14,983 research outputs found

    Applying modern portfolio theory to the analysis of terrorism: computing the set of attack method combinations from which the rational terrorist group will choose in order to maximise injuries and fatalities

    Get PDF
    In this paper, terrorism is analysed using the tools of modern portfolio theory. This approach permits the analysis of the returns that a terrorist group can expect from their activities as well as the risk they face. The analysis sheds new light on the nature of the terrorist group’s (attack method) choice set and the efficiency properties of that set. If terrorist groups are, on average, more risk averse, the economist can expect the terrorist group to exhibit a bias towards bombing and armed attack. In addition, even the riskiest (from the terrorist group’s point of view) combinations of attack methods have maximum expected returns of less than 70 injuries and fatalities per attack per year

    Proposed cavity Josephson plasmonics with complex-oxide heterostructures

    Full text link
    We discuss how complex-oxide heterostructures that include high-Tc superconducting cuprates can be used to realize an array of sub-millimeter cavities that support Josephson plasmon polaritons. These cavities have several attractive features for new types of light matter interaction studies and we show that they promote "ultrastrong" coupling between THz frequency radiation and Josephson plasmons. Cavity electrodynamics of Josephson plasmons allows to manipulate the superconducting order-parameter phase coherence. As an example, we discuss how it could be used to cool superconducting phase fluctuations with light

    Computational Modalities of Belousov-Zhabotinsky Encapsulated Vesicles

    Full text link
    We present both simulated and partial empirical evidence for the computational utility of many connected vesicle analogs of an encapsulated non-linear chemical processing medium. By connecting small vesicles containing a solution of sub-excitable Belousov-Zhabotinsky (BZ) reaction, sustained and propagating wave fragments are modulated by both spatial geometry, network connectivity and their interaction with other waves. The processing ability is demonstrated through the creation of simple Boolean logic gates and then by the combination of those gates to create more complex circuits

    Vacancies, disorder-induced smearing of the electronic structure, and its implications for the superconductivity of anti-perovskite MgC0.93_{0.93}Ni2.85_{2.85}

    Get PDF
    The anti-perovskite superconductor MgC0.93_{0.93}Ni2.85_{2.85} was studied using high-resolution x-ray Compton scattering combined with electronic structure calculations. Compton scattering measurements were used to determine experimentally a Fermi surface that showed good agreement with that of our supercell calculations, establishing the presence of the predicted hole and electron Fermi surface sheets. Our calculations indicate that the Fermi surface is smeared by the disorder due to the presence of vacancies on the C and Ni sites, but does not drastically change shape. The 20\% reduction in the Fermi level density-of-states would lead to a significant (70%\sim 70\%) suppression of the superconducting TcT_c for pair-forming electron-phonon coupling. However, we ascribe the observed much smaller TcT_c reduction at our composition (compared to the stoichiometric compound) to the suppression of pair-breaking spin fluctuations.Comment: 11 pages, 3 figure

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Excitable Delaunay triangulations

    Full text link
    In an excitable Delaunay triangulation every node takes three states (resting, excited and refractory) and updates its state in discrete time depending on a ratio of excited neighbours. All nodes update their states in parallel. By varying excitability of nodes we produce a range of phenomena, including reflection of excitation wave from edge of triangulation, backfire of excitation, branching clusters of excitation and localized excitation domains. Our findings contribute to studies of propagating perturbations and waves in non-crystalline substrates
    corecore