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Abstract

The Wi-Fi technology has been in the recent years fostering the proliferation of attrac-

tive mobile computing devices with broadband capabilities. Current Wi-Fi radios though

severely impact the battery duration of these devices thus limiting their potential applica-

tions.

In this thesis we present a set of contributions that address the challenge of increasing

energy efficiency in Wi-Fi networks. In particular, we consider the problem of how to

optimize the trade-off between performance and energy efficiency in a wide variety of use

cases and applications. In this context, we introduce novel energy efficient algorithms for

real-time and data applications, for distributed and centralized Wi-Fi QoS and power saving

protocols and for Wi-Fi stations and Access Points.

In addition, the different algorithms presented in this thesis adhere to the following design

guidelines: i) they are implemented entirely at layer two, and can hence be easily re-used

in any device with a Wi-Fi interface, ii) they do not require modifications to current 802.11

standards, and can hence be readily deployed in existing Wi-Fi devices, and iii) whenever

possible they favor client side solutions, and hence mobile computing devices implementing

them can benefit from an increased energy efficiency regardless of the Access Point they

connect to. Each of our proposed algorithms is thoroughly evaluated by means of both

theoretical analysis and packet level simulations. Thus, the contributions presented in this

thesis provide a realistic set of tools to improve energy efficiency in current Wi-Fi networks.
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1

Introduction and Motivation

1.1 A widening energy gap in mobile computing

Last years have whitnessed a phenomenal growth in the area of mobile computing devices. Indeed, it

is envisioned that in the near future a wide presence of broadband access technologies will foster even

more the adoption of such devices, bringing to reality the vision of ubiquitous broadband connectivity.

A fundamental problem though is to be solved for that vision to come true, that is to fulfill the increasing

power demands that newer and faster technologies impose on mobile computing devices. Without the

capability of powering light and attractive handheld devices for long periods of time while providing

users with a full broadband experience, mobile broadband will struggle to reach its full potential.

Nowadays, batteries used in mobile computing devices are mostly based on the Lithium-Ion (Li-Ion)

technology. This technology, although it did revolutionize mobile computing on its adoption in 1991, has

not been able to keep pace with the growing demands of the systems embedded in portable electronics

(1). This fact is illustrated in Figure 1.1 where the relative improvements since 1991 in energy density

of Li-Ion batteries is compared to the relative performance improvements of other mobile computing

components like hard drive capacity, CPU speed and the peak data rates of wireless networks. It is

clear in the figure that while the relative performance of almost every single component has increased

exponentially, the energy density of Li-Ion batteries remains flat, giving raise to an increasing Energy

Gap between power demand and power delivery in mobile computing (1).

The future of battery technologies seems to point towards nanostructured materials, fuel cells and

thin film batteries as promising technologies to eventually replace the Li-Ion technology. In addition,

power coming from additional energy sources, like solar cells, might also come into play (7). However,

due to a variety of factors, none of these technologies appears as a feasible replacement for Li-Ion in the

1



1. INTRODUCTION AND MOTIVATION

near future and even when available they will not completely solve the energy problem (1). Therefore,

efficient power management protocols and energy oriented architectures have arised as a mandatory

path to follow in order to overcome the existent Energy Gap in mobile computing.
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Figure 1.1: Widening Energy Gap in Mobile Computing. Data obtained from (2), (3), (4), (5) and (6).

1.2 The impact of Wi-Fi in mobile computing

One of the main trends driving the increase of this Energy Gap is the adoption in portable devices

of multiple wireless technologies that have to be served using a unique power source. Among these

technologies, 802.11 (9) or Wi-Fi (10)1 has enjoyed a privileged position. For instance Figure 1.2

illustrates the forecasted growth of Wi-Fi in handset devices in the upcoming years. Other studies (8)

also point out that by 2014 90% of smartphones will be shipped with embedded Wi-Fi.

Among the factors driving the adoption of Wi-Fi in mobile coputing devices are its high data rates

which benefit multimedia and business applications, its low roaming costs and its good in-building cov-

erage. Indeed, it is expected that in the near future Wi-Fi will be widely deployed inside the home or in

the enterprise, for instance embedded into TV sets, set top boxes or projectors, hence creating opportu-

nities to connect mobile computing devices like mobile phones or cameras with consumer electronics,

leading to every time richer user experiences and new business opportunities for carriers. The recently

developed Wi-Fi Direct technology (11) is a key step in this direction. In addition, carriers are also

starting to heavily rely on Wi-Fi capabilities in smartphones in order to offload traffic from their heavily

congested cellular networks into Wi-Fi Hotspots (12).
1In this thesis we refer indistincly to the technology described by the 802.11 standard as 802.11 or Wi-Fi.
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1.2 The impact of Wi-Fi in mobile computing

Figure 1.2: Wi-Fi IC Shipments by Device Type, In Millions. Source: ABI Research - 4Q 2010.

The Wi-Fi industry is actively working in order to consolidate and expand its position in the mobile

computing arena. Among the major trends expected to steer this technology in the near future are

increased data rates above 1Gbps, 802.11ad (13) and 802.11ac (14), the operation in new frequency

bands like TV White Spaces, 802.11 af (15) or the 900Mhz ISM band, 802.11ah (16), and the adoption

of Wi-Fi in sensor and metering devices with very stringent battery requirements, SmartGrid effort in

Wi-Fi Alliance (67) or 802.11ah (16).

Notice that in order to successfully address the previously described use cases and markets, energy

efficiency arises as a key factor in Wi-Fi.

1.2.1 How can we save power in Wi-Fi?

An immediate question arises when thinking about Wi-Fi and energy efficiency, and is which is the

impact of a Wi-Fi radio in the battery duration of a mobile computing device.

The actual impact on the overall power consumption of a device depends of course on a variety of

factors, for instance the presence of other power hungry subsystems like displays. Several studies have

been carried out in the literature to get a closer grasp on what this impact actually is. For instance Wi-Fi

interfaces have been shown to account for about 10% of the total energy consumption in current laptops

(19), up to 50% in hand-held devices and even higher percentages in smaller form-factor prototypes

(19, 20). An interesting study is presented in (18), where the battery discharging profile of a modern

3



1. INTRODUCTION AND MOTIVATION

HTC Hero smartphone (17) is studied with the Wi-Fi radio turned on and off, and with different Wi-Fi

configurations. The obtained results are depicted in Figure 1.3.

Figure 1.3: Impact of Wi-Fi on battery life. Effect of the Wi-Fi radio on the battery duration of an HTC Hero
smartphone.

We can see in Figure 1.3 how the battery duration of the HTC Hero smartphone goes down from

about 20 hours to around 5 hours (75% reduction) when the Wi-Fi interface is kept always on1. Inter-

estingly, different configurations in the Wi-Fi radio, in particular different Beacon rates that result in

different number of transmissions per second, have only a marginal effect on battery duration.

The actual power drained by a Wi-Fi interface depends on the particular activity being carried out

by a device. For instance more power is consumed when performing a data transfer than when being in

idle mode. In (21) it has been shown that the power spent by a Wi-Fi interface can be safely classified

into four different states:

• Transmit: The Wi-Fi interface modulates and transmits packets over the air. Usually Wi-Fi trans-

mitters operate with transmit powers around 15dBm.

• Receive: The Wi-Fi interface is receiving and demodulating data and passing it to the host CPU,

which will then perform further operations like forwarding the received data to the higher layers.

• Listen: The Wi-Fi interface is listening to the channel, potentially also receiving data but not

forwarding it to the host CPU.

1In order to achieve a fair comparison, the display of the device was always on in all these tests.

4



1.2 The impact of Wi-Fi in mobile computing

• Sleep: The Wi-Fi interface switches off the majority of its circuitry except certain critical parts.

Very small power is consumed by the Wi-Fi interface in this state, but the interface can not trans-

mit, receive or listen to the channel.

Figure 1.4(a) illustrates the power consumed by several popular Wi-Fi chipsets in each of the previ-

ous states. In order to reduce the power consumed by a Wi-Fi interface, a first possibility is to reduce

the power spent by the wireless interface in each of the previous states, as has been done in the Atheros

chipsets depicted in Figure 1.4(a). This can be achieved by means of technological improvements like

using more efficient RF power amplifiers, or minimizing the interactions between the Wi-Fi interface

and the host CPU1. A more detailed description of these technological improvements can be found in

(22).

TX RX Idle Sleep
0

200

400

600

800

1000

1200

1400

1600

1800

2000

P
ow

er
 C

on
su

m
pt

io
 (

m
W

)

 

 
Broadcom 4311 ag

Intel 3945 abg

Atheros AR6001 abg

Atheros AR6002 abg

(a) Power consumed by typical Wi-Fi chipsets.
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(b) Relative power consumption reduction of each state with re-
spect to the Transmit state.

Figure 1.4: Power Consumption Figures in current Wi-Fi chipsets. Data from (23), (24), (25).

A second approach to reduce power consumption, which complements the first one, is to design

power management protocols that switch the wireless interface to the Sleep state whenever no trans-

missions or receptions are required. Figure 1.4(b) depicts for the previous Wi-Fi chipsets, the power

consumption reduction achieved in each of the power states with respect to the Transmit state. As

clearly shown in the figure, the maximum power reduction is obtained when the Wi-Fi radio switches to

the Sleep state.

Therefore IEEE 802.11 defined power management protocols that rely on the fact that the power

consumed by a Wi-Fi interface in the Sleep state is several orders of magnitude lower than the power

1For instance processing management frames like Beacons directly in the Wi-Fi chipset, not in the host CPU.
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1. INTRODUCTION AND MOTIVATION

consumed in any other state, and so try to switch the Wi-Fi radio to a Sleep state as much as possible.

In a nutshell the core idea behind these protocols, is to let stations sleep while the Acess Point buffers

incoming data for the sleeping stations, until a station decides to wake up and trigger the Access Point

for its buffered data1. In addition, switching to and from the Sleep state can be implemented in current

chipsets with very small switching times as further illustrated in Figure 1.5. The previous technological

facts open the door to the design of efficient power management protocols in Wi-Fi that can reduce the

impact of the technology on the overall power consumption of a mobile computing device.

Figure 1.5: Power vs Time during a VoIP call over Wi-Fi. Notice that the different levels depicted in the
power consumption profile represent the power spent by the chipset in the sleep, idle, receive and transmit
states. Graphic from (22).

Implementing power management protocols though does not come without a penalty. While switch-

ing off a Wi-Fi interface reduces power consumption, it also introduces a negative impact on perfor-

mance or Quality of Service (QoS) of the applications running on the mobile computing device. The

reason is that a device in the Sleep state can not receive any transmission, therefore packets transmit-

ted to this device will either be lost or will have to be delayed until the sleeping device comes back

to an active state. Power management protocols and algorithms are needed that can successfully man-

age the trade off between the level of performance or QoS and the power consumption of a device.

The fundamental contribution of this thesis, is a set of algorithms that attempt to optimize the previous

performance energy trade-off, while considering a variety of applications and Wi-Fi technologies.

1These protocols will be described in detail in Chapter 2
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1.3 Contributions and structure of this thesis

1.3 Contributions and structure of this thesis

This thesis is structured in the following way. Chapter 2 reviews the state of the art in the area of energy

efficiency in Wi-Fi networks. This chapter describes the Wi-Fi technology fundamentals relevant to

the work of this thesis, and presents a taxonomy to classify the contibutions in the literature aimed at

improving energy efficiency in Wi-Fi.

Chapters 3, 4, 5, 6, 7, contain the major contributions of this thesis, which can be classified in three

different categories: i) energy efficiency with real-time applications, ii) energy efficiency with data

traffic, and iii) energy efficient Wi-Fi Access Points.

Our first three contributions address the QoS energy trade-off of real-time applications, our fouth

contribution deals with energy efficiency with data traffic and our fifth contribution relates to energy

efficient Access Points. These contributions are described as follows:

• Contribution 1. Our first contribution described in Chapter 3 studies how the trigger interval used

by a station in power save mode affects the QoS of real-time applications like Voice and Video.

In addition, based upon the obtained insights, we present the design of an adaptive layer two

algorithm, that runs in a Wi-Fi station and adapts the mentioned trigger interval in order to fulfill

the QoS requirements of real-time applications in an energy efficient way. The content of Chapter

3 has been published in (26).

• Contribution 2. Our second contribution described in Chapter 4 considers the same scenario as

our first contribution but addresses a different question. With the advent of efficient frame aggre-

gation techniques in 802.11n, energywise it may be beneficial for a Wi-Fi station in power saving

to buffer several frames and transmit them using an efficient aggregate. The previous though

will increase delay and therefore may jeopardize the QoS of real-time applications. Therefore,

our second contribution is a dynamic layer two algorithm that selects the optimum aggregation

interval according to the level of congestion in the network. The content of Chapter 4 has been

submitted to (27).

• Contribution 3. Unlike our previous two contributions, our third contribution described in Chap-

ter 5 addresses the QoS and energy efficiency trade off of real-time applications but considering

the centralized protocols defined in 802.11, i.e. HCCA and S-APSD, that will be thoroughly de-

scribed in Chapter 2. In this context we propose a novel scheduling algorithm that runs in the

Access Point, and is based on the principle of spreading in the channel the service periods of

7



1. INTRODUCTION AND MOTIVATION

the different stations, instead of grouping them as is commonly done in the state of the art. The

content of Chapter 5 has been published in (28).

• Contribution 4, described in Chapter 6 addresses the performance energy trade-off of Data traffic

in Wi-Fi. In particular, we study the detailed interactions between TCP and the Wi-Fi power

saving protocols, and identify that the trigger interval used by a Wi-Fi station should be adapted

according to the bottleneck bandwidth experienced by TCP connections. We propose an adaptive

layer two algorithm that implements the previous principle and evaluate its performance both with

popular data applications. The content of Chapter 6 has been submitted to (29).

• Contribution 5, is described in Chapter 7, where we propose a set of Layer two algorithms to

manage the AP power saving protocols defined in Wi-Fi Direct, which are essential if battery

limited devices like mobile phones are to implement the Wi-Fi Direct technology. The content of

Chapter 7 has been published in (30).

Finally, chapter 8, concludes this thesis and highlights lines of future work.

8



2

State of the Art

The purpose of this chapter is threefold. First, we describe the Wi-Fi protocols that are the basis of the

work presented in this thesis. Second we survey the state of the art on energy efficiency in Wi-Fi and

present a taxonomy to classify existent work. Finally, we introduce the design guidelines of this thesis

and position our contributions with respect to the work already existing in the state of the art.

2.1 Wi-Fi fundamentals

The today’s widely known Wi-Fi technology is the result of the standardization work done in the IEEE

802.11 Task Group (31). This group was chartered to design a Wireless Local Area Network, that would

allow a set of devices to wirelessly connect to each other and share resources, like Internet access. Thus,

the IEEE 802.11 group came up with two distinct architectures for this purpose which are depicted in

Figure 2.1: i) the Basic Service Set (BSS) which allows a set of stations to communicate through an

Access Point (AP), and ii) the Independent Basic Service Set (IBSS), which allows stations to connect

directly to each other.

The BSS architecture has been the one enjoying the widest adoption in the market and will be the

one considered in this thesis. This architecture offers significant advantages, like the fact that an AP is

a central node in range of all its associated stations and can be used to mitigate hidden node problems

(33), or the fact that centralized support in the AP can be used to improve network discovery and to

assist the power saving operation of the connected stations.

Another relevant part of the Wi-Fi technology, is its channel access protocol. In particular the IEEE

802.11 group adopted a Listen Before Talk protocol similar to the one used in Ethernet (34) to arbitrate

access to the channel. There is a remarkable difference with the Ethernet protocol though, due to the

9
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Figure 2.1: Wi-Fi Architecture. In the BSS architecture all communications go through the AP. In the IBSS
architecture stations can directly communicate with each other.

fact that wireless stations can not instantly detect collisions. Therefore, a modified protocol was defined

known as Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA), where stations always

acknowledge received frames in order to inform the sender that the frame was received correctly. In

order to resolve collisions a binary exponential backoff algorithm was included in the protocol (9).

2.1.1 802.11e: QoS on Wi-Fi

It was soon realized that over the air Quality of Service (QoS) was necessary in Wi-Fi. The reason is

that Wi-Fi is a shared medium, therefore if all frames are considered equal over the air, a station with

low priority traffic could always delay transmissions of high priority traffic. In order to address this

concern, the IEEE chartered the 802.11e group with the goal of adding QoS functionalities to the basic

Wi-Fi specification.

The result of the work of the 802.11e group was a new ammendment to the 802.11 specification (32)

that among other enhancements, defined two new channel access modes with built-in QoS. The first,

of these channel access modes was a Distributed mode called Enhanced Distributed Channel Access

(EDCA), and the second one was Centralized mode, known as the Hybrid Coordination Function (HCF)

Controlled Channel Access (HCCA). These two modes of operation are described next.

2.1.1.1 Distributed mode: EDCA

The Enhanced Distributed Channel Access (EDCA) provides prioritized QoS by extending the basic

CSMA/CA algorithm defined in Wi-Fi. In particular, EDCA introduces the concept of Access Cat-

10



2.1 Wi-Fi fundamentals

egories (AC), which represent different priorities to access the wireless channel. Thus, each EDCA

device consists of four ACs, namely AC VO, AC VI, AC BE and AC BK, which run concurrent back-

off instances within the device. This architecture is depicted in Figure 2.2, where it is also illustrated

how frames coming from the higher layers can be classified within the four defined ACs.
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Figure 2.2: Concurrent Backoff Entities in EDCA. Each EDCA device, AP and stations, runs four concurrent
Access Categories.

In order to implement the necessary over the air prioritization, EDCA assigns different contention

parameters to different Access Categories (ACs). Thus, ACs with smaller contention parameters require

shorter times to access the channel, and are hence provided statistical guarantees over traffic transmit-

ted from ACs that use bigger contention parameters. The contention paramaters used by stations in

EDCA, are dictated by the AP which periodically broadcasts them within the Beacon frame. Figure 2.3

illustrates how over the air priorities can be implemented by using differentiated contention parameters.

Another interesting innovation introduced in EDCA is the use of Transmission Opportunities (TXOPs),

which allow an EDCA Access Category to hold control of the channel during a certain time, TXOP

Limit, in order to transmit multiple frames with a single channel access. The TXOP Limit is another

parameter that can be used to provide differentiated service over EDCA. For more details on EDCA the

interested reader is referred to (57).

Finally, it is worth to notice that the EDCA technology is currently certified and tested by the Wi-Fi

Alliance (10) in the WMM certification (35).
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Figure 2.3: Contention Parameters of each AC. Higher priority ACs use smaller contention parameters, i.e.
AIFS and Contention Windows, and hence statistically gain earlier access to the channel.

2.1.1.2 Centralized mode: HCCA

The centralized HCF Controlled Channel Access (HCCA) operation is possible in two different ways:

the Contention Free Period (CFP), where the Hybrid Coordinator (HC), usually residing in the Access

Point (AP), reserves the channel only for HCCA traffic, and the Contention Period (CP) where both

EDCA and HCCA traffic can access the channel. In the Contention Period a higher priority is granted to

HCCA traffic by allowing the AP to use a shorter inter frame space to access the medium than contention

based traffic, the Priority Inter Frame Space (PIFS) illustrated in Figure 2.3.

Within the context of HCCA, MAC Service Data Units (MSDUs) are associated to flows and flows

are associated to stations. In order to set up a new flow, a station has to submit a Traffic Specification

(TSPEC) message to the AP. In the TSPEC message the station describes its traffic flow1, and specifies

the delay bound (maximum time before which a MSDU belonging to this flow has to be successfully

delivered) and the radio conditions2 under which this flow is expected to operate. Thus, an Admission

Control function and a Scheduling function are implemented in the AP in order to guarantee the QoS

requirements of the admitted flows.

Figure 2.4 illustrates the operation of HCCA both in the Contention Free Period and in the Con-

tention Period. Notice in the figure how the AP explicitly polls associated stations, using a QoS CF-Poll

frame, in order to grant them access to the channel, or directly transmits to them in downlink.

1The flow descriptor specified in RFC 2212 (111) is used to define a flow.
2Radio conditions are conveyed with two parameters: i) Modulation and Coding Scheme (MCS) and ii) Surplus Bandwidth

Allowance (SBA) (which accounts for possible retransmissions).
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Figure 2.4: Sample of HCCA operation during the CFP and the CP. A Controlled Access Phase (CAP),
defines a channel access granted by the Hybrid Coordinator.

2.1.2 802.11n: The next generation of Wi-Fi

Orthogonally to the previously mentioned enhancements, the IEEE 802.11 group recently developed

the 802.11n standard (36) which defines improvements to both physical and MAC layers, and is meant

to replace the traditional 802.11a/b/g technologies in order to become the baseline technology in next

generation WLANs (69).

In particular, specially relevant to the work in this thesis are the aggregation schemes defined in

802.11n: A-MSDU and A-MPDU. These two schemes substantially reduce the overhead introduced

by Wi-Fi by allowing a station or AP to aggregate several data frames within a single physical frame,

and transmit all of them with a single access to the channel. In particular, the A-MSDU scheme allows

to aggregate several MAC Service Data Units (MSDUs) coming from the higher layers, into a single

A-MSDU and transmit them with a single MAC and Physical header. This scheme provides maximum

aggregation efficiency, but has several disadvantages stemming from the fact of considering only one

MAC header. For instance, all aggregated frames must be addressed to the same station and must carry

the same User Priority (UP) value. In addition this scheme contains only one CRC to protect the whole

aggregated frame, which can be counter productive since packet error rates typically increase with the

length of the frame (84). Some of the previous drawbacks are addressed in the A-MPDU scheme which

creates an aggregate of MAC Protocol Data Units (MPDUs), where each independent frame contains its

individual MAC header and CRC. However, the A-MPDU scheme is still constrained to aggregate only

MPDUs addressed to the same receiver. Figure 2.5 illustrates the two aggregation schemes supported in

802.11n. In addition, a thorough overview of 802.11n MAC aggregation mechanisms can be found in

(70).
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Besides novel aggregation schemes, 802.11n also defines a full set of throughput enhancements by

means of techniques like MIMO or channel bonding. The interested reader is referred to (37) for an

overview of the different features introduced in 802.11n.
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Figure 2.5: Overview of the A-MSDU and the A-MPDU aggregation schemes in 802.11n,. the A-MSDU
scheme is depicted on the left and the A-MPDU scheme on the right.

2.1.3 Power saving protocols in 802.11

The 802.11 group soon realized about the need to build in the protocol mechanisms to reduce power

consumption, and so it already included a power saving mechanism in the first version of the standard

published in 1999 (9). This protocol will be hereafter referred as Standard Power Save Mode (StdPSM)

or 802.11 legacy power save mode (802.11 PSM). However, this basic protocol exhibited several prob-

lems specially with respect to real time communications, like Voice or Video. Therefore, the 802.11e

standard (32), chartered with the goal of adding QoS capabilities to the original 802.11 standard, de-

fined a new power saving protocol, namely Automatic Power Save Delivery (APSD), better suited for

real-time communications. These protocols are described next.

