM model of a trojan which has lots of different counters running 

inside it on a global time. We should fix the state to satisfy the condition when all the 

counters are run for the required clock cycles. Once the condition is satisfied the trojan needs 

to be activated and its output is used to trigger the payload nodes of the circuit. We should 

make sure that we use a lot of states so that it would be hard for the attackers to find the 

trojan[12]. Sometimes we can also define in such a way that the states can have many 

numbers of states inside them too.    
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 Figure 4.3 Trojan Design state diagram [19] 

The activation time of the inserted trojan(Tactive) for the trojan state condition to satisfy. 

The expected time of trojan activation(Tmean) is defined as the number of clock cycles after 

which an embedded trojan is activated. For the ideal practical usage, we use 20 number of 

states as minimum with Tmean=2.25*10^16 clock cycles. 

   

4.2.2 Trojan Insertion 

  In the second step, we will integrate the trojan with the IP netlist once the design 

phase has been completed. We need to choose trojan based on trigger and payload for the 

trojan.  

To determine the trojan trigger nodes, a set of random vectors are generated. The circuit is 

simulated using the set of vectors and the signal probabilities of all the states are evaluated 

and those which has less probability are considered as rare nodes. 

To determine the trojan payload, the fanout and fanin of each internal node is evaluated 

based on their sizes  and a weighted normalized metric is used to distinguish their quality 

which is given as [19] 
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Nodes with higher value of Pn are used for modification, so that the trojan is effective for the 

given IP.       

 

4.2.3 Trojan Obfuscation 

 In the last step, we need to make sure that the inserted trojan is well obfuscated so that 

the adversary reverse engineer finds it difficult to trace where its hidden and cannot be 

reverse engineered by FSM unrolling[10].   

4.3 Metrics for Evaluation of Hardware Trojan 

 The computational complexity of the hardware trojan is given as[19]: 

 

Where fi is the average cone-in size of the failing cone size of each node. F is failing nodes and 

SN is failing state elements. For our design we have SN value as 2 and F valued as 2 and fi as 7. 

The obfuscation metric is computed as 1383.67 for the proposed design which we are going to 

see in the further section of the chapters. We can increase the number of nodes to increase the 

complexity at any time keeping the rare condition to be the same as before to improve the metric. 

Ideally the obfuscation metric value must be more so that it would be hard for the attackers to 

isolate the trojan. The following guidelines should be followed for a well obfuscated trojan[19]: 

• Forcing unreachable states on the state elements of the original circuit upon Trojan activation 

increases the practical computational complexity of its detection, since the inputs of the proposed 

state elements would contribute in increasing fi. 

• Modification of a larger number of nodes increases F, which in turn increases the level of 

obfuscation. 

• Those nodes which have larger fanin cones should be preferably proposed. 

• A Trojan with larger number of flip-flops increases its obfuscation level slightly because SN 

increases. 
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We need to give a trade-off between design overhead and level of security achievable through 

obfuscation. 

 

 

4.4 Operation of 4- Bit divider IP injected with Hardware Trojan  

  The working model schematic of the trojan with the PUF for a 4-bit divider IP is shown 

below. 

 

Figure 4.4 Block Diagram of Hardware Trojan with PUF authentication 

As we see in the schematic the trojan is embedded inside the Divider IP core or any other core 

for instance[16]. This trojan gets activated after a fixed amount of period has elapsed say 4 

minutes is what we designed with the 24 MHz clock. This clock was routed from the spartan 

FPGA to the virtex-5 FPGA where all the design was synthesized for the Virtex-5 design and 
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tested. The trojan consists of 3 states as instance but can be improved further by adding 

additional states to improve the complexity of the design. 

Once the evaluation period is over we need to use different instances every time for the trojan, so 

we can pass through the side channel attacks. Therefore, we chose PUF as the authentication 

mechanism for the evaluating the IP cores. 

4.5 Hardware Trojan Implementation in SASEBO G II 

 The hardware trojan with PUF for the 4-bit divider IP is implemented on the SASEBO G 

II FPGA board. The working model is shown in the algorithmic state machine(ASM) diagram as 

shown below. 

