5 research outputs found

    Evaluating the Correctness of Airborne Laser Scanning Data Heights Using Vehicle-Based RTK and VRS GPS Observations

    No full text
    In this study, we describe a system in which a GPS receiver mounted on the roof of a car is used to provide reference information to evaluate the elevation accuracy and georeferencing of airborne laser scanning (ALS) point clouds. The concept was evaluated in the Klaukkala test area where a number of roads were traversed to collect real-time kinematic data. Two test cases were evaluated, including one case using the real-time kinematic (RTK) method with a dedicated GPS base station at a known benchmark in the area and another case using the GNSSnet virtual reference station service (VRS). The utility of both GPS methods was confirmed. When all test data were included, the mean difference between ALS data and GPS-based observations was −2.4 cm for both RTK and VRS GPS cases. The corresponding dispersions were ±4.5 cm and ±5.9 cm, respectively. In addition, our examination did not reveal the presence of any significant rotation between ALS and GPS data

    Aspects of Accuracy, Scanning Angle Optimization, and Intensity Calibration Related to Nationwide Laser Scanning

    Get PDF
    Osajulkaisut: Publication 1: Ahokas, E., Kaartinen, H., Hyyppä, J. 2004. A quality assessment of repeated airborne laser scanner observations. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Turkey, Vol. XXXV, part B3, pp. 237-242. ISSN 1682-1750. Publication 2: Ahokas, E., Hyyppä, J., Kaartinen, H., Kukko, A., Kaasalainen, S., Krooks, A. 2010. The effect of biomass and scanning angle on laser beam transmittance. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vienna, Austria, Vol. XXXVIII(7A), pp. 1-6. ISSN 1682-1777. http://www.isprs.org/proceedings/XXXVIII/part7/a/pdf/1_XXXVIII-part7A.pdf Publication 3: Ahokas, E., Hyyppä, J., Yu, X., Holopainen, M. 2011. Transmittance of Airborne Laser Scanning Pulses for Boreal Forest Elevation Modeling. Remote Sensing. 3, 1365-1379. ISSN 2072-4292. http://www.mdpi.com/2072-4292/3/7/1365/ Publication 4: Kaasalainen, S., Ahokas, E., Hyyppä, J., Suomalainen, J. 2005. Study of surface brightness from backscattered laser intensity: Calibration of laser data. IEEE Geoscience and remote sensing letters, Vol. 2, No. 3, pp. 255-259, ISSN 1545-598X. Publication 5: Ahokas, E., Kaasalainen, S., Hyyppä, J., Suomalainen, J. 2006. Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. ISPRS Commission I Symposium, Paris Marne-la-Vallee, 4-6 July 2006, ISPRS Volume XXXVI Part 1/A. pp. 14-20. CD-ROM publication. Also in Revue Française de Photogrammétrie et de Télédétection, No. 182, (2006-2), pp. 10-16. Publication 6: Honkavaara, E., Peltoniemi J., Ahokas, E., Kuittinen R., Hyyppä, J., Jaakkola, J., Kaartinen, H., Markelin, L., Nurminen, K., Suomalainen, J. 2008. A Permanent Test Field for Digital Photogrammetric Systems. Photogrammetric Engineering and Remote Sensing. Vol. 74, No. 1, pp. 95-106.Airborne laser scanning is a technique that produces three-dimensional coordinates of the Earth’s surface as well as generating intensity values. Nationwide airborne laser scanning was launched in Finland in 2008 and some 180 000 km2 had been scanned by the end of 2012. While the main goal in this endeavour is to produce an accurate digital elevation/terrain model (2 x 2 m2 grid size) of the whole of the country, other applications, e.g. forestry, will benefit from the data as well. This study deals with the accuracy of airborne laser scanning, the optimization of the scanning angle, and the calibration of intensity. Accuracy assessments of airborne laser scanning have shown that the geometric accuracy of the method can fulfill the accuracy requirements for producing a nationwide digital elevation model with a grid of 2 x 2 m2. When studying the effect of scanning angle and biomass on elevation modeling capability, it was found that it would be possible to increase the scanning angle applied in Finland’s nationwide laser scanning. Even though the accuracy