2.1.3.1 Standard Power Save Mode

In infrastructure mode (BSS), the power-management mechanism is centralized at the Access Point

(AP). APs maintain a power-management status for each currently associated station that indicates in

which power-management mode the station currently operates. Stations changing the power-management

mode inform the AP by using the power-management bit within the frame control field of the transmitted

frames. The AP buffers unicast and multicast data frames destined for any of its associated stations in

power save mode. If an AP has buffered frames for a station, it will indicate so in the Traffic Indication

Map (TIM), which is sent with each Beacon frame, typically every 100ms.

Stations request the delivery of their buffered frames at the AP by sending a signaling frame called

Power Save Poll (PS-Poll). A single buffered frame for a station in power save mode is sent by the AP

after a PS-Poll has been received. In the frame control field of the frame sent in response to a PS-Poll,
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the AP indicates with the More Data bit if there are further frames buffered for this station. The station

is required to send a PS-Poll to the AP for each data frame it receives with the More Data bit set. This

ensures that stations empty the buffer of the frames held for them at the AP. Mobile stations should also

awake at times determined by the AP, when broadcast/multicast (BC/MC) frames are to be transmitted.

This time is indicated in the Beacon frame within the TIM element.

Finally, note that the StdPSM functionality does not imply that frames sent from the station to the

AP are delayed until the next beacon is received, that is, stations wake up whenever they have data

to send and follow the regular 802.11 transmission procedure. Figure 2.6 illustrates the operation of

Standard Power Save Mode in infrastructure mode.
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Figure 2.6: Example of Standard PSM operation. The station awakes to listen to every Beacon, Listen
Interval=1, and discovers with the TIM bit if there is buffered data for it in the AP. If that is the case the
station triggers the transmission of buffered frames using the PS-Poll frame. The station can awake at any
time to perform uplink transmissions.

2.1.3.2 802.11e APSD

Automatic Power Save Delivery is the proposed 802.11e extension of the original Standard Power Save

Mode protocol. In line with the 802.11e QoS mechanisms, which define the distributed Enhanced

Distributed Channel Access (EDCA) access to provide prioritized QoS guarantees and the centralized

HCF Control Channel Access (HCCA) access to provide parameterized QoS guarantees, APSD defines

a distributed power saving scheme, Unscheduled APSD (U-APSD), and a centralized one, Scheduled

APSD (S-APSD). Thus, frames buffered at the AP can be delivered to power saving stations either by

using the EDCA access method if U-APSD is selected or by using EDCA or HCCA if S-APSD is

chosen. The period of time where a station is awake receiving frames delivered by the AP is defined
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in APSD as a Service Period (SP). A SP is started by a station or an AP depending on the considered

APSD mechanism and is always finished by the reception at the station of a frame with the End Of

Service Period Flag set (EOSP). Next, we review the two APSD modes of operation, U-APSD and

S-APSD.

Unscheduled-APSD (U-APSD). The main novel idea behind the U-APSD design is to proactively

poll the AP to request buffer frames instead of waiting for notifications in the Beacon frame. Notice

that proactive polling can reduce the latencies introduced in Standard Power Save Mode by the Beacon

interval, usually 100ms, hence turning U-APSD into an attractive option for real-time communications.

However, excessive polling requests from the stations to the AP can introduce congestion and degrade

performance, therefore U-APSD was designed with the aim of minimizing the amount of required sig-

naling. Specifically, the data frames sent in the uplink by stations (STA→AP) can be used as indications

(triggers) of the instants when power saving stations are awake. When such an indication is received

at the AP from a power saving station, the AP takes advantage of it and delivers data frames buffered

while the station was in sleep mode. Because of this specific functionality, U-APSD is specially suited

for bi-directional traffic streams even though it provides alternative methods for its usage in other cases.

In U-APSD, each Access Category (AC) of an EDCA station can be configured separately to be

delivery/trigger-enabled. If one or more ACs of a station are trigger-enabled, when the AP receives

a frame of subtype QoS Data or QoS Null of a trigger-enabled AC, a Service Period (SP) is started

if one is not in progress. If a station has one or more ACs configured as delivery-enabled, when this

station starts a SP the AP delivers the buffered frames corresponding to these ACs using EDCA. The

configuration at the AP of the different ACs per station as delivery/trigger-enabled can be performed

either at association time or through the usage of the Traffic Specification (TSPEC) message.

During a SP one or more data frames of delivery-enabled ACs might be delivered by the AP to a

station up to the number of frames indicated in the Maximum Service Period Length (Max SP Length)

value following the rules of an acquired transmission opportunity.

In the case of a station that has no data frame to transmit in the uplink, QoS Null frames1 can be

sent to request the delivery of the frames buffered at the AP. This enables the usage of U-APSD by an

Access Category (AC) of a station which does not generate uplink traffic often enough to meet the QoS

requirements of an application using this AC.

In order to guarantee backward compatibility of legacy stations that do not support APSD, the TIM

element indicates the buffer status only of the ACs that are non delivery-enabled. Only in the case that

1QoS Nulls are the substitute in U-APSD of 802.11 power save mode PS-Polls
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all ACs of a station are delivery-enabled the TIM element indicates the buffer status of delivery-enabled

ACs.

Notice hence that an intelligence is needed in a mobile device implementing U-APSD, to decide how

to appropriately trigger the AP for buffered data. As usual the 802.11 standard leaves this intelligence

undefined to allow for vendor differentation. Figure 2.7 provides an example of the operation of U-

APSD.
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Figure 2.7: Example of U-APSD operation. U-APSD configuration: AC VO and AC VI both trigger- and
delivery-enabled. AC BE and AC BK neither delivery- nor trigger-enabled (i.e., use legacy 802.11 power
save mode).

Finally, it is worth pointing out that U-APSD is currently certified and tested within the WMM

certification (35) in the Wi-Fi Alliance.

Scheduled-APSD (S-APSD). The main idea behind the S-APSD design is the scheduling by the AP

of the instants where each station using S-APSD should wake up to receive the frames buffered at the

AP.

The usage by a station of the S-APSD delivery mechanism for a traffic stream, in the case where the

access policy is HCCA, or for an AC, in the case where the access policy is EDCA, is configured by the

transmission of an ADDTS request frame to the AP. In case the AP can satisfy the requested service, it

will indicate so in the Schedule Element of the response which will include the Service Start Time (SST)

and the Service Interval (SI) parameters.

The AP is responsible for defining for each traffic stream or AC of a station using S-APSD the SST

and the SI necessary for the periodical scheduling of the delivery of frames to the stations. Thus, if a
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Figure 2.8: S-APSD example of operation. S-APSD configuration: VoIP traffic stream in the downlink
configured to use S-APSD with HCCA access mode, AC VI traffic in the downlink uses S-APSD with EDCA
access mode, AC BE and AC BK configured to use legacy 802.11 power save mode.

station has set up S-APSD for a traffic stream or an AC, it automatically wakes up at the scheduled time

of each Service Period (SP), i.e. tk = SST + kSI .

The AP may update the service schedule at any time by sending a new Schedule frame to a S-APSD

station. A station can also modify the S-APSD service schedule by modifying or deleting its existing

traffic specification through ADDTS or DELTS messages.

As in the case of U-APSD, in S-APSD a station remains awake until it receives a frame with the

EOSP subfield set to 1. If necessary the AP may generate an extra QoS Null frame with the EOSP set

to 1 in order to terminate a Service Period.

Finally, notice that a scheduling algorithm is needed in the AP in order to decide how to multiplex in

the channel multiple stations implementing S-APSD. As with U-APSD the 802.11 standard leaves this

scheduling algorithm undefined in order to allow for vendor differentiation. In Figure 2.8 an example of

the S-APSD operation is provided. For more information regarding the power saving protocols defined

in the 802.11 standards, the interested reader is referred to (33).

2.1.4 Power Save Multi Poll (PSMP)

Orthogonal to the previous power saving protocols, the 802.11n standard defined a new protocol exten-

sion that allows an AP to very efficiently deliver buffered data to multiple stations in power saving that
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have triggered the AP. This protocol extension is known as Power Save Multi Poll (PSMP).

The basic idea behind PSMP is to let an AP transmit a broadcast frame that contains a schedule for

the power saving stations that have triggered the AP and are waiting to receive their data. Thus, having

a priori knowledge about the exact time where they will receive their data allows power saving stations

to further sleep while the AP is transmitting data for other stations. Figure 2.9 depicts an example of the

operation of the PSMP protocol.

It is worth to notice that unlike legacy 802.11 PSM and U-APSD, PSMP is currently not being

certified by the Wi-Fi Alliance and to the best of our knowledge has not yet been implemented in the

market.
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Figure 2.9: Example of PSMP operation. The AP delivers a schedule frame to the stations that trigger the AP
to recover their buffered frames. Thus, stations only wake up when they have to transmit or receive data.

2.1.5 Wi-Fi Direct

Finally, we conclude this overview of relevant protocols in the state of the art by introducing the Wi-Fi

Direct technology (11). This technology has recently been developed by the Wi-Fi Alliance, and allows

Wi-Fi Devices to directly connect to each other without the presence of an Access Point (AP). Hence,

Wi-Fi Direct enables novel device centric use cases, like having a mobile phone connecting to a TV set

or a wireless printer without an AP.

In order to implement device to device connectivity, Wi-Fi Direct requires devices to implement

both the role of a Wi-Fi station and a Wi-Fi AP. Thus, Wi-Fi Direct devices are able to discover each

other and then run a negotiation protocol to decide which device will act as AP, referred to as P2P Group

Owner, and which device as station, referred to as P2P Client, to then set up a traditional infrastructure
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network, referred to as P2P Group. Notice that the functionality provided by Wi-Fi Direct certainly

overlaps with the original Ad-Hoc mode (IBSS) defined in the 802.11 standard (33). However, the

Wi-Fi Alliance decided to favor Wi-Fi Direct in front of IBSS due to the following reasons. First, by

leveraging the infrastructure mode Wi-Fi Direct allows to immediately reuse all the QoS, security or

power saving protocols that have been defined for infrastructure networks. On the other hand, many of

these enhancements are lacking in IBSS networks. Second, there are many Wi-Fi devices deployed in

the market that only implement infrastructure mode. These devices can seamlessly connect with Wi-Fi

Direct devices, since these will simply appear to a legacy device as a traditional AP.

In detail the Wi-Fi Direct functionality is described as follows:

• Two Wi-Fi Direct devices can discover each other by sending Probe Request frames while using

a discovery algorithm that alternates between three social channels, namely channels 1, 6 and 11,

in the 2.4 GHz band.

• After discovering each other, devices run a negotiation protocol to decide which device will act

as P2P Group Owner. For this purpose each device can express its intent to become a P2P Group

Owner, and a tie breaking rule is defined in case both devices express the same intent. There-

after the device that becomes the P2P Group Owner starts beaconing and initiates a traditional

infrastructure network.

In addition to the previous discovery and negotiation protocols, the Wi-Fi Direct technology also

introduces the following new functionalities:

• Layer Two service discovery, that allows Wi-Fi Direct devices to discover which services are

available in other devices before setting up a P2P Group. In particular, the Service Discovery pro-

tocol allows for instance to embed UPnP (59) or BonJour (60) service discovery querys directly

at Layer Two.

• Concurrent Operation, that allows Wi-Fi Direct devices to be part of multiple P2P Groups at the

same. For instance a handset device could set up a P2P group with a TV set in order to stream

some content, and simultaneously set up another P2P Group with a printer in order to print a

document. In addition, Wi-Fi Direct also allows devices to simultaneously create P2P Groups

while being connected to an infrastructure Wi-Fi network.

• AP power saving capabilities. If mobile computing devices are to successfully act as P2P Group

Owners in Wi-Fi Direct, then power saving protocols have to be defined that allow a P2P Group
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Owner to operate in an energy efficient way. Note that 802.11 standards only support power

saving operation in the station side. In order to address this concern, Wi-Fi Direct has defined

two AP power saving protocols, namely the Opportunistic Power Save and the Notice of Absence

protocols. These protocols are very relevant to the work presented in this thesis and will be

carefully described in Chapter 7.

2.2 Literature survey

Besides the work carried out in the 802.11 group in order to define power saving protocols, there has

been to date also a significant effort from the research community towards improving the performance

of these protocols. In this section we survey the, in our understanding, most relevant contributions in the

field and present a taxonomy to classify existent work in the state of the art. In particular our taxonomy

contains the following categories:

• The design of energy efficient solutions is often very dependent on the type of application running

in the mobile device. Therefore we classify efforts in the state according to: i) Generic Proto-

col Enhancements, which do not target any specific application, ii) Proposals targetting energy

efficiency with Real-Time applications like Voice and Video, and iii) Proposals targetting energy

efficiency with Data oriented applications, like Web traffic or File transfers.

• We also classify proposals in the state of the art according to whether they are deployed over

Distributed Wi-Fi protocols, like EDCA and StdPSM or U-APSD, or over Centralized Wi-Fi

protocols, like HCCA and S-APSD.

• Existent work in the state of the art, can also be classified according to whether it is a Layer

Two solution, or whether it is a Cross-Layer solution that relies on functionality implemented in

higher layers of the stack.

• Finally, we provide a separate look at the proposals in the state of the art that target power saving

in the Access Point, instead of in the station.

2.2.1 Generic protocol enhancements

In a shared network using a listen before talk protocol, like Wi-Fi, energy efficiency can be improved by

tuning the MAC protocol parameters in order to minimize the energy required to resolve the contention

and access the channel. In (77) an adaptive distributed algorithm was proposed where contending sta-

tions monitor the channel in order to measure the current collision probability, which is then used to
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size the station’s contention parameters in order to minimize energy consumption. Following a similar

idea, a modification of the DCF protocol was proposed in (76) that minimizes the necessary contention

to access the channel and hence maximizes energy efficiency. A drawback of these approaches is that

stations need to be all the time awake in order to obtain reliable estimates of the collision probabil-

ity. A different approach can be found in (75), where the authors propose to let power saving stations

sleep during the contention process. In order to implement this method though, changes are needed in

the DCF protocol that may result in unfairness between the stations in power saving implementing the

proposed mechanism and legacy stations.

Another generic way to increase energy efficiency is to reduce the size of the transmitted packets,

hence minimizing the time that a station spends in the Transmit state. In (121) a generic aggregation

scheme was proposed, which is not compatible with 802.11n, and the obtained energy savings were

evaluated. In addition, (50) proposed a novel aggregation scheme, which unlike 802.11n, allows to

aggregate in a single frame MPDUs belonging to different stations, hence increasing aggregation oppor-

tunities and further reducing transmission times. Notice though, that aggregating frames addressed to

multiple stations in a single physical frame comes at the price of an increased complexity, for instance in

order to guarantee that all stations are awake at the same time or in order to let multiple stations deliver

their ARQ feedback back to the AP.

Finally, generic improvements in energy efficiency have also been proposed for the centralized pro-

tocols defined in Wi-Fi. For instance (79) studied how to schedule in the AP the delivery of buffered

data for stations in power save mode, and proposed to embed scheduling information within the TIM

element in the Beacon. In (78) a multi-poll scheme and a scheduling policy that maximizes energy

saving were proposed where the AP broadcasts scheduling information for the stations in power save

mode after the Beacon. Finally, in (80) a centralized scheduled power save mode is proposed, where the

AP divides a Beacon frame into non-overlapping time slices and conveys within the TIM element the

assignment of slices to power saving stations.

Notice though that the presented generic protocol enhancements require modifications to existent

802.11 standards, and are therefore not directly implementable in existent Wi-Fi networks and devices.

2.2.2 Real-Time traffic

A significant amount of work in the state of the art has been devoted to improve energy efficiency with

real-time communications. The reason is that the usually long duration of real-time sessions, like Voice

or Video, can heavily affect the battery of a mobile device if such communications are not performed in
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an energy efficient manner. Next, we describe some of the relevant contributions in this field available

in the literature.

First, we start by considering proposals that rely on the Distributed Wi-Fi QoS and power saving

protocols, which are the ones enjoying a widest deployment in the market. These works can be classified

according to the application they target, i.e. typically Voice or Video, and according to whether the

proposed solution is a Layer two solution or a cross-layer solution. Regarding Voice, (45) and (46)

evaluated the performance of U-APSD and studied strategies in the Access Point to minimize the energy

consumption of Voice stations using U-APSD. In addition, (83) proposes an adaptive layer two scheme

where VoIP stations select their sleep intervals based on measurements of the collision probability.

Regarding cross-layer approaches to improve the energy efficiency of VoIP over Wi-Fi, in (72) a cross-

layer algorithm is proposed where input from the Voice application is used to optimally adjust the

station’s polling interval according to estimations of the network delay and the Voice playback deadlines.

In (82) it is proposed to detect Voice packets in the MAC layer, and adaptively disable MAC layer

acknowledgements for these packets in order to reduce energy consumption. Finally in (73) a novel

architecture is proposed that leverages the cellular interface in mobile phones in order to improve the

energy efficiency of VoIP over Wi-Fi.

Regarding contributions specifically targetting Video, in (43) the authors analyzed how the Standard

Power Save Mode defined in the original 802.11 standard can heavily degrade the QoS of streaming

applications due to the excessive delay introduced. In addition, the authors proposed a history based

approach in the mobile client to estimate the duration of the idle periods in the video stream in order

to allow the device to sleep during these intervals. This initial work was expanded by the same authors

in (44), where a more sophisticated linear prediction strategy was used instead of the history based

predictor. This initial work though focuses mainly in downlink communications (real-time streaming)

and does not consider the advanced features of the APSD protocols defined in 802.11e.

Our previous work in (58) and (47) evaluates the performance of U-APSD and legacy 802.11 PSM

in a multi-service network with both real-time and data applications. This work illustrates the advantage

of U-APSD in front of legacy 802.11 PSM in terms of QoS, energy efficiency and network capacity.

Regarding contibutions targetting centralized Wi-Fi QoS and power saving protocols, i.e. HCCA

and S-APSD, in (48) a layer two Enhanced scheduler for APSD (E-APSD) was proposed that adapts

the service interval (sleeping period) of stations performing Video streaming according to the amount

of traffic buffered in the AP. For that purpose a threshold is defined on the amount of data addressed

to a certain station in the power save buffer in the AP, and depending on whether the actual amount

of buffered data is above or below the defined threshold the power saving station is allowed to shrink
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or expand its service interval. The proposed E-APSD scheduler though focuses mainly on downlink

communications (only the queue in the AP is monitored) and uses non standard mechanisms to convey

the new service intervals to the power saving stations. In (49) a layer two Power Save Feedback Based

Dynamic Scheduler (PS FBDS) for HCCA is proposed in order to provide bounded delays for both Voice

and Video traffic while ensuring energy savings. The proposed scheduler defines a common polling

interval for all flows that is used to poll the different HCCA stations sequentially, and derives the length

of the Transmission Opportunities (TXOPs) to be granted to each station by means of a control law

based on the queue status in the mobile stations. The proposed scheduler has the drawback of requiring

a common service interval for all associated stations, which in general can not be matched to the QoS

requirements of each station, hence resulting either in excessive delays if too large service intervals

are used or in excessive polling overhead if too small service intervals are used. Finally, our previous

work in (68) provides a detailed comparison between the performance of S-APSD, both over EDCA

and HCCA, U-APSD and legacy 802.11 PSM, and illustrates how the signaling reduction achieved in

S-APSD translates into significant gains in terms of QoS, energy efficiency and network capacity.

2.2.3 Data traffic

There is also a significant body of work in the state of the art that tackles the performance energy

trade-off of Data applications in Wi-Fi. The reason is that the research community soon realized how

the increased response times caused by the Wi-Fi power saving protocols could heavily degrade the

performance of TCP based applications. Next, we provide an overview of some of the most relevant

work in this area, which we classify in contributions focusing on Web-like traffic, and contributions

focusing on large File transfers. In addition, contributions are also classified depending on whether they

consist of a Layer two or a cross-layer solution. Finally, notice that all contributions in this field are

based on the distributed Wi-Fi QoS and power saving protocols.

A pioneering work in this area was carried out in (39) where the authors performed an elaborated

analysis about the slow down introduced by the Standard Power Save Mode protocol in a short TCP

transfer. The authors concluded that although being very good with respect to the achieved power reduc-

tions, the Standard Power Save Mode protocol could introduce excessive slow downs that significantly

affected the performance of Web traffic. Therefore, an adaptive layer two algorithm was proposed,

Bounded Slow Down (BSD), that dynamically selects the awake and sleep intervals of the mobile de-

vice in order to bound the slow down introduced by the power saving protocol. This work was extended

in (40) where a more energy efficient approach was proposed that achieved the same performance in

terms of bounding the additional delay introduced by the power saving protocol. Both (39, 40) can be
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seen as extensions of Standard Power Save Mode that allow to trade-off a reduction of power consump-

tion with the extra delay introduced by the power saving protocol. However, if small delays are desired

the power consumption of these approaches becomes significantly worse than the one of Standard Power

Save Mode. Following a similar design philosophy, in (81) an adaptive beacon listening protocol was

proposed that adapts the listening intervals of a station based on an estimation of the RTT during the

slow start phase of a TCP connection.

Several works in the state of the art rely on cross-layer solutions in order to improve the performance

energy trade-off of Data applications. For instance, in (19) a middleware sitting beween the Wi-Fi inter-

face and the applications, known as Self Tunning Power Management (STPM), was introduced. STPM

collects information from the applications, like the amount of data to be transmitted or delay tolerances,

and based on the collected information configures the wireless interface. Along the same lines, in (41)

a Cross-Layer Energy Manager (XEM) was presented that configures the wireless interface to use the

appropriate power saving mode depending on the observed traffic patterns from the applications. For

instance, the Wi-Fi interface is completely switched off during user think times, and operates in power

save mode when non real-time traffic is being transmitted. In order to distinguish user think times from

simple idle times XEM exploits information from all layers in the protocol stack. Another interest-

ing cross-layer approach was presented in (38) that focused on large data transfers over TCP, which

nowadays enjoy a very wide spread due to popular content distribution services that use TCP for Video

streaming (42). Based on the observation that normally not all the bandwidth available in the WLAN

network is used by a TCP connection, the authors proposed a cross-layer algorithm where the TCP ad-

vertised window field is used to shape TCP transmissions in the WLAN in predictable bursts that can

be used by the mobile device in order to gain sleeping opportunities without decreasing the throughput

of the TCP transfer. Finally, a similar approach was also proposed in (74) where the authors in addition

to the advertised window adjustments, also suggest to switch off the wireless card for a given timeout

after detecting that the TCP socket has been inactive for a certain amount of time.

2.2.4 AP power saving

We conclude this survey of the literature by looking at contibutions that have targetted energy efficiency

for Access Points instead of Wi-Fi stations. In this context, the authors in (54) and (55) studied the

feasibility of having solar powered Access Points, and proposed layer two protocols and algorithms

to optimize energy efficiency in this case. In addition, (56) suggests that a Wi-Fi Access Point can

deliberately advertise long channel reservations using the duration field in the Wi-Fi header, and use the

reserved time to switch off its radio in order to save energy. To the best of the author’s knowledge there
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are to date no proposals in the state of the art proposing algorithms to manage the AP power saving

protocols defined in Wi-Fi Direct.