Figure 4.5 ASM for Trojan Model  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

S <-‘1’ 

Clk_count <- Clk_count+1 

If 

clk_count

=7200000

0 

Clk_count <-0 
false true 

go 

S4 

Clk_count <- Clk_count+1 

If 

clk_count

=7200000

0 

Clk_count <-0 false true 
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Clk_count <- Clk_count+1 

If 

clk_count

=7200000

0 

S=0 

Clk_count <-0 

false true 

 

S6 

 

If 

response        

= "0011" 

Fmin=1 Fmin=0 

true false 
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The above ASM chart described tells us that the 4-bit divider IP with the hardware trojan  

embedded and the PUF is also there which is used for authentication. Once the evaluation period 

is over, the trojan is triggered and made to set the quotient and the remainder to zero. If the user 

needs to continue the evaluation period, they need to have suitable challenges to de-activate the 

Trojan and to use the IP again with its functionality.  

4.6 Experimental Results and Discussion 

      4.6.1 Experimental Results 

               The results were recorded on the Chipscope tool and the same experimental setup was 

used which was discussed in Chapter 3 for the proposed PUF. When the following algorithm was 

followed in a VHDL code and implemented on the SASEBO G II Board. We got the following 

results as shown. This is just for test purposes and it can be improved by adding different 

counters and many states to its design to increase its complexity and to increase its Obfuscation 

metric values. 

Figure 4.6 shows us that when we run the VHDL code we were able to generate the output of 

quotient as 5 and remainder as 0 when the first Go signal has been triggered with dividend and 

divisor as 15 and 3 respectively.   
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Figure 4.8 Divider IP generating response on evaluation period 

 

Since we could not accommodate lot of I/O pins we hardcoded the first three bits of the dividend 

as”111” and the 0th bit is given as trigger to control. Similarly, we hardcoded the divisor as “001”  

and the 0th bit is used as a controlling bit similarly.  

After the evaluation period is over, we do not get any output as the trojan got activated and 

triggered the divider IP to lock. This trigger has made the divider IP to lose its functionality and 

give zero as the result which is shown in Figure 4.9 below. 
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 Figure 4.9 Divider IP stopped working after the evaluation period 

As we mentioned earlier we use a PUF to authenticate this Divider IP. As soon as we give 

challenge to the PUF as “0001”, the response generated is “0011” which is used to evaluate the 

IP. And after it is evaluated the IP returns to its normal functionality. The bottom figure 4.10 

shows the evaluated PUF which is getting back to its functionality again and giving the expected 

output of 5 and 0 for the same set of dividend and divisor respectively. 
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 Figure 4.10 Divider IP started working again after PUF authentication 

 

4.6.2 Discussion 

           We have successfully made the working model and have demonstrated and tested it in the 

FPGA Board. This Trojan is not well hidden, but it can be made well hidden by increasing the 

number of states of the FSM and running many different counters inside them. Thus, we 

conclude that we have not only presented a low-cost approach for protecting evaluation version 

of the hardware IPs but we have also presented a low-cost authentication scheme using PUF to 

unlock and re-activate the functionality of the IP. This technique can be combined with other 

methods like key based IP locking to achieve comprehensive IP security. We can use it 

commercially by using the symmetric key encryption mechanism for exchanging the challenges 

and giving it to the PUF. We can also use hash functions to distort the challenges even more for 

producing more reliable and trusted encryption mechanism.  
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CHAPTER 5 

CONCLUSION  

 

 

We have proposed an improved model of PUF and have produced a reliable mechanism 

by the one-shot approach method. We also got signatures which were random when testing in 

different areas of the FPGA. This proposed PUF design has an improved intra-distance variation 

error of 5 percent when compared to 30 percent in the Anderson PUF. 

 We have also made a hardware trojan which is authenticated with the proposed PUF. 

This hardware trojan model is used in such a way that until a certain rare condition and a certain 

state is reached, the trojan will  not work to disrupt IP operation. This Trojan is designed in such 

a way that the divider IP will work for an evaluation time (say 1 week) and after that the trojan 

will not let the divider IP work until the IP is authenticated with the PUF. This type of security 

can be commercially used as it does not need any expensive cryptographic algorithms and the 

hardware overhead when compared to the existing alternate algorithms is much less. Lastly, we 

can conclude that this design can be used effectively used to prevent IP piracy.  

 We can explore how the proposed  PUF design can be modifies and adapted for 

Application Specific Integrated Circuit (ASICs) .  
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