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Abstract 
 

Seagrass is the subject of significant conservation research. Seagrass is 

ecologically important and of significant value to human interests. Many seagrass species 

are thought to be in decline.  Degradation of seagrass populations are linked to 

anthropogenic environmental issues. Effective management requires robust monitoring 

that is affordable at large scale. Remote sensing methods using satellite and aircraft 

imagery enable mapping of seagrass populations at landscape scale.  

Aerial monitoring of a seagrass population can require imagery of high spatial 

and/or spectral resolution for successful feature extraction across all levels of seagrass 

density. Remotely piloted aircraft (RPA) can operate close to the ground under precise 

flight control enabling repeated surveys in high detail with accurate revisit-positioning. 

This study evaluates a method for assessing intertidal estuarine seagrass (Zostera 

muelleri) presence/absence and coverage density using multispectral imagery collected by 

a remotely piloted aircraft (RPA) flying at 30 m above the estuary surface (2.7 cm ground 

sampling distance). The research was conducted at Wharekawa Harbour on the eastern 

coast of the Coromandel Peninsula, North Island, New Zealand. 

Differential drainage of residual ebb waters from the surface of an estuary at low 

tide creates a mosaic of drying sediment, draining surface and static shallow pooling that 

has potential to interfere with spectral observations. The field surveys demonstrated that 

despite minor shifts in the spectral coordinates of seagrass and other surface material, 

there was no apparent difference in image classification outcome from the time of bulk 

tidal water clearance to the time of returning tidal flood. 

For the survey specification tested, classification accuracy increased with 

decreasing segmentation scale. Pixel-based image analysis (PBIA) achieved higher 

classification accuracy than object-based image analysis (OBIA) assessed at a range of 

segmentation scales. Contaminating objects such as shells and detritus can become 

aggregated within polygon objects when OBIA is applied but remain as isolated objects 

under PBIA at this image resolution. There was clear separability of spectra for seagrass 

and sediment, but shell and detritus confounded the classification of seagrass density in 

some situations.  High density seagrass was distinct from sediment, but classification 

error arose for sparse seagrass. 

Three classifiers (linear discriminant analysis, support vector machine and random 

forest) and three feature selection options (no selection, collinearity reduction and 

recursive feature elimination) were assessed for effect on classification performance. The 

random forest classifier yielded the highest classification accuracy, with no accuracy 

benefit gained from collinearity reduction or recursive feature elimination. Spectral 
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vegetation indices and texture layers substantially improved classification accuracy. 

Object geometry made a negligible contribution to classification accuracy using mean-

shift segmentation at this image-scale. 

The method achieved classification of seagrass density with up to 84% accuracy on 

a three-tier end-member class scale (low, medium, and high density) when using training 

data formed using visual interpretation of ground reference photography, and up to 93% 

accuracy using precisely measured seagrass leaf-area. Visual interpretation agreed with 

precisely measured seagrass leaf area 88% of the time with some misattribution at mid-

density. Visual interpretation was substantially faster to apply than measuring the leaf 

area. A decile class scale for seagrass density correlated with actual leaf area measures 

more than the three-tier scale, however, was less accurate for absolute class attribution. 

The research demonstrates that seagrass feature extraction from RPA-flown 

imagery is a feasible and repeatable option for seagrass population monitoring and 

environmental reporting. Further calibration is required for whole- and multi-estuary 

application. 
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CHAPTER 1 
 

1    Chapter 1.  Introduction, objectives and approach 

1.1    Research context and justification 

This research aims to fill a methodological gap that exists in the published range of 

remote sensing approaches available for intertidal seagrass mapping. The study sets out to 

assess options for providing seagrass presence/absence and coverage density metrics 

using imagery collected using a remotely piloted aircraft (RPA) flying close to the 

ground. Method-development under this goal pursues photogrammetric survey, 

classification and feature extraction algorithms suitable for referencing and training 

larger-scale feature extraction from sources such as satellite or aircraft. 

Methods are based around the photogrammetric process whereby extended aerial 

capture sessions comprising hundreds of images in each flight, are integrated into single 

or multiple geo-registered mosaic scenes (Ai et al., 2015; Candiago et al., 2015). Spatial 

or temporal comparison of quantitative spectrometric imagery for the purpose of change 

detection or time-series analysis requires standardisation of image values so that 

information is independent of sun angle, cloud cover, time of day/year, air clarity and lens 

geometry. Recent developments in multispectral camera technology and photogrammetry 

software provide for retrieval of reflectance values, which improves comparison between 

datasets (Bouvet 2014; Oliver 2017; Zheng et al., 2018). Although there are many 

published assessments of the components of survey and classification workflows, 

currently there are no accepted integrated approaches that are immediately applicable to 

mapping of seagrass from RPA-flown imagery. This research tests a selection of the 

published range of procedure components applicable to the problem of quantifying 

seagrass extent and density, then recommends an integrated workflow from that selection. 

It is anticipated that the workflow will be applicable to other seagrass species, although it 

will be developed using Zostera muelleri as a test case species. 

Seagrass is the subject of significant conservation research (Katwijk et al., 2015). 

Large areas of seagrass are in decline globally (Waycott et al, 2009), with some 

indication that New Zealand seagrasses are following this global trend (Matheson et al., 

2011). Monitoring of the condition of a seagrass population requires survey and sampling 

methods able to detect decline that is significant relative to the normal seasonal/annual 

variability in extent and condition. Seagrass meadow patches oscillate in size and 

connectivity, driven by a range of cycles of environmental condition and disturbance 
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(Roelfsema et al., 2014; Kilminster et al., 2015; Soissons et al., 2016). Rates of change 

may vary between estuaries at varying temporal and spatial scales. For some New 

Zealand sites, the variability is becoming understood (e.g., Park 2016), however many 

sites receive little or no attention and hence there is a dearth of local information. In New 

Zealand research has focussed on only a few regions and times, with the true extent of 

seagrass fluctuation largely unknown or unmapped (Turner and Schwarz 2006a; 

Matheson et al., 2009; Anderson 2019). 

Effective management and resource policy require monitoring methodology to 

track change and detect the levels of decline required to invoke a management 

intervention. There is currently no policy in New Zealand for when protection and/or 

restoration is triggered. The most sensitive methods in current use involve lengthy 

ground-level inspection and assessment of plants and substrate by ecologically trained 

personnel (e.g., McKenna et al., 2015, Carter et al., 2018). These methods applied at large 

scale have potential to damage delicate estuarine plant communities through foot-traffic 

(Travaille et al., 2015) and are effort-intensive. 

Seagrass can be difficult to detect at low density or where young plants or rhizome 

extensions are minor parts of the substrate scene which could include sediment of varying 

size and hue, wrack, detritus, and patches or clumps of algae and diatom (Ismail 2001; 

Lathrop et al., 2006; Pu et al., 2012, Kohlus et al., 2020). This has presented issues for 

airborne mapping (Baumstark et al., 2013; Hossain et al., 2015a; Baumstark et al., 2016; 

Nahirnick et al., 2019b). Similarly, the surrounding co-habitant flora and fauna and non-

living material (e.g., sedimentation and floating debris) can oscillate by day, season, and 

exposure to stressors. Floating material can deposit and relocate in substantial volume of 

material with each tide cycle. Interpretation of seagrass habitat can be dependent on the 

spatial scale of observation, seagrass metapopulation structure, patch-transience and 

community complexity (Kilminster et al., 2015; Kovacs et al., 2018, Grech et al., 2018). 

Scenes comprising mixed seagrass species of differing morphological size and patch 

characteristics be difficult classify (Chayhard et al., 2018).  These components add to the 

spectral complexity and variance of a seagrass meadow (Soissons et al., 2016). 

Remote sensing of seagrass decline using conventional satellite and aircraft 

imagery can be challenging due to the fine scale structure of many estuarine seagrass 

species being order(s) of magnitude smaller than the typical image pixel size of 

satellite/airborne imagery. For example, in New Zealand the leaves of Zostera muelleri 

are typically only a few mm wide and shoots comprise only a few leaves per shoot 

(Turner and Schwartz 2006b). At the high altitudes of observation of satellites and 

aircraft, heterogeneity blends together hue and detail within the image pixel, potentially 

reducing classification specificity. Close range observation provides detail and specificity 
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yielding increased seagrass definition, reduced noise, and therefore improved seagrass 

feature extraction (e.g., Duffy et al., 2018). 

Ground-level survey by field personnel allows observation of leaf damage and 

signs of microhabitat stress. However, ground survey is expensive to deploy repeatedly 

over large areas, is subject to observer interpretation, and has potential to damage the 

interest-areas of seagrass through trampling (Travaille et al., 2015). 

Remotely piloted aircraft operate close enough to the ground to collect high-detail 

information about the structure and condition of seagrass and its environment (Duffy et 

al., 2018). RPA survey also benefits from autonomous positional control, and have 

moderately long flight time (e.g., 15-40 minutes per battery-set depending on 

configuration and frame-size), so enable efficient data collection over large areas (e.g., 1 

km2 per flight is plausible larger for a large airframe flying at 120m). These capabilities 

allow for repeat-surveys over time at precise locations with accurate revisit positioning, 

and scales of survey that are significantly greater than can be covered on foot by a survey 

team. However, application of image analysis methods for characterising the condition of 

a target vegetation requires model calibration and tuning. Image classification methods 

require development of an analysis process-chain that can include photogrammetric 

mosaicking and normalisation of data across an image-set, spatial ortho-correction to 

rectify geographic position, radiometric correction for ambient light levels, and feature 

extraction algorithms that reliably generate condition attributes. No method currently 

exists that bring these facets together in a way that is suitable to measure intertidal 

seagrass. 

Intertidal estuarine seagrass grows upon a variable substrate comprised of a range 

of sediment types, shells and detritus of varying live or dead content, and grows amid 

other photosynthesising biota that can seasonally vary in abundance (e.g., algae, diatoms). 

In terms of the visual content of an image pixel, estuarine seagrass can vary in plant 

and/or leaf density (affecting the proportion of the pixel covered by the seagrass), and in 

the condition of the plant/leaves within that subset. Seagrass can be found at densities 

ranging from sparse, to saturated and highly overlapping. In New Zealand, Zostera 

muelleri can be found with leaf width <1 mm and up to 4 mm wide, and leaves of varying 

length, lying flat on the ground or curled when the tidal water has drained. When 

submerged in tidal water or residual pooling, the seagrass floats standing upright and 

sways with water movement. So, there is the potential for highly varied scene content. 

Overarching this variability in material content is the cyclical change in surface water 

during the tidal drainage process. Macro- and micro ground topography on an estuarine 

seagrass meadow brings about variability in drainage speed, with wetness ranging from 

near-dry to saturation and varying levels of short-term or permanent pooling. Upper 
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reaches of the estuarine intertidal height-field can dry completely, and lower areas can 

remain saturated. Drying is accelerated by sun, wind and air temperature, so water 

content and drying can potentially vary with time of day, weather, and season. 

Sunlight is known to absorb strongly in the red to near infra-red (NIR) region of 

the electromagnetic spectrum. Many indices of vegetation condition use the relative 

intensity of red wavelengths (used by photosynthesising plants) compared to an infra-red 

reference, to establish the amount of photosynthetic material present. Some plant health 

assessment methods further use the “red-edge” region of the spectrum to identify 

photosynthetic condition (e.g., Eitel et al., 2011; Bandyopadhyay et al. 2017). Variable 

water content on the estuary might impose a requirement for correction-factors when 

calculating standardised vegetation indices.  

The research conducted in this thesis is therefore an explorative image 

classification problem that also addresses the problem of variable water content, and in 

the context of developing aerial survey methodology. There is currently no integrated 

method available in the literature for application of RPA to seagrass feature extraction in 

New Zealand estuaries. There is also little previous New Zealand or international research 

on mapping seagrass character while the tide is out (e.g., Barrell et al., 2015). 

 

1.2    Thesis Objectives 

1.2.1    Overarching purpose 

The research aims to fill the current aerial survey methodology knowledge gap and 

explore what can be achieved for mapping seagrass beds by flying low to the ground over 

an estuary with the tide out. Research outcomes from the thesis are intended to provide 

information to guide development of indices of seagrass condition related to detecting 

changes in density and the spatial extent of seagrass beds for long term condition-

monitoring. 

The operational goal is to enable rapid collection of quantitative ground 

observation data for the purpose of training landscape-scale image classification using 

airborne or satellite derived imagery. An automated RPA survey method could be 

deployed so as to perform a role similar to a field-ecologist inspecting the site directly but 

achieving a greatly expanded survey area due to flight and capture speeds, with minimal 

damage to seagrass through trampling. 

This research also aims to generate information contributing towards the 

development of functional remote sensing methods for seagrass mapping that can be 

applied by semi-technical GIS and spatial analysis operators (e.g., in Local or Central 
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Government agencies) such that the seagrass monitoring can be executed within ‘business 

as usual’ environmental monitoring operations. 

The scope of this research is remote sensing of estuarine seagrass from low altitude 

RPA, with the tide out, on an estuary location where variability in seagrass density and 

abundance of surface materials can be observed in a short time span. 

 

1.2.2    Research questions 

The following specific research questions were investigated: 

 

i) Can seagrass character be accurately extracted from aerial imagery flown by 

remotely piloted aircraft over an estuary with the tide drained? 

ii) Does the spectral character of seagrass and non-seagrass materials change 

with varying residual water drainage during low tide? 

iii) Is there a specific optimal image processing and analysis method, within a 

small selection of candidate methods, for achieving high classification 

accuracy with respect to seagrass detection and density measurement? 

iv) Does the optimal method also yield good classification results at other survey 

times? 

v) Does the efficacy of the tested seagrass feature extraction methods vary with 

segmentation scale? and 

vi) Can the optimal method detect change? 

 

The following thesis structure and chapter objectives were set out to address these 

questions. 

 

1.3    Thesis structure 

The thesis chapter layout provides a systematic approach to delivering the research 

objectives (Figure 1.1). The method development employs autonomous RPA aerial 

survey, quantitative multispectral photogrammetry and precision global navigation 

satellite system (GNSS) survey to test suitability of low flying RPA for seagrass detection 

and monitoring. 

In short, Chapter 1 sets the research context. Chapter 2 reviews seagrass ecology, 

values, pressures and population trends, largely in the context of Zostera muelleri in New 

Zealand and provides an overview of relevant remote sensing methods. Chapter 3 

describes the study area. Chapters 4-6 are a logical work-breakdown by which a seagrass 
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feature extraction method is ddeveloped, assessed and replicated. Chapter 7 provides 

summary and synthesis of findings. 

Chapter 1 Introduction 

Introduces the research, outlining motivations, justification, purpose, and the 

overarching approach taken to address the research questions. 

 

Chapter 2 Background literature review – seagrass and remote sensing 

Chapter 2 provides a general review of literature relevant to the research. An 

effective remote sensing strategy for measuring seagrass on an estuary requires an 

understanding of the morphological structure, growth, meadow structure and physical 

presentation of Zostera muelleri upon the substrate. This includes the material that 

deposits upon seagrass to obscure the aerial view. The use of RPA for remote sensing of 

seagrass requires an assessment of feasibility for operation in the coastal marine area, and 

to establish appropriate hardware and control systems to address the specified research 

questions. These factors are reviewed from the existing publication base. The following 

chapter objectives are addressed: 

 

1.   Summarise the ecology, values, pressures and population trends of Zostera muelleri in 

New Zealand; 

2.  Provide a high-level overview of remote sensing methodology relating to seagrass 

application; 

3.  Discuss RPA hardware and trade-offs in RPA survey design; 

4.  Identify aerial survey factors that need to be accounted for in the survey design for 

subsequent chapters; and 

5.  Establish feasibility and limitations of RPA for use as a survey tool for seagrass on 

New Zealand estuaries. 
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Figure 1.1. Summary of chapter arrangement with key stages in the assessment of low altitude RPA for seagrass feature extractyion.  

General literature review - 
seagrass and remote sensing  
• Seagrass ecology and status. 
• Seagrass and meadow 

appearance. 
• Remote sensing components. 
• RPA feasibility and method. 

Mapping of seagrass density and 
change. 
• Mapping of a horizontal leaf 

area metric. 
• Linear relationship. 
• Change detection. 

 

Chapter 2. 

Chapter 6. Chapter 1. 

Introduction.  
• Context, objectives,  

overview, structure.  
 

The influence of residual low-
tide water on the ability to 
differentiate seagrass from 
associated scene content.  
Repeated RPA survey over the 
same ground spanning low-tide 
water drainage. 
• Spectral separability of seagrass 

and non-target surface 
materials.  

• Change in spectral character 
with low-tide residual water 
drainage. 

• Consistency of classification 
across low tide period. 

• Comparison of camera sensors. 

Chapter 4. Chapter 5. 

Object based image analysis. 
 
Background literature review.  
 

Comparison between 
segmentation, classification and 
feature selection options in terms 
of classification accuracy. 
• Effect of segmentation scale 

and classifier. 
• Effect of feature selection 

methods on classification 
accuracy. 

• Contribution of bands, derived 
indices and texture.  

• Repeatability across surveys. 
 Study Area - Wharekawa 

Harbour status and trend 
• Description of Wharekawa 

Harbour. 
• Study Area 
• Estuary change and seagrass 

loss over decades. 

Chapter 3. 

Chapter 7. 

Synthesis 
• Summary of findings. 
• Application. 
• Limitations. 
• Recommendations. 

Context Development Application 
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Chapter 3 Study Area - Wharekawa Harbour status and trend 

This chapter explains the basis for selecting Wharekawa Harbour as a study area. 

The research objectives require a seagrass population with a range of seagrass density, 

surface material and substrate type present within a scene of a size suitable for the 

available RPA and camera. The research requires there to be change in the seagrass 

population within the filming area. This requires and assessment of short- and long-term 

fluctuation in seagrass on the estuary. The following chapter objectives are addressed: 

1.   Determine the characteristics of Wharekawa Harbour in terms of its ecosystem and 

catchment environment; 

2.   Determine the current seagrass population of the estuary and short term (one year) 

stability of seagrass distribution in response to a significant rain and sedimentation 

event; and 

3.   Measure the long-term pattern of change in seagrass and estimate future trend. 

 

Chapter 4. The influence of residual low-tide water on the ability to differentiate 

seagrass from associated scene content 

This chapter examines the consistency of spectral character and classification 

outcome at different stages of residual tidal water draining, i.e., after the bulk tidal water 

has cleared at low tide. The effect of seagrass, detritus and shell density on classification 

outcome is also assessed, as well as the effect of pooling.  To achieve this, two specific 

objectives are addressed: 

1.   Quantify the effect of advancing residual water drainage on seagrass classification 

accuracy; and 

2.   Quantify consistency in predicted map outcome with residual water drainage. 

 

Chapter 5. Assessment of object-based image analysis for seagrass feature extraction 

In this chapter, a small subset of available image classification components are 

contrasted in terms of classification outcome so as to determine an optimal procedure. 

The six specific objectives of this chapter are: 

1. Selection of a small subset of object-based image analysis workflow components that 

are indicated to yield moderate to high classification accuracy in a range of vegetation 

mapping cases; 

2. Assemble a semi-automated process-chain that ingests RPA imagery, ground 

observations and spatial referencing data to yield spatially explicit classification 

results; 
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3.   Compare segmentation scale, classification algorithms and variable selection in terms 

of seagrass detection and classification accuracy; 

4.   Assess a range of spectral bands, indices and texture layers for contribution to 

classification outcome; 

5.   Select a classifier, segmentation scale and variable-selection method for subsequent 

testing on repeat surveys; and 

6.   Verify the method for mapping of seagrass in repeat surveys undertaken in the 

following year. 

 

Chapter 6 Mapping of seagrass leaf area and change 

In this chapter, the classification model is trained and assessed in terms of 

accurately digitised horizontal leaf area of seagrass. This explores the upper limit of 

classification performance that is possible using this survey framework. Condition maps 

are generated for two repeat surveys and the change in seagrass density quantified, with 

change-outcome compared to a precisely measured control dataset. The following chapter 

objectives are addressed: 

1. Map seagrass density distribution based on measured horizontal leaf area for two 

replicated surveys; 

2. Examine the relationship between seagrass density estimation and measured 

horizontal 2-dimensional leaf area; 

3. Quantify change in seagrass presence and density class; 

4. Contrast the cost and benefit of visual photo interpretation vs. measured seagrass 

density attribution; and 

5.  Demonstrate the use of low-altitude RPA imagery for training a subsequent 

classification using fixed wing aircraft imagery. 

 

Chapter 7 Synthesis and conclusion 

In this chapter, the results are reported in terms of the thesis and chapter objectives. 

The research findings are summarised within the context of developing of a monitoring 

method. Recommendations are made with respect to advancing this work to address 

multiple estuaries and time-series analysis. 
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CHAPTER 2 
 

2    Chapter 2.  Background literature review - seagrass and remote sensing 

2.1    Introduction 

Seagrass is an important component of estuarine and coastal ecosystems, providing 

a host of ecological functions required for ecosystem resilience, and a range of benefits in 

terms of human wellbeing and economic prosperity (Needham et al., 2013; Morrison et 

al., 2014; Anderson et al., 2019). Seagrass is in decline globally (Coles and Fortes 2001; 

Orth et al., 2006b; Waycott et al., 2009), and New Zealand seagrass (Zostera muelleri) 

may be following this trend with decline evident at a number of locations (Turner and 

Schwarz 2006a; Matheson et al., 2009; Matheson et al., 2011; Park 2016; Anderson 

2019). Management of seagrass requires timely and accurate information about it’s 

condition. 

Trends in seagrass condition can be masked by high natural oscillation in seagrass 

extent due to both seasonality, stochastic events (e.g., storms) and/or reactions to long 

term stressors. However, understanding how stressors influence seagrass condition, and 

differentiating stressor-induced changes from natural patterns, can be difficult. To date 

this has been attempted via monitoring seagrass extent, which acts to examine changes, 

but fails to link to causality. Rarely has seagrass extent and condition been monitored. 

Remote sensing is the collection, analysis and interpretation of information about a 

subject from a remote vantage point (Klemas 2015). Much of the remote sensing field 

concerns the acquisition and preparation of raster or point cloud datasets from passive 

sensors (imagery in the visual context) or active sensors (e.g., laser terrestrial scanning 

and synthetic aperture radar), and the statistical quantification of content compared to a 

reference or benchmark. A long-term overarching motivation of remote sensing is to 

enable efficient repeatable mapping of surface characteristics at landscape, regional or 

greater scale, with a repeat-capture timeframe useful for change-detection and time-series 

analysis (Johnson and Patil 2006; Klemas 2001). 

To effectively monitor changes in seagrass condition requires statistically robust 

measures of condition for the target site. Field sampling of seagrass provides options for 

quantifying change but are labour intensive and can be prohibitively expensive at the 

landscape scale. Remote sensing techniques provide efficient options for quantifying 

seagrass at large scale. Satellite and airborne imagery have yielded successful 

characterisation of seagrass from the shore to the deep-water limit of seagrass and provide 
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useful information: but largely in terms of coarse meadow extent and community 

structure. 

Remote sensing analysis requires moderate volumes of ground-surveyed reference 

information in order to train and validate the computer image classification, and model 

variability in surface spectra. Collecting ground reference data for remote sensing 

application, that is representative of estuary-scale variability in condition and appearance, 

can also be labour intensive. Valid model training also requires ground surveys at the 

time of image capture, before the scene changes significantly. Hence, consideration of the 

temporal application of ground survey is needed, ideally with ground-truthing occurring 

within days of image capture. A rapid ground survey method would aid in application of 

satellite or airborne remote sensing. Remotely piloted aircraft (RPA) are a novel 

technology for remote sensing that may offer a solution to rapid collection of ground 

reference data. 

Quantitative survey using RPA has been applied to a range of vegetation 

monitoring problems including seagrass at a range of complexity levels with varying 

success (Chayhard et al., 2018b; Duffy et al., 2018; Ruwaimana et al., 2018; Nahirnick et 

al., 2019a). Survey design requires a number of decisions to be made regarding drone 

mount, flying height and speed, camera choice and a range of capture parameters relating 

to aerial photography and/or photogrammetric model construction. There is no validated 

RPA based survey ‘recipe’ that can generally be applied with confidence to the problem 

of mapping seagrass extent and/or condition, and published research on the field may not 

be immediately transferrable to the case of Zostera muelleri on New Zealand estuary 

types due to morphology differences (Kuo and den Hartog 2006; Turner and Schwartz 

2006b).  Therefore, a key driver in developing this research is to develop a framework 

using RPA to support large scale survey of Zostera muelleri. 

RPA technology in the current day has limited flight time, and flying restrictions 

that limit range-from-observation (Civil Aviation Authority 2018). These factors limit 

total area that can be surveyed in a single sortie (flight) by RPA, and thereby logistically 

prohibitive on large and/or inaccessible estuaries. Therefore, RPA are not immediately 

suitable for regional scale contiguous mapping of large estuarine systems without 

extension to fuel longevity and changes to line-of-sight control regulations. However due 

to potential proximity to the ground and programmability for small scale quantitative 

capture, there is immediate value for RPA in operating as a support tool for training 

larger scale airborne or satellite imagery. This research explores a survey capture method 

using RPA that can be applied rapidly in discrete sorties to accumulate volumes of 

ground reference (model training/test) information to support remote sensing using larger 

scale imagery. 
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2.2    Chapter objectives 

The purpose of this chapter is to set the scene and context for this research by 

reviewing the ecology, morphology, growth, and distribution of seagrass in the context of 

trend analysis and population condition monitoring and the visual presentation of seagrass 

on an estuary. Remote sensing methods are introduced here (but expanded in chapter 5) 

and important aerial survey design factors discussed.  The review then examines the 

opportunity presented by RPA, and limitations in their use for survey on New Zealand 

estuaries under the following specific objectives: 

1.   Summarise the ecology, values, pressures and population trends of Zostera muelleri in 

New Zealand; 

2.  Provide a high-level overview of remote sensing methodology relating to seagrass 

application; 

3.  Discuss RPA hardware and trade-offs in RPA survey design; 

4.  Identify aerial survey factors that need to be accounted for in the survey design for 

subsequent chapters; and 

5.  Establish feasibility and limitations of RPA for use as a survey tool for seagrass on 

New Zealand estuaries. 

 

2.3    Seagrass ecology 

2.3.1    Seagrass in New Zealand 

Seagrasses are a group of ~72 marine-adapted angiosperm species found world-

wide in many shallow coastal waters and estuarine habitats (Short et al., 2007; Short et 

al., 2011). This group is comprised of marine flora that have similar basic anatomy and 

function and have common structural modifications to enable growth and reproduction in 

saline environments (Kuo and den Hartog 2006; Touchette 2007).  Morphological 

differences between seagrass taxa can be attributed to biogeographical differences in each 

species’ evolutionary environment (den Hartog and Kuo 2006; Short et al., 2007). 

Seagrass in New Zealand occurs as a single species Zostera muelleri, which was 

previously known as Zostera novazelandica. Zostera muelleri is the accepted scientific 

name and has been synonymised with Z. capricornia, Z. mucronata and Z. novazelandica 

(Les et al., 2002; Jacobs et al., 2006). Ruppia megacarpa is also present in New Zealand 

and is considered by some to be a seagrass (e.g., Short et al., 2007), however R. 

megacarpa is often associated with freshwater systems (Robertson and Funnell 2012). 
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Zostera muelleri is monoecious, monopodial and has a perennial life history (Turner and 

Schwartz 2006a; den Hartog and Kuo 2006; Moore and Short 2007). The genetic 

variability of Z. muelleri across New Zealand suggests slow genetic exchange between 

populations (Jones et al., 2008). 

Seagrasses typically maintain their ecosystem presence via clonal growth although 

in some species presence is also maintained by sexual reproduction (Turner 2007). 

Seagrass plants consist of one or many shoots emerging by a single stem and sheath from 

underground root and rhizome networks. Leaves can be covered in deposited particles or 

epiphyte growth and are often surrounded by detritus and decaying seagrass material 

(Figure 2.1). 

 

Figure 2.1. Seagrass growing in Wharekawa Harbour, February 2016. 

 

Leaf width and length vary regionally in New Zealand (Ismail 2001; Turner and 

Schwartz 2006b). For example, mean leaf width ranged from 1.4-2.4 mm for sites across 

Tauranga Harbour (Kohlmeier et al., 2014), while a narrower leaved Z. muelleri (1.1-1.2 

mm at Whangamata estuary and 1.3-1.8 mm at Whangapoua and Wharekawa estuaries) is 

present at sites on Coromandel Peninsula (Turner and Schwarz 2006b), with average leaf 

length measuring in the range 5.5 to 9 cm. However, leaf length can reach up to 48cm at 

sub-tidal sites in this region (Schwarz et al., 2006). Mean summer shoot density ranged 

from 2700–3800 m-2 across three Coromandel estuaries (Turner and Schwarz 2006b). 

However, it is noted that density can reach more than 5000 m-2 (Turner and Schwarz 

2006a). Growth rate and biomass of seagrasses are modulated by a number of factors 

including water temperature, photosynthetically available light, nutrient availability, 

epibiota smothering, and intertidal exposure to air and solar radiation (Lee et al., 2007; 

González-Correa et al., 2009; Collier and Waycott 2009; Kim et al., 2016; Nelson 2017; 

Wilkes et al., 2017). Consequently, a seagrass monitoring program would need to 

consider sub-regions with different rates of change in seagrass density depending on 
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proximity to sources of nutrient, sedimentation, detritus, contaminants and marginal 

(overshadowing) vegetation, or position within the tidal hydrology. These are sources of 

variability that may need to be modelled within an image classification and seagrass 

feature extraction. 

 

2.3.2    Ecological role and ecosystem services 

Seagrass plays an important function in maintaining structure and resilience of 

estuarine systems (Duarte 2002; Duarte et al., 2006; Carr et al., 2012; Morrison et al., 

2014). Seagrass contributes to the estuarine ecosystem at a multitude of structural, 

biophysical and trophic levels: they are primary producers that are consumed by macro 

and meiofauna (Horinouchi et al., 2012; Ha et al., 2014); they provide habitat resulting in 

high infaunal meadow biomass (Leduc and Probert 2011); and indirectly facilitate 

nutrient recycling through herbivory and resulting promotion of seagrass growth 

(Christianen et al., 2012). Faunal biomass has been quantified as correlating with below-

ground seagrass biomass (Lee et al., 2001). Seagrass also promotes sediment stabilisation 

(Basterretxea et al., 2004; Bos et al., 2007; Reidenbach and Timmerman 2019), reduces 

current velocities within the bed (Eckman 1990; Koch and Gust 1999; Heiss et al., 2000; 

Bryan et al., 2007; Widdows et al., 2008; Wang et al., 2009; Hendriks et al., 2011; John et 

al., 2015) and acts as refugia for fish and crustaceans (Cooper 2015; Espino et al., 2015a; 

Espino et al., 2015b). Arponen and Boström (2012) demonstrate that edge effects are 

more pronounced upon species diversity than patch size effects, and that smaller isolated 

patches can have value for overall diversity. Zostera marina was found to reduce currents 

by 40% in the winter and 60% in the summer (Hansen and Reidenbach 2013), with an 

effect that extended up to 0.5 m above the benthic surface. Bryan et al. (2007) 

demonstrated that seagrass meadows extend the current-boundary layer upwards, thereby 

reducing velocity interacting with the meadow (‘baffling’). 

Seagrass provides a range of recognised human ecosystem services that are 

becoming increasingly quantified (Duarte 2002; Fourqurean et al., 2012; Duarte et al., 

2013; Cullen-Unsworth and Unsworth 2013; Needham et al., 2013; Anderson 2019). 

Seagrass ecosystem services can include providing raw materials and food, coastal 

protection, erosion control, water purification, maintenance of fisheries, carbon 

sequestration, as well as tourism, recreation, education and research opportunity through 

various direct or indirect mechanisms (Barbier et al., 2011). The value of seagrass has 

also been quantified for the fishery industry and food supply (Unsworth et al., 2010; Tuya 

et al., 2014; Unsworth et al., 2019). For example, Tuya et al. 2014 established a monetary 
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value for commercially relevant fish species using seagrass (Cymodocea nodosa) 

meadows amounting to 95.8 euros ha-1 y-1. 

Seagrass value has been expanded recently to include carbon sequestration 

(Fourqurean et al., 2012; Greiner et al., 2013; Lavery et al., 2013; Macreadie et al., 2014; 

Marbà et al., 2015), which has climate change implications especially where blue carbon 

is being considered as an offset to international obligations or as a mechanism for carbon 

offsetting. However, seagrass carbon sequestration statistics may be overestimated where 

meadow structure and heterogeneity in seagrass carbon storage is not factored into 

calculations (Ricart et al., 2015).  Authors Campagne et al. (2015) concluded that the 

economic value of seagrass is largely undervalued by policy makers. The full potential 

value of seagrass internationally may not be fully exposed (Barbier et al., 2011). 

 

2.3.3    Seagrass degradation and decline 

Loss of seagrass in coastal or estuarine systems has ecological consequences in 

terms of reduced biodiversity, water quality, and sediment stability (Waycott et al., 2009). 

Economic effects of seagrass loss are expected to include: potential loss of fisheries;  

impacts on waterway access; coastal infrastructure maintenance; reduced ability of the 

estuarine system to remove nutrient excess derived from upstream agricultural runoff; 

carbon sequestration; as well as numerous aspects of ecological human wellbeing and 

economic integrity as described above (McArthur and Boland 2006; Unsworth et al., 

2010; Bertelli and Unsworth 2014; Cullen-Unsworth et al., 2014; Campagne et al., 2015). 

Direct and indirect signs of decline are not always obvious and can be masked by 

ecological and coastal process (Fonseca et al., 2002; Cullen-Unsworth and Unsworth 

2016). Contraction or fragmentation of a seagrass population may be short-term within a 

longer-term metapopulation extent, such that decadal monitoring may be required to 

reveal significant stressor impacts at landscape scales and trigger a management 

intervention. 

Causes of decline can include a range of environmental stressors, including i) 

changes in light; ii) climate change impacts; iii) disease; iv) eutrophication; and v) 

physical disturbance. Each of the mechanisms is considered in turn below. 

The first significant mechanism identified is light reduction resulting from 

sediment or silt deposition (e.g., Matheson and Schwarz 2007; González-Correa et al., 

2009), or algal or other epiphytic smothering accretion (e.g., Nelson 2017; Wilkes et al., 

2017). Coating of seagrass leaves by silt or epibiota can arise from anthropogenic sources 

including excess nutrients (resulting in excessive epiphyte growth), sediment inflow, 

mechanical re-suspension of substrate, and altered flow dynamics from coastal structures 
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that can lead to scouring (e.g., Udy and Dennison 1997; Duarte et al., 2004; Turner and 

Schwartz 2006a; Erftemeijer and Robin Lewis 2006; Cabaço et al., 2008; Erftemeijer et 

al., 2006; Román et al., 2019). Anthropogenic generation of sediment may be minor 

compared to the scale of impact of stochastic weather events during which low sediment 

inflow or resuspension (chronic stressor) may be exacerbated to significant smothering 

(acute stressor) over a short period of time (Basterretxea et al., 2004; Fonseca et al., 

2008). Storms have potential for catastrophic loss of seagrass given sufficient storm 

intensity and consequential high river and tidal water flow intensity (Yang and Yang 

2009; Pollard and Greenway 2013; Kim et al., 2015). 

Reduction of light at depth or with particulate covering, shifts the balance from 

photosynthesis to respiration, thereby reducing organic production, such as carbohydrate 

investment in rhizomes and seeds (Ralph et al., 2007). Natural processes, such as 

surface/ground water inflow associated with rainfall events and marine storms or wave 

activity can cause suspension of estuarine particulate or organic material and contribute 

directly to the natural variations of seagrass condition (Cabaço et al., 2008; Gera et al., 

2014). Similarly, different seagrass species have varied thresholds for burial in terms of 

stress and recovery (Cabaço et al., 2008). 

Temperature increase and rising sea levels induced by climate change are another 

major threat with potential for significant seagrass loss (Campbell et al., 2018; Chefaoui 

et al., 2018). Seagrass growth can be driven by the amount and fluctuation in solar 

irradiance for photosynthesis (Lee et al., 2007; Collier and Waycott 2009), emersion time 

(Apichanangkool and Prathep 2014), nitrogen and potassium limitation, and the impact 

on light availability from turbidity where smothering may lead to photosynthetic stress, 

disease or biomass loss (de Boer 2007; Carr et al., 2012; Carr et al., 2016). There are 

minimum levels of light that allow for increased growth in seagrasses, with these 

thresholds differing between species. 

Intensive light and temperature can stress seagrass (e.g., Carr et al., 2012). York et 

al. (2013) found for a seagrass (Zostera muelleri) population in the barrier estuary Lake 

Macquarie (temperature range 23-33°C  with optimal seagrass growth at 27°C), that 

adverse temperature effects were determined at 32°C resulting in reduced above-ground 

biomass and leaf size. A shading experiment in this study found reduced leaf density, 

above-ground biomass and shoot biomass in artificially reduced light levels (York et al. 

2013). 

Temperature increase from climate change presents a threat to seagrass species that 

may lack tolerance to increased water temperature (Campbell et al., 2006; Jordà et al., 

2012; Koch et al., 2013; Chefaoui et al., 2018). However, it should be noted that one 

study found increase in temperature associated with seagrass health gains due to relief 
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from pathogen infection (Olsen et al., 2015). The effect of climate-change related 

temperature increase on seagrass may be contingent upon a number of factors such as 

nutrient and light availability, and photosynthetic stress, as increased temperature should 

accelerate consumption of nutrients and raise photosynthetic impact of smothered light 

levels (Lee et al., 2007). 

The protist endophyte Labyrinthula zosterae is a potential large-scale threat to 

seagrass through ‘wasting disease’ (Short et al., 1986; Muehlstein et al., 1988; Ralph and 

Short 2002). Background association between seagrass and L. zosterae has been 

documented globally (Vergeer and den Hartog 1994). This disease is also known to be 

naturally co-existing with Zostera sp. without measurable impact (Brakel et al., 2014), 

with pathogenic incidences in New Zealand being rare (Armiger 1964) and Australia 

(Trevathan-Tackett et al., 2018). Thus, the threat of L. zosterae may be patchy, but when 

triggered it has been known to cause severe wasting of Zostera and remains a potential 

threat (Muehlstein 1989; Ralph and Short 2002; Sullivan et al., 2013). 

Seagrass damage from eutrophication can happen through a number of pathways, 

including direct ammonia toxicity, oxygen stress from algae (epiphyte leaf load and 

periphyton bloom) related reduction of solar radiation, surface-smothering from algal 

blooms (Schmidt et al., 2012; Bishop and Kelaher 2013; Qiuying and Dongyan 2014), as 

well as exacerbating feedback mechanisms such as sediment re-suspension (and resulting 

light attenuation) after seagrass density reduction (Burkholder et al., 2007; Lee et al., 

2007; Serrano et al., 2016). 

Significant coarse disturbance to seagrass can also arise from human mechanical 

damage. Direct damage can arise from boat propeller and hull contact, and anchor-drag 

(Okudan et al., 2011; La Manna et al., 2015). Research by Li (2018) observed seagrass 

damage from boat scars, with faster recovery in higher density areas than sparse areas. Di 

Carlo and Kenworthy (2008) measured both above and below-ground damage resulting 

from vessel-groundings and manatee feeding damage, with higher recovery rate for 

above-ground biomass.  Human trampling damage has also been documented (Eckrich 

and Holmquist 2000; Travaille et al., 2015). 

Therefore, seagrass density and extent are driven by seasonality and other 

variability in environmental and land-use factors that integrate to vary seagrass growth, 

damage and survival throughout the year. Seagrass condition can be subject to the 

interaction of multiple growth factors and stressors (e.g., Eldridge et al., 2004; York et al., 

2013).  Exposure to certain stress can exacerbate the impact of other stressors reducing 

resilience (Moreno‐Marín et al., 2018). The overall pattern of change in condition may be 

particular to the latitude, morphology of the site, surrounding soil composition and land-

use fluctuation in the catchment. 
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2.3.4    Seagrass seasonality and patch dynamics 

Perennial seagrass meadows show seasonal patterns of growth that can be 

generalised as having peaks in spring and summer, with reduced growth and shedding of 

leaves in autumn, and little to no growth in winter (Turner and Schwartz 2006b; Andrade 

and Ferreria 2011; Kim et al., 2014; Soissons et al., 2016). These patterns may be 

attributed to seasonal change in growth associated with annual change in solar radiance, 

modulated by average water temperature, light conditions, nutrients and the annual 

photoperiod cycle (Orth et al., 2000; Duarte et al., 2006; Orth et al., 2006a; Ralph et al., 

2007; Roelfsema et al., 2013; Kim et al., 2014; Kohlmeier et al., 2014; Moore et al., 

2014). 

Seagrass from several Coromandel estuaries have higher shoot densities within 

seagrass patches during January (austral summer), but the reverse has been detected 

during austral winter (July) where in some cases high shoot density occurred at the patch-

edge (Turner and Schwartz 2006b). Seagrass condition is also known to vary on different 

temporal and spatial scales (Collier and Waycott 2009; Kim et al., 2014) and is difficult 

to detect at low density or where young plants or rhizome extension are minor parts of the 

substrate scene. The winter reductions in seagrass growth and biomass can be recovered 

quickly once spring and summer growth intensifies (Kirkman et al., 1982; Ismail 2001; 

Turner 2007; Fonseca et al., 2008; Carr et al., 2012). This scenario was observed on 

Wharekawa Harbour (see census data Chapter 3). 

Seagrass has biomass above (leaf and stem) and below (stem, rhizome and root) the 

benthic surface (Kirkman 1985; Ismail 2001; Turner and Schwartz 2006b). The surface 

appearance of seagrass can change predictably upon damage (e.g., change in leaf shape) 

or degradation (e.g., change in photo-pigments and therefore colour). However, such 

signals of impact upon seagrass resulting from human environmental pressure could 

easily be confounded by natural seasonal processes (Soissons et al., 2016). For example, 

Arumugam et al. (2013) noted that patch layout on the landscape were related to substrate 

physiochemical properties which varied with season and storm activity, and possibly 

shaped seagrass layout within this variation. 

The pattern and variability in the structure of a seagrass population in an estuary is 

a complex interaction of hydrodynamics, macroclimatic conditions, sediment movement 

and the history of previous seagrass growth that determines where propagates (vegetative 

or sexual) are deposited. This determines sites of future meadow maintenance and 

expansion. Long term stability in the extent of seagrass can be rapidly disrupted by 

stochastic hydrological events (Basterretxea et al., 2004). Temporal dynamics were 
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explored by Bos et al. (2007) who transplanted seagrass into an unvegetated tidal flat, 

then demonstrated sediment accretion and a shift towards finer sediments as a 

consequence of seagrasses presence. Tidal water movement patterns across estuarine 

seagrass patches can differ during incoming tidal inundation compared to outgoing 

drainage of the estuary (Bryan et al., 2007), which may also have implications for 

sediment entrainment and flocculation. Barnes (2013) described for a South African 

estuary, a largely uniform seagrass population (Zostera capensis) despite a large salinity 

range. 

Patch fragmentation can be a normal part of the dynamic of estuarine seagrass 

meadows at the annual-multiannual timescale and is linked to current strength and 

bathymetric depth (Fonseca 1983; Fonseca 1987; Fonseca et al., 2002; Bell et al., 2008). 

Seagrass has been defined by one author as constituting a ‘meadow’ form where 

contiguous seagrass area exceeds 10,000 m2, below which growth is considered a patch 

(Anderson 2019).  Sediment movement and wave damage can partition intact meadows 

into discrete patches. Both large and small patches have important value for recolonising 

an area after disturbance (Greve et al., 2005; Almela et al., 2008; Arponen and Boström 

2012). 

Authors Bell et al. (2001) concluded from their research that there is little effect of 

fragmentation on infauna content of a seagrass meadow, and that patch size alone didn’t 

account for variation in observed fauna. Epifaunal density can be positively related to 

fragmentation (Arponen and Boström 2012). In another study, variability in epifauna 

species was greater at within-meadow scale of measurement (10 m and 1 km context) 

compared to greater scales reflecting a need to include attributes at these scales when 

undertaking predictive modelling of seagrass ecology (Gullström et al., 2012). In a global 

review, Boström et al. (2006) found a mix of evidence across published studies (positive, 

negative or inconclusive) for the effect of seagrass patch size and edge on faunal 

abundance or diversity. 

 

2.3.5    Measurement of seagrass extent and condition  

Conservation management of seagrass requires methods for detecting change in 

condition of seagrass at spatial scales of capture meaningful to local and regional 

population maintenance. Changes in extent and density need to be understood in terms of 

long-term persistence of source seagrass populations at landscape scales. Perception of 

seagrass condition can be subjective. For example, in a study of populations of seagrass 

Posidonia angustifolia, Wood and Lavery (2000) determined that perceived seagrass 

health varied between respondents, and for many factors there were no actually 
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significant differences in characteristic between sites when measured. Furthermore, for 

the set of factors confirmed as different between perceived healthy and unhealthy sites 

(e.g., seagrass canopy coverage and shoot density), there was seasonal difference in the 

usefulness of factors as a perceptive indicator of condition. Duarte (2002) urged that 

effective seagrass conservation requires development of quantitative models in how 

seagrass responds to disturbance and pressure. 

Over several decades of seagrass research there have been a multitude of methods 

that have been applied to quantitatively measure various components of seagrass 

population condition and develop prospective indicators. Significant reviews have 

collated various approaches employed at a range of investigative scales (e.g., Kirkman 

1996; Short and Coles 2001; Duarte et al., 2006; Marbà et al., 2013). 

Understanding seagrass condition integrates plant abundance (distribution, 

composition), performance (survival, growth, spread) and reproductive success 

(flowering, fruiting, seedbank development, seedling success, genetic diversity) 

(Kilminster et al., 2015) 

Indicators of seagrass condition could include seagrass distribution and 

contributing factors such as abundance, cover, above/below ground biomass, shoot, leaf 

and rhizome characteristics, chemical/nutrient/mineral content and connected community 

composition as well as indirect detection using observations of seagrass herbivores 

(Irving et al., 2013; Marbà et al., 2013; Roca et al., 2016; Hayes et al., 2018; Anderson et 

al., 2019). 

Indicator methods can involve manual inspection and/or collection of material at 

seagrass field sites to generate detailed data for point locations, as cores, quadrats and/or 

positions on transects (e.g., Burdick and Kendrick 2001; Fonseca et al., 2002; Turner and 

Schwartz 2006b; Dos Santos 2011; Neckles et al., 2012; Irving et al., 2013). In some 

instances, researchers have alluded to seagrass population condition by capturing meadow 

extent and tracking changes in extent (Mount 2007; Needham et al., 2013; Park 2016). In-

field habitat mapping is labour intensive, and data accumulates slowly (Felsing and Giles 

2011). Likewise, collection of seagrass/conspecific or substrate samples and/or spatially 

located surface references can amount to significant accrued time and effort at the estuary 

scale of sampling (e.g.; Short and Coles 2001; Robertson et al., 2002; Short et al., 2006). 

Field preparations and operational planning requirements can escalate response and 

execution timeframe for in-situ seagrass mapping, especially at remote locations. 

The response time of a condition indicator, in terms of change detection time 

relative to the timeframe of pressure-induced change under environmental stressors, is an 

important success factor for seagrass condition monitoring (Roca et al., 2016). The use of 

a condition indicator (e.g., leaf area index) can be sensitive to timing with respect to 
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environmental stressors (Soissons et al., 2016). Observable condition measures, such as 

shoot density and biomass, can be sensitive to general meadow changes, however Roca et 

al. (2016) have noted that physiological/chemical measures can be more sensitive to early 

stages of environmental stress. 

Successful detection of change in any one estuary may therefore rely on effective 

sampling design, correction and control of covariate factors, and a statistically robust 

modelling procedure (Schultz et al., 2015). As such, understanding spatial complexity of 

a seagrass population is important for ascribing the spatial and temporal accuracy of any 

seagrass monitoring standard (Barrell et al., 2015; Hossain et al., 2015a). Contiguous 

monitoring was found in one study to be more appropriate than a disparate grid-sampling 

approach (Fonseca et al., 2002). The authors also found that additional attributes 

(hydrodynamic setting, wave exposure, temperature salinity and water depth) improved 

modelling performance. 

Roca et al. (2016) highlight that no single indicator can satisfy every management 

objective, but propose a general framework for selecting seagrass indicators depending on 

knowledge of the seagrass system, based on synthesis of the literature. Although there are 

several suggested metrics that can indicate seagrass condition, no agreement has been 

published on a “best-practice” or consistently effective method. Once such methods are 

established, remote sensing and associated computer mapping automations could 

potentially enable large scale quantification of condition with favourable efficiencies. 

Remote sensing methods are a mechanism to greatly enhance seagrass monitoring 

extent and cost-return in terms of data volume and coverage. But these methods rely upon 

being able to see condition metrics upon the ground surface, through the water column, or 

where underground conditions correlate with surface measurements. 

A remote-sensing solution to this problem would first require that high likelihood 

seagrass objects are determined within the imagery, and isolated from non-target and 

potentially confounded information (i.e., seagrass feature extraction). Therefore, this 

project aims to investigate if remote sensing-based seagrass feature extraction can be 

achieved. 

 

2.4    Overview of remote sensing for seagrass mapping 

2.4.1    Remote sensing of seagrass and coastal environments  

A number of studies have set out to map vegetation within coastal or specifically 

estuarine systems using a variety of manual field survey and/or cartographic methods 

(Table 2.1) (Stevens and Asher 2005; Holmes et al., 2007; Rebelo et al., 2009; Hillock 

and Rohan 2011; Knudby and Nordlund 2011; Graeme 2012; Timm and McGarigal 2012; 



 

22 
 

Tiner 2015). Earlier remote sensing using satellite imagery and methods were generally 

insufficient for discriminating wetland species in fine detail due to limitations in spatial 

and spectral resolution of the imagery compared to the scale of structure in wetland 

communities (Adam et al., 2010). In more recent years, imagery has become available 

with greater spatial resolution for yielding structural detail of coastal and freshwater 

wetland communities (Ashraf et al., 2010; Klemas 2011; Allan 2016). 

Remote sensing has been applied to estuarine mapping at a number of scales of 

observation (Ismail 2001; Pasqualini et al., 2005; Alexander 2008; Lee and Yeh 2009; 

Borfecchia et al., 2013a; Roelfsema et al., 2015; Traganos et al., 2018a; and Appendix 

2.8.1). Lyons et al. (2013) demonstrated use of satellite derived time-series mapping of 

seagrass for understanding long term spatial and temporal trends but emphasises the 

importance of complementary ground monitoring. Airborne/aircraft mounted sensors 

have been used to quantify seagrass (Mount 2006; Casal et al., 2012; Borfecchia 2013b; 

Hill et al., 2014) as well as other target coastal vegetation types (Alexander 2008; Zhang 

and Baas 2012). Seagrass has been mapped using visual and multispectral wavelength 

imaging, acoustic (sonar) (e.g., Sánchez-Carnero et al., 2012; Barrell et al., 2015) and 

laser scanning (Pan et al., 2016) in different studies. Scale of application has generally 

been limited to coarse scale meadow/population-level assessments due to limitations of 

spectral and spatial sensor resolution in earlier imagery (Peneva et al., 2008; Torres-

Pulliza et al., 2013; Lapray et al., 2014; Roelfsema et al., 2014; Barrell et al., 2015; 

Hossain et al., 2015b; Lang et al., 2015). Acoustic methods have been useful for 

identifying and characterising seagrass or calibrating other image analysis (Gagnon et al., 

2008; Lyons et al., 2011), although local complexities in habitat structure can affect 

integration with other datasets such as satellite imagery (Barrell et al., 2015). 

Discrete large-scale remote sensing solutions for estuarine seagrass systems, 

demonstrating high level of accuracy and of a scale suitable for regional seagrass 

monitoring are uncommon in the literature (e.g., Roelfsema et al., 2015). Authors Torres-

Pulliza et al. (2014) mapped seagrass extent across a part of the Coral triangle using 

Landsat satellite imagery and gained up to 78% seagrass mapping accuracy, but 

recognised that areas of seagrass were being excluded from the map due to coarse 

topography-based image segmentation criteria, and identified a source of error where 

their method failed to detect seagrass growing at low density. An approach such as this 

may have potential for seagrass mapping in New Zealand, however in order to fully 

quantify trends in seagrass condition, a much finer resolution of imagery with higher 

levels of spectral differentiation would be required. Multispectral imagery that is of high 

spatial resolution or use of existing multispectral sensors at much lower altitude, may 

provide options for mapping of seagrass condition in sparse patches. 
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2.4.2    Sensor trade-offs 

To map seagrasses there are trade-offs that need to be made in sensor 

configuration, selection and deployment. At the sensor level, a trade-off between the 

spectral granularity, image size, scan speed (e.g., rolling shutter vs. global shutter) and 

image capture frequency needs to occur. These features are collectively limited by the 

microelectronic bus design, bandwidth and speed of transfer to storage within the camera. 