In order to conclude this survey, Table 2.1 summarizes the works described in this section according

to the proposed taxonomy.

Distributed Centralized
Layer 2 Cross-Layer Layer 2 Cross-Layer

Generic Protocol Enhancement
(75)† (77)†

(76)† (121)†

(50)†

(79)† (78)†

(80)†

Real-Time Traffic
Voice

(45) (46) (83)
(58) (47)

(72) (73)
(82)†

(49) (68)

Video
(43) (44) (58)
(47)

(48)† (49)
(68)

Data Traffic
Web-like Traffic (39) (40) (81) (41) (19) (74)
File Transfers (38) (74) (19)

AP Power Saving (54) (55) (56)

Table 2.1: Survey of the State of the Art. The references marked with ()† require 802.11 non-standard
protocol modifications.

2.3 Goals and design guidelines of this thesis

Despite the extensive work existent in the state of the art as described in the previous section, there still

are significant roadblocks to be overcome in order to turn Wi-Fi into an energy efficient technology.

Proof of this fact are the reduced battery lifetimes experienced in current mobile computing devices

implementing Wi-Fi, and the fact that most of the approaches described in the previous section are not

deployed in the market. Thus, the major goal of this thesis is to propose a set of algorithms that can be

readily implemented in existent Wi-Fi devices in order to improve energy efficiency. In particular, we

try to address the reasons that hinder deployability of the current approaches in the state of the art, by

establishing the following fundamental guidelines in the design of the solutions presented throughout

this thesis:

• Stay in the MAC layer. While cross-layer solutions have the potential of delivering an enhanced

performance, they come at the very high price of having tro re-engineer existent and future appli-

cations in order to deliver the required information. The previous is often not possible in modern
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mobile computing devices where the trend is to provide simplified APIs to ease the work of appli-

cation developers (51). Therefore, the solutions presented in this thesis will operate exclusively

at the MAC layer, and a major challenge to be tackled by our proposed algorithms will be how

to obtain in the MAC layer information about the applications in order to deliver a performance

comparable to cross-layer approaches.

• Design within the limits of the current 802.11/Wi-Fi standards. Another reason that hinders

deployability of the solutions in the state of the art, is the need of protocol modifications. It

is worth to notice that bringing solutions into standards is a complicated and tedious process,

sometimes driven by reasons other than the purely technical ones. In addition, even if the pro-

posed solutions could be standardized, current devices in the market could not benefit from them.

Therefore in this thesis we will design solutions that stay within the limits allowed by current

standards.

• Favor Client Side solutions. Except when designing centralized scheduling algorithms, in this

thesis we will focus on client side solutions instead of Access Point (AP) side solutions in order

to improve energy efficiency of mobile computing devices. The reason for this design decision is

that energy is a big concern specially for the stations. Therefore, since improving energy in the

stations does not bring a direct competitive advantage to traditional APs, AP vendors often prefer

to concentrate their engineering efforts on other features like enhanced data rates. In addition,

deploying solutions on the station side has the advantage that a mobile computing device can

operate in an energy efficient way regardless of the AP it is connected to.

Finally, in order to conclude this section, Table 2.2 positions the contributions of this thesis intro-

duced in Chapter 1 within the taxonomy of the state of the art depicted in Table 2.1.

Distributed Centralized
Layer 2 Cross-Layer Layer 2 Cross-Layer

Generic Protocol Enhancement

Real-Time Traffic
Voice Chapter 3

Chapter 5
Video Chapter 4

Data Traffic
Web-like Traffic

Chapter 6
File Transfers

AP Power Saving Chapter 7

Table 2.2: Positioning of the contributions of these thesis.
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An Adaptive Triggering Algorithm for
Distributed Wi-Fi Power Saving
Modes

We have seen in Chapter 2 that the long durations of real-time sessions, like Voice or Video, may

severely affect the battery life of Wi-Fi mobile computing devices. It is thus critical to define algorithms

and protocols that allow a Wi-Fi device to operate in an energy efficient way without compromising the

QoS of real-time traffic.

In order to address this challenge, several authors in the literature have proposed to leverage the

regular transmission patterns typically used by real-time codecs, in order to let a Wi-Fi station in power

save mode trigger the Access Point (AP) at regular intervals and thus save power by sleeping between

transmissions. Indeed, this is the fundamental idea behind the U-APSD protocol described in Chapter

2, and as it was shown in Figure 1.5 current Wi-Fi chipsets are able to implement this idea in a very

efficient way.

However, there is a fundamental question to be solved within this framework, that is how can a Wi-Fi

station decide on the optimal interval to use in order to trigger the AP for its buffered data. Answering

this question is the goal of this chapter. It is worth to notice that the QoS experienced by real-time

applications in the downlink direction (AP→station) will become highly dependent on the algorithms

that decide when to poll an AP in order to retrieve the buffered frames. On the one hand, if a station does

not generate enough trigger frames, an application can suffer from an excessive delay in the downlink

direction. On the other hand, if a station transmits too many unnecessary triggers, power saving is

penalized and the congestion level in the network increases. As usual, the 802.11 and 802.11e standards

29



3. AN ADAPTIVE TRIGGERING ALGORITHM FOR DISTRIBUTED WI-FI POWER
SAVING MODES

leave open the algorithms to generate trigger frames to allow vendor differentiation.

Different approaches to solve this problem are considered today by Wi-Fi mobile device vendors.

These approaches can be mainly classified into static and dynamic cross-layer approaches. Static ap-

proaches aim at bounding the delay of applications in the downlink using a fixed polling interval. Such

a static approach though can not be optimal if different applications with different QoS requirements

are used in the same mobile device. Dynamic cross-layer approaches can overcome this problem by

re-configuring the MAC’s layer polling interval every time a new application starts in order to meet its

specific requirements. However, several issues need to be considered that limit the suitability of the

cross-layer approach for multi-purpose Wi-Fi devices in practice:

• No generic framework is available for the application layer to become aware of the QoS require-

ments of the applications.

• No generic interface is available for communication between the application layer and the MAC

layer.

The UPnP Forum (59) started some work in the direction of achieving a standard cross-layer com-

munication framework. However, this is a complex task that will not be completed in the near future

because it requires the agreement of both software and hardware vendors in a technical specification

and a certification program in order to ensure interoperability. Currently, due to the absence of a generic

cross-layer framework, the dynamic cross-layer solution is not scalable because new functionality has

to be added in the devices every time a new application needs to be supported. In addition, applica-

tions that dynamically vary their frame generation rate according to network congestion, like Temporal

Scalable Video Coding (52) or Skype (53), make the design of such a cross-layer framework even more

challenging.

In order to solve the previous problem, in this chapter we introduce the design of an adaptive al-

gorithm that runs in a Wi-Fi station in power save mode, and using information available at the MAC

layer, is able to adapt the used trigger interval according to the QoS requirements of the applications.

The content of this chapter has been published in (26) and its main contributions are as follows:

• We present an analytical model that captures the effect of the trigger interval used by Wi-Fi dis-

tributed power saving mechanisms on the delay and jitter experienced by real-time applications.

• We design a layer two adaptive algorithm based on the steepest descent method that can be used

in a Wi-Fi station in order to configure a distributed power saving mechanism such that QoS is

provided without requiring knowledge from the applications.
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• We derive an analytical model that studies the stability and convergence properties of our proposed

algorithm.

• Finally, we present a thorough simulative study that evaluates the advantages of our approach with

respect to other proposals available in the state of the art.

This chapter is structured as follows. Section 3.1 presents an analytical model of the effect of dis-

tributed power saving mechanisms on QoS. This model is then used in Section 3.2 to design a layer two

algorithm that adapts to the characteristics of the applications. The properties of the adaptive algorithm

are analytically studied in Section 3.3 and a thorough performance evaluation is provided in Section 3.4.

Finally, Section 3.5 summarizes the results and concludes this chapter.

3.1 Modeling the effect of distributed power saving mechanisms
on applications with QoS requirements

This section introduces an abstracted model that will allow us to quantify the effect that distributed

power saving mechanisms have on the delay and jitter experienced in the downlink direction (AP→station)

by applications with QoS requirements. The dependencies derived with this model will be used in the

next section to design an algorithm that adapts to the traffic characteristics of the applications in order

to meet their QoS needs. Although our focus is on guaranteeing that applications with QoS require-

ments can be run satisfactorily in mobile devices using a Wi-Fi distributed power saving mode, we

will also show that the same algorithm can improve the performance of applications with lower QoS

requirements, e.g., Web browsing and FTP downloads.

The main characteristics of Wi-Fi distributed power saving mechanisms are:

i) Frames addressed to power saving stations are buffered in a network entity.

ii) Stations are regularly informed through signaling messages about whether frames have been

buffered for them.

iii) Stations can request the delivery of their buffered frames at any time by generating signaling

triggers and in the U-APSD case also by reusing data frame transmissions in the uplink.

iv) Stations’ uplink data transmissions are not affected by the power saving mechanisms.

In order to simplify the derivation of an analytical model of the delay and jitter introduced in the

downlink by Wi-Fi distributed power saving mechanisms we make two approximations. The first ap-

proximation is that the traffic characteristics in the downlink of applications with QoS requirements
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can be modeled as a stream of packets, of fixed or variable size, that arrive at the AP with a constant

interarrival time. Note that codec-based applications would fit in this model. In Section 3.3 we relax

this assumption by considering jitter and drops in the incoming stream. The second approximation is

that the delay experienced by a downlink frame is the time since the data frame was inserted in the AP’s

buffer until a station sent the corresponding trigger frame, i.e., the time to get access to the channel is

negligible compared to the buffering time and the station trigger generation interval. This last approx-

imation holds true when the level of congestion in the channel is moderated which is the working area

of interest when QoS requirements need to be satisfied. The effect of congestion in the Wi-Fi network

will be further studied in Section 3.4.

Two different cases are distinguished in the analysis. The case where uplink data frames can not be

used as trigger frames (802.11 power save mode) and the case where uplink data triggers can be used as

trigger frames (U-APSD).

3.1.1 No uplink data triggers

Let us consider the case where downlink frames arrive at the buffering entity with an interarrival time

represented by ∆DL and stations in power saving poll the AP with a trigger interval equal to ∆trig .1

In order to model the delay experienced by the downlink stream the following can be derived. Given

a trigger frame sent by a station and assuming that only one frame was retrieved from the AP as a result

of that trigger, the delay experienced by this frame can be expressed as d(k) = ttrig(k) − tarr(k).

Where tarr(k) represents the arrival time of the k-th downlink data at the AP, and ttrig(k) represents

the reception time of the trigger sent by the station.

To understand the dynamics of d(k) we consider the delay experienced by a reference frame in the

downlink, d0, and observe that no delay above the station’s polling interval, ∆trig , can be obtained in

our model. Hence the delay experienced by the downlink frames can be expressed like:

d(k) = (d0 + kε) mod ∆trig (3.1)

Where k represents the k-th downlink frame arrived at the AP after the reference frame and ε =

∆trig −∆DL, represents the difference between the polling interval used by the station and the interar-

rival time of the downlink stream.

1In 802.11 PSM a station would generate extra PS-Polls when a frame with the More Data bit set is received. In the presented
analysis we collapse these extra triggers into a single one, which is the case of U-APSD.
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In order to prove Equation 3.1 consider that the k-th downlink frame is retrieved by the l-th trigger

frame generated by the station. Applying the modulo function:

d(k) = ttrig(k)− tarr(k) = d0 + l∆trig − k∆DL ⇐⇒ d(k) + (k − l)∆trig =

= d0 + kε ⇐⇒ d(k) = (d0 + kε) mod ∆trig

Equation 3.1 can be interpreted in the following way. First, it can be seen that the delay experienced

by the downlink stream increases or decreases linearly with a slope equal to ε. Second, the downlink

stream never experiences a delay above the polling interval used in the station, ∆trig , resulting in a

saw-tooth pattern. Figure 3.1(a) shows the downlink delay obtained in a simulation experiment1 where

a single Wi-Fi station using U-APSD receives a CBR stream in the downlink. The results corroborate

the correctness of Equation 3.1.

Based on Equation 3.1, the jitter in the downlink direction can be expressed as |j(k)| = |d(k) −

d(k + 1)| = |bd(k)+ε
∆trig

c∆trig − ε|. The following bounds can be obtained considering |ε| < ∆trig
2:

|j(k)| =
{
|ε| if d(k) < ∆DL, d(k) ≥ |ε|
∆trig − |ε| if d(k) ≥ ∆DL, d(k) < |ε| (3.2)

Where the two different conditions on d(k) represent the cases of ε ≥ 0 and ε < 0 respectively. Fig-

ure 3.1(a) depicts the downlink jitter experienced in the same experiment previously described. Notice

in the figure how the spikes in jitter match the saw-tooth pattern observed in the downlink delay, and

correspond to the instants where the station generates a trigger frame and retrieves more than one data

frame from the AP.

3.1.2 Uplink data triggers

Consider now the case where a station reuses uplink data frames as triggers. In this case a periodic

trigger generation solution turns out not to be optimal since trigger frames would be generated more

often than ∆trig . Thus, in order to avoid the introduction of unnecessary signaling, a re-scheduling

mechanism should be used as it was proposed in our early work in (47). This solution consists in

scheduling a periodic generation of signaling triggers and re-scheduling the pending signaling trigger

transmission every time a data trigger is sent in the uplink.

In order to model this solution, let us consider a Wi-Fi station generating data triggers in the uplink

every ∆UL, with ∆UL > ∆DL and ∆UL > ∆trig since otherwise the re-scheduling mechanism would

1The simulation framework used in this chapter is detailed in Section 3.4.
2Note that this is the usual region of operation of an adaptive power save algorithm as the one presented in section 3.2.

33



3. AN ADAPTIVE TRIGGERING ALGORITHM FOR DISTRIBUTED WI-FI POWER
SAVING MODES

15 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17
0

10

20

30

40

50

time (secs)

P
ol

lin
g 

In
te

rv
al

/D
L 

D
el

ay
 (

m
s)

∆
trig

=32ms, ∆
DL

=30ms

15 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17
0

10

20

30

40

time (secs)

D
L 

Ji
tte

r 
(m

s)

Polling Interval
DL delay

DL Jitter

(a) DL stream’s delay/jitter without UL data triggers.
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(b) DL stream’s delay/jitter with UL data triggers.

Figure 3.1: DL stream’s delay/jitter under a constant polling interval, ∆trig .

avoid the transmission of signaling triggers, obtaining then a trigger generation pattern like in the pre-

vious section1. Thus, besides the uplink data triggers, a station schedules the transmission of signaling

triggers every ∆trig as shown in Figure 3.2.

Figure 3.2: Data and signaling trigger generation employing re-scheduling.

Note that when the re-scheduling mechanism is applied, δ = b ∆UL

∆trig
c signaling triggers are always

generated between two consecutive uplink data frames. In addition, the time between a signaling trigger

and an uplink data trigger is ∆res = ∆UL mod ∆trig , with 0 ≤ ∆res < ∆trig .

1A practical example of this setting could be a Video application generating periodic RTCP updates in uplink or a Voice
conversation using different codecs in uplink and downlink.
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3.1 Modeling the effect of distributed power saving mechanisms on applications with QoS
requirements

Although the introduction of uplink data triggers increases the complexity of modeling the dynamic

behaviour of the downlink delay d(k), based on the results from the previous section it can be seen

that the delay experienced by the downlink stream is still bounded by ∆trig and linearly increases or

decreases between uplink data frames, with a slope equal to ε = ∆trig − ∆DL. Whenever an uplink

data frame is sent in the uplink, the downlink delay varies according to εres = ∆res − ∆DL. Figure

3.1(b) shows the same experiment considered in the previous section but adding a periodic generation

of data triggers in the uplink. Note that although ∆trig is above ∆DL, ∆res is not and therefore some

uplink data triggers find no packets in the AP’s power save buffer.

Regarding the jitter of the downlink stream, the following can be said. The jitter continues to be

constant and equal to ε between consecutive uplink transmissions, and varies according to εres when

a station sends an uplink data trigger. A new situation has to be considered though, if an uplink data

trigger finds no data buffered in the AP. In this case, the jitter is |j(k)| = |d(k)− d(k + 1)| = |d(k)−

(d(k) + ∆res + ∆trig − ∆DL)| = ∆res + ε, which could be above the maximum value found in the

previous section. Figure 3.1(b) shows the downlink jitter in the experiment previously described.

Another interesting metric to consider in this case is the amount of uplink data triggers actually

retrieving data from the AP. The former is a measure of how efficiently a station reuses these data

frames as triggers. Ideally, we would like all data frames to be reused as triggers in order to minimize

the amount of generated signaling triggers.

From Figure 3.2 it can be observed that an uplink data trigger retrieves a frame from the AP if and

only if φi < ∆res. Where φi represents the time between an uplink data trigger transmission and the

previous corresponding downlink frame that arrived at the AP.

In order to find how many uplink data triggers will find a downlink frame to download, it can

be seen that the compound sequence of uplink triggers and downlink frames is periodic, with period

T = lcm(∆UL,∆DL), where lcm stands for least common multiple.

Being such sequence periodic, the sequence of φi values will also be periodic, with period N =

T
∆UL

. Indeed, the actual φi values can be expressed as:

φi = (φ0 + i∆UL) mod ∆DL (3.3)

Where φ0 is any of the values of the sequence taken as initial reference.

Since Equation 3.3 is a linear congruence, the linear congruence theorem can be applied to find that

there will be integer solutions on i if and only if gcd(∆UL,∆DL) divides φi−φmin. Where gcd stands

for greatest common divisor and φmin = φ0 mod gcd(∆UL,∆DL). Therefore, the elements contained
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in the set {φi} are the same elements contained in the set {φj} defined as:

φj = φmin + j · gcd(∆UL,∆DL) j = 0...N − 1 (3.4)

Recalling now that uplink data triggers will find data frames buffered in the AP’s power save buffer

if and only if φi < ∆res and considering Equation 3.4, the number of uplink data triggers that, within a

period T , retrieve frames from the AP is:

M = d ∆res − φmin

gcd(∆UL,∆DL)
e 0 ≤M ≤ N (3.5)

3.2 Algorithm design

We have motivated the need to configure the Wi-Fi distributed power saving mechanisms according to

the traffic characteristics of the applications based only on information available at the MAC layer and

have shown in Section 3.1 how the delay and jitter experienced by an application in the downlink depend

on the polling interval used by a station. In this section, to overcome the limitations of a static approach

and avoid the problems that arise when using cross-layer mechanisms, we propose an adaptive algorithm

that estimates the interarrival time of a downlink stream, ∆DL, and generates signaling trigger frames

accordingly.

The reason for choosing this approach is that, according to the model derived in Section 3.1, if we

would poll the AP at intervals equal to the downlink interarrival time, ∆DL, the downlink delay would be

kept constant, bounded to the ∆DL value, and jitter would be eliminated. Note that the estimated value

could also be used to poll the AP at multiples of the interarrival time depending on whether a reduction

on delay/jitter or signaling load is preferred. The larger the polling interval the lower the signaling load

but the larger the delay and jitter. Thus, an algorithm that estimates the downlink interarrival time allows

to efficiently address the trade-off between delay/jitter and signaling load.

We define the following objectives for the design of our adaptive algorithm:

1. Bound the delay of the downlink frames according to their interarrival time at the AP.

2. Minimize the amount of signaling load required to achieve step 1.

3. Rapidly adapt to variations in the interarrival time.

4. Minimize the complexity, in terms of the number of updates required to follow changes in the

interarrival time.
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3.2 Algorithm design

Given that the downlink interarrival time at the AP is unknown at the MAC layer of a station and

can not be conveyed by the AP using standard mechanisms, an algorithm in a station that could meet

the proposed objectives would be one that counts all the frames received from the AP, n fr rcvd,

during a time window, Tw, to afterwards update the downlink interarrival time estimation by computing
Tw

n fr rcvd . The bigger Tw, the better the updated value of the estimation since more frames will be

received from the AP. The problem of increasing Tw though, is that sudden changes in the value of the

interarrival time can not be followed immediately. In order to achieve better precision using small time

windows, a moving average could be considered, but the problem again would be to quickly follow

changes of the input because average filters introduce memory.

Therefore, instead of using a fixed Tw value, we propose an algorithm that updates the current

value of the estimation according to the occurrence of specific events defined based on the following

observations:

• If a station generates trigger frames at the same rate that downlink frames arrive at the AP, each

trigger frame will always result in a single frame delivered by the AP.

• If a station generates trigger frames at a rate that is above the rate of arrivals at the AP, each trigger

frame will result in either one or no frames delivered by the AP.

• If a station generates trigger frames at a rate below the rate of arrivals at the AP, each trigger frame

will result in either one or more frames delivered by the AP.

According to the above observations, two types of events can be defined that univocally identify

whether the estimation in the station is above or below the actual interarrival time of the downlink

packets at the AP.

• No Data event: If a trigger is sent by a station and no frame is delivered by the AP. This event

implies that the station holds an estimation below the actual downlink interarrival time.

• More Data event: If a trigger is sent by a station and more than one frame is delivered by the AP.

This event implies that the station holds an estimation above the actual downlink interarrival time.

These two events can be recognized at the MAC layer of the stations using any of the distributed

power saving mechanisms available today. The No Data event can be recognized because the AP de-

livers an empty frame, QoS Null, when a trigger is received but no data is buffered. In addition in (61)

we proposed a more efficient method to signal this event, where the need to send explicit signaling is

avoided by making use of a bit available in the ACK frames. Regarding the More Data event, it can
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be recognized by simply counting the number of frames received before getting a frame with the EOSP

bit1 set to 1 in the case of U-APSD, or monitoring the More Data bit in the case of 802.11 power save

mode.

An algorithm that aims to estimate the downlink interarrival time can be therefore proposed that

increases its current estimation whenever a No Data event occurs, and decreases its current estimation

whenever a More Data event occurs. The problem hence is to investigate how the current value of the

estimation, ∆trig(n), has to be updated every time an event occurs in order to converge to the actual

downlink interarrival time, where ∆trig(n) represents the polling interval used by a station after the

n-th estimation update, n ∈ Z.

Our proposal is to use an steepest descent algorithm to update the estimation and converge to ∆DL.

The idea behind the steepest descent algorithm is to estimate at each iteration the error between the

current estimation, ∆trig(n), and the actual downlink interarrival time, ∆DL, and use this information

to update ∆trig(n) in order to get closer to ∆DL.

A steepest descent algorithm for a single variable, in this case the variable ∆trig , can be expressed

as (62):

∆trig(n+ 1) = ∆trig(n)− γ
∂

∂∆trig
J(∆trig(n)) (3.6)

Where ∆trig(n) represents the current value of the estimation, γ > 0 is the adaptation step that

controls the speed of convergence and J(∆trig) is a derivable and convex error function that has a

minimum at the point where the algorithm converges. To avoid converging to a value other than ∆DL

we select an error function that has only one minimum:

J(∆trig(n)) = (∆trig(n)− ∆̂DL)
2 (3.7)

Where ∆̂DL is an estimator of ∆DL, that has to be used because the actual value of ∆DL is the

unknown value we are looking for. Thus, the successful convergence of the algorithm will depend on

whether ∆̂DL is a good estimation of ∆DL. We consider:

∆̂DL =
∆t(n)

n fr rcvd(n)
(3.8)

Where ∆t(n) is the time measured at a station between the current event and the previous one and

n fr rcvd(n) is the number of frames that a station has retrieved from the AP during ∆t(n), using a

polling interval ∆trig(n).

