672 research outputs found

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    Enabling Techniques Design for QoS Provision in Wireless Communications

    Get PDF
    Guaranteeing Quality of Service (QoS) has become a recognized feature in the design of wireless communications. In this thesis, the problem of QoS provision is addressed from different prospectives in several modern communication systems. In the first part of the thesis, a wireless communication system with the base station (BS) associated by multiple subscribers (SS) is considered, where different subscribers require different QoS. Using the cross-layer approach, the conventional single queue finite state Markov chain system model is extended to multiple queues\u27 scenario by combining the MAC layer queue status with the physical layer channel states, modeled by finite state Markov channel (FSMC). To provide the diverse QoS to different subscribers, a priority-based rate allocation (PRA) algorithm is proposed to allocate the physical layer transmission rate to the multiple medium access control (MAC) layer queues, where different queues are assigned with different priorities, leading to their different QoS performance and thus, the diverse QoS are guaranteed. Then, the subcarrier allocation in multi-user OFDM (MU-OFDM) systems is stuied, constrained by the MAC layer diverse QoS requirements. A two-step cross-layer dynamic subcarrier allocation algorithm is proposed where the MAC layer queue status is firstly modeled by a finite state Markov chain, using which MAC layer diverse QoS constraints are transformed to the corresponding minimum physical layer data rate of each user. Then, with the purpose of maximizing the system capacity, the physical layer OFDM subcarriers are allocated to the multiple users to satisfy their minimum data rate requirements, which is derived by the MAC layer queue status model. Finally, the problem of channel assignment in IEEE 802.11 wireless local area networks (WLAN) is investigated, oriented by users\u27 QoS requirements. The number of users in the IEEE 802.11 channels is first determined through the number of different channel impulse responses (CIR) estimated at physical layer. This information is involved thereafter in the proposed channel assignment algorithm, which aims at maximum system throughput, where we explore the partially overlapped IEEE 802.11 channels to provide additional frequency resources. Moreover, the users\u27 QoS requirements are set to trigger the channel assignment process, such that the system can constantly maintain the required QoS

    An Autonomous Channel Selection Algorithm for WLANs

    Get PDF
    IEEE 802.11 wireless devices need to select a channel in order to transmit their packets. However, as a result of the contention-based nature of the IEEE 802.11 CSMA/CA MAC mechanism, the capacity experienced by a station is not fixed. When a station cannot win a sufficient number of transmission opportunities to satisfy its traffic load, it will become saturated. If the saturation condition persists, more and more packets are stored in the transmit queue and congestion occurs. Congestion leads to high packet delay and may ultimately result in catastrophic packet loss when the transmit queue’s capacity is exceeded. In this thesis, we propose an autonomous channel selection algorithm with neighbour forcing (NF) to minimize the incidence of congestion on all stations using the channels. All stations reassign the channels based on the local monitoring information. This station will change the channel once it finds a channel that has sufficient available bandwidth to satisfy its traffic load requirement or it will force its neighbour stations into saturation by reducing its PHY transmission rate if there exists at least one successful channel assignment according to a predicting module which checks all the possible channel assignments. The results from a simple C++ simulator show that the NF algorithm has a higher probability than the dynamic channel assignment without neighbour forcing (NONF) to successfully reassign the channel once stations have become congested. In an experimental testbed, the Madwifi open source wireless driver has been modified to incorporate the channel selection mechanism. The results demonstrate that the NF algorithm also has a better performance than the NONF algorithm in reducing the congestion time of the network where at least one station has become congested

    Signals of Opportunity Navigation Using Wi-Fi Signals

    Get PDF
    Since GPS is generally limited to areas with clear sky view, additional methods of navigation are currently being explored. This thesis explores navigation using Signals of Opportunity(SoOP). The signals chosen for evaluation in this thesis are the common Internet IEEE 802.11a/g signals, or Wi-Fi. This thesis presents SoOP navigation based on cross-correlations of received data from multiple Wi-Fi stations. It shows the effectiveness of the methods using collected Wi-Fi signals in a real-world environment. By using simple statistical representations of collected data in large groups, or windows, cross-correlation calculations can produce timing offsets between simulated stations. The timing offsets, or time di erence of arrival (TDOA) calculations, are used to solve nonlinear TDOA equations to determine a position in 3-D space. This thesis shows simulations using different window sizes, noise strengths, and signal magnitudes. The overall conclusion is that Wi-Fi signaling can be exploited and is a viable source for SoOP navigation methods. Results shown in this thesis present a possibility of zero errors in certain noise environments as well as lowered signal magnitudes

    Contributions to QoS and energy efficiency in wi-fi networks

    Get PDF
    The Wi-Fi technology has been in the recent years fostering the proliferation of attractive mobile computing devices with broadband capabilities. Current Wi-Fi radios though severely impact the battery duration of these devices thus limiting their potential applications. In this thesis we present a set of contributions that address the challenge of increasing energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to optimize the trade-off between performance and energy effciency in a wide variety of use cases and applications. In this context, we introduce novel energy effcient algorithms for real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving protocols and for Wi-Fi stations and Access Points. In addition, the diÂżerent algorithms presented in this thesis adhere to the following design guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used in any device with a Wi-Fi interface, ii) they do not require modiÂżcations to current 802.11 standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever possible they favor client side solutions, and hence mobile computing devices implementing them can benefit from an increased energy efficiency regardless of the Access Point they connect to. Each of our proposed algorithms is thoroughly evaluated by means of both theoretical analysis and packet level simulations. Thus, the contributions presented in this thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)
    • …
    corecore