When using a particular sensor, there is a survey design trade-off. Decreasing sensor 

height improves detail levels, but at the cost of the survey area achievable per unit of 

effort. This is due to the time to accumulate coverage. It also relates to the airframe 

needing to fly slower in order to avoid motion blur and maintain image clarity. 

Cost-effective seagrass monitoring at landscape scale requires spatially explicit 

maps of seagrass distribution and structure (Neckles et al., 2012). Remote sensing of 

surface biota has the advantage of high-altitude vantage point, long term deployment, 

spectral consistency across a time-series, and persistence of sensor availability allowing 

time-series analysis (Lyons et al., 2013; Tiner et al., 2015; Guo et al., 2017). Satellite 

imagery has provided useful information for large scale seagrass mapping, but generally 

the spatial pixel resolution and spectral specificity in current sensors is still lacking for 

widespread seagrass resource monitoring (Hossain et al., 2015a). 

Lower altitude sensors (airborne, balloon, or RPA derived) have been applied when 

the spatial resolution of satellite data is insufficient (Klemas 2015). Choice of approach is 

dependent on the extent of seagrass, funding and the survey frequency required (Kovacs 

et al., 2018). 

Consumer colour cameras have been used for mapping seagrass. Mount (2006, 

2007) used aircraft-mounted camera photography to quantify seagrass down to the 

maximum visible water depth, with change measured through a proposed geostatistical 

“mega-quadrat”. Barrell and Grant (2015) successfully mapped seagrass Z. marina in 

Nova Scotia using a consumer digital camera and global positioning system (GPS) 

receiver attached to a helium balloon, which for that scale of site (sub-estuary) and target 

resolution (pixel width ~4cm) allowed seagrass classification accurate to detect change in 

patch-edge movement across a 26 month period of 0.29-0.46 m y-1. Oblique airborne 

imagery was used to successfully map benthic seagrass habitat revealing seasonal change 

in coverage (Andrade and Ferreira 2011). There are limitations for the use of consumer 

cameras as quantitative sensors for image analysis due to the broad and overlapping 

spectral sensitivity range of the conventional camera sensor type. 
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Low altitude, very high-resolution imagery may allow individual seagrass shoots or 

leaves to be resolved (whole or in part), and thereby enable specific feature extraction and 

analysis of optic character within the target feature. Seagrass leaves are small in 

dimension compared to many vegetation types that are the subject of remote sensing 

analysis. Seagrass measured in one study in the range of 55-90 mm for mean leaf length 

on Wharekawa Harbour (Turner 2007), although up to 480 mm in one recorded instance 

in sub-tidal waters of New Zealand (Schwarz et al., 2006). Leaves are thought to plateau 

in width at ~2 mm width (Turner and Schwartz 2006b). Seagrass leaves are slightly 

buoyant such that when the tide is flooded, leaves raise up to some state of partial or fully 

upright orientation, at which point there are three key changes in how the leaves present 

to a nadir-oriented camera from above: i) the leaf area visible from above reduces due to 

the aspect change; ii) view of the substrate increases; and iii) there is a substantial 

increase in shadow, which for long-leaved sparse seagrass can result in considerable 

change in tone. 

Authors Pasqualini et al. (2005) reported seagrass mapping accuracy in the range 

73-96% using an earlier satellite multispectral product (SPOT 5) and highlighted the 

benefit of increased pixel resolution on the usefulness of the maps and their match with 

field observations. Phinn et al. (2008) compared a range of satellite sensors for measuring 

seagrass extent, biomass, disturbance patterns and other biophysical characteristics, and 

found the hyperspectral sensor provided the best accuracy levels. The authors attributed 

the low overall accuracy across sensor-types to difficulties in matching the raster geo-

referencing to the actual ground location of field observation. Additionally, authors 

Pinkerton et al. (2014) highlight the errors that can enter a remote sensing model when 

image pixels and in-situ training data don’t match in their measured location on the 

ground. Roelfsema et al. (2013) undertook mapping of multiple seagrass species in a 

large estuary highlighting the importance of image alignment and use of comparable 

methods. These cases accentuate the importance of precision ground survey for collection 

of training data in the current study. This is vital, in order to compare field observations 

with imagery given the separate location accuracy constraints of the respective data 

acquisition. 

Remote sensing using multispectral or hyperspectral imaging has proven useful for 

wetland mapping due to strong correlation between differential reflectance and 

transmission of specific spectral bands (frequency ranges) across species and different 

biophysical characteristics (Ozesmi and Bauer 2002; Adam et al., 2010; Kuenzer et al., 

2011).  In some studies, for some vegetation sites, there has been clear spectral distinction 

between the various plant and/or macro-algal species in an estuarine assemblage 

(Pasqualini et al., 2005; Zomer et al., 2009; Timm and McGarigal 2012).  Hyperspectral 
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imagery (contiguous discrete bands spanning the useful electromagnetic spectrum) has 

improved vegetation classification (e.g., Hladik et al., 2013; McDowell and Kruse 2016), 

with potential indicated for seagrass (Fyfe 2003). In one study comparing satellite with 

airborne hyperspectral imagery, the hyperspectral data provided the highest classification 

accuracy rates for measurement of seagrass cover and biomass (Phinn et al., 2008). In a 

western Atlantic study, seagrass was found to be largely distinct from algae species in full 

spectrum signatures (Thorhaug et al., 2007). 

The spectral definition and statistical contrast possible under hyperspectral analysis 

provides opportunity for seagrass feature extraction and attribute characterisation (Phinn 

et al., 2008; Lu and Cho 2011; Li et al., 2012; Cho et al., 2014), including three-

dimensional structure of the seagrass (Hedley et al., 2016). However hyperspectral data 

has the constraint for many users that it is generally expensive to capture and compile into 

a georeferenced image resource, requires complex statistical workup and dimensionality-

reduction in order to extract information, and has relatively small sensor size compared to 

visible and multispectral cameras. This is due to the electronic trade-off between the 

number of spectral bands that can be processed in a capture frame, the pixel size of the 

sensor, and speed of successive image capture during a flight. 

Classification performance has been increased by including point cloud data 

derived from lidar laser scanning in the classification model (Chust et al., 2008; Hladik et 

al., 2013; Hannam and Moskal 2015; Rapinel et al., 2015). However, application of this 

innovation to seagrass on New Zealand estuaries would require very high resolution lidar 

scanning as much of the seagrass would sit flat and wet when the tide is out. As such lidar 

scanning at this density of capture and spatial precision may be prohibitively expensive 

for many end-users at landscape scale especially where repeated surveys were required 

over time. 

Multispectral and hyperspectral methods for seagrass remote sensing, utilising the 

IR band in contrast ratios and vegetation indices, share the general issue that seasonal 

change in scene chlorophyll could confound spectral contrast in the imagery. For 

example, Bargain et al. (2013) measured higher concentration of chlorophyll during 

summer than winter with impact on derived vegetation indices. 

Dekker et al. (2005) identified epiphytic growth as a possible issue for resolving 

seagrass in a satellite image scene. In New South Wales Australia, mixed seagrass species 

(including Zostera muelleri) were spectrally distinct at ground level despite varied 

epibiotic cover and factoring spatial and temporal variability within species (Fyfe 2003). 

Each biogeographical environment may differ in how epiphyte content might confound 

an image classification, and therefor require site-specific survey design to account for the 

variation. 



 

26 
 

In summary, high altitude (satellite, aircraft) versus low altitude sensors (RPA) 

have advantages and disadvantages. High altitude sensors offer large scale tracking 

however lack spatial pixel resolution and specificity for monitoring changes. Whereas 

low altitude sensors can acquire detail levels that are unattainable by aircraft or satellite 

and have flexibility and specificity in time and location of deployment. Multispectral and 

hyperspectral sensors have greater potential for feature extraction compared to 

conventional colour cameras. However, these are expensive and lower in resolution than 

conventional sensors due to the higher data volumes involved. 

 

2.5    Remote sensing platform design considerations 

2.5.1    Sources of spectral contamination 

Image classification design that is accurate and repeatable requires i) sufficient 

volume of representative ground-validated training data for developing model signatures; 

and ii) spatial and temporal consistency in pixel scale and spectral response at the sensor 

and between images. Sensor photo-sites (the pixels) record values in proportion to the 

radiance of ground-objects with consistent sensor response across all the images in an 

image-set (Dunford et al., 2009; Kennedy et al., 2009; Sankaran et al., 2015; Gómez et 

al., 2016). Inconsistency in response contaminates the classification model, by increasing 

variance around a separation threshold or function, or other classification error. There are 

a number of sources of spectral inconsistency that require consideration in aerial survey 

design for estuary remote sensing when the tide is out or draining (Table 2.1). 

External sources of radiometric variation include sun angle to zenith (which varies 

with time of day and season), cloud cover, atmospheric composition (e.g., aerosol, dust), 

and shadow (Honkavaara et al., 2012). Internal sources of variation can arise from sensor 

noise or instability (Markelin et al., 2010), and background (random) electronic 

interference at the sensor photo-site (Del Pozo et al., 2014). There is potential for these 

factors to introduce random or systematic spectral error into sensor intensity values for 

each band. 
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Table 2.1. Source of potential variation or error in incident light or sensor response to 

surface composition.  

Source of variation Mechanism Explanation / example 

Variation at sensor. - Sensor photo-site 

response. 

 

- Vignetting across image. 

 

 

 

- Lens distortion. 

 

- Dead/weak photo-sites 

(e.g., dim pixels). 

- On the raw image, outer 

pixels are dimmer than inner 

pixels due to oblique vs. 

normal light incidence. 

- Scale (GSD) difference at 

different positions within the 

raw image. 

Variation at radiative 

transfer. 

- Sun angle to 

atmosphere. 

 

 

- Atmosph./aerosol 

absorbance / scatter. 

 

- Solar radiation passes 

through more or less 

thickness of atmosphere. 

- Differential spectral 

intensity loss from light 

passing though different 

airspace composition. 

Variation at the 

ground. 

- Sun angle to surface. 

 

 

- Macro/micro 

topography (roughness, 

morphology, angle of 

incidence interaction). 

 

- Dimmer pixel with oblique 

angle of incidence. 

- Greater shadow with 

increasing angle of 

incidence, as macro- (large 

areas without direct solar 

illumination) or micro-

shadow (different textural 

definition). 

Variation from sensor 

motion. 

- Motion blur. 

- Variable image position. 

 

- Aircraft/drone motion. 

- Variable external camera 

orientation (e.g., drone with 

no gimbal, windy day) 

causing positioning error. 
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(Table 2.1 ctd.) 

 

  

Source of imagery 

variation 

Mechanism Explanation / example 

Variation across a 

landscape. 

 

- Anisotropic variation in 

appearance across scene. 

 

- Change in tide drainage 

/ residual water state 

(across a site). 

 

 

- Different appearance at 

different positions on the 

image. 

- Spatial variation in degree 

of residual water / pooling 

after bulk water has drained 

at low tide, resulting in 

variable water absorption, 

reflection, glint effects on 

spectral appearance/texture. 

Variation across 

survey timeframe. 

- Change in cloud cover. 

 

 

- Change in sun angle. 

 

 

 

- Change in tide drainage 

/ residual water state 

(with time). 

 

 

 

 

 

 

- Variation in flying 

altitude. 

 

- Solar intensity / spectral 

composition may vary across 

image set. 

- Incident radiation changes 

with time, especially 

early/late in day  variation 

across image set. 

- Slow residual water 

drainage and drying, spatial 

variation in residual water 

changes with time up to 

stage of estuary tidal flood 

  water absorption, 

reflection and glint effects on 

spectral appearance and 

texture. 

- Pixels sample different 

ground scale. 
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2.5.2    Spectral mixing and motion blur 

Classification non-specificity can arise when there is overlap in spectral character 

between target and non-target subjects on the ground. Aside from this issue of spectral 

separability, confounding of the classification model can also arise due to sub-pixel 

blending of object colour (e.g., Hedley et al., 2012). Sub-pixel mixing may be dependent 

on the scale of the vegetation structure relative to the size of the image pixels. At the 

small extreme, 'hyperspatial imagery', where the pixel size is much smaller than the 

dimensions of the target object, would have direct pixel colour representations over most 

of the object (Rango et al., 2009; Peña et al., 2013; Anker et al., 2014). Seagrass typically 

presents upon a sandy or muddy substrate, whereby substrate spectra contaminates the 

seagrass spectra depending on seagrass density and substrate type (Bargain et al., 2012). 

Another potentially significant source of radiometric error is spectral mixing from 

motion blur, where photo-sites sample more than one location while the camera shutter is 

open (Figure 2.2). Classification methods can identify and adjust for blur (Peng and Jun 

2011; Tiwari et al., 2014; Yang and Qin 2016) but require prior knowledge of detectable 

blur-characteristics in the image. For airborne photography, fast camera shutter speeds are 

required to surmount normal motion-blur associated with moderate to fast flying speeds. 

There are in-flight events, such as bumps from turbulence, spurious winds, and course / 

attitude corrections made by the RPA airframe that could bring about rapid rotation or 

translation shift of the camera sensor creating blur. For example, Lisein et al. (2015) 

experienced a batch of blurred imagery (deciduous forest scene) on a particularly windy 

day of flying, and Puliti et al. (2015) experienced blur impacting images at wind speed of 

7 ms-1 over a mixed forest scene. Rosnell and Honkavaara (2012) determined for their 

large multi-rotor RPA that a shutter speed of 1/2000 s was required to eliminate motion 

blur over an agricultural setting. Watts et al. (2010) used 1/2000 s shutter speed to 

manage motion blur for multiple settings. Turner et al. (2015) set shutter speeds 1/1250 - 

1/1600 s under shutter priority (variable aperture with light intensity) to minimise blur. 

None of these studies examined classification accuracy, coverage or operational 

performance impacts resulting from blurring effects experienced. 

A number of studies reported on blur issues relating to height. Breckenridge et al. 

(2011) found images too blurry for identification at heights 153m and 305m above 

ground, but at 76m images became “useful”. Some studies also removed blurred images 

in a large photoset by manual inspection (e.g., Lehman et al. 2010; Bryson et al. 2013). 

Shutter speeds were automatically set high to minimise potential blur in Dulava et al. 

(2015) and Lucieer et al. (2014), although the latter still experienced blurred imagery 

despite fast shutter speeds that required removal after later inspection. Göktoǧan et al. 
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(2010) used vibration dampeners to minimise blur from vibration as far as possible. Hung 

et al. (2014) identified escalating blur from the sensor displacement associated with 

attitude change compounded by increasing altitude. Barrell and Grant (2015) also report 

blurring as a source of error during RPA photography. 

 

 

 

 

 

 

Figure 2.2.   Example of pixel mixing as a result of motion blur, by simulated blur effect 

(four-pixel blur distance in the direction noted on the image). 

  

Original Horizontal 

Diagonal Vertical 
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Carbonneau et al. (2012) calculated the number of pixels of blur across a sensor 

from vehicle motion as follows (Equation 2.1): 

Blur = V.T.H.f x 10-3. P x 10-6       (Equation 2.1) 

Where:  
V    =   velocity (m/s) 
T    =   shutter time (s) 
H    =   height above the ground (m) 
f     =   focal length of the lens (mm) 
p  =   pixel size on the sensor (µm). 

 
Therefore, motion blur increases with the velocity and height of the aircraft and 

attenuates with shutter time. Reduction of shutter time can reduce blur (e.g., Turner et al., 

2015), but there is also a trade-off made in terms of the amount light allowed past the 

camera shutter onto the sensor. Over-reliance on shutter speed to control motion blur may 

be at a cost to spectral information, so configuration of flight speed and sensor orientation 

control is an important consideration. A literature search of World of Science and Scopus 

databases did not detect any published studies that set out to attribute different remote 

sensing classification outcomes to flight-planning parameters or in-flight events 

associated with blur. Carbonneau et al. (2012) remark that motion blur is often 

overlooked when setting flying conditions for image capture.  If blur is unavoidable then 

an image correction or exclusion criterion may need to be applied during image dataset 

preparations, to detect, remove or eliminate blur. There are methods published for 

achieving blur-detection and correction in satellite imagery that could be applied to RPAs 

(e.g., Sieberth et al., 2014; Yang and Qin 2016). Intuitively, increasing flying height 

would be expected to result in pixel colour blending (e.g., Figure 2.3), which would have 

similar impact on image classification as motion blur. While the motion blur and pixel 

blending are correctable using software algorithms (e.g., Clemens 2012), the impact of 

these sources of error upon classification outcomes and elimination through optimised 

flight control has not been explored in the literature for very low altitude high resolution 

imagery. 
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Figure 2.3.   Example of pixel colour mixing with simulated doubling of flying height in 

each subsequent photo (as doubling of pixel width for the same scene, by resampling with 

bicubic averaging). Seagrass leaves are ~ 2 mm wide, so this width is the minimum that 

will resolve the colour of the seagrass leaf, which equates to ~ 5m flying height for this 

camera and lens. 

  

Height 5 m, GSD ~ 2 mm Height 10 m, GSD ~ 4 mm 

Height 20 m, GSD 8 mm Height 40 m, GSD 16 mm 
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2.5.3    Microtopography, lens distortion and sun glint 

Surface roughness can decrease reflectance levels on an otherwise uniform material 

(Herodowics 2017), with small scale shadow likely contributing to the reduction. Kipp et 

al., 2014 reported limited variability in reflectance with varying incident light conditions, 

but higher variability in radiometer-measured reflectance when the sensor placed close to 

the target object depending on the sensor. 

Geometric distortion of imagery can arise from radial curvature or misalignment of 

lens elements, or from fine scale irregularity in the sensor pixel layout. Correction of 

distortion can be achieved by photographing a reference grid or other graphic and 

calculating residual vectors between observed and expected locations in the image (e.g., 

Honkavaara et al., 2012; Hruska et al., 2012). 

Vignetting is the radial attenuation of light intensity that results from dilution as 

light passes through the elements of the camera lens system (Figure 2.4), and dispersion 

of intensity with angle from normal. It also arises to a lesser degree from alignment 

difference between the plane of the sensor and the plane of the ground. The specific 

degree of vignetting may vary by camera lens: measurement and correction for each lens 

type may be required (Lelong et al., 2008; Del Pozo et al., 2014).  Generally vignetting is 

most visible in wide angle imagery. Camera systems with an individual lens for each 

band could potentially have different overall vignetting and geometric patterns on each 

lens. 

 
 
Figure 2.4. An example of vignetting (radial attenuation) in a raw sensor image (Nokia 

Lumia 1020 camera) elevated at 5m height over a patch of seagrass. 

 

Sun glint is contamination of all, or parts of an image whereby direct sunlight is 

reflected onto the sensor. Glint can be a source of error for remote sensing of surface 

attributes (e.g., Doxaran et al., 2004). Glint is prominent in an image if the material at the 
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surface has high reflectivity and has an angle of reflection so as to pass solar light rays 

into the sensor. Varying roughness and wetness of ground material can result in different 

degrees of glint. Many issues of glint in a photographed landscape arise from waterbody 

or general wetness. Waterbodies or wet surfaces can have microtopography resulting 

from wind action, varying degree of drying or from meniscus-surface around underlying 

hard material (Figure 2.5). For oceans (and presumably also lakes) the wind speed and 

direction form a numerical relationship with water slope distribution and resulting surface 

glint (Cox and Monk 1954, Bréon and Henriot 2006). 

Authors Kay et al. (2009) summarised a range of glint removal methods used in 

remote sensing. At that time most methods related to satellite imagery with respect to 

open water, and these methods rely on some knowledge about the wave slope and 

direction characteristics. 

Sun glint in an estuarine situation would vary widely with tidal state. When full, 

glint would depend on water depth, benthic topography, wind fetch, variable wind 

currents around adjacent terrain, and water flow within the estuary and entering from 

tributary streams. At low tide, moisture content ranges from dry and wet matt surfaces 

(e.g., sand) to waterlogged sand, mud and pools with high specular reflectance. In direct 

sunlight, wet vegetation with a glossy surface such as seagrass and macrophytic algae, as 

well as detritus, can create a heterogeneous scene upon the substrate background, of 

intensely varying meniscus surface-angle at the sub-leaf scale such that true colour may 

be masked. 

Some glint removal procedures have been explored. Hedley et al. (2005) used a 

linear adjustment equation to offset visible frequency bands based on distance between 

NIR band over a glinted area, and that of the part of the image where substrate NIR 

reflectance would likely be at its lowest (e.g., deep water). Authors Eugenio et al., (2014) 

determined that histogram matching between some images was required to compensate 

for the impact of large glint areas on large waves. Other more statistically intensive 

methods have been applied (Kay et al., 2009). Overstreet and Legleiter (2017) modify 

formed regression relationships between glinted and unglinted regions using difference 

between the NIR band (as a reference) and each respective band the image stack, and then 

correcting the observed values in each band according to the function of linear 

relationship.  Kutser et al., 2013 used UV and NIR bands (350 nm and 900 nm) to form a 

‘power function’, derived from a best fit line through reference points of zero glint, which 

was applied to subtract values along that curve for other bands in the hyperspectral stack. 

Shah et al. (2017) used index features common across a video frame sequence to attribute 

un-glinted image values upon a glinted region. While this study was applied to video 

manipulation, the same principal could be applied to a sequence of overlapping 
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photogrammetry images. Sun glint effects on nadir-oriented aerial photography can vary 

with time of day and its respective sun angle in the sky. Doxaran et al. 2004 demonstrated 

higher surface reflection with oblique viewing angle than overhead for both clear and 

overcast skies. Bréon and Henriot 2006 demonstrated higher glint effect as the camera 

moved away from zenith. 

Kay et al. (2009) advocated that “the most straightforward way to deal with the sun 

glint problem is to avoid it”. Avoidance of sun glint during airborne or RPA aerial survey 

may require conducting flight at a time of day with low sun angle to minimise the 

component of reflection able to enter the camera, although a trade-off in image quality at 

low sun angle comes about due to increased contamination from the longer shadows upon 

the scene. The diffuse illumination of cloudy survey conditions may avoid or reduce 

effect of glint (Figure 2.6). Authors Jaud et al. (2016) minimised sun glint by limiting 

operations to cloudy conditions. This approach however introduces an additional source 

of radiometric error that may require standardisation, because differing cloud composition 

may filter spectral wavelength components differently. 
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Figure 2.5. Repeat-photographs of the same seagrass scene, Tuapiro, Tauranga Estuary: 

a) large-format airborne aerial photography taken at a time of overhead sun with 

substantial sun glint on the wet surface, and b) RPA-sourced aerial photography (Gopro 

Hero5 photogrammetry-derived image mosaic) taken at near to sunset to eliminate sun 

glint (right). Despite similar pixel size, the imagery taken near sunset reveals low-density 

seagrass meadow patches (white boxes), as well as stingray feeding pits and hydrology 

structure not easily visible in the imagery with overhead sunlight (a). 

 

  

Figure 2.6. Two images above of the same scene (two week time separation) where 

lighting conditions are a) overcast skies with no direct sunlight or shadow and b) direct 

sunlight with cloud-free skies showing significant sun glint patterns that obscure some of 

the dark-hued seagrass coverage, and introduce texture and spectral content that is not 

representative of the scene. Sun angle to horizon and tidal water drainage is matched as 

near-identical. 

a) b) 

a) b) 



 

37 
 

2.5.4    Radiometric correction, reflectance and normalisation 

Solar radiation is absorbed, scattered or transformed differentially across the 

electromagnetic spectrum, as the light passes through the atmosphere to the ground, 

reflects from the remote sensing target then travels to the sensor (Schowengerdt 2007). 

Underwater targets receive incident light that is subject to further absorption and 

scattering within the water column (e.g., Misbari and Hashim 2016). Light hitting the 

target is therefore a combination of residual direct light from the sun, or residual diffuse 

light resulting from scattering from other directions (Schowengerdt 2007). 

Content of a water body over an estuary can absorb and/or scatter incoming 

radiation depending on organic, photosynthesising (e.g., algal) or particular material 

suspended in the water column (e.g., Dekker et al., 2011; Shi and Wang 2014). Water 

column corrections can be applied when bathymetric depths are available with 

improvement to resulting classification (e.g., Lu and Cho 2011; Pu et al., 2014). It has 

been argued that radiometric water correction is essential for retrieving ground 

reflectance (Pu et al., 2014).  Water interference would be reduced or eliminated for a 

survey undertaken with the tide out, noting that the effects of residual pooling on 

classification spectra remain unmeasured. 

Procedures for radiometric correction have been explored in various mathematical 

treatments for standardising satellite and airborne remote sensing imagery (Furby and 

Campbell 2001; Schaepman-Strub et al., 2006; Kobayashi and Sanga‐Ngoie 2008; 

Honkavaara et al., 2009; Gu et al., 2011; Cheng et al., 2012). Radiative transfer theory 

can be modelled at different levels of complexity, factoring the various atmospheric 

components that light must pass through before reflecting off an object and onto a sensor 

(Figure 2.7). For example, Cheng et al. (2012) defined at-sensor radiance for any given 

zenith and azimuth of sensor relative to the target (Equation 2.2). 

 

Lsλ(θr, φr) = Lpλ + rdλ π-1 [E0λ cos σ τ1(λ) + FEdλ] τ2(λ)      (Equation 2.2) 

where: 
 

 

Lsλ(θr, φr) = at sensor radiance for a zenith (θr) and 

azimuth angle (φr) from target to sensor 
Lpλ =  path radiance 
rdλ =  diffuse reflectance  
E0λ =  exoatmospheric solar irradiance 

σ  =  incident angle of solar irradiance 

τ1(λ) =  transmittance from sun to target 
F =  shape factor (local topographic correction) 
Edλ =  downwelled irradiance at the target 
τ2(λ) =  transmittance from target to sensor 
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Figure 2.7. Schematic depiction of a simple solar radiative transfer relationship. Radiance at the sensor is dependent on solar power, transmission efficiency 

through the atmosphere (which varies with wavelength and decreases with increasing zenith angle), the target material reflectance factor, transmission 

efficiency to the sensor, and then the quantum efficiency of the sensor at different wavelengths. 
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Radiative transfer models solved for the earth’s atmosphere allow satellite imagery 

to be corrected for sun and surface angle relative to the sensor, and imagery providers 

maintain a database of correction factors from which a correction equation can be 

approximated. Corrections however can be erroneous at some spatial and spectral scales 

due local variability in conditions (Huang et al., 2016). Exhaustive radiometric calibration 

requires measuring both incident solar radiation and reflected radiation across the 

spectrum, to calculate a bidirectional reflectance distribution function (BRDF) as a basic 

measure of spectral response of the target material (Nicodemus et al., 1977). A range of 

bidirectional models can be applied depending on the diffusion and scatter of incoming 

and outgoing light (Schaepman-Strub et al., 2006). 

In comparison to satellite and airborne imagery, low-altitude RPA-derived imagery 

is typically captured with significantly less atmosphere between the ground and the 

sensor, so in clear air radiometric changes between image captures should be largely 

influenced by downwelling light conditions, and τ2(λ) (Equation 2.2) tending to 1 (full 

transmittance to sensor). However, in the marine environment there may be higher 

concentrations of aerosol close to the ground derived from sea spray, surf and evaporative 

transport of material (Zieliński et al., 2012; van Eijk et al., 2014). Airborne or RPA-

mounted sensors generally require specific calibration for each camera and potentially 

each site (e.g., Laliberte et al., 2011; Clemens 2012). Furthermore, Hakala et al. (2013) 

determined that radiometric correction factor was dependent on RPA flight direction. 

Radiometric correction has been applied to imagery taken from RPA in the 

terrestrial environment (Levin et al., 2005; Laliberte et al., 2011; Clemens 2012). In these 

studies, large reference boards of known spectral character are placed on the ground to 

provide an invariant spectral reference, from which the respective radiance factors 

(functional image transformations for each band) could be calculated for each situation. 

Barium sulphate has been used as a reflectance referencing material due to its high 

reflectance, good cosine attenuation with oblique angle of incidence, and consistent 

response across the UV-VIS-NIR region of the spectrum (Grum and Lucky 1968). 

A calibrated correction equation should allow temporal and spatial standardisation 

of images. No widely accepted approach was evident in the literature that can be 

confidently applied to an estuarine study without project-specific calibration, and no 

publication provides specific guidance or photogrammetric parameters for operating in 

the aerosol-variable marine environment. 

Radiometric normalisation is the process of making corrections to images in a 

photo-set so that digital values are describing a similar spectral response to the 

illuminated surface. Methods of normalisation are well established for satellite imagery 

(Du et al., 2002; Hong and Zang 2008). Illumination varies with sun angle which varies 
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with time of day and year, and incident light can vary rapidly over the duration of a 

capture mission if clouds are mobile (Dunford et al., 2009). For a photo-set to be 

integrated for quantitative remote sensing, the radiometric response needs to be consistent 

across the whole set, and standard reflectance units calculated.  Images collected during 

aerial photography should be similar within a flight track, however error between tracks 

is possible due to change in the incident light level during the lapse of time between 

passes (Asmat et al., 2011) (Figure 2.8). 

 

Figure 2.8. Uncorrected image mosaic patches showing radiometric difference at capture, 

across a ~2 km wide airborne aerial photography scene. Imagery sourced from Bay of 

Plenty Regional Council 2014 aerial photography dataset. 

 

Hong and Zhang (2008) compared a range of normalisation methods present in the 

literature, and generalise the methods into two groups: absolute, where corrections are 

made based by sensor parameters, atmospheric constants and scene attributes, and 

relative, where images are corrected in comparison to other images. Biday and Bhosle 

(2010) classify radiometric normalisation methods into three categories: statistical 

methods; histogram matching; and linear regression methods. Statistical methods apply a 

simple offset to each band to match general differences between photos. Histogram 

methods partition the range of values into histogram bins (e.g., 0-256 in the case of 

standard camera imagery), and photo matching is achieved by applying offsets per 

histogram-bin using some intensity transformation function to equalise histogram 

cumulative profiles.  Regression-based normalisation applies band-adjustments based on 

least-squares distance between the mean band values between two images.  Relative 

normalisation is computer-intensive due to the large data volumes analysed and compared 

within and between images, especially in large image-sets. Efficient computational 

1km 
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workflows for relative normalisation have been devised (e.g., Chen et al., 2014) but with 

compromise in accuracy due to simplified calculation of coefficients. Absolute 

normalisation is computationally simpler, and results can be generated faster than relative 

methods as calculations are based on pixel statistics across the whole scene. 

Carbonneau et al. (2012) described a relative method using one image as a fixed 

reference, and correcting band values in the photo-set based on the histogram profile of 

the reference. However, their proposed method requires first partitioning both reference 

and candidate images into coarse land-cover types (e.g., riparian vegetation vs. river 

channel in their case). This method is similar to one proposed by Hall et al. (1991), which 

first forms a radiometric control using one or multiple images, and then apply linear 

transforms to rectify subsequent images to the control, but the authors urge caution about 

the use of image partitioning that is based on content, due to the normal alignment 

differences that arise from spatial registration across an image-time-series. Their 

approach is not ideal for seagrass feature extraction as estuarine scenes can be complex 

(seagrass, algae (micro and macro), detritus, shells, other animals) and normalisation is a 

prerequisite for the image classification that follows (using the authors method would 

create a circular process dependency). 

 Asmat et al. (2011) used a k-means spectral clustering algorithm to identify the 

major spectral groups using an orthogonal cross-flight over the primary flightpaths to 

create regions of common photogrammetric overlap, and applied regression-based 

correction algorithm to normalise primary flight images. This method assumes that 

spectral response is the same for images within each flight-track. Collings and Caccetta 

(2013) used corrected Landsat-TM imagery as a reference frame for normalisation of set 

of 30,000 high-resolution airborne photogrammetry images, by using the scene-statistics 

of the satellite imagery as a benchmark for adjustment of aerial image bands. 

RPA based image acquisition would be subject to the same image normalisation 

issues that apply to airborne aerial photography. Development of remotely sensed survey 

methods for seagrass condition-monitoring that are suitable for large scale application, 

based on imagery taken from RPA, would require correction for radiometric variation 

across and image-set. Modern RPA-focused photogrammetry software (e.g., Agisoft 

Photoscan Pro 1.4) have incorporated normalisation functionality within the 

photogrammetry processing chain. 

 

2.5.5    Photogrammetry 

Quantitative photogrammetry methods have been in practice for many decades 

along-side of the evolving field of aerial photography (Graham and Koh 2012). The full 
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breadth of the subject is too large to review here. If accurate geographic positioning is 

required, then the technical field of precision-survey is also relevant. For the purpose of 

this study, methodological focus is directed towards a subset of photogrammetry 

procedures that relate to quantitative survey using low altitude RPA and piloted aircraft, 

and associated consumer software, under the objective of forming a geographically 

accurate orthorectified image mosaic and surface model (Colomina and Molina 2014; 

Suomalainen et al., 2014; Vasuki et al., 2014; Gonçalves and Henriques 2015). 

Formation of a contiguous spatially accurate image mosaic from drone-captured 

imagery flown on a regular grid, requires that i) contributing images are oriented with 

respect to the ground; and ii) image pixels are repositioned to their true location 

accounting for the combined error arising from lens angular distortion and underlying 

terrain effects. In the context of a grid of RPA-flown overlapping component images, 

orthorectification using modern photogrammetry software automation typically involves 

i) identification and matching of common features between overlapping images to 

determine internal and external camera/frame geometry; ii) repositioning of all pixels 

across the image-set to the estimated true 3D location based on the calculated 

camera/image orientation model; iii) combination of images into a seamless mosaic based 

on a rule (e.g., average, minimum or maximum pixel value from contributing overlapping 

images) for combining overlapping pixel values  (Figure 2.9). Agisoft Photoscan software 

was identified as one of the better lens correction options by Hastedt et al., 2016. This 

software was selected for use in the current study due to its ability to resolve lens 

distortion, normalised colour, apply radiometric correction and form spatially explicit 

orthocorrected image mosaics and digital surface models. The qualities were verified in a 

benchtop environment using test imagery on a range of cameras. 

 

2.6    Remotely piloted aircraft (RPA) 

RPA are a broad category of unpiloted air vehicle. Commonly they are also termed 

unmanned aerial vehicles (UAV), unmanned aerial systems (UAS), and remotely 

operated vehicles (Colomina and Molina 2014; Zolderdo et al., 2015). In New Zealand 

aviation legislation, they are termed RPA (Civil Aviation Authority 2018). Modern 

conceptual origins date back to balloon munitions deployment in the late 1800s and early 

1900s (Thomas 2014). Simple radio-controlled target or observation drone-planes were in 

common military use by World War II (Cho 2004; Blom 2009).  Advancement of RPA 

have predominantly been driven by military requirement, developed as miniaturised fuel-

propelled light aircraft technology, then adopting electro-mechanical technologies more 

recently (Blom 2009; Watts et al., 2012). 
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Figure 2.9. Key steps in the photogrammetric processing chain with examples from a low 

altitude aircraft survey over an area of mangrove and coastal forest at Wharekawa 

Harbour. The stages illustrate generation of: a) image tie points; b) dense point cloud; c) 

triangulated surface model; d) surface texture ; and e) orthomosaic. Georeferencing using 

ground control point is associated with a). 

a) Sparse point cloud: 
Generation of common tie points 
between photos 
 

b) Dense point cloud: 
Calculation of new pixel 
locations. 
 

 Colouring of dense points.  
 

c) Surface model mesh: 
Generation of triangulated face 
network between dense points. 
 

d) Surface model mesh: 
Texture-calculation for mesh 
faces. 
 

e) Orthomosaic generation: 
Orientation transformation of 
individual images followed by 
orthorectification upon surface 
model, then generation of flat 
normal orthometric raster. 
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The rapid development of high-speed auto-stabilising microcontrollers and battery 

technology over the past decade has resulted in an expansion of smaller affordable drone 

technology accessible to technical and general consumers (e.g., Jones et al., 2006; 

Linchant et al., 2015). Hardware advancement and affordability has further accelerated 

over just the past few years due to escalation of the recreational first-person view (FPV) 

flying, drone racing, and aerial photography/video markets with their significant 

economies of production scale. Inexpensive open-source autopilot hardware and flight-

planning software make GPS-based computer-driven flight operations accessible to most 

research and educational organisations (Meier et al., 2012; Scherer et al., 2012; 

Dryanovski et al., 2013). 

The broad range of RPA airframe hardware includes a variety of forms and sizes 

from micro-scale (e.g., Capello et al., 2012) to large civilian drones (e.g., Laliberte et al., 

2011; Suomalainen et al., 2014) to the long-range military unmanned drone planes 

(Springer 2013). The range has included kites, blimps and balloons in some research 

contexts (Guichard et al., 2000; Klemas 2015). RPA have been classified by different 

authors according to characteristics of size, weight and function (Limnaios et al., 2012; 

Watts et al., 2012; Hoffer et al., 2014; Anderson and Gaston 2015). Most current RPA 

however fit into two basic functional categories: fixed wing planes, that need to sustain 

velocity in order to stay airborne, and rotor propelled vehicles (rotating wings), which fly 

or hover with fine control of rotor speed using the position/orientation-aware flight 

controller. Fixed wing RPA tend to manifest as airplanes (wings on a fuselage, usually 

with a tail plane and rudder), or flying wings (no fuselage), and each has its functional 

advantages in the trade-off between weight, speed, control, flight longevity and stability. 

Single rotor designs (helicopters – e.g., Kaneko et al., 2011) are less common now than 

multi-rotor RPA (three or more rotors) due to the mechanical complexity of the single-

rotor helicopter orientation-control, and the greater manoeuvrability, stability and 

versatility of multi-rotor design (Austin 2010). 
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2.6.1    RPA applications 

RPA have the benefit over piloted aircraft that they can fly close to the ground 

(fixed wing aircraft in New Zealand are limited in most cases to 500 or 1000 feet 

minimum flying height depending on the situation).  As a consequence, there is potential 

for acquisition of high-detail imagery at resolution as fine as several centimetres in pixel 

ground sampling distance or smaller, and terrain models accurate to <5cm vertical 

accuracy when used with precision-survey ground referencing (Peña et al., 2013; 

Gonçalves and Henriques 2015; Räsänen and Virtanen 2019). In one review, RPA based 

survey achieved the highest of observed classification accuracy statistics, compared to 

both airborne and satellite image sensors (Ma et al., 2017). Similarly, Anker et al., 2014 

demonstrated classification advantage arising from the high spatial detail of imagery 

possible from an RPA. Flying heights in close proximity to the ground allow structural 

detail and differentiation from background that would not be feasible at higher altitude 

(Borra-Serrano et al., 2015). 

However, in cases where large scale survey is required outside of the feasible 

flight-range of the drone power supply, and where high spatial definition is not so critical, 

low altitude piloted aircraft on a targeted flight plan may yield more cost-effective 

imaging. For example, in a comparison of satellite, aircraft and RPA based remote 

sensing of viticulture condition, RPA were found the most cost-efficient for small scale 

assessment, but efficiency favoured aircraft above 5 hectares survey area (Matese et al., 

2015). 

There are a number of additional benefits that are particular to RPA, or not easily 

or safely achieved with piloted aircraft methods.  Largely the benefits arise from the close 

proximity that RPAs can fly to the ground or target objects of interest, and their 

manoeuvrability and fine spatial positioning control within a vertically varied 

environment (Madden et al., 2015). Absence of a human pilot, and the light-weight 

miniaturised form of the RPA, allow flight operations into environments which are 

otherwise difficult, risky, or inaccessible for personnel, or provide perspectives that are 

out of reach of other methods of observation. For example, Brouwer et al. (2015) 

observed coastal process in high resolution from above a surf-zone using two RPA, on 

alternating duty-cycles that allowed continuous recording from a fixed vantage point in 

three-dimensional airspace. GPS-guided waypoint-routing allowed two RPA to operate as 

one instrument. With these flight and survey characteristics, RPA are enabling a wide 

range of research and modelling opportunities that were prohibitive or difficult prior to 

current RPA availability (Chabot and Bird 2015; Colomina and Molina 2014). 
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More recently, multispectral cameras have been engineered that are small enough 

to mount upon an RPA. Although the sensors on these cameras are still small in pixel-

dimension (e.g., 1.2 megapixels) compared to commercial cameras (80-300+ 

megapixels), the multispectral cameras have enabled a range of vegetation land-cover and 

health mapping applications at small scale (Kelcey and Lucieer 2012). 

Small agile RPA are also adding important capability for ecological monitoring 

and provide useful data and research efficiencies. For example, Weissensteiner et al. 

(2015) used small RPA to observe crow nests in a high forest canopy, improving on 

previous methods (that used manual observation) in terms of cost and animal disturbance. 

Evans et al. (2015) collected high resolution imagery allowing crocodile nest 

identification amid tall wetland trees at a remote, sensitive and potentially hazardous 

location.  There are numerous other published examples of RPA being used to generate 

wildlife data, including counting of nesting terns (Chabot et al., 2015), water-bird census 

with species discrimination (Dulava et al., 2015), identification of individual killer whales 

(Durban et al., 2015), abundance and extent of chinstrap penguins (Goebel et al., 2015), 

counting marine fauna (Hodgson et al., 2013) and elephants (Vermeulen et al., 2013), 

quantifying sampling spawning behaviour (Whitehead et al., 2014), and photography 

along lesser kestrel flight paths (Rodríguez et al., 2012). 

Similarly, RPA have been applied to problems associated with the monitoring and 

protection of habitat and species within ecosystems (Koh and Wich 2012; Anderson and 

Gaston 2013; Chabot and Bird 2015; Linchant et al., 2015). Low altitude flying has 

enabled detailed assessment of vegetative community structure (Zweig et al., 2015; 

Lehmann et al., 2016) and detection of weeds (Göktoǧan et al., 2010), as well as 

measuring vegetation condition and aspects of ecosystem health (Husson et al., 2014b; 

Zahawi et al., 2015; Michez et al., 2016), habitat quality for species (Rodríguez et al., 

2012; Chabot et al., 2014), and general support of conservation management operations 

(Koh and Wich 2012; Mulero-Pázmány et al., 2014). Authors Ramsey et al. (2014) flew a 

low-cost drone above and within a karst landscape to detect objects and observe exterior 

and interior karst formation. RPA have been applied to a range of other applications in 

many scientific and commercial industries (Thompson and Saulnier 2015). 

Survey of estuarine surface using low altitude RPA can be dated back nearly two 

decades to a study using a 6 m blimp carrying an automated 35 mm camera to collect 

photogrammetrically overlapping imagery yielding sediment surface characteristics 

(Guichard et al., 2000).  Authors Jaud et al. (2016) quantified morphological change in 

the terrain of an estuarine mud flat across a 12-month change period. 

Numerous papers herald the benefits of RPA over piloted aircraft in terms of their 

lower cost of operation and the survey-detail arising from very small ground sampling 
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distance. However, this popularity should be balanced by acknowledging the merits of 

piloted aircraft for collecting moderately high detail imagery (e.g., Hulet et al., 2014). 

Under New Zealand aviation law, piloted aircraft are required to maintain flight above 

500 feet of height above ground (1000 feet over built-up areas) during normal operations 

(i.e., aside from take-off/ landing and approved low altitude flight and airspace allocation) 

(Civil Aviation Authority 2018). A small piloted aircraft carrying a medium/large format 

camera (e.g., Vexcel Ultracam series camera) flying at minimum allowable flying height 

(with corresponding fine photogrammetric flight-grid spacing) can generate imagery with 

ground sampling distance approaching that of a small camera mounted on a low altitude 

drone. Since  services are readily accessible in most areas and can provide an equal or 

greater range of mounted sensor-options due to superior payload weight, many of the 

benefits of using RPAs can be rationalised in terms of lower cost of capture or greater 

operational flexibility depending on the operation (e.g., Greenwood 2015). Drone cost-

benefits are greatest for smaller study areas where commercial aircraft deployment costs 

are relatively high, and where terrain makes low controlled grid flight expensive. 

Application of RPA in New Zealand for environmental survey is in early stages of 

uptake compared to the volume of published research from US, Europeans and Asian 

sources. Authors Nishar et al. (2016) used a small camera drone fitted with an additional 

thermal infra-red sensor to map land-cover condition and surface temperature in a 

geothermal field. Alexander and Harvey (2014) have mapped geothermal carbon dioxide 

levels and a high-detail digital surface model using a small camera drone. Cook et al. 

(2013) relayed atmospheric temperature and humidity measurements in real time to a 

recording station. Potential for cost optimisation has been proposed for fire suppression 

using RPAs mounted with thermal infra-red sensors, to replace the greater helicopter cost, 

but has yet to be tested in practice (Christensen 2015).  Much of the utility of RPA arise 

from the programmable flight autonomy enabled by modern flight controllers. 

 

2.6.2    Autonomous flight control 

There are a wide range of flight-controllers of different expense available for RPA 

guidance and control. In addition to commercial options, the low-cost public-domain 

project ‘Ardupilot' that has developed over the past decade and provides flight-control 

hardware, software and telemetry systems that are now made to a commercial 

manufacturing and performance standard in terms of both functionality and reliability. 

The product-version adopted for this study was the PX4 controller board, also termed 

‘Pixhawk’ after commercialisation by 3D Robotics (Meier et al., 2012; Dryanovski 2013; 

Arifianto and Farhood 2015). This is an integrated flight controller with inertial, GPS, 
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barometer and magnetometer sensors for flight stabilisation and onboard computing for 

autonomous flight control. The controller board has facility for attaching a laser 

rangefinder (‘lidar lite’), ultrasound acoustic rangefinder, and an optical-flow sensor for 

enhanced aircraft guidance. The board also has generic data channels that can host 

analogue sensing devices that can be used to further modulate flight or generate data to be 

logged to SD card. 

Modern RPA flight controllers have active flight path maintenance using a GPS 

module, including accurate control over route, speed and height above ground. Height is 

based on the position of the craft relative to starting position of the RPA, unless a specific 

height adjustment is programmed. Over undulating terrain, where the starting position 

does not allow an accurate datum, flight plans need to be generated in a Geographical 

Information System (GIS) that factors ground topography (e.g., using lidar or digital 

elevation model (DEM)).  The elevation change across the topography of a flat estuary is 

small compared to the accuracy limits of the GPS to effect horizontal and vertical 

positional control (which is approx. 2-5m horizontal accuracy and 0.5m vertical 

accuracy). The Pixhawk laser and acoustic ultrasound rangefinder modules enable more 

accurate height control. The lidar rangefinder was deemed as likely problematic over the 

water surface of an estuarine tidal flat even with the tide out (there have been crashes 

reported on user forums due to false height readings, probably from lidar absorption into 

the water). Acoustic ultrasound combined with lidar could be used if the craft is 

maintained below ~ 10 m height above the surface, thereby increasing vertical height 

control during flight above an estuary, as compared to relying on GPS alone. 

The Pixhawk flight controller is normally set up with a data telemetry link to either 

a laptop or tablet (Mission Planner software for Windows systems). Mission Planner 

provides detailed in-flight monitoring and diagnostic reporting as well as flight plan 

programming (e.g., Duffy et al., 2018). Mission planner has two key interfaces - a flight 

data view, which displays real-time orientation, horizon, GPS and status data (flight 

console), and a flight plan view where waypoint routes and aerial survey grids are 

constructed and deployed to the drone. The Mission Planner interface displays speed, 

direction, height, craft orientation, camera orientation and emergency behaviour to be set 

and executed as an autonomous flight route (Figure 2.10). In Figure 2.10, the top panel 

shows the flight-grid development process, where parameters can be set for camera type, 

grid spacing, photo overlap, flight angle, camera-angle, baseline flight altitude and 

turning characteristics at the end of each flight-run. Once set, the software draws a flight-

cost-optimised flight-plan based on an area-of-interest (polygon) drawn by the operator. 

The flight plan can either run as a cross-grid (as seen in the main panel) or as a single-

direction grid (top panel inset), depending the cost-accuracy trade-offs that are required 
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for the final mosaic or elevation model. Once accepted, the flight plan is computed into a 

set of geographical waypoints (see the bottom table of lower panel, Figure 2.10) that can 

be loaded into the flight controller of the RPA using the attached telemetry radio. Once 

uploaded and engaged, the RPA then flies the flight plan autonomously, taking photos as 

instructed, then returns home for re-tasking (and battery change). The way-point 

collection can be edited manually for fine detail control of altitude, speed and position, 

and the plans saved for replication later. It is in this way that specific flight-plans can be 

replicated exactly (within the positional accuracy limits of the GPS receiver). This 

capability allows generation of spectral time-series data and testing capture scenarios over 

a common focal area and is one of the key benefits that RPA have over piloted survey 

techniques. 
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Figure 2.10. Example of a (sample) RPA flight plan, constructed using Mission Planner 

software. Upper panel shows the flight construction process. Lower panel shows the 

generated geographical waypoint loaded into the RPA.  See main text for further 

description. 
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2.6.3    Interaction with aviation regulatory environment 

RPA operation has notable flight restriction in New Zealand, which may influence 

uptake of RPA as a widely used wildlife management tool. Flight rules are documented in 

a consolidated rule-set (Civil Aviation Authority 2018), and are summarised below 

(Table 2.2), and the reader is directed to https://www.caa.govt.nz/rules/part-101-brief/ for 

full current version, as regulations are updated periodically. 

Controlled flight areas for RPA in New Zealand are documented on a live map 

resource at the web site:  https://www.airshare.co.nz/maps. The flight map available at 

this website is authorised by the New Zealand Civil Aviation Authority to depict allowed 

and restricted flight areas for the purpose of flight planning, and there is a requirement to 

inspect the map prior to any planning for field survey work. 

At the time of writing, the map generated over Coromandel Peninsula was captured 

(screenshot) in Figure 2.11 and illustrates the restricted airspace over many estuaries due 

to the presence of service airstrips, and designated aircraft low flying zones. Flying of 

RPA in restricted airspace requires authorisation that is dependent on the airspace control. 

Flying in an airfield restriction zone requires RPA control certification and flight-plan 

permission from the airfield controller (and coordination with an air control tower when 

one is present). RPA flight in an aircraft low-fly zone is generally not permitted and 

would generally require temporary (short term) closure of low-fly zone in order to 

conduct RPA operations. 

Wharekawa Harbour has no special restrictions other than normal RPA constraints 

documented under Civil Aviation Authority (2018). 
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Table 2.2. Summary from Rule Consolidation Part 101 for remotely piloted aircraft (RPA) (Civil Aviation Authority 2018) at time of writing. 

Rule Lay summary relevant to seagrass survey by RPA Research project requirement 

101.205    No RPA operation within 4 km of aerodrome, with 

notification/approval depending on whether controlled of 

uncontrolled type. Flight within this zone is possible with 

permission and RPA operator certificate, or if operation 

conforms to criteria for “shielded operation”. 

Study area is outside of 4 km proximity to any aerodrome. 

101.207    No RPA flight over land without permission of landowner, or 

over person(s) without permissions from the person(s).  

 

No operation above 400 feet above ground (122 m). 

At the time of field operations, ground within the Coastal Marine Area (land 

below mean high water springs) - no specific land ownership (Marine and 

Coastal Area Taku Moana Act 2011).  

No requirement for flight above 400 feet. 

101.209 RPA operation is restricted to airspace within (unaided) line 

of sight of operator, or spotter (if communicating operator is 

flying by live camera (FPV). 

All research survey conforms to line of sight operation. All of survey area is 

within sight of central ground station location without obstacle. 

101.211 No outdoors night flying unless conformant with “shielded 

operation”. 

All survey requires sun at moderate to high angle. 

101.213  Piloted aircraft have right of way. Study area is away from main coastal aircraft transit lane. 

101.215  Special restrictions exist if RPA above 15kg total flying 

weight  

RPA to be used in this study is <3kg all up weight. 
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Figure 2.11. Controlled airspace for RPA Operations, Coromandel Peninsula. Image 

sourced from the Airshare map resource https://www.airshare.co.nz/maps. 

 

2.7    Discussion and Conclusion 

In this chapter, background literature was reviewed to i) understand seagrass 

ecology and growth on the ground; ii) summarise relevant feature extraction methodology 

relating to seagrass; iii) identify trade-offs that need to be considered in research survey 

design; iv) identify aerial survey factors that need to be accounted for in the survey design 

for subsequent chapters;  and v) establish feasibility and limitations for use of  RPA as a 

survey tool for seagrass on New Zealand estuaries. 

Seagrass in New Zealand may be in decline, and data is insufficient to establish its 

status nationally and for specific estuaries with exception where monitoring has been in 

N 
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place to measure declining population condition. Based on insights from this review, 

improved monitoring methodology is warranted. Remote sensing methods of automatic 

feature extraction are appropriate due to the significant scale of many New Zealand 

estuaries.  

Seagrass plants grow from the sediment in dense or sparse clusters of small leaves 

when mature and well established but can present on the estuary at sizes down to a scale 

that is difficult to see at ground level. Seagrass can appear on an estuary as a uniform 

solid coverage or can grow through or be buried by shell, detritus and a range of 

substrates of particulate appearance. Seagrass can be covered by epiphyte, coated with 

silt, or at times with invertebrates upon the leaf surface. Seagrass can also present with 

damage from storm, flood or herbivory such as swans and geese. A robust reliable 

seagrass feature extraction method would require that seagrass can be detected from 

within different proportions of these confounding surface materials. In this research, it is 

therefore important to factor a range of scene conditions into the testing of feature 

extraction algorithms, so a study area comprising highly heterogeneous estuarine 

seagrass, detritus, shell and substrate proportions would be appropriate for the objectives 

of this study. 