1The End Of Service Period (EOSP) bit signals the end of a Service Period and allows a station to go back to sleep mode in
U-APSD.
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The routine described in Algorithm 3.1 illustrates our proposed implementation. This routine is

executed by the power saving stations every time a service period (SP1) completes.

Several points deserve special attention in Algorithm 3.1. First, it can be observed in lines 20 and

28 that a different value for the adaptation step is used depending on whether the station experiences

a More Data event, γMD , or a No Data event, γND . The reason for doing so, is that the value of γ

can be used to control whether the estimation, ∆trig(n), converges to ∆DL remaining always in the

More Data zone, i.e., the zone where ∆trig(n) > ∆DL, or in the No Data zone, i.e., the zone where

∆trig(n) < ∆DL
2. The choice of configuring the algorithm to operate in the More Data zone or in the

No Data zone represents a trade-off between the possibility of generating an excess of signaling load,

if it operates in the No Data zone, or temporarily allowing a delay for some frames above the downlink

interarrival time, if it operates in the More Data zone. In order to avoid useless signaling that might

increase the congestion in the network and harm the power consumption, we propose to configure the

algorithm to operate in the More Data zone.

Based on the previous equations, our proposed algorithm will update the estimation every time an

event occurs according to:

∆trig (n+ 1) = ∆trig (n)− γ(∆trig (n)−
∆

t
(n)

n fr rcvd(n)
) (3.9)

Second, it can be observed between lines 8 and 17, that a special behaviour is considered if no

frames have been received between the current event and the previous one (n fr rcvd = 0), or if

more than two frames have been retrieved from the AP during this SP (m > 2). Both cases represent

the situation of having a current estimation, ∆trig(n), far from ∆DL. In the former case the current

value of the estimation is below the downlink interarrival time but, since no frames have been retrieved

between events, the station has no information to estimate ∆DL. In this case the current estimation is

updated by doing ∆trig(n + 1) ← β∆trig(n), where β > 1. In the latter case, the current estimation,

∆trig(n), is above ∆DL. Thus, after applying a memory to reduce spureous cases (consec long burst),

the estimation is quickly decreased by doing ∆trig(n + 1) ← ∆trig(n)
m . Note that if m > 2 the station

knows that it is holding an estimation at least m times above the downlink interarrival time.

Finally, the boolean variables introduced in lines 19 and 27, More Data update and No Data update,

ensure that the estimation is updated always between consecutive events of the same zone (More Data

zone or No Data zone). The reason for this is that a too short interval, ∆t, between events can occur

1We extend the U-APSD definition of Service Period in the context of this chapter to be used also in the case of 802.11 power
save mode. Service Period is defined as the period of time that starts when a station sends a trigger frame and ends when a frame
with EOSP=1 in case of U-APSD or MD=0 in case of legacy power save mode is received from the AP.

2A more detailed definition of the More Data and No Data zones is provided in Section 3.3.

39



3. AN ADAPTIVE TRIGGERING ALGORITHM FOR DISTRIBUTED WI-FI POWER
SAVING MODES

Algorithm 3.1: Routine executed in the station to update its current polling interval, ∆trig(n).

1 – Variables definition
2 ∆t ← Time between the current event and the previous one
3 n fr rcvd← Number of frames received between the current event and the previous one
4 m← Number of frames received during the Service Period (SP)
5 ∆trig ← Polling interval used in the station

6 – Routine executed when a SP completes
7 if m = 1 then
8 n fr rcvd← n fr rcvd+ 1

9 else if m, n fr rcvd = 0 and last trigger was signaling then
10 ∆trig(n+ 1)← β∆trig(n)

11 n fr rcvd← 0

12 else if m > 2 then
13 if consec long burst > cons long burst MAX then
14 ∆trig(n+ 1)← ∆trig(n)

m

15 consec long burst← 0

16 else
17 consec long burst← consec long burst+ 1

18 else
19 if m > 1 then
20 if More Data update is TRUE then
21 ∆trig(n+ 1)← ∆trig(n)− γ

MD
(∆trig(n)− ∆t

n fr rcvd
)

22 Reschedule next signaling trigger transmission
23 else
24 More Data update← TRUE

25 No Data update← FALSE

26 n fr rcvd← 0

27 else if m = 0 and last trigger was signaling then
28 if No Data update is TRUE then
29 ∆trig(n+ 1)← ∆trig(n)− γND (∆trig(n)− ∆t

n fr rcvd
)

30 Reschedule next signaling trigger transmission
31 else
32 No Data update← TRUE

33 More Data update← FALSE

34 n fr rcvd← 0

35 m← 0

when the value of the estimation moves from one zone to the other. As it will be seen in the next section,

this could lead to a misleading estimation of the current error between ∆trig(n) and ∆DL.

We consider now the case where EDCA is the channel access function in use and various applica-

tions, with different delay requirements, run in the station at the same time through different Access

Categories (AC). In this case, the trigger generation algorithm would only generate triggers at the es-

timated rate of the aplication sending frames more often, i.e. min{∆DL[i]}. The former is possible

because the algorithm can rely on the More Data bit and Max SP Length capabilities of the existent
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power saving mechanisms in order to retrieve frames from other downlink streams. To make the over-

all system adaptive, a simple procedure can be implemented in the station that by keeping track of the

frames received from each AC decides which is the AC sending frames more often. The station would

then run the algorithm over the selected AC that would also be used to generate signaling triggers.

The complete cycle of activity in a station can be summarized in the following terms. When a

station is idle no trigger frames are generated. Once a Beacon frame is received anouncing the presence

of buffered frames in the AP, a station starts generating trigger frames with an initial polling interval,

∆trig(0), that is then dynamically adjusted by means of Algorithm 3.1. After sending a certain number

of consecutive trigger frames receiving only empty frames from the AP a station considers that the

application has finished and switches back to idle mode again.

Finally, we conclude this section discussing a simple heuristic that can be used to improve the

performance of the algorithm when applications sending large packets are considered. Large packets in

the application layer, e.g. like those generated by video codecs, are in many cases fragmented resulting

in bursts of packets arriving at the AP which can mislead the algorithm into false More Data events.

However, if the minimum MTU between the application generating packets and the AP is assumed to

be known at the terminal, which with a reasonable probability can be considered to be the Ethernet

MTU, the misleading effect of large packets can be reduced by remembering the size in the MAC layer

of the packets downloaded during a service period, and considering as a single packet adjacent packets

of size equal to the expected MTU1.

3.2.1 Convergence to a multiple of the interarrival time: ∆trig → k∆DL

If a delay and jitter above ∆DL can be afforded, further power saving and signaling load enhancements

can be obtained by modifying Algorithm 3.1 to converge to a multiple of the downlink interarrival time,

∆trig → k∆DL, where k is an integer bigger than 1. The larger the value of k can be set, the larger the

potential increase in power saving and reduction of signaling load.

In order to achieve this, Equation 3.9 has to be modified such that the equilibrium state is reached

when the trigger interval used by a station, ∆trig , equals the desired multiple of the interarrival time:

∆trig (n+ 1) = ∆trig (n)− γ(∆trig (n)− k
∆t(n)

n fr rcvd(n)
) (3.10)

In addition, the No Data and More Data events generation, which trigger an update of the current

polling interval, also need to be adjusted accordingly. In this case, No Data events will be generated

1This heuristic would fail if packets of size equal to the MTU minus overheads are generated by the applications, but we
consider this probability to be small.
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when less than k frames are received within one service period while More Data events will be generated

when more than k frames are received within one service period.

In the rest of the chapter we focus in the case of the polling interval converging to the downlink

interarrival time, k = 1, since it is the one with the most stringent QoS requirements and thus, the most

demanding for the proposed adaptive algorithm.

3.3 Algorithm analysis

In this section we use the model presented in Section 3.1 in order to gain a deeper understanding on the

properties of the adaptive algorithm presented in the previous section. First, we study under which con-

ditions the algorithm converges. Second, the convergence speed of the algorithm is analyzed providing

a worst case bound on the required number of iterations. Finally, we discuss how the performance of

the algorithm degrades when the assumptions of the model do not hold.

3.3.1 Proof of Convergence

For the purpose of this analysis, we define convergence as the process of making the estimation, ∆trig(n),

continuously approach at each iteration the actual downlink interarrival time, ∆DL, while always guar-

anteeing ∆trig(n) ≥ ∆DL. Some of the reasons for preferring to keep ∆trig(n) ≥ ∆DL have already

been provided in Section 3.2. Additionally, further reasons will be given in this section. The same anal-

ysis presented here though, could be also applied if it would be preferred that the algorithm converges

to ∆DL guaranteeing ∆trig(n) ≤ ∆DL.

Throughout the analysis we refer to the set of values of the estimation, ∆trig(n), that are above

∆DL as the More data zone, since only More Data events can be observed by the station in this zone.

Similarly, the set of values of the estimation below ∆DL are referred to as the No Data zone. The

different zones of convergence are depicted in Figure 3.3.

To demonstrate the convergence of the algorithm we will prove that if the current value of the

estimation, ∆trig(n), is above the downlink interarrival time, ∆DL, the next estimation update will

result in a smaller value, ∆trig(n+1), either above or equal to ∆DL. It is important to note though that

when the algorithm starts the station’s initial polling interval, ∆trig(0), could be below the downlink

interarrival time. If the initial value is below the downlink interarrival time, appropriate mechanisms

can be designed to ensure that we will move to the More Data zone. The proof of convergence of this

section guarantees that once we enter into the More Data zone we will not leave it anymore and at each

iteration the estimation will get closer to the actual ∆DL value.
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Figure 3.3: Evolution of ε(n) along the error function.

We start considering the more general case where the station reuses uplink data frames as triggers

and the re-scheduling mechanism is used. Results regarding the no data triggers case can be obtained

particularizing the presented analysis. The error incurred by a station at each estimation update is

defined as ε(n) = ∆trig(n)−∆DL. Hence, if it holds that 0 ≤ ε(n+1)
ε(n) < 1 ∀n, the estimation will get

closer to ∆DL every time it is updated. The former can be proved by separately demonstrating:

1. ε(n+1)
ε(n) < 1. This condition ensures that the error ε reduces at each iteration.

2. ε(n+1)
ε(n) ≥ 0. This condition ensures that the algorithm remains always in the same zone, either

the More Data zone or the No Data zone.

We start proving that ε(n+1)
ε(n) < 1 ∀n. Figure 3.4 shows two consecutive events that update the

estimation. In the figure, ∆DL represents the interarrival time of the downlink stream and ∆trig and

∆UL represent the generation interval of signaling and data triggers, respectively. Note that δ = b ∆UL

∆trig
c

signaling triggers are sent between two consecutive data triggers in the uplink and the time between a

signaling trigger and an uplink data frame is ∆res = ∆UL mod ∆trig .

In Figure 3.4 the two signaling triggers marked with a circle represent More Data events that trigger

an estimation update. In the first event, d01 represents the time between the trigger frame sent by the

station and the arrival time of the last frame retrieved by this trigger from the AP. Note that since this is

a More Data event and the station polls the AP every ∆trig(n − 1), 0 ≤ d01 < ε(n − 1). An analog

definition is used for d02 in the second event, the difference in this case is that 0 ≤ d02 < ε(n). In

addition, ∆t represents the time between the two consecutive events, ∆′
t represents the time between

the first of the events and the last uplink data trigger sent before the second event, and k represents the

number of triggers sent after ∆′
t until the second event occurred, with 1 ≤ k ≤ δ 1.

1We assume in this case that the second More Data event is triggered by a signaling frame. The same analysis applies if this
event is triggered by a data frame, replacing k∆trig by δ∆trig +∆res.
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Figure 3.4: Timing between consecutive events.

Recalling now the definition of ε(n), Equation 3.9 and considering the current estimation in the

More Data zone, it can be observed that ε(n+1)
ε(n) < 1 ∀n if and only if:

∆trig (n+ 1) < ∆trig (n)⇐⇒ ∆trig (n) >
∆t(n)

n fr rcvd(n)

An upper bound on ∆t(n)
n fr rcvd(n) expressed in terms of ∆trig(n) is needed in order to prove the

previous statement. Considering again Figure 3.4, ∆t(n)
n fr rcvd(n) can be upper bounded in the following

way:
∆t

n fr rcvd
=

∆′
t + k∆trig

bd01+∆′
t

∆DL
c+ k + 1

≤ ∆′
t + k∆trig

d ∆′
t

∆DL
e+ k

(3.11)

Where the temporal index n has been ommited for clarity. Thus, ∆trig(n) > ∆t(n)
n fr rcvd(n) can be

proved by comparing ∆trig(n) with the upper bound for ∆t(n)
n fr rcvd(n) obtained in Equation 3.11:

∆′
t + k∆trig

d ∆′
t

∆DL
e+ k

< ∆trig ⇐⇒
∆′

t

∆trig
< d ∆′

t

∆DL
e (3.12)

Where the previous inequality is always satisfied because we are considering the case where ∆trig(n) >

∆DL.

So far it has been proved that the algorithm always updates the estimation in the correct direction

when a More Data event is observed. Next, we prove that the adaption step, γ, can ensure that the

estimation, ∆trig(n), does not bounce between the More Data and the No Data zones, i.e., ε(n+1)
ε(n) ≥ 0.

Considering Equation 3.9, it can be seen that the effective step taken by the algorithm to update the

current estimation is γ(n)α(n), with α(n) = ∆trig(n)− ∆t(n)
n fr rcvd(n) . From Figure 3.3 and assuming a

value of the estimation in the More Data zone, it can be observed that the updated value of the estimation,
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∆trig(n + 1), will remain in the More Data zone if and only if the step taken by the algorithm at this

iteration is smaller than the current error, i.e., γ(n)α(n) ≤ ε(n).

In order to obtain an upper bound on γ(n) that ensures ∆trig(n + 1) ≥ ∆DL, note first that based

on the relations illustrated in Figure 3.4, ∆t(n)
n fr rcvd(n) can be expressed as:

∆t(n)

n fr rcvd(n)
= ∆DL +

d02 − d01
n fr rcvd(n)

(3.13)

Recalling the definition of α(n) and the previous equation we can express α(n) as:

α(n) = ∆trig(n)−
∆t(n)

n fr rcvd(n)
= ε(n)− d02 − d01

n fr rcvd(n)
(3.14)

Considering now that 0 ≤ d01 < ε(n − 1) and that, from Equation 3.9, ε(n − 1) can be expressed as

ε(n− 1) = ε(n) + γ(n− 1)α(n− 1), the following upper bound on α(n) can be obtained:

α(n) < ε(n)
n fr rcvd(n) + 1

n fr rcvd(n)
+

γ(n− 1)α(n− 1)

n fr rcvd(n)

Thus, the previous upper bound on α(n) can be turned into a lower bound on ε(n) and recalling the con-

dition to keep the next value of the estimation in the More Data zone, γ(n)α(n) < ε(n), a conservative

γ(n) can be found, γ
CONS

(n), that keeps the estimation always in the desired zone of convergence:

γ(n) <
n fr rcvd(n)− γ(n− 1)α(n−1)

α(n)

n fr rcvd(n) + 1
= γ

CONS
(n) (3.15)

Continuing with the previous reasoning and going back to Equation 3.14 while recalling that 0 ≤

d02 < ε(n), a lower bound on α(n) can be obtained. Applying the same analysis to this bound, an

aggressive bound on γ(n) that forces the estimation to jump from one zone to the other can also be

obtained, being:

γ(n) >
n fr rcvd(n)

n fr rcvd(n)− 1
= γ

AGGR
(n) (3.16)

Although the previous bounds, γ
CONS

(n) and γ
AGGR

(n), have been derived under the assumption

of having the estimation in the More Data zone, Equations 3.15 and 3.16 hold true also in the No Data

zone.

To illustrate how the algorithm updates the estimation while keeping always a value in the More Data

zone, Figure 3.5(a) depicts the delay and polling interval experienced by a Wi-Fi station using U-APSD

that retrieves a CBR stream from the AP. The values of γ in the More Data and No Data zone, γ
MD

and γND , are constant and chosen below and above the corresponding γCONS and γAGGR thresholds.

From the figure, it is worth noting how the time between events increases as the error in the estimation

reduces, as predicted by the model introduced in Section 3.1. This property of the algorithm has the
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Figure 3.5: ∆trig dynamics.
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interesting consequence that, in the limit, the sequence of uplink triggers generated by the station and

downlink frames arriving at the AP would synchronize, i.e., limt→∞ d(k) = 0. Note though, that if

the algorithm would converge from the No Data zone, the behaviour in the limit would be different, i.e.

limt→∞ d(k) = ∆DL. Hence this is another reason to make the algorithm converge from the More

Data zone.

It has been proved so far that ε(n) reduces at each estimation update. In order to update the estima-

tion though, the station has to keep observing new events. Hence, a new question arises that is whether

the station will always observe enough events to make the estimation converge to ∆DL. We prove in

the following paragraphs that:

1. If no data triggers in the uplink are considered, the proposed algorithm always converges to ∆DL.

2. If data triggers in the uplink are considered, the proposed algorithm can converge to a compact set

of values around ∆DL. In this case though, all the algorithm’s requirements described in section

3.2 are also fulfilled.

To prove the previous statements, the case where the station generates uplink data triggers is consid-

ered. The results obtained are afterwards particularized to the case with no data triggers in the uplink.

The converged values of ∆trig(n) are defined as those values that prevent the station from observing

any further event. In order to find those values we define φi, 0 ≤ φi < ∆DL, which represent the time

difference between an uplink data trigger sent by a station and the last downlink arrival at the AP. See

Figure 3.4 for a graphical representation.

As mentioned in Section 3.1, the compound sequence of uplink triggers and downlink frames in

our model is periodic, with period T = lcm(∆UL,∆DL). T can hence be understood as composed

of N = T
∆UL

consecutive uplink subperiods, where each uplink superiod is formed by an uplink data

trigger and δ = b ∆UL

∆trig
c consecutive signaling triggers and is shifted φi = (φ0+i∆UL) mod ∆DL with

respect to the sequence of downlink data frames. Notice that φ0 corresponds to the shift experienced by

a reference uplink subperiod.

If the station holds a value of ∆trig(n) such that no event is observed within T , ∆trig(n) is a

converged value of the estimation. Indeed, not experiencing any event in T means not experiencing any

event in any of the N uplink subperiods that conform T .

It is proved in the Appendix at the end of this chapter that in the general case where ∆UL is not

multiple of ∆DL, the station has to generate δ = b∆UL

∆DL
c signaling triggers between uplink data triggers
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to avoid observing any event during T . Hence, a necessary condition for ∆trig(n) being a converged

polling interval is δ = b ∆UL

∆trig(n)
c = b∆UL

∆DL
c, or:

∆UL

b∆UL

∆DL
c+ 1

< ∆trig(n) <
∆UL

b∆UL

∆DL
c

Considering that ∆trig(n) > ∆DL, we continue proving that a ∆trigmax exists such that if ∆DL <

∆trig(n) < ∆trigmax the station will never observe an event.

In order to find ∆trigmax , recall from Equation 3.1 that if no event is observed, the delay experienced

by consecutive downlink frames can be expressed like d0 + kε(n), with ε(n) = ∆trig(n) − ∆DL.

Therefore, if δ = b∆UL

∆DL
c signaling triggers are sent between two consecutive data triggers, the following

condition must hold in order to avoid More Data events in any uplink subperiod:

φi + ε(n) b∆UL

∆DL
c < ∆DL ⇐⇒ ∆trig(n) < ∆DL +

∆DL − φi

b∆UL

∆DL
c

The previous expression implicitly assumes that the time between a signaling trigger and an uplink

data trigger, ∆res, is below ∆DL. Otherwise, applying the same analysis, a tighter bound on ∆trig(n)

with the same structure would be found. The most restrictive condition on ∆trig(n) is hence imposed

by the uplink subperiod with the biggest φi. Recalling Equation 3.4, φmax can be found to be φmax =

∆DL − (gcd(∆UL,∆DL)− φmin). Thus, ∆trigmax can be written as:

∆trigmax = min{ ∆UL

b∆UL

∆DL
c
,∆DL +

∆DL − φmax

b∆UL

∆DL
c
}

Applying the same analysis when ∆trig(n) < ∆DL, it can be found that no event ever occurs if

∆trigmin < ∆trig(n) < ∆DL, where:

∆trigmin = max{ ∆UL

b∆UL

∆DL
c+ 1

,∆DL −
φmin

b∆UL

∆DL
c
}

Note that in the general case, ∆UL not multiple of ∆DL, the amount of uplink data triggers that

will download a data packet from the AP, i.e., those uplink data packets that are effectively reused as

triggers, will be always the same and correspond to the number of uplink subperiods where d∆UL

∆DL
e

downlink frames arrive at the AP. This number is found in the Appendix at the end of this chapter.

In the particular case where ∆UL is a multiple of ∆DL, the same analysis can be applied to find a

new converged value of ∆trig located above ∆DL, ∆′
trigmax

, such that only δ = b∆UL

∆DL
c − 1 signaling

triggers are generated by a station between uplink data triggers. This is again another argument to prefer

the convergence of the algorithm from the More Data zone.

Note that regardless of the final converged value estimated in the station, the original requirements

of the algorithm are always being fulfilled by the way the events have been defined. First, if a More
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Data event never occurs, the delay is effectively bounded to the downlink interarrival time. Second, if a

No Data event never occurs, no useless signaling is generated.

The converged values of ∆trig(n) when no uplink data frames are reused as triggers can be obtained

from the expressions of ∆trigmin and ∆trigmax by observing that:

lim
∆UL→∞

∆trigmin = lim
∆UL→∞

∆trigmax = ∆DL

Therefore, without uplink data triggers, the only converged value of ∆trig(n) that refrains the station

from observing any event is ∆trig(n) = ∆DL.

Finally, to illustrate the analysis of convergence introduced in this section, Figures 3.5(b) and 3.5(d)

depict the delay and jitter experienced by a downlink stream whose interarrival time is changed in a

step-like fashion. The Wi-Fi station is configured as in the experiment for Figure 3.5(a) and generates

data triggers in the uplink every 90ms during the time intervals (20,40) and (80,100) seconds.

As predicted in the analysis, it can be observed by the constantly decreasing slope of the delay

curves that, when no uplink data triggers are considered, the algorithm constantly approaches ∆DL. In

the time intervals where the station sends uplink data triggers though, the predicted periodic situation in

the channel is observed. Note that the different jitter levels observed in Figure 3.5(d) correspond to the

different values predicted in the model introduced in Section 3.1.