of the elevation model in the conditions prevailing in Finland allows increasing of the scanning angle, other applications would most probably not benefit from this. For example, these same data are sometimes used in nationwide forest inventory in Finland. A method for relative and absolute calibration of airborne laser scanning intensity was developed. The portable reference targets have proved their usefulness for calibration purposes. An intensity correction method should be used in pre-processing the airborne laser data. As a result of this, the usability of the intensity values may increase in practical applications, such as in classification. The studies constituting this dissertation have already impacted on the practical aspects of the nationwide airborne laser scanning dealing with accuracy assessment, the work done in the field of intensity calibration, and scanning angle analysis may have a further impact on nationwide laser scanning in the coming years. The optimization of airborne laser scanning flight parameters for multi-use nationwide laser scanning is a topic deserving further research.Ilmasta tehtävä laserkeilaus tuottaa 3D-koordinaatteja maan pinnalta sekä intensiteettiarvoja. Suomen valtakunnallinen laserkeilaus aloitettiin vuonna 2008 ja noin 180000 km2 oli keilattu vuoden 2012 loppuun mennessä. Vaikka päätarkoituksena on tuottaa tarkka digitaalinen korkeus/maastomalli (2 x 2 m2 ruutukoko) koko maasta, muutkin sovellukset, kuten metsätalous, hyötyvät tästä aineistosta. Tämä tutkimus käsittelee ilmasta tehtävän laserkeilauksen tarkkuutta, keilauskulman optimointia sekä intensiteetin kalibrointia. Laserkeilauksen tarkkuusarviointi on osoittanut, että menetelmän geometrinen tarkkuus täyttää valtakunnallisen digitaalisen korkeusmallin tuottamisen tarkkuusvaatimukset. Kun tutkittiin keilauskulman ja biomassan vaikutusta korkeusmallin tuottamiseen, huomattiin että olisi mahdollista kasvattaa valtakunnallisen laserkeilauksen havaintokulmaa. Vaikka korkeusmallin tarkkuus mahdollistaisi Suomen oloissa keilauskulman kasvattamisen, muut sovellukset eivät luultavasti hyötyisi tästä. Esimerkiksi tätä samaa aineistoa käytetään Suomen valtakunnallisessa metsien inventoinnissa. Laserkeilauksen intensiteetin suhteellista ja absoluuttista kalibrointia varten kehitettiin menetelmä. Siirrettävät referenssikohteet osoittivat käyttökelpoisuutensa intensiteetin kalibroinnissa. Intensiteetin kalibrointimenetelmää tulisi käyttää laserkeilausaineiston esikäsittelyssä. Tämän tuloksena intensiteettiarvojen käyttökelpoisuus kasvaisi käytännön sovelluksissa, kuten luokittelussa. Tämän väitöskirjan muodostaneet tutkimukset ovat jo käytännössä vaikuttaneet valtakunnallisen laserkeilauksen tarkkuusarvioinnissa. Intensiteetin kalibrointityö ja keilauskulman analysointi vaikuttanevat valtakunnalliseen laserkeilaukseen tulevina vuosina. Lisätutkimusta tarvitaan ilmasta tehtävän laserkeilauksen lentoparametrien optimoimiseksi monikäyttöistä valtakunnallista laserkeilausta varten

    Evaluating airborne laser data on steeply sloping terrain

    Get PDF
    Accuracy of Airborne Laser Terrain Mapping (ALTM) elevations is not well known on steeply sloping terrain. A unique method was used whereby, the planimetric location of ALTM ground strikes were located in the field and reference elevations measured at these points. Survey-grade Global Navigation Satellite System (GNSS) and rigorous techniques accurately established vertical heights to 0.010 meters, Root Mean Squared Error (RMSE). Sampled slopes range from 0.5 degrees to 50.6 degrees. A positive quadratic relationship exists between slope and vertical error. Error is negligible on slopes less than twenty degrees. Incidence angle, footprint size, and elevation spread from the upper reach of the footprint to the lower reach for each laser strike were also determined. An increase in each results in an increase in ALTM elevation imprecision. Elevation spread within the footprint and horizontal error could account for high percentages of vertical error on steeper slopes
    corecore