The scope of this study is to develop and demonstrate RPA-based procedures 

suitable for semi-technical users where methods are feasible within normal agency 

monitoring and geospatial infrastructure. As such the hardware and methods being tested 

here aim to utilise a multispectral sensor at significantly lower cost than hyperspectral 

cameras, using much smaller and lower risk RPA airframes than the large airframes 

required for carrying hyperspectral hardware, and employing where possible open source 

or low-cost remote sensing software. 

The aerial survey design for this study needs to address or accept factors outlined 

in Section 2.5. Lens geometry, vignetting, image colour normalisation and 

orthorectification of the resulting image mosaic is addressed within the capabilities of 

Agisoft Photoscan Pro software (Appendix 2.8.2). Glint was managed by targeting 

consistently low (but not too low) sun angle and uniformly overcast sky conditions for the 

timing of RPA operations, which required some calendar and weather coordination to 

ensure low tide at the same time as the optimal sun angle. Motion blur was addressed by 

flying the drone at slow speed and equipping the airframe with a motor and propeller set-

up prioritising stability in the air at the expense of battery longevity. The considerations 

above resulted in the remotely piloted aircraft system hardware and software 

configuration that is summarised in Appendix 2.8.3. 
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2.8    Chapter appendices: 

(see the following A3 pages)
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2.8.1    Appendix 2.8.1. Seagrass remote sensing literature cross-section (2010 to 2019) using the Scopus data base search string given below*. 

Reference Target species Year of 
capture of 
remote 
sensing data 

Year of 
capture of 
ground 
survey data 

Location Mapping extent 
(area or coastal 
length) 

Remote sensing data 
source (s) 

Specified 
ground 
sampling 
distance 

Ground truth 
sampling / attribute 

Single or time-series 

Amran (2010) Seagrass, species not 
specified. 

2008 Not specified. Indonesia. Not specified Quickbird satellite. 2.4 m Sampling not 
specified; seagrass 
% cover. 

Single estimate. 

Barille´ et al. 
(2010) 

Zostera noltii. 1991-2005 2005, 2006 France. 340 km2 SPOT 1,2,5 satellites. 20, 20, 10 m Field spectrometry, 
sampling not 
specified. 

Time-series. 

Dierssen et al. 
(2010)  

Thalassia testudinum; 
Syringodium filiforme; 
Halodule wrightii. 

2004 2004 Bahamas. Not specified SeaWiFS satellite. 1 km 15-20 samples from 
25 stations. 

Single estimate. 

Sridhar et al. 
(2010) 

Halophila spp.; 
Halodule spp.; 
Enhalus sp.;  
Cymodocea sp.;  
Thalassia sp. 

1996, 2000, 
2002 and 2004 

n/a India. Not specified IRS LISS III satellite. Not specified Not clear. Time-series. 

Andrade and 
Ferreira (2011) 

Zostera marina; 
Zostera noltii. 

Not specified. Not specified. Portugal. Not specified Oblique aerial 
photography from 
building roof, with 
Nikon D70. 

Varied 120 image points; 
validation method 
not specified. 

Time-series.  

Fearns et al. 
(2011) 

Posidonia sp.; 
Amphibolis sp. 

2004 2004 Western 
Australia. 

4 km2 Hymap airborne 
hyperspectral. 

3.2 m 35 validation sites of 
underwater video 
creating 1800 
references, seagrass 
presence/absence. 

Single estimate. 

Knudby and  
Nordlund (2011) 

Cymodocea rotundata; 
Halodule sp.; 
Thalassia hemprichii; 
Thalassodendron ciliatum;  
Halophila ovalis; 
Syringodium isoetifolium;  
Cymodocea serrulate. 

2007 2007 Tanzania. 4.1 km2 IKONOS satellite. 4m 167 point with 
seagrass biomass by 
visual estimate. 

Single estimate. 

Lyons et al 
(2011) 

Halophila ovalis; 
Cymodocea rotundata; 
Halodule uninervis, 
Halophila spinulosa; 
Syringodium isoetofolium; 
Zostera muelleri. 

2004, 2007 2004, 2007 Queensland. 200 km2 Quickbird satellite. 2.4 m "Several thousand 
photos", seagrass 
presence/absence. 

Time-series. 
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Reference Target species Year of 
capture of 
remote 
sensing data 

Year of 
capture of 
ground 
survey data 

Location Mapping extent 
(area or coastal 
length) 

Remote sensing data 
source (s) 

GSD 
specified 

Ground truth 
sampling / attribute 

Single or time-series 

Hamylton et al. 
(2012). 

Thalassodendron ciliatum; 
Thalassia hemprichii; 
Halodule sp.;  
Halophila ovalis. 

Not specified. 2009 Indian Ocean. 226 km2 Quickbird satellite. 2.4 m 278 video and 209 
photograph points. 

Single estimate. 

Lyons et al. 
(2012). 

Seagrass, species not 
specified. 

1972–2010. n/a Queensland. 400 km2 Landsat (TM) 
satellite. 

30 m  Photo interpretation, 
no ground 
validation. 

Time-series. 

Nobi and 
Thangaradjou 
(2012). 

Seagrass, species not 
specified. 

2000; 2007/8. 2010 Indian Ocean. Not specified. IRS ID and IRS P6 
LISS III satellites. 

23.5 m 10 points per 6 
islands. 

Single estimate. 

Pu et al. (2012). Syringodium filiforme; 
Thalassia testudinum; 
Halodule wrightii. 

2009 2009 Florida. 105 km2 Landsat-5 and Earth 
Observation 1  
(ALI+Hyperion) 
satellites. 

30 m  57 transects, 
seagrass cover. 

Single estimate. 

Borfecchia et al. 
(2013b). 

Posidonia oceanica. 2011 2011 Italy. Not specified. Daedalus 
airborne sensor. 

2.5 m Not specified. Single. 

O'Neill and Costa 
(2013). 

Zostera marina. 2008 2008, 2010 Canada 
(Pacific). 

1.78 km2 AISA hyperspectral 
aircraft sensor and 
IKONOS satellite. 

2m and 4m 507 points, seagrass 
cover. 

Single estimate. 

Paulose et al. 
(2013). 

Not specified. Not specified. Not specified Indian Ocean. 8,249 km2 IRS P6 LISS III and 
IV satellite, and 
historical maps. 

Not specified. Not specified. Time-series. 

Torres-Pulliza et 
al. (2013). 

Seagrass, species not 
specified. 

1999-2003. 2008 Coral 
Triangle. 

170x185 km Landsat satellite. Not specified. 356 stations 
characterised, 
seagrass cover. 

Single estimate. 

Ball et al. (2014). Zostera nigricaulis; 
Zostera muelleri; 
Halophila australis; 
Amphibolis Antarctica. 

1939-2011. 2008-2011 Victoria, 
Australia. 

500 ha Various aerial 
photography - 
unsupervised 
classification. 

0.3 m Underwater video, 
seagrass density by 
species. 

Time-series. 

Cho et al. (2014). Seagrass, species not 
specified. 

2013 2013 Florida. Not specified. Hyperspectral Imager, 
International Space 
Station; Aerial 
photography 
reference. 

Not specified. Six stations, samples 
not specified. 

Single estimate. 

Hogrefe et al. 
(2014). 

Zostera marina. 2002-2009. 2007-2012 Alaska. Coastline 1200 
km. 

Landsat 5 and 7 
Thematic Mapper 
(TM) satellite. 

30 m  680-point ground 
inspection, 
systematic design, % 
seagrass cover. 

Single estimate. 
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Reference Target species Year of 
capture of 
remote 
sensing data 

Year of 
capture of 
ground 
survey data 

Location Mapping extent 
(area or coastal 
length) 

Remote sensing data 
source (s) 

GSD 
specified 

Ground truth 
sampling / attribute 

Single or time-series 

Pu et al. (2014). Syringodium filiforme; 
Thalassia testudinum; 
Halodule wrightii. 

2003, 2005 2005 Florida. 104 km2 Landsat 5 satellite. 30 m 14 transects. 
Seagrass cover. 

Time-series. 

Reshitnyk et al. 
(2014) 

Zostera marina. 2010 2012 Canada 
(Pacific). 

0.18 km2 Worldview 2 satellite, 
underwater acoustic. 

2 m Video transect, 
habitat substrate 
checks, seagrass 
presence/absence. 

Single estimate. 

Roelfsema et al. 
(2014). 

Cymodocea serrulata; 
Halophila spinulosa; 
Halophila ovalis;  
Halodule uninervis; 
Syringodium isoetifolium; 
Zostera muelleri. 

2004-2013 2004-2013 Queensland. 142 km2 Worldview 2, 
IKONOS, Quickbird 
2 satellite. 

Not specified Photo transect, 
seagrass cover, 
biomass. 

Single compiled 
estimate. 

Vandermeulen 
(2014). 

Zostera marina. 2008-2009 2008-2009 New 
Brunswick. 

Not specified. Acoustic. Not specified Towed video, 
seagrass cover. 

Single estimate. 

Blakey et al. 
(2015). 

Thalassia testudinum. 2007-2011 2007-2011 Florida. Not specified. Landsat 5 Thematic 
Mapper satellite. 

Not specified 4-8 samples each for 
30 stations, % 
seagrass cover. 

Time-series. 

Hossain et al. 
(2015b). 

Thalassia hemprichii; 
Halophila minor;  
Halophila ovalis; 
Cymodocea rotundata; and 
Halodule pinifolia. 

1982-2013 2013-2014 Malaysia. Coastline 12 km. Landsat 5, 7, 8 
satellite. 

30 m  178-point ground 
inspection points; 
presence/absence by 
seagrass species. 

Single estimate. 

Saunders et al. 
(2015). 

Halodule uninervis;Thalassia 
hemprichii. 

2011 2011-2012 Queensland. Not specified. Unspecified satellite 
image, historical 
maps. 

Not specified Photo transect, 
seagrass cover, 
biomass. 

Time-series. 

Sawayama et al. 
(2015). 

Seagrass, species not 
specified. 

2012 2011 Indonesia. Not specified. Worldview 2. 2 m 4781 points from 
towed underwater 
video. 

Single estimate. 

Valle et al. 
(2015). 

Zostera noltii. 2012 2012 Spain. 10.27 km2 Compact Airborne 
Spectrographic 
Imager. 

2 m 114 field stations, 
seagrass cover. 

Single estimate. 

Baumstark et al. 
(2016). 

Seagrass, species not 
specified. 

Not specified Not specified Florida. Not specified. Worldview2 satellite. 2 m Underwater 
photography, 
samples not 
specified, % 
seagrass cover. 

Single. 

Hachani et al. 
(2016). 

Posidonia oceanica. 2009 2011 Tunisia. 158 ha SPOT 5 satellite. 2.5 m 186 spot checks, 
seagrass 
presence/absence. 

Single estimate. 
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Reference Target species Year of 
capture of 
remote 
sensing data 

Year of 
capture of 
ground 
survey data 

Location Mapping extent 
(area or coastal 
length) 

Remote sensing data 
source (s) 

GSD 
specified 

Ground truth 
sampling / attribute 

Single or time-series 

Amran (2017). Enhalus acoroides; 
Cymodocea rotundata; 
Cymodocea serrulata; 
Halodule pinifolia; 
Halodule uninervis; 
Halophila ovalis; 
Syringodium isoetifolium; 
Thalassia hempricii. 

Not specified. Not specified. Indonesia. Not specified. Google Earth imagery Not specified Sampling not 
specified; 
presence/absence by 
seagrass species 

Single 

Asner et al. 
(2017). 

Seagrass, species not 
specified. 

Not specified. Not specified. South China 
Sea. 

Not specified. Planet Dove satellite 4.7 m Underwater 
photographic 
surveys; sampling 
not specified; 
seagrass 
presence/absence 

Time-series 

Calleja et al. 
(2017). 

Zostera noltei; 
Zostera marina 

1984-2015. 2001-2015. Spain. 22.7 km2 Landsat4-8 satellites  30 m Not specified Time-series 

Fauzan et al. 
(2017). 

Enhalus acoroides; 
Thalassia hemprichii; 
Cymodocea rotundata; 
Halophila ovalis; 
Halodule universis. 

2016 2016 Indonesia. Not specified. Sentinel-2A satellite 10 m 80 reference points, 
% seagrass cover 

Single estimate 

Bajjouk et al. 
(2018). 

Seagrass, species not 
specified. 

2009, 2015. 2011, 2015. Indian Ocean. 4.5 km2 Hyspex VNIR-1600 
sensor; AISA Eagle 1 
k system; Lidar 

0.4 m 37 stations, seagrass 
cover rates 

Time-series 

Chayhard et al. 
(2018a). 

Enhalus accroides; 
Halodule pinifolia; 
Halodule uninervis. 

2011, 2016-
2017. 

Not specified. Thailand. 5.59 km2 WorldView 2, 
GeoEye 1 satellite; 
RPA aerial 
photography 

Not specified Samples not 
specified, species 
presence/absence 

Single estimate 

Duffy et al. 
(2018). 

Zostera noltii. 2016 Not specified. United 
Kingdom. 

2 km2 Ricoh GR II compact 
digital camera or 
AgroCam RGB 
sensor on RPA 

4 mm and 14 
mm 

27 quadrats, % 
seagrass cover 

Single estimate 

Hamylton et al. 
(2018). 

Thalassodendron ciliatum; 
Thalassia hemprichii; 
Halodule sp.;  
Halophila ovalis. 

2004-2006. 2009 Indian Ocean. 203 km2 Quickbird satellite not specified 486 stations for 
underwater video 
sampling, % class 
coverage 

Single estimate 

Marcello et al. 
(2018). 

Cymodocea nodosa. 2017 2017, 2015. Spain. 4 km2 Airborne 
Hyperspectral 
Scanner; Worldview 2 
satellite 

2.5 m ; 1.8 m 6 underwater video 
transects, 
presence/absence 

Single estimate 
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Reference Target species Year of 
capture of 
remote 
sensing data 

Year of 
capture of 
ground 
survey data 

Location Mapping extent 
(area or coastal 
length) 

Remote sensing data 
source (s) 

GSD 
specified 

Ground truth 
sampling / attribute 

Single or time-series 

Topouzelis et al. 
(2018). 

Posidonia oceanica; 
Cymodocea nodosa; 
Zostera noltii; 
Zostera marina. 

2013-2015. Not specified. Greece. 13,676 km Landsat 8 satellite. 30 m Historical field data. Single estimate. 

Traganos and 
Reinartz (2018b). 

Posidonia oceanica; 
Cymodocea nodosa. 

2017 n/a Greece. 12657 ha Sentinel-2A satellite. 10 m No seagrass ground 
measurements. 

Single estimate. 

Ventura et al. 
(2018). 

Posidonia oceanica. Not specified. n/a Italy. Not specified. Gopro Hero4 on RPA. 3 cm No seagrass ground 
measurements. 

Single estimate. 

Innangi et al. 
(2019). 

Seagrass, species not 
specified. 

2015-2016. 2015-2016. Sicily. Coastline > 
35 km. 

Marine accoustic 
derived raster. 

2.5 m Spot checks, 
underwater video 
and hand grab. 

Single estimate. 

Lidz and Zawada 
(2013). 

Thalassia testudinum; 
Syringodium filiforme. 

2009 2009 Florida. 14 km2 Quickbird satellite + 
continous underwater 
imagery. 

2.4 m 195000 automatic 
underwater photo-
points, seagrass 
presence/absence. 

Single estimate. 

Ratheesh et al. 
(2019). 

Cystoseira indica; 
Halophila ovalis; 
Halodule unine; 
Sargassum tenerrimum; 
Sargassum prismaticum. 

2016 2015 India. Not specified. Airborne AVIRIS 
hyperspectral. 

4-8m 39 points on 13 
transects; seagrass 
presence/absence. 

Single estimate. 

Sousa et al. 
(2019). 

Zostera noltei. 2003-2005, 
2013-2014. 

2012-2013. Portugal. Not specified. Aerial photography; 
Sony NEX-5N 
camera on RPA. 

4 cm Biomass. Time-series. 

Wilson et al. 
(2019). 

Zostera marina. 2015 2015 Canada 
(Atlantic). 

Not specified. SPOT 6/7 satellite. 6 m 214 stations, 
seagrass 
presence/absence. 

Single estimate. 

Xu et al. (2019). Zostera marina. 2017-2018. 2017-2018. China. Not specified. Acoustic. Not specified Underwater camera 
during acoustic 
capture. 

Single estimate. 

Nahirnick et al. 
(2019a). 

Zostera marina. 2016 2016 Canada 
(Pacific). 

Not specified. Gopro Hero3 camera 
on RPA. 

2 cm 792 points from 
underwater video, 
seagrass cover. 

Single estimate. 

Nahirnick et al. 
(2019b). 

Zostera marina. 2017 2017 Canada 
(Pacific). 

Not specified. DJI Phantom 3 Pro 
camera. 

not specified Towed video, 2-6 
transects per site. 

Single estimate. 

 

* Literature query was based on the Scopus database search string: ( TITLE-ABS-KEY ( seagrass* )  OR  TITLE-ABS-KEY ( eelgrass* ) )  AND  ( TITLE-ABS-KEY ( survey* )  OR  TITLE-ABS-KEY ( mapping )  OR  TITLE-ABS-KEY ( mapped ) )  AND  ( TITLE-ABS-KEY ( "remote sensing" )  OR  TITLE-ABS-KEY 
( "remotely sensed" ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2019 )  OR  LIMIT-TO ( PUBYEAR ,  2018 )  OR  LIMIT-TO ( PUBYEAR ,  2017 )  OR  LIMIT-TO ( PUBYEAR ,  2016 )  OR  LIMIT-TO ( PUBYEAR ,  2015 )  OR  LIMIT-TO ( PUBYEAR ,  2014 )  OR  LIMIT-TO ( PUBYEAR ,  2013 )  OR  LIMIT-TO ( 
PUBYEAR ,  2012 )  OR  LIMIT-TO ( PUBYEAR ,  2011 )  OR  LIMIT-TO ( PUBYEAR ,  2010 ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" ) ). The resulting reported items were eliminated from the list based on exclusion criteria:   If there was mapping purpose; no clear target species; not at least partly aiming to acheive a 
seagrass map; lab based; algorithm focus; model only; ground only; water quality only; performance/accuracy testing only; not related to seagrass extent, presence, extent or distribution; spectral character only; hardware testing only; literature review; geomorphology only; duplicated from same study published elsewhere. The 
resulting inclusion items are listed above. 
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2.8.2    Appendix 2.8.2. Sources of imaging error and approach taken to mitigate 

problems. 

Source of error Description 

Lens vignetting. The camera has a narrow field of view and quality lens- 

vignetting is barely detectable within the saved imagery. 

Flightpath is set such that there is >75% overlap in imagery in 

the forward and lateral direction, resulting in only small central 

parts of each image included in the final orthocorrected 

mosaic.  

Lens distortion. Agisoft Photoscan “lens” module computes an accurate 

parameterised lens model allowing image distortion correction. 

Lens model is automatically calculated and refined by the 

software during the camera alignment and optimisation 

workflows. 

Sun angle. Field work timing was set to achieve aerial survey between 28-

35-degree sun angle from horizon, chosen after initial field 

pilot-testing with the goal of minimising sun glint off residual 

water surface and minimising shadow cast from relief and 

small objects on the estuary. 

Photo georeferencing 

and alignment. 

The imagery was geotagged with GPS coordinates from the 

onboard camera GPS module. These GPS coordinates improve 

initial photogrammetric processing. Final georeferencing was 

achieved using photogrammetric reference markers placed 

within the scene, with locations surveyed using precision 

GNSS survey equipment, and with locations/coordinates 

linked across all input photogrammetry images to optimise the 

lens model and photo orientation calculations.  

Motion blur. Flight speed was set to minimise motion blur to below 1-pixel 

blur-length. 
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(Appendix 2.8.2 ctd.)  

Source of error Description 

Radiometric control. The radiometric reference panel included within the Sequoia 

camera was imaged at the start of each survey-sortie to capture 

the mean image value relative to it’s known reflectance value. 

Agisoft Photoscan software includes functionality to 

automatically apply a coarse radiometric response correction 

based on this panel reference.  

Sun glint. Flight times were set to minimise potential for sun glint from 

water pooling (see ‘Sun angle’ above). It was not possible to 

eliminate small-scale sun glint completely from wet seagrass 

and other wet objects on the estuary, although glint was nearly 

in-detectable from imagery taken with overcast cloud cover 

conditions. 

Image normalisation. Agisoft Photoscan Pro v1.4 software applies a proprietary 

image normalisation correction with good colour equalisation 

result. Specific algorithm detail not available. 
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2.8.3    Appendix 2.8.3. Hardware and software configuration for the remotely 

piloted aircraft setup used for this study. 

 

Component Configuration 

Airframe. 

 

Sky-hero Spyder 600 mm quadcopter frame with 2815 470KV 

motors. 

6s 40A power system, 6S 6000 mAh lithium polymer battery 

25C rating. 

13x55 propellers (small for this motor-size, for flight stability). 

Taranis X9D radio transmitter with X8R receiver. 

Pixhawk flight controller with M8N multi-constellation GPS 

receiver. 

Sik radio telemetry link on 433 MHz. 

Ground control 

station. 

 

Arducopter Mission planner flight control software. 

Dell ATG 6420 ruggedised laptop. 

Half-wavelength high gain antenna for radio link (ground end). 

Camera. 

 

Micasense Sequoia multispectral camera (green, red, red-edge 

and NIR) with downwelling light sensor and radiometric 

reference. 

Independent power supply for camera 5V 1S 5,000 mAh. 

Georeferencing. 

 

White 1 m reference pipes, centre marked, or white 100 mm x 

30 mm plastic markers. 

Trimble R8 receiver with TSC3 controller, under VRS 

correction service and link to local geodetic reference mark. 

Photogrammetry 

processing. 

Agisoft Photoscan v1.4 then 1.5. 

Lens model calibration using Agisoft Lens within the 

Photoscan package. 
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CHAPTER 3 
 

3    Chapter 3.  Study Area - Wharekawa Harbour status and trend 

3.1    Introduction 

The application of remote sensing to the task of seagrass survey may depend on the 

nature and rate of change in seagrass. Change that is relevant to seagrass condition 

monitoring includes patch extent, density change, seagrass plant health/vigor. The 

significance of change may be timescale-dependant at locations with high 

colonisation/recolonization rates.  The thesis objectives require a site with a wide range of 

seagrass density and substrate types, and a site likely to change at different scales across 

the timeframe of the year of study, including parts that remain unchanged. 

Wharekawa is an important estuary in the east coast of the North Island of NZ. It 

provides a range of significant natural values, and provides habitat, stabilisation and food 

resources above- and below-ground. These attributes support the provisioning of 

ecosystem services and estuarine resilience (Chapter 2). Wharekawa Harbour has similar 

composition and pressures as many other estuaries in the region, and hence is a good case 

subject. In recent years there has been detectable loss of seagrass extent (e.g., as can be 

observed in the Google Earth imagery time-series). As yet, the nature, rate and 

significance of change in Wharekawa seagrass has not been quantified against a long-

term baseline. Therefore, in response to this uncertainty, the final part of this chapter 

examines long term change in seagrass, including the change across one 12-month period 

measured by precision GPS survey conducted alongside of the primary field work that is 

examined in Chapters 4 to 6. 

3.1.1    Chapter objectives 

This chapter aims to gain an understanding of the key characteristics of 

Wharekawa Harbour, and to understand the current and previous long- and short- term 

trend in seagrass extent on the estuary within the limits of available historical data and the 

current fieldwork resource. The aim is also to implement seagrass mapping on 

Wharekawa Harbour using manual photo interpretation to observe types of visual 

ambiguity in the images, sources of spatial error and to consider detection limits of the 

different methods. This provides a contrast to the low altitude high resolution method 

developed in later chapters.   The specific objectives are: 

1.   Determine the characteristics of Wharekawa Harbour in terms of its ecosystem 

and catchment environment; 
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2.   Determine the current seagrass population of the estuary and short term (one 

year) stability of seagrass distribution in response to a significant rain and sedimentation 

event; and 

3.   Measure the long-term pattern of change in seagrass extent and estimate future 

trend. 

 

3.1.2    Study site selection 

Wharekawa Harbour was selected as study area for thesis research because the 

estuary provides a range of vegetation and substrate conditions within a relatively small 

and accessible area, has large persistent meadows of seagrass with a range of density and 

morphology, and is of a similar geomorphic type to other estuaries in the Coromandel 

Peninsula and Waikato Region (Hume et al., 2016; Table 3.1, Figure 3.1). At the time of 

this research, Wharekawa Harbour was also under pressure from sediment derived from 

forestry clear-felling in the hills immediately adjacent to the estuary margins, and 

consequently was subject to pulses of sediment accretion and debris deposition during 

high rainfall events, including damming and subsequent flash-flood release. 

Wharekawa Harbour was also selected because i) the airspace over the coastal 

marine area is amenable to a drone survey without airspace restrictions; ii) operations 

could be conducted within the standard RPA rule set (Civil Aviation Authority 2018); iii) 

RPA operations in aviation airspace are safer due to good visibility across and outward 

from the estuary for observing approaching piloted aircraft; and iv) there are few RPA 

flight hazards (tall trees are located well away from likely flight paths) and low public 

presence during weekday working hours. 

    

3.2    Geology, landform, soil and land use 

Wharekawa Harbour is classified under the geomorphic ontology of Hume et al. 

(2016) as class 7A (“permanently open, enclosed with barrier beach/spit”). The surface 

area of the estuary at spring tide is 1.9 km2 and ~86% of the estuary is intertidal. The 

Wharekawa Harbour tide cycle is asymmetric, with longer drainage time than fill-time 

(Needham et al., 2013).The hydrological catchment land-area was reported as 83 km2 by 

Hume et al. (2016), 102 km2 by O'Donnell (2009), but was calculated as 91 km2 using a 

catchment trace from mean high water spring to hilltop limit using the NIWA river 

environment classification v2 (REC2) GIS layer in the current study (Figure 3.2). 
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Table 3.1. Major estuarine systems of Waikato Region. Estuaries are organised by major 

coastal area as per the Waikato Regional Coastal Plan (Waikato Regional Council 2011), 

with attributes presented after the national inventory by Hume et al. (2016). Geomorphic 

class codes: 6B tidal river mouth, spit enclosed (sand/mud); 7A tidal lagoon, permanently 

open; 8 shallow drowned valleys; 9 deep drowned valleys. 

Major zones  
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East coast estuaries. Whangamata. 7A 4.4 78 1 4.6 50 0.2 

 
Wharekawa. 7A 1.9 86 1 1.9 83 0.3 

 
Tairua. 7A 6 51 1 7.7 282 1 

 
Whitianga. 7A 15.5 72 1 17.1 450 1.4 

 
Whangapoua. 7A 13 80 1 14.9 107 0.3 

 
Kennedy Bay. 7A 0.5 91 1 0.5 51 0.1 

 
Colville. 8 4.6 5 3 11.7 43 0.1 

 
Coromandel. 8 25.4 21 5 62.8 60 0.2 

 
Manaia. 8 6.3 76 3 11.1 59 0.2 

         
Hauraki Gulf / Firth of 

Thames. Firth of Thames. 9 717 15 3 1890 544 1.1 

         
West coast estuaries. Raglan. 8 31.9 69 1 60.9 523 1.2 

 
Aotea. 8 31.9 74 3 59.2 185 0.4 

 
Kawhia. 8 67.6 74 2 126 499 1.4 

 
Marakopa. 6B 0.7 14 5 1.8 367 1.1 

 
Awakino. 6B 0.3 0 5 1 382 1.3 

 
Mokau. 6B 1.1 0 5 3.3 1452 3.9 
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Figure 3.1. Wharekawa Harbour position with respect to major estuaries (as presented in 

Table 3.1) and terrain of Waikato Region (greyscale altitude, black to white as low to 

high altitude). 
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Figure 3.2. Wharekawa Harbour and surrounding drainage catchment (background – 

copyright Bing Maps). 
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The geology and landforms of the topographic surrounds to Wharekawa Harbour 

are strongly influenced by historical fault activity and volcanic land formation, in 

particular a system of volcanic domes and caldera-collapse features, as well as minor 

basaltic flow structures (Aldrich 1995; Malengreau et al., 2000). Current day soils making 

up the terrain of the catchment are predominated by brown, allophanic and pumice soils 

(Landcare Research 2010; Figure 3.3) on moderate or steep slopes of poor water retention 

and/or prone to sheet and/or slip erosion (O’Donnell 2009). 

Intensive land use in the catchment largely comprises farming and plantation 

forestry (Graeme 2008; and Figure 3.3). The catchment comprises land-use of forestry 

(50%), farming (12%), negligible horticulture (0.3%), with much of the remainder land 

area being indigenous vegetation (38%). This is based on the calculated catchment area of 

91 ha and using the New Zealand Landcover Database v4 (LCDB4) as a year 2012 

snapshot. Equivalent statistics presented by O’Donnell et al. (2009) were forestry (52%), 

farming (12%), and horticulture (0.13%) based on the 2002 snapshot indicating negligible 

coarse land use change over a decade. 
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Figure 3.3. a) Soil composition and b) land use, within the Wharekawa Harbour catchment. Statistics are based on area 

and proportion within the catchment boundary and to the high tide line.
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3.3    Estuary values 

Wharekawa Harbour has high recreational value, aesthetic and cultural value to its 

community and visitors. The estuary provides food resources and generally good water 

quality (O'Donnell 2009). Within and surrounding the estuary are historical and 

archaeological sites relating to early Maori colonisation, and later European and Maori 

land-conversion from native ground cover to agriculture and plantation forestry. There 

remains in several parts of the estuary catchment an intact sequence of vegetation linking 

marine and terrestrial communities via saltmarsh, coastal wetland and coastal forest 

intermediate communities. Enhancement of this linkage is recognised as an area for 

improvement under catchment management (Graeme 1997; O’Donnell 2009). Relatively 

low intensity of human development compared to other estuaries raises the profile of the 

Wharekawa Harbour as a conservation area under natural heritage and species protection 

mandate and warranting the highest level of protection possible under the relevant 

statutory framework (Dowding 2012). 

The estuary is situated within the coastal marine area as defined by s 2 of the 

Resource Management Act 1991 and is subject to statutory protection by regional 

government under the Act and is regulated by the Regional Coastal Plan (Resource 

Management Act 1991, Waikato Regional Council 2011). The estuary and surrounds are 

designated as an area of significant conservation value (Lundquist et al., 2004; Waikato 

Regional Council 2011) on the basis of: i) importance to local Maori; ii) high wildlife 

habitat value; iii) significant population of dotterel; iv) high abundance of threatened 

waders and other notable bird species; v) significant areas of salt marsh, seagrass and 

mangrove; vi) abundant shellfish; and vii) areas protected by a wildlife refuge and 

surrounding significant natural area parcels. 

The coastal margin adjoining the estuary has ecologically intact estuarine 

vegetation communities which include salt-marsh (including rush/sedge, 

manuka/ribbonwood and sea-meadow sub-types), mangrove and seagrass community 

types, using the class system of Graeme (2008). Community types can be found in 

spatially distinct patches or in blended extents (Graeme 2008). Large growth of intertidal 

mangrove forest has been present on the estuary since early survey work on the estuary 

(Graeme 1997) and can be seen in early aerial photography (see section 3.5).  

Wharekawa Harbour is a site of high importance for many estuarine birds 

(Dowding 2012, Dowding 2013). In particular, observations have been made on 

Wharekawa Harbour of species designated under the New Zealand Threat Classification 

system (Townsend et al., 2008), as per the following, and based on lists by Dowding 

2013): 
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Threatened and nationally critical: - black stilt Himantopus novaezelandiae; 

Nationally endangered: - Australasian bittern Botaurus poiciloptilus; Nationally 

vulnerable: - Pied shag Phalacrocorax venus; reef heron Egretta sacra; New Zealand 

dotterel Charadrius obscurus aquilonius; banded dotterel Charadrius bicinctus; wrybill 

Anarhynchus frontalis, red-billed gull Larus novaehollandiae; Caspian tern Hydroprogne 

caspia; North Island kaka Nestor meridionalis septentrionalis; or  

At risk: - North Island fernbird Bowdieria punctata vealeae; little penguin 

Eudyptula minor; little shag Phalacrocorax melanoleucos; black shag Phalacrocorax 

carbo; South Island pied oystercatcher Haematopus finschi; banded rail Gallirallus 

philippensis; variable oystercatcher Haematopus unicolor; pied stilt Himantopus 

himantopus; white-fronted tern Sterna striata (refer to Dowding 2013 for source). 

Within this inventory, dotterels, godwits, herons, variable oystercatchers and black-

backed and red-billed gulls are frequent users of the major seagrass meadows on the 

estuary when the tide is out (Graeme 1997; Graeme 2008, and Figure 3.4). 

Mangroves may provide habitat for banded rail (Bell and Blayney 2017). At least 

one bittern is still present within the saltmarsh and mangroves of the upper reaches of the 

Wharekawa River in-flow (personal observation 5 May 2017). Godwits have been 

reported in flocks as large as 200 in number (Graeme 1997). Wharekawa Harbour is 

designated a priority 1 site of importance to estuarine birds (Dowding 2013). The main 

feeding area is the lower estuary which also coincides with several large long-term 

seagrass meadows, and numerous birds spanning multiple species can be seen feeding 

together (Figure 3.4). 

Estuarine intertidal substrate can be rich with shellfish, predominantly featuring the 

bivalve cockle (Austrovenus stutchburyi), pipi (Paphies australis), and wedge shell 

(Macomona liliana), and gastropods (Cominella sp., Zeacumantus sp. and Diloma sp.) 

(Graeme and Giles 2013). 
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Figure 3.4. Wharekawa Harbour at low tide, with herons, oystercatchers, godwits, seagulls and dotterels feeding together on the same meadow. Canadian 

goose and swans can be seen in the background. 
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3.4    Pressures 

Graeme (2008) identified four key threats to Wharekawa estuarine vegetation: 

stock damage, sediment accretion, illegal mangrove removal and expansion of saltwater 

paspalum. 

 

3.4.1    Stock damage  

Stock damage has been addressed in part under actions of the operational 

Wharekawa Harbour Catchment and Management Plan (O’Donnell 2009) by way of 

fencing and maintenance of riparian vegetation margins alongside the tributary streams 

that run past farmlands into the estuary. 

 

3.4.2    Mangroves  

Mangroves have been widespread in the estuary for several decades but were rare 

in 1945 and possibly up to the 1970’s. A long-term sequence of historical aerial imagery 

provides an indication that the large mangrove forests of the mid-inner estuary are 

relatively recent formations. The first major stand of mangroves appeared behind the 

Opoutere Road causeway in a 1971 image. In 1945-dated imagery, the intertidal area 

behind the causeway appeared to be dominated by sediment with no mangrove-like 

clusters visible. By time of the 1983 image, the mangroves had thickened to a young 

forest, and at high density by the time of the 2017 field work under the current study. 

Other areas of current-day mangrove forest distribution on the estuary coincide 

coarsely with apparent stream sediment deposition points that are visible in the 1945 and 

1971 imagery. The original stream channel and flood-spill directions are not evident in 

recent imagery (e.g., looking backward to 2001 which is the earliest imagery in the 

Google Earth time-series). This is due to the recent channelization and stream redirection 

that came about after the mangrove forests established and the weed-grass saltwater 

paspalum (Paspalum vaginatum) infested and hardened many channel margins. Many of 

the new mangrove seedling patches likewise appear to be positioned on or near to likely 

deposition points for sediment from tributary stream water flow, observations in the 

current day support a hypothesis of earlier stream sediment influencing current day 

mangrove distribution. 

Mangrove removal has been attempted in places on the estuary (Graeme 1997; 

Bouma et al., 2016). The most significant removal visible in the Google Earth image 

time-series imagery took place been 2004-2007, amounting to three areas of size ~0.5, 1.5 

and 3.9 Ha of mangrove. Two of these areas, which are distant from other tracts of 
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mangrove forest, remain largely mangrove-free in the current day. However, one area 

(0.5 Ha), positioned in a gap between large tracts of high canopy dense mangrove forest, 

has significant mangrove regrowth, with dense mid-height mangrove saplings visible 

during a May 2017 field inspection. This patch will likely revert to dense canopy 

mangrove forest in coming years. Overall there was a reduction in Mangrove extent from 

49 to 43 ha from 1997 to 2012 respectively, and this reduction can largely be attributed to 

the earlier mangrove clearance (WRC 2014 dataset to WRC 2012 dataset spatial 

difference). 

There is ongoing debate in the science community concerning whether the 

mangrove expansion is an acceptable natural process, or a human induced environmental 

impact requiring intervention (Morrisey et al., 2007; Lundquist et al., 2014; Dencer-

Brown et al., 2018; Pham et al., 2019). In New Zealand mangroves are a recognised 

valuable species that is important to coastal ecology (Dencer-Brown et al., 2018), but 

there are some locations where stakeholders regard mangroves as a pest species for which 

removal is justified (e.g., Dencer-Brown et al., 2018; Alfaro 2010). Yet mangrove 

removal also poses a risk of ecological damage to the estuary (Stokes 2010). For 

Wharekawa Harbour there are elements of a case visible in historical imagery suggesting 

that expansive dense mangrove forests are a recent phenomenon for Wharekawa Harbour 

and that current day mangrove distribution is associated with the location of historical 

sediment deposition. This also acknowledges the limitations of early black-and-white 

aerial photo interpretation, and lack of accessible imagery captured prior to 1945, at the 

time of writing. 

 

3.4.3    Sediment 

Sedimentation is a common pressure upon estuaries in New Zealand (Ministry for 

the Environment 2016). Sedimentation arises from slope soil failure (either gradually or 

from land slip), slope erosion or stream bank erosion, flocculation (aggregation and 

binding of particles within waterbody transport), or from forestry soil manipulation, 

scraping and other transport during harvest (Mead and Moores 2005; Jones 2008). Soil is 

transported into streams by gravity, wind, surface water flow, and during harvest and 

following timber mobilisation down a topography (Phillips et al., 2007; Jones 2008). 

The impact of sedimentation depends on the rate of inflowing sediment and 

suspended particles compared to outflow. Impacts of sediment and particulate suspension 

can be considered in terms of chronic (due to continuous delivery of sediment to the 

estuary) and catastrophic disturbance effects (rapid delivery during rainfall events) 

(Thrush et al., 2004). Impacts relate to burial depth, timeframe until exposure and 
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sediment size. For example, research by Benham et al. (2019) demonstrates in a 

microcosm experiment that Zostera muelleri can tolerate burial to 5 mm depth for 28 

days, with substantial reduction in rhizome growth and shoot density at 10 mm depth, and 

with impacts increasing with reducing grain size. The source and type of impact from 

sedimentation can vary from estuary to estuary depending on surrounding geology, 

coastal morphology, land use, and the number, size and catchment of streams entering the 

estuary. 

Wharekawa Harbour has relatively high vulnerability for sediment infilling as a 

consequence of a relatively small tidal prism to estuary area ratio (Jones 2008). This ratio 

provides a simple indicator of the ability of an estuary to transport inflowing sediment out 

of the estuary, where a low ratio indicates poor flushing potential. Sedimentation threat to 

Wharekawa Harbour has been noted by Graeme (1997, 2008) and O’Donnell (2009). 

Sedimentation in the Northern arms of the estuary was also noted by Needham et al. 

(2013). There is also indication of sedimentation impact as early as 1945 as can be seen in 

1945 historical aerial photography. Possibly the most significant sediment event for 

Wharekawa Harbour was the initial clearance-logging of mature native forest that mostly 

took place between the late 1890s and the 1920’s (O’Donnell 2009; Barton 2017).  

Native timber logging in the catchment included transport of logs downstream to 

the estuary by way of stream flood-inundation after release of large constructed stream 

dams. O’Donnell (2009) records that up to 35 dams may have been present on tributaries 

of the estuary. Logs were transported across the estuary in large tied rafts, on route to 

Auckland for timber processing. Transport of logs down the catchment to the estuary 

likely exacerbated sediment transport downstream. In some regions of the Coromandel 

Peninsula, clear-felling of native forestry was followed by repeated scrub vegetation 

burn-off relating to gold mining and extraction activities (King 1993; Figure 3.5). 

Plantation forestry had begun by the late 1940s (Barton 2017) and has continued 

throughout the catchment to the present day. 
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Figure 3.5. Early (1889) photography of the ‘Lucky at Last’ Whangamata Gold 

Corporation stamper battery, illustrating the denuded landscape within the Wharekawa 

Catchment following native forest clearance. Reproduced with permission acknowledging 

Sir George Grey Special Collections, Auckland Libraries, AWNS-18990630-5-2. 
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The change in rate of sediment accretion onto the estuary, from prehistoric times to 

the current day, has been estimated as 0.09–0.12 mm/year prior to Polynesian settlement, 

3.6-7.2 mm/year during catchment deforestation of native forest (1880-1945), and 5.0- 

8.0 mm/year during the recent decades of plantation forestry in the catchment (Swales 

and Hume, 1995 as cited by Mead and Moores, 2005). Sediment core measurements 

indicate sediment deposition in the range 183-252 tonnes per km2 per year (O’Donnell 

2009). Sediment of the estuary is dominated by sand of varying density (Graeme and 

Giles 2010). 

The origin of current-day sediment deposition into Wharekawa Harbour was 

examined by Gibbs and Bremner (2008). These authors determined that sediment 

originated from pine forestry (1-23%), pasture (<1-10%), native forest (<1-3%) and slip 

(<1-13%) sources, with a high proportion of flood-plain derived sediment likely from silt 

transport and stream bank erosion (29-95%) depending on storm/rain history (Gibbs and 

Bremner 2008). 

High rainfall events can exacerbate the effects of post-forestry soil transport 

through landslide and stream debris-dam failure. For example, Marden and Rowan (2015) 

determined that transported soil was predominantly derived from forestry debris 

avalanche originating from plantation forestry clearance, where higher soil volumes were 

derived from slopes clear-felled three years previously rather than slope that had just been 

cleared. A similar avalanche event was observed in the current study on Wharekawa 

Harbour during the field data collection of early 2017. Two substantial rain systems “The 

Tasman Tempest” and “Tropical cyclone Cook” impacted Coromandel peninsula with 

sustained heavy rainfall during autumn 2017 (Moreton 2017, Parker 2017; Figure 3.6). 

The outcome for the estuary was substantial soil and debris avalanches occurring 

nearby to the estuary margin with observable soil mass entering the estuary (Figure 3.7). 

Frequent land slips were visible in the recently cleared plantation forestry areas (e.g., 

Figure 3.7a). Singleton (2017) observed significant stream bank erosion in reaches within 

the Wharekawa catchment that run through pastoral areas into the estuary. 
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Figure 3.6. Study area two-year rainfall profile to end of 2017 field work period. Source 

NIWA CliFlo database download for Tairua rain gauge. 

 

Most of the visible sediment deposited on the estuary in the weeks following these 

rain events appears as either deep drifts of orange/brown coarse sediment with good 

drainage of tidal waters, or very fine smothering mud-forming brown silt (Figure 3.8). 

The silt had largely dispersed by ~ 4-6 weeks after the storms, but the coarse sediment 

was still conspicuously present one year later. In addition to the orange/brown stream 

derived sediment, there was also significant transport of existing sandy sediment (grey 

hued sediment rich with shells) by surging flood waters. Both types of storm sediment 

caused notable smothering or burial of seagrass in thick layers, at depths of >200 mm at 

deepest observed level where there was filling of the existing estuary drainage 

microtopography (Figure 3.9). 

The Tasman Tempest rain event induced a major landslide filling then damming a 

stream which formed a significant sediment release spilling across a bounding road into a 

salt marsh at the margin of the estuary (Figure 3.10). Significant coarse sediment from the 

flow was still abundant on the marsh 12 months after the event, with extensive fine 

orange brown silt depositing across the marsh. 
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Figure 3.7. Major slips and sediment/debris entering Wharekawa Harbour at the time of 

the Tasman Tempest and Tropical Cyclone Cook rainfall events: - a) landslide avalanche 

across a salt-marsh with extensive deposition of forestry derived logs and slash; and b) 

sediment avalanche onto low-lying pastoral land adjacent to the estuary. 

 

 

 

  

a)  

b)  
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Figure 3.8. Sediment accreting in large piles upon the estuary inflow from a tributary 

stream which drains an area of significant slope failure and landslip resulting from the 

‘Tasman Tempest’ rain event, 7-12 March 2017. Sediment here formed a large wide 

mound that buried parts of a significant seagrass meadow with >200 mm depth of coarse-

grain (fine gravel) persistent sediment. Image date 16 March 2017. 
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Figure 3.9. Examples of sediment incursion upon seagrass; a) orange/brown mud typical 

of stream particulate inflow deposition from slope failure in the catchment, b) grey sandy 

sediment consistent with high flood-current displacement of existing sand/shell sediment 

and, c) large-scale burial of a seagrass meadow with white-dashed line indicating true 

seagrass extent as per ground-level GNSS measurement.  

a) b) 

c) 

1 m 

1 m 

1 m 
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Figure 3.10. Forestry-derived landslide avalanche and sedimentation event spilling from 

steep slopes onto Wharekawa Harbour marginal salt-marsh, arising from the Tasman 

Tempest heavy rainfall event 7-12 March 2017: (a) top view as RPA imagery overlain 

onto Bing Maps background; and b) enlargement showing sediment forming deep 

deposits (>1m in places) on top of vegetation and eroding into new flow channels). These 

images are the nadir-view of Figure 3.7a, captured by remotely piloted aircraft on 23 

March 2017.  

a) 

b) 
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3.4.4    Saltwater paspalum 

Saltwater paspalum (Paspalum vaginatum) is an invasive introduced weed in New 

Zealand, and generally found at sub-tropical latitudes of the upper North Island (Graeme 

and Kendall 2001; Shaw and Allen 2003). The weed is distributed throughout much of 

coastal Coromandel Peninsula (Graeme and Kendall 2001; Graeme 2008; Lewis and 

Britton 2015). There is no clear record of when saltwater paspalum was introduced to 

Coromandel, however Graeme and Kendal (2001) report an instance of a herbarium 

observation of P. vaginatum near to the Coromandel in Mercer in 1877. 

Saltwater paspalum was already prevalent in patches throughout Wharekawa 

Harbour by the time of the 1997 estuarine vegetation inventory (Graeme 1997). Saltwater 

paspalum has been reported as a substantial ongoing issue for Wharekawa Harbour for 

several decades (Graeme 1997, Graeme 2008, O’Donnell 2009). The weed is typically 

found on the estuary verge (Shaw and Allen 2003), and the largest paspalum infestations 

on Wharekawa Harbour are associated with sea rush (Juncus spp.) communities and 

lining the channelised upper reaches of the inner estuary and upstream into tributary 

streams (Graeme 2008). Large swards of paspalum grow in extensive swards along the 

inflowing margin or Wharekawa River, which trap sediment flowing downstream further 

increasing channelization and accelerating rates of sediment infilling and loss of 

sand/mud flat habitat (Graeme 2008; Figure 3.11). 

The surveyed extent of saltwater paspalum on the estuary increased from 4.5 to 9.4 

ha in the period from 1997 to 2008 (calculated using dataset Waikato Regional Council 

2014, with spatial dataset clipped to a common extent between years, from estuary body 

to tributary entry points). Current day imagery (e.g., Google Earth time-series) indicates 

these historical infestations have further expanded over the past decade since the last 

ground survey, such that channel infestations are over 1 km in length and penetrating 

hundreds of meters into the large marginal coastal marsh and sea rush communities 

(Figure 3.11). 
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Figure 3.11. Various presentations of saltwater paspalum infestation of 

marsh, rush and mangrove communities, Wharekawa Harbour. Image a) 

shows aerial view of paspalum encroaching inward from the channel edge 

(top left of photo) towards the terrestrial limit of coastal vegetation and 

pastoral grassland (lower right of photo); b) deep swards of paspalum (e.g., 

~1 m deep can be common) growing on banks of sediment deposition, with 

c) erosion of sediment banks at sites of flood water erosion; d) paspalum 

spanning gaps between mangrove and sea rush community, i.e., extending 

form channel edge up to near the mean high water spring tidal limit. 

a) 

b) c) 

d) 
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3.4.5    Other threats 

Other threats to the estuary health include possible nutrient run-off effects from 

pastoral and forestry land (O’Donnell 2009), and the general effects of climate change 

and associated extreme weather events, ocean acidification and species intolerance to 

warming (Ministry for the Environment 2016). Wilding pines and willow are a potential 

threat for the saltmarsh community on the estuary margins (Graeme 1997; O’Donnell 

2009). Seagrass may be impacted from grazing by large numbers of swans and Canada 

Goose that can be seen feeding on seagrass on Wharekawa Harbour (Figure 3.12). 

 

 

 

 

 

 

 

Figure 3.12. Seagrass on Wharekawa Harbour can be subjected to intensive grazing from 

swans (a) and Canada goose (b).  

a) 

b) 
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3.5    Seagrass extent on Wharekawa Harbour - analysis 

Wharekawa Harbour is one of several sites listed as being data deficient for 

evidence of seagrass decline (Morrison et al., 2014). The historical image time-series in 

Google Earth indicates that there has been significant seagrass loss comparing current day 

imagery to the earliest Google Earth imagery (dated 2001). This decline can be quantified 

in part by comparing two Waikato Regional Council vegetation surveys (Graeme 1997, 

2008) with the sum of all seagrass-containing patches mapped in these surveys reducing 

from 50 to 45 ha between these survey times. Inspection of long-term Google Earth time-

series (spanning 2001- present day) imagery, shows some areas with > decade long 

seagrass patch-persistence, but many parts of the estuary exhibit transient distribution 

over that time. 

Authors Suykerbuyk et al. (2016) described similar patterns for Zostera noltii in 

the Netherlands, identifying ‘hot spots’ where seagrass was present in all map extents, 

and ‘cold spots’ being areas with variable extent. Within these sites, high density seagrass 

was believed to stabilise its substrate under a positive feedback process, and conversely 

once seagrass dropped below a certain density, negative feedback promoted decline. 

Wharekawa Harbour seagrass has high potential for growth and spread compared 

to other estuaries on the same coastline (Turner 2007). The estuary also has great 

potential for rapid seagrass loss due to sedimentation associated with high prevalence of 

plantation forestry and agricultural land disturbance within its catchment, and multiple 

stream networks draining this land into the estuary. The current-day plantation forest 

tracts are the third or fourth planting since the forestry was established in the 1930s. 

There has been no comprehensive seagrass mapping on the estuary since the 2008 ground 

survey by Graeme (2008). Consequently, updated measurement of seagrass extent on 

Wharekawa Harbour was justified. 

In order to construct a long-term time-series for seagrass extent, two high precision 

datasets were generated providing accurate seagrass extent data representing status of 

seagrass extent at the time of the current study. Likewise, estimates were made for 

seagrass extent prior to the 1997 ground survey, by photointerpretation on available 

historical imagery. 

 

3.5.1    Survey Methods 

3.5.1.1   Current day seagrass extent 

A seagrass census was conducted by walking systematically around all parts of the 

estuary, tracing the location using one of two global positioning standards. A high 

precision global navigation satellite system (GNSS) survey instrument (Trimble R8 
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receiver with TSC3 controller) receiving real time corrections via a wide area cellular 

virtual reference system (VRS, Geosystems i-base) was used where cellular radio 

reception was available. Measurements were taken under ground control with respect to a 

Land Environment New Zealand (LINZ) geodetic survey mark situated nearby (LINZ 

mark ‘EB2U’). In parts of the estuary where cellular reception was insufficient for 

reliable GNSS position correction, two multi-constellation handheld GPS receivers were 

used for mapping, a Garmin GPS64 for mapping seagrass patch exterior boundaries and a 

Garmin Etrex20 for mapping interior holes i.e., gaps or sand patches within the seagrass 

patches. Holes were captured because some were large areas of seagrass absence (e.g., 

1940 m2), and many were sites of erosion to the seagrass bed. 

All three GPS units were set to capture locations at 2 second intervals, and 

mapping was conducted at a walking speed achieving approx. 0.5 - 2 m vertex spacing on 

resulting seagrass polygons depending on the detail required to depict the true shape of 

the patch. All three receivers were mounted on a 2 m mast. This is normal operation for 

the Trimble GNSS equipment, and the handheld GPS units were similarly mounted so as 

to maximise satellite signal reception, reduce possible multipath interference, reduce 

interference from the observers, and maintain consistent orientation. 

Seagrass extent was captured by walking slowly with the receiver elevated above 

the outside limit of the patches. Seagrass grows by way of extension of long underground 

rhizomes with emergent shoots, so the meadow margin can be dendritic in presentation 

and ambiguous. The measured boundary was formed by emulating on the ground a 

concave polygon construction method used in geographical information systems (GIS), 

the ‘alpha shape’ (Edelsbrunner et al., 1983; Van Kreveld et al., 2011), applying a gap-

threshold of ~0.5 to 1.0 m by eye (Figure 3.13). 