3.3.2 Speed of Convergence

In the previous section it has been proved that the proposed algorithm always converges to a value that

fulfills our design objectives. In this section we study the speed of the algorithm to converge to such a

value.

Our goal is to find an upper bound on the number of updates needed in order to reduce an initial error

in the estimation ε(0) to ε(n) < α∆DL, where α is a variable defined for the purpose of this analysis,

0 < α < 1.

Assuming that our algorithm operates in the More Data zone, as recommended, and recalling Equa-

tion 3.13, the error experienced in the next estimation update can be expressed and upper bounded in

the following way:

ε(n+ 1) = ε(n)(1− γ) + γ
d02 − d01

n fr rcvd(n)
< ε(n)(1− γΨ(n))

Where Ψ(n) = n fr rcvd(n)−1
n fr rcvd(n) and 0 ≤ d02 < ε(n). Note that Ψ(n) is a monotonically growing

function of n fr rcdv(n) and since the minimum number of frames that a station can retrieve from the

AP between two consecutive More Data events is 2 then 1
2 < Ψ(n) < 1.
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Based on that, a lower bound on the speed with which the error decreases can be obtained as:

ε(n+ k)

ε(n)
<

k−1∏
j=0

(1− γΨ(n+ j)) < (1− 1

2
γ)k

Where a constant adaptation step, γ has been assumed. If γ would be adaptive, its minimum value

should be considered in order to obtain the previous bound.

Note that the adaptation step, γ, can be effectively used to control the speed of convergence. Never-

theless, an upper bound, γCONS , was found in the previous section in order to guarantee the convergence

keeping the value of the estimation always in the same zone. A trade-off between speed of convergence

and stability controlled by the adaptation step is an intrinsic characteristic of the steepest descent algo-

rithm.

If the algorithm converges faster than (1− 1
2γ)

k, an upper bound on the number of updates needed

to reduce the error of the estimation from ε(0) to α∆DL, can be found as:

Kmax = − log(
ε(0)

α∆DL
)

1

log(1− 1
2γ)

The former upper bound holds true regardless of whether the station generates uplink data triggers

or not. The difference will be on the time needed to reach the critical number of estimation updates,

Kmax. The reason is that the time between consecutive events is different depending on whether uplink

data triggers are considered or not. In any case though, the time between events increases when the error

in the estimation, ε(n), decreases.

The benefits of updating the estimation in a way proportional to 1
ε(n) are indeed twofold. On the

one hand, the algorithm will react fast when there are sudden changes in the downlink interarrival time,

because the error, ε(n), will increase. On the other hand, if the downlink interarrival time remains stable,

the algorithm minimizes the required computational load by relaxing the frequency of updates as ε(n)

decreases.

Finally, to illustrate how the adaptation step can be used to tune the speed of convergence, in Figure

3.5(c) we show how a Wi-Fi station using U-APSD estimates an interarrival time of 42ms using two

different values of γ
MD

, γ
MD

= 0.2 and γ
MD

= 0.9γ
CONS

. A noticeable faster estimation is observed

when γMD = 0.9γCONS , while keeping the estimation always in the More Data zone.

3.3.3 Relaxing the Assumptions of the Model

In order to derive the convergence properties of our adaptive algorithm we have assumed so far that the

downlink and uplink data streams were perfectly periodic. However, this strong assumption only holds
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Figure 3.6: Behavior of the algorithm when relaxing the assumptions of the model.
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in reality when congestion in the wired and wireless parts of the network is kept very low. In this section

we take a simulative approach in order to analyze the degradation experienced by the algorithm when

the previous assumptions are not valid.

We consider the same scenario used for Figure 3.5(a), but having a downlink stream with an inter-

arrival time of 30ms and introducing behind the AP a virtual node which delays every incoming packet

by a random value uniformly distributed between 0 and Jms, and drops every incoming packet with

probability P . Thus, we want to study the robustness of the adaptive algorithm to increasing values of

J and P .

Figure 3.6(a) depicts the dynamics of the algorithm in the presence of jitter (upper graph) and packet

drops (lower graph). The first remarkable point is that as observed in both graphs the essential behavior

predicted in Section 3.1, a saw-tooth pattern for delay, is maintained in the presence of jitter and packet

drops. The actual dynamics though slightly differ in either case. In both cases, jitter or drops, if a trigger

is sent and no frame is present in the AP the algorithm will experience a No Data event. On the one

hand, if the missing frame was delayed due to jitter, the next time the station triggers the AP it will

probably retrieve two frames, thus experiencing a More Data event. Since the algorithm is designed to

only update the estimation between consecutive events of the same type (see Algorithm 3.1), No Data

events and More Data events cancel out in the case of jitter resulting in a very stable estimation. On the

other hand, if the No Data event was due to a packet drop the algorithm will not experience a More Data

event in the next trigger which results in sporadic increases of the estimation above the target polling

interval.

To better quantify the effects of jitter and packet drops on the algorithm performance we increase

J from 0ms → 50ms and P from 0.1% → 20%. This range for jitter and drops covers the margins

recommended by ITU-T in (63). Figure 3.6(b) illustrates for this experiment the worst case downlink

delay and the amount of null triggers (triggers sent by the station which find no data in the AP). The

results show how the algorithm can maintain a bounded delay for the downlink stream for a large range

of jitter and drops, J < 40ms and P < 10%. However, as the jitter and packet drops increase,

degradation unavoidably appears in terms of null triggers which could result in an increased level of

congestion in the network.

3.4 Performance evaluation

In this section we present a performance evaluation of our proposed adaptive algorithm. We divide this

performance evaluation in two subsections. First, subsection 3.4.1 discusses the behavior of our adaptive
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algorithm when used with different applications in a typical Wi-Fi deployment. Second, subsection 3.4.2

analyzes the scalability and peformance of our adaptive algorithm as congestion in the Wi-Fi network

increases.

The analysis has been performed via simulations. We extended the 802.11 libraries provided by

OPNET (64) to include the power saving extensions defined in 802.11 and 802.11e and our proposed

adaptive trigger generation algorithm.

We consider an infrastructure mode Wi-Fi network, with an AP beacon interval of 100ms. The

physical layer chosen in our simulations is 802.11b with all stations transmitting at 11Mbps.

Next, we present a definition of a traffic mix that we consider representative of todays typical Wi-Fi

deployments. Throughout this section we will consider stations using one/various of the applications

that conform this traffic mix. Sometimes we will use the concept of a cluster of stations, which we

define as a group of four stations where each station runs one of the applications defined in our traffic

mix. The applications used in our traffic mix together with the EDCA Access Category used to transmit

traffic of this application are described in Table 3.1.

Description AC

Voice
G.711 Voice codec with silence suppression.
Data rate: 64kbps. Frame length: 20ms.
Talk spurt exponential with mean 0.35s and
silence spurt exponential with mean 0.65s.

AC VO

Video
Streaming video download. MPEG-4 real
traces of the movie ’Star Trek: First Contact’
obtained from (65). Target rate: 64kbps.
Frame generation interval: 40ms.

AC VI

Web Web traffic. Page interarrival time exponen-
tially distributed with mean 60s. Page size
10KB plus 1 to 5 images of a size uniformly
distributed between 10KB and 100KB.

AC BE

FTP FTP download. File size of 1 MB. Inter-
request time exponentially distributed with
mean 60s.

AC BK

Table 3.1: Applications Description.

For our experiments we consider that stations in the Wi-Fi network communicate through the AP

with stations in a wired domain. The wired domain is modeled as an Ethernet segment behind the

AP and a virtual node which represents the backbone of the wired network and introduces jitter and

drops. Based on (63) we consider that the Voice and Video traffic traversing the backbone network

suffer a maximum delay variation of 5ms and a 0.1% packet drop probability. Additionally Web and
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FTP applications communicate with a server using TCP New Reno and experiencing an RTT of 20ms

(typical RTT in a domestic internet path (86)).

As previously mentioned the channel access function considered in our simulations is EDCA. We

assume a fixed configuration of the EDCA QoS parameters based on the 802.11e standard recommen-

dation (32). The parameters used are detailed in Table 3.2.

EDCA AIFS CWmin CWmax TXOP length
AC VO 2 31 63 3.264 ms

AC VI 2 63 127 6.016 ms

AC BE 3 127 1023 0

AC BK 7 127 1023 0

Table 3.2: EDCA configuration for the different ACs.

Throughout this section our adaptive algorithm will be configured in the following way. The initial

polling interval, ∆trig(0), is set to 10ms, consecutive long burst is 2, β is set to 1.5 and the algorithm

switches off after sending three consecutive triggers without finding data in the AP.

In addition we will consider that all the trigger generation algorithms studied in this section use

U-APSD, configured with Max SP Length set to All, instead of Legacy 802.11 Power Save Mode, due

to its better support for QoS.

3.4.1 Dynamics of the algorithm with realistic applications

In order to study how our adaptive algorithm behaves with different applications we consider the fol-

lowing scenario. A set of five clusters, which results in a total of 20 stations in the network, generate

traffic according to our defined traffic mix. This traffic is considered to be background load in the Wi-Fi

network. In addition we consider a tagged station configured to run the specific application that we want

to study. In this section we will consider this station running the following applications: i) VoIP with

silence suppression, ii) Video Streaming, iii) TCP download and iv) a mix of different applications.

3.4.1.1 VoIP with VAD

A G.711 voice codec with voice activity detection (VAD) has been considered in our experiments.

The instantaneous behaviour of the adaptive algorithm is illustrated in Figure 3.7(a). The dynamics

of the algorithm can be summarized in the following terms. First, when there is a burst of voice packets

in the downlink, e.g. around 30.2 or 33.5 seconds, the station applies the adaptive algorithm to adjust its

polling interval that converges to 20ms. Second, after sending 3 consecutive triggers without response,
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the algorithm infers that there is a silence gap and cancels the generation of triggers, as observed at 34

seconds. Switching off the algorithm though, can turn into an increased delay for the first voice samples

when the activity restarts, as seen at 30 seconds in the trace. Finally, when the application generates

data frames in the uplink, the signaling triggers are deferred by means of the re-scheduling mechanism.

3.4.1.2 Video Streaming

The behaviour of the adaptive algorithm in case of Video Streaming is depicted in Figure 3.7(b). The

MPEG-4 codec generates frames at a nominal interarrival time of 40ms. These frames though, may

need to be fragmented (MTU of Ethernet) and as result the AP can receive bursts of frames every 40ms.
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Figure 3.7: Dynamics of the adaptive algorithm with a VoIP codec with silence suppression (upper graph)
and with a Video codec (lower graph).

Figure 3.7(b) illustrates the instantaneous polling interval used in the station with and without the

MTU heuristic defined in Section 3.2, the MAC delay experienced by the video frames retrieved from the

AP and in a subgraph, the instantaneous evolution of the frame sizes generated by the MPEG-4 codec.

It can be seen that before 170 seconds, when the size of the video frames is most of the time below

the fragmentation threshold, the algorithm maintains a very stable value of the estimation regardless of
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whether the MTU heuristic is used or not. From 170 seconds on though, the codec generates a burst

of frames above the fragmentation threshold, making the frame interarrival time at the AP deviate from

40ms. In this case, if the MTU heuristic is not applied the estimated polling interval shakes around

40ms. If the MTU heuristic is applied though, the estimation remains pefectly stable at 40ms.

3.4.1.3 TCP application

In order to illustrate the effect of the adaptive algorithm on applications running over TCP, we consider

in this section that our station under study performs a TCP download of a 500KB file.

In (39) an interesting interaction between TCP and the Beacon-based1 power saving protocols used

in Wi-Fi was introduced. This interaction is as follows. The first TCP packets sent by the TCP connec-

tion in slow start are buffered in the AP and only retrieved by the station after a Beacon frame. While

retrieving these frames, the station generates TCP ACKs in the Uplink and immediately goes back to the

sleep state. After an RTT the next window of TCP packets sent by the server will reach the AP and be

buffered there until the next Beacon frame. This process will repeat until the time required by the station

to retrieve the whole window of packets stored in the AP after a Beacon gets above the RTT between the

AP and the server; from that moment on the station will remain awake until the TCP connection closes.

Notice though that the station may never enter this ’active-mode’ like behavior if its TCP advertised

window is smaller than the required critical value.

This effect can be altered in a beneficial way when our adaptive algorithm is used. Figure 3.8(a)

depicts the instantaneous traces of a TCP download between a Wi-Fi station and a server experiencing

a 20ms RTT with the AP in the case of the adaptive algorithm, a traditional Beacon-based power save

mode and a station in active mode. The previous interaction is clearly observed in the case of the

Beacon-based power save mode. However, in the case of the adaptive algorithm, the length of the initial

RTTs can be highly reduced because the additional triggers generated by the algorithm after a TCP

burst can capture the new burst of TCP packets arriving from the server before the next Beacon frame.

Hence, the actual improvements obtained in the case of the adaptive algorithm will depend on the value

of the RTT experienced by the connection, the number of additional triggers generated by the algorithm

before switching off and the value of β in Algorithm 3.1. We do not study in this work how to optimally

tune these two parameters. A detailed study on the interactions between TCP and Wi-Fi power saving

protocols is presented in Chapter 6.

1We consider a Beacon-based power saving protocol as a protocol where the station only triggers the AP for data after
receiving a Beacon frame with the TIM bit set to 1.
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Figure 3.8: Dynamics of the adaptive algorithm with TCP traffic.

To better illustrate the effects of the adaptive algorithm on the lifetime of TCP connections, in

Figure 3.8(b) the download time of a 500KB file in our reference scenario is depicted while increasing

the value of the RTT between the AP and the TCP server. As in (39) the TCP advertised window

in the Wi-Fi station is configured to be 240 Kbits. Four different cases are considered, a station in

active mode, a Beacon-based power save algorithm, the adaptive algorithm generating two triggers

before switching off (Adaptive-2) and the adaptive algorithm generating 5 triggers before switching off

(Adaptive-5). The results corroborate that the adaptive algorithm can reduce the download time with

respect to the traditional Beacon-based algorithm and that this reduction increases with the number of

triggers generated before switching off.

3.4.1.4 Simultaneous Applications

Until now we have always assumed that our Wi-Fi station under study was running only one application

at a time. This is often not the case in realistic scenarios where a terminal generates traffic from more

than one application at once. In this section we study how the adaptive algorithm reacts to traffic

generated by multiple applications at the same time.
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(b) Simultaneous Video and Voice with VAD.

Figure 3.9: Dynamics of the adaptive algorithm with multiple simultaneous applications.

Figure 3.9(a) illustrates the behavior of the algorithm in a terminal running a Video Streaming ap-

plication, through AC VI, while performing Web browsing, through AC BE. The Figure depicts the

polling interval estimation kept by the algorithm, the delay experienced by the Video frames and the

presence of Web data packets buffered in the AP (black markers). The dynamics of the algorithm are as

follows. When no Web traffic is present in the AP the algorithm converges to the interarrival time of the

Video codec, i.e. 40ms. However, when a burst of Web traffic arrives at the AP, the algorithm suddenly

sees an increased amount of data and reduces the estimation in order to quickly retrieve the extra data.

When the burst of Web data packets is retrieved, the polling intervals returns to 40ms.

Figure 3.9(b) illustrates the case where a terminal simultaneously generates traffic from a Video

Streaming application, through AC VI, and a Voice codec with silence suppression, through AC VO.

The behavior of the adaptive algorithm can be understood in the following terms. When the Voice

codec is in silence in both uplink and downlink directions, as observed in the trace before 12 seconds,

the polling interval converges to the video codec interarrival time, i.e. 40ms. When Voice packets

are generated in the uplink, as observed in the trace in the areas labeled as Case 1, the rescheduling

mechanism avoids the generation of signaling triggers, and the uplink Voice packets download both

58



3.4 Performance evaluation

Voice and Video packets buffered in the AP.1 Finally, when downlink Voice packets are buffered in the

AP but no Voice data packets are generated in uplink, as observed in the trace in the areas labeled as

Case 2, the polling interval estimation converges to the most stringent delay requirement, in this case

Voice with a 20ms interarrival time.

As shown in the previous experiments the algorithm performs as desired when simultaneous ap-

plications are considered. Signaling load is generated according to the application showing the most

stringent delay requirements, and the algorithm is fast enough to quickly adapt to bursty applications,

e.g. Web and Voice with silence suppression.

3.4.2 Performance under congestion

In this section we study how the adaptive algorithm behaves when the congestion in the Wi-Fi network

increases. For this purpose we consider a set of N clusters in the Wi-Fi, one cluster being composed

of four stations and each station running a different application from our defined traffic mix, and we

increase N until congestion appears.

In addition we compare the adaptive algorithm with two other algorithms existent in the state of

the art. Unlike our adaptive proposal though, these algorithms require knowledge about the applica-

tion characteristics. We will assume that these algorithms are perfectly configured according to the

application characteristics in order to set an upper bound on the expected performance of the adaptive

algorithm. Next, we describe the mentioned algorithms that will be hereafter referred to as the Ideal

Static and the Ideal Static+Signaling Reduction(SigRed) algorithms.

The Ideal Static algorithm configures the operation of U-APSD depending on the traffic generated

by the stations. When the Wi-Fi terminal runs a Voice or Video application, U-APSD is statically

configured to periodically generate trigger frames with an interval adapted to the nominal application

interarrival time2. However if the terminals use applications running over AC BE or AC BK, like Web

or FTP in our experiment, the Ideal Static algorithm configures U-APSD to behave like a Beacon-based

power save mode.

The Ideal Static+SigRed algorithm is an improvement over the previous algorithm inspired on the

BSD protocol proposed in (39) that reduces the amount of introduced signaling load when the appli-

cation is in a silence period. The idea is the following. When the terminal runs a Voice or Video

application a nominal polling interval is defined that matches the nominal application characteristics.

However, if the terminal sends a signaling frame and observes that no data was buffered in the AP

1Notice that we configure all ACs as trigger and delivery enabled in U-APSD.
2If Uplink data triggers are sent signaling triggers are recheduled.
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the algorithm infers that the application is in a silence period and increases the polling interval like

Tint(n + 1) = Tint(n)(1 + p), where p > 0. Whenever traffic is again detected in the downlink di-

rection the trigger interval is returned to its nominal value. The parameter p can be used to trade-off

the amount of signaling load introduced during silence periods and the extra delay experienced by the

downlink stream if wrong silence periods are inferred. For our evaluation we consider p = 0.5 and

in order to keep a bounded delay TintMAX = 100ms. Regarding applications running over AC BE

or AC BK we consider that the Ideal Static+SigRed algorithm behaves in the same way than the Ideal

Static one.

Next, we present the performance of the Adaptive, Ideal Static and Ideal Static+SigRed algorithms in

terms of QoS, power consumption and introduced signaling load. In addition we finalize this subsection

providing a deeper insight on how congestion in the Wi-Fi network affects the dynamics of the adaptive

algorithm.

The simulations presented in this section have a length of 300 seconds with a warm-up phase of

30 seconds. The graphs showing average values are plotted with the corresponding 95% confidence

intervals1. The graphs regarding delay show the 99% percentile of the delay computed considering

together the samples obtained from all simulation runs.

3.4.2.1 QoS Performance

In this section we analyze the Throughput and Delay metrics. Since the distributed power saving mecha-

nisms degrade the performance mainly in the downlink direction (AP→ STA), we focus on the downlink

results which is the performance bottleneck of the system.

Figure 3.10(a) shows for each AC the average MAC throughput experienced in the downlink direc-

tion. The results show that the Adaptive (solid line) and the Ideal Static+SigRed (dash-dot line) algo-

rithms outperform the Ideal Static algorithm (dotted line) in all ACs except AC VO, which still does not

reach saturation due to the small size of the VoIP packets compared to the AC VO TXOP length and the

amount of buffering available in the AP. The main reason for the improved performance observed in the

case of the Adaptive and Ideal Static+SigRed algorithms is their ability to reduce signaling load when

the application is in a silence period. Notice that in the case of Voice, detecting silence periods in the

downlink results in a reduction of the amount of high priority load (AC VO) introduced in the channel,

which benefits all other ACs. In addition, a slightly better performance under congestion is observed in

the case of the Adaptive algorithm with respect to the Ideal Static+SigRed algorithm. The reason is the

1Note that the confidence intervals are present in all graphs although they might not be visible in some cases due to its small
size
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particular configuration of both algorithms which results in the Adaptive algorithm introducing slightly

less signaling load during Voice silence periods.

In Figure 3.10(b) the worst case (99% percentile) delay is depicted for the different algorithms under

study and each AC. The delay results closely resemble the throughput ones, with the Adaptive and Ideal

Static+SigRed algorithms clearly outperforming the Ideal Static one, the only difference being that now

differences are observed also for AC VO. When the network is not yet fully congested (<15 stations),

the Adaptive algorithm bounds the downlink delay to the interarrival time in the case of AC VI but not in

the case of AC VO, where a higher value is observed. This is the price to pay in order to save signaling

load because when the trigger generation stops the next voice samples can only be recovered with the

Beacon frame, experiencing hence a higher delay. The same effect is observed in the case of the Ideal

Static+SigRed algorithm for AC VO, due to the silence periods of the codec, and AC VI, because of

spureous increments in the trigger interval due to jitter in the Video stream. Notice that considering a

higher value for p in the Ideal Static+SigRed algorithm would result in higher worst case delays when

the network is not congested.

Finally, we conclude that in terms of QoS our proposed Adaptive algorithm can provide a perfor-

mance equivalent to that of optimally configured dynamic approaches existent in the state of the art

(Ideal Static+SigRed) and a much superior performance than static approaches (Ideal Static), with the

advantage of not requiring a priori knowledge about the applications characteristics.

3.4.2.2 Power Saving Efficiency

The main objective of any power saving mechanism is to reduce the power consumption of a station.

In this section, we analyze the power consumed by the stations in order to study whether the benefits

exhibited by the adaptive algorithm have a price in terms of power consumption.

The power consumption model used for the evaluation has been derived based on current Wi-Fi

cards/chipsets available in the market and consists of four states: Sleep, Listen, Reception and Trans-

mission. In order to obtain the power consumed by the stations, we first compute the percentage of time

spent during an active session in each state by the stations per AC. Then, we translate this generic metric

into mA weighting the current consumed by a station in each state. This information has been obtained

from the product datasheet of a common PCMCIA Wi-Fi card (66). Thus, the metric represents the

average instantaneous current consumption (in mA) experienced by the stations in each AC. The current

consumption values used are shown in Table 3.31

1For the sleep mode we used the value of a previous model of a Cisco PCMCIA card (Cisco Aironet 350) since no information
was available for the current one
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(c) Current consumption when increasing the number of stations.
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Figure 3.10: Overall Network Performance.

Cisco AironetTM Sleep Listen Rx Tx
Current (mA) 15 203 327 539

Table 3.3: Current consumption levels of a popular PCMCIA card.
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The upper part of Figure 3.10(c) illustrates the average current consumption levels for each AC

for the adaptive algorithm. It can be observed how the average current consumption increases with

the congestion in the network. These results though, confirm that when the network is not congested, a

noticeable current consumption reduction can be achieved during an active session if a distributed power

saving mechanism is used. Looking for instance at the case of VoIP, less than 50mA are consumed on

average when the network is not congested, in front of almost 200mA when the network is highly

congested and the stations spend almost all the time awake.