Mapping done with the GNSS instrument captured boundaries and holes on the 

same instrument, using automatic feature-labelling functions on board the TSC3 

controller to track holes, boundaries and corrections made during capture. Mapping done 

by handheld GPS required capture of boundaries and holes on separate receivers so as 

manage shapes and avoid confusion within the limited feature-labelling of the consumer 

GPS units. Holes were subtracted from boundaries later in a GIS software environment 

using one of two procedures. The first was direct topological subtraction of polygon holes 

from boundaries as recorded in the field (noting the potential for GPS-signal drift 

resulting in the hole moving partly or completely outside of the boundary). The second 

involved only numerical subtraction of hole-area from boundary-area within attributes of 

the polygon (but functionally the same as manually shifting the hole to ensure it is 

contained inside of the boundary). 
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Figure 3.13. Schematic example of capture of a polygon boundary representing the 

seagrass edge (black dashed line) using a concave-hull approach built around GPS/GNSS 

survey points with alpha threshold in the range 0.5-1 m as judged by eye during ground 

mapping. 

 

3.5.1.2   1997 and 2008 seagrass extent 

Seagrass extents were extracted from the Waikato Regional Council Estuarine 

Vegetation GIS layer (Waikato Regional Council 2014 dataset) after selecting seagrass-

containing features at Wharekawa Harbour and grouping by survey year 1997 or 2008. 

There was a systematic error present in the 1997 polygon set where all features were 

offset by a similar amount, consistent with a GPS projection error or image 

orthocorrection error at time of creation. Translation and rescaling were applied to the 

polygon features (QGIS Vector Bender QGIS 2018) to rectify features as close as 

possible to likely ground position using physical reference features (n=120) observable in 

both aerial photography (i.e., unambiguous static shoreline and constructed features). 

3.5.1.3   Recent and historical imagery 

Aerial photography datasets (1945, 1954, 1959, 1966, 1971 and 1983) and three 

recent image datasets (Aerial photography 2002, Bing Maps 2015 imagery and Waikato 

Regional Council 2012a regional aerial imagery) were displayed in QGIS software, and 

visible seagrass patches traced on screen using polygon digitising tools (Appendix 3.9.1). 

Vertex spacing was approx. 0.5 - 2 m, to match as far as possible the geometry style of 

seagrass captured in the 2017 and 2018 GPS/GNSS ground survey. 

Imagery from 1945 to 1971 comprised grey scale aerial photography, originally 

captured under an overlapping survey design, and orthocorrected by the supplier. 

Historical imagery are sourced from Retrolens (www.retrolens.nz) licensed for use under 

creative commons (https://creativecommons.org/licenses/by/3.0/nz/). Most seagrass was 

clearly identifiable, but some patches were faint or confounded by the similar appearance 

of wet sand at the line of the tidal water level. To aid image interpretation, a set of low 

altitude (1000 ft) aerial imagery captured near to the time of the 2017 ground seagrass 

census were converted to single-band greyscale imagery by averaging red + green + blue 
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digital numbers, and the resulting image was contrast-adjusted until it appeared tonally 

similar to the 1945 and 1971 mosaics (Appendix 3.9.2). The content of the estuary was 

known at this time due to ground survey work and additional data collected concurrently. 

Therefore, this reference provided some textural indication on the appearance of known 

seagrass presence and absence in the historical imagery. Ambiguous edges to the seagrass 

were estimates based on the middle of a tonal change, and these were labelled with 

elevated uncertainty attribute values, for use in the error calculation that follows. 

 

3.5.2    Error estimation 

2017 and 2018 seagrass census 

In the previous section, the total seagrass was calculated from the different image 

sources, with varying precision levels for the respective polygon line work for each year. 

Understanding the significance of between-year difference in seagrass area requires a 

measure of the uncertainly in geometry placement on the ground. The most precise 

surveys should be the 2017 and 2018 seagrass estimates due to the high precision of the 

GNSS survey instrument and ground-level assessment of seagrass presence. The Trimble 

instrument, under VRS correction, has horizontal positional error of approximately 2-5 

cm when braced on a mount, but greater error when mobile under the conditions of a 

rapid survey. The Garmin handheld GPS receivers are rated as being accurate to 5-10 

meters with respect to global latitude/longitude coordinates. Needham et al. (2013) 

measured agreement between aerial photography and trace-lines from an older single 

constellation handheld GPS receiver model Garmin GPSMAP 78SC, and determined that 

there was <2 m error between position estimates on nearby Tairua Estuary. However, the 

authors did not mention how the 2 m positional error was also related to the 2.5 m 

positional root mean square error (RMSE) of the aerial photography from true location. 

The authors later conducted GPS consistency tests (Needham et al., 2013) to assess the 

deviation in location-estimate for two receivers of the same receiver model measuring 

locations at the same time (n=8 measurements) and determined consistency of 3.5 m (ơ 

=1.5 m) on Wharekawa Harbour and a range of 1.5-7.4 m across all estuaries surveys on 

Coromandel Peninsula (various n, ơ were reported; refer to Needham et al. (2013) for 

detail). These findings were based on low sample size without consideration of shift in 

constellation with time and using an older low precision receiver limited to single 

constellation GPS signal. Receiver positional uncertainty is unknown for the purpose of a 

sustained seagrass mapping survey, for polygon-area determination using a modern multi-

constellation GPS receiver. 
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 In order to quantify this error, ten shapes of varying size (mock-seagrass patches) 

were drawn in the sand near to the main Wharekawa seagrass study area (Figure 3.14). 

Use of real seagrass patches wasn’t viable due to the need to minimise seagrass trampling 

on the primary remote sensing study area. 

The shapes were surveyed at high levels of precision using the Trimble R8 with 

firm ground placement, on a stabilised upright mast (spirit-levelled), with < 2 cm 

horizontal dilution of precision reported by the control unit. The shapes were surveyed 

with ~0.5 m point spacing. With this high precision survey reference in place, three rapid-

survey regimes were tested: i) using the Trimble R8/ TCS3 combination on a 2 m mast 

applied with a ‘topological survey’ mode of data collection, i.e., the mast is mobile with 

minor sway from motion; with ii) and iii) being two replications of this survey for the 

Garmin GPS64 and Etrex 20 GPS receivers respectively, each also on 2 m masts.  

In each session, boundaries were captured first, with the polygon holes surveyed 

~15-20 minutes later once the boundaries were complete: this sequence was necessary to 

avoid capture confusion when sorting data later due to close proximity. Valid polygon 

areas were calculated subtracting holes from boundaries under two regimes, by i) 

topological subtraction; and ii) aspatial numerical subtraction of areas within the attribute 

table. This was important as due to GPS uncertainty at small scale, some holes (although 

drawn correctly) were positioned outside of the polygon boundary, resulting in another 

source of error. 

Three replicate captures were made for each of the three sessions, with 1 hour 

between replicates. Thus, the sampling design had 3 receivers x 3 repeat measures on 

4\each receiver, with sufficient time in between replications to ensure a different GNSS 

satellite geometry overhead (more time was not possible due to the tidal window and the 

timeframe for incoming tidal flood) with survey conditions were otherwise near-identical 

such that only difference between sets should be the receiver model and satellite 

constellation geometry. 
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Figure 3.14. Layout of GNSS/GPS accuracy assessment, where black polygons show 

reference shape-locations drawn into the sand/mud, which were surveyed by high 

precision GNSS static capture for reference, then surveyed by rapid mobile capture 

(‘tracing’) using the three different receivers. 

 

Deviation from reference, and difference between area estimate for each shape 

were calculated for each session. The mean deviation obtained for each model was used 

in the 2017 and 2018 census for error calculation. 

The significance of differences between the GNSS and GPS receivers was assessed 

by analysis of variance (ANOVA function, The R Project 3.4) with Tukey’s pairwise 

comparison invoked to assess pairwise contrasts. 

 

2008 and 1997 seagrass mapping 

Seagrass polygons derived from the Waikato Regional Council 2014 spatial dataset 

for Wharekawa seagrass (2008 field survey) were captured by the authors using early 

Bluetooth GPS technology linked to an IPAQ field tablet (Waikato Regional Council 

2014 metadata notes), for which accuracy was likely ~2 - 5 meters (Wing 2005; Zhang et 

al., 2014). 

The 1997 seagrass dataset was described by the author as being captured using 

printed laminated aerial photos with acetate overlay carried out into the field for drawing 

and verifying species extents. A GPS was used in the field by the researchers for locating 

20 m 
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position, and to map seagrass not visible in the aerial imagery. Polygons were later 

digitised from the acetate overlays and geo registered in a GIS system. There is no 

information available in associated documentation describing the precision of the line-

work (Graeme 1997; Waikato Regional Council 2014 metadata notes). 

As a conservative estimate, a 5m positional error was ascribed to polygon 

geometry in the 1997 and 2008 datasets. 

 

Seagrass measurement for 1945, 1954, 1959, 1966, 1971, 1983, 2002, 2012, and 2015. 

Seagrass visible in these image sets (Appendix 3.9.1) was traced on screen within 

QGIS software. Positional error is therefore related to image interpretation and ability to 

detect seagrass from the imagery while avoiding non-seagrass features, and the clarity of 

sparse seagrass patch boundaries. The ground-survey by GNSS/GPS above, had the 

advantage of absolute identification of seagrass presence or absence. Absolute 

identification was not possible for this selection of image mosaics due to lack of historical 

ground reference data at the time the imagery was flown. Visual interpretation is based on 

comparison to the greyscale 2017 reference mentioned above, along with some cross-

referencing between image sets where seagrass patterns are clearly persistent between 

adjacent datasets. 

Digitising was done at ~1:500 screen scale for most capture, but with increased 

magnification where ambiguity required closer inspection. Polygon line-work was 

ascribed a 1 m positional error as an estimated vertex placement error. There is no 

ground-level data available to information construction of actual positional error. 

 

3.5.3    Uncertainties on area calculations 

The estimated error for each year’s total seagrass area was constructed by applying 

a positional uncertainty to polygon geometry line-work. This was estimated by 

constructing positive (expanding) and negative (eroding) buffers around the polygon 

geometry scaled by the respective error factor. Total area was then summed for the 

adjusted and original polygons, and these statistics plotted for each survey year as actual, 

upper and lower total area estimates, yielding a long-term time-series for seagrass extent 

with uncertainty. Several ambiguous areas of potential seagrass were excluded from the 

dataset, or included where there was textural indication of seagrass, with both of these 

uncertainties factored into the uncertainty estimates (error bars) for the respective years’ 

imagery. 
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3.5.4    Persistence of seagrass 

Understanding the significance of the current trend in seagrass extent, after decades 

of fluctuation, would be aided by examining how subsets of seagrass have persisted over 

time. In order to provide a coarse indication of seagrass persistence over the time-series, 

and in particular to identify highly stable patches throughout the 1945-2018 span of the 

time-series, analysis was undertaken tracking the presence of seagrass backward in time 

from the current day to the time when the seagrass was not present in the imagery. The 

persistence of a seagrass record would be estimated as the number of years visible 

continuously through the time-series. The 2018 seagrass extent was used as a reference, 

and this polygon-set was overlain on all other layers to compare seagrass distribution. 

Due to the differences in positional accuracy between image sets (potentially >5 

meters or greater uncertainty, as discussed above), a direct overlay of polygons was not 

valid. Therefore, in order have tolerance for slight positional difference in location of the 

seagrass, a 2m grid was created as a raster, and the presence or absence of seagrass in 

each grid cell noted as a binary class in rasters for each years’ seagrass. The number of 

years of continuous persistence (i.e., seagrass being present without a break in the time-

series) was counted. A second measure was made that counted all years of seagrass 

presence across all datasets irrespective of whether there was a break in the presence 

time-series. This second measure provides a display similar to a hotspot analysis. 
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3.6    Results 

3.6.1    GNSS/GPS error calculation 

There was a significant difference between receivers in the deviation of rapid 

survey polygon line-work from the high-precision reference line-work (F=553.78, df = 2, 

p < 0.001; Tables 3.2 and 3.3). The Trimble R8/TSC3 GNSS setup had significantly 

better accuracy than the two handheld receivers, and the GPS64 receiver (helical antenna) 

had significantly higher precision than the Etrex20 (patch antenna). 

Mean overall deviation for the three receivers amounted to 1.56 + 0.04 m, 0.96 + 

0.04 m and 0.11+ 0.006 m respectively for the Etrex20, GPS64 and Trimble R8 receivers 

under conditions of rapid survey (Figure 3.15; Table 3.4). The range of mean deviation 

values for each receiver across the three replicate sets (i.e., where each set represents a 

different satellite configuration) was 1.29-1.77 m, 0.8-1.16 and 0.10-0.11, and overall 

minimum-maximum deviation range was 0.22-2.84, 0.04-2.31 and 0.0001-0.41 for 

Etrex20, GPS64 and Trimble R8 receivers respectively (Table 3.4). 

 

 

Table 3.2. Significance of differences between the mean deviation from reference shape 

for GPS/GNSS units used for rapid seagrass mapping.  

 GPS/GNSS device df  SS  MS F P 

GPS type. 2 164.19 82.10 533.78 <0.001 

Replicate set. 2 6.07 3.04 19.73 <0.001 

Residuals. 454 72.89 0.161   
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Table 3.3. Significance of pairwise comparison of differences in the performance of 

GPS/GNSS units for rapid seagrass mapping in terms of deviation from reference shape. 

‘Difference’ refers to the difference between mean deviation values for each GPS/GNSS 

device. A negative ‘difference’ value indicates that the first device in the pair had lower 

deviation from reference (i.e., is more accurate) than the second. 

        95% CL   

Tukey comparison Difference (m) Lower Upper    P 

GPS64-Etrex20. -0.61 -0.71 -0.50 <0.001 

Trimble GNSS-Etrex20. -1.46 -1.56 -1.35 <0.001 

Trimble GNSS -GPS64. -0.85 -0.96 -0.74 <0.001 

 

 

 

 

 

 

Figure 3.15. Spatial layout of the reference shapes (grey) with deviation lines from 

reference points for the Etrex20, GPS64, and Trimble receivers. There are three lines per 

receiver x point combination, being the three replicates across time. 

 

Garmin Etrex20 

Garmin GPS64 

Trimble R8 / TSC3 

Reference points 

20 m 
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Table 3.4. Mean deviation of rapid survey lines derived from two consumer multi-

constellation GPS units (Garmin Etrex 20 and Garmin GPS64) and rapid survey capture 

using a Trimble survey instrument as compared to a high-precision reference capture of a 

simulated seagrass meadow drawn into the sand. 

  Per set Per GPS unit 

Source Set mean stderr mean stderr 
      

Garmin 

Etrex20. 

1 1.77 0.05 1.56 0.04 

2 1.29 0.08   

3 1.64 0.08   

      

Garmin 

GPS64. 

1 1.16 0.08 0.96 0.04 

2 0.80 0.05   

3 0.91 0.05   

      

Trimble 

GNSS. 

1 0.10 0.01 0.11 0.006 

2 0.10 0.01   

3 0.11 0.01   

 

 

The deviation from reference area was calculated for each GNSS/GPS model and 

replicate combination. Total shape-area estimated by the Trimble R8 receiver setup was 

more similar to the reference area than for the two consumer grade receivers (Table 3.5). 

For the rapid survey, the Trimble GNSS receiver underestimated total reference polygon 

area by 3%, and the two consumer GPS units overestimated area by 5 and 14 % for the 

Etrex20 and GPS64 respectively. 

Uncertainty in total area estimate was most influenced by the larger shapes. 

Smaller shapes varied greatly in boundary positioning and estimated area (Figure 3.16), 

however did not contribute significantly to total error in calculated area (Figure 3.17). 

There was little overall bias in direction of error (i.e., over or under estimation) with 

respect to shape area, as illustrated by variability spread evenly about the x=0 line (Figure 

3.17; gradient m ~ zero). 
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Table 3.5. Mean deviation of measured total shape area compared to actual area of high-

precision reference shapes (simulated seagrass reference areas), based on the rapid survey 

lines derived from walking the shape boundaries using two consumer multi-constellation 

GPS units (Garmin Etrex 20 and Garmin GPS64) and rapid survey capture using a 

Trimble R8+TSC3 survey instrument. Subtraction of holes was assessed for i) topological 

subtraction of hole from boundary in the spatial domain; and ii) subtraction of hole area 

from boundary area in in the attribute domain. The total area of all reference shapes was 

135.5 m2, after removal of 11.5m2 of holes. 

 

GPS/GNSS 

device used. 

Measured 

area of holes 

(m2) . 

Resulting 

shape area 

(m2) 

 

(topological 

subtraction of 

holes). 

Resulting 

shape area 

(m2) 

 

(attribute 

subtraction  

of holes). 

    

Etrex 20. 12.7 141.9 141.1 

GPS64. 13.6 154.4 153.2 

Trimble R8. 10.9 131.4 131.4 

  

  



 

99 
 

 

 

Figure 3.16. Plot of percent difference between the measured area of simulated seagrass 

shapes mapped using a) the Garmin consumer GPS units (data from two GPS receivers 

pooled) and b) Trimble GNSS survey instrument, as compared to reference shapes 

mapped at high precision. Dashed line is the regression line of linear fit and the grey area 

indicates the 95% confidence limit on the line. 
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Figure 3.17. Plot of numerical difference between area of simulated seagrass shape 

mapped using the Garmin consumer GPS units (data from two receivers pooled) and a 

Trimble GNSS survey instrument (a and b respectively) as compared to reference shapes 

mapped at high precision. Hole-features were captured along with boundaries, and the 

holes were either cut into the boundaries automatically without adjustment, or where 

holes were manually moved to be wholly contained within the boundary. Dashed line is 

the regression line of linear fit and the grey area indicates the 95% confidence limit on the 

line. 
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3.6.2    Polygon placement error, and feedback into mapping methods 

The results above indicate that for rapid survey using the Trimble GNSS receiver, 

polygon line placement uncertainty of 0.1 m should be applied when forming error 

estimates, and 1.6 m and 1.0 m for polygons surveyed using Etrex20 and GPS64 

respectively. These uncertainty values were applied to the mapping polygons of the 2017 

and 2018 seagrass census surveys. 

 

3.6.3    Long term seagrass trend 

Total calculated seagrass extent with estimated uncertainty-bounds for each 

historical imagery year (Figure 3.18) indicate an increase in seagrass from 1945 to a 

maximum in 1959, then a slow decline to the present day (Figure 3.19). There was 

insufficient information available to quantify uncertainty under a statistical model, and 

the error bars presented in Figure 3.18 indicate the positional uncertainty and 

addition/subtraction of ambiguous areas calculated above. 

The lowest seagrass area in this multi-year time-series was observed in 1945. 

Current day decline in seagrass is approaching the 1945 low, or possibly already 

equivalent to this low value (when considering the uncertainty range). There was a high-

confidence 22% reduction in seagrass on the estuary from March 2017 to March 2018 

(Figure 3.19), with areas of loss corresponding to parts of the estuary where there was 

notable observable sediment deposition and/or high sustained turbidity during the weeks 

that followed the two autumn 2017 storm events. It is interesting to note that although 

comparison of the 2017 and 2018 seagrass inventories show clear reduction in seagrass, 

there were several patches lost (probably buried) several years earlier, that became 

exposed during the course of the year, sprouting new fine seagrass. 

The long-term persistence of current day seagrass was estimated by tracing back in 

time to when seagrass present in the 2018 extent, first appeared in the earlier imagery 

(Figure 3.20). Within the area of seagrass mapped in the 2018 imagery, and considering 

the proportion that was also visible continuously through historical imagery sets, 7 % of 

the 2018 seagrass was visible in all imagery going back to the 1945 historical 

photography (73 years prior to 2018), 53% to 1971 (47 years prior), 59% to 1983 (35 

years prior), 65% to 1997 (21 years prior) and 78% to 2008 (ten years prior). 

The total seagrass aggregation across all years amounted 107 ha. This equates to 

47% of the 226 ha total area of the estuary calculated in this analysis. Therefore, seagrass 

was never detected on 53% of the estuary in 73 years, within the detection limits of the 

methods used. The amount of seagrass present in 2018 is 24% of the total seagrass 

detected across all years. 
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Sixteen percent of this total aggregated seagrass occupancy across all years has 

dense mangrove forest cover in the current day. Seagrass is present in some areas within 

the mangroves, but examples are rare and situated at the margins of the new mangrove 

forest. 
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↑ 
Figure 3.18. Seagrass extents (green polygons) as visible in imagery from 1945 to the present day (grey scale frames) with reference colour 

image (Spot 6 satellite imagery at March 2018). 
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Figure 3.19. Change in calculated area of seagrass on the estuary determined from 

imagery or survey data. Error bars depict the maximum and minimum possible 

aggregated areas calculated by factoring geometry uncertainty and adjustment for 

ambiguous seagrass areas. 
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Figure 3.20. Occurrence of seagrass tallied across the thirteen datasets from 1945 to 

2018, i.e., a score of 13 (red) indicates seagrass was present in all 13 datasets. Absence of 

colour on this scale indicates absence of seagrass in these datasets. 

  

         1 13 observations (dataset-years) 

1 km 
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Figure 3.21. Distribution of seagrass that is found in the present day and persistent back 

though the time-series, colour-coded to indicate how long it has been continuously 

present back in time from 2018 to the respective historical dataset. Black areas show all 

remaining estuary areas where there has been other transient seagrass at times. The sum 

of all 13 colours (red through blue) depicts all seagrass from all datasets (i.e., an absence 

of these classes indicates where seagrass has never been detected in any dataset). The 

white dashed line shows current-day mangrove distribution. These data are overlain upon 

aerial photography (Waikato Regional Council 2012a converted to grey scale). 

  

Key: Seagrass persistent within the periods: 
        1945 to 2018           1954 to 2018          1959 to 2018          1966 to 2018          
        1971 to 2018           1983 to 2018          1997 to 2018          2002 to 2018   
        2008 to 2018         2015 to 2018          2017 to 2018          2018 only 
        All other seagrass pooled     White dash line = current mangrove  
         

N 

1 km 
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3.7    Discussion 

In this chapter, the characteristics and history of Wharekawa Harbour and 

catchment were summarised. Current extent was assessed in comparison to historical 

extent estimates. These provide a basis of selection of Wharekawa Harbour as a study 

area and case-example for new method development. Wharekawa Harbour is currently 

subject to rapid change. This estuary faces a similar set of pressures to other estuaries in 

the region so remote sensing methods developed later will be relevant for application to a 

wide range of estuaries. 

Long term change in seagrass 

Previous seagrass quantities were calculated by photointerpretation of available 

historical imagery. From these estimates, it was determined that seagrass within 

Wharekawa Harbour is in decline compared to medium term patterns. Census surveys in 

2017 and 2018 indicate a 22% measured reduction in seagrass across a 12-month period, 

where observed sediment effects were likely exacerbated by two heavy rainfall events at 

the start of this period. The short-term reduction is consistent with a longer-term trend in 

declining seagrass since 1959, when the largest seagrass extent was observed within the 

image data analysed under this study. 

The lowest of all seagrass estimates in the time-series was observed in 1945. The 

1945 extent may not show the full impact of sedimentation from the native forestry 

clearance, and there are signs in the patch-layout of the 1945 imagery that seagrass may 

have been in lower coverage in years prior to this time: some of the seagrass visible in the 

1945 imagery is consistent in appearance with new seagrass, either colonised from mobile 

rhizome/shoot fragments or recolonised from seed bank germination, appearing as small 

radial patches of seagrass. 

Although recent seagrass area estimates since 1959 are greater than the 1945 

estimate, the most recent (2018) seagrass area measure is almost reduced to this 

historically low total seagrass extent of 1945. If the current rate of decline continues 

unabated, then local seagrass extinction may be a possibility sometime in the 2020’s 

(extending the data-trend of Figure 3.19 to y=0), acknowledging that the full process and 

timeframe of local seagrass extinction is unknown and likely complex. However, the 

persistence of seagrass in some parts of the estuary, spanning all of 1945 to 2018 datasets 

suggests that seagrass loss may instead reach an equilibrium low-level with survival in 

areas less prone to sedimentation, followed by regrowth when conditions improve. 

The 2017 and 2018 seagrass extents were captured by exhaustive systematic 

seagrass survey using high precision GNSS or GPS equipment. The other seagrass 

estimates in this time-series were based on seagrass capture data which had no assurance 
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of exhaustive detection. Some less conspicuous seagrass may have been missed. There 

was no ground-validation or other information available associated with these earlier 

datasets to indicate the density of seagrass below which seagrass is not detectable in the 

dataset, so these years’ seagrass statistics may under-estimate total seagrass area. The 

occurrence of widely spanning featureless tonal gradients from high density to no 

seagrass, present in all of the image-sets, indicates that interpretation of seagrass from 

aerial photography has potential for misplacement of seagrass boundaries and error in 

area estimation. This deficiency justifies the research in subsequent chapters to integrate 

ground level survey, RPA based image capture (low altitude and spatial high resolution) 

and computer based feature extraction using derived information not readily visible to the 

observer. 

Factors in the observed decline 

The catchment of the estuary is large relative to its tidal water flow, compared to 

this ratio for other estuaries on the Coromandel Peninsula. The catchment has a high 

proportion of its area in forestry or agricultural land-use, and consequently is prone to 

high episodic sedimentation. Wharekawa Harbour has high intrinsic biodiversity and 

community value in the current day. There is no clear growth of mangroves on the 

estuary in the 1945 imagery, and there is a clear mangrove colonisation sequence from 

1971 to the current day (Appendix 3.9.1 and 3.9.2). Graeme (1997) reported that there 

was a significant escalation of mangrove expansion in the decade leading up to the first 

major Wharekawa estuarine vegetation survey in 1997. Historical photography assessed 

in the current study is consistent with Graeme’s report. The estuary is under pressure 

from sediment deposition originating from upstream land-use effects, in particular 

riparian erosion in grazing areas, and episodic sedimentation from forestry land-

clearance. Although there are indications of sedimentation impacting the estuary visible 

in aerial photography and Google Earth time-series imagery, there is no data available to 

establish whether there has been recent change in the sediment heights on the estuary. 

Wharekawa Harbour has been under pressure from sediment since before the 

earliest historical photography that was available, and seagrass has been present on the 

estuary in large meadows across all of this time. The 1945 imagery suggests that seagrass 

on the estuary was in recovery following significant loss. The pattern of seagrass 

distribution collated across the time-series supports an assumption that prior to native 

timber extraction there would likely have been substantial seagrass across much of the 

estuary. Parts of the estuary retained seagrass throughout all 73 years in the time-series. 

Nearly half of the current day extent was present ~ fifty years ago, during which there 

were 2-3 cycles of forestry harvest land-clearance within the catchment. These data 

indicate a degree of resilience in the seagrass metapopulation of Wharekawa Harbour 
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against the current rate of anthropogenic sedimentation arising from intensive land-use 

upstream. There has been some permanent loss of seagrass, some of which has been 

replaced by mangrove forest, but so far only a minor proportion compared to the total 

cumulative seagrass area mapped over the decades. 

A substantial amount of the seagrass observed on Wharekawa Harbour during the 

2017 and 2018 census surveys grew sparsely such that most of these scenes comprised 

sediment with scattered shell and/or detritus interspersed with the seagrass. Sparse 

seagrass with large mature leaves was highly visible at ground level. However sparse 

young seagrass (leaves presenting as fine short needles) was difficult to perceive even at 

ground level unless standing directly overhead. There are many locations where the 

transition from high to low visibility spans the seagrass patch or meadow. For the varying 

aerial or satellite image sensors there will likely be a detection limit beyond which 

seagrass cannot be accurately discerned from substrate. Without prior calibration of 

image-based seagrass extent mapping, there is potential for sparse seagrass to be missed, 

or patch-edges to be misinterpreted (e.g., Figure 3.22). These issues have been reported in 

the literature. Ismail 2001 encountered misclassification between medium and sparse 

classes of Zostera muelleri. Authors Lathrop et al. (2006) encountered omission of sparse 

seagrass beds due to confusion with substrate. Similarly, Pu et al. (2012) encountered 

misclassification between sparse seagrass and bottom substrate type. Baumstark et al. 

(2016) experienced poor classification of sparse seagrass due to lack of clear boundary 

with substrate, with some sparse seagrass remaining unmapped due to being smaller than 

their minimum mapping area. 

It is therefore important to determine the detection characteristics for any sensor 

applied to seagrass mapping, to understand potential mapping uncertainty. In cases when 

the sensor is to be used in an automated image classification project, the detection limits 

also relate to image processing, derived layers included in the model, and the 

classification approach adopted. Calibration of the sensor’s detection limits would 

therefore require the full image classification process-chain to be fitted concurrently. This 

requirement is addressed by subsequent chapters. 
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Figure 3.22. An example of a diffuse gradient between seagrass and sediment where true 

edge is difficult to establish and scale dependent. Image from Google Earth. Also see 

Figure 3.9. 

 

3.8    Conclusion 

Wharekawa Harbour provides a relevant site for the purpose of assembling and 

testing a seagrass feature extraction method. The estuary hosts a range of seagrass 

environments in confined areas, which is ideal for camera survey calibration under a 

limited scope and resourcing-level for ground validation. The estuary has a history of 

pressure from sedimentation with fluctuation in seagrass extent and distribution over the 

decades. Seagrass appears to be in decline based on analysis of available data and 

factoring the limitations of datasets captured under a range of methods. 

At the time of the study Wharekawa Harbour was subject to a substantial period of 

rain that mobilised sediment creating areas of covering or complete burial of seagrass by 

sediment and detritus. This presented an uncommon opportunity to assess seagrass 

feature extraction amid potentially confounding factors. 

The process of mapping seagrass using aerial photography interpretation in this 

study highlights some key issues, that i) accurate seagrass-capture requires assessment of 

detection limits of the sensor and imagery; ii) accurate ground validation is required to 

know, at least some of the time, what low density seagrass looks like for low density 

patch-edges; and iii) that greater information is required than available in cartographic 

aerial imagery and using photo interpretation methods. Experiences during the mapping 

process in this chapter justify the research in the following chapters, to automate mapping 

Thin sediment creep 

Seagrass 

Deep sediment surge 

Sediment 
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via computer learning techniques, using imagery with high spectral and spatial resolution 

and high precision ground referencing. As such, Chapter 4 provides classification of 

aerial imagery using a seagrass density-class structure that addresses some of these issues. 

The chapter also examines whether the state of residual water drainage during the ebb 

tidal phase, affects the performance of image classification.  
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3.9    Chapter appendices 

Appendix 3.9.1. Historical imagery clipped to estuary margin for 1945, 1954, 

1959, 1966, 1971, and 1983 (a-f). Current-day coastline is provided for common 

reference. 

 

a) 1945 - Crown historic aerial survey SN292 

N 

  200 m 
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Appendix 3.9.1 ctd. 

 

 

 

b) 1954 - Crown historic aerial survey S854 

N 

  200 m 



 

114 
 

Appendix 3.9.1 ctd. 

 

 

 

c) 1959 - Crown historic aerial survey S1210 

N 

  200 m 
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Appendix 3.9.1 ctd. 

 

 

d) 1966 - Crown historic aerial survey S1894 

N 

  200 m 
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Appendix 3.9.1 ctd. 

 

  

e) 1971 - Crown historic aerial survey SN3269 

N 

  200 m 
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Appendix 3.9.1 ctd. 

 

  

f) 1983 - Crown historic aerial survey SN5734c 

N 

  200 m 
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3.9.1    Appendix 3.9.2. Aerial photography (2017) converted to greyscale for textural 

reference during photointerpretation of 1945 and 1971 imagery. 

 

 

  

N 

  200 m 
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CHAPTER 4 
 

4    Chapter 4. The influence of residual low-tide water on the ability to 

differentiate seagrass from associated scene content 

 

4.1    Introduction 

Seagrass is an important natural resource and component of coastal ecology 

(Chapter 1). Effective management of a seagrass resource requires monitoring methods 

that are accurate and cost-efficient - remote sensing has potential to provide such 

monitoring capability (Chapter 2). Seagrass condition can decline due to a variety of 

destructive or competitive pressures and on a range of timescales (Chapter 3). 

4.1.1    Seagrass monitoring 

Various methods have been applied to measure components of seagrass population 

status (e.g., Kirkman 1996; Wood and Lavery 2000; Short and Coles 2001; Marbà et al., 

2013; Mejia et al., 2016). In some instances, seagrass condition has been inferred by 

monitoring meadow extent and change (e.g., Graeme 2008; Park 2016). Many of these 

methods involve manual inspection and collection of material at a seagrass site to 

generate detailed data for point locations, such as cores, quadrats and/or positions on 

transects (e.g., Burdick and Kendrick 2001; Fonseca et al., 2002; Turner and Schwartz 

2006b; Dos Santos 2011; Neckles et al., 2012; Irving et al., 2013). Remote sensing 

methods can potentially reduce labour, with time-investment on the ground yielding 

greater survey extents than possible by manual mapping alone. 

Remote sensing techniques have been applied to seagrass coverage analysis using 

imagery from both satellite and aircraft mounted sensors (Klemas 2013; Roelfsema et al., 

2013; Pu et al., 2014; Barrell et al., 2015; Valle et al., 2015). Calculated contrast indices 

derived from empirical or standardised image spectral bands, can provide statistical 

predictors that enhance the information available compared to just the sensor bands 

(Tucker et al., 1985; Huete 1988). The Normalised Difference Vegetation Index (NDVI, 

Tucker 1979) correlates with biomass, chlorophyll, and other photosynthetic factors 

(Carlson and Ripley 1997; Xu et al., 2012; Kuzucu and Balcik 2017; Xue and Su 2017). 

The NVDI and similar vegetation indices enables seagrass biomass estimation (Bargain et 

al., 2012, 2013). 

Remotely piloted aircraft (RPA) enable new survey options due to their ability to 

fly close to the ground at known heights, at controlled speeds and/or following 
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programmed flight paths under global positioning system (GPS) guidance (Chapter 2). 

This enables spatially explicit surveying in high detail that is ideally suited to estuarine 

process investigations (e.g., Jaud et al., 2016; Ventura et al., 2018). Integrating an RPA 

with a narrow-band spectral sensor enables optical measurement of the vegetation 

character and condition. 

 

4.1.2    Survey over a drained estuary 

Multispectral sensors small enough for practical deployment upon RPA are 

generally configured for terrestrial crop or landscape vegetation surveys (Raeva et al., 

2018; Guan et al., 2019). Their application to marine vegetation species in a partially or 

fully submerged estuarine environment remains poorly understood. Solar light 

components are attenuated differentially by water, suspended particulate material, 

coloured dissolved organic matter (CDOM) and photosynthesising phytoplankton (Pegau 

et al., 1997; Fyfe 2003; Lesser and Mobley 2007; Dekker et al., 2011; Lu and Cho 2011; 

Cho et al., 2014; Hill et al., 2014; Röttgers et al., 2014; Shi and Wang 2014). 

New multispectral RPA camera sensors require calibration for use on an estuary, to 

establish consistency in spectral measurement and associated feature extraction when 

seawater coverage or substrate wetness varies. Optical remote sensing over an estuary 

with the tide out may be spared much of the light attenuation by the water column when 

the tide is flooded. For example, Casal et al. (2012) found, using hyperspectral imaging of 

multiple macroalgal species, that the highest degree of spectral separability occurs at 

complete low tide and that spectral contrast decreased with increasing water depth. Lu 

and Cho (2011) found that correcting attenuation in the red-IR region of the spectrum in 

water depths of up to 40 cm, enabled increasing contrast against sediment and restoring 

NDVI values for seagrass mapping. 

During a low tide event, substantial residual wetness and pooling can occur due to 

slow draining channels and saturated flats or closed depressions. Consequently, the 

surface reflectance of a drainage estuary may be variable. Literature measuring the 

attenuation of IR frequencies in shallow sea water (e.g., from 0-20 cm as might be found 

in an estuarine pool) was not available at this time. An approximation, the attenuation 

coefficient for light through seawater at 800 nm is given by Smith and Baker (1981), and 

a relationship described by Kirk (2010) (Equation 4.1). This indicates that the intensity of 

NIR light through residual water would be expected to drop by ~1% cm-1 in clear sea 

water, equating to ~18% reduction at 20 cm depth in clear estuarine residual waters and 

increasing with turbidity. 
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D=0.4343ar (from Kirk 2010)    (Equation 4.1)  
Where D = absorbance, a = absorbance coefficient, r= water column depth 

 

Aerial surveys for seagrass mapping have been conducted at low tide in New 

Zealand (Ismail 2001; Alexander et al., 2008). The local time of low tide in the upper 

reaches of the estuary may differ substantially from the gazetted time of low tide 

associated with the propagation and recession of the flood and ebb tides (e.g., Alexander 

et al., 2008). The degree to which low-tide residual waters might result in attenuation in 

the IR bands and complicate seagrass mapping remains largely unknown. In an estuary 

with the tide out, bulk water depth is eliminated but residual pooling and substrate-

saturation has the potential to differentially absorb IR wavelengths and confound 

vegetation condition indices. This is particularly problematic with water in final stages of 

tide drainage, as well as in static pools or in the early stages of the return flood, which can 

retain suspended particles resulting in high turbidity. 

In general, the intertidal seagrass species in NZ can be categorised as: i) small in 

observable structure; ii) present on the ground in both complex and uniform substrate 

environments; and iii) in scenes with highly variable non-seagrass organic content. This 

creates a challenge for extracting seagrass image features, that therefore requires both: a) 

high spatial resolution to quantify the geometry of seagrass objects in scenes with 

adjacent material or substrate; and b) high spectral resolution to distinguish mixed pixels 

containing seagrass from pixels that don’t contain seagrass. The spatial and spectral 

resolution capabilities of imaging devices typically involve a specification trade-off, as 

both escalate data-traffic across a finite data bus and within the finite data-storage write-

speed limits. Consequently, increasing spectral resolution demands a smaller sensor 

resolution, which inflates the number of overflight-passes to achieve ground coverage.  

Analysis that is seasonally and/or tidally sensitive, may require specific scheduling 

of image capture, and will therefore be limited by satellite pass-over, or service 

availability when using commissioned air-charters. These scheduling requirements are 

compounded by weather for the optical imaging approach used here. Estuarine seagrass 

scenes can also be highly mobile, especially when high levels of floating wrack or 

detritus are present. This mobility together with spectral characteristics that vary between 

species and with meadow age (Dierssen et al., 2015; Tuominen and Lipping 2016), 

further confound classification. These factors therefore also imply that ground referencing 

(to support and test image classification) requires sampling that occurs very near in time 

to image capture, potentially within the same tide cycle or two (e.g., Alexander 2008). 

Thus, the complexity of tidal water pooling on outgoing and incoming tides may interfere 

with image capture and classification of intertidal seagrass condition. 
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This chapter describes preliminary research that aims to provide a first stage in 

disentangling the complex relationship between classification outcome and: i) variable 

scene content-mixing of the major ground cover groups (classified herein as seagrass, 

detritus, shell and sediment); ii) the role of spectral bands in predictability; and iii) 

drainage of residual low-tide wetness.  It provides a foundational basis for the research 

chapters that follow. 

 

4.1.3    Chapter objectives 

This chapter aims to assess whether differentiation of seagrass from its surrounding 

substrate and other low-tide scene-content is affected by low tide drainage and residual 

pooling.  

To achieve this, two specific objectives are addressed: 

1.  Quantify the effect of advancing residual water drainage on seagrass 

classification accuracy; and 

2.  Quantify consistency in predicted map outcome with residual water drainage. 

The research context is limited to an autumn midday sun angle, with uniform 

overcast lighting conditions. 

 

4.2    Method 

4.2.1    Study Area 

Research was conducted on Wharekawa Harbour, Coromandel Peninsula, on the 

New Zealand North Island (Lat. 37° 6' 30" S, Long, 175° 52' 51" E). Background and 

rationale for site selection is given in Chapter 3. Sampling occurred on a wide sand flat 

extending seawards into the sand/mud substrate (Figure 4.1). At time of sampling, this 

location was under pressure from sedimentation and accumulations of organic debris with 

tidal and river flows covering or eroding seagrass from both sides of the meadow (Figure 

4.1d). 
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a). b). 

c). 

d). 

Figure 4.1. Layout of study area with respect to: a) North Island New Zealand 

location; b) catchment source area; c) main body of estuary; and d) the focal seagrass 

meadow (multi-spectral false-colour to contrast seagrass in bright green) - note 

incursion of sediment mass from river surge/deposit areas in d; dotted arrows). 

5 km 

200 m 

   10 m 

c). 

N 
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The focal area of interest is a ~400 x 200 m subset of the northern arm of 

Wharekawa Harbour, comprising sand/mudflats with permanent pooling and drainage 

pathways of varying wetness at low tide, and a substantial seagrass meadow (~2.6 ha). 

Seagrass at this site varies in density from continuous dense coverage with no visible 

sediment, to sparse seagrass such that a nadir perspective is dominated by sediment 

between disparate plants, or dense seagrass coverage that appears sparse in a scene due to 

sediment burial. This focal area was selected due to the wide range of seagrass density 

levels, variable sediment incursion, and the high detritus content. The detritus 

predominantly comprised native broadleaf tree foliage, pine needles, sticks, wood 

fragments, and pinecones. The meadow was also covered in places with sparse or dense 

accretions of dead cockle shells. These meadow attributes were sought so as to make 

available, in one compact survey-scene, a diverse seagrass presentation with potentially 

confounding image classification factors. 

 

4.2.2    Research approach and overview 

This chapter’s research addresses the postulation that the spectral character of a 

seagrass meadow changes during low-tide drainage and drying. A further postulation 

examined, is whether the classification outcome differs in wet compared to dry substrate. 

To achieve this, analyses of imagery from surveys taken above a seagrass scene at 

intervals during the timespan of low-tide water drainage occurred. As mentioned in 

Chapter 3, the execution of this survey was a reaction to the opportunity provided by the 

rain event ‘Tasmin Tempest’ which had a major impact on the site through the delivery of 

upstream forestry sediment and debris onto the site (Parker 2017; see Figures 3.6, 3.7). 

As a consequence, an abnormally diverse range of surface detritus content, shell exposure 

and partial burial of seagrass was available for assessing image analysis. 

During the field survey (9 April 2017), three aerial photography flights were 

conducted using an RPA carrying a payload comprising an imaging sensor (four narrow 

multispectral bands and a conventional colour “scouting” camera sensor), synchronised 

on the same shutter control. The first flight started shortly after the bulk-water had cleared 

from a seagrass meadow (i.e., the seagrass meadow was largely exposed to air, but still 

saturated), the second flight one hour later, and the third flight aiming to coincide with the 

maximum drained state just before the incoming tidal flood (Table 4.1). 

Three parallel transects, 85 m in length and spaced 10 m apart, were set out using 

fine white cord marked every 5 meters with tags visible in the imagery as a spatial 

reference for the RPA imagery and to highlight subsequent ground-photography photo-

centres. Detailed ground-level photographs were acquired at each of the tagged marker 
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points and georeferenced to enable alignment to the RPA imagery in geographical 

information system (GIS) environment. Random points were set within each of these 

photographs and visually classified with a seagrass density class according to Table 4.2, 

as well as secondary ground attributes, then overlain onto the imagery to retrieve image 

values for each point location, and subsequently used to train a classification model. The 

same pixel locations were matched across image-sets such that the points contain repeat-

measures on the same absolute locations. In this way, the change in spectral coordinates 

of sample points can be observed with respect to the changing wetness conditions. The 

specific workflow is summarised below (Figure 4.2). Change in classification outcome 

with wetness was also mapped, and the difference between prediction maps assessed. 
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Table 4.1. Timing of the three low-tide drainage states sampled in surveys conducted on 9 April 2018 (2 days prior to full moon / spring tide), at northern 

arm, Wharekawa Harbour. Published low tide was 11:25am (National Institute of Water and Atmospheric Research- tide forecast data). Time between first 

and last flight was 2 hours. 

Flight Flight start time 

Time relative to 
gazetted low tide 
(11:25am) 
h:mm  

 
Sun 
Angle* 

 

 
Sun 
azimuth* 

 
Tide state description 
 

 
1 

 
11:00 

 
-0:25 

 
42 

 
27 

Bulk tide cleared from meadow, exposed to air but all areas 
still highly wet and waterlogged; much of the seagrass sits 
underneath a meniscus of water; pools are full. Scene 
dominated by specular reflection. 

 
2 

 
12:01 

 
+0:46 

 
45 

 
15 

Much of previous waterlogging was largely drained but still 
glassy-wet appearance on seagrass areas, with mixture of 
moist and wet/saturated areas. Upper sandy areas drying, 
and lower sand still wet. Conditions are more like the early 
state than the late state. 

Ground 
photos 

12:42 +1:17 45 352 
 
 

 
3 

 
13:01 
 
 
 
 
 
 
 

 
1:36 (0:49) 
 
 
 
 
 
 
 

 
45 

 
345 

The upper sandbank, emergent sand mounds and some mud 
now appearing near-dry (but moist to touch) with 
predominant diffuse reflection over non-pooled areas; most 
of seagrass meadow appearing moist-dry but well exposed 
from background which is still largely wet; many 
previously wet parts of pooled area are exposed and near-
dry; many permanent pools or flow-constricted plains 
remain saturated or deep (e.g. up to 50 mm deep, and 
occasional stingray feeding holes up to ~ 200 mm depth). 

 

* NOAA sun angle calculator - https://www.esrl.noaa.gov/gmd/grad/solcalc/ ; Location centre 175.879717,37.108495. 
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Table 4.2. Classification variables and their definition based on content of each pixel selected by random sampling. 

Attribute name Code Attribute Definition Indicators 
Seagrass cover. 0 

1 
2 
3 
4 

Absent. 
Sparse. 
Moderate. 
Dense. 
Only seagrass. 
 

No seagrass. 
Seagrass visible < 33% cover. 
33 to 67% cover. 
67 to <100% cover. 
100%. 

No seagrass leaves visible. 
Visual estímate. 
Visual estímate. 
Visual estimate. 
Only seagrass visible. 

Seagrass hue. 1 
2 
3 

Green. 
Mixed. 
Brown. 

Predominantly green leaves. 
Mixed. 
Predominantly red/brown leaves. 
 

>67% of seagrass leaves green. 
Intermediate mix of leaf colours. 
>67% of seagrass leaves red/brown. 

Detritus cover. 
 

0 
1 
2 
3 
4 

Absent. 
Sparse. 
Moderate. 
Dense. 
Only detritus. 
 

No detritus. 
Detritus visible <33%. 
33 to 67% cover. 
67 to <100% cover. 
100%. 

No detritus visible. 
Visual estímate. 
Visual estímate. 
Visual estimate. 
Only detritus visible. 

Shell cover. 
 

0 
1 
2 
3 
4 

Absent. 
Sparse. 
Moderate. 
Dense. 
Only shell. 

No shell. 
Shell visible <33%. 
33 to 67% cover. 
67 to <100% cover. 
100%. 

No shell visible. 
Visual estímate. 
Visual estímate. 
Visual estimate. 
Only shell visible. 
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(Table 4.2 ctd.)     
Attribute name  Attribute Definition Indicators 
Sediment cover. 0 

1 
2 
3 
4 
 

Absent. 
Sparse. 
Moderate. 
Dense. 
Only sediment. 

No sediment. 
Sediment visible <33%. 
33 to 67% cover. 
67 to <100% cover. 
100%. 

No sediment visible. 
Visual estímate. 
Visual estímate. 
Visual estimate. 
Only sediment visible. 

Sediment type. 0 
1 
2 
3 
4 
 

Not applicable. 
Sand. 
Mud. 
Clay-silt. 
Gravel. 

No sediment. 
Predominantly sand surface. 
Predominantly mud surface. 
Predominantly clay sit surface. 
Predominantly gravel. 

Class 0 in Sediment cover. 
Particulates visible, varied. 
Particulates not visible, uniform. 
Orange fine covering over sediment. 
Large particles, small stones mainly. 

Wetness at late 
drainage. 
 

0 
1 
2 

Well drained. 
Wet. 
Pool. 

Dry appearance. 
Waterlogged. 
Underwater. 
 

Diffusely reflective appearance. 
Specular reflective appearance. 
Water surface reflection, meniscus, 
emergent objects. 

 

  



 

129 
 

 

s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Processing flow for development of classification models and performance 

assessment relating to key research questions. 

  

Parrot Sequoia camera 
Green,Red,Red-edge,NIR 
 3 sets – early mid late ‘tide 

out’. 
 ~300 overlapping 

images/set. 
 

Spatial overlay 
Ground points tagged with image values. 

Ground photos 
 Georegistered. 
 Aligned to reference 

transects. 
 Lens correction. 
 Readable in GIS. 
 Photo footprint in GIS as 

polygon. 

Photogrammetric orthomosaic 
production, Agisoft 
Photoscan. 
 

 Random points: 
 Initial 50 points 

per photo. 
 20 photos. 
 Some points 

thinned 
(proximity). 

 
Analysis questions 

 
 

 Is there a shift in the 
spectra with draining and 
drying of low tide waters? 
 

 Does classification 
accuracy and prediction 
vary with tidal drainage? 

 
 How do image bands 

contribute to classification? 

 Compare the spectra of common point 
location across early, mid and late 
survey times. 

 Perform random forest image 
classification for early, mid and late 
survey times, comparing classification 
accuracy and prediction outcome 
between images. 

 Assess variable importance ranking 
across survey times. 

 

Manual classification of ground condition 
under points 
 Seagrass coverage. 
 Detritus coverage. 
 Shell coverage. 
 Sediment coverage. 
 Seagrass type (green and brown morphs). 
 Sediment type. 
 Wetness. 

Aligned raster stack 
Orthorectified. 
Georeferenced. 
Normalised. 

Classification in randomForest 
 Repeated cross-validation. 
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4.2.3    Aerial imagery capture 

Imagery was collected using a Parrot Sequoia narrow-band multispectral camera 

(Appendix 4.6.1) mounted to an autonomous quadcopter (the RPA; 600 mm quadcopter 

with PX4 flight controller and multi-constellation GPS). The Sequoia comprises four 

independent 10-bit narrow band sensors as well as a conventional high-resolution camera 

(Table 4.3).  

 

Table 4.3. Summary of camera specifications for the Parrot Sequoia imagery 

Band Band centre 

wavelength 

Band 

width 

Bit 

depth 

Shutter Field of 

view 

(w x h) 

Resolution 

(MP) 

Green. 550 nm. 40 nm. 10 bit. Global. 62 x 49° 1.2 

Red. 660 nm. 40 nm. 10 bit. Global. 62 x 49° 1.2 

Red-edge. 735 nm. 10 nm. 10 bit. Global. 62 x 49° 1.2 

Near IR. 790 nm. 40 nm. 10 bit. Global. 62 x 49° 1.2 

Colour (RGB).  Wide 

band. 

3 x 8 

bit. 

Rolling. 64 x 50° 16 

 

 

The RPA was programmed to follow a pre-set flight grid using Ardupilot Mission 

Planner software (http://ardupilot.org) (Figure 2.10). The survey comprised overlapping 

flight-swaths with the survey extent set to capture quality imagery 30 m beyond the 

ground sampling extent (i.e., the transects). This approach ensured contiguous imagery 

across all parts of the target area. All three replicate flights used the same flight program. 

The camera was fixed at the front-underside of the aircraft on vibration reduction 

grommets mounted on a short narrow boom (Figure 4.3). Flight speed was set to 5 ms-1, 

swath spacing to 8 m and the image sampling rate equivalent to 8 m forward spacing. 

These parameters were maintained for each flight and equate to ~75-85% image overlap 

depending on GPS error and minor wind drift. Multispectral and conventional camera 

images were collected on the same camera trigger ensuring the same scene and flight 

conditions as a basis for direct comparison between cameras. 

The time of day and month chosen for this flight was based on achieving capture 

when the low tide coincides with sun angles ~40-45° above the horizon. This coincides 

with the sampling occurring with the time of highest possible daily radiance incident on 

the scene (Robledo and Soler 2000), but not so much angle that direct sunlight reflection 
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from the wet sand/mud flat surface would contaminate the image. Early flight trials 

detected problematic reflection at >45o sun angle (pers. obs.). 

The exact moment of low tide on an estuary depends on location on the estuary 

with respect to its microtopography (e.g., Alexander 2008), or relative to a local or nearby 

tide-gauge time-series average if available. For much of this estuary, drainage is 

continuous right up until the point that the return flood-line rolls over the relatively dry 

sediment. For the purpose of this study, the time of interest for survey was narrowed to 

‘around low tide’, which includes the late stage of ebb and early-mid stage of tidal flow. 

This is generally described in the chapter as ‘low tide drainage state’, which varies 

between parts of the estuarine topographic structure at any one time. 

RPA flight-path accuracy accrues a trade-off between maintaining airframe-

heading, upright orientation and ensuring near-vertical downward) camera orientation. A 

vertically oriented camera gimbal was not an option due to air frame weight limits and 

because the downwelling sunlight sensor of the camera needed to remain in the same 

plane as the camera, which could not be attached to a gimbal with a clear view of the sky. 

Increased positional control confers an increase in automatic course and attitude 

adjustment. The flight controller was programmed with a 2 m positional tolerance with 

respect to the GPS-programmed flight plan. Absolute positional error was therefore a 

combination of three random factors: drift in the GPS solution, impact from light-

moderate wind over the estuary and waypoint tolerance for reaching the target GPS 

coordinate. Consequently, 1-2 m of flight path variation was typically observed (up to 5 

m with wind gusts). Wind speed was usually <5 kn with up to 10 kn occasional gusts. 

 

 

 

Figure 4.3. Camera drone inflight over seagrass meadow; multispectral camera with 

downwelling sunlight sensor mounted at front. 

 

 

 



 

132 
 

4.2.4    Ground reference data collection 

Spatial reference was provided across the scene by way of three 90 m transects 

(using a highly visible white 2 mm nylon cord) deployed on the ground and spaced at 10 

m parallel separation and aligned to <100 mm deviation from dead-straight (Figure 4.4). 

Major markers were placed at 20 m intervals along the transect (white 20 mm diameter 

plastic pipes 1 m length), and minor markers (black zip ties) at 5 m increments alternating 

with the pipes (Figure 4.5). Transects were straightened on the ground such that the line 

of the cord was no more the ~0.1 m from the sightline between the transect end-pegs. The 

transects and markers were deployed to serve the following functions: i) to align the RPA 

imagery to a common extent and georeferencing for analysis in a GIS environment; ii) to 

allow the inherent error to be quantified within the imagery that results from the drones 

onboard GPS; iii) to provide a spatial reference frame for photo observations taken at 

ground level to identify ground features with accurate position relative to the common 

reference frame; and iv) to observe linear dimensional distortion manifest in the resulting 

photogrammetric mosaic images. 

Transect end points were spatially positioned by track using a Garmin GPS65 

global positioning (GPS) receiver set to record locations every two seconds for a 20-

minute period at each peg. Track points were averaged, excluding outliers, in a GIS 

environment.  

Ground observations were recorded by standardised photo capture using a Nikon 

S9500 with GPS geotagging enabled. Nadir-oriented images were taken at a consistent 

height above a 1 m visual reference marker (white tube) placed on the ground, with 

photos centred on the mid-point of where the transect cord and white marker cross, and 

with orientation set on the bearing of the transect. Images were corrected for lens 

distortion (Agisoft ‘lens’ application) then affine transformed and georeferenced from 

GPS data, bearing and the pixel ground sampling distance of the corrected images. 
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Figure 4.4. Seagrass on the study area (overcast sky conditions), 9 April 2017, showing 

transect and marker layout. 
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Figure 4.5. Example of nadir ground photography showing 1 m wide reference tube and 

transect line for: a) high density green seagrass with detritus (leaves and stick); b) 

medium density seagrass (green + brown mix) with detritus (fine stick, needle and wood 

fragment); and c) a sediment scene (mud with clay-silt) with detritus and shell, no 

seagrass. 

 

Twenty randomly positioned points were selected within each of 50 corrected 

ground images (“random points within polygon” function, with the QGIS 2.18 software), 

with points less than 2-pixel separation distance removed, totalling 981 points across the 

a) 

b) 

c) 

---TUBE--- 

---TUBE--- 

---TUBE--- 
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entire (n = 49) available photo set. Point locations were inspected on the RGB images and 

scored for a range of attributes quantifying seagrass density, detritus content, sediment 

content and type, and visible pooling (Table 4.2). 

Seagrass density was scored using a modified Braun Blanquet (BB) coverage scale 

(Braun-Blanquet 1965) that was assessed at a coarser class-division. The five-tier scale of 

the BB system was replaced with a coarser three-tier scale due to earlier testing of 

observer consistency during method development. This indicated that five levels were 

unreliable for this pixel scale judgement but was consistent when simplified to three 

levels. Coverage was assessed at the pixel scale, as a component of the greater scene 

(rather at the full quadrat scale of the BB system). The scale applied (three tiers, plus 

special attention to the extremes) was according to the follow list: 0 (absent); 1 (sparse, 

less than 33% coverage); 2 (moderate, 33-66% coverage); 3 (dense, >66% coverage); and 

4 (complete, 100% coverage). 

Values 0 and 4 were recorded as extreme cases of 1 and 3 to observe pure and 

absent pixel locations (Table 4.2). Class 4 was merged into class 3 for the classification 

analysis. 

Detritus and sediment pixel-content were quantified on the same coverage scale. 

Sediment type was classified nominally by surface appearance (sand, mud, silt, gravel) as 

a substrate background to vegetative ground cover (no relation to subsurface sediment is 

implied). Pooling of water was quantified as being present/absent for a target pixel by 

close inspection of specular versus diffuse reflection patterns and meniscus visible in the 

ground photography. 

True seagrass location across the whole site was spatially quantified as per the 

workflow in Chapter 3 (refer to 3.5.2). This provides a distinction between areas 

containing seagrass (at one of the three density levels tested) and areas verified as having 

no seagrass present. 

  



 

136 
 

4.2.5    Photogrammetry and data compilation 

Multispectral and conventional camera image-sets collected during RPA sorties 

were orthocorrected using Agisoft Photoscan Pro 1.4 (http://www.agisoft.com) using the 

normal program workflow (Table 4.4). 

  

Table 4.4. Orthomosaic production steps using the Agisoft Photoscan normal workflow. 

Production step. Description. Parameters. 

Align photos. Coarse alignment of the 

overlapping images by way of 

triangulation of common 

features found in the images.  

Align photo accuracy = 

‘highest’. 

Dense point 

cloud. 

Pixel depth estimation and 

reconstruction of 3D point cloud 

scene. 

Quality = ‘ultra-high’; depth 

filtering = ‘moderate’; 

calculate point colours = ‘yes’. 

Triangulated 

mesh. 

Tessellation of the point cloud 

and reconstruction of polygonal 

surface model. 

param. surface type = ‘height 

field’; source data = ‘dense 

cloud’; face count = ‘high’; 

interpolation = ‘enabled’; calc. 

vertex colours = ‘yes’. 

Surface texture. Calculation of colour of faces of 

the triangulated mesh model. 

Mapping mode = ‘orthophoto’; 

blending mode = ‘mosaic’; 

texture count = ‘8192’; enable 

hole filling = ‘yes’. 

Orthomosaic. Orthocorrection and mosaicking 

of component images into 

single-image product in 

orthographic projection under 

geographic coordinate system. 

Surface = ‘mesh’; blending 

mode = ‘mosaic’; pixel size = 

default estimate. 

 

 

Single image mosaics for the three tide-stages were clipped to a 20 m buffer around 

the transect extent and georeferenced to each other in a GIS software environment to 

within one or two pixels of separation. The normalised difference vegetation index 

(NDVI) was calculated from red (R) and near-infra-red (NIR) bands using Equation 4.2 

(Tucker 1979). All image bands were then normalised to a scale of 0 to 1 using Equation 

4.3. 
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NDVI = (NIR-R)/(NIR+R)       (Equation 4.2) 

Normalise(x) = (x - xmin) / (xmax - xmin)     (Equation 4.3) 

 

where x is the pixel value, xmax and xmin are image maximum and minimum values. 

 

Some random sampling points were manually moved by one or two pixels in 

distance to ensure the exact pixel locations remain matched across all three (early, mid, 

late) tidal drainage images (there was minor distortion of the multispectral images at 

pixel-scale that required correction in places). Effectively the point-locations were 

consistently placed upon the same material object across the three survey times. Sun 

angle spanned a 3-degree range across the time of surveys, and cloud cover was 

consistently overcast. 

The spatial point dataset containing ground classification attributes for the 49 

reference quadrats, were spatially overlain upon the respective early, mid and late survey 

images, with corresponding band numbers retrieved as new dataset attributes. Image 

classification was based on the contents of this analysis dataset. These 981 points were 

limited in location to the photo reference sites positioned on the three transects. A further 

1000 fixed location points were randomly deployed across the greater scene out to 20 m 

maximum distance from the transects creating second analysis dataset for assessment of 

spectral shift. 

 

4.2.6    Spectral shift across the tidal sequence 

Change in the spectra of objects within the aerial survey scene were measured by 

determining fixed reference points and calculating change in spectra at those points over 

time. The difference in image number between survey times was calculated per ground 

sampling point, allowing comparison on early-late and mid-late spectral and classification 

change. Seagrass extents captured by precision GNSS survey near to the time of the 

survey-day (refer to Chapter 3 for details) provided a spatial reference for coarse seagrass 

presence and absence and for classifying points as being within seagrass areas or on 

ground explicitly devoid of seagrass. This distinction was used to compare spectral 

change with time, inside and outside of the seagrass patches. Overall consistency in 

spectra was measured by applying Pearson’s correlation to pairs of image values (early to 

late and mid to late). 

A subset of the photo reference data was additionally filtered to select points of 

high density for seagrass, detritus, shell and sediment sets, eliminating sparse or highly 
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mixed classes for this particular analysis. This was used to compare spectral shift per 

ground-class for moderately pure signals. 

The flights were made across a short total timeframe spanning midday with respect 

to sun movement, with only minor sun-angle variation across the timeframe of survey. 

Likewise, the uniform, thinly overcast cloud conditions appeared constant during the 

survey. However, there was no measure of absolute solar (diffuse) brightness at the 

image-band wavelengths available on site during the survey. Consequently, a 

radiometrically corrected or controlled measure of spectral change with respect to 

residual drainage and drying was not possible. 

 

4.2.7    Change in classification outcome with tidal drainage 

The three mosaic images were classified using a common ground-observation point 

dataset, to train a classifier using the randomForest algorithm within the rminer data 

mining package (R-Project 3.5). The model was constructed with a 100-repetition 5-fold 

cross validation, and tuning parameters set in the range mtry = (3,4,5) and ntree = (800, 

1000, 1200). Classification accuracy statistics (overall, and per class) were collated for 

each cross-validation iteration and image-set, and mean classification per tide-stage 

calculated. Variable importance was extracted from the model using the importance 

function of randomForest (accessed via the rminer interface) under 1-D sensitivity 

analysis setting with absolute deviation from model median as importance metric. 

Consistency in classification with advancing low-tide drainage state was assessed 

for the 1000-point dataset across the full image extent as these were independent from 

data used to train the model. Agreement in classification response was calculated with 

respect to i) class attribution; and ii) whether seagrass was present/absent. 

The agreement of predicted classification response was further examined at a 

greater aggregated scale. Square tile grids were constructed (0.5 x 0.5 m and 1 x 1 m tile 

size). The area of seagrass per seagrass-class was calculated per tile. Correlation in these 

tile-area sums between survey times, early to late and mid to late, were calculated as a 

measure of agreement at these summary scales. 

 

4.2.8    Comparison of multispectral and scouting cameras 

The Parrot Sequoia camera includes a 16 MP red-green-blue conventional 

‘scouting’ camera model mounted alongside of the four 1.2 megapixel narrow-band 

multispectral camera modules, and is actuated under the same trigger event whereby the 

cameras sample the same survey-space. However, in addition to the band differences 
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between cameras, the multispectral camera operates on a global shutter (i.e., instant 

capture of sensor lines at once) as compared to the scouting camera on a rolling shutter 

(sequential capture of sensor lines). In low light levels image error artefacts can arise 

under a rolling shutter during RPA flight across a scene (less so in bright sun light). The 

RPA surveys in this study were conducted in overcast conditions, so the rolling shutter 

had significance. When considered at the same spatial resolution, the multispectral 

camera should yield higher classification performance than the scouting camera due to 

the narrow spectral bands and global shutter. However, the scouting camera operates with 

significantly higher resolution than the multispectral modules which may confer 

advantage in detecting and classifying seagrass structure. This section tests the 

assumption that the multispectral camera provides classification benefit over a 

conventional camera sensor.  

The random forest classification procedure above was replicated using imagery 

derived from the red-green-blue scouting camera captured concurrently to the 

multispectral imagery. The image-set captured during flight was rendered into a single 

orthocorrected mosaic using Agisoft Photoscan following the previous procedure. The 

resulting image was georeferenced to objects visible in the multispectral image so that the 

images were in alignment, and both multispectral and scouting camera images were in 

alignment with the ground-level photography. 

The ground sampling points used for the multispectral classification were also used 

to train and test the scouting camera image under random 5-fold cross-validation. The 

random forest model structure was matched between cameras with the exception that the 

model predictors differed due to the difference in source bands: - normalised green, red, 

red-edge, NIR and NDVI for the multispectral camera and normalised red-green-blue for 

the scouting camera. Calculation of NDVI for the scouting camera was not possible due 

to there being no NIR band. 

 

4.3    Results 

4.3.1    General observations 

Seagrass at this site typically comprised uniform seagrass patches, or sand/mud 

areas with seagrass spreading from the ‘bare’ patches (Figure 4.5). Many seagrass 

patches, either existing or recently degraded, had raised firm, often dense edges compared 

to the patch-centres (Figure 4.6). Seagrass density ranged in character from thick mats 

comprised entirely of ‘long-leaved’ seagrass, to solitary needle-like leaves emerging from 

sediment, often difficult to see by eye unless crouching low directly above the substrate.  
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There were distinct green and brown colour variants of the seagrasses. At the 

location of the transects, green and brown seagrass were distinct but difficult to 

demarcate exactly. In other parts of the estuary, the green/brown patterning occurred in 

clearly definable patches which in places blended like a Euler diagram, suggesting there 

may be distinct morphs of the seagrass growing radially into neighbouring patches 

(Figure 4.6). Detritus was commonly associated with seagrass and appeared upon 

inspection to be caught-up or associated with the surface textural roughness of the 

seagrass at prominent patch-edges or deposited in small blow-out pools within the 

seagrass extent. Some detritus was present away from the meadow, accumulated in 

stingray feeding holes up to 20 cm deep.  

In general, there was clear spectral separation of the seagrass from its sediment 

background (Figure 4.7). However, the spectral range of shell and detritus content 

overlapped with that of seagrass and sediment (Figure 4.7). This indicates that in mixed 

seagrass/shell/detritus scenes there may be some confusion of image classification 

without additional predictor information to contrast the classes. 

 

 

 

Figure 4.6. Apparent radial growth pattern of seagrass expansion as seen by drone at 60 

m meters above ground level (exaggerated contrast applied). Aerial imagery captured 

April 26 2017 in sunny cloudless conditions.  
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Figure 4.7. Spectral coordinate plot of raw image digital numbers in pairwise combinations of image bands for: a) seagrass and sediment; and b) seagrass, sediment, detritus 

and shell content. Ellipses show 95% quantile estimates. 

Set a). Set b). 

Ground class 
    Seagrass 
    Sediment 

Ground class 
    Seagrass 
    Sediment 

Ground class 
    Seagrass 
    Sediment 
    Detritus 
    Shell 

Ground class 
    Seagrass 
    Sediment 
    Detritus 
    Shell 

Ground class 
    Seagrass 
    Sediment 
    Detritus 
    Shell 

Ground class 
    Seagrass 
    Sediment 
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4.3.2    Spectral shift across the tidal sequence 

Spectral shift was calculated as late-minus-early or late-minus-mid survey image 

band values, where a negative number corresponds to reduced image intensity with 

advancing drainage state (Figures 4.8 and 4.9). 

In most cases objects became darker in the four camera bands within the measured 

seagrass areas, as compared to outside of the seagrass area for which the camera bands 

were closer to remaining constant (Figure 4.8).  Overall dimming across the camera bands 

reduced with time across the material types (Figure 4.9). Cloud cover appeared to remain 

the same during the time spanning the survey sequence. However, absolute solar 

irradiance wasn’t measured on site, so change in cloud condition can’t be eliminated as a 

factor in the observed change in image values with time. There was also change in sun 

aspect during the timeframe spanning the surveys (Table 4.1). The general reduction in 

image intensity across time may be due to subtle cloud thickening or change in aspect. 

However, several observations have relevance to the task of seagrass feature 

extraction. There was negligible change in NDVI values with changing drainage when 

comparing between inside and outside of the measured seagrass extents (Figure 4.8). 

Across the material types (Figure 4.9) NDVI, values were closer to remaining constant 

(i.e., nearer to zero spectral shift) than the four camera bands. These observations indicate 

the stability of NDVI with changing conditions. The NDVI values for seagrass, both 

exposed and in pools, increased with time (i.e., positive shift). This indicates possible 

enhanced feature contrast with drainage and drying whereby seagrass becomes brighter 

compared to the surrounding materials. 

The change in intensity levels were minor with respect to total intensity (Figure 

4.10). The variation in mean spectral band intensity was in the range of 2-5% for the four 

camera bands, and close to zero change overall for the NDVI band. In all four camera 

bands there was high correlation in image-value across drainage states for the reference 

objects for all the bands and ground-cover types, except in the case of sediment, for 

which there was lesser correlation in the green and red bands (Table 4.5). Pooling 

reduced the correlation between the images of early and late low-tide drainage state, 

compared to exposed substrate that drained and dried with time (Table 4.5).  

The following section assesses the consistency of classification outcome with time. 

This assessment is made in the context of the above 2-5% shift in spectra between the 

early and late surveys. 
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Figure 4.8 Spectral shift in normalised image value within each band (units of reflectance in range 0-1), after advancing from the earliest to latest (driest) low-

tide drainage state, and grouped by whether the points are inside or outside of the GNSS-surveyed seagrass extent; n=1000 random points. A negative value 

indicates that the image-value is brighter earlier in the timeframe of low-tide water drainage.  
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Figure 4.9. Spectral shift in normalised image value within each band (units of reflectance in range 0-1), when advancing from the earliest to latest (driest) 

low-tide drainage state and grouped by ground cover class. A negative value indicates a higher image-value earlier. The box-and-whisker plot indicates 

median value (centre line), interquartile range (box), 1.5x the interquartile range (the whisker), and outliers (circles).  
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Figure 4.10. Spectral shift with changing low-tide drainage state (in pseudo colour of 

multispectral image bands). Transect positions (solid white lines) and GNSS-measured 

seagrass meadow boundaries (dotted white lines). 

 

 

Table 4.5. Correlation by image band between the image numbers going from early to 

late low-tide drainage states for each ground cover group (n=804). 

Set Green Red Red-edge NIR NDVI 
Seagrass. 0.87 0.94 0.91 0.93 0.96 
Seagrass in pool. 0.78 0.88 0.91 0.89 0.93 
Detritus. 0.88 0.93 0.90 0.92 0.96 
Shell. 0.89 0.95 0.90 0.93 0.97 
Sediment. 0.69 0.88 0.83 0.86 0.92 
Sediment in pool. 0.52 0.58 0.80 0.81 0.96 

 

 

 

Early low-tide drainage state Late low-tide drainage state 

N 

10 m 
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4.3.3    Change in classification outcome with tidal drainage 

In terms of extracting the seagrass feature from the imagery, an important measure 

of performance is whether the images can consistently be classified into target ground 

classes with a similar level of accuracy and class attribution. The classification accuracy 

results for the three drainage states were within 1% accuracy variation, for the overall 

accuracy (Figure 4.11a), and accuracy by seagrass class in terms of the classification 

sensitivity (true positive rate) and specificity (true negative rates) based on random forest 

model classification metrics (Figure 4.11b). The model was effective in detecting high 

density seagrass and establishing the absence of seagrass. Classification sensitivity was 

poor for the mid-density seagrass classes. Classification specificity was high for all 

classes indicating that seagrass presence is distinct from seagrass absence, and the 

individual class error-rates likely relate to misclassification between the seagrass classes. 

These results relate to the 981 reference points identified within the ground 

photography. However, misclassification can be seen outside of the verified seagrass area 

and away from the transects that was not captured by the ground sampling (Figure 4.12). 

An area of dark wet sediment with sun-glare was mistaken for a low-density seagrass in 

the image of the early survey time (Figure 4.12, upper right of frame), with no such issue 

in the two later survey images. There was 75% agreement on class seagrass density 

attribution between predicted images between early and late times (Figure 4.13), equating 

to 82% agreement on attribution of seagrass presence absence between times. The 

equivalent agreement rates for the mid-late comparison were 87 and 92% for class and 

pres./absence measures respectively. Much of the disagreement between early and late 

surveys sourced to an inclined area of sediment uphill from the seagrass which may have 

caught reflected sun glare or polarised reflection upon the wet sloping surface: the 

specific type of interference could not be established from available information. 

Agreement in seagrass class estimation at the scale of aggregated 0.5 m and 1 m 

tiles was poor (low correlation coefficient) for the low and medium density classes when 

comparing early to late drainage-state images, but high in agreement for the high-density 

class (Table 4.6). Correlation coefficients were markedly higher in the mid to late image 

comparison than the early to late comparison. There was no improvement in the degree of 

agreement on class attribution with increasing aggregated tile scale, i.e., tile size made 

little difference to the class agreement between tide states (Table 4.6). 

The importance of the model predictors varied with survey (Figure 4.14). In 

general red had notably high classification importance, and green notably low 

importance. 
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4.3.4    Comparison of multispectral and scouting cameras 

Classification accuracy was greater for the multispectral camera as compared to the 

red-green-blue scouting camera, by up to 5-7 accuracy percentage units, or an 

improvement of 7-10% is gained from using the multispectral camera, above the accuracy 

of the scouting camera, when compared under a common random forest model structure 

(Table 4.7). Classification accuracy was high for high density and absent seagrass classes, 

and this was consistent across the three residual water drainage states (Table 4.8). In 

general, the maps derived from the red-green-blue scouting camera indicated the location 

and density of seagrass at a moderate level of accuracy overall but with substantial noise. 

Much of this noise appeared outside of the boundary of the GNSS-measured seagrass 

meadow extent (Figure 4.15). The classified map derived from the multispectral image 

exhibited substantially less false seagrass presence in non-seagrass areas. 
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Figure 4.11. Change in mean classification (iterated with 1000 repeats) for a) overall 

accuracy and b) true positive rate (TPR) and true negative rate (TNR) classification 

accuracy statistics per seagrass density class.

a) 

b) 
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Figure 4.12. Classified seagrass maps (right frames) for (a) early, (b) mid and (c) late low-tide drainage/drying states, with seagrass 

meadow boundaries (solid red line), and multispectral pseudo colour images for each survey time (left frames).

Early 

Mid 

Late 

Seagrass 
density class 

    High 
    Mid 
    Low 

    None 

(a) Early 

(c) Mid 

(b) Late 

Multispectral pseudocolour Classified 
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Figure 4.13. The calculated difference maps for agreement on predicted seagrass density 

class for mid-late comparison (b) and early-late comparison (c). Actual seagrass meadow 

extent shown by red line. Areas of class-agreement (white pixels) and class-disagreement 

(black pixels) relate to the extent shown in the multispectral pseudocolour map (a). 

  

a) 

b) 

c) 
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Table 4.6. Correlation between predicted map seagrass class attribution for two summary 

grid scales (0.5x0.5m and 1x1 m). Seagrass density figures are correlation coefficients. 

 

  
Seagrass density 

Comparison 

Grid size 

(m) Absent Low Medium High 

Early-late. 0.5 0.76 0.06 0.37 0.98 

Early-late. 1 0.76 0.04 0.43 0.99 

Mid-late. 0.5 0.97 0.50 0.75 0.99 

Mid-late. 1 0.98 0.55 0.81 0.99 

 

 

 

 

 

 

Figure 4.14. Relative importance of predictors contributing to the classification model for 

each of the three surveys, early, mid and late. 
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Table 4.7. Comparison of classification accuracy between co-mounted multispectral and 

colour scouting cameras. Both cameras capture upon the same trigger event so exposed to 

the same survey and flight environment but noting that the multispectral and scouting 

cameras comprise a global (instant) and rolling (sequential) line scanning capture, 

respectively. Note the difference in ground sampling distance (GSD), frame size in 

megapixels and band set for each camera. 

 

  Camera module. 

  Multispectral. Scouting. 

Megapixels 1.2 16 

GSD as rendered 2.7 cm 0.8 cm 

Spectra. Green, red, red-edge, NIR* Red, green, blue  

Band width Narrow-band Wide-band 

Shutter type. Global Rolling 

  
 

    

Drainage state.           Overall accuracy. 

Early. 78.3 71.3 

Mid. 77.5 72.6 

Late. 77.8 72.0 

      

*  Green: 530-570 nm ; Red: 640-680 nm;    

    Red Edge: 730-740 nm; Near Infrared: 770-810 nm 

 

 

  



 

153 
 

Table 4.8. Comparison between camera types of classification accuracy values per 

seagrass density class under random forest classification, for early, mid and late stages in 

low-tide residual water drainage. 

Scouting camera. 

    Early. Mid. Late. 

Seagrass Absent. 84 86 86 

density. Low. 21 16 10 

  Medium. 2 14 2 

  High. 80 82 83 
 

Multispectral camera. 

    Early. Mid. Late. 

Seagrass Absent. 87 87 86 

density. Low. 33 31 29 

  Medium. 23 10 10 

  High. 79 78 79 
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Figure 4.15. Comparison of multispectral image classification (left set) with equivalent 

classification using the red-green-blue scouting camera (right set) for early, mid and late 

stages in low-tide residual water drainage (top to bottom). Red lines denote the boundary 

of measured seagrass meadow extent outside of which seagrass is confirmed as absent. 

 

4.4    Discussion 

In this chapter, seagrass was surveyed with a remotely piloted aircraft carrying a 

multispectral camera to detect differences in the spectral characterization of a scene 

containing seagrass at a range of density levels and spanning a range of drainage 

conditions. The aim of this chapter was to assess whether differentiation of seagrass from 

its surrounding substrate and other low-tide scene content is affected by the progression 

of low-tide drainage and residual pooling. Results indicate that although minor shift in 

 

Seagrass density class 

         High 
         Mid 

         Low 

         None 

Early 

Mid 

Late 

Multi-spectral camera classification Scouting camera classification 

50 m 
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spectral coordinates of seagrass and other materials was observed, there was no 

discernible impact on image classification performance or classification outcome. In 

general, it is possible to generate valid seagrass density mapping across the whole 

window of time that the tide is out. However, during the early stage of residual water 

drainage (i.e., immediately after the water column has ebbed), areas at the periphery of 

the photogrammetric image grid are susceptible to glint or glare interference that creates 

false surface feature-identification. 

Although a number of studies captured imagery at low tide (Young et al., 2010; 

Kim et al., 2015; Gade et al., 2018), there was no other literature found that documents 

consistency or change in seagrass in feature extraction outcome with changing low-tide 

residual water clearance and drying of substrate. Therefore, the current research is a novel 

contribution. For macroalgae, Casal et al. (2012) determined that reflectance-difference 

between species-groups in hyperspectral bands decreases with increasing water depth, 

with the best separability at low tide when targets are emerged. The current research 

examines the change in separability of seagrass from substrate, during low-tide water 

clearance from the substrate, in terms of classification accuracy. 

 

4.4.1    Spectral change across the tidal sequence  

The magnitude of shift in spectra between the earliest and latest ebb times equated 

to only 2-5% in normalised image units (Figures 4.8 and 4.9). This change may be due to 

some degree of final drying of the scene, change in overcast cloud thickness, or from 

pixel-scale misalignment of images at time of object detection. The classification 

outcome differed when considering the greater scene which included a different sediment 

topography and situation (e.g., out to 20 m from transects) as compared to information 

contained nearby to the transects and reference photos.  

 

4.4.2    Change in classification outcome with tidal drainage 

Results here suggest that seagrass feature extraction can be achieved at a moderate 

level of classification accuracy (Figure 4.11), and that there is consistency between 

survey times in classification output during the hours of low tide when seagrass is 

emergent. Immediately following bulk water clearance from the ground there is potential 

for erroneous inclusion of low-density seagrass due to confounding by wet sediment that 

attracts glare (Figure 4.12). High density seagrass, and seagrass absence, can immediately 

be extracted with high confidence, however mid and low-density seagrass are classified 

with some error (Figure 4.11). Agreement between classified maps is also lowest for 
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these sparse seagrass classes (Table 4.6). This was also the case in one study classifying 

Sargassum sp. wrack, where 20-30% or higher ground coverage was required to achieve 

discrimination using spectra detail available in their airborne hyperspectral sensor bands 

(Hu et al., 2015). 

Predictor importance varies with the time after low-tide ground exposure (Figure 

4.14). Red, red-edge and NDVI bands are generally important. No particular rule is 

evident for inclusion or exclusion of bands at this stage. NDVI is relatively stable to 

changing drainage state and distinguishes seagrass from its surroundings (Figure 4.9). 

This may be the case for other vegetation indices also. Utilisation of the red-edge band 

within contrast ratios in place of, or in addition to, NIR may add further classification 

benefits. Assessment of classification factoring vegetation indices and texture layers are 

an important extension to the research based on prevalence in the literature (Khatami et 

al., 2016; Xue and Su 2017), which is investigated in subsequent chapters. 

 

4.4.3    Comparison of multispectral and scouting cameras 

Results (Section 4.3.4) verify that the multispectral camera yields higher 

classification accuracy than the red-green-blue scouting camera by 7-10% across the three 

tidal drainage states tested. The scouting camera however did yield classification results 

at accuracy levels that may still be useful depending on the precision of mapping 

required. Some seagrass mapping may be successful with low-cost camera investment, 

e.g., sites with good seagrass contrast against sediment with minimal shell and detritus. 

Aerial photography using a consumer grade (RGB) camera has been used in remote 

sensing of seagrass yielding useful seagrass distribution maps (Barrell and Grant 2015; 

Ventura et al., 2016; Li 2018; Ventura et al., 2018; Nahirnick et al., 2019b). Nebiker et al. 

(2016) compared NDVI values from and modified consumer RGB camera (with NIR 

channel exposed) and a multispectral camera mounted upon an RPA each with the 

ground-reference value from a field spectrometer. In this study in a terrestrial turf setting, 

the multispectral camera yielded NDVI values with lower spectral deviation from 

reference than the consumer camera. No literature could be found comparing 

concurrently captured consumer and multispectral imagery over seagrass. Therefore, 

results from the current study contribute by identifying improved methodology by using a 

multispectral rather than consumer camera for mapping seagrass in a drained estuary and 

verifying that consumer camera sensors can yield seagrass maps in the case of Zoster 

muelleri in New Zealand. 
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4.4.4    Applicability and limitations 

The results of this chapter indicate that seagrass feature extraction is achievable but 

with some potential limitations. Low and mid density seagrass were difficult to classify 

correctly, although successful in terms of establishing seagrass presence/absence. Notable 

change in spectral coordinates was detected where there was permanent pooling during 

the low tide. Seagrass reflectance spectra were found to be clearly distinct from those 

associated with sediment. However, there was considerable overlap in seagrass and 

sediment spectra with that of detritus and shell in the same scene. Applications of the 

method for quantifying seagrass condition could be compromised where these are 

prevalent. 

Shell and detritus are spectrally confounding to seagrass feature extraction. For the 

purpose of mapping change of seagrass density across a time-series (e.g., annual 

monitoring), consideration of detritus and shell surface content may be required to avoid 

or standardise the contaminating effect between survey times e.g., by avoiding time 

immediately following high disturbance events such as floods and storms if these are the 

primary cause of surface shell accumulation. Seagrass density classification would benefit 

from increased statistical explanatory power, by adding additional predictors to the image 

stack such as vegetation indices and texture layers.  

Change in solar incident intensity was not measured across the survey timeframe, 

so this trial cannot eliminate the observed spectral shift being influenced by subtle change 

in overcast cloud cover. However, there was little difference in classification accuracy 

between survey times. Difference in prediction outcome between the latter two tidal states 

was minor in the vicinity of the seagrass meadow and transects. There was some variation 

in predicted seagrass density class per pixel between early and late surveys with glare on 

some wet inclined parts of that scene confusing classification. Here some sediment 

appeared as sparse seagrass, depending on sun angle and aspect of slope.  

Generally, these results suggest that flight operations need not be constricted to a 

narrow window of opportunity but would benefit from avoiding the times up to an hour 

after bulk tidal water clears from the ground, thereby allowing initial draining and drying 

of the sand topography to minimise interference from glare. Operational planning for an 

RPA field survey might use the time, between clearance of tidal water and initial 

draining, to establish positional referencing and collect ground observations. 
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4.5    Conclusion 

In this chapter, the objectives were met by demonstrating that although there is 

minor shift in the spectral coordinates of materials with advancing drainage and drying, it 

is not sufficient to affect classification accuracy. The results indicate that seagrass 

contrasts moderately well against the non-target classes, particularly at high density, and 

classification outcome generally remains consistent, with some inconsistency for sparse 

seagrass. Feature extraction for high-density seagrass is immediately feasible. There is 

potential for enhanced seagrass feature extraction, and improved density class assignment 

for mid and low-density seagrass, by building-in additional predictors into the 

classification model. 

In this autumn study, undertaken on an overcast day, drainage did not substantially 

affect classification outcomes. There is little evidence that residual water on the estuary is 

a critical confounding influence, with the exception that some estuary topography may 

attract glare that confuses the model when the ground is still saturated. During hot 

summer months there may be greater contrast between drainage states due to the more 

aggressive drying of zenith sun angles and salt crystal accretion on the surface of ground 

materials. This is an area for future research. 

This chapter assessed the impact of tidal drainage on classification outcome, with 

analysis focused on the pixel-scale of information. The next chapter will systematically 

assess an object-based image analysis (OBIA) framework to test and contrast several 

published predictors and classifiers, on the task of seagrass feature extraction and 

mapping. 
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4.6    Chapter appendices 

4.6.1    Appendix 4.6.1. Parrot Sequoia camera and downwelling sunshine light sensor / 

GPS module (a); and mounted upon the RPA (b). 

 

Multi-spectral camera 

Downwelling light 
sensor / GPS module 

Battery 

a) 

b) 
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CHAPTER 5 
 

5    Chapter 5. Assessment of object-based image analysis for seagrass feature 

extraction 

 

5.1    Introduction 

Pixel-based image analysis (PBIA) of multispectral imagery collected at 30 m 

altitude above a seagrass scene yields classification of seagrass density class and non-

target substrate-type with good model and per-class accuracy (Chapter 4). Object-based 

image analysis (OBIA) has potential to improve classification performance over that of 

PBIA (Blaschke et al., 2014; Myint et al., 2011). In general, OBIA has been shown to 

yield superior classification performance compared to pixel-based classification due to 

increased information aggregated within the object components, and greater potential 

contrast between endmember groups (Benfield et al., 2007; Frohn et al., 2011; Whiteside 

2011; Ursani et al., 2012; Cai and Liu 2013; Blaschke et al., 2014; Wahidin et al., 2015; 

Khatami et al., 2016; Ventura et al., 2016; Ma et al., 2017). Frohn et al. (2011) showed 

substantial gains in accuracy using OBIA over PBIA for a wetland habitat mapping 

project using a pairwise sequential colour-based region-merging image segmentation.  

Meneguzzo et al. (2013) demonstrated that OBIA better represented land-cover patterns 

than PBIA when using independent components analysis for pixel classification and an 

unspecified classifier for object-based image analysis. Sevara et al. 2016 found OBIA 

performance exceeded that of the pixel-scale for feature extractions from a terrestrial 

digital terrain model (DEM). Elsewhere, Ghosh and Joshi (2014) demonstrated OBIA 

benefits over PBIA when using support vector machine to map bamboo patches when 

using Worldview2 satellite imagery. 

There are reported exceptions though where PBIA either equalled or exceeded the 

classification performance of OBIA (Dingle Robertson and King 2011; Duffy et al. 

2018). Poursanidis et al., 2018 established that the relative performance of PBIA and 

OBIA for mapping seagrass varied with the classifier used and the type of radiometric 

correction applied to the imagery.  

Consequently, there is no evident rule that can be applied for development of 

seagrass image analysis in the present study. Comparative assessment of both PBIA and 

OBIA are justified for Zostera muelleri. 
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The basis for OBIA is the segmentation (partitioning) of the subject imagery into 

objects (patches of contiguous pixels) under a clustering, region-growing or other pattern 

recognition rule (Dronova 2015). Segmentation results are assessed according to a 

supervised reference or unsupervised metric, then segments classified using reference 

data (see Appendix 5.7.1 for summary of components). Segmentation and subsequent 

classification outcomes can be dependent on the spatial and spectral resolution of the 

input imagery relative to the physical object-size and spectral separability of the ground-

objects and materials that make up the visual scene (Johnson and Xie 2011; Dronova et 

al., 2012; Troya-Galvis et al., 2015; Chen et al., 2019; Räsänen and Virtanen 2019; Yang 

et al., 2019). At some scale of segmentation, small objects (i.e., smaller than the resulting 

segment size) can become absorbed into the surrounding segment pixel-set leading to 

information loss (e.g., Dingle Robertson and King 2011) or other dilution of spectral 

character of the segment. These sources of classification error are relevant to seagrass 

feature extraction (see Section 2.4.2 and Appendix 2.8.2). Optimal segmentation 

parameters are not available for seagrass on a post-storm heterogeneous estuarine 

seagrass scene. Therefore, assessment of optimal OBIA image segmentation scale is 

required for the seagrass survey method developed in this chapter. 

Numerous classifiers (algorithms) are applicable to image classification (see 

Appendix 5.7.1.5). The three classifiers: Linear Discriminant Analysis (LDA); Support 

Vector Machine (SVM); and Random Forest (RF); are strong candidate classifiers for 

seagrass feature extraction (Pal and Mather 2005; Lin et al., 2010; Khatami et al., 2016; 

Yang et. Al., 2019). Variable selection and collinearity reduction within the classifier 

implementation have potential to improve classification (Appendix 5.7.1.7) but this needs 

to be established for seagrass feature extraction by multispectral camera. 

 

5.2    Chapter objectives 

The goal of this chapter is to test a semi-automated, object-based image analysis 

workflow that can be applied to RPA-sourced multispectral imagery and achieve 

moderate to high classification accuracy for quantifying seagrass ground coverage under 

a discrete interval range. Towards this overall goal, this chapter aims also to evaluate the 

effect of segmentation scale, classification algorithm choice and variable selection on the 

accuracy of seagrass detection and coverage estimates. The five specific objectives of this 

chapter are: 



 

162 
 

1. Selection of a small subset of object-based image analysis workflow components 

that are indicated to yield moderate to high classification accuracy in a range of 

vegetation mapping cases; 

2. Assemble a semi-automated process-chain that ingests RPA imagery, ground 

observations and spatial referencing data to yield spatially explicit classification 

results; 

3.  Compare segmentation scale, classification algorithm and variable selection in 

terms of seagrass detection and classification accuracy; 

4.  Assess a range of spectral bands, indices and texture layers for contribution to 

classification outcome; 

5.  Select a classifier, segmentation scale and variable-selection method for 

subsequent testing on repeat surveys; and 

6.  Verify the method for mapping of seagrass in repeat surveys undertaken in the 

following year. 

 

5.3    Method 

5.3.1    Study area 

RPA flights were undertaken on 9th April 2017 at 30 m above ground level, over 

the general study area described in Chapter 3 and the specific site used in Chapter 4 

(Section 4.2.1). Subsequent flights were also made 2nd Feb 2018 and 28th March 2018. 

5.3.2    Aerial imagery capture 

The imagery used for this analysis was the same as the third set of imagery from 

Chapter 4, corresponding to the ‘late’ low-tide residual drainage state (detailed 

description in Section 4.2.3). 

This multispectral camera imagery was captured above a seagrass meadow using 

an autonomous RPA flown at sufficient velocity and height to achieve moderate spatial 

coverage (~100 x 200 m extent), but low and slow enough to resolve scene detail for 

content identification. The imagery was aero-triangulated and radiometrically calibrated 

within the photogrammetry software to derive a single orthorectified mosaic of the scene 

with all four spectral bands (R, G, RE, NIR) in alignment (Figure 5.1, and see Section 

4.2.5 for the detailed description), from which additional layers were derived below. 

5.3.3    Ground reference data collection 

The ground reference data collection strategies are described extensively in 

Chapter 4 (Section 4.2.4). Detailed ground-level photos (1 m height above ground level) 
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allowed regions of the image to be associated accurately with seagrass density and other 

scene components. Training-sample polygons, selected from the segmentation step 

described below were inspected in a Geographical Information System (GIS) 

environment, and overlain on the high-resolution ground photography. Polygons were 

ascribed to one class from a classification typology that represents the range of seagrass 

conditions, shell, detritus and sediment presented in Table 5.1. This class-set differs 

slightly from that of Chapter 4, using instead a univariate class typology factoring classes 

of seagrass mixed with detritus and shell to cover the range of seagrass presentations and 

model more variability in image spectral information than was achieved in Chapter 4. 
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Figure 5.1. Analysis workflow for data preparation, segmentation assessment and comparison of classifier and variable selection variants. 
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Table 5.1. Ground cover classes applied to seagrass meadow image classification. 

     Class 
 

     Description      Example 

Single material on sediment 
Seagrass 
 
      High density. 
 
 
      Mid density. 
 
 
  
     Low density. 

 
 

Two thirds to full cover. 
 
 

One-third to two-thirds 
cover. 

 
 

Trace to one-third cover. 

 

 
 

 
 

 
 

Sediment. Full sediment cover, 
negligible other objects. 

 
 

Detritus 
     High density. 
 
 
     
      Low density. 
 

Full detritus cover, 
negligible other material. 

 
 
 

Less than two thirds cover. 

  
 

 
 

Shell 
    High density. 
 
 
 
     Low density. 
 
 

Shell cover, minor other 
material. 

 
 
 

Less than two thirds cover. 

 
 

 

Mixes   
 
Seagrass + detritus. 

 
Mixed seagrass + detritus. 

 
 

 
Seagrass + shell. 

 
Mixed seagrass + shell. 

 
 

 
Seagrass + detritus + 
shell. 

 
Mixed seagrass + detritus + 

shell. 
 

 

Shell + detritus. Mixed shell + detritus. 
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5.3.4    Photogrammetry and data compilation 

A calibrated reflectance panel was placed in the scene at the time of flight.  The 

raw bands (green, red, red-edge and near infra-red) were radiometrically adjusted using 

‘calibrate to reflectance panel’ and ‘use onboard downwelling light meter’ settings after 

entering the panel’s pre-calibrated reflectance values (Agisoft Photoscan version 1.5). 

This process adjusts and rescales digital numbers to provide estimated reflectance values. 

These features were not available in Photoscan during the period of research resulting in 

Chapter 4, but the inclusion of this calibration step here now permits the calculation of a 

wide range of formal vegetation indices. 

Band calculations were determined following the rules described in Table 5.2 and 

implemented using FME Workbench 2017 (SAFE Software) to combine bands into a 

single raster stack for use in segmentation, classification and the final mapping. Indices 

were calculated using multispectral image bands in calibrated units of reflectance.  

A selection of spectral band ratio or contrast indices (i.e., ‘vegetation’ indices) 

were calculated from spectral bands corresponding to published formulas provided for 

normalised difference vegetation index (NDVI, Tucker 1979), soil-adjusted vegetation 

index (SAVI, Huete 1988), difference vegetation index (DVI, Richardson and Wiegand 

1977), ratio vegetation index (RVI, Jordan 1969) and a version of the enhanced 

vegetation index using the bands available within the camera band-set of the present 

study (EVIj, Jiang et al., 2008). 

These vegetation indices were selected due to their prevalence in the literature for 

vegetation condition assessment (see Chapter 2). The vegetation indices are 

conventionally calculated including the near infra-red (NIR) band. A second exploratory 

variant of each vegetation index was calculated substituting the red-edge band for the red 

band, to determine any predictive improvement yielded by red-edge reflectance (Table 

5.2). 
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Table 5.2. Spectral and derived bands calculated and compiled into the analysis layer package, used for segmentation and classification. 

Short band  

Name 
Full band name Formula Literature link 

Green. Green (550nm centre, 40nm width). Green. 
 

Red. Red (660nm centre, 40nm width). Red. 
 

RedE. Red edge (735nm, 10nm width). RedE. 
 

NIR. Near infra-red (790nm, 40nm width). NIR. 
 

NDVI. Normalised difference vegetation 

index (Red, NIR). 

(NIR-Red)/ 

(NIR+Red) 

Tucker 1979. 

NDVIe. Normalised difference vegetation 

index (Red, Red-edge). 

(NIR-RedE)/ 

(NIR+RedE) 

Red-edge variant of 

above. 

SAVI. Soil adjusted vegetation index (Red, 

NIR). 

(1+L)(NIR-Red)/ 

(NIR+Red+L) 

Huete 1988. 

SAVIe. Soil adjusted vegetation index (Red, 

Red-edge). 

(1+L)(NIR-RedE)/ 

(NIR+RedE+L) 

Red-edge variant of 

above. 

DVI. Difference vegetation index (Red, 

NIR). 

NIR – Red Richardson and 

Wiegand 1977. 

DVIe. Difference vegetation index (Red, 

Red-edge). 

NIR – RedE Red-edge variant of 

above. 

RVI. Ratio vegetation index (Red, NIR). NIR/ 

Red 

Jordan 1969. 

RVIe. Ratio vegetation index (Red, Red-

edge). 

NIR/ 

RedE 

Red-edge variant of 

above. 

EVIJ. Enhanced vegetation index by Jiang 

(Red, NIR). 

2.5*(NIR-Red)/ 

(NIR+2.4*Red+1) 

Jiang et al., 2008. 

EVIJe. Enhanced vegetation index by Jiang 

(Red, Red-edge). 

2.5*(NIR-RedE)/ 

(NIR+2.4*RedE+1) 

Red-edge variant of 

above. 
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In addition to spectral layers and derived vegetation indices, a set of texture layers 

describing the spatial complexity/variance of the imagery locally, were derived from the 

NDVI band. These were calculated using the HaralickTextureExtraction function of the 

Orfeo Toolbox which generates a wide range of texture models (see Table 5.2). This tool 

brings together algorithms that calculate up to 29 kernel statistics which the tool-

developers reference to Haralick et al. (1973). The Haralick’s texture layers are varied in 

statistical approach, and include a range of grey level kernel pattern measures. The 

resulting texture extractions were screened visually. Texture layers resembling 

unstructured noise with respect to seagrass patterns were eliminated. The resulting set of 

Haralick’s texture layers were then used to support subsequent image analysis (Figure 

5.2). 

The polygon-set derived at each segmentation scale was overlain on the 28 bands 

(14 spectral plus 14 texture layers) and summary statistics calculated for each polygon. 

Five further geometric attributes were also derived for each polygon (e.g., segment 

perimeter, area) and these together with the derived spectral and texture attributes form 

the basis for the information set for image classification (Table 5.3). 

 

5.3.5    Image segmentation 

Image segmentation was performed with the Orfeo toolbox software using python 

scripts to implement the mean-shift segmentation algorithm described in Section 2.3. 

Segmentation was made using the four camera bands plus NDVI layer as input rasters. 

The algorithm was set with parameters to enhance the sensitivity to small spectral 

differences at small spatial scales resulting in a very fine scale of segmentation. 

Specifically, the parameter spectral range-radius was set to 0.0005 (in units of normalised 

reflectance) after observing that there was very little additional segmentation by further 

reducing this parameter. 

The initial minimum segment size parameter used was 5-pixels, resulting in ‘super-

pixels’ of similar colour at the scale of individual seagrass plants. This parameter controls 

the smallest allowable segment size by merging smaller segments into the most similar 

adjacent segment, merging in order of increasing size. Iterations of the algorithm were 

then run applying a range of minimum segment size parameter values (5, 10, 20, 40, 80, 

160, 320 and 640 pixels). This resulted in eight segmentation polygon-sets available for 

optimal scale assessment. 
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Figure 5.2. A seagrass scene (~30 m wide) within the main study area showing the 

respective Haralick’s texture depictions with a grey-scale colour-ramp running from low 

(black) to high (white). Grey-scale contrast in these frames have been enhanced to expose 

detail for illustration, and with respect to the true measured seagrass extent (white 

polygon line). 
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Table 5.3. List of predictors available in the analysis image prior to feature selection (see 

Table 5.2). Haralick’s texture layers are denoted with “H.” Geometry attributes are based 

on calculated segment characteristics. 

Band 

no. 

Predictor 

name. 

Range. 

 

 Band 

no. 

Predictor name. Range. 

Spectral attributes  Texture attributes 

1 Green. 0-1  15 H. Energy. 0-1 

2 Red. 0-1  16 H. Entropy. 0-1 

3 Red-edge. 0-1  17 H. Correlation. 0-1 

4 NIR. 0-1  18 H. Inv. diff. moment. 0-1 

5 NDVI. 0-1  19 H. Inertia. 0-1 

6 NDVIe. 0-1  20 H. Cluster shade. 0-1 

7 SAVI. 0-1  21 H. Cluster prominence. 0-1 

8 SAVIe. 0-1  22 H. ‘Haralick 

correlation’. 

0-1 

9 DVI. 0-1  23 H. Mean. 0-1 

10 DVIe. 0-1  24 H. Variance. 0-1 

11 RVI. 0-1  25 H. Information 

Correlation. 

0-1 

12 RVIe. 0-1  26 H. Grey-level non-

uniformity. 

0-1 

13 EVIj. 0-1  27 H. Low grey-level run 

emphasis. 

0-1 

14 EVIje. 0-1  28 H. High grey-level run 

emphasis. 

 

0-1 

    Geometry attributes. 

    29 Segment area. (m2) 

    30 Perimeter. (m) 

    31 Length of bounding 

rectangle. 

(m) 

    32 Length/width bounding 

rectangle. 

(m/m) 

    33 Area-perimeter ratio. (m2/m) 
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5.3.6    Optimal segmentation scale 

The resulting segmentation patterns were analysed following the approach 

described by Johnson and Xie (2011). This method combines inter- and intra-segment 

variance scores to form a global fit index. Inter-segment scores are based on Moran’s 

Index (Equation. 5.1), a common measure of spatial autocorrelation (Li et al., 2007). Here 

this was applied to the NDVI band due to its demonstrated influence on pixel 

classification outcomes as discussed in Chapter 4.   

Moran’s Index (MI)     =       
 ∑ ∑ ( ӯ)( ӯ)

∑ ( ӯ) ∑ ∑  
     (Equation 5.1) 

where yi and yj are the mean segment image intensity values for each pair of 

segments being compared, ӯ is the mean intensity value across the whole image, and n is 

the number of compared pairs.  The spatial weighting, wij of each comparison is assumed 

to be unity for adjacent segments. Intra-segments scores were calculated using the area-

weighted variance index (Equation 5.2) as again applied by Johnson and Xie (2011): 

  Area-weighted variance index     =         
∑ 𝒗𝒊∗𝒂𝒏

𝒊 𝟏

∑ 𝒂𝒏
𝒊 𝟏

      (Equation 5.2) 

where vi is the variance of pixel values within each segment and a is the segment 

area in square meters.  

Inter- and intra-segment scores were then normalised according to Equation 5.3: 

Normalised value     =          
(𝒙 𝒙𝒎𝒊𝒏)

(𝒙𝒎𝒂𝒙 𝒙𝒎𝒊𝒏)
                  (Equation 5.3) 

where x is the segment score value, and xmax and xmin the overall maximum and 

minimum value across all segments. Finally, normalised Moran’s Index and area-

weighted variance scores were then combined into global score using Equation 5.4: 

Global score       = 𝑣 + 𝑀𝐼        (Equation 5.4) 

The approach of Johnson and Xie (2011) was selected as this method provides an 

unsupervised, objective measure of segment heterogeneity without the having to draw, a 

priori, the training polygons required to assess segment fit, which would potentially 

introduce user bias. The approach defines segmentation as being effective when there is a 

low average per-segment variance score (i.e., segment pixels are internally similar) and 

the Moran’s Index score for autocorrelation is also low (i.e., segments are different from 

their neighbours), where the lowest global score out of a range of tested segmentation 

scales indicates an optimal segmentation. 

In addition to Moran’s Index, area-weighted variance and their global score, an 

additional index of intersegment variance difference, was calculated as root mean square 

error between the target the variance xseg and adjacent segment variance xadj of adjacent 

segment pairs (Equation 5.5). A high root mean square error between each segment and 
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its neighbours would indicate segmentation that has high difference between spectral 

character of adjacent segments. 

Root mean square error      =   ∑(𝒙𝒔𝒆𝒈 − 𝒙𝒂𝒅𝒋)𝟐  (Equation 5.5) 

Johnson and Xie (2011) define the optimal segmentation scale as the output with 

the lowest global score.  Here, additional measures of segmentation (root-mean-square 

error and signal to noise ratio) were used to provide additional measures of segmentation 

fit to contrast with primary global score and highlight any obvious anomalies.  The 

resulting polygon-set with the lowest global score and associated measures, would signal 

an optimal scale.  

The global score approach of Johnson and Xie (2011) was developed for a different 

target vegetation species and imaging regime and may not, therefore, be directly 

transferrable to seagrass. As such, rather than adopt the single optimum segmentation 

scale, a simple sensitivity analysis was undertaken to assess the effect of segmentation 

scales on the resulting classification accuracy. The reference ground photography 

ultimately limits the range of classification scales to a minimum segment size of 40 pixels. 

Larger scale segments were too large, in many cases, to be contained within the ground-

footprint of the reference photos. 

 

5.3.7    Model training and test data 

Polygons were selected from image segmentation feature-sets to form training 

polygon objects. Selection was made by manual inspection of polygons overlain on the 

aligned ground-level (high-resolution) photography where:  

i) the polygons were wholly within the extent of the ground photographs;  

ii) the scene content of the polygons was clearly visible as uniform 

unambiguous examples of the target classes; and  

iii) the polygons were positioned with some tolerance for minor (1-2 pixel) 

potential misalignment between ground photography and the multispectral 

drone imagery. 