Regarding the current consumption differences between the different algorithms, the middle and

lower part of Figure 3.10(c) illustrate the relative current consumption reduction of the adaptive algo-

rithm with respect to the other ones (ρAdaptive AlgX = AlgX(mA)−Adaptive(mA)
AlgX(mA) ). We can see that

with respect to the Ideal Static algorithm (middle figure) a significant power consumption reduction is

achieved by the adaptive algorithm in all ACs. With respect to the Ideal Static+SigRed algorithm (lower

figure) though, a slight power consumption reduction is observed only when the network is congested.

The main reason for the reduced current consumption is again on the smaller amount of signaling load

introduced by the adaptive algorithm, which results in less congestion in the network.

3.4.2.3 Signaling Overhead

The main factor determinining the scalability of the different algorithms under study is the amount of

signaling load introduced. The challenge is to minimize the amount of signaling load while at the same

time provide the required QoS to the applications. In this section we validate the previous statements

related to the amount of signaling introduced by each algorithm by showing in Figure 3.10(d) the total

signaling both in uplink and downlink introduced by each AC.

Regardless of the algorithm considered, the first notable effect is a reduction in the amount of sig-

naling introduced in all ACs when the congestion in the channel increases. This effect is intrinsic to the

U-APSD protocol and is due to the following two facts: i) the AP delivers all buffered data for a station

when receiving a trigger frame, and ii) the station does not generate new trigger frames if there is an

ongoing service period. Thus, when the network gets congested, the time that the AP needs to deliver

a frame in a service period becomes longer, which in turn increases the chances that a new frame ad-

dressed to the station arrives at the AP within an ongoing service period. This translates into an increase

of the stations’ listen time and in a reduction of the number of triggers generated.

Focusing on AC VO, we can see the effective reduction in signaling load achieved by the Adaptive

and Ideal Static+SigRed algorithms. Indeed, stopping the trigger generation when there is no activity

in the downlink, saves both the uplink signaling generated by the station and the downlink signaling
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generated by the AP in order to end the service period. In addition, a slightly higher amount of signaling

is introduced by the Ideal Static+SigRed algorithm which could be reduced, at the price of accepting

higher delays, by increasing the parameter p.

Regarding the AC VI application, when the network is not saturated a very similar amount of sig-

naling is introduced by all the algorithms, which saturates before in the case of the Ideal Static algorithm

due the higher level of congestion in the network in this case.

Finally, looking at the AC BE and AC BK results, we can see that a very small amount of signaling

is introduced as compared to the other ACs. The reason is that TCP traffic arrives in bursts that can

be retrieved by the stations with a single trigger thanks to the configured Max SP length value. The

subgraph in the graph shows that a slightly higher amount of signaling is introduced in the case of the

adaptive algorithm. The reason is that once the burst of packets is downloaded, the adaptive algorithm

generates some additional triggers prior to switching off which as previously seen in subsection 3.4.1

can help to improve the performance of TCP.

3.4.2.4 Understanding the effect of congestion

We finish this section providing an analysis of how congestion in the Wi-Fi network affects the dynamics

of the adaptive algorithm.

Figure 3.11 depicts the CDF of the trigger interval estimation for the stations running Video consid-

ering three different levels of congestion, i.e. 5, 15 and 25 clusters (i.e. 5x4,15x4 and 25x4 competing

stations). As congestion increases, e.g. 15 clusters, the estimation becomes more unstable but is still

kept around the desired nominal interarrival time (40ms in the case of Video). The reason is that con-

gestion in the Wi-Fi network translates into packet drops or extra delays which distort the interarrival

time of the downlink stream perceived by the algorithm.

These results show that the estimation kept by the algorithm becomes less accurate as congestion

in the Wi-Fi network increases but it is still kept in 80% of the cases within a ±10% range even for

a significantly high congestion level as 25x4 competing stations. Note from Figure 3.10(a) that Video

traffic has already started to experience congestion at 25x4 competing stations. Hence we conclude that

the proposed algorithm is able to cope with moderate to high levels of congestion in the Wi-Fi network.

3.5 Conclusions

Designers of mobile computing devices incorporating the Wi-Fi technology face new challenges with

respect to the QoS and power saving requirements to be met in order to satisfy users’ expectations. IEEE
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Figure 3.11: Effect of congestion on the Adaptive Algorithm.

802.11 and 802.11e have defined protocols to address these challenges but the actual algorithms required

to achieve the desired performance are left undefined to allow for vendor differentiation. The focus of

our work in this chapter has been the study of the dependencies between the configurable parameters of

the distributed power saving mechanisms and its impact over the resulting QoS performance.

Our contributions in this chapter have been the following. First, we have derived an analytical model

of the dependency of the delay and jitter of real-time traffic with the trigger interval used by the power

saving protocol. Second, we have designed an adaptive algorithm, that based on the steepest descent

method, determines the appropriate trigger interval for requesting frames to the AP according to the

instantaneous load offered by the application. Our proposed algorithm uses only information available

at the MAC layer. Third, we have analyzed the convergence properties of our adaptive algorithm,

providing guidelines to set its configurable parameters and a worst case bound on the number of updates

required to converge. Finally, we have compared, by means of simulations, the performance of our

approach with approaches existent in the state of the art which require knowledge of the applications’

characteristics.
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Appendix 3.A Convergence conditions with uplink triggers

Assuming the definitions introduced in Section 3.3, Ki frames arrive at the AP during uplink subperiod

i, where Ki = b
∆UL+φ

i

∆DL
c. Hence:

Ki = b
∆UL

∆DL
c+ b∆UL mod ∆DL + φ

i

∆DL
c

Thus:

Ki =

{
b∆UL

∆DL
c if φi < ∆DL −∆UL mod ∆DL

d∆UL

∆DL
e if φi ≥ ∆DL −∆UL mod ∆DL

Assuming the general case where ∆UL is not multiple of ∆DL (∆UL 6= n∆DL, n ∈ Z), and recalling

0 ≤ φi < ∆DL, the channel situation periodic T = lcm(∆UL,∆DL) = M∆DL = N∆UL, and T

composed by N consecutive uplink subperiods, during l > 0 and j > 0 uplink subperiods b∆UL

∆DL
c and

d∆UL

∆DL
e downlink frames are received at the AP respectively, with:{

lb∆UL

∆DL
c+ jd∆UL

∆DL
e = M

l + j = N

Therefore:
l = N(b∆UL

∆DL
c+ 1)−M

j = M −Nb∆UL

∆DL
c

Thus, within T there are both uplink subperiods receiving b∆UL

∆DL
c and d∆UL

∆DL
e data frames in the

downlink. Therefore the station must generate δ = b∆UL

∆DL
c signaling triggers between two consecutive

data triggers in order not to generate any event in any uplink subperiod. Thus, the reuse of uplink data

triggers in this case is j
N .

In the case that ∆UL = n∆DL, n ∈ Z, the same number of data frames arrive at the AP in all uplink

subperiods, ∆UL

∆DL
, and a converged value of ∆trig can be obtained generating δ = ∆UL

∆DL
or δ = ∆UL

∆DL
−1

signaling triggers between uplink data triggers. Thus, the reuse of uplink data trigers in this case will be

0 or 1 respectively.
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4

Leveraging 802.11n Frame
Aggregation to enhance QoS and
Power Consumption in Wi-Fi
networks

As described in Chapter 2 the 802.11n technology has defined very efficient frame aggregation schemes

that reduce the overhead existent in legacy Wi-Fi networks. It is easy to realize that such frame aggre-

gation techniques can also be utilised in order to increase energy efficiency. For instance, within the

context of a Voice call, a Wi-Fi device may decide to aggregate Voice packets in pairs hence reducing

in half the number of required channel access attempts and doubling its sleep intervals. There is clear

price to be paid when using aggregation though, and is an increase in delay which might degrade the

QoS of real-time applications. Therefore, our goal in this chapter is to study how to properly leverage

the aggregation capabilities of 802.11n in order to improve QoS and energy efficiency in Wi-Fi.

Current 802.11n products in the market use frame aggregation mostly for non time sensitive appli-

cations, but it is not clear if frame aggregation can be benefitial with real-time applications that have

tight delay requirements. A common approach used both in the state of the art and in the industry is

what is known as Zero Delay Frame Aggregation (ZFA) (87), which consists of aggregating all frames

present in the transmission buffer when a channel access is obtained, without introducing any extra de-

lay. ZFA though mostly applies to data traffic which, due to TCP congestion control, naturally fills up

transmission buffers. In this chapter we will study the question of how to use frame aggregation in order

to improve the performance of real-time applications.
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Notice that the adaptive algorithm presented in Chapter 3, already provided some hooks that could

be used to tune the amount of aggregation used by a Wi-Fi device running a real-time application. For

instance as described in the previous chapter, our adaptive algorithm can be easily modified to converge

to a multiple k of the application’s interarrival time. Thus, by setting k = 2 one could implement the

policy described in the previous paragraph where a Wi-Fi device transmits and receives aggregates of

two frames during a Voice call. In particular, the work presented in this chapter, studies how to optimally

select the aggregation interval used in a Wi-Fi station according to the state of the network. The contents

of this chapter have been submitted to (27) and its main contributions are as follows:

• We analyze the effect of 802.11n MAC aggregation on the performance of the distributed Wi-Fi

power saving protocols, i.e. 802.11 PSM and U-APSD. Our study reveals that U-APSD, currently

used when battery operated devices require real-time applications like Voice, is poorly suited to

benefit from the 802.11n aggregation mechanisms. Instead, 802.11 PSM significantly benefits

from aggregation and can outperform U-APSD when congestion in the network increases.

• We propose a novel algorithm Congestion Aware - Delayed Frame Aggregation (CA-DFA) that,

using only information available at layer two, adapts the amount of aggregation used by a Wi-Fi

device according to the level of congestion in the network. CA-DFA significantly outperforms

alternative solutions in the state of the art in terms of QoS, energy saving and network capacity,

and can be easily implemented in current 802.11n devices.

This chapter is organized as follows. Section 4.1 describes the results of a simulative study that

evaluates the combined performance of the 802.11n aggregation mechanisms and the current Wi-Fi QoS

and power saving protocols. Section 4.2 presents the design and evaluation of our CA-DFA algorithm,

and Section 4.3 evaluates its performance. Finally, Section 4.4 summarizes and concludes this chapter.

4.1 Effect of 802.11n frame aggregation on Wi-Fi QoS and power
saving protocols

In this section we present the results of a simulative study that evaluates the effect of the 802.11n MAC

aggregation mechanisms on the current Wi-Fi QoS and power saving protocols. Our focus is in protocols

currently deployed in the market and thus, we consider in our evaluation EDCA for QoS, 802.11 PSM

and U-APSD for power saving, and 802.11n A-MPDU as MAC aggregation technique, please refer

to Chapter 2 for a description of these protocols. We start this section by describing our simulation

framework in Section 4.1.1, and then discuss the results obtained in our study in Section 4.1.2.
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4.1.1 Simulation framework

Our evaluation is based on packet level simulations using OPNET (64). In particular, we extended an

802.11n OPNET model contributed by Intel (88), to include the 802.11 PSM and U-APSD power saving

protocols. This model was used for internal evaluation of competing proposals in the IEEE 802.11 TGn

group.

We consider the HotSpot scenario defined by the TGn group in (89), where stations are stationary and

randomly placed within a 30 meter radius from the AP. In addition, we consider that stations implement

2x2 MIMO, which is becoming increasingly available even for mobile devices (85). In our simulations

though, stations do not transmit using a fixed data rate but instead adapt their data rate according to the

varying radio conditions. To model the radio channel we use the TGn Channel Model E in the 5Ghz

band which was also defined by the TGn group, and has been proven to faithfully model realistic channel

conditions (90).

In order to evaluate the combined performance of the Wi-Fi QoS and power saving protocols and the

frame aggregation mechanisms defined in 802.11n, we define a basic cluster of stations, and increase

the number of clusters present in our HotSpot scenario until the network starts to saturate. Our basic

cluster is comprised of four types of stations which generate a traffic mix representative of a typical

HotSpot. The applications used by each type of stations together with their Wi-Fi Access Category

(AC) are depicted in Table 4.1.

Description AC

Voice
Bidirectional Voice calls with G.711
(64Kbps) at 20ms. Talk spurt and silence
spurt exponential with mean 0.35 seconds
and 0.65 seconds

AC VO

Video
Downlink VBR stream at 25fps with an aver-
age rate of 1Mbps and a peak rate of 5Mbps
obtained from (65).

AC VI

Web Inter-page request time exponentially dis-
tributed of mean 15 seconds. RTT of 20ms
between the AP and the Web server (typi-
cal RTT in a domestic internet path (86)).
Size and number of objects in a Web page
are modelled according to (91).

AC BE

FTP FTP download of a 20MB file. RTT of 20ms
between the AP and the file server. TCP New
Reno used as transport protocol.

AC BK

Table 4.1: Applications Description.
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We repeat our experiments with four different configurations with the aim of illustrating the effect

of each individual protocol on the achieved performance. These configurations are:

• 802.11 PSM, where all stations operate using 802.11 PSM and no aggregation is used.

• 802.11 PSM+ZFA, where all the stations operate using 802.11 PSM and perform A-MPDU ag-

gregation using a Zero Delay Frame Aggregation (ZFA) approach.

• U-APSD, where all the stations use U-APSD and no aggregation is used.

• U-APSD+ZFA, where all the stations use U-APSD and perform MAC aggregation using the ZFA

scheme.

Thus, our goal is to understand the combined effect of these protocols in terms of performance of

the different applications, power consumption of the Wi-Fi devices and total capacity of the network.

We configure the AP to generate a Beacon frame every 100ms. In addition, in 802.11 PSM sta-

tions generate PS-Poll frames after the Beacon using AC BE, as recommended in the 802.11 standard

(33). Regarding U-APSD, Voice and Video stations proactively trigger the AP every 20ms or 40ms

respectively (an uplink data frame or a QoS Null frame can be used as triggers). Instead, Web and FTP

U-APSD stations generate a trigger frame upon receiving a Beacon indicating that there is data buffered

for them. The interested reader is referred to chapter 3 or to our early work in (47) for more details on

this U-APSD implementation.

The QoS settings used in our evaluation that define the relative prioritization among applications

and the aggregation capabilities of each device, are described in Table 3.21. These settings are obtained

based on the recommendations defined in the 802.11 standard (33).

AIFS CWmin CWmax TXOP Max.Agg.
AC VO 2 7 15 1.5 ms 64

AC VI 2 15 31 3 ms 64

AC BE 3 31 1023 0 ms 64

AC BK 7 31 1023 0 ms 64

Table 4.2: EDCA configuration for the different ACs.

Regarding power consumption, we use a well known model based on a popular Wi-Fi card/chipset

(24), which consists of four basic states: Sleep, Listen, Reception and Transmission. We obtain the
1Notice in Table 4.2 that a station can aggregate up to Max.Agg. frames as long as the resulting A-MPDU fits within the

configured TXOP limit. In addition, AC BE and AC BK are allowed to transmit only one aggregated frame when accessing the
channel, which can span up to 3 ms.
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power consumed by the stations’ Wi-Fi interface by computing the amount of time spent during an

active session in each state and then applying the power consumed in each state per unit of time. The

power consumption values used are shown in Table 4.3.

Broadcom 4311TM Sleep Listen Rx Tx
Power (mW) 20 390 1500 2000

Table 4.3: Power consumption levels used in our study.

Finally, each point in the following graphs has been obtained considering at least 5 simulation runs

of 150 seconds with a transient period of 30 seconds. Average values are plotted with the correspondent

confidence intervals at 95%. Cumulative distribution functions are obtained considering together the

values obtained across all simulation runs.

4.1.2 Performance evaluation

In this section we describe the results obtained in our study. For readibility reasons we divide the

analysis in two parts depending on the QoS requirements of the applications.

4.1.2.1 QoS sensitive applications

Figures 4.1(a) and 4.1(b) depict the performance of Voice and Video applications when the number of

station clusters in the network increases. The figures are divided in three subfigures: i) the upper sub-

figure depicting average power consumption, ii) the middle subfigure depicting the worst case (cdf95)

downlink delay1, and iii) the lower subfigure depicting the average throughput obtained by a Voice or

Video station. In addition, each subfigure depicts the performance obtained for all configurations under

study: i) 802.11 PSM, ii) 802.11 PSM+ZFA, iii) U-APSD and iv) U-APSD+ZFA.

We start discussing the performance of the 802.11 PSM and U-APSD configurations which is similar

for the Voice and Video applications. As expected, U-APSD outperforms 802.11 PSM in terms of QoS,

energy efficiency and network capacity. The main reasons for the better performance of U-APSD (as

already pointed out in (47)) are: i) shorter polling interval which allows reducing delay for QoS sensitive

applications, ii) smaller signaling overhead as compared to 802.11 PSM, where stations generate a PS-

Poll for each packet buffered in the AP, and iii) smaller collision probability with respect to 802.11 PSM,

where all stations try to access the medium immediately after the Beacon frame.

1Notice that when a power saving protocol is used the downlink link suffers a higher delay than the uplink one.
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(a) Voice Performance.
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(b) Video Performance.

Figure 4.1: QoS sensitive Applications. Performance of Voice and Video stations when increasing the number
of station clusters in the network, in terms of Power Consumption (upper graph), CDF95 Downlink Delay
(middle graph) and Average Downlink Throughput after the de-jitter buffer (lower graph).
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Let us now discuss the 802.11 PSM+ZFA and U-APSD+ZFA configurations where we add 802.11n

MAC aggregation capabilities to the previous power saving protocols. As expected, aggregation in-

creases network capacity both for 802.11 PSM and U-APSD. However, the network capacity gain is

significantly higher in the case of 802.11 PSM, as observed specially in the case of Voice. The main

reason for this is that 802.11 PSM intrinsically creates aggregation opportunities by buffering packets

in the AP and only transmitting them every 100ms (with the Beacon frame), whereas stations using U-

APSD (in an attempt to reduce delay) trigger the AP at shorter intervals thus creating less aggregation

opportunities. The novel result in Figure 4.1 is that when congestion increases, the aggressive behavior

of U-APSD turns out to be counter-productive even in terms of QoS.

Interestingly, although 802.11 PSM creates more aggregation opportunities, theoretically it should

also introduce a higher signaling overhead than U-APSD (transmission of a PS-Poll per buffered packet)

and experience a higher collision probability (synchronization of stations transmission after the Beacon).

Therefore, a deeper analysis is needed to understand why the increased number of aggregation oppor-

tunities in 802.11 PSM overcomes the previous disadvantages and allows 802.11 PSM to outperform

U-APSD. For that purpose, the signaling and channel access overheads introduced in the channel by the

different protocols under study is analyzed, see Figures 4.2(a) and 4.2(b).

Considering first Figure 4.2(a) it can be observed that while signaling1 drastically reduces for 802.11

PSM when aggregation is used, it does not decrease for U-APSD. The reason why signaling reduces for

802.11 PSM+ZFA is that the AP is often able to transmit all the buffered data for a station aggregated

in a single A-MPDU upon reception of a PS-Poll. Hence, stations send only one PS-Poll per Beacon

interval. However, aggregation does not reduce signaling in the case of U-APSD+ZFA, where, given the

more frequent polling intervals, a trigger frame typically retrieves a single frame from the AP. Indeed,

aggregation even increases the amount of signaling in U-APSD+ZFA when the network is congested

compared to the U-APSD case. This is an indirect consequence stemming from the fact that U-APSD

stations reduce the signaling they introduce when congestion increases. Thus, as congestion starts ear-

lier in the case of U-APSD than in the case of U-APSD+ZFA, the signaling overhead gets reduced

earlier. Notice that this effect was already observed when evaluating the different algorithms presented

in Chapter 3.

Finally, Figure 4.2(b) depicts the channel access overhead as the percentage of collisions in the

channel for each of the different protocols under study (for the sake of clarity confidence intervals are

not included in the graph). It is interesting to see that while the percentage of collisions is clearly

1We consider as signaling, PS-Poll frames in 802.11 PSM, QoS Null frames in U-APSD, and RTS-CTS handshakes in both
protocols.
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(a) Signaling Overhead. Percentage of channel time spent on signaling defined
as PS-Polls, QoS-Nulls and RTS-CTS handshakes.
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Figure 4.2: Overhead incurred by the power saving protocols under study. The upper graph depicts signaling
overhead, and the lower one channel access overhead (collisions).

higher in 802.11 PSM, it drastically reduces when aggregation is used because the number of frames

contending for the channel after each Beacon is much lower. In addition, the white top portion of each

bar in Figure 4.2(b) depicts the percentage of collisions that resulted in a power capture event in our

experiment. A power capture event is defined as a collision event where a receiver successfully decodes

one of the colliding packets. This effect is very common in Wi-Fi networks and has been thoroughly

studied in (92). Notice that while power captures affect the fairness of the CSMA/CA protocol used

in Wi-Fi, they can in some cases increase overall network capacity, because upon such an event one of

the colliding stations does not need to retransmit and continues to use reduced contention parameters.

Thus, the significant number of power capture events observed in our simulations partially mitigates the

increased collision probability introduced in 802.11 PSM, contributing to the explanation of its enhanced

performance.
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4.1.2.2 Non-QoS sensitive applications

We discuss in this section the performance of the non-QoS sensitive applications, i.e. Web browsing

and FTP downloads. Figures 4.3(a) and 4.3(b) depict the performance of the Web and FTP stations,

respectively, in terms of power consumption (upper graph) and average Web page download time or

average file transfer throughput (lower graph).

The effect of the protocols under study on the non-QoS sensitive applications is similar to the one

introduced on the QoS sensitive applications. The reason is that an improvement in the channel usage

efficiency results in an enhacement in the performance not only of QoS sensitive applications but also

of non-QoS sensitive applications since more bandwidth is available for data transmissions. Thus, when

no aggregation is used and the network is not heavily congested, the U-APSD configuration slightly

outperforms the 802.11 PSM configuration. However, like in the case of QoS sensitive applications,

this trend is reversed when aggregation is used, where the higher aggregation efficiency in 802.11 PSM

leaves more bandwidth available for non-QoS sensitive applications. In addition, another factor con-

tributing to the performance of 802.11 PSM, is that in this case all stations (including QoS sensitive

ones) send PS-Polls after the Beacon frame using the AC BE settings. However, in the U-APSD case,

stations request their buffered data transmitting QoS-Nulls according to the priority of the application

they are intended for. Hence, penalizing lower priority applications.
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(a) Web Performance.
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Figure 4.3: Non-QoS sensitive Applications. Performance of Web and FTP stations when increasing the
number of Clusters in the network, in terms of Power Consumption (upper graph) and Average Web Page
Delay/Average FTP Connection Throughput (lower graph).
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Besides the expected general performance trends, there is an interesting effect in the case of the FTP

application which we describe in detail next. As observed in Figure 4.3(b), aggregation significantly

improves performance when the network is congested. However, when the network is not congested (5

clusters) the throughput experienced by a FTP file transfer is significantly higher without aggregation

(802.11 PSM) than with aggregation (802.11 PSM+ZFA). This effect is similar to the performance

inversion effect originally pointed out in (39) and can be explained in the following way. If when new

TCP packets arrive at the AP, a station has already retrieved all the packets that were buffered in the

AP, then the station is in sleep mode and the connection throughput degrades because these new TCP

packets have to wait until the next Beacon to be transmitted. On the other hand, if the new TCP packets

arrive before the previously buffered TCP packets have been transmitted, the station remains awake and

the transfer continues as in the active mode case. The latter case is much more likely to happen when

no aggregation is used because the TCP packets buffered in the AP take longer to be transmitted.

4.2 CA-DFA: Congestion Aware-Delayed Frame Aggregation

In this section we design and evaluate an algorithm that dynamically adjusts the amount of frame ag-

gregation used by 802.11n stations according to the level of congestion in the network. Hereafter we

refer to this algorithm as the Congestion Aware-Delayed Frame Aggregation (CA-DFA) algorithm. Our

goal is to leverage the 802.11n aggregation mechanisms in order improve QoS, power consumption and

network capacity.

4.2.1 Discussion

The intuition behind the design of our CA-DFA algorithm is based on the insights obtained in the

performance evaluation study presented in Section 4.1. As we have seen, the benefits of aggregation

clearly depend on the amount of congestion in the network. When congestion is low, aggregation may

unnecessarily introduce delay that harms the QoS of time sensitive applications like Voice or Video.

However, when congestion in the network increases aggregation makes a more efficient use of wireless

resources and increases network capacity.

The design of CA-DFA relates to the aggregation mechanisms proposed in (87) where the authors

introduced two mechanisms to increase the efficiency of VoIP in Wi-Fi networks: i) a Zero-delay Frame

Aggregation (ZFA) mechanism and ii) a CWmin adaptation algorithm. As previously explained, the

ZFA mechanism aggregates multiple VoIP packets addressed to a certain station in the same MAC

frame, whenever more than one VoIP packet is ready for transmission in the MAC queue of either
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the AP or the stations, and does not introduce any extra delay. This is the same scheme used by the

802.11 PSM+ZFA and U-APSD+ZFA configurations that we studied in Section 4.1. In addition, the

CWmin adaptation algorithm allows to increase aggregation opportunities in the stations that otherwise

would mostly occur only in the downlink direction (AP). This is achieved by allowing the AP to use a

smaller CWmin than the stations, such that a symmetric amount of bandwidth is allocated in uplink and

downlink.

The major difference between our CA-DFA algorithm and (87) is that CA-DFA dynamically intro-

duces delay in order to increase the number of aggregation opportunities instead of adapting contention

settings. The idea of delaying access to the channel in order to increase aggregation in 802.11n was

first introduced in (94), where the authors identified that traffic flowing through high priority Access

Categories (ACs) in EDCA achieves a low aggregation efficiency because it accesses the channel with

small delays. Notice, that in the previous section we have identified that a similar phenomena arises

when 802.11n frame aggregation is combined with the U-APSD protocol, which triggers the AP too

often. In order to resolve the previous conflict the authors in (94) introduced a Delayed Channel Ac-

cess (DCA) algorithm where stations intentionally delay access to the channel in order to create more

efficient aggregates. Like in CA-DFA, the extra delay introduced by DCA is proportional to the level

of congestion in the network. Further work in (95) and (96) identified several problems that arise when

DCA is applied to TCP flows and proposed solutions to improve performance in this case. Although

both DCA and CA-DFA increase efficiency by introducing delay in the MAC layer, their focus differs in

that DCA is optimized for stations that are in Active Mode and CA-DFA will be optimized for stations

that are in power saving. For instance, in DCA all stations and the Access Point (AP) mesure their

channel access delay and adjust their level of aggregation accordingly. However, an AP can not imple-

ment an algorithm like DCA when the stations are in power saving, because in this case the AP can

only transmit after receiving a trigger frame from the station, which is the reason why we will design

CA-DFA to control the trigger interval used in the stations.

4.2.2 CA-DFA design

CA-DFA follows the design guidelines outlined in Chapter 3. First, we want the algorithm to operate at

layer two (in the Wi-Fi driver). This allows to reuse the presented algorithm in any type of device with

a Wi-Fi interface and to easily apply it to different applications. Second, in order to guarantee an easy

deployment, the designed algorithm should not require any modification to current 802.11 standards.

Finally, the proposed algorithm should be able to run in a distributed way in each station in the Wi-Fi

network.
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CA-DFA runs in a Wi-Fi station and is composed of two independent modules:

i. Congestion Estimation: A module that estimates the level of congestion in the network.

ii. Dynamic Aggregation: A module that adjusts the amount of MAC aggregation according to the

current level of congestion.

Since reducing power consumption is one of our key design objectives, the algorithm implemen-

tation presented in this chapter is optimized for stations in power save mode. However, the presented

principles can also be applied when stations do not run a power saving protocol. Next, we present a

detailed description of the previous modules.

4.2.2.1 Measuring congestion

There are several metrics in Wi-Fi that correlate to the amount of congestion in the network and could

be used for our purposes. For instance: number of retransmissions, access delay (time since a packet is

first in the transmission queue until it is successfully transmitted) and channel utilization.

The previous metrics though can only sense the amount of congestion experienced locally by each

station, which is a severe limitation in Wi-Fi infrastructure networks, where the bottleneck is usually

located in the AP (87). Thus, depending on the selected metric, stations could sense a non-congested

medium whilst the AP would experience a severe backlog in its transmission queues, degrading the

QoS of Voice or Video applications. In addition, some of these metrics, e.g. channel utilization, would

require a station to continuously listen to the medium and are therefore, not applicable to stations in

power save mode.

There is however a generic solution to the problem of estimating the congestion experienced by the

AP when stations employ a power saving protocol. For instance, in the U-APSD case the AP can only

send data to a station after receiving a trigger frame from the station, i.e. when a service period starts.

Typically, upon receiving a trigger frame the AP extracts the corresponding data frame from the power

save buffer and inserts it in its transmission buffer. Therefore, the time required by the AP to complete

this transmission, and signal the end of the service period, is correlated with the amount of congestion

that it experiences. Therefore, a U-APSD station can sense the amount of congestion experienced by

the AP simply by measuring the duration of its service periods.

In general, in order to account for the possibility of congestion occurring both in uplink and down-

link, CA-DFA uses two simultaneous metrics to estimate congestion:
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• Average Service Period Duration (avg SPdur): used to estimate downlink congestion. This met-

ric is updated every time the station initiates a service period using an Exponentially Weighted

Moving Average (EWMA) filter, i.e. avg SPdur(n+1) = (1−α)avg SPdur(n)+αlast avg SPdur.

• Average Access Delay (avg access delay): used to estimate uplink congestion. This metric is

also updated using an EWMA estimate every time a station completes a transmission in uplink.

The same α value is used in the two EWMA filters.

As a result, CA-DFA is able to react upon both uplink and downlink congestion by considering as

its most reliable congestion estimate the maximum between the previous two congestion variables, i.e.

cong est = max{avg SPdur, avg access delay}.

4.2.2.2 Adjusting the level of aggregation

Building on the congestion measurements introduced in the previous section, CA-DFA dynamically

adjusts the amount of MAC aggregation based on the following heuristic:

• If the estimated congestion is below a certain threshold, the amount of MAC aggregation is re-

duced in order to benefit from reduced delays.

• If the estimated congestion is above a certain threshold, the amount of MAC aggregation is in-

creased in order to reduce the level of congestion in the network.

The detailed operation of CA-DFA is illustrated in Algorithm 4.1 and described next.

In order to control the level of aggregation, CA-DFA uses the concept of a Service Interval (SI) that

is the minimum interval between two transmission attempts in the medium. Thus, at times tj = t0+jSI ,

a station inspects its transmission buffer, aggregates all buffered MPDUs in one or more A-MPDUs, and

inititates a transmission attempt. Any data that arrives at the station between transmission attempts is

buffered awaiting for potential aggregations until the next transmission attempt. In addition, if at tj there

is no buffered data, a station in power save mode still generates a signaling trigger to poll the AP for its

buffered data. Notice that the service interval, SI , controls the trade-off between delay and aggregation.

Real-time applications are the main target of CA-DFA, therefore a sensible approach is to adjust

SI at multiples of SImin, i.e. SI = L × SImin, where SImin is the minimum interval used between

consecutive transmission attempts (e.g. codec packet generation interval in the case of VoIP), 1 ≤ L ≤

b D
SImin

c is an integer value that defines the service interval currently being used, and D is a delay bound

for a given application or Access Category. Depending on each particular implementation, the values

of SImin and D could be configured according to the applications expected to run on each Access
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Algorithm 4.1: CA-DFA Algorithm.

1 – Variables definition
2 D ←Maximum delay bound tolerated by a certain AC.
3 SImin ←Minimum interval between transmissions for a certain AC.
4 Tmon ← Time period between consecutive evaluations of the medium.
5 count limit← Number of consecutive Tmon periods between updates.
6 β, γ ← Constants used to derive the Threshold values.
7 LP aware←Make CA-DFA aware of low priority applications

8 – Inititalization routine
9 L← 1, Lmin ← 1, Lmax ← b D

SImin
c

10 SI ← L× SImin

11 THRup = βSI

12 THRdown = γmax{Lmin, (L− 1)}SImin

13 up count← 0

14 down count← 0

15 tinit ← current time

16 Lup, Ldown, first turn← false

17 t SIstart, t outerstart ← tnow

18 – Routine executed at tmon(k) = tinit + kTmon

19 cong est← max{avg SPdur, avg access delay}
20 update← false

21 if (cong est > THRup) or (LP aware and LP starve) then
22 up count← up count+ 1

23 down count← max{0, down count− 1}
24 if up count ≥ count limit then
25 L← min{Lmax, L+ 1}
26 update← true

27 else if (cong est < THRdown) and !(LP aware and LP starve) then
28 down count← down count+ 1

29 up count← max{0, up count− 1}
30 if down count ≥ count limit then
31 L← max{Lmin, L− 1}
32 update← true

33 else
34 up count← max{0, up count− 1}
35 down count← max{0, down count− 1}
36 if update is TRUE then
37 up count← 0

38 down count← 0

39 SI ← L× SImin

40 THRup = βSI

41 THRdown = γmax{Lmin, (L− 1)}SImin

42 outer control alg()

43 – Routine executed when receiving a Beacon
44 AP delay[ACi]← BSS AC Access Delay Elem

45 if max{AP delay[ACBE ], AP delay[ACBK ]} > THRLP then
46 LP starve← true

47 else
48 LP starve← false
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Category, or could even be dynamically set up by the higher layers. In addition, when a station uses

U-APSD, SImin can be configured to be equal to the default polling interval, so that when L = 1 no

further delays are introduced on top of U-APSD.

CA-DFA maintains two thresholds, THRup and THRdown, that are defined as proportions, 0 <

γ < β < 1 of the current service interval (lines 11, 12, 40 and 41). A station periodically exe-

cutes Algorithm 4.1 and checks its congestion estimate against these thresholds in order to decide

if SI should increase or decrease. Specifically, when congestion is above THRup = βSI (lines

21-26), SI is increased in order to mitigate congestion, and when congestion is below THRdown =

γmax{Lmin, (L − 1)}SImin (lines 27-32), SI is decreased1 in order to benefit from reduced delays.

CA-DFA always updates the current service interval in discrete steps equal to SImin (lines 25, 31 and

39).

CA-DFA can be understood as a distributed control loop where each station tries to maintain its

congestion estimate, i.e. cong est = max{avg SPdur, avg access delay}, between THRup and

THRdown, by means of adjusting its individual service interval (the control output). A consequence of

the previous dynamics is that, if the AP is the bottleneck, then cong est = avg SPdur, and CA-DFA

provides a soft bound on the worst case average power consumption of a Wi-Fi station regardless of the

level of congestion. The reason is that the average time a U-APSD station stays awake can be expressed

as avg SPdur

SI . Thus, given that CA-DFA adjusts SI in order to maintain avg SPdur ≤ THRup, the

average duty cycle of a CA-DFA station can be bounded by:

avg SPdur

SI
≤ THRup

SI
= β (4.1)

Notice though that setting β too small reduces the hysteresis margin, THRup − THRdown, and

increases the frequency at which CA-DFA updates the service interval, which may increase delay due

to spurious service interval updates.

Two parameters are defined in CA-DFA that aid a station to filter out spurious congestion events in

order to minimize the number of SI updates. These parameters are the monitoring interval Tmon, at

which a station executes Algorithm 4.1 in order to update SI , and the countlimit parameter, which is

a minimum number of monitoring intervals where the congestion variables must be above THRup or

below THRdown before the station updates its service interval (lines 24 and 30). In the next section we

will study how to appropriately set these parameters.

1Notice that THRdown is defined upon the service interval that will be used if the current one is decreased. The intention is
to be confident that the congestion experienced with a reduced service interval will be acceptable.
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We have so far described how CA-DFA adjusts its service interval when it detects congestion in the

channel. Next we present two optimizations to the basic behavior of CA-DFA.

4.2.2.3 CA-DFA Optimizations

Low Priority Aware CA-DFA

Our first optimization relates to the fact that the EDCA protocol provides a better shielding from con-

gestion to high priority applications than to low priority ones. Therefore, in a multi-service network, low

priority applications may starve before high priority ones start to experience any significant congestion

that would trigger CA-DFA to increase the used service interval. Our goal thus, is to improve the per-

formance experienced by low priority applications when CA-DFA is used while keeping an acceptable

QoS for high priority ones.

If high priority applications do not need to operate at their minimum possible delay, the basic CA-

DFA behavior described in the previous section can be slightly modified in order to benefit low priority

applications. Hereafter, we refer to this CA-DFA variation as Low Priority Aware CA-DFA. The idea

behind this optimization is to let a CA-DFA station running a real-time application increase its service

interval not only when it directly experiences congestion, but also when low priority applications in the

network begin to starve. This functionality is implemented in Algorithm 4.1 simply checking the flag

LP starve when deciding whether to increase or decrease the current service interval (lines 21 and 27).

The obvious question then is how can a station in power save mode running a real-time application learn

about the congestion experienced by low priority applications that may be running in other stations.

In order to solve this problem we decide to make use of the BSS AC Access Delay Element defined

in 802.11k (71), which is embedded by the AP in every Beacon frame, and indicates the access delay

experienced by the AP in each Access Category. Therefore, in order to discover whether low priority

traffic is starving, a CA-DFA station periodically wakes up for the Beacon, learns about the congestion

in the network experienced in low priority ACs, and compares this value to a pre-configured congestion

threshold, THRLP (lines 44-48). Note that CA-DFA can dynamically enable or disable its Low Priority

Aware configuration using the flag LP aware (lines 21 and 27).

Improving Service Interval Stability

Our second CA-DFA optimization relates to the goal of stabilizing oscillations in the service interval

selected by Algorithm 4.1. For this purpose, we propose an outer control algorithm executed every time

CA-DFA updates the used service interval (line 42 in Algorithm 4.1).
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As it will be shown in the next section, in a network with downlink congestion CA-DFA stations may

get synchronized. The reason is that stations experience a correlated congestion because their packets

go through the same queue in the AP. Thus, upon congestion the queues in the AP become backlogged,

all stations observe high service period durations, and increase their service interval. However, a syn-

chronous increase in the service interval of many stations can suddenly push down congestion in the

network, hence triggering a synchronous decrease in the service interval of many stations which again

results in an increase of congestion. This synchronization introduces a harmful oscillatory behavior

in the stations service interval, which may result in undesired delays. The goal of the outer control

algorithm is to detect and avoid these oscillations.

Our outer control algorithm is described in Algorithm 4.2 and is executed every time the service

interval is updated in Algorithm 4.1. Its basic principle is to maintain a histogram of the service intervals

being used by a station, which is computed considering the amount of time that each service interval is

used (lines 10 to 12 in Algorithm 4.2).

Every time the used service interval is updated, Algorithm 4.2 evaluates whether an oscillation in

the used service intervals has occurred, where an oscillation is defined as an increase-decrease-increase

cycle (line 15), or viceversa (line 17). Thus, when an oscillation is detected the algorithm evaluates

whether too aggressive service intervals are being used that should be pruned. For this purpose, the

average service interval experienced during the detected oscillation is computed (line 22), and if service

intervals smaller than the average one occur with a specific probability, these smaller service intervals

are pruned from the allowed set of service intervals (lines 20 to 32).

The intuition behind this algorithm is that by avoiding the use of aggressive (small) service intervals,

transient congestion (which forces a station to react using high service intervals) will be avoided and

service intervals will stabilize. As a conservative measure though, depending on the number of service

intervals present in the oscillation, we only allow to prune at maximum one or two of the service in-

tervals in the oscillation (line 25). Specifically, we prune small service intervals in an oscillation only

if these occur with a probability pmin < p < pmax (line 27), with the intention that a small interval

occuring very seldomly is not pruned and a small interval that is the predominant interval used within

the oscillation is also not pruned. The performance of this algorithm will be carefully evaluated in the

next section.

Given that load in a network changes dynamically, a mechanism is needed to revert the action of this

algorithm and allow a CA-DFA station to benefit again from small service intervals. For this purpose

CA-DFA makes use of another Information Element defined in 802.11k, the BSS Load Element (71).

This element is transmitted by the AP within the Beacon frame and advertises the current level of
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Algorithm 4.2: Outer Control Algorithm.

1 – Variables definition
2 imax ← Lmax − Lmin + 1 number of allowed service intervals
3 SI histi, i = 1...imax ← SI histogram
4 L← L0 such that current SI = L0SImin

5 Lup, Ldown ← track if SI = LSImin is increasing or decreasing
6 Llast ← L1 such that last SI = L1SImin

7 update now ← false

8 – outer control alg()

9 //Computing the SI histogram
10 t SIend ← tnow

11 SI histL = SI histL + (t SIend − t SIstart)

12 t SIstart ← tnow

13 //Detect oscillations
14 if L > Llast then
15 detect oscillation(Ldown,Lup)
16 else if L < Llast then
17 detect oscillation(Lup,Ldown)
18 //Pruning too aggressive Service Intervals
19 if update now then
20 t outerend ← tnow

21 ∀i, SI histi ← SI histi
t outerend−t outerstart

22 SIavg ←
∑imax

i=1 SI histi × i× SImin

23 iinit ← mini{SI histi > 0}
24 num present← |SI histi > 0|
25 max pruning ← iinit +max{bnum present−1

2
− 1c, 0}

26 p←
∑iinit+max pruning

l=iinit
SI histl|l× SImin < SIavg

27 if pmin < p < pmax then
28 Lmin ← l + 1

29 saved util← last beacon util

30 t outerstart ← tnow

31 first turn← false

32 ∀i, SI histi ← 0

33 Llast ← L

34 – detect oscillation(L1,L2)
35 if !L1 then
36 L2 ← true

37 else if L1 then
38 L1 ← false, L2 ← true

39 if !first turn then
40 first turn← true

41 else
42 update now ← true

43 – Routine executed when receiving a Beacon
44 last beac util← BSS load Elem

45 if Lmin > 1 then
46 saved util← max{last beac util, saved util}
47 if last beac util < ρ× saved util then
48 Lmin ← 1 after random delay
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utilization in the network. Thus, when Algorithm 4.2 restricts the set of allowed service intervals, it also

records the current utilization advertised by the AP (line 29). Thereafter, if when receiving a Beacon

frame a station observes an utilization level significantly below the recorded one, i.e. ρ × saved util,

with 0 < ρ < 1 in line 47, the set of allowed service intervals is restablished in order to reconverge to a

suitable service interval1.

Finally, we would like to notice that the two proposed CA-DFA optimizations rely on functionality

which is currently being mandated by the Wi-Fi Alliance in the Voice over Wi-Fi Enterprise certification

(93). We therefore believe that it is reasonable to assume the wide availability of this functionality in

the near future.

4.2.2.4 Complexity of CA-DFA

Since the main goal of CA-DFA is to reduce power consumption, together with providing a good QoS,

it is important to asses that the computational complexity required to implement CA-DFA, which can be

entirely implemented in software within a Wi-Fi driver, does not negatively impact power consumption.

Next, we analyze the complexity incurred by the different modules that compose CA-DFA:

- First, as explained in Section 4.2.2.1, CA-DFA manages to measure congestion in a way that is

completely seamless to the operation of the Wi-Fi power saving protocols. In addition, CA-DFA

updates its EWMA estimates when a service period or a channel access completes. We consider

that maintaining an EWMA estimate has a minimal impact in terms of complexity.

- Second, the basic version of CA-DFA described in Algorithm 4.1 is only executed every Tmon

seconds which, as it will be discussed in the next section, is typically a multiple of the Beacon

interval. Notice that current Wi-Fi chipsets already perform several operations when receiving a

Beacon frame. In addition, Algorithm 4.1 only involves comparisons between the current conges-

tion estimates and THRup and THRdown. We therefore claim that the computational impact of

this algorithm is minimal.

- Finally, the outer control algorithm described in Algorithm 4.2 is in the worst case executed every

Tmon ×min{down count, up count} seconds. The detect oscillation() procedure therein has

as well a minimal complexity since it only involves comparing certain state variables. In case an

oscillation is detected, which can occur in the worst case only every:

2× Tmon ×min{down count, up count}+ Tmon ×max{down count, up count}
1To avoid that different stations get synchronized, CA-DFA randomizes within 10 seconds the reuse of the pruned service

intervals.
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seconds, since it requires at least an increase → decrease → increase cycle (or viceversa),

CA-DFA performs a set of computations that linearly depend on the maximum number of allowed

service intervals imax. Notice that in a practical setting one wants to keep the delays in a Wi-Fi

network under ∼ 200ms or less which, if a typical minimal service interval of SImin = 20ms is

considered, results in a reduced imax of 200
20 = 10.

For the reasons previously stated, we claim that the extra computational complexity required to

implement CA-DFA has a negligible impact on power consumption.

4.2.3 CA-DFA dynamics and parameter setting

In this section we illustrate the dynamics of CA-DFA. Given the complexity to accurately model the

considered protocols in an analytical way, we use the following simulation scenario that will ease the

task of identifying the properties of CA-DFA and tuning its parameters. We consider a Hotspot scenario

like the one of Section 4.1, where all stations run a bi-directional CBR application of 256Kbps over

AC VI with a packet interarrival time of 20ms and use a fixed transmission rate of 39Mbps (16 QAM

3/4). The rest of simulation parameters are identical to the ones described in Section 4.1.

In our evaluation the maximum allowed delay bound and the minimum service interval in CA-DFA

are set to D = 100ms and SImin = 20ms respectively. In addition we configure γ = β
2 , which

eases the task of configuring CA-DFA because the hysteresis margin becomes dependent only on the

parameter β. Specifically:

∆THR =

{
β × SImin

2 × (L+ 1) L > 1
β × SImin

2 L = 1
(4.2)

Therefore, increasing β increases both the hysteresis margin (reducing the number of service interval

updates) and the tolerated power consumption, as explained in the previous section. The effect of the

CA-DFA parameters β, Tmon and countlimit will be studied in this section.