Polygons were then attributed to a single class from the full list of categories 

(Table 5.1) based on content observable in the ground photographs. In turn, polygons 

were then intersected with the underlying multiband-band analysis image and mean band 

values calculated for pixel-centres within the polygon geometry. Additional attributes 

were calculated quantifying perimeter, area, perimeter/area ratio, oriented bounding box 

length and length width ratio as morphological attributes of the segment geometry. All 
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measures were joined to the polygon feature set as attribute columns and saved as a 

shapefile for subsequent analysis (hereby termed ‘the analysis dataset’). 

A separate fixed test-data subset was not used, as classification modelling was 

conducted using k-fold resampling with replication, whereby all reference data potentially 

participate as training or test data across multiple instances during model iteration. 

 

5.3.8    Classifier comparison and predictor importance 

Image polygon sets (or the point-set in the case of PBIA) containing attributes for 

the image band values along with actual ground cover class information based on the 

visual interpretation described above, were imported into R Project for subsequent 

classification modelling. 

The three linear classifiers (linear discriminant analysis, support vector machine 

and random forest) were assessed for classification performance with respect to seagrass 

detection and density estimation. An iterative classification model was constructed to 

assess classifier performance over a range of segmentation scales, and the relative 

classification accuracy achieved under a particular segmentation scale. 

Each classifier was applied using the rminer package (The R Project v 3.6) for 

linear discriminant analysis and support vector machine classifiers (LDA and SVM 

methods), and randomForest package for the random forest (RF) classifier (rminer can 

accesses this package as a meta-method, but the randomForest package was used directly 

in this case). LDA and SVM classifications were made under repeated 5-fold cross-

validation, with results reported as the average of 100 repeats of each cross-validation set. 

Cross validation wasn’t applied external to the randomForest routine as this method 

includes resampling components within its internal structure. The random forest ntree 

parameter was tuned by running a range of values (ntree = 50 to 1200) for each iteration 

of segment size dataset, and observing the minimum out-of-bag (OOB) error rate within 

each set.  

Classifier performance for seagrass was assessed by examining: i) overall 

classification accuracy and kappa statistic; ii) the user and producer accuracy for each 

target class as extracted from the model confusion matrix; and iii) the rate of successful 

seagrass detection (seagrass presence pooled across density classes). 

The classifier comparison procedure was repeated for the four segmentation scales 

of minimum size threshold 5, 10, 20 and 40 pixels, and for pixel-based analysis. Training 

of polygons was made for each individual scale due to difference in location and extent. 

Some class assignment changed with increasing scale as pure class types within a small 
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segment mixed with other contents at the large segment scale. Assessment of larger sized 

segmentation (e.g., the 80, 160, 320 and 640 pixel segmentation scales of Section 5.3.4) 

was not reliably feasible because the size of these segments extended beyond the edge of 

reference photos (1m x 1.2m footprint in ground units) such that predominant segment 

class could not be determined in many cases. Training of segments at this scale would 

require a more extensive ground referencing system (e.g., 2 or 5 m quadrats). 

 

5.3.9    Variable importance and feature selection 

The importance of variables contributing to the LDA and SVM methods, was 

quantified using the importance method within the rminer package (Cortez and 

Embrechts 2013). Model variance was set as the importance metric (method = sensv 

parameter). Variable importance within the RF method was exposed using the importance 

function set to units of mean decrease in accuracy. Visual comparison of variable 

importance between classifiers was made by normalising on a relative scale of 0 (lowest 

importance) to 100 (highest importance). 

The effect of feature selection on classification outcome was assessed using the 

optimal classifier defined from the analyses made in Section 5.3.4 (random forest in this 

case). The selected classifier was then subjected to three sub-setting regimes: i) no 

variable filtering; ii) variable filtering based on dropping collinear variables in sequence 

by decreasing rank of variable importance; and iii) feature selection using a recursive 

feature elimination (RFE) algorithm. The effect of feature selection was quantified in 

terms of change in classification outcome compared to no feature selection. 

Variable importance and feature selection methods were based on random forest 

parameters ntree = 1000 (number of trees), mtry=6 (number of variables sampled), and all 

models replicated and averaged 100 times. 

The relative performance of red-edge and near infra-red spectra, both directly as 

sensor bands and within derived indices, was estimated by collating rank position within 

each variable importance list and then comparing mean rank value across segmentation 

scales and band or index type. The relative value of texture layers in comparison to 

spectral layers, derived indices and segment geometry attributes, was estimated by 

comparing the average importance-value observed, on the relative-scale within each 

classification model with predictors aggregated as general type ‘band’ (e.g., green), 

‘index’ (e.g., NDVI), ‘texture’ (e.g., entropy) or segment ‘geometry’ (e.g., perimeter/area 

ratio). Segment geometry attributes were not relevant to the individual points under the 

PBIA pathway. 
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Spectral and texture layers may potentially encode similar descriptions of the scene 

content resulting in multi-collinearity within the resulting layer set that might require 

procedural adjustment. Additionally, the derived indices NDVI, SAVI, DVI, EVIj and 

RVI were determined with two versions (red-edge or near infra-red) between which some 

similarity can be expected. Collinearity was determined by calculating correlation 

between all predictor layer pair combinations in a correlation matrix (R Project v3.6, cor 

function). Collinearity between predictors was considered significant in cases where 

Pearson’s correlation coefficient was 0.7 or greater. A candidate variable list with 

reduced collinearity was formed by systematically selecting variables in sequence of 

descending importance but dropping variables where there was collinearity with any 

previously selected variable as indicated from pairwise tests. 

Determination of an optimal classification method thus incorporated the evaluation 

of which segmentation scale, classifier and feature selection regime yielded the greatest 

accuracy for ascribing seagrass presence/absence and seagrass density class, as well as 

considering the benefit of using red-edge band and texture elements in the classification. 

 

5.3.10    Seagrass mapping and replication 

Additional survey flights were undertaken one year after the previous survey, on 

the dates 02/02/2018 and 28/3/2018. The February survey was set for a time of year 

considered likely to be near to the annual maxima for seagrass growth disturbance, based 

upon indications in the literature (Turner and Schwartz 2006b; Turner 2007), monthly 

visual inspections on site, and weather observation (no storm events). The March 28 

survey was an attempt to survey exactly one calendar year following the 9 April 2017 

survey but prior to autumn storm activity. Sky cloud cover, sun angle and tide state were 

consistent across the three capture times (Appendix 5.7.2). The transect for the two repeat 

surveys was widened from 10 m to 20 m spacing between rows, extending the survey 

area downhill to sample more seagrass environment in an area where there was seagrass 

present in previous years (Figure 5.3). 

The RPA was programmed with an adjusted flight plan for the February survey 

(compared to April 2017), but the same flight programme was loaded into the RPA for 

the March survey for exact course-replication within the limits of the GPS sensor-

precision. Forwards overlap and side-lap, flight speed and flying height were consistent 

for all three surveys. Ground photography was also consistent in method and scale across 

the three surveys. 
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The image processing, band collation and classification was replicated using the 

same scripts as was used for applying random forest at pixel scale, with no variable 

selection. As before, all analysis image-stacks consisted of spectral, vegetation index or 

texture layers derived from reflectance values. The random forest programme parameters 

were also applied (mtry = 6, and ntree = 1000, with 5-fold cross validation). Ground-level 

photography was repeated as per the previous class system. The April 2017 survey 

polygons were freshly re-classified at the same time as the ground-reference classification 

for the two 2018 surveys, to ensure consistency in human judgement one year later. In 

this case, non-homogeneous/ambiguous samples were deleted from the reference dataset 

to improve the purity of the sample. 

The significance of difference between the accuracy statistics for each survey was 

measured by applying analysis of variance (ANOVA) to the accuracy statistics, grouped 

by survey time and invoking Tukey’s pairwise comparison function to compare survey 

times for mean accuracy level. The resulting classifier was used to ascribe predicted class 

membership across all pixels of the image. This was repeated for the three survey times, 

resulting in three georeferenced prediction maps. 

The efficacy of the method was also assessed by comparing the mapped (predicted) 

seagrass extent to the actual location of the seagrass meadow as measured by high 

precision GNSS survey instrument (see Chapter 3). These plotted seagrass meadow 

boundaries have ~110 mm (i.e., ~ 4 pixels) of positional accuracy with respect to the 

common geographic reference datum used in this study (New Zealand Transverse 

Mercator coordinate system, referenced to LINZ geodetic marker EB2U). 
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Figure 5.3. Survey site showing the transects used for the original transect of April 2017 

of Chapter 4 (orange, transect pattern 1) and the early February and late March 2018 

surveys (blue, transect pattern 2) and held consistent between these latter sets. Green area 

denotes the seagrass survey mapped using a precision global satellite navigation system 

(GNSS). The grey area shows the seagrass extent visible in 2015-dated Bing Maps 

imagery but currently absent.  

20 m N 
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5.4    Results  

5.4.1    Image preparation and segmentation 

Normalised spectral bands, their derived indices and Haralick’s textural layers 

were calculated and stacked into a multi-band georeferenced raster. For this particular 

image of size of 6100 x 4200 pixels (columns x rows) and using memory-optimised 

processing in FME Workbench (SAFE software), peak memory usage was ~24 GB of 

RAM with processing and memory demands decreasing with increasing segment size. 

 

5.4.2    Segmentation and assessment 

Image segmentation was iterated across the range of minimum segment size 

parameters including 5, 10, 20, 40, 80, 160, 320 and 640-pixel threshold values (Figure 

5.4). The number of segments generated increased linearly with minimum segment size 

(Figure 5.5). Numbers of segments for this 130 m x 70 m image mosaic footprint ranged 

from 7,901-1,043,000 segments (Appendix 5.7.3). 

Moran’s Index score and corresponding area weighted variance value for each 

segmentation scale increased with minimum segment size (Figure 5.5). These combined 

to yield an unsupervised global segmentation score that similarly increased with 

minimum segment size threshold (Figure 5.5). Root mean square error (Figure 5.5), an 

alternative to intra-segment variance, yielded a curve consistent with area-weighted 

variance, with low intra-segment variance at the lowest segment scales. The signal-noise 

ratio similarly reflects the same tendency for low deviation from neighbours in smaller 

sized segments. All score-types indicate effective segmentation at small segment scale. 

At the minimum segment size threshold, segments were on average 17 pixels in 

size (Appendix 5.7.3) corresponding to an object-space dimension of ~0.01 m2. At this 

size, segments effectively function as ‘super-pixels’ below the physical scale of seagrass 

meadows (see Figure 5.4) but are sufficiently small in scale to isolate objects like shells 

and elements of detritus (which are only a few pixels in size). Segments at intermediate 

and large scales by contrast, increasingly incorporated non-target objects like shells and 

sticks.  

There was no specific optimal segmentation scale elucidated by the scale-

assessment using Moran’s Index and intra-segment variance measures, except the 

tendency that small segments are better under this aerial survey specification, and pixels 

are best. 
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Figure 5.4. Example of the segmentation size-range resulting from an increase in the 

segment size threshold parameter. Segments are overlain on actual seagrass position as 

visible in the false-colour enhanced image sample shown here. In this colour scheme, 

bright green hues denote seagrass, purple denotes sediment, pink to white hues are shell, 

and blended grey hue is detritus.
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Figure 5.5. Measures used in the unsupervised assessment of segmentation fit where: a) low global score indicates 

contrast between adjacent segments; b) low area weighted variance indicates segments have predominantly similar 

values; c) low Moran’s Index value indicates low evidence of autocorrelation between adjacent segments; d) and e) 

low root mean square and high signal-noise ratio indicate that pixel-values are similar to the segment mean. Other 

reference attributes include f) mean number of adjacent segments to each segment in the set; g) mean number of 

segment pixels for each minimum segment size; h) mean area of segments; and i) number of segments across whole 

image. 

a) b) c) 

g) h) i) 

d) e) f) 
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5.4.3    Classification and assessment 

Three classifiers, linear discriminant analysis, random forest and support vector 

machine were applied to each of the ground-validated polygon datasets representing a 

range of segmentation scales. Selection of these classifiers is discussed in Appendix 

section 5.7.1.5. 

Sensitivity analysis on the random forest ntree parameter (i.e., the number 

decision-trees used for averaging) indicated only minor gain in accuracy with ntree > 

500, and negligible additional benefit with ntree > 1000 (Figure 5.6). Computation time 

was acceptable for ntree = 1000, therefore this parameter value was applied for all 

subsequent use of random forest in this chapter. 

 

 

  

Figure 5.6. Sensitivity analysis on the ntree parameter, comparing out of bag error rates 

across a range of ntree values for different image segmentation scales. The vertical line 

indicates ntree=1000, which was used for subsequent testing using the random forest 

method. 

Classification of high-density seagrass was accurate in most cases, with producer 

accuracy levels of up to 90% and user accuracy up to 84% for this class (Appendix 5.7.4). 

However, the classification was confused for lower density seagrass classes with 

accuracy values spanning poor to moderate accuracy levels (Figure 5.7, Appendix 5.7.4). 
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Detection of seagrass generally decreased with increasing minimum segment polygon 

size. Seagrass/detritus and seagrass/shell mixtures were poorly classified. 

Classification accuracy across all classes was greatest at pixel-scale and accuracy 

generally decreased with increasing minimum segment size (Figure 5.8). Random Forest 

generally yielded higher classification accuracy than LDA and SVM. At small segment 

size SVM classified better than LDA in terms of producer accuracy and overall accuracy, 

although achieved higher levels of non-target exclusion than the other classifiers with 

respect to user accuracy (Appendix 5.7.4). The highest overall classification rate across 

all ground classes was pixel-based classification using the random forest classifier, 

achieving an overall accuracy of 71%. Seagrass detection rates were highest with the 

random forest classifier and decreasing segment size (Figure 5.8). 

While the classification accuracy peaked at 71%, classification based on the more 

straight-forward measure of seagrass presence/absence extracted from these same classes 

(i.e., with ground-class recoded to binomial ‘seagrass’ or ‘no seagrass’) yielded a 

detection rate as high as 98% for the pixel-scale classification using the random forest 

classifier. In other words, 98% of actual seagrass-containing segments were ascribed one 

of the target seagrass classes, even though there was misclassification in the exact 

seagrass density/mixture class. 

Sediment classified at high accuracy level when unmixed with other material (pure 

sediment; Figure 5.7). However, when mixed with seagrass, detritus and shell, there was 

poor class separability in terms of the low observed user and producer accuracy (Figure 

5.7). 

The key predictor variables differed between classifiers (Figure 5.9, Appendix 

5.7.5). For example, classification using LDA was influenced heavily by the texture 

variables, which were less influential in the RF model. The relative influence of 

predictors also varied with segmentation scale (Appendix 5.7.5). Although there were 

some highly influential predictors for specific iterations, there was no clear common set 

of influential predictors that suggest preferential inclusion in future models (Figure 5.10). 

It is worth noting, however, that red, green, the texture band Haralick’s correlation and 

several red-edge based vegetation indices were consistently important predictors across 

classifiers (Figure 5.10). 

The basic spectral information available is contained in the camera bands (green, 

red, red-edge, NIR). Vegetation indices add contrast to differences in spectral 

information. Texture information models the spatial distribution of spectral information. 

Classification using only the camera bands yielded weaker classification than models 

including vegetation indices and textural information (Appendix 5.7.6). The best 
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classification results were achieved factoring all predictors. Camera bands combined with 

texture layers also yielded among the better of classification outcomes (Appendix 5.7.7). 

For models containing all possible layers, the predictors of type ‘band’ and vegetation 

‘index’ were most important within the models, then ‘texture’, and segment ‘geometry’ 

was least important (Table 5.4). 

 

 

Table 5.4. Variable importance, as mean decrease in accuracy across iterated replicates, 

for each segmentation scale, aggregated by the type of predictor as one of the class-set 

‘band’ (green, red, red-edge, NIR), ‘index’ (e.g., NDVI), ‘texture’ (e.g., entropy) or 

segment ‘geometry’ (e.g., perimeter/area ratio).  

Attribute 
Single 
pixel 5  10 20 40 

Band 6.3 5.2 4.5 4.7 4.0 

Index 5.2 6.0 5.0 3.7 4.0 

Texture 3.3 2.7 2.4 1.3 1.9 

Geometry n/a 0.2 0.2 0.1 0.1 
 

 

The optimal subset of predictors, based on feature selection by recursive feature 

elimination, varied between classifiers (Figure 5.9 and Appendix 5.7.5). Overall there 

was little or no demonstrable change in classification model accuracy by sub-setting 

variables within the model using recursive feature elimination (Figure 5.11). Feature-

selection based only on eliminating collinear variables reduced the overall classification 

accuracy in the range of 2-4% in accuracy units (Figure 5.11). There was varied effect of 

collinear or RFE feature selection on classification of individual seagrass density classes 

across the range of segmentation-scales tested (Figure 5.12). For high density seagrass, 

user accuracy was generally highest when there was no feature elimination, and producer 

accuracy was highest when RFE reduction was applied. 

Comparing red-edge and NIR bands as alternatives for use in derived index 

calculations, indices that were calculated with red-edge consistently yielded higher rank 

(i.e., lower mean rank position) than when NIR was used (Figure 5.13). However, 

considering these as individual predictors, NIR was a marginally better predictor than 

red-edge for small segment sizes. 
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Figure 5.7. User and producer accuracy for target ground classes, in each of the five 

segmentation scales assessed, and comparing classifiers. User accuracy (right stack) of 

charts organised by increasing minimum segment size) and producer accuracy results (left 

stack) are organised with the respective linear discriminant analysis (LDA), random 

forest (RF), and support vector machine (SVM) results contrasted for each ground class 

result.  

Producer accuracy User accuracy 
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Figure 5.8. Accuracy statistics across all ground cover and density classes: a) overall 

accuracy (total rate of correct classification outcomes); b) kappa statistic (classification 

accuracy relative to a random chance outcome); and c) seagrass detection (the proportion 

of actual seagrass from any density class that was classified as seagrass by the model). 

a)  

b)  

c)  
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Figure 5.9. Relative predictor importance for spectral, texture and segment geometry predictors across the range of 

segmentation scales and the three classifiers tested: a) Linear Discriminant Analysis; b) Random Forest; and c) Support 

Vector Machine. Point symbols show the relative contribution value from the variable importance function within each 

classifier respectively, contrasting the values attained at each segmentation scale. This point plot is arranged to illustrate 

the general tendency in predictor impact for each classifier. Columns show the average across all segmentation scales for 

each classifier. 
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Figure 5.10. Predictor importance in decreasing order of relative influence 

(least influential on the right) for the five segment scales test under the random 

forest classifiers tested. Units are normalised relative importance on a scale 

where 0 is least important and 1 is most important. The five charts relate ((a) to 

e)) respectively to each of the five segmentation scales tested (single pixel, and 

minimum size 5, 10, 20 and 40 pixels). Ctd. next page.

b) Single pixel 

a) 5 pixels 

c) 10 pixels 
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(Figure 5.10 ctd.) 

 

 

 

 

 

  

d) 20 pixels 

e) 40 pixels 
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Figure 5.11. Mean overall accuracy of random forest classification models under three variable-selection regimes: no reduction (all predictors 

present); collinear reduction (elimination of similar predictors in descending order of importance); and recursive feature elimination (automatic 

selection eliminating variables of low variance contribution), for all segmentation scales pooled. Error bars are standard deviation about the mean 

of 100 model iterations. 

  

Minimum segment size 
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Figure 5.12. Mean accuracy of classification models under three variable-selection regimes in terms of producer accuracy (a-c) and user accuracy 

(d-f), and by seagrass density class, iterated across the separate segmentation scales. Note that classes for non-mixed high, med. and low seagrass 

coverage are presented here, i.e., mixed detritus and shell classes are not shown. Error bars are standard deviation about the mean of 100 model 

iterations.  
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Figure 5.13. Comparison of the performance of near infra-red and red-edge directly as predictors, and indirectly as alternative 

components of the respective vegetation index calculation (NIR-light gey, red-edge dark grey). Of these, NIR is the 

conventional factor used in published vegetation indices, and red-edge is a possible predictor that may have value for contrast to 

red reflectance in a data-mining context. In this chart, lower mean rank values indicate greater influence (i.e., small is good).
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5.4.4    Seagrass mapping and replication 

The mean accuracy level was lower in April 2017 (76%) as compared to accuracy 

attained in February and March 2018 (84 and 83% respectively) (Figure 5.14). Overall 

there was a significant difference between mean accuracy levels when comparing 

pairwise between survey times (F[2,2992]=92113, p <0.001; Tukey’s pairwise comparison 

p< 0.001 in all cases). Per-class seagrass classification accuracy was high in the two 2018 

survey as compared to the 2017 at a similar time of year (Appendix 5.7.8). 

 

 

 

 

Figure 5.14. Comparison of accuracy outcome across three sample periods. Distribution 

plots depict median accuracy levels and the frequency distribution around the median, for 

each of the three aerial surveys. Data relate to classification accuracy values from n=1000 

cross-validated classification iterations per survey. 
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The predicted seagrass maps located most seagrass as being within actual ground-

survey plots of distribution (Figure 5.15). This was the case for all three surveys. There 

was notably more detritus present during the April 2017 survey as compared to both 2018 

surveys (Table 5.5) for which detritus was present only in trace amounts (Figures 5.15 

and 5.16), Seagrass was erroneously predicted in areas outside of the ground-surveyed 

seagrass meadow extent equivalent to an 8-17% overestimation of total seagrass (Table 

5.6). 

Some areas of erroneous mapping were observed as being associated with 

expansive mats of microphytobenthos or suspended loose (tidal) green plant material in 

pools and at the low tide extent (e.g., accretion of seagrass leaf, mangrove leaf and pod, 

and green leaf of terrestrial origin) (Figure 5.17). However, these areas were outside of 

the extent of the ground-level photography so can’t be quantified. Some established 

cockle (Austrovenus stutchburyi) shell accumulations, with green algal staining, were also 

falsely classified as seagrass. 

There was a notable contraction of the seagrass meadow boundaries between the 

2017 ground census and the 2018 census (see Figure 5.16 for example, and Chapter 3 

Section 3.6.3 and Figure 3.19 for census). This reduction in seagrass was detected by the 

classification and mapping method tested here (Figure 5.15). 
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Table 5.5. Estimated detritus and shell content for each of the three surveys, to illustrate 

the difference in detritus contamination between surveys. Proportion relates to the focus 

area (bounding rectangle) of 11360 m2. 

 Detritus Shell 
 Predicted area 

containing 
detritus (m2). 

Proportion 
of the 

focus area 
(%). 

Predicted 
area 

containing 
shell (m2). 

Proportion 
of the 

focus area 
(%). 

April 2017. 1645 14 1219 11 
Feb 2018. 26 < 1  970 9 
March 2018. 134 1 1772 16 

 

 

 

 

Table 5.6. Proportion of predicted seagrass within and outside of the actual ground-

surveyed seagrass meadow zone as depicted in Figures 5.15 and 5.16. Error refers to the 

extent of erroneously classified seagrass situated in the area verified by ground survey as 

not containing seagrass, as a proportion of total estimated seagrass. 

 Predicted 
seagrass outside 

of actual 
seagrass zone 

(m2) 

Predicted 
seagrass within 
actual seagrass 

zone (m2) 

Error 
(overestimation) 

(%) 

April 2017. 287 3365 8 
Feb 2018. 652 3259 17 

March 2018. 609 3239 16 
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Figure 5.15. Ground cover and seagrass density estimate as generated from the random 

forest classification model for each of the three surveys: a) 9th April 2017; b) 2nd Feb 

2018; and c) 28th Mar 2018. The light grey box provides a common focus area across the 

three surveys. The small black box in (a) shows the position of the enlargement given in 

Figure 5.16.  

 High density seagrass 

 Med. density seagrass 
  Low. density seagrass 

 Seagrass + detritus 

 
Detritus 
 

 Shell 

a) 

b) 

c) 

20 m 
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Figure 5.16. Enlargement of an area of seagrass under pressure from sediment 

inundation. Precision ground-survey (GNSS-tracks) are shown for the April 2017 

seagrass census (long-dash) and April 2018 census (short dash). The colour RPA 

photography (upper pane) shows for reference, the seagrass scene taken during the April 

2017 RPA survey. The lower three frames show predicted groundcover for the three 

surveys (April 2017, February 2018 and March 2018). 

 High density seagrass 

 Med. density seagrass 

 Low. density seagrass 
 

 Seagrass + detritus 
  Detritus 
  Shell 
 

April 2017 Feb. 2018 March 2018 
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Figure 5.17. Examples of non-seagrass surface content that can be mis-classified as 

seagrass. The upper frame (a) shows the normalised difference vegetation index NDVI 

layer (i.e., denoting photosynthetic activity) marked with surveyed seagrass extent (long 

dashed line) and approximate microphytobenthos (MPB) extent (solid green line). Lower 

frames include: ground level photograph of MPB (b); loose seagrass and other green plant 

material accumulate in pools (c); and green stained shells that can also overlap in 

appearance with sparse seagrass (d). Approximate locations of (b-d) are shown by white 

letters in (a). 

  

          ~20 cm             ~20 cm           ~1 m Scale: 
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5.5    Discussion 

In this chapter, pixel-based image analysis was compared to object-based analysis 

at a range of segmentation scales to determine the optimal scale, classifier, variable 

selection approach, and to assess the value of vegetation indices and texture layers. A 

classification process was developed that ingests RPA imagery, ground observations and 

spatial referencing data to yield spatially explicit classification results. The method is 

viable at multiple survey epochs (Section 5.4.4). Classification improves with decreasing 

segmentation scale and highest classification accuracy is attained at pixel scale (Section 

5.4.2). The classification algorithms Random Forest and Support Vector Machine provide 

superior classification outcome for seagrass coverage estimation compared to Linear 

Discriminant Analysis: of these Random Forest is marginally better for mapping (Section 

5.4.3). 

Under the Random Forest workflow, there is no appreciable benefit to performing 

collinearity reduction and feature elimination. Vegetation index and texture layers 

improve classification accuracy levels with greater influence than the spectral bands 

alone. For the Random Forest classifier, models classified seagrass with highest overall 

accuracy when fitted with all predictors, or spectral bands + texture, depending on 

segmentation scale (Section 5.4.3). 

The goal of the above assessment was to recommend a single classification 

workflow: in this case data indicates the greatest classification accuracy is attained with 

pixel-based classification using the Random Forest algorithm upon all predictors (no 

feature selection) and setting the number of decision trees (ntree parameter) to >=1000. 

The closest study to the current research was reported by Duffy et al. (2018). In 

that study, image acquisition occurred using a quadcopter RPA flown over meadows of 

the seagrass Zostera noltii using a consumer camera. The imagery, along with ground 

reference observations, were then used to support three classification regimes: two 

unsupervised classification pathways (the first with red, green and blue, and the second 

adding texture from the green band) and an OBIA pathway with colour bands and texture 

(Duffy et al., 2018). Their research concluded that unsupervised classification performed 

better than their OBIA approach. 

Reducing segment size down to the individual pixel scale improved the 

classification model. There was no literature available at time of writing with methods 

consistent with those applied here for an estuarine seagrass subject. Similar research into 

the effect of segmentation scale, for other ecosystem types, varies in the observed 

response. Dronova et al., 2012 determined for 30 m GSD Landsat satellite imagery over a 

wetland landscape, that coarser scales of segmentation resulted in greater classification 
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accuracy that fine scales. Räsänen and Virtanen (2019) determined for a fen ecosystem, 

that classification accuracy improved with reducing segmentation scale for RPA, aircraft 

and satellite derived aerial photography at various image resolutions. Johnson and Xie 

(2011) determined for an urban study area, that intermediate segment scale delivered 

greatest inter-segment difference with lowest intra-segment variance, as combined in their 

global score. Yang et al. (2019) determined for a cropland region that intermediate 

segmentation scales of analysis yielded the highest information gain ratio. Neither of the 

latter two reported effect of segmentation scale with respect to classification accuracy. Li 

et al. (2016) determined for an agricultural setting that classification accuracy generally 

reduced with decreasing segmentation size under SVM, adaboost and naïve Bayes 

classifiers, but increased under the random forest classifier. Li et al. (2016) also noted that 

classifier response to change in segmentation scale differed between their two study 

areas. This result highlights that projects may not have a single optimum design for 

remote sensing across a whole site, and hence assessment of optimal scale could vary on 

and estuary section by section or temporally. 

The approach of Lathrop et al. 2006 - dividing a seagrass landscape into sections at 

multiple scales based on character then classifying sections separately using OBIA could 

be suitable for larger scale application. Image analysis in this chapter (and Chapter 4) 

sample one of a number of discrete hydro morphological seagrass situations on 

Wharekawa Harbour (e.g. upper tidal seagrass patches on sand, seagrass on permanently 

saturated mud-fields, subtidal seagrass in estuarine channels). 

Seagrass can present as objects that are as small as just a few centimetres in size, 

and in scenes mixed with similar sized non-target objects including shells, twigs, 

pinecones, leaves, and macroalgal fragments (discussed in Chapter 2). Thus, the lower 

limit of scale assessed under this investigation inevitably targeted this small scale of 

detail. Much of the study area comprised heterogeneous mixed scenes with shell and 

detritus scattered variably, although detritus content reduced dramatically by the 

following year. Larger segmentation scales absorbed small shell and detritus objects into 

the polygon geometry. Segmentation polygons may increasingly be drawn erroneously as 

the segmentation scale increases, due to sub-pixel mixing and blend of spectra across 

adjacent pixels. In smaller segments the contaminating objects sit in isolated segments. 

This difference may in part explain the observed improvement in classification accuracy, 

intra-segment variance, and segment dissimilarity with decreasing segment scale. 

 

Of the three classifiers, random forest yielded the greatest classification accuracy 

for seagrass density classes and detection, and there was little gain from feature-set 



 

200 
 

reduction using random forest. Given the additional computer run-time (hours) for the 

recursive iterations under random forest, there is little gain to be made by including this 

step in the processing pipeline. The results therefore indicate that a strategy for further 

work should include all spectral, derived index and texture layers in a random forest 

classifier and then allow the classifier to fine-tune the optimal classification using the 

internal decision tree process and associated resampling aggregations.  

The feature selection scenarios explored in this analysis indicate that the derived 

indices and texture layers have predictive value that is worth the additional cost in 

processing time. The segment geometry attributes added little to classification accuracy 

under this scale of survey. The red, green, Haralick’s correlation and several red-edge 

based vegetation indices were generally the most influential predictors across the range of 

classifiers and scale tested. However, the specific importance varied with scale and 

classifier. Recursive feature elimination did not yield a significant gain in classification 

accuracy. Reduction of the feature-set based on reducing collinearity did not result in 

accuracy gains. Consequently, recursive feature elimination and collinearity reduction are 

not of benefit to seagrass classification with this camera and survey scale.  

Other studies, however, establish classification improvement from recursive feature 

selection. For example, for an image classification using Worldview 2 satellite imagery 

over bamboo habitat, Ghosh and Joshi 2013 applied RFE to find a set of predictors to 

optimise classification. Their classification was iterated comparing the best 5 and 10 

predictors derived from RFE, as well as all 32 predictors: the subset of best 10 yielded the 

highest classification accuracy. This result may be particular to the monotonic bamboo 

habitat. 

Seagrass density class attribution in the 2017 survey was moderate to poor, except 

at high seagrass density due to the confounding influence of detritus and shell. Class 

accuracy for seagrass was better in the two 2018 surveys that were not affected by storm 

debris. Seagrass survey and mapping may therefore be confounded if undertaken 

following storm damage or where partial sediment burial or high detritus/shell deposition 

is present. Annual monitoring of seagrass extent retaining sensitivity at low seagrass 

density may require survey times that avoid post-storm interference, excepting cases 

where the storm or related damage is the subject of the survey. 

Seagrass features were extracted using a class typology based on the dominant 

presentations of seagrass found in the estuary, and quantifying apparent density of 

seagrass coverage within sediment, shell and/or detritus background components. 

Factoring the mixed classes was important because these confounded classes became 

evident and the source of classification problems could therefore be better understood 
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(e.g., seagrass/shell and detritus/shell were problematic classes as visible in Figure 5.7). 

The results here indicate that setting the timing of the survey to the time of year of high 

seagrass density but avoiding periods immediately following high turbulence and stream-

inflow, results in better classification and mapping at a time of weather disturbance. 

The high rate of seagrass detection does, nonetheless, indicate that the method is 

suitable for binary seagrass mapping. However, an observation made on site at the time of 

the survey, was that algae and/or microphytobenthos (MPB) formed dense mats near to 

the flying site. These were not incorporated within the study site directly but may well 

present a potential confounding effect if they overlap both spectrally and spatially with 

seagrass area of interest. It should also be recognized that the results obtained here are 

likely to exhibit some further dependency to flying height and associated difference in 

pixel ground sampling distance. Further verification of seagrass detection and class 

separation red at higher flying heights may allow the survey area per flight battery to be 

expanded.  

The class attribute was based on visual interpretation of ground-level photography 

including a 3-tier seagrass coverage indicator. Consequently, this method captures the 

judgement of the observer in ascribing the training dataset classes and so there is potential 

for user bias. This issue is examined in Chapter 6. 

Based upon the outcomes of this chapter, the recommended method arising from 

this chapter for seagrass mapping is single pixel segmentation scale for classification, 

using a random forest classifier, with no feature selection and class breakdown of 

seagrass presentation within the ground reference dataset. This method is suitable for 

detection and mapping of seagrass at 30 m flying altitude using a 4-band multispectral 

camera, utilising both spectral and textural information. 

 

5.6    Conclusion 

In conclusion, this chapter reports on an assessment of candidate classification 

methods based on a review of image analysis workflow components relevant to seagrass 

feature extraction (Appendix 5.7.1). The approach includes examination of segmentation 

methods (with scale selection determined via and unsupervised inter- and intra- variance 

method) followed by a range of classifiers that include linear discriminant analysis, 

random forest and support vector machine. Results demonstrated that all three classifiers 

were capable of yielding moderate-high classification accuracy with replicability. 

Random Forest and Support Vector Machine stood out as the most effective in detecting 

and classifying seagrass. A range of segmentation scales was assessed, from the single-
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pixel scale upwards, and the single-pixel scale was found to generate optimal 

performance. 

The most effective classification regime tested here was the random forest method 

applied to pixel classification using all predictors available. The suitability of the 

approaches used do, however, require further testing across all possible seagrass 

environments. This would require a range of contrasting scenes to be assessed together. 

The workflow developed is semi-automated providing opportunities for sequential 

quality assurance and performance assessments. However, by using FME and R 

programming with python process control, the script components could be re-formatted to 

provide a fully automated machine learning framework. The process receives input from 

RPA imagery, ground observations and spatial referencing to yield a classifier that can be 

applied to a subject image. The classification method applied here resulted in maps that 

accurately described the presence/absence of seagrass, and spatial distribution of the 

seagrass meadow across three surveys spanning a year of seagrass change. Immediately 

following a storm, the classification was confounded in part by the presence of high 

levels of detritus and shell. Classification was more accurate one year later in similar 

seasonal conditions, but without the recent storm disturbance. Classifying the non-

seagrass scene content yielded information about the prevalence of disturbance-related 

detritus on the scene. 

There was moderately good differentiation of seagrass condition in terms of the 

visually interpreted coarse density class-set used for classifying the training and test 

ground reference data. However, such perception-based classification is prone to observer 

subjectivity. Therefore, Chapter 6 examines classification using accurately quantified 

seagrass density measures for model training, and thus explores the maximum 

classification accuracy levels likely possible from this method and site. 
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5.7    Chapter appendices 

5.7.1    Appendix 5.7.1. Background literature review relevant to object-based image 

analysis for seagrass feature extraction. 

5.7.1.1   Object-based image analysis components 

Numerous approaches to image classification have been developed within the 

remote sensing field. Lu and Weng (2007) identified groups as including per-pixel (class 

membership per-pixel based on endmember signature), sub-pixel (proportional 

membership for mixed pixel content), object-oriented (classification of pixel-cluster 

objects), and per-field (classification within vector areas). The relative efficacy of pixel-

based image analysis (PBIA) and object-based image analysis (OBIA) have been 

examined (Blaschke et al., 2014; Myint et al., 2011). OBIA advances upon the pixel-scale 

approach by considering group-level characteristics including summary statistics for band 

digital numbers (e.g., mean, variability, range etc), the geometric properties of each 

object (e.g., area, length, perimeter, rectangularity) and the characteristics of adjacent or 

nearby pixels (e.g., texture, grey-level co-occurrence, contextual information).  

A potential success factor for OBIA is that additional data about the spectral or 

physical structure of a landscape (as additional variables in a predictive model), is 

available to increase clustering contrast and differentiating power. In general, OBIA has 

enhanced classification performance compared to pixel-based classification due to 

increased information aggregated within the object components, and greater potential 

contrast between endmember groups (Benfield et al., 2007; Frohn et al., 2011; Whiteside 

2011; Ursani et al., 2012; Cai and Liu 2013; Blaschke et al., 2014; Wahadin et al., 2015; 

Khatami et al., 2016; Ventura et al., 2016; Ma et al., 2017). For example, Myint et al. 

(2011) concluded that the OBIA method tested in their research dramatically 

outperformed the best of pixel-based methods tested. In a review of wetland remote 

sensing studies, Dronova (2015) observed increased classification performance and 

identified the following benefits of OBIA: i) additional object characteristics and metric 

attributes that can be factored into the classification model; ii) smoothing of local spectral 

variation; and iii) the ability to quantify landscape structural hierarchies at multiple 

scales. Similarly, Ventura et al. (2016) successfully mapped seagrass using a range of 

classifiers applied to consumer drone imagery (RGB) to an accuracy level of 93% with 

highest feature extraction accuracy found using object-based methods based on 

eCognition software. Object-based image analysis also allows for segmentation and 

classification in an ecologically relevant context (e.g., vegetation patches and structural 

features), which are not necessarily captured by a pixel approach (Dronova, 2015). 
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For the purpose of this chapter, a process-flow for OBIA is generalised as a 

sequence starting with input images and training data, terminating with a feature 

extraction product, and containing one subset of the many available information- 

processing and extraction components (Figure 5.18).  
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Figure 5.18. Generalised OBIA process as applied to the current study. 
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5.7.1.2   Input and derived bands 

Input data to an OBIA-based classification model can include the raw, value-

normalised or reflectance-transformed bands. The bands can also have filtering or 

generalising transformations applied (Gao et al., 2017). Derived contrast indices within 

(e.g., histogram equalisation) or between bands (e.g., vegetation indices) can expose new 

characterising information, reduce variance or increase sensitivity of a classification 

(Table 5.7). A range of indices have demonstrated improvement to classification models 

since quantitative satellite imagery became available in past decades (Goward et al., 

1991; Roderick et al., 1996; Hao et al., 2008; Adam et al., 2010; Xue and Su 2017).  

The normalised difference vegetation index (NDVI) is a commonly used index for 

multispectral sensors (Yengoh et al., 2015). The NDVI approximates the degree of 

removal of red light from incident solar radiant power as a result of photosynthesis. 

Assessments demonstrate that NDVI correlates well with a range of plant condition 

metrics such as biomass, leaf area index and photosynthetic condition depending on the 

vegetation scene and scale (Carlson and Ripley 1997; Bakr et al., 2010; Xu et al., 2012; 

Froidefond et al., 2014; Kuzucu and Balcik 2017; Potgieter et al., 2017; Xue and Su 

2017). 

Variants of the NDVI have been developed with additional band configurations 

(Bargain et al., 2012; Xu and Su 2017). For example, Li et al. (2018) demonstrated the 

value of red-edge-red and red-edge-green contrast-indices that are similar to the NDVI 

calculation. In their study, the red-edge-green was the most distinctive index for seagrass 

(Li et al., 2018). Liu et al. (2013) found that NDVI is only marginally affected by changes 

in sun angle, an observation that has important logistic benefits for drone-flown 

multispectral imagery (see Chapter 2). Strong et al. (2017) tested the performance of five 

alternative vegetation indices against the normalised difference vegetation index on 

grassland imagery taken from a remotely piloted aircraft. They determined that an 

enhanced normalised difference vegetation index, factoring blue and green bands instead 

of red and infra-red offered the best ability to differentiate to “grass” scene types. 

There are numerous other vegetation indices that have been used to contrast 

vegetation from non-vegetation and characterise species membership or condition 

normalised difference vegetation index. These include soil-adjusted vegetation index 

(SAVI), difference vegetation index (DVI), ratio vegetation index (RVI) and the 

enhanced vegetation index (EVI) (Jordan 1969; Richardson and Wiegand 1977; Huete 

1988; Jiang et al., 2008). Several of these indices have been tested in the context of 

seagrass mapping (Table 5.7). It’s important to note that vegetation indices can differ in 
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classification performance (Huete et al., 2002; Hufkens et al., 2012) and in the saturation 

level at high seagrass density (Bargain et al., 2013). 

Enhancements to classification models can also be made by incorporating non-

spectral information (Warner 2011; Kumar et al., 2012; Wang et al., 2016). For example, 

authors Benfield et al. (2007) used distance to land, mangroves and rivers as additional 

predictive layers in distinguishing coral reef community types using Landsat imagery. 

Image texture can add important enhancement of image classification (Zhang 2019). For 

example, in a study using high resolution red-green-blue-infra-red cartographic imagery 

at 30cm pixel size, Szantoi et al. (2013) demonstrated that classification accuracy 

increased from 62% to 84% by using both NDVI and texture in an OBIA classification 

model. Finally, in a meta-analysis of supervised pixel classification research across a 

range of sensor types, Khatami et al. (2016) determined that inclusion of texture 

information yielded a notable increase in classification accuracy compared to minor 

improvement by manipulating spectral information e.g., by index creation or feature 

enhancement. Inclusion of vegetation indices may not always result in improved analysis. 

For example, Kuzucu and Balcik (2017) observed reduced classification performance by 

including vegetation indices in 6 m resolution multispectral satellite imagery. 
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Table 5.7. Derived layers and indices used in studies of relevance to the multispectral high-resolution seagrass segmentation context (working examples, 

not originating paper). 

Index name Formula Seagrass investigation 

Normalised difference vegetation index 

 (NDVI). 

(NIR-R)/(NIR+R) Bargain et al., 2012; Dronova et al., 2011. Guichard 

et al., 2000; Yang and Yang 2009; Lyons et al., 2012; 

Martin et al., 2014; Szantoi et al., 2013; Kuzucu and 

Balcik 2017. 

NDVI band variations. 

Normalized difference water index (NDWI). 

 Li 2018. 

Soil adjusted vegetation index (SAVI). (1+L)(NIR-R) / (NIR+R+L) Bargain et al., 2012; Kuzucu and Balcik 2017 

Enhanced vegetation index (EVI). 2.5*((NIR−R) / (NIR + 6R−7.5B + 1) Bargain et al., 2012; Lyons et al., 2012 

Green NDVI. (NIR-G) / (NIR+G) Yang and Yang 2009; Lu and He 2017 

Blue NDVI. (NIR-B) / (NIR+B) Yang and Yang 2009; Lu and He 2017 

Red edge NDVI. (Rrs(700)− Rrs(670)) / (Rrs(700)+ 

Rrs(670)) 

 

Hill et al., 2014. 

Ratio vegetation index (RVI). NIR / RED Kuzuku and Balcik 2017. 

Visible atmospherically resistant index 

(VARI) 

(G - R ) / (G + R - B) Chayhard et al., 2018b. 
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5.7.1.3   Segmentation 

Segmentation has been defined as a process of partitioning an image into non-

intersecting regions such that each region is homogeneous, and the union of no two 

adjacent regions is homogeneous (Pal and Pal 1993; Espindola et al., 2007). There are 

numerous algorithms based on clustering and region-growing to partition an image into 

object-sets (Dronova 2015; Garcia-Lamont et al., 2018). The optimal choice of algorithm 

may vary depending on the image-type (single versus multiband), required accuracy 

levels, operator capability (point-and-click software versus iterative code-assembly within 

an application interface), budget (commercial versus open source) and requirement for 

adaptive classification (e.g., fuzzy membership, Bayes classifier). Furthermore, as the 

performance of a remote sensing classification model is likely to vary with data and the 

physical context. Thus, it follows that even for a specific site there may not necessarily be 

a single optimal solution (e.g., de Klerk et al., 2016). 

Garcia-Lamont et al. (2018) developed a typology of segmentation approaches 

(Table 5.8). Segmentation can generally be differentiated from clustering in that 

segmentation methods partition the spatial domain, using local spectral coordinates to 

define rules for region boundary expansion that are weighted or constrained by proximity 

(Haralick and Shapiro 1985). Clustering partitions the spectral space of an image. 

However, in common use, segmentation can be taken to refer to any means of partitioning 

an image (Tilton et al., 2015). 

 

  



 

210 
 

Table 5.8. Segmentation families according to Garcia-Lamont et al. (2018). 

Category (sub-category) Approach Characteristic property 

Edge detection. 

 

Brightness discontinuity or change. Pixel intensity relative to neighbourhood. 

Threshold: 

      -Global 

      -Adaptive 

      -Otsu. 

 

Partitioning of imagine by about a single or 

several image values, or under a more complex 

conditional rule. 

Pixel intensity relative to a rule/rule set. 

Histogram-threshold. 

 

‘Meta-heuristic’ computing for multi-level 

thresholding, based on sampling of variability in 

pixel intensity values within the image, band or 

a subset (various methods). 

Pixel intensity relative to internal 

distribution of pixel intensities in the set. 

Region based. 

 

Region-growing or splitting from a seed or 

ground reference based on similarity criteria and 

spatial relationship of pixels. 

Pixel intensity relative to neighbourhood 

values. 

Feature clustering. Prior grouping of pixels into observed classes 

based on clustering tendencies in terms of a 

nominal scale. 

Pixel intensity relative to internal 

distribution of pixel intensities in the set. 
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(Table 5.8 ctd.)   

Category (sub-category) Approach Characteristic property 

Neural network. 

 

Logical rapid partitioning of an image based on 

a network / cascade of membership rules based 

on prior knowledge of the system. 

Pixel intensity relative to a tiered 

membership ruleset. 

Multi-feature fusion.  Comparisons among multiple reference feature-

sets. 

Patterns within an image or combining 

predictive features. 

Fuzzy approaches. 

         

Weighted or probability-based membership 

criteria. 

Pixel intensity relative to probabilistic 

rules. 

Texture approaches. 

         

Segmentation based on regional labelled 

according to texture reference, or measures of 

greyscale variability. 

Patterns in the spatial distribution of pixel 

values. 

Contrast enhancement. 

         

Intensity transform function based on 

transforming the observed grey-levels to an 

idealised, prior-known or adaptively calculated 

histogram profile of intensity values. 

Pixel intensity relative to internal 

distribution of pixel intensities in an 

idealised frequency dist./ histogram 

structure. 

Model based. 

         

Catch-all for exploratory approaches. Various. 
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As discussed in the previous chapters, selection of an optimal procedure for 

seagrass feature extraction requires the method to differentiate the seagrass feature from 

its background in its various surface growth forms (fine vs. thick leaf, dense vs. sparse 

growth, emergent vs covered or buried). The procedure should perform consistently 

across a wide variation in substrate and detrital scene content within and between 

estuaries.  

Varying scene composition may manifest as differences in object geometry and 

spectral representation depending on the pixel size, the footprint of material on the 

ground and associated mixing of spectral information across pixels (Burnett and Blaschke 

2003). Hence, the optimal segmentation function is likely to be scale dependant, both in 

terms of the target material (i.e., seagrass) and non-target items (e.g., shells, mud, detritus 

etc). 

For example, consider scale across four orders of magnitude of seagrass feature 

size as shown in Figure 5.19, which in increasing areal extent depicts i) seagrass leaves 

(e.g., 2 x 60 mm in size); ii) uniform seagrass clumps (e.g., 200 x 600 mm); iii).  uniform 

seagrass patches (e.g., 2 x 6 m); and iv) meadow and meadow metapopulation scales (20 

x 60 m). Image ground sampling distance relative to the size of target object and non-

target materials may result in different optimal segmentation algorithms. 

The published literature that reviews the application of feature extraction to 

terrestrial vegetated systems is large (e.g., Laliberte and Rango 2011; Dronova et al., 

2012; Li et al., 2016; Ma et al., 2107; Samiappan et al., 2017). Segmentation results from 

these terrestrial studies may have relevance at estuarine margins where seagrass grows 

adjacent to or within regions of higher estuarine vegetation type (Figure 5.20) such as 

mangroves, saltwater marsh and sea-meadow communities (e.g., Graeme 2008).  

However, these precedents within the literature are not necessarily transferable to the 

context of an estuarine sand/mud flat without prior calibration (Diesing et al., 2016).  
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Figure 5.19. Seagrass meadow depicting various scales of interest that might be the subject of an image classification. 
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Figure 5.20. Point cloud model from a fixed-wing RPA photogrammetry flight near 

Waiponga Reserve, Wharekawa Harbour on 25 May 2017 (3-D scene perspective in 

Agisoft Photoscan 1.5) showing vertical structure running from high variability at the 

coastal margin (mangrove, marsh and saltmarsh ribbonwood / manuka, then dune grass 

community types running from lower left to upper middle), with dense seagrass (lower 

right) blending up to and into the mangrove margins. 

 

 

Segmentation algorithms are numerous (e.g., Pal and Pal 1993; Trias-Sanz et al., 

2008; Liu et al., 2015; Kaur and Chawla 2015). Of these, mean-shift segmentation is a 

commonly deployed algorithm that has been found to yield accurate segmentation in 

combination with a suitable classifier (Comaniciu and Meer 2002; Liu et al., 2013; Kaur 

and Chawla 2015; Einzmann et al., 2017; Pipaud and Lehmkuhl 2017). 

This algorithm incorporates an unsupervised classification procedure that groups 

nearby pixels into classes based on their proximity to cluster-density centres. The 

procedure uses a circular processing kernel (analysis window) with a predetermined 

spatial radius about each pixel. The mean spectral value is calculated for the kernel pixels 

and is related to the nearest cluster centre. The pixel is attributed the spatial coordinates 

of the cluster centroid. The process iterates until a convergence criterion is met. Pixels 

that converge to the same point acquire a common value for cluster mean spectral value. 

The mean-shift algorithm incorporates a ‘minimum segment size’ parameter that defines 

the smallest allowable segment size, below which segments are merged to the most 

spectrally similar adjacent segment. The result is a raster with pixels attributed to the new 
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cluster mean spectral value, which can be converted to spatial vector features using a 

polygon-vector transformation. 

Given its widespread use and thorough evaluation within the literature, mean-shift 

segmentation is a strong candidate for a segmentation of seagrass imagery in the current 

study. Mean shift segmentation is also more suitable than k-means segmentation as the k-

means method makes a priori subjective assumptions about the number of classes 

intrinsic to the image, which may vary with different scene content. By contrast, mean 

shift segmentation identifies natural cluster tendencies in the colour space that should 

adjust with changing scene content. The approach is well-matched against the 

photogrammetrically acquired aerial image sets used here which exhibit minor variation 

in solar incidence upon the ground (e.g., varying cloud movement, or camera orientation 

changes during RPA flight attitude control). In this case, determination of accurate local 

cluster centres and segment margins under the mean-shift method would be tolerant to 

minor variation in spectral capture across a photogrammetrically acquired image scene 

above a wet estuary. The k-means method requires global consistency in the spectral 

response. Segmentation based on k-means may experience contamination of spectral 

grouping if there is variation in colour representation across the acquisition scene. 

However, the c-means algorithm, a fuzzy variant of k-means clustering that attributes 

probability of class membership, was found to classify images with lower mean squared 

error and higher signal to noise resolution than mean-shift segmentation (Kaur and 

Chawla 2015). 

Relatively few published segmentation algorithms have been developed for open 

software environments. Some are implemented or wrapped within commercial software 

packages as part of integrated solutions. The following section attempts to summarise the 

range of software solutions available. It is noteworthy that full disclosure of an entire 

segmentation workflow, with documented parameter settings, could not be found in any 

published research. Indeed, many research papers only record coarse description of the 

segmentation methods used that cannot be immediately reproduced and tested without 

further information (e.g., Baumstark et al., 2013; Samiappan et al., 2017; Ahmed et al., 

2018; Li 2018). 

Trimble eCognition: The software package eCognition, is widely used in the 

literature and provides an implementation of a multi-resolution segmentation algorithm 

that has accurately delimited image-objects in several contexts (Dronova et al., 2011; 

Frohn et al., 2011; Laliberte and Rango 2011; Laliberte et al., 2012; Li et al., 2016; 

Ventura et al., 2016; Ma et al., 2018). Multi-resolution segmentation performs 

segmentation at several segment-scales, then combines these iterations forming a line 
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density topography from the combined segment-line-work, then derives final polygon 

boundaries from ‘centre of strongest tendency’ based on scale parameters. The specific 

segmentation algorithm used at each stage within each multi-resolution stack, and in 

combination, is not documented transparently within available literature. 

IMAGINE – Objective: The Objective module of ERDAS IMAGINE software by 

Hexagon Geospatial is marketed as a professional-grade utility with object-based feature 

extraction functionality in-built, and has appeared in published research (e.g., Gibbes et 

al., 2010). The software was not available for direct evaluation at this time, but inspection 

of the published documentation indicates sub-processes run in both raster and vector 

space (Erdas Imagine manual, Hexagon Geospatial). 

ArcGIS – Spatial Analyst extension: ArcGIS suite of software by Environmental 

Systems Research Institute (ESRI) provide within their Spatial Analyst package an 

implementation of the iterative self-organising data analysis technique, or ‘ISODATA’ 

(e.g., Dogan et al., 2009; Bakr et al., 2010) which, is similar to the k-means clustering 

approach, classifies all pixels within the image pixel-set into a specified number of 

differentiable groups (e.g., Dhanachandra et al., 2015). Spatial Analyst also provides a 

mean-shift segmentation for 3-band operations, although no publications could be found 

demonstrating its use for a vegetation mapping analysis. 

Orfeo toolbox: Orfeo toolbox (OTB) is an open source application-set initially 

established to support satellite image processing but with applications relevant to general 

image processing (Tinel et al., 2012; Grizonnet et al., 2017). Several segmentation 

applications are included within the OTB package including mean-shift segmentation, 

connected components, watershed, k-means and other cluster or thresholding tools (e.g., 

Petitjean 2012; Andrés et al., 2017). The software contains a simple command line 

interface for scripting from the operating system console, and a Python programming 

language wrapper for procedural execution. 

GRASS: The Geographic Resources Analysis Support System (GRASS or more 

commonly, Grass) is another open source geospatial analysis application set that 

implements both region-growing, hierarchical and mean-shift segmentation for multi-

band imagery (https://grass.osgeo.org). 

The R-Project: The open source software package The R-Project (https://www.r-

project.org/) is long established user-supported statistical package (Ihaka 2009), which in 

addition to its core procedural libraries, also runs third-party ensemble modules 

(programming wrappers that call other background applications). Recent modules provide 

spatial analysis capabilities including ingestion of rasters into the software’s native data 

format from which spatial and non-spatial statistics can be computed (Kaya et al., 2018). 
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There are numerous segmentation options available in R, including cluster based and 

threshold-based classification once segmentation has been performed externally. 

Packages are available implementing mean-shift segmentation and region growing, for 

example packages ‘MeanShift’ (Ciollaro and Wang 2016),’ bayesImageS (Moores 

2018)’, ‘dbscan’ (Hahsler 2015), ‘EBImage’ (Oles et al., 2018), and ’itcSegment’ 

(Dalponte 2018). An advantage of using The R-Project is that the entire image 

classification workflow can be automated within a single runtime environment through 

the use of the extensive library of functions and programming-wrappers suitable for 

classification, assessment, post-processing and result output. 

QGIS: Quantum GIS (QGIS) is an open source geographic information system 

(GIS) that allows third-party programming modules to be run as tools within the GIS user 

interface (Dessau and Sutton 2011). At present QGIS does not have its own native image 

segmentation or classification capability. However, it is worth noting that as it has 

software interfaces for GRASS, Orfeo Toolbox, the R Project and a Python programming 

language interface. Thus, there are options to enable process automation using a 

combination of these tools. 

The proprietary packages listed above (eCognition, ESRI Spatial Analyst and 

ERDAS Objective) are substantially more expensive than the open-source packages (see 

Table 5.9). The packages Spatial Analyst and Objective are modules within extensive 

enterprise-level GIS suite of software which need to be purchased together in order to 

access to the OBIA capability. Hence, the costs reflect the inclusive wide software 

capability. Cost-effectiveness arises from enterprise-scale adoption of the full software 

suite. The software eCognition only performs image classification. The open-source 

packages are free but require greater time investment to automate and quality-assure the 

many steps in an image analysis process-chain. 
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Table 5.9. Comparison of main software considered for segmentation and classification using object-based image analysis framework. Prices are indicative 

only, for a single licence with no prior subscription, representing the lowest cost pathway to achieving OBIA. Prices provided by the vendor are unofficial 

quotes, noting that i) Imagine and ArcGIS segmentation/OBIA options are embedded in bundles with significant other corporate functionality and support; 

and ii) different application contexts can yield different pricing schemes. 

Software Vendor/Origin Segmentation Classification Feature selection 

Accuracy 

assessment 

Cost approx. $NZD 

(student rate) 

eCognition. Trimble. 

 

Yes. Yes. No. Yes. 30,000 (7500) 

IMAGINE – 

Objective. 

Hexagon  

Geospatial. 

Yes. Yes. No. Yes. 23,000 (4400) 

ArcGIS - Spatial 

Analyst extension. 

ESRI. 

 

Yes. Yes. No. Yes. 34,000 (0) 

Orfeo toolbox. French Space Agency 

(CNES). 

Yes. Yes. No. Yes. 0 

Grass. U.S. Army Corps of 

Engineers. 

Yes. Yes. No. Yes. 0 

The R-Project. University of 

Auckland. 

 

 

Yes. Yes. Yes. Yes. 0 
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5.7.1.4   Segmentation assessment 

Image segmentation results in boundary-geometries (as polygons or labelled 

regions) that depict objects within the scene based on a set of spatial and attribute contrast 

thresholds that control scale of image partitioning. Measurement of the accuracy of 

segmentation is generally uncommon (Ye et al., 2018). 

Segmentation ‘scale’ is the measure of the degree of partitioning of the image, 

where large scale refers to coarse detail and large segments (and vice versa). The choice 

of segmentation scale can impact classification results (Gao et al., 2011). Liu and Xia 

(2010) determined that segmentation accuracy decreases with increasing segmentation 

scale and that there is an optimum segmentation scale in terms of effect on accuracy. 

Similarly, Kim et al. (2011) demonstrated higher overall classification accuracy with 

small-scale, high-detail objects for a forest land-cover scene. Likewise, a study using 

unsupervised clustering on a coastal river delta/wetland scene, found that high spectral 

granularity and its resulting high detail of objects within the image, yielded higher overall 

classification of target wetland species (Martin et al., 2014). 

Under-segmentation refers to an insufficient degree of partitioning of objects while 

over-segmentation refers to excessive partitioning. Under- and over-segmentation have 

different impacts on the derived data models. Under-segmentation is regarded as 

problematic as it may lead to contamination by non-target materials, of similar spectral 

character, being erroneously included in the object (Liu and Xia 2010). However, over-

segmentation may be advantageous, particularly with high dimensionality problems (Liu 

et al., 2018), where small units become ‘superpixels’ optimised for homogeneity and 

separability, with less emphasis on correctly matching segment and whole object 

geometry (Zhu et al., 2016; Guan et al., 2018; Liu et al., 2018). Conversely, Kim et al. 

(2009) observed improvement in classification accuracy with increasing segment size, 

although these involved different scaled vegetation and imagery than these studies.  

Accurate classification has been achieved using segmentation-scale selection made 

upon a qualitative inspection of the resolution of target objects in the scene (Tsai et al., 

2011). Computed measures of segmentation accuracy and error include both supervised 

methods and unsupervised methods (Zhang et al., 2008). Supervised methods compare 

the characteristics of segmentation objects to a human digitised or selected reference 

(Pham et al., 2016; Pont-Tuset and Marques 2016; Ma et al., 2018; Su et al., 2018). 

Unsupervised methods calculate metrics within and/or between segments to maximise fit 

to predetermined global criteria (Gao et al., 2011; Johnson and Xie 2011; Ahmed et al., 

2018). A recent review (Ye et al., 2018), concluded that most segmentation assessment 

methods required pre-knowledge of the location of the target material, e.g., comparing the 
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polygon extent of segments with actual extent. Visible screen content is usually displayed 

only in red-green-blue colour space, ignoring additional bands which can contain rich 

information. This subjective prior interpretation of image content introduces a potential 

source of bias in terms of coercion of the model to the screen-view used to set the 

reference material. 

Segmentation accuracy can be evaluated in terms of concordance between 

boundary position and actual location in the image scene, contrast of spectral or attribute 

measures between geometries, and ability to differentiate objects in a mixed scene 

(Espindola et al., 2007). This has also been termed segmentation optimisation (e.g., Ma et 

al., 2017). The degree of disagreement between segmented and actual object property is 

the segmentation error. Measures of concordance between segmented objects and scene 

content have included spatial and spectral heterogeneity in image values (Johnson and 

Xie 2011; Gao et al., 2017), area (Whiteside et al., 2014; Pham 2016), signal/noise ratio 

or Taguchi method (Chen and Sun 2000; Ahmed et al., 2018), location (Whiteside et al., 

2014), and overlap in probability distribution (Liu et al., 2015). There are many more 

measures, and a comprehensive inventory is provided by Ye et al. (2018). Dronova et al. 

(2011) used consistency in NDVI segment scores as stop-criteria in region-growing based 

segmentation, while Ma et al. (2018) used image information content or entropy as a 

metric for identifying uniform training samples. 

A multi-scale segmentation method proposed and tested by Johnson and Xie 

(2011) demonstrated an outcome where, after identifying over- and under-segmented 

geometries followed by correction, there was significant improvement in segmentation 

performance as measured by the authors’ global weighted variance score. Over-

segmentation can be aggregated into a merged object if an effective classifier and post-

classification feature extraction is applied. 

 

5.7.1.5   Classification 

Data classification involves applying a classifier (or ‘learner’) to elements of a 

dataset to attribute membership under some grouping typology. Methods for this process 

date back to early thinking in statistics (Gordon, 1981; Bell 2014). Image classification 

methods are a subset of the much larger field of machine learning and data mining and 

too numerous to summarise here, though useful reviews have been developed elsewhere 

(see for example, Gordon 1981; Webb 2003; Larose 2015). An image is a form of data 

matrix so statistical machine-learning approaches are applicable to the problem of 

classifying content of an image. 



 

221 
 

Many data classification approaches have been implemented in spatial analysis 

software, e.g., ESRI ArcGIS, ERDAS Imagine, QGIS, and procedural libraries (Lu and 

Weng 2007; Klemas 2011; Tiner et al., 2015). A full inventory of classification methods 

applied across remote sensing and image analysis is beyond the scope of this chapter, and 

the reader is directed to several reviews that collate methods in depth (see Liu and Mason 

2009; Allan 2016; Gómez et al., 2016). 

Classification methods may integrate multiple approaches and/or parameter-

iterations to improve performance. Examples include ‘bagging’ (iterative model 

averaging by bootstrap aggregation), ‘boosting’ (iterative model averaging with variable 

weighting for weak and strong classifiers) and other hybrid / ensemble approaches 

(Lemmens and Croux 2006; Bakr et al., 2010; Zaman and Hirose 2011; Du et al., 2012; 

Korytkowski 2016; Esmael et al., 2018). 

Unsupervised and supervised classification 

Unsupervised classification initiates with a cluster or global segmentation step to 

group pixels or objects into calculated classes based on natural clustering within the 

frequency distribution of pixel values. Membership is informed by an attribution rule 

(Rahman et al., 2013; Kulkarni 2017). 

Supervised classification involves training an algorithm using a known labelled set 

of reference objects. A reference ‘training’ dataset (polygons, points or extents) is 

required under a sampling strategy that ensures representativeness and captures 

variability (Bell 2014). Within the classifier, training data forms a multivariate model of 

class separation with decision rules or functions for class attribution for new data. Image 

classification is enacted by applying the classifier to pixels or objects to define their 

membership under the class system of the training dataset. 

Supervised classification methods, relevant to developing a method for seagrass, 

and that have been applied to coastal scenes include: thresholding (Khatami et al., 2016; 

Satapathy et al., 2018); regression (Xiang et al., 2012; Lu et al., 2015); maximum 

likelihood (Ayhan and Kansu 2012; Reshitnyk et al., 2014); discriminant analysis (Du 

and Nekovei 2005; Lin et al., 2010; Koukal and Atzberger 2012); support vectors (Pal 

and Mather 2005; Chu et al., 2012; Zhang 2013; Höhle 2015); random forest (Lu and He 

2017); chain decision trees (Yang et al., 2003; Xu and Anwar 2013; Höhle 2015); 

decision-rules based on prior knowledge (Aitkenhead and Aalders 2011); and neural 

networks (Ayhan and Kansu 2012). 

Hybrid approaches have also been developed that integrate unsupervised and 

supervised methods. For example, Kim et al. (2011) used majority class-membership 

derived from a maximum-likelihood pixel-based classification to determine membership 
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of segmented objects. Zanotta et al. (2018) classified segmentation objects using 

maximum likelihood classified image pixels based on continued increase in a 

‘confidence’ scoring factor. Similarly, Ma et al. (2018) used a hybrid method where 

image-segments scoring zero entropy (i.e., pure spectra) were queried from the set to 

provide optimised training samples for main classification using the random forest 

algorithm. 

The relative performance of classifiers can vary with data and class structure and 

no one classifier is immediately optimal for all applications (e.g., Guo et al., 2010). Thus, 

assessment of optimal classifier for seagrass application is justified in the present study. 

 

Candidate classifiers 

Three linear classifiers were selected for this study for the purpose of seagrass 

detection and density measurement: i) linear discriminant analysis; ii) support vector 

machine; and iii) random forest. These were chosen due to prevalence in the literature for 

successful image classification and due to their common goal to maximise class 

separability.  

In linear discriminant analysis, a decision function is calculated based on pre-

classified training data so as to separate groups with a training dataset and the feature-

space re-projected so as to maximise class mean separability. The function and 

reprojection is then applied to the subject new data. The method assumes linear, quadratic 

or polynomial separability within the re-projected feature space.  

The random forest applies an iterative decision-tree ensemble algorithm whereby 

possible class separation rules (attribute thresholds) that separate classes are iteratively 

assessed, and an optimal solution reported based on one of several impurity measures; 

typically using Shannon’s entropy or the Gini index metrics (Louppe 2014). The optimal 

decision rule-set forms a classifier that can be applied to targets of the same scheme. 

Support vector machine calculates a linear, polynomial or radial hyperplane in 

feature-space that maximises class separability, with the hyperplane then applied as a 

classifier. Support vector machine classifiers rank among the highest accuracy approaches 

in a comparison run by Wahidin et al. (2015) using 30 m multispectral Landsat imagery.  

 

Class typology 

The class-nomenclature is an important determinant of a remote sensing outcome, 

and often the class-breakdown arises as a subjective framework developed under the 

expert knowledge of the researcher (Forestier et al., 2012; Arvor et al., 2013; Blaschke et 

al., 2014). Arvor et al. 2013 argue that remote sensing would benefit from advances in 
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ontology design and communication. In land-cover classifications for example, the class 

set needs to break down important parts of the scene and characteristics of the parts 

according to the research objectives, scale and variability of occurrence (either present or 

absent). Classification may operate at multiple spatial scales corresponding to the 

hierarchy of patches and constituent objects that comprise the natural system (Burnett and 

Blaschke 2003; Hay et al., 2003; Forestier et al., 2012). Therefore, it may be appropriate 

to have sequential tiers of class (e.g., fine and coarse) in a classification system. 

The literature on land-cover classification has strong emphasis on partitioning of 

data into spatially discrete patches of only a single category. Natural vegetated systems, 

however, more typically occur as blended classes, particularly around their margins, 

especially when the underlying environment gradients are gradual. For example, in the 

context of a seagrass scene, although hard edge classifications have relevance at the 

interface of a disturbance or sharp environmental gradient (e.g., at the edge of a sediment 

burial mass or scoured pool), seagrass is also likely to present as a mosaic of overlapping 

or integrating patches of differing density and substrate (e.g., see Figure 5.19). The 

transition between overlapping zones may be ecologically meaningful spatially, but under 

a hard classification system such overlap might present as uncertainty or error (Rocchini 

et al., 2013). Fuzzy classification is an alternative approach that allows a relaxed 

approach to classification that ascribes objects (pixels or segments) with a degree of 

membership across multiple potential classes rather than single membership to one class 

(Amo et al., 2004; Gomez and Montero 2008). This approach can yield accuracy benefits 

for image classification as all information is captured in the classification (Shi et al., 

2011). Selection of a classification depends on project objectives, spectral distinctiveness, 

variability in spectral and attribute characteristics and the level of classification accuracy 

sought from the analysis. However, in comparative studies, there is a general tendency for 

classification by support vector machine to yield greater classification accuracy than other 

tested algorithms, with Random Forest also yielding high relative performance (Schwert 

et al., 2013; Abe et al., 2014; Khatami et al., 2016; Phan and Kappas 2018). 

 

5.7.1.6   Classification assessment 

Classification assessment is a critical part of robust image classification and 

mapping (Rocchini et al., 2013). Classification performance depends on the interaction 

between scene object content, spectral dissimilarity of target object, information 

contained within the image, representativeness of the training dataset, quality of 

knowledge underlying design, the classifier algorithm used and generalising functions 

applied to the classified result (Liu and Mason 2009; Canty 2014). The basis for many 
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accuracy measures is the confusion matrix (Congalton 1991). The confusion matrix 

contrasts the calculated membership made within each class with respect to reference 

(training) dataset of known accurate class membership. This enables per-class and overall 

accuracy statistics to be calculated and spectral or classification overlap between classes 

to be visualised. 

Common accuracy measures include: overall accuracy and user/producer accuracy 

derived from a confusion matrix (Bakr et al., 2010; Gao et al., 2011; Reshitnyk et al., 

2014; Höhle 2015; Lu and He 2017); kappa statistic (Bakr et al., 2010; Gao et al., 2011; 

Höhle 2015) and kappa significance (Congalton and Green 2009); independent sample 

accuracy test (Foody 2004; Aitkenhead and Aalders 2011); tau statistic (Reshitnyk et al., 

2014); mean spectral error (Khatami et al., 2017); area under receiver-operating-curve 

(ROC); and area under curve for short (AUC) e.g., Ahmed et al. (2018). 

Confusion matrices (the tabulation of actual vs. predicted classification 

frequencies) provide overall and between-class accuracy metrics representing for the 

dataset. Overall accuracy (OA) measures the number of correctly classified pixels across 

all classes. Producer and user accuracy provide per-class measures of correctly classified 

actual ground features (producer accuracy) and correctly classified map features (user 

accuracy) within the class. In other words, producer accuracy provides a detection rate 

and user accuracy provides the mapping accuracy for each class. The relative importance 

of producer and user statistics depend on the project objectives. The kappa statistic 

measures accuracy across the whole dataset in terms of how different the observed row 

and column frequencies differ from those expected under a random model. 

The confusion matrix approach is useful. However, there are several drawbacks: i) 

correct accuracy assessment is dependent on correct co-registration of training features on 

the image; ii) training of the classification model requires random and representative 

training samples deployed so as to capture the variance of content across the image 

avoiding undue autocorrelation; and iii) accuracy statistics relate to the whole dataset 

without any measure of variation in spatial error distribution across the image (Foody 

2002; Hsiao and Cheng 2013). 

There are currently no established conventions on how best to assess classification 

accuracy and the optimal method may depend on the data composition (e.g., variance, 

class frequencies), sample design and the classifier used (Stehman and Czaplewski 1998). 

The kappa statistic has also been critiqued, particularly in terms of its reliability. Kappa 

values are dependent on the number of classes used, and with large sample size 

significance can be found leading to rejection of the null hypothesis even when 

differences are minor (Stehman 1997; Pontius and Millones 2011). The user, producer 
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and total accuracy statistics are recommended for classification accuracy assessment 

under United Nations land-cover mapping guidelines (United Nations 2016), which also 

recommends against use of the kappa statistics. Consequently, these metrics are used in 

this analysis, with the method limitations addressed by applying semi-random sample 

selection and a survey design sampling representatively across the extent of the study 

area. 

 

5.7.1.7   Collinearity and feature selection 

Collinearity in statistical modelling refers to the case where variables are 

numerically related (Dormann et al., 2012). Collinearity between variables can lead to 

redundant information describing the same process, bias of effects, failure to identify 

individual (collinear) variable-contribution to a model, and/or masking of the impact of 

missing data (Belsley 1980; Dormann et al., 2012; Wildi 2013; Marsman et al., 2017). In 

geospatial data mining, collinearity between layers is to be expected when systematically 

mining a predictive solution from multiple derivative layers based on just a few core 

layers. Many of the indices and ratios between image bands are derived from slight 

variations using the same underlying data. Feature extraction by image analysis is 

therefore prone to collinearity. Reduction of collinearity should be considered in 

developing a predictive remote sensing model. Colinear variable combinations can be 

removed according to inclusion or exclusion criteria (e.g., by dropping predictors that 

have the greatest influence in the model or highest relevance to the underlying real-world 

process), by dimensionality reduction (e.g., principal component reduction) or by forming 

orthogonal combinations of the collinear variables. Collinearity reduction may not 

improve the overall fit of a predictive model if predictive information is greater than the 

collinear redundancy of information or if bias is introduced through the variable selection 

(Freckleton 2011; Dormann et al., 2012). 

A robust classification model should select significant or influential variables while 

eliminating non-significant factors and minimising collinearity. Robust layer selection 

has previously been shown to improve image classification accuracy and is recognized as 

an important selection step in any classification workflow (Chu et al., 2012; Diesing et 

al., 2016). Diesing et al. (2016) propose that dimensionality reduction should be an 

integral part of image classification. 

Layer selection or feature selection can be approached from two classical 

approaches: i) Wrapper, where all possible combinations of input variables (or a 

sequential/heuristic subset) are computed within the target model and the predictor-set of 

highest influence/fit adopted as optimal; and ii) Filter, where a pre-processing step other 
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than the planned model, ranks variables based on fitness criteria and eliminates non-

influential predictors prior to model execution (Kohavi and John 1997; Choi et al., 2012; 

Chandrashekar and Sahin 2014). 

An advantage of the wrapper approach is that predictors are tested in the context of 

the target classification model and optimisation can be measured in terms of the accuracy 

and/or fit of classification outcomes. However, these methods can become 

computationally intensive when the number of predictors is large. As the dimensionality 

of the model increases, filter-based selection methods may be preferred to enable analyses 

within viable processing timeframes (Chandrashekar and Sahin 2014). One performance 

trade-off for implementing the pre-processing stage of a filter selection is that additional 

performance criteria (other than classification performance) need to be devised and tested 

for suitability, rigor, and additional sources of bias. 

A range of processing algorithms are available for feature selection from the wider 

literature on statistics and data mining (e.g., Bolón-Canedo et al., 2015). Several popular 

approaches are implemented within scriptable model packages such as The R Project. 

This software for example incorporates a series of relevant customisable tools e.g., the 

packages relief (selection frequency), rfe (backwards selection), FSelectorRcpp 

(rank/weight cut-off). Within the same software environment, the Caret package also 

integrates a range of classifiers and classification assessment tools, as well as 

findCorrelation for collinearity removal and rfe for backward selection (Khun 2013). 

Finally, the Random forest package provides a variable importance function that can be 

used to examine relative contribution and support the elimination of redundant predictors. 

 

[End of Appendix.5.7.1] 
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5.7.2    Appendix 5.7.2. Summary of seagrass, debris, cloud cover and sun angle for 

survey periods used in this replicated classification assessment. All three 

surveys were conducted at low tide approx. 60 minutes before returning tidal 

flood. 

Survey 

session 

Transect 

pattern 

Seagrass state 

Characteristic 

Estuary 

debris 

Cloud 

cover 

Sun 

Angle 

9 April 2017. 1 Seagrass meadow 

under autumn 

degradation, and 

immediately 

following a 

significant high-

rainfall weather 

system. 

Significant 

debris and 

shell 

deposition as 

sparse surface 

covering or 

aggregated in 

mats and piles. 

Overcast 45 

2 Feb 2018. 2 Substantial 

regrowth and 

thickening of 

seagrass meadow 

and patches.  

Little debris / 

detritus visible 

on the study 

area. 

Overcast 44 

28 Mar. 2018. 2 Autumn seagrass 

extent, similar to 

April 2017 extent / 

state but without 

any storm damage 

or debris. 

Little debris / 

detritus visible 

on the study 

area. 

Overcast 47 
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5.7.3    Appendix 5.7.3. Attributes resulting from iterations upon increasing minimum segments size, the parameter within the segmentation process that 

controls the smallest allowable segment size. 
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5 1,043,264 3.6 17 0.01 0.264 0.0006 ~0.00 0.042 8.16 

10 542,413 3.4 33 0.02 0.276 0.0008 0.75 0.044 7.54 

20 268,073 3.3 65 0.03 0.282 0.0010 1.20 0.046 6.64 

40 131,703 3.2 127 0.07 0.283 0.0011 1.37 0.049 5.72 

80 66,604 3.2 242 0.13 0.283 0.0013 1.51 0.051 5.03 

160 32,277 3.1 481 0.27 0.281 0.0015 1.56 0.055 4.33 

320 16,239 3.1 927 0.53 0.278 0.0018 1.57 0.058 3.75 

640 7,901 3.1 1855 1.09 0.276 0.0020 1.64 0.061 3.38 
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5.7.4    Appendix 5.7.4. Per-class user and producer accuracy levels for the three 

classifiers tested. High, medium and low classes are indicated by H, M, and L 

respectively.  

  Producer accuracy User accuracy 
 Class LDA RF SVM LDA RF SVM 

 Seagrass (H) 76 85 90 76 70 69 
 Seagrass (M) 48 51 47 43 47 47 
 Seagrass (L) 37 49 37 37 58 47 
 Seagrass/Detritus 37 26 24 47 57 66 
 Seagrass/Shell 11 11 0 13 35 0 
Single pixel Seagr/Detr/Shell 35 36 24 41 79 65 
 Detritus (H) 42 57 45 55 72 82 
 Detritus (ML) 28 28 12 38 52 83 
 Shell (H) 50 50 38 40 54 65 
 Shell (ML) 18 24 7 26 44 47 
 Detritus/Shell 21 0 1 9 0 5 
 Sediment 85 93 99 76 78 72 

 Seagrass (H) 78 76 90 79 68 70 
 Seagrass (M) 50 40 42 46 50 43 
 Seagrass (L) 44 45 43 44 52 42 
 Seagrass/Detritus 45 26 25 54 56 64 
 Seagrass/Shell 27 0 0 20 0 0 
Min. 5 pixels Seagr/Detr/Shell 43 14 27 47 57 72 
 Detritus (H) 48 48 37 61 83 85 
 Detritus (ML) 27 18 3 34 50 45 
 Shell (H) 58 50 43 51 60 67 
 Shell (ML) 21 24 3 27 33 32 
 Detritus/Shell 32 0 0 17 0 0 
 Sediment 84 94 98 76 78 70 

 Seagrass (H) 71 76 85 75 60 63 
 Seagrass(M) 50 40 41 44 40 42 
 Seagrass(L) 46 45 44 46 54 42 
 Seagrass/Detritus 46 26 31 47 36 52 
 SeagrassShell 4 0 0 4 0 0 
Min. 10 pixels Seagr/Detr/Shell 41 14 28 51 42 75 
 Detritus (H) 77 38 40 65 75 79 
 Detritus (ML) 21 9 2 37 33 26 
 Shell (H) 98 90 93 90 70 95 
 Shell (ML) 19 24 5 31 66 57 
 Detritus/Shell 0 0 0 0 0 0 
 Sediment 90 97 99 81 80 78 
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(Appendix 5.7.4 ctd.) Producer accuracy User accuracy 
 Class LDA RF SVM LDA RF SVM 

 Seagrass (H) 80 78 85 84 74 72 
 Seagrass (M) 61 25 33 52 57 36 
 Seagrass (L) 53 54 12 39 39 15 
 Seagrass/Detritus 67 71 65 71 60 56 
 Seagrass/Shell 16 8 0 25 50 0 
 Seagr/Detr/Shell 58 32 12 45 46 31 
Min. 20 pixels Detritus (H) 76 71 48 74 71 71 
 Detritus (ML) 15 4 0 25 0 0 
 Shell (H) 68 50 28 60 70 51 
 Shell (ML) 47 48 50 63 55 54 
 Detritus/Shell 0 0 0 0 0 0 
 Sediment 82 89 94 69 67 68 

 Seagrass (H) 73 74 68 74 67 64 
 Seagrass (M) 60 67 71 60 56 51 
 Seagrass (L) 61 63 33 52 44 48 
 Seagrass/Detritus 53 58 57 62 51 58 
 Seagrass/Shell 0 0 0 0 0 0 
 Seagr/Detr/Shell 50 10 1 45 25 8 
Min. 40 pixels Detritus (H) 24 0 0 28 0 0 
 Detritus (ML) 0 0 0 1 0 0 
 Shell (H) 24 25 0 17 9 0 
 Shell (ML) 30 56 25 37 71 49 
 Detritus/Shell 27 0 0 19 0 0 
 Sediment 88 97 98 85 90 72 
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5.7.5    Appendix 5.7.5. Predictor sets obtained from collinearity reduction/ recursive 

feature elimination (random forest classifier), for each respective 

segmentation scale. 

Seg. scale. Reduced model  Reduced model - recursive feature elim. 
Single 
pixel. 

Class ~ Red + NIR + 
Highgreylevelrunemphasis 
+ Clusterprominence + 
Entropy + Greylevel- 
nonuniformity + 
Correlation + 
Clustershade 

Class ~ Red + Green + Lowgreylevelrunemphasis + 
Haralickscorrelation + EVIje + Haralicksmean + 
NIR + RedEdge + Highgreylevelrunemphasis + 
Clusterprominence + EVIj + 
Greylevelnonuniformity + RVIe + Entropy + RVI + 
Haralicksvariance + NDVIe + 
Informationcorrelation + Energy 

Min size 5 
pixels. 

Class ~ Red + NIR + 
Clusterprominence + 
Highgreylevelrunemphasis 
+ Energy +  
Greylevelnonuniformity + 
Correlation +  
Clustershade + 
AreaSegment_m2 + 
AreaPerimFraction + 
LengthWidthFraction 

Class ~ Red + Green + EVIje + 
Lowgreylevelrunemphasis + Haralickscorrelation + 
RVIe + NDVIe + RedEdge + NIR + Haralicksmean 
+ SAVIe + EVIj + DVIe + Clusterprominence + 
RVI + NDVI + SAVI + DVI + 
Highgreylevelrunemphasis + Haralicksvariance + 
Entropy + Greylevelnonuniformity + Energy + 
Correlation + Informationcorrelation + Inertia 

Min size 
10 pixels. 

Class ~ Red + NIR + 
Clusterprominence +  
Informationcorrelation +  
Greylevelnonuniformity + 
Correlation +  
Clustershade + 
AreaSegment_m2 +  
AreaPerimFraction + 
LengthWidthFraction 

Class ~ Red + RVIe + NDVIe + EVIje + SAVIe + 
NIR + RedEdge + Green + EVIj + DVIe + 
Haralickscorrelation + Haralicksmean + 
Lowgreylevelrunemphasis + NDVI + RVI + 
Clusterprominence + SAVI + DVI + Entropy + 
Greylevelnonuniformity + Haralicksvariance + 
Energy + Inertia 

Min size 
20 pixels. 

Class ~ Red + RedEdge + 
Invdiffmoment +  
Clusterprominence +  
Highgreylevelrunemphasis 
+ Greylevelnonuni- 
formity + Clustershade + 
Perimeter_m + 
Correlation + 
AreaPerimFraction + 
LengthWidthFraction 

Class ~ Red + RVIe + NDVIe + DVIe + SAVIe + 
RedEdge + Green + NIR + EVIje + 
Lowgreylevelrunemphasis + EVIj + 
Haralickscorrelation + Haralicksmean + NDVI + 
RVI + SAVI + Clusterprominence + DVI + 
Highgreylevelrunemphasis + Inertia + 
Invdiffmoment + Entropy + Informationcorrelation 
+ Haralicksvariance + Energy + 
Greylevelnonuniformity + Clustershade 

Min size 
40 pixels. 

Class ~ EVIj + 
Clusterprominence + 
RedEdge + 
Invdiffmoment + 
Greylevelnonuniformity +  
Clustershade + 
AreaPerimFraction +  
Correlation + 
AreaSegment_m2 +  
LengthWidthFraction 

Class ~ Red + NDVIe + EVIj + RVIe + SAVIe + 
Green + DVIe + EVIje + Haralicksmean + 
Haralickscorrelation + Lowgreylevelrunemphasis + 
RVI + NDVI + RedEdge + SAVI + 
Clusterprominence + NIR + 
Highgreylevelrunemphasis + DVI + 
Greylevelnonuniformity + Haralicksvariance + 
Entropy + Inertia + Clustershade + Invdiffmoment + 
Informationcorrelation + Energy 
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5.7.6    Appendix 8.7.6. Contribution of camera-bands, derived indices and texture layers in overall classification accuracy for the three classifiers tested 

(random forest, support vector machine and linear discriminant analysis) and across the range of segmentation scales assessed. Red horizontal 

line highlights the highest accuracy attained for each classifier. 
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5.7.7    Appendix 5.7.7. Classification outcomes for predictor subsets comprising the camera-bands, derived indices and texture layers for the three 

classifiers tested (random forest, support vector machine and linear discriminant analysis) and across the range of segmentation scales 

assessed. 

     Producer accuracy User accuracy 

  
Seg. 
Scale Overall High Medium Low High Medium Low 

Random        
forest 

All 
predictors 

1 71.42 87.39 55.33 55.52 73.04 54.46 62.27 
5 67.66 85.65 47.69 51.53 78.05 45.34 51.13 
10 66.74 78.18 45.55 48.97 65.52 41.79 48.61 
20 66.58 81.98 52.48 35.37 76.54 50.86 46.51 
40 65.59 72.42 65.79 49.17 83.17 55.94 52.36 

Camera 
bands 
only 

1 65.03 83.88 41.31 31.86 70.60 44.91 43.59 
5 64.96 83.81 41.88 47.13 71.88 43.83 48.63 
10 63.72 75.15 34.99 43.42 63.55 36.43 45.48 
20 63.05 79.16 47.60 39.50 78.11 48.42 48.81 
40 61.70 70.71 63.51 26.44 68.76 53.51 31.50 

Band + 
index 

1 65.23 83.35 45.14 41.08 70.44 45.99 46.93 
5 65.88 84.01 44.12 45.04 73.00 46.26 45.64 
10 64.08 73.16 38.90 44.27 63.02 38.71 47.29 
20 65.16 81.07 50.93 36.10 78.01 47.64 45.72 
40 64.14 69.17 58.83 31.75 67.21 51.30 37.48 

Band + 
texture 

1 72.68 88.70 61.57 49.38 73.58 58.46 67.33 
5 66.88 87.31 45.20 47.17 70.90 44.28 55.66 
10 65.27 78.22 39.85 44.72 63.96 38.30 45.67 
20 65.28 81.60 42.83 39.81 75.34 47.31 48.23 
40 63.63 68.76 68.75 34.45 66.11 53.63 47.48 
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(Appendix 5.7.7 ctd.) 

     Producer accuracy User accuracy 

  
Seg. 
Scale Overall High Medium Low High Medium Low 

Support 
vector 

machine 

All 
predictors 

1 67.77 89.84 52.28 39.70 70.13 49.51 54.67 
5 64.80 89.77 41.48 42.37 69.71 42.92 41.73 

10 64.97 84.90 40.83 43.06 62.09 41.53 42.41 
20 62.64 85.68 31.19 12.97 72.33 39.90 14.85 
40 61.54 68.47 70.82 35.23 64.96 51.64 48.77 

Camera 
bands 
only 

1 64.50 87.71 44.14 22.36 68.35 43.06 48.05 
5 65.42 87.54 46.03 35.48 71.85 45.99 42.31 

10 65.33 83.58 40.71 38.62 63.96 41.47 42.91 
20 66.30 84.66 51.21 35.41 78.92 54.98 48.65 
40 64.80 74.60 66.76 27.77 65.98 56.02 43.90 

Band + 
index 

1 64.73 87.24 46.34 23.02 69.11 43.14 47.75 
5 65.77 86.37 50.25 38.56 73.06 45.82 43.42 

10 66.30 83.12 48.07 39.47 64.95 42.69 46.49 
20 66.63 86.40 9.50 31.18 76.11 54.10 41.31 
40 65.22 74.85 65.03 34.18 67.58 55.15 51.10 

Band + 
texture 

1 67.22 90.51 50.75 35.83 69.38 49.51 52.42 
5 64.70 90.60 41.92 32.43 68.19 41.41 44.38 

10 64.92 85.48 36.17 39.96 61.41 38.34 39.95 
20 62.65 82.88 34.21 17.84 71.73 35.76 25.43 
40 61.22 65.85 78.58 2.28 65.72 46.92 5.43 
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(Appendix 5.7.7 ctd.) 

      Producer accuracy User accuracy 

  
Seg. 
Scale Overall High Medium Low High Medium Low 

Linear 
discriminant 
analysis 

All 
predictors 

1 61.81 75.31 50.01 37.88 76.16 43.99 38.62 
5 63.63 78.05 49.25 43.75 79.18 46.06 43.42 

10 64.91 71.55 49.93 46.55 74.60 43.94 46.50 
20 66.08 80.34 59.84 51.81 84.85 51.61 39.99 
40 63.68 73.32 59.65 60.80 74.05 60.18 52.43 

Camera 
bands 
only 

1 60.60 84.15 36.08 4.07 70.22 40.24 31.27 
5 62.92 83.51 41.72 20.73 73.73 46.34 42.05 

10 64.06 77.93 43.65 34.49 69.79 44.93 46.76 
20 61.78 81.56 46.38 28.84 80.21 61.87 39.53 
40 59.86 76.50 62.20 30.76 73.80 59.48 44.00 

Band + 
index 

1 60.88 75.60 47.04 24.60 74.56 42.16 33.57 
5 63.29 78.12 47.14 38.17 78.34 45.95 42.95 

10 64.55 73.70 49.76 40.54 74.39 45.10 44.14 
20 63.80 80.39 61.57 45.91 82.84 49.17 38.19 
40 62.04 75.07 63.05 42.92 74.19 60.81 50.25 

Band + 
texture 

1 62.19 78.83 49.54 31.47 73.33 42.69 35.06 
5 63.29 79.43 47.00 36.93 75.25 43.03 41.49 

10 64.32 70.45 47.52 46.80 71.42 41.24 41.54 
20 65.31 78.77 51.20 49.14 84.31 51.43 39.54 
40 61.30 63.65 63.45 55.94 73.59 54.95 51.57 
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5.7.8    Appendix 5.7.8 Per-class producer and user accuracy statistics for map 

classification at the survey times of April 2017, Feb. 2018 and March 2018. 
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CHAPTER 6 
 

 

6    Chapter 6.  Mapping of seagrass leaf area and change 

 

6.1    Introduction 

Chapter 5 identified general optimisations for classification of multispectral 

narrow-band imagery flown by drone at 30 meters above a seagrass meadow with tidal 

water drained at low tide. For this scale of survey, smaller segments or even individual 

pixels, provided the highest classification accuracy both for the high-density class of 

seagrass density, and in terms of seagrass presence and absence. The random forest 

classifier provided the best results compared to support vector machine and linear 

discriminant analysis classifiers. The computation-time required to photogrammetrically 

render a c.300-photo scene, calculate and normalise the required layers then run the 

classifier and image, was ~8 hours run time (on Intel i7 CPU at 3.5 Ghz, 32 Gb RAM) 

with quality checking (i.e., same-day). There was no practical reason nor computational 

benefit identified for applying a feature selection or elimination, when using the random 

forest classifier. The method extracted medium to high density seagrass features with 

good classification accuracy. However, sparse seagrass classes were consistently 

confused, and there was some misclassification of surface macroalgal growth for low-

density seagrass. 

The classification method was based on visually interpreted feature-identification 

and density attribution from the ground photography using a generally accepted and 

common density-interval class approach (Braun Blanchet 1965; Schwarz et al., 2006; 

Short et al., 2006; Neckles et al., 2012; Pu et al., 2014). Visual interpretation can generate 

large volumes of reference data quickly, but can incorporate human error, subjectivity, 

and drift in class attribution with time and practice (Congalton and Mead 1983). This was 

found to be the case in the current study where reclassification of the same data yielded 

higher accuracy after practice and minor refinement (Chapter 4 and Chapter 5). Factoring 

an empirical measure of seagrass density into classification-training would require the 

elimination of much of this potential subjective error. There is no literature at this time 

demonstrating low altitude RPA-based image classification using a computed density 
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measure (as opposed to visual interpretation), so assessment of this potential 

improvement is justified. 

The leaf area index is a common consideration in vegetation and canopy condition 

assessment (Ross 1981; Chen and Black 1991; Asner et al., 2003; Borfecchia et al., 

2013b; Atzburger et al., 2015). At the canopy scale, leaf area index (LAI) is generally 

defined as the leaf area per unit ground area. There are variants of leaf area index that 

estimate total leaf surface, one-sided leaf area, horizontal planar area, solar incidence and 

view angle, as well as factoring leaf orientation and aggregation or overlap (Chen and 

Black 1991; Barclay 1998). Of these, projected horizontal leaf area to the normal is a 

measure that has been used to estimate the maximum amount of sunlight that can be 

intercepted by foliage. Therefore, this also estimates the amount of ground obscured by 

foliage. The response of indices can vary with vegetation geometry and degree of leaf 

aggregation (Lang and Yueqin 1986; Carlson and Ripley 1997; Herbert and Fownes 

1997; Barclay 1998; Jonckheere et al., 2004). Horizontal leaf area has relevance to 

seagrass, as upon a drained estuary the leaves predominantly lay flat on the ground. High 

density seagrass can grow with significant overlapping leaf aggregation (Figure 6.1), so 

leaf area index > 1 can be expected in places. 

Classification performance can depend on the number of classes. For example, 

authors Aitkenhead and Aalders (2011) conducted image classification for land-cover 

mapping that achieved 89% accuracy when based on eight classes, but 53% accuracy 

based on 96 classes. In a study comparing efficacy of Earth Observing-1 satellite sensors 

for detecting seagrass density, Pu et al. (2018) demonstrated markedly higher overall 

accuracy for three seagrass coverage classes as compared to five classes. Nahirnick et al. 

(2019b) demonstrated RPA based mapping of subtidal seagrass (Zostera marina) 

achieving class accuracy levels in the range 70-98% across four density classes very 

sparse, sparse, moderate and dense. Under this class granularity, the Authors noted 

underestimation of predicted seagrass through omission of sparse seagrass (Nahirnick et 

al., 2019b). 
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Figure 6.1. Overlapping (LAI >> 1) and disparate (LAI = 0.6) seagrass. 

Outcomes from the previous chapter are built-upon within this chapter to examine 

the model performance when trained using precisely measured leaf area, as compared to 

the visual interpretation method used in Chapter 5. Two class sets of differing 

granularities are assessed: i) 3-tier (high, medium and low density), and ii) 10-tier (decile) 

classification scales. The result from the RPA classification is used to train image 

classifications for: i) multispectral imagery collected by fixed wing aircraft; and ii) 

multispectral imagery from satellite, both acquired near to the time of the RPA survey. 

 

6.2    Chapter objectives 

The specific objectives of Chapter 6 are to: 

1.  Map seagrass density distribution based on measured horizontal leaf area for 

two replicate surveys; 

2.  Examine the relationship between model seagrass density estimation and 

measured horizontal 2-dimensional leaf area; 

3.  Quantify change in seagrass presence and density class; 

4.  Contrast the cost and benefit of visual photo interpretation versus measured 

seagrass density attribution; and 

5.  Demonstrate the use of low-altitude RPA imagery for training a subsequent 

classification using fixed wing aircraft imagery. 

 

6.3    Methods 

6.3.1    Study area, ground observations and aerial survey 

The study area in this chapter is the same as that used for Chapters 4 and 5. Within 

this assessment, the adjusted transect deployment described in Section 5.4.4 was used. 
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The parallel transects were 100 m in length and spaced with 20 m separation. Ground 

reference locations were marked every 5m and were matched in location between 

February and March replicate surveys. The transects were placed to sample a seagrass 

meadow-complex with parts that are both stable and changing (Figure 6.2, and see 

Chapter 3). Ground reference photos were taken using a Nikon S9500 camera at nadir, 1 

m above the ground and levelled using a bidirectional spirit-level. Photo centre points 

were surveyed using a precision GNSS instrument (Trimble R8 receiver with TSC3 

controller). 

Aerial surveys were conducted using a Parrot Sequoia multispectral independent-

lens camera fixed to vibration-resistant mount upon a 600 mm ‘quadcopter’ rotary wing 

autonomous remotely piloted aircraft (RPA). A survey flight plan was programmed into 

the RPA for an aerial survey on 3rd February 2018, and the same flight plan applied to a 

follow-up survey on 29th March 2018 (Table 6.1). Both surveys targeted the late-drainage 

stage of low-tide just before the returning flood, aiming for 45-degree sun angle, under 

approximately uniform over-cast cloud conditions. The RPA flight plan was set to 

traverse a strafe-pattern achieving 80% image overlap across the site in both the forwards 

and lateral directions. Imagery were collected in green (550 nm), red (660 nm), red-edge 

(735 nm), and near infra-red (790 nm) spectral bands on independent sensors of 1280 x 

960 pixel resolution equating to ~2.7 cm pixel ground sampling distance (GSD) at 30 m 

height above the ground. 

 

6.3.2    Image-processing and data preparation 

Image processing followed the same overarching workflow as previous chapters 

(summarised in Table 6.2 and discussed in depth in Chapter 5). 

The resulting product comprised a 28-band normalised image-stack aligned to the 

study reference-frame (NZTM horizontal datum, NZVD2016 vertical datum referenced to 

LINZ geodetic mark EB2U). Bands included camera spectral bands, vegetation indices 

including red-edge and NIR variants, and texture layers. 

  



 

241 
 

Table 6.1. Summary of seagrass, debris, cloud cover and sun angle for survey periods 

used in this replicated classification assessment. Both survey times were low tide approx. 

30 minutes before returning tidal flood. 

Survey 

session. 

Seagrass state / 

characteristic 

Estuary 

debris 

Cloud 

cover 

Sun 

angle to 

horizon 

3 Feb. 

2018. 

Substantial dense 

seagrass throughout 

meadow.  

Rare. Overcast 44 

29 Mar. 

2018. 

Dense seagrass 

throughout meadow, 

but clear sign of 

thinning; inundation 

from sediment 

evident. 

Rare. Overcast 47 

     

 

 

Figure 6.2. Seagrass upon the study area at time of 28 March 2018 survey, with transects 

(solid lines) and location of ground photography quadrats (the squares upon transect 

lines). The same transect layout and RPA flight program was used for the 2 Feb 2018 

survey. 

N 
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Table 6.2. Summary of data preparation stages and analysis. 

Step Detail 
Field data 
 

Placement of photogrammetric markers and quadrat marker 
points. 
Capture of radiometric panel reference. 
Launch of RPA on pre-programmed flight plan (route 
replicated across Feb and March 2018 surveys). 
GNSS survey of quadrat mark-point centres. 
Collection of ground level photography (quadrat references 
centred on mark-points). 

 
Photogrammetric 
processing 
 

 
Align images. 
Apply radiometric corrections. 
Insert position markers for GNSS ground control points 
into the model. 
Optimise camera positions upon GNSS points. 
Re-align images using optimised camera positions. 
Create dense point cloud. 
Build triangle mesh. 
Calculate texture; apply colour correction. 
Generate orthomosaic  exported Tiff file (multispectral 
image). 
Fine georeferencing to ground control points, quadrat 
markers and unambiguous objects visible in both images 
(1-2 pixel fine alignment). 

 
Multispectral  
image processing 
 

 
Calculate vegetation indices. 
Calculate Haralick’s texture layers on NDVI vegetation 
index layer. 
Normalise layers to 0 - 1 scale excluding extreme outliers. 
Append spectral bands, indices and texture bands to create 
single multiband stack. 
 

Ground reference  
data generation and 
image segmentation 
 

Georeference ground photography. 
Create set of 1000 sample segments randomly placed 
across quadrat extents after eliminating noise. 
Digitise leaf area, calculate proportion (%) per segment. 
Clip multi-band raster by segment and convert to points 
with class and band attributes. 
Digitise leaf area per test square. 
Export to text format, for import into R for classification. 
 

Image classification 
 

Apply random forest classification. 
Assess classification accuracy. 
Compare change-outcome agreement for test-squares. 
Calculate a change map on generalised grid. 
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A set of ground-reference points was constructed from 1200 segmentation 

polygons (mean-shift segmentation, minimum size 10 pixels) selected from within the 

ground photography extents. Segments were removed that contained coloration from 

transect cord/markers, and further removal was made where segments were notably non-

uniform or ambiguous. Segmentation polygon-sets (n=1000 after thinning) were 

generated for each survey image (Feb. or Mar.). Segmentation polygons were then 

overlain upon the respective survey image, and the contained pixels converted to points 

with the respective image-bands as attributes. This approach was taken to speed up the 

process of manually classifying a large number of points for model training, and hence to 

capture the variability in spectral character across ground-class types, avoiding non-

uniform segments where spectral error would be introduced. 

Segmentation polygons were attributed a ground-class, then the points associated 

with each polygon inherited the respective ground-class. The ground-referenced point-

sets were used as training data to classify the multi-band survey images using the random 

forest classifier from within the rminer data-mining library of R-Project v3.6 software 

(parameters ntree = 1000, mtry = 6). Assessment of classification performance was made 

using overall accuracy and class accuracy metrics. 

Two ground-referenced class-systems were assessed (expanded below): i) a three-

tier class set for high, medium. and low-density seagrass, where seagrass cover is based 

on accurately digitised seagrass extent; and ii) a ten-tier (decile) class set, approximating 

a continuous density scale, again based on digitised seagrass. 

 

6.3.3    Horizontally projected seagrass leaf-area index classification 

The two-dimensional leaf area of seagrass was digitised in high detail within all 

polygons of the segmentation dataset used above (minimum 10-pixel size threshold 

segmentation set from the February and March 2018 surveys). Digitising was done at a 

scale of approximately 3:1 with polygon vertex spacing down to ~1 mm in object-space 

depending on shape. This scale was necessary due to the small seagrass leaf size and 

convoluted (twisted/entangled) presentation. The 2D polygon-area of the digitised 

seagrass, and proportion of segmentation polygon covered in seagrass, were calculated in 

FME Workbench. This proportion was generalised to a class on a ten-tier (decile) scale 

based on membership to the seagrass proportion ranges 0-0.1, 0.1-0.2, etc with zero for 

seagrass absence. Similarly, the seagrass proportion for each segmentation polygon was 

classed on a 3-tier scale (high, medium and low) based on the proportion being > ⅔, ⅓ - 

⅔, <⅓, with background value of zero seagrass representing absence. The 10-tier and 3-
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tier class-sets were each used to classify the respective February or March multi-band 

survey images. The purpose of repeating analyses upon two different class-sets was to 

examine the relative applicability of coarse and fine-scale class granularity for mapping 

seagrass change. 

 

6.3.4    Analysis 

6.3.4.1   Classification assessment for leaf area estimates 

The training polygons above were derived from segmentation polygons. A separate 

set of test areas, independent from the training polygons, was used to assess classification 

performance in terms of the classification outcome contained in the predicted map. 

Locations of near-exact spatial overlay were available in the vicinity of the six transect 

endpoint ground-level marker pegs, around which 8 test-areas were fitted within the 

extent of the ground photography, 48 squares in total, each 200 mm x 200 mm in ground-

size (Figure 6.3). A further set of traced seagrass extents were digitised under the same 

method within these test-areas. The test-areas were identical in image and ground 

locations spanning February and March surveys such that direct subtraction was valid. 

Classification performance was assessed by overlaying the test-areas onto the classified 

map and calculating the agreement between actual digitised seagrass class and the 

predicted class of the map. Classification metrics were calculated for each of the class-

sets assessed (10-tier and 3-tier), as per-pixel overall and class accuracy statistics from 

the random forest resampling, correlation between outcome class assignment, regression 

of linear relationship, and percentage agreement on class assignment. 
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Figure 6.3. Example of digitised seagrass inside of 200 mm x 200 mm test-

squares.  
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6.3.4.2   Measurement of change in leaf area 

The applicability of the method for change detection in leaf area was assessed by 

comparing change in true and predicted seagrass density for exactly matched locations 

(the test-areas above) between the two survey times, February and March 2018, and with 

respect to the two class-scales, 10-tier and 3-tier for comparison. Change was calculated 

with sampling units being each of the 48 square test-areas. The seagrass extent was 

digitised per test-area, however the predicted map was heterogeneous at the scale of a 

test-areas. In order to provide per-test-area predicted scores to compare with traced 

seagrass area scores, a weighted average class score was applied using Equation 6.1, 

where y is the predicted class number, a is the geometric area of that class present in the 

test-area, and A is the area of each test-area. 

Weighted average class   =   
∑ ∗

  …………………………… (Equation 6.1) 

The degree of agreement between actual change and the change-prediction made 

by the respective classification maps for the two survey times, was quantified using 

correlation and liner regression analysis. 

 

6.3.4.3   Visual interpretation-based classification 

Classification maps were generated using training polygons classed with a 3-tier 

class set assigned by visual interpretation on the three-tier scale of Section 6.3.3. Class 

assignment is equivalent to the encoding used in previous chapters, and comparable to the 

computer-calculated exact 3-tier leaf area scale tested above. Classification assessment 

was made by repeating the predicted and actual score comparison made above, with: i) 

predicted values derived from the classified map as weighted average scores per square 

test-area (n=48); and ii) actual values being the accurately traced seagrass leaf area per 

test-area. This comparison links classification made using accurately calculated training 

references back to the visual interpretation used in previous chapters. This also allows the 

trade-off between classification accuracy and manual timeframe to be assessed. 

 

6.3.4.4   Classification of mid-altitude imagery using a low altitude reference 

The classification procedure was repeated as before (Section 6.3.3-4), using the 

March 2018 multispectral image and corresponding ground reference data. The resulting 

classification map was used to train the classification of a secondary image captured at 

mid-altitude by fixed wing aircraft flying at 250 m -300 m altitude using a Micasense 
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Red-Edge camera, where capture was made the day prior to the RPA flights under similar 

overcast lighting conditions. The Red-Edge camera has similar spectral ranges of bands 

as the Parrot Sequoia used on the RPA, except that the Red-Edge also comprises a blue 

narrow-band sensor. The mid-altitude image frames collected under a photogrammetric 

flight design with ~70%-80% overlap, were rendered to single georeferenced 

orthocorrected multi-band mosaic using the same procedure as applied to the 30 m 

altitude RPA imagery. Derived vegetation indices and texture layers were added, with the 

resulting multi-band image stack used for classification and analysis. The 250 m-300 m 

altitude analysis image-stack had the same bands as the RPA imagery, but with a blue 

band also factored as a classification predictor. The mid altitude image-stack was aligned 

to the 30 m altitude RPA image with a combination of photogrammetric reference 

markers visible in the imagery and distinct invariant reference features visible within the 

structure of the seagrass meadow. 

The ground sampling distance of the Red-Edge imagery was 250 mm. The ground 

reference dataset was split five-fold into a training dataset (4/5 of sample) and a test 

dataset (1/5 of sample). The test dataset was used to assess the accuracy of predicted 

classification outcome for both altitudes. The ground reference data were classed on the 

3-tier seagrass density scale (high, medium, or low-density seagrass, or absent) as 

measured by the seagrass horizontal leaf area trace described above. Additional sampling 

points were added to the training dataset to sample microphytobenthos (MPB) occurring 

at the edge of the RPA flying extent. 

 

6.4    Results 

6.4.1    Classification assessment for leaf area estimates 

Classified maps for the two survey times were similar for the two class-systems 

used. Seagrass density difference was evident with respect to the structural elements of 

the seagrass meadow changing between surveys such as patch-edge contraction (Figure 

6.4). 

Overall classification accuracy within the random forest cross-validation was 86% 

and 90% for the Feb. 2018 and Mar. 2018 datasets (Table 6.3). Overall accuracy, and per-

class accuracy for most classes, were higher for the Mar. 2018 data than the Feb. 2018 

data, and this was the case for both the 10-tier and 3-tier class sets (Table 6.3 and Table 

6.4). On the 10-tier scale, Type 1 error for seagrass presence was low (0.01) for both 

surveys and Type 2 error ranged between 0.1-0.14 (Table 6.3). Equivalent error values for 
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the 3-tier scale were 0.01-0.02 for Type 1 error and 0.08-0.11 for Type 2 error (Table 

6.4). Predicted decile class and the equivalent actual measured decile class for test-areas 

were strongly correlated (correlation coefficients of 0.90 and 0.89, both significant at 

=0.05) for February and March surveys respectively, with linear fit (predicted vs. actual 

score) of R2 = 0.8 and 0.8, respectively (Figure 6.5). However, while predicted and actual 

measured decile density class correlated well, absolute agreement on class designation 

was low with 42% and 45% agreement respectively (Table 6.5). Thus, class attribution 

was close but not exact for the decile classification. Aggregation of classes into a measure 

of seagrass presence/absence, yielded agreement between actual and predicted class 

values at the rates 85% and 96% of the time for February and March surveys respectively. 

Class agreement rate on the 3-tier scale calculated with correlation coefficient 

values of 0.9 and 0.85, class agreement of 68% and 74%, and agreement for 

presence/absence was 87% and 96% for the February and March surveys respectively 

(Table 6.5). 

Classification accuracy was higher on the 3-tier scale than the 10-tier for both the 

per-class and in terms of seagrass presence/absence. Consequently, use of the 3-tier scale 

yields more confident classification mapping than the 10-tier scale. However, the 

granularity of information and detail available using the 3-scale is less than the 10-tier 

scale (Tables 6.3, 6.4 and 6.5). 
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Figure 6.4. Classified seagrass-density maps for February and March 2018 surveys, and 

for 10- and 3-tier class sets, with aerial photography overview. Key: High density (dark 

green); mid-density (light green); and low-density seagrass (grey) upon seagrass absence 

(black). Rectangle in e) shows the extent of a)-d). 

a) Feb. 2018 survey, 10-tier class. 
set 

b) Mar. 2018 survey, 10-tier class. 
set 

c) Feb. 2018 survey, 3-tier class. 
set 

d) Mar. 2018 survey, 3-tier class. 
set 

e) Overview (aerial photo). 
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Figure 6.5. Relationship between predicted map class and actual mean seagrass leaf area 

of the square test-areas for the two surveys: a) February 2018; and b) March 2018. Error 

bars are standard error about the mean. Shown are the line of best fit (solid line) and line 

of unity expected under perfect class agreement. See Table 6.5 for line statistics. 
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6.4.2    Measurement of change in seagrass density (leaf area) 

Difference-maps enable the change in seagrass density (in terms of digitised leaf 

area) to be visualised for each of the two class-sets tested (10- and 3-tiers of scale 

granularity (Figure 6.6). Both scales yielded similar maps, with growth in some areas and 

decline in others across the 8-week timeframe between surveys. Growth was prominent at 

the patch margins and hole edges and decline in many but not all central patch areas. The 

10-tier set allowed fine seagrass regrowth to be detected that wasn’t possible using the 3-

tier class set. For example, under the ‘high, med, low’ model, the lowest density seagrass 

was at times classified as being absent of seagrass. 

There was a moderate linear relationship between predicted and actual change 

using the 10-tier class set (Figure 6.7). The agreement in direction of change (i.e., sign) 

between predicted and actual change was 69% overall. Thus, 31% of test-areas were 

incorrectly attributed as a decline when there was gain, or gain when there is decline 

(Figure 6.7). This error was largely associated with subtle levels of change – but there 

was good coarse agreement between predicted and actual change when the change was 

substantial. The agreement rate was 74% when disregarding less than one class-unit of 

change, and 100% when disregarding up to 2 class-units of change, on the ten-class scale. 

The three-tier class set was less sensitive to change, with 60% agreement on change-

direction for all test-areas, and 83% agreement when only considering the medium and 

high change. 

 

6.4.3    Visual interpretation-based classification 

Visually interpreted seagrass density class attribute on a 3-tier scale agreed with 

actual leaf area derived seagrass density measures (i.e., prior to classification), in 88% of 

the 1000 training segments. Image classification based on visual interpretation of training 

classes yielded marginally lower outcome class agreement statistics than the equivalent 

measured (3-tier) leaf area training classification (Table 6.5), in terms of correspondence 

of predicted map class with actual computed leaf area. 
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Table 6.3. Within-classifier accuracy metrics (n=5633 points) for the ten-tier decile scale. 

Accuracy statistics are true positive rate. Classification metrics (%) are out-of-bag 

accuracy statistics reported from the rminer algorithm (random forest model). 

Presence/absence statistics are the true positive and true negative classification rates, and 

corresponding Type I and II error rates, for whether seagrass was predicted as present or 

not. 

    Feb. 2018. March 2018. 

    Overall accuracy. 

    86 90 

      

    User accuracy. 

Seagrass class Absent. 99 99 

  - decile scale. 0-10% 37 55 

  10-20% 49 74 

  20-30% 69 65 

  30-40% 43 77 

  40-50% 41 77 

  50-60% 60 68 

  60-70% 59 70 

  70-80% 76 75 

  80-90% 66 83 

  100% 52 81 

     
  

Seagrass presence / 

absence. Presence. 86 90 

 Absence. 99 99 

    

Type 1 error.  0.01 0.01 

Type 2 error.  0.14 0.10 
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Table 6.4. Within-classifier accuracy metrics (n=5633 points) for the 3-tier scale of high, 

medium and low seagrass density (proportions > ⅔, ⅓ - ⅔, <⅓ respectively). Accuracy 

statistics are true positive rate. Classification metrics (%) are out-of-bag accuracy 

statistics reported from rminer algorithm (random forest model). Presence/ absence 

statistics are the true positive and true negative classification rates, and corresponding 

Type I and II error rates, for whether seagrass was predicted as present or not. 

 

 

    Feb. 2018. Mar. 2018. 

    Overall accuracy. 

  
 

91 93 

    
 

 

    User accuracy. 

Seagrass class Absent. 98 98 

 - 3 tier scale. Low. 69 74 

  Medium. 62 86 

  High. 88 88 
 

    

Seagrass presence / 

absence. 
   

 Presence. 89 92 

 Absence. 98 99 

    

Type 1 error. 0.02 0.01 

Type 2 error. 0.11 0.08 

   

  



 

254 
 

Table 6.5. Within-classifier accuracy metrics in terms of agreement in classification 

outcome between the predicted map and actual measured seagrass density class of 

independently measured square test-areas, for 10-tier (decile) and 3-tier (high, med. low) 

class sets, and human-interpreted classes. 

 

 Statistic. Feb. 2018. Mar. 2018. 

Number of test-areas. 48 48 

Number of points. 3072 3072 

      

10-tier classification, computed seagrass density reference: 

Correlation (predicted vs. actual). 0.90 0.89 

Regression coeff. (, intercept). 0.09, 0.09 0.08, 0.02 

Regression fit (R2). 0.80 0.80 

Agreement by 10 classes. 0.42 0.45 

Agreement by pres./abs. 0.85 0.96 

      

3-tier classification, computed seagrass density reference: 

Correlation (predicted vs. actual). 0.90 0.85 

Regression coeff. (, intercept). 0.26, 0.06 0.22, -0.004 

Regression fit (R2). 0.82 0.73 

Agreement by 3 classes. 0.68 0.74 

Agreement by pres./abs. 0.87 0.96 

      

3-tier classification by human visual interpretation:   

Correlation (predicted vs. actual). 0.88 0.85 

Regression coeff. (, intercept). 0.23, 0.048 0.21, 0.012 

Regression fit (R2). 0.77 0.73 

Agreement by 3 classes. 0.69 0.64 

Agreement by pres./abs. 0.91 0.96 
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6.4.4    Classification of mid-altitude imagery using a low altitude reference 

Classification of the mid-altitude aircraft-sourced imagery using low-altitude 

multispectral RPA-sourced imagery yielded low correspondence between predicted and 

actual classes on the 10-tier decile scale of measured seagrass density, although when 

generalised to presence/absence of seagrass there was high accuracy near to the ground 

reference transects (Table 6.6). Spatially, seagrass presence/absence estimates (with 

decile classes fitted to account for variability) yielded accurate seagrass extent-mapping 

close to the training reference, but error increased with distance away from these ground 

observations. There was notable error and when moving from the coarse conditions of the 

study site (largely sandy ‘ridge’ with water-carved microtopography) to other major 

substrate character (e.g., permanently waterlogged flat mud, or stream channel) (Figure 

6.8.). This indicates that separate training data may be required by each major section of 

the estuary and warrants further investigation.  
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Figure 6.6. Change in seagrass density-class between February and March 2018 survey times, and for the two class-sets tested (10- and 3-tier 

class system). Black boxes on aerial photography overview map (e) show the locations of the enlargements above. The colours in the upper 

frames indicate reduction in seagrass density (reduction intensity orange  red hues) or increased density (gain intensity pale  rich green hues), 

with black indicating no change or absent.  

a) b) 

c) d) 

e) 

10-tier class set 

3-tier class set 

a) and c) 

b) and d) 

Overview Overview 

Change key:   100% decline               No change                                  100% gain    
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Figure 6.7. Predicted and actual change in seagrass density within 48 test-areas. Axis 

units are shift in density class, where a positive value indicates gain in seagrass density, 

and negative indicates decline. Two class-division scales were assessed: a) a 10-tier class 

division; and b) a 3-tier class division. Solid trend-lines show linear regression fit of data, 

and dotted lines show the line of perfect class agreement. 

  

a) 

b) 
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Table 6.6. Classification outcome after using the 30 m altitude multispectral 

classification map (Parrot Sequoia camera, 2.7cm pixel GSD) to train multispectral 

imagery collected at 250-300 m altitude (Micasense Red-Edge camera, 250 mm pixel 

GSD), where classification statistics are based on sampling points measured along the 

ground-reference transects, with class-observations calculated from accurately digitised 

horizontally projected leaf area. 

 

 
Producer User   

 
Producer User 

 

accuracy 

(%). 

accuracy 

(%).   
 

accuracy 

(%). 

accuracy 

(%). 

Absent 98 88   Absent. 96 88 

1 0 0   Present. 71 93 

2 0 0   
   

3 13 20   
 

 
 

4 3 5   
 

 
 

5 0 0   
 

 
 

6 0 0   Overall 71 
 

7 5 4   accuracy  
 

8 0 n/a   (%). 
  

9 81 21        

10 26 19         
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Figure 6.8. Classification outcome after using the 30 m altitude multispectral 

classification map (Parrot Sequoia camera, 2.7cm pixel GSD) to train multispectral 

imagery collected at 250 m - 300 m altitude (Micasense Red-Edge camera, 250 mm pixel 

GSD). Black pixels show estimated seagrass (a), and absence of black indicates predicted 

absence of seagrass. Green polygons in (a) show the actual presence of seagrass as 

measured by precision ground survey (refer to Chapter 3 for description). Red-Edge 

camera imagery for reference (b). Central to both frames is a rectangle showing the area 

of interest captured by the three ground-observation transects.  

a) 

b) 
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6.5    Discussion 

This Chapter 6 maps seagrass coverage based on measured horizontal leaf area for 

two replicate surveys, February and March 2018. The relationship between predicted 

seagrass density class estimation and measured horizontal 2D leaf area was determined to 

be linear with high model fit (Figure 6.5). Change in seagrass presence and density-class 

was quantified using difference-maps on 3-tier (high, medium low) and 10-tier (decile) 

density-scales (Figure 6.6). The classification performance of a model trained by traced 

seagrass references is higher in accuracy than a model trained using visual interpretation 

references (Section 6.4.3). However, the time-cost of tracing the seagrass is substantial 

and suited to situations where high monitoring sensitivity is required. Classified 

multispectral imagery flown at 30 m altitude was used to classify multispectral imagery 

captured at 250 m – 300 m altitude (Section 6.4.4). The classification yields predictions 

with moderate classification accuracy near to the reference training samples, and error 

that increases with distance from the training samples (Figure 6.8). 

The classified maps yielded information about seagrass meadow structure and 

regions of change within seagrass patches. The classification method is suitable for 

mapping seagrass density in terms of measured leaf area, as well as detailed 

presence/absence mapping. The method is reliable for extracting the seagrass feature for 

medium and high-density classes, with low density seagrass being confounded with areas 

seagrass absence. Change detection is reliable when there is moderate change, but error 

appears in the change-characterisation when seagrass density differences are subtle. 

Designating subtle change as non-informative noise raised the accuracy of change-

detection. Therefore, application of the method for seagrass change monitoring may 

consider discarding minor change by exclusion filter, focusing on change in high 

confidence classes, and factoring this into monitoring design at large scale. 

Classification outcome for density by measured leaf area is strongly correlated with 

seagrass density, but inexact in specific class attribution (when 10-tiers of density scale 

granularity are used). Seagrass presence/absence estimates, calculated by way of density 

class intermediate processing, are highly reliable (Table 6.3 and Table 6.4). Type 1 and II 

error for presence/absence estimate were small for both class systems, indicating that both 

the false prediction of seagrass presence and the failure to detect seagrass presence are 

low. This further indicates that application of the method for binary seagrass extent 

mapping is reliable, noting that presence/absence mapping was modelled here by way of 

the end-member density classes. 
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The ten-tier class-set allows finer detail in change to be observed than the 3-tier 

class set. However, measuring coarse tendency in change (growth, static, decline) is still 

achievable using the lower scale granularity. Classifying images using digitised seagrass 

leaf area yields better classification performance than when using visual interpretation of 

classes. However digitising seagrass is significantly time-consuming. Visual 

interpretation of density scale is ~ 100-fold faster than tracing seagrass. The gain in 

classification performance by tracing seagrass may not be worth the time investment 

unless: i) time is not a limiting factor; ii) high scale granularity is required for the 

particular monitoring precision; or iii) a higher monitoring sensitivity is required than that 

of the visual interpretation method. Development of a reliable automated close-range 

seagrass feature extraction process from ground photography would neutralise this time-

quality trade-off. 

The classification accuracy metrics derived from the random forest algorithm 

indicate that better classification is possible by using the 3-tier density scale rather than 

10-tiers. These accuracy measures are based on segmentation-polygons used for seagrass 

digitisation and training points. Applying independent test-squares of unknown mixed 

content for the purpose of outcome assessment, the 3-tier classification scale similarly 

yields higher class agreement per survey than the 10-tier scale (noting the different scale 

granularity) but performing worst in terms of agreement in change designation. 

Therefore, the three-tier scale is recommended for monitoring where coarse change in 

seagrass is required, and the ten-tier scale where fine detail of seagrass change is sought. 

In this analysis, high density seagrass classified with higher accuracy and better 

outcome class agreement than sparse density seagrass. In a similar study that mapped the 

seagrass Zostera marina, Nahirnick et al. (2019b) demonstrated higher accuracy in dense 

seagrass, although their survey measured submerged seagrass using manually classified 

segmentation areas. Similarly, a study using high resolution Worldview 2 satellite 

imagery (Baumstark et al., 2016) demonstrated lower classification for the sparse 

seagrass classes as compared to their dense class. In contrast, seagrass research by Duffy 

et al. 2018 suggests that classification accuracy was greater in sparse rather than dense 

areas, noting their use of wide-band consumer imaging rather than multispectral narrow-

band imaging without infra-red spectra. 

 Assessment of classification accuracy was based on 48-test-squares at six 

locations. Analysis could have benefitted from more test areas over more of the study 

area. This number was limited by the timeframe to accurately digitise seagrass and the 

requirement for high levels of spatial alignment. A recommendation for future research is 
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to develop automatic seagrass feature retrieval from the images taken at ground level, so 

that models are trained using large amounts of ground-observation data circumventing the 

manual overhead of accurately digitising seagrass density. This was attempted in the 

present study but was not easily applicable using the Parrot sequoia camera which has 

lens geometry arranged for flying heights above ~6 m (image misalignment was 

unusable). 

It was difficult to avoid manual (human) judgement in forming the classification 

model and survey method. Classification of remote sensing images by human eye can be 

successful (e.g., Husson et al., 2014a), but also can be prone to subjective error 

(Congalton and Green 2009). Subjective bias potentially could arise through choice of the 

classification ontology, judgement of density class attribution in the training dataset, 

repositioning of segments to correct for misalignment in spatial overlay, ground-camera 

orientation control, and positioning of ground-control-point markers within the 

photogrammetry software. In terms of the seagrass survey, there could also be user bias in 

the choice of survey conditions and time of year, and in particular the timeframe since 

last major sediment/detritus/shell disturbance event. 

Training of the classification model using accurately traced seagrass leaf area 

polygons as a measure of density indicates a likely ceiling for classification specificity 

using this camera and survey specification. Visual interpretation of training classes is less 

precise due to potential interpretation error, but the outcome is similar to that of the 

equivalent leaf area training class set (3-tiers) when modelled in this classification 

framework. Class agreement between predicted and actual maps is only slightly lower for 

the visual interpretation method than the measured leaf area in terms of the mapped 

outcome. The task of tracing leaf area polygons was time-consuming and effectively 

quadrupled the total data collection time compared to rapid visual interpretation of 

training density class. Visual interpretation was reliable at 3-tiers of class granularity, and 

results demonstrate that the method yields useful classification with 3-tiers. However 

visual interpretation may not be feasible at higher granularity, in which case investment 

in manual digitising may be warranted. Visual interpretation is still in common use in 

recent seagrass low altitude mapping research (Alexander et al., 2008; Barrell and Grant 

2015; Chayhard et al., 2018b; Konar and Iken 2018; Nahirnick et al., 2019a; Nahirnick et 

al., 2019b). Visual interpretation also yields classification performance similar to that of 

an object-based image analysis workflow using high resolution satellite imagery 

(Baumstark et al., 2016). In the current study, visual interpretation yields similar 

classification outcomes (under 3-tier class set) as compared to the digitised and computed 
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leaf area, so these results illustrated the continued value of human visual interpretation for 

preparation of training data. In this study visually attributed per-segment seagrass classes 

agreed with measured leaf area in 88% of test-cases. This rate, and corresponding 

classification accuracy upon map-production, may improve under the guidance of a visual 

reference library for observer interpretation training and bias-elimination (an example is 

provided in Chapter 7 Appendix 7.8.1). 

Classification of a secondary mid-altitude aircraft-sourced multispectral image 

using the primary RPA image results in good differentiation of seagrass from substrate, 

but poor density class attribution. Lack of seagrass density class agreement between the 

secondary classification and empirical ground observation may be related to difficulty in 

aligning imagery accurately to sub-pixel scale (on aircraft imagery), or due to sub-pixel 

content mixing as there was variation in seagrass density below the scale of individual 

mid-altitude pixels. Classification of seagrass presence/absence was accurate near to the 

ground observation points (e.g., up to ~30 m) but accuracy decayed with distance from 

the reference transects. This result indicates that additional ground reference transects 

would be required across the greater scene to fully model variability in substrate and 

wetness environment. In terms of applying the method at large scale, depending on 

estuary composition it may be more appropriate to use smaller RPA image patches 

allowing more sampling spread out over the range of estuary conditions than fewer large 

patches. Further development of this secondary classification was beyond the scope and 

design of the study which focussed on the RPA method at one site but warrants further 

investigation at estuary-scale of consideration where major estuary substrate 

environments can be modelled. 

 

6.6    Conclusion 

In this chapter, RPA-sourced multispectral survey images were classified using 

digitised horizontal leaf area to quantify seagrass density. Classification accuracy is good 

for dense seagrass classes, but less so for sparse seagrass. There is a high correlation and 

a significant linear relationship between predicted and actual seagrass density classes. 

Classification performance is maintained across a timeframe within which there is visible 

notable change in seagrass density across the study area. Consequently, image 

classification by horizontal leaf area is demonstrated as a viable seagrass mapping 

method. Class attribution for the training dataset yielded classified images with similar 

accuracy to that of the equivalent measured seagrass leaf area, so visual interpretation is a 

viable alternative if time is short for generating the training dataset. Ten classes detect 
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finer detail than three classes for depicting sparse seagrass condition and change but is 

also more susceptible to false inclusion of non-seagrass content as predicted sparse 

seagrass. Application of the method to condition monitoring at estuary scale could focus 

on the status and change in the extent of the medium and high-density seagrass. 
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CHAPTER 7 
 

7    Chapter 7 Determining estuarine seagrass density measures from low 

altitude multispectral imagery flown by remotely piloted aircraft 

 

7.1    Justification and purpose 

Seagrass in New Zealand is considered to be under pressure with declines recorded 

in many places around the country. The overall status of seagrass nationally is not clear 

due to a deficiency of monitoring data for many sites. Considerable efforts are being 

made to expand the monitoring coverage in New Zealand and expand methodology 

beyond manual ground survey or map-digitising, to crowd-sourced data collection and/or 

automated remote sensing methods whereby monitoring return-on-investment can be 

elevated (Pohl 2015). There is as yet no standard agreed method for monitoring the 

condition of seagrass. Remote sensing methods are well established in terms of coarse 

satellite and aircraft image analysis, but there remains the challenge for these methods in 

differentiating sparsely growing seagrass from background and understanding the 

detection limits in terms of the seagrass density gradient. Sparse seagrass grows as a 

relatively dark silhouette against a bright sediment background. The training data 

required to classify satellite and aircraft imagery requires visitation to the estuarine site, 

with personnel traversing the flat terrain, wielding GPS-camera and quadrat, until a 

representative ground sample is attained. Travel across seagrass can damage the meadow 

and not all parts of the estuary are accessible on foot. 

Remotely piloted aircraft are a relatively new technology that have potential to add 

capability and cost-efficiency to the task of large-scale estuarine seagrass monitoring, 

while reducing physical impacts to meadows via trampling. Remotely piloted aircraft 

provide the opportunity to improve on classification performance over satellite and aerial 

imagery due to their versatility for conducting spatially precise operations at low speed 

and low to the ground. (e.g., Feng et al., 2015; Tang and Shao 2015). In New Zealand 

piloted aircraft operating under visual flying rules (VFR) are limited to the minimum 

flying height of 500 feet above ground level (including most intertidal estuary areas) or 

1000 feet over built-up areas or assembled persons (Civil Aviation Authority Rule 

Consolidation Part 91), imposing a physical limit on the achievable image detail. As 

flying height for aircraft survey is lowered, potential for motion-blur increases, so to 
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maintain image clarity the flight velocity needs to reduce proportionally to flying height. 

For fixed wing aircraft, a minimum air speed is required across the flight surfaces to 

maintain lift, stability and control, so there is a lower safety-limit on flying speed, that 

imposes a ground proximity-limit for camera survey. For example, a Cessna 172 requires 

air speed of approx. 70 kn (130 km/h or 36 m/s) for safe stable survey flight. At this 

speed, a camera with 1/2000th second shutter speed would experience motion blur of 

~2cm across the ground, such that small objects (like seagrass) may blend 

problematically with adjacent materials thereby confusing an image classification. 

Aviation rules regulate normal RPA flight to the range 0-400 feet above ground level 

(Civil Aviation Authority 2018). Fixed-wing RPA with low wing loading can maintain 

flight at airspeed down to ~ 10 m/s, and multi-rotor RPA can sustain constant controlled 

speed to 1 m/s or lower depending on hardware setup and wind conditions. These 

precision flight characteristics allow very high-resolution imagery to be captured low to 

the ground with high feature definition, which may be important for differentiating the 

small structural dimensions of seagrass foliage from the small objects (shells, detritus, 

wrack, mangrove seeds, brown and green macroalgae) that are common on many 

estuaries. 

 

7.2    Main findings by chapter 

Chapter 3. 

In this remote sensing method assessment, field research was conducted at 

Wharekawa Harbour on the eastern coast of Coromandel, North Island, New Zealand. 

This site exhibits a multi-decadal pattern of seagrass loss then regrowth (as far as can be 

discerned from historical aerial photography by visual interpretation), then reverting to 

loss again in recent years. Precision ground survey demonstrates marked seagrass loss 

over the year of the study following two major rainfall events and at a time of high 

vulnerability to plantation-forestry sediment-inflow. Seagrass survey using consumer 

hand-held GPS units (on a 2 m survey pole) yielded positional data with absolute 

accuracy of <3 m and typically less than 2 m, and <0.5 m for precision corrected GNSS 

under rapid survey. 

 

Chapter 4.  

Drainage of residual ebb waters from an estuary, after the bulk water column has 

drained, creates a mosaic of rapidly or slowly drying estuarine surface or permanent 

shallow waterlogging/pooling that has potential to interfere with spectral observations 
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during the survey of an estuary. Although minor shifts in spectral coordinates of seagrass, 

and other surface material were recorded, there was no discernible impact on image 

classification performance or classification outcome. In general, it is possible to generate 

valid seagrass density mapping across the whole window of time that the tide is out, with 

one notable exception: during the early stage of residual water drainage (i.e., immediately 

after the water column has ebbed), areas at the periphery of the photogrammetric image 

grid are susceptible to glint or glare interference that creates false surface feature-

identification. This can be mitigated with RPA survey conducted with low sun angle (e.g., 

<45o ) and structured with high levels of photo-overlap such that the rendered image 

mosaic is comprised of image-parts at near-nadir camera orientation, which reduces this 

glare effect. Conversely though, nadir imagery taken with high sun angles contains 

significant direct sun reflection off wet parts of the surface that confound the spectral 

information. If fieldwork timing is flexible then setting the time of survey to later during 

the low-tide window (e.g., > 1 hour after bulk-water has cleared from the surface) will 

minimise this observed glint/glare effect so long as the sun angle is ~45 degrees or lower. 

The use of a multispectral camera yields more accurate seagrass feature extraction 

compared to a conventional scouting camera in visual red-green-blue bands. This is 

largely due to the availability of red-edge and infra-red bands that allow highly 

contrasting vegetation indices and texture layers to be derived from camera bands and 

factored into classification and seagrass feature extraction. The benefits of the 

multispectral camera may also relate to the fast-global shutter (compared to the rolling 

shutter of the conventional camera) which provides better spatial consistency during RPA 

survey motion. Despite this, the scouting camera will generate basic seagrass mapping, 

indicating that a conventional camera may be suitable for feature extraction at some 

locations where there is good seagrass contrast against the scene background. Note that 

this is a comparison between 16 megapixel (consumer grade) and 1.2 mega pixel 

(multispectral) cameras contained in the same device housing: at time of capture the 

consumer camera has greater resolution to capture detail in the seagrass meadow structure 

but lower spectral detail than the multispectral sensor.  

 

Chapters 5.  

Object-based image analysis (OBIA) methods have provided improved 

classification performance in some applications where image-object geometry provides 

added feature-separability to a classification model, although OBIA benefits may be 

dependent upon the size of ground objects or the scale of land-cover features with respect 
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to image pixel size. For the case of seagrass feature extraction using RPA-mounted 

multispectral imagery flown at 30 m altitude (~2.7 cm pixel ground sampling distance) 

OBIA does not appear to convey classification benefits, and pixel-based image analysis 

(PBIA) yields the best feature-separability for demarcating seagrass presence/absence and 

estimating seagrass density. At this image scale, visually contaminating objects (such as 

shells, leaves, pinecones, and sticks) are approximately 1-2 pixel in size and become 

aggregated within segmentation polygon objects when OBIA is applied. RPA operation at 

a different altitude (i.e., pixel size) may well benefit from the OBIA approach, and each 

flying height should have an assessment of optimal segmentation scale (including pixel 

scale) for optimal classification performance. 

Seagrass and sediment have separable spectra, but shell and detritus are major 

contaminants of the seagrass scene and confound the classification of seagrass density 

class. High density seagrass is distinct from other seagrass density classes and from 

sediment, but there is higher classification error for the sparse density seagrass classes. 

Modelling the density classes within the classifier yields accurate estimates of seagrass 

presence/absence. Survey for long term extent monitoring would benefit from i) avoiding 

post-storm conditions when transported shell and detritus cover a seagrass scene; and ii) 

selecting the time of year when seagrass density is near the annual maxima with 

minimum sediment burial. For Wharekawa Harbour and similar sites, the optimal survey 

window is estimated to be in the months of February and March, extending to April but 

prior to high rainfall events (i.e., after several weeks of settled weather conditions). 

Three classifiers (linear discriminant analysis, support vector machine and random 

forest) and three feature selection options (no selection, collinearity reduction and 

recursive feature elimination) were assessed for classification performance. The 

assessment demonstrated that the classifiers support vector machine and random forest 

performed with greater accuracy than linear discriminant analysis. Furthermore, random 

forest performed with marginally greater accuracy than support vector machine for small 

segment and pixel-based image analysis. No benefit was identified for random forest in 

reducing the number of features (i.e., predictor variables) in the statistical classification 

model. The highest accuracy was achieved in models with all features fitted. Calculation 

of vegetation indices and texture layers each increased classification performance 

compared to only fitting the camera bands into the classification model, with the camera 

spectral bands and vegetation indices strongly influencing classification accuracy. Object 

geometry made only negligible contribution to classification accuracy under the mean-

shift segmentation method used here. Available camera bands included red-edge (RE) 
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and near infra-red (NIR) bands. Secondary versions of vegetation indices were assessed 

by substituting RE in place of NIR in the vegetation index formulae, and results indicate 

classification improvement by using red-edge rather than NIR in the index equations, but 

noting that as individual predictors, NIR was more influential that red-edge. It appears 

that red-edge forms a good contrast reference against the red band where there is 

photosynthetic material. However maximum classification accuracy was greatest by 

including both NIR and equivalent red-edge-based indices together in the random forest 

model (i.e., fitting all available predictors).  

Three repeated surveys classified seagrass with high overall accuracy, and the 

highest accuracy was achieved during the later surveys that were unaffected by the 2017 

rainfall events. Microphytobenthos (MPB) and other chlorophyll sources appeared as 

sparse seagrass in the classification maps. Therefore, application of the method should 

factor in classes for this and other potential chlorophyll sources (e.g., the green algae 

Ulva spp.) and/or consider avoiding the conditions when MPB is prevalent. For 

Wharekawa Harbour, February was a time of high MPB (January was not sampled), 

March less so, and in April MPB largely absent. Therefore, as indicated above, RPA 

survey operations would benefit from a target time for survey in February but postponing 

if high MPB/algae levels are prevalent, and before more unsettled weather patterns set in 

during March or April. The 2017 rain events resulted in substantial detritus, shell and 

sediment deposition upon and around the seagrass, compromising seagrass density class 

estimation. 

 

Chapter 6 

This chapter demonstrates that an RPA fitted with a multispectral camera flying at 

30m above ground level can detect change in seagrass coverage and presence with 

moderate agreement to actual change in leaf area. 

The visual interpretation method used to attribute seagrass density to ground 

observation, agreed with precisely measured horizontally projected leaf area 88% of the 

time with some minor misattribution at mid-density (see Chapter 6). Classification 

accuracy was higher when seagrass was accurately traced from ground-level photography 

rather than estimated by eye. Classification was higher when modelled on the 3-tier class 

scale (low, medium, high density seagrass) compared to the 10-tier scale.  

The timeframe required to trace the seagrass was substantial, being > 100-fold 

more time consuming than the visual interpretation method. The time-cost required to 

trace the seagrass may outweigh the return in additional classification accuracy, as visual 
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interpretation alone achieved good overall accuracy in the range 85-88%. Classification 

on a 10-tier decile scale would likely be too granular for accurate class-attribution by eye. 

Accordingly, if sensitive change detection was required on a decile scale, then leaf area 

tracing would be warranted.  

 

7.3    Operationalising the method 

An overarching purpose of this research was to test an RPA survey method to 

enable the collection of discrete precise seagrass coverage data, and to allow scalability to 

larger survey scales, including application to the task of training image classification for 

high-altitude long-range aircraft capture. There were three components considered as part 

of a coordinated (possibly adaptive) approach to estuarine survey for seagrass: i) image 

capture near to ground-level; ii) low altitude multispectral photography (30 m above 

ground); and iii) multispectral aircraft photography at ~300 m. The research demonstrates 

that ground and low altitude image collection may be collected on the same estuary 

excursion, and the aircraft photography imagery on the same or adjacent day if 

coordinated carefully with a pilot. Potentially all three could be captured using the same 

camera and therefore sample the same spectral information. This image consistency and 

potential for rapid deployability may be important for estuaries where conditions change 

rapidly with tidal water movement. In more detail: 

 

Near to ground point capture: 

The research collected ground-level high resolution photography on 5 m 

increments along a straight transect. Image frames were independent of other frames, and 

spatial positioning was a result of: i) consistent orientation normal to ground; ii) lens 

correction to bring about rectilinear pixel dimensions across the image; iii) GPS 

positional accuracy; and iv) orientation control with respect to the transect direction. This 

design was adopted to resemble an approach that could be implemented using an RPA 

with a flight programme on straight line of travel. To achieve the required positional 

accuracy, flights would need to be navigated by a decimetre-accurate positional control 

technology (e.g., the Emlid ‘Reach’ or Proficnc ‘Here+’ real-time-kinetic (RTK) 

differential GNSS modules), along with a gimbal to ensure the required normal-to-ground 

and heading orientation. In this way, the RPA acts as a mobile quadrat (Figure 7.1). This 

level of data provides the observer with the ability to determine unambiguously what 

material is on the ground, providing an empirical spatial and compositional reference for 

designing and training the classification of higher altitude imagery. A conventional 
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camera was used in this case, although there is potential to gain rich information and 

processing automations by using a multispectral camera at ground level if a lens 

correction and band alignment solution can be programmed. This was attempted in this 

study with unsatisfactory band alignment and hence was not adopted. 

 

Low altitude multispectral photography: 

The primary contribution of this thesis relates to image classification and seagrass 

feature extraction using low altitude (30 m) multispectral photography georeferenced to 

relate spatially to the ground-level reference photography. This tier of imagery provides a 

predicted seagrass density, as well as high-confidence presence/absence, and moderate 

capability to detect change at sub-meadow scale. There is sufficient detail in this imagery 

to identify the meadow structure, surface material and substrate topography, and assess 

the impact of classification contaminants such as detritus, shell, and MPB/algae. With 

sufficiently representative training data, predicted classes are sufficiently accurate to 

apply to the task of training higher-altitude imagery at greater coverage extent. However, 

capture of imagery at this detail level is slow to acquire (5 m/s) with high battery power 

demand per unit of coverage area, so may not be cost-effective for whole-estuary 

application (Figure 7.2). Radiometric normalisation between patches was not examined in 

this study and requires examining before widespread application can be recommended. 

However, this method is highly suitable with good repeatability for establishing 

permanent monitoring ‘plots’ for seagrass population condition monitoring and change 

detection as part of an estuary-wide long-term sampling network (Figure 7.3).  

 

Aircraft multispectral photography at 300m: 

Seagrass mapping by RPA is currently not suitable or cost-effective for large 

estuaries due to current battery, height and operational range limits, as well as 

complexities with regard to normalising imagery across long timeframes. Accordingly, 

RPA are not yet a viable technology for exhaustive regional scale estuary monitoring 

directed at obtaining consistent imagery for all estuaries around a regional coastline.  

RPA mounted multispectral camera imagery are demonstrated here to yield significant 

benefits in terms of image quality and classification outcome. The same type of camera 

can be mounted on a piloted fixed wing aircraft and generate useful imagery at whole 

estuary scale provided sufficient ground observation data is available to train a model. It 

is noted that large volumes of training data and scene-subsetting may be required to 

account for substrate and wetness variability across an estuary. 
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As such, application of this method could involve the rapid sequential launch of 

two-RPA flights per survey patch (ground reference + low altitude) with a concurrent 

flight (if a second multispectral camera is available) by a fixed wing aircraft sortie over 

the same site using the low-altitude tier for comprehensive training of the large-scale 

classification model. 
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Figure 7.1. An RPA flying under GPS guidance can target specific sampling points along 

programmed routes as a ‘mobile quadrat’. In the case below the RPA is flying along a 

reference transect for calibration purpose. Fitted with RTK-GNSS guidance and gimbal 

control of camera orientation, decimetre positional accuracy of image contents is feasible. 

 

 

Figure 7.2. Hypothetical example of an operational work-breakdown for an exhaustive 

estuary-wide survey of Wharekawa Harbour using an RPA flying at 30 m altitude. Each 

nominally coloured segment represents the approximate safe flight-range achievable per 

RPA battery. Under operational deployment, within each segment would also be RPA-

capture of ground reference photography under gimbal stabilisation and precise autopilot 

control (background imagery and terrain are Google Earth 3-D view with example flight-

tracks overlain).   
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Figure 7.3. Hypothetical example of how the 

method described here might be escalated to 

estuary scale by sampling, to provide measures of 

seagrass condition for long term monitoring. Lines 

of dots are triggered positions for the RPA to 

capture near-ground-level reference photography; 

then at mid-level the purplegreen rectangles 

indicate 30 m altitude high-precision multispectral 

feature extraction, trained using ground reference 

data, and with sufficient detail to detect change in 

seagrass density with accuracy; then at the highest 

level, the whiteblack background image (NDVI 

visualisation in this case), is derived by 

transferring the multispectral camera from RPA to 

fixed wing aircraft for estuary-wide capture, 

providing coarse presence/absence data and 

seagrass extent, trained using then mid-level 

imagery feature feature-extraction. 
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7.4    Linkage to management 

The mandate to survey seagrass arises from a number of drivers ranging from local 

up to national in scale. At the national level, the Environmental Reporting Act 2015 and 

the Resource Management Act 1991 (RMA) are the key drivers for production of surveys 

in the coastal marine area. The NZ Coastal Policy Statement 2010 (NZCPS), prepared 

under the RMA, provides direction for the management of the coastal environment and 

includes policies directed at monitoring. Additionally, Regional Councils have the 

function to manage the coastal marine area, in conjunction with the Department of 

Conservation, under s 30(1)(d) of the RMA and for monitoring the state of the 

environment under s 35(2) of the RMA to the extent compatible with these functions. 

Seagrass extents are currently collated at national scale by Department of 

Conservation around the New Zealand coastline under the SeaSketch programme (Pohl 

2015) to enable quantitative marine spatial planning and habitat prioritisation. Largely 

this consumes regional and local data in varied format 

Regional seagrass mapping provides information to quantify coastal habitat 

condition with respect to Council statutory responsibility under the NZCPS to maintain 

coastal habitat and ecological processes and protect from adverse effects (Department of 

Conservation 2010), and to monitor seagrass as a part of this scope under environmental 

reporting requirements (Waikato Regional Council 2012b; Ministry for the Environment 

& Stats 2016). Inter-regional co-management of a coastal zone can generate seagrass 

extents that augment regional habitat mapping and provide a local and community spatial 

information resource (Waikato Regional Council 2013; Sea Change 2017).  

Local survey-need arises from Regional level plans including ‘Zone management’, 

‘Catchment management’ and ‘Land Management’ plans (e.g., O’Donnell 2009) where 

estuaries are identified as natural resources or sites of cultural value, including seagrass as 

coastal or biogenic habitat (Needham et al., 2013; Morrison et al., 2014; Anderson 2016). 

Seagrass survey is also relevant to local community-oriented harbour care management 

plans and agreements, although seagrass mapping largely defers to agency-led status and 

trend mapping. Seagrass presence can be considered one indicator component of 

successful integrated catchment management in terms of appropriate land and natural 

resource use (e.g., Sea Change 2017).  

Local targeted survey also has relevance for the production and audit of 

Assessments of Environmental Effects in the resource consent process under the RMA. 

(e.g., Royal Forest & Bird Protection Society of New Zealand Inc v Bay of Plenty 

Regional Council [27/9/2018]). In the coastal marine area, activities are controlled by 
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Regional Coastal Plans produced by Regional Council and activities are tested against the 

requirements of the plans. Upon grant of a consent, conditions may be imposed which 

require monitoring under s 108(4) of the RMA. Surveys may also be made for 

compliance assessment where targeted seagrass survey may establish a baseline against 

which impact can be measured. However, a database search of New Zealand resource 

management case decisions was unable to locate a decision of a New Zealand court 

where a specific area of seagrass had been monitored with respect to quantifying resource 

use activity.  

The seagrass method tested in this research is applicable at local, regional and can 

provide value for national-scale data collation. The exact configuration the RPA survey 

(size of plot, length of transects and lighting parameters etc) would depend of the 

objective of the survey. Multispectral RPA survey at 30 m altitude provides detail about 

the structure of the scene with pixels of a size equating to the size of objects on the 

ground or smaller. Results show that coarse change can be detected reliably. The method 

is scalable. Small areas of seagrass under pressure, or areas that are the attention of 

potential adverse effect under a resource activity, can rapidly have a baseline documented 

by RPA survey, and change determined at a later survey so long as there is sufficient 

survey positional accuracy with respect to a fixed datum. Data can be collected on short 

notice and analysed later. Scaled up, the method can provide baseline, status and change 

for small estuaries or priority sections of larger estuaries for larger scale land use or water 

quality impact assessment (e.g., the effects of forestry sediment and/or stream bank 

erosion). Such RPA survey can also collect detailed data with which to potentially train 

larger-scale image classification for large estuaries or regional mapping. Success of this 

approach may be dependent on collating a sufficiently large and widespread ground 

reference sampling deployment such that models account for variability in estuary 

substrate and wetness environment (requires further research). 

 

7.5    Method limitations 

This research assessed the ability of remote sensing by RPA to distinguish seagrass 

from its background and assess condition, with focus upon one flying regime, and 

acknowledging that there are many other aerial survey configurations that could be 

applied (e.g., different flying heights and photogrammetric overlap). The 30 m flying 

height was chosen as a practical balance in the trade-off between pixel size, flying range 

per battery and a stable and blur-free minimum flying speed. Lower flying height may 

yield finer image resolution with potential improvement to classification accuracy with 



 

277 
 

reducing pixel size (e.g., Kovacs et al., 2018) but with reduction in useful survey area. 

The key limitations relevant to application of this 30 m RPA survey for seagrass feature 

extraction and condition measurement include the following. 

 Results are most relevant to survey of an area similar to the study site, using RPA 

derived multi-spectral imagery flown slowly at 30 m altitude under 75-80% 

overlap in the photogrammetric survey plan. Other areas on this estuary may 

present a different optimal classification, and other estuaries may have varying 

substrate types. Each site may require a ground observation set under a design 

specific to the variability in seagrass presentation, substrate types and organic 

content of each estuary. Initial assessment (or higher-altitude widespread imagery 

capture) may be required prior to configuring a more detailed survey design 

conducted at 30 m. 

 The research focused upon one survey site, and the method is relevant to any 

number of discrete survey sites with adequate ground reference data. However, 

integration of multiple patches of low-altitude multispectral imagery would 

require careful attention to radiometric equalisation between images. Anisotropic 

variation in glint/glare, reflection and/or polarisation were observed in the 

imagery of this study creating a shift in sensor value, appearing as a colour 

gradient in otherwise uniform scene content. Principally, this occurred at the edge 

of the orthomosaic, and the orthomosaic process normalised the images evenly 

where there is dense overlap in images (i.e., such that near-nadir image sections 

comprise the mosaic with similar reflectance estimation). However, some images 

contained these colour gradients that could not be explained or resolved using the 

observations taken, thereby highlighting the importance of ensuring dense flight 

lines (i.e., > 80% forwards- and side-lap). 

 A significant challenge for RPA survey is radiometric standardisation between 

sorties. The maximum safe flight time for this RPA using the available battery 

type is 15 minutes (i.e., allowing ample reserve power for contingencies), 

resulting in image retrieval equivalent to a 200 m x 50 m quality orthomosaic at 

30 m flying height and 5 m/s scan time. Due to subtle inconsistency in the 

lighting across the captured scenes, and limitations for radiometric normalisation 

in overcast conditions, the data in this study do not indicate an empirical optical 

relationship between seagrass and image digital number that could be applied 

independent of ground referencing at the time of survey. This study was 

conducted on one location within the estuary and there are variations on sediment 
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type and hydrological environment not sampled by the survey plot. Until 

classification performance is understood across the variability of estuary ground-

cover types, it is recommended that there is ground sample and classifier 

refinement per section of estuary based on sediment type and drainage 

environment. As demonstrated here, this can be automated in a script to reduce 

data-handling time.  

 At present, the limited flying range per battery, and the requirement for line-of-

sight operation at all times for airspace safety assurance, limits the applicability 

of RPA as a primary data collection tool for estuarine monitoring. An estuary the 

size of Wharekawa may represent an approximate upper limit to what is feasible 

for comprehensive RPA survey: – for example two RPA pilot teams operating in 

parallel might achieve aerial survey capture across the entire surface area of 

Wharekawa Harbour (below the level of mean high water springs) in approx. 2-3 

sessions across low tide (Figure 7.3), based on the low altitude format tested in 

this study. In the near future, when RPA radio control is sufficiently reliable for 

operation beyond visual range, use of RPA as a primary large-scale survey tool 

may become feasible. In the interim RPA can contribute to automated seagrass 

remote sensing for survey of small estuaries, or discrete focused precision survey 

of parts of larger estuaries, including provision of ground-level reference data to 

support remote sensing at higher altitude aircraft or satellite-based survey, and 

repeated survey at fixed monitoring plots as part of a long-term environmental 

monitoring network. 

 As discussed above, the time of year for survey, recommended from data 

obtained under this research project, is approximately February to April for 

Wharekawa Harbour. This avoids times of high MPB early in this period, but also 

avoids site disturbance from high rainfall later in the period (Figure 7.4). This is 

consistent with the time of year of high seagrass productivity at other sites in 

New Zealand (Ismail 2001). 

 Interference in classification from epibiotic fouling upon seagrass foliage was not 

assessed in this study. Epibotic fouling has been found to have only minor impact 

on reflectance values in other seagrass targets (Bargain et al., 2013; Fyfe 2003). 

The highest levels of diatom and algal fouling observed during the survey year of 

the current study occurred in spring with little or no trace remaining by late 

summer, which further reinforced February-April as an optimum target of 

operational planning. Seagrass reduced in density considerably across the winter 
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as expected by the seasonal habit of Zostera muelleri (Turner and Schwartz 

2006b), but with only minor change in meadow extent at the patch edges where 

there was sediment burial and damage from water flow (Figure 8.4).  

 Sites comprising different sediment or hydrological estuarine characteristics may 

be less susceptible to MPB/algae accumulation or storm damage. Indeed, within 

Wharekawa Harbour there was spatial variability in these interferents. During the 

April 2018 seagrass census, summer MPB/algae was largely associated with river 

inflow points, algae-stained cockle shell accretions, a number of finite locations 

where large populations of swan or Canada goose aggregated and amassed 

droppings, or areas near to the low-tide water interface where foam, slime and 

mobile plant material accumulate (Figure 7.5).  

 The study area for this research was positioned to sample an area of seagrass 

under pressure from sediment, detritus and shell deposition, but was insufficient 

in extent to sample the range of non-seagrass green content on the estuary. Given 

the variation of content on the estuary, it may not be possible to use a limited 

subset of the area for collecting the ground-level training data, and instead it may 

be necessary to divide the estuary in to sections and collect reference data from 

each section separately. Escalation of the method to estuary scale is discussed 

below.  
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Figure 7.4. Change in seagrass across the year of the research study as estimated by NDVI levels (frames on the right), with equivalent 

multispectral false colour imagers for reference. 
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Figure 7.5.  Illustration of the amount of non-seagrass photosynthetic material upon the northern half of Wharekawa Harbour as indicated by the NDVI 
channel (a and b). Key: green hues are NDVI intensity (low to high is white transition to rich-green); the black rectangle shows study area; black 
polygons (a) show verified seagrass (no black indicates verified seagrass absence); solid black arrows (b) show surface MPB/algae associated with river 
in-flow; dashed arrow shows algal staining in waterlogged sediment and cockle staining; dotted arrow shows algal presence at waterfowl feed/roosting 
areas (faeces + algae). Imagery is derived from a MicaSense Red-Edge multispectral camera flown by fixed wing aircraft ~300 m above ground level 
rendered to georeferenced mosaic, with concurrent ground-referencing. 

Salt-marsh 

Mangroves 

a) b) c) 
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7.6    Research recommendations 

Further research questions that arise from this research, in terms of advancing this 

method for wider application for environmental monitoring, include: 

 Is there an optimal RPA flying altitude under the trade-off between density class 

determination and RPA flying range?  

 Does the state of low-tide residual water drainage affect classification accuracy 

and seagrass characterisation at other sites with differing seagrass and sediment 

character to the current study site, e.g., permanently waterlogged seagrass, static 

pooling or clay-mud? 

 Is there an optimal change-sensitivity and monitoring interval timeframe for 

applying the RPA survey method to seagrass environmental reporting? 

 What is the monitoring revisit frequency and sampling density required to 

correctly describe the true spatio-temporal variability in the seagrass at a site, and 

is does this differ between sites.  

 What quantity of ground sampling effort (quantity of ground reference imagery) 

is required to consistently extract the seagrass feature and characterise density 

under this RPA method across an estuary? 

 Can non-seagrass green-sources e.g., microphytobenthos, algae, detritus, stained 

shell, be sufficiently identified so as to eliminate these from seagrass estimates 

e.g., by spectra, texture analysis or object geometry (with estuary-wide focus)? 

 

 

7.7    Conclusion 

In conclusion, this research investigation led to the development and testing of a 

method for RPA survey of intertidal seagrass extent and condition with replication. 

Seagrass character was extracted from precisely geo-referenced multispectral imagery 

flown by low-altitude remotely piloted aircraft over an estuary with the tide drained. The 

spectral character of seagrass and non-seagrass materials was found to change with 

varying residual water drainage during the low-tide window when bulk-water was clear 

of the seagrass meadow, but not to the extent that image classification was compromised. 

Seagrass mapping is feasible across the duration that tidal water is clear of the ground. 

However, given flexibility in time of operation, later in the low-tide window is a 

preferential time to measure and map intertidal seagrasses to minimise glare and glint 

effects on wet surface. 
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An optimal classification procedure was identified from a small selection of 

candidate methods that achieved high classification accuracy with respect to seagrass 

detection and density measurement. The method also yielded good classification results at 

repeated survey times. In the case of RPA survey flown at 30 m using the Parrot Sequoia 

camera, pixel-based image analysis was of higher classification efficacy than the 

segmented image under object-based image analysis, and smaller segments yielded better 

seagrass characterisation than larger segments. The method tested here was able to detect 

change in seagrass density class between two survey times. This research demonstrates 

that seagrass feature extraction from low-altitude multispectral imagery flown by 

remotely piloted aircraft is a plausible option for seagrass population monitoring and 

environmental reporting but requires further calibration for whole- and multi-estuary 

application. 
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7.7.1    Chapter appendices 

Appendix 7.8.1. Seagrass density visual guide for ground photography interpretation. Percentage values are calculated from digitised 

tracing of the horizontally projected leaf area with segmentation polygons. 

 

 

 

 

High density 

Medium density 

Low density 
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