In order to illustrate how CA-DFA tracks the congestion in the network, Figure 4.4(a) depicts the

most restrictive congestion metric, avg SPdur, experienced by all the stations in a scenario containing

38 stations. The congestion metric is plotted for two different values of α in the EWMA filter, α = 0.1

(black dots) and α = 0.2 (grey crosses). As clearly observed in the figure, when the AP is backlogged,

all stations experience a sudden increase in their congestion metric for both values of α.

Figure 4.4(b) illustrates the basic dynamics of CA-DFA, where a sample station tracks its congestion

metric in a scenario with 40 stations. It can be observed how the service interval, SI , and congestion

thresholds, THRup and THRdown are updated depending on the measured congestion according to
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Figure 4.4: CA-DFA Dynamics-1.
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Algorithm 4.1. Notice how initially CA-DFA reacts in order to maintain the experienced congestion

between THRup and THRdown. However, after 57 seconds the experienced congestion falls below

THRdown but the service interval remains unchanged. The reason is the operation of the outer control

algorithm which upon the oscillation occurring between 47 secs and 52 secs, prunes service intervals of

20ms and 40ms. The efficiency of this mechanism will be analysed in detail later in this section.

In order to study the effect of β, where THRup = β ×SI , in the performance of CA-DFA, Figures

4.4(c) and 4.4(d) depict respectively the 95% of the delay cumulative distribution function (cdf95) and

average power consumption experienced by the stations in our reference scenario, as the number of

stations in the network increases. Three different values of β = {1/2, 1/3, 1/4}, are considered in

our evaluation. Looking first at the effect of β on delay in Figure 4.4(c), we can see how, regardless

of β, delay tends to increase in a step-wise fashion due to the fact that CA-DFA selects bigger service

intervals as congestion increases. The effect of β can be understood looking at the delay curves with

β = 1/2 and β = 1/4. When congestion starts to appear but is not yet irrecoverable, e.g. at 38

stations, a bigger β may result in smaller delays because in that case CA-DFA tolerates a higher amount

of congestion before selecting higher service intervals. However, when congestion increases close to

network capacity, e.g. after 44 stations, using a big β results in a smaller network capacity (defined as the

number of stations which result in delays below the configured delay bound) than using a smaller β. The

reason is that when using a bigger β CA-DFA requires longer times to react to congestion, which leads to

persistent congestion states when the network operates close to capacity. Looking at power consumption

in Figure 4.4(d), we can see as expected that even when the network is not congested, a smaller β results

in a smaller average power consumption. In addition, notice how by means of increasing the service

interval, CA-DFA manages to effectively upper bound the average power consumption experienced by

the stations until the network overloads.

In Figure 4.5(a) we repeat the previous experiment but considering the effect of the parameters

Tmon and countlimit. Specifically, we consider 6 different configurations, Tmon = {100, 200, 400ms}

with countlimit = 2 (solid lines), and Tmon = {100, 200, 400ms} with countlimit = uniform(2, 5)

(dash-dotted lines). Notice that we study a randomized countlimit because this unsynchronizes CA-

DFA stations, and might thus be benefitial. Figure 4.5(a), depicts the worst case delay (cdf95) results

for this experiment. We can see in this figure how the best performing configuration is the one with the

minimum Tmon and countlimit, i.e. Tmon = 100ms and countlimit = 2. The reason is that increased

values of Tmon or countlimit result in longer times for CA-DFA to react to congestion, and as we have

previously seen this reaction time turns out to be critical when the network operates close to capacity.
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For the sake of space, we do not plot the power consumption results for this case which basically follow

the same dynamics like the delay ones.

In order to study how far CA-DFA operates from an optimal dynamic service interval algorithm,

Figure 4.5(b) depicts the worst case delay (cdf95) performance of CA-DFA as compared to a set of

fixed service interval configurations, where the service interval is varied from 20ms to 100ms in steps of

20ms. Figure 4.5(b) clearly depicts the trade-offs of a fixed service interval approach, i.e. delay versus

network capacity, that CA-DFA strives to resolve. Indeed, we can see that as congestion increases the

worst case delay obtained with CA-DFA (red solid line) closely follows the minimum among all the

fixed delay configurations. Notice though that CA-DFA tends to switch to a higher service interval

slightly before the correspondent fixed configuration becomes completely congested, e.g. at 42 stations.

The reason is that power consumption in those cases is above the configured threshold. As we have

seen before, delay could be reduced using a bigger value for β at the price though of a smaller network

capacity and a higher power consumption.

Figure 4.5(b) also depicts the performance of CA-DFA without the outer control algorithm described

in Algorithm 4.2 (blue dashed line). We can clearly see how the performance of CA-DFA degrades

when the outer control algorithm is not used. As explained in the previous section, the reason for

this degradation is the service interval oscillations caused by the synchronization between the different

CA-DFA stations. These oscillations and the correspondent stabilization obtained by the outer control

algorithm are illustrated in Figure 4.5(c) for a sample station when we have 44 stations in the network.

The values of pmin and pmax in Algorithm 4.2 were empirically set, in this experiment and in the rest

of the chapter, to 0.05 and 0.6 respectively, which showed a good performance in our applications of

interest.

Finally, Figure 4.5(d) depicts the service interval and the per packet delay experienced by a sample

station in a scenario where we dynamically vary the load in the network. Specifically, 46 stations enter

the network between 0 and 40 secs, and thus the sample station increases its service interval up to 100ms.

However, ten stations leave the network at both 60 secs and 110 secs. This fact can be recognized by a

CA-DFA station looking at the channel utilization advertised by the AP in the Beacon frame (ρ = 0.8

was used in this experiment). Thus, every time the channel load reduces, CA-DFA resets the operation

of the outer control algorithm and the station reconverges to a service interval appropriate to the current

level of congestion in the network.

After having analysed the basic dynamics of CA-DFA, we evaluate in the next section the perfor-

mance of CA-DFA to be expected in a realistic scenario.
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4.3 CA-DFA performance evaluation

In this section we present the results of a simulative study that evaluates the performance of our CA-DFA

algorithm compared to the one of the current Wi-Fi QoS and power saving protocols.

4.3.1 Simulation framework

Exactly the same simulation framework described in Section 4.1.1 is used to evaluate the performance

of CA-DFA. In addition, being CA-DFA a distributed scheme that relies on each individual station

autonomously reacting to congestion, a key aspect to asses its performance in practice is to evaluate the

benefits obtained when only part of the stations in the network implement CA-DFA. For that purpose,

we evaluate the following protocol configurations:

• 802.11 PSM+ZFA, where all stations implement 802.11 PSM and a zero delay frame aggregation

scheme is used.

• U-APSD+ZFA, where all stations implement U-APSD and a zero delay frame aggregation scheme

is used.

• CA-DFA-1/3, where one third of the Voice and Video stations implement CA-DFA, and two thirds

of the Voice and Video stations implement U-APSD+ZFA.

• CA-DFA-2/3, where two thirds of the Voice and Video stations implement CA-DFA, and one third

of the Voice and Video stations implement U-APSD+ZFA.

• CA-DFA-all, where all Voice and Video stations implement CA-DFA.

• Low Priority Aware CA-DFA-all, where all Voice and Video stations implement the Low Priority

Aware variant of CA-DFA.

Notice that in the previous configurations, CA-DFA applies to Voice and Video stations and Web

and FTP stations implement U-APSD+ZFA. In addition, no changes are required in the Access Point.

According to the study presented in the previous section, we configure CA-DFA using the following

parameters, α = 0.1, β = 1
3 , γ = β

2 , Tmon = 100ms, countlimit = 2, ρ = 0.8, pmin = 0.05 and

pmax = 0.6. Finally, we set THRLP = 1.5ms in the Low Priority Aware CA-DFA-all configuration.
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4.3.2 Performance evaluation

Next, we describe the results obtained in our study, which are again divided in: i) performance of QoS

sensitive applications, i.e. Voice and Video, and ii) performance of non-QoS sensitive applications, i.e.

Web and FTP download.

4.3.2.1 Performance of QoS sensitive applications

Figures 4.6(a) and 4.6(b) illustrate the performance of the different protocols under study in the case of

the Voice and Video applications. For simplicity, we omit the throughput results in this case, and only

plot power consumption (upper graph) and worst case delay (lower graph).

The protocols under study affect the performance of Voice and Video in a similar way. We can

see in the figure that as the number of Voice and Video stations in the network implementing CA-DFA

increases, i.e. CA-DFA-1/3, CA-DFA-2/3 and CA-DFA-all configurations, the performance of all Voice

and Video stations, not only those implementing CA-DFA, significantly improves under congestion,

both in terms of power consumption and delay, compared to the performance obtained when all stations

implement U-APSD+ZFA. In addition, the performance gains achieved with CA-DFA exhibit a linear

behavior as the number of stations implementing CA-DFA increases, resulting in the CA-DFA-all con-

figuration clearly outperforming both the U-APSD+ZFA and the 802.11 PSM+ZFA configurations as the

network gets congested.
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Figure 4.6: QoS sensitive Applications. Effect of CA-DFA on average power consumption (upper graph) and
worst case delay (lower graph) for Voice and Video applications.
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The performance gain obtained by the different partial deployments of CA-DFA, as compared to

the basic U-APSD+ZFA case, is illustrated in Figure 4.7(b) in the case of Voice showing a maximum

reduction close to 80% in both power consumption and worst case delay. In addition, Figure 4.7(a)

depicts the average service interval used by Voice and Video stations in the CA-DFA-all configuration

(solid lines), where it can clearly be seen how, as congestion increases in the network, Voice and Video

stations increase their service interval in order to operate with more efficient aggregations. Interestingly,

we can see that Voice stations still do not operate at their maximum allowed service interval (100ms),

which means that there would still be room for more Voice stations in the network.
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Figure 4.7: CA-DFA dynamics. Variation of the used SI as congestion increases, and performance gains
with different deployment scenarios.

Next, we turn our attention to the performance achieved by the Low Priority Aware CA-DFA-all

configuration. We can see in the lower part of Figures 4.6(a) and 4.6(b), how this configuration intro-

duces higher delays in the Voice and Video applications because it reacts not only to the congestion

experienced by the high priority applications, but also to the congestion experienced by the low priority

applications, hence resulting in higher service intervals being used. The service intervals used by the

Voice and Video stations in this configuration are also depicted in Figure 4.7(a) (dashed lines). Note that

a positive side effect of the friendliness to non-QoS sensitive applications is that by using higher service

intervals and efficient aggregations the sleep periods of Voice and Video stations increase resulting in a

significantly reduced power consumption, as depicted in the upper part of Figures 4.6(a) and 4.6(b).
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4.3.2.2 Performance of non-QoS sensitive applications

Figures 4.8(a) and 4.8(b) depict the performance of the Web and FTP applications, in terms of average

power consumption (upper graph) and Web page download time or FTP throughput (lower graph).

Looking at the figures we can see how the CA-DFA-1/3, CA-DFA-2/3 and CA-DFA-all configurations

progressively improve the performance of the low priority applications as compared to the reference U-

APSD+ZFA configuration. However, none of these configurations outperform the 802.11 PSM+ZFA

configuration in terms of Web and FTP applications. The reason is the fact that the 802.11 PSM+ZFA

configuration intrinsically gives a better treatment to the low priority applications, in spite of the Voice

and Video applications, because all applications operate with an effective service interval equal to the

Beacon interval, i.e. 100ms, and contend for their data after a Beacon frame sending PS-Polls that

use the same priority, i.e. AC BE. On the other hand, when using U-APSD+ZFA or CA-DFA, different

applications request their buffered data in the Access Point by means of QoS-Nulls which are transmitted

using the same Access Category than their intended application.

Like in the case of the QoS sensitive applications, the Low Priority Aware CA-DFA-all configuration

exhibits a distinctive behavior. By increasing the service interval of Voice and Video application as soon

as low priority applications start to experience congestion, CA-DFA benefits low priority applications

and outperforms the 802.11 PSM+ZFA configuration for both Web and FTP1.

4.4 Conclusions

In this chapter we have presented a study of how the MAC aggregation features defined in IEEE 802.11n

can be used to complement and enhance the existing Wi-Fi QoS and power saving protocols. Specifi-

cally, we have analyzed the effect of 802.11n MAC aggregation on the performance of 802.11 PSM and

U-APSD and have proposed the Congestion Aware-Delayed Frame Aggregation (CA-DFA) algorithm

that, using only information available at layer two, adapts the amount of aggregation used by a Wi-Fi

device according to the level of congestion in the network.

The main conclusions that can be drawn from our results are: i) U-APSD, currently used when

battery operated devices require real-time applications like Voice, is poorly suited to benefit from the

802.11n aggregation mechanisms, ii) 802.11 PSM significantly benefits from aggregation and can out-

perform U-APSD when congestion in the network increases, iii) An algorithm like CA-DFA that adapts

1Notice that the throughput performance experienced by FTP does not significantly improve with respect to the 802.11
PSM+ZFA configuration because this comes mostly determined by the slow EDCA settings used for AC BK together with the
TCP congestion control algorithms.
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Figure 4.8: Non-QoS sensitive Applications. Effect of CA-DFA on average power consumption (upper graph)
and performance (lower graph) of the Web and FTP applications in a multi-service Wi-Fi network.

the aggregation used by a Wi-Fi device according to the level of congestion in the network can signifi-

cantly outperform other approaches in the state of the art in terms of power saving and network capacity,

even with a gradual market penetration.
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5

On Centralized Schedulers for 802.11e
WLANs: Distribution vs Grouping of
Resources Allocation

In Chapters 3 and 4 we have addressed the challenge of providing an energy efficient operation for

real-time traffic when considering the distributed QoS and power saving protocols defined in Wi-Fi,

i.e. EDCA regarding QoS and 802.11 PSM and U-APSD regarding power saving. These distributed

protocols are currently widely deployed in the market, and products implementing them are certified by

the Wi-Fi Alliance under the WMM certification program (35).

Unlike distributed protocols though, the centralized QoS and power saving protocols defined in

802.11, i.e. HCCA and S-APSD, have not been widely deployed in the market, due to a variety of

reasons. For instance the HCCA protocol defined in 802.11e (32) failed to offer QoS guarantees when

multiple Wi-Fi networks overlap, which is a situation commonly found in practice. This drawback

though is currently being addressed in the 802.11aa standard (117). Another reason that hindered the

deployment of these centralized protocols, was the fact that the distributed protocols were simply good

enough for Data traffic, typically Web browsing, which represented most of the traffic being carried over

Wi-Fi networks. However, this assumption might not hold true if Wi-Fi networks start to be commonly

used to transmit High-Definition Video traffic, as indicated by the increase of Video capable devices

being Wi-Fi certified (105). In addition, some studies have pointed out that some Wi-Fi products in the

market do not implement the EDCA protocol in an accurate way (107). These innacuracies pose serious

difficulties if advanced QoS functionalities like Admission Control have to be implemented over EDCA.

Centralized protocols like HCCA, described in Chapter 2, eliminate the need for contention to access
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the channel, and thus offer the possibility of increasing the efficiency of the MAC, which is essential

for applications like Video. In addition, coupling HCCA with S-APSD, where the stations wake up

according to a schedule delivered by the Access Point, in order to transmit and receive data without

contention and quickly return to sleep, may significantly improve energy efficiency of mobile computing

devices. Therefore, the focus of our work in this chapter is the analysis and evaluation of a novel energy

efficient resource allocation algorithm for the centralized QoS and power saving capabilities of 802.11e.

In particular, our contributions in this chapter have been published in (28) and are as follows:

• We present the design of DRA, a novel HCCA/S-APSD scheduler running in the Access Point, that

with a very low complexity spreads in time the service periods of the stations running S-APSD,

hence maximizing QoS and energy efficiency.

• A thorough performance evaluation that depicts the advantages of our DRA scheduler in front of a

scheduler that groups in time the service periods of the stations running in S-APSD, as commonly

done in the state of the art. Our performance evaluation considers the QoS and energy trade-off

of both HCCA and EDCA traffic.

The rest of the chapter is organized as follows. Section 5.1 summarizes previous research work in

resource allocation algorithms for HCCA and S-APSD. In Section 5.2 we describe and model analyti-

cally our proposed solution for Distributing in time as much as possible Resource Allocations (DRA).

Section 5.3 presents a Grouping algorithm that will be used for comparison reasons (GRA). Following

that, in Section 5.4 we evaluate the performance of our proposed DRA scheduler as compared to the

GRA one in terms of QoS and power consumption for both HCCA and EDCA. Finally Section 5.5

summarizes our findings and concludes this chapter.

5.1 Related work on centralized scheduling

To the best of our knowledge most of the approaches to HCCA scheduling presented in the literature

share the basic idea of polling an admitted flow at regular intervals in order to fulfill the delay and

bandwidth requirements defined in a Traffic Specification message (TSPEC) when setting up a flow

(see Chapter 2 for a detailed description on HCCA). Hereafter we will refer to the time interval used

by the Access Point (AP) to poll a station for a flow as the Service Interval (SI) of this flow. The

most common approach in the literature to schedule HCCA resource allocations is what we defined

as Grouping approach which was inspired by the example scheduler described in the 802.11e standard

(32). The idea behind this scheduler is to define a basic service interval common to all flows of all
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stations. This service interval is selected in order to fulfill the most stringent delay requirement among

the different flows. Thus, at intervals defined by the basic service interval, the AP starts to sequentially

poll all associated flows. The main problem of this approach is that a common service interval for all

flows in general can not be guaranteed to match the packet generation rate of each individual flow. In

this case bandwidth may be wasted by unnecessary polling of stations. (108) and (109) are relevant

examples of proposed implementations of this approach.

In contrast to the Grouping solution, another approach called Earliest Due Date (EDD), which was

first proposed in (110), does not try to avoid collisions between the polling times of different flows but

instead uses Earliest Deadline First (EDF) to resolve such collisions. A deadline, related with the service

interval and the delay bound, is associated to each flow and is used to decide which flow to poll first in

case there is more than one flow pending to be polled at the same point in time. Among these flows the

EDD scheduler selects the one with the closest deadline. This solution removes the need to impose a

common basic service interval as compared to the grouping approach.

In our previous work (106), we proposed an algorithm that determines the Service Start Time (SST)

of each flow in order to distribute in time as uniformly as possible the allocation of resources for the

different flows. We refer to this approach as the Distribution approach. Like in the EDD scheduler, no

requirement needs to be imposed on the service intervals demanded by the different flows. In addition,

this scheme minimizes the chances of having more than one HCCA flow pending to be polled at the

same point of time. Our Distribution approach is related to the concept of Spectrum Load Smooth-

ing (SLS) proposed in (115). SLS allows cognitive radios to support QoS guarantees in a distributed

way by coordinating their transmissions across a certain smoothing period, which relates to the QoS

requirements of each station. Notice though, that spreading in time transmissions to/from a station

implementing S-APSD increases its power consumption, because the station has to stay awake until

its correspondent transmissions complete. For this reason, we opt to distribute resource allocations by

shifting their starting times, while trying to complete them as soon as possible once the corresponding

station is awake. If stations would tolerate their transmissions to be smoothed over a certain period, our

distribution approach and SLS could be applied together to further smooth in time resource allocations.

In this chapter though, we have not considered this scenario.

As it can be observed, the Grouping and Distribution approaches pursue opposite objectives. The

Grouping approach reserves the channel for HCCA only once every basic service interval but potentially

for a long time since all HCCA flows need to be polled. Instead, in the Distribution approach the

number of HCCA allocations might be larger but their individual duration is in general shorter. The

EDD aproach can not be classified in any of the two groups since the time when each flow makes the
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Figure 5.1: Example of HCCA allocations with a Grouping (upper graph) and a Distribution (lower graph)
approach.

initial request together with the service intervals used determines whether HCCA allocations are rather

grouped or distributed. Figure 5.1 provides an example of HCCA allocations distribution according to

the Grouping and Distribution approaches.

We argue that distributing, rather than grouping, the allocation of resources in a wireless medium is

a more efficient approach in several aspects. The reason is that establishing hard bounds on the trans-

mission time required to accomodate the QoS of a flow in a Wi-Fi network is a difficult task, because

variations in the wireless channel may require to increase the original resources allocated to individual

flows by means of using a more robust Modulation and Coding Scheme (MCS) or retransmitting pack-

ets. In order to better illustrate the innerent variability in the wireless medium, Table 5.1 reports the

average and maximum service times required to service every 40ms a sample video flow1 of average

and peak rates 256kbps and 2Mbps under different transmission parameters.

PHY Rate Average Allocation Peak Allocation
54Mbps 0.22ms 1.68ms

24Mbps 0.47ms 3.6ms

6Mbps 1.83ms 14.1ms

Table 5.1: Required video allocation time for various PHY conditions.

Observing the potential range of variation in the resources required to accomodate a single flow, pro-

viding deterministic guarantees by dimensioning the system under the worst case situation, i.e. peak rate

and slowest MCS, may result into extremly limited system capacities. Instead, we claim that variations

of the wireless channel can be better accomodated using a distributed approach, where the scheduling

1Real video traces obtained from (65) are used.
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time of different flows are separated as much as possible and hence the probability of a planned alloca-

tion having to wait for the completion of a previous allocation is reduced. The previous fact should be

indeed benefitial for both QoS and power consumption.

Based on the previous arguments we focus our work in this chapter in the design and evaluation of

an enhancement of our Distribution algorithm proposed in (106) which significantly reduces its compu-

tational load and in the evaluation of the performance improvements to be expected as compared to a

Grouping scheduler.

5.2 Distributed Resource Allocation (DRA)

The problem of scheduling a set of periodic flows, or tasks, has been thoroughly researched in the

literature, specially in the field of real time operating systems. In this chapter we propose a generic

Distributed Resource Allocation (DRA) scheduling algorithm that maximizes the minimum distance

between the serving times of different flows. The DRA algorithm is based on our previous proposal

presented in (106) which required the exploration of the least common multiple (LCM) of the different

flows’ service intervals and enhances it by: i) considering the serving time of each flow in the scheduling

decision and ii) achieving a pseudo-polynomial complexity by removing the need of exploring the LCM

of the flows’ service intervals.

5.2.1 Defining a way to distribute resource allocations

As discussed in the previous section our goal can intuitively be stated as defining an algorithm that

separates as much as possible consecutive resource allocations in the channel. In this section we show

that our desired separation or distribution can be achieved by means of an algorithm that maximizes the

minimum distance between allocated flows.

SI1 SI2

d21(0) d21(1) d21(2) d21(3) Flow 1

Flow 2

timeSST1 SST2

Figure 5.2: Distances between resource allocations.

To start off, a better understanding on the concept of distance between periodic flows is needed.

Figure 5.2 depicts the occurences in the channel of two periodic flows with periods, or service intervals

in HCCA terminology, SI1 and SI2, which have starting times SST1 and SST2. Figure 5.2 also depicts

101



5. ON CENTRALIZED SCHEDULERS FOR 802.11e WLANS: DISTRIBUTION VS
GROUPING OF RESOURCES ALLOCATION

the distance between consecutive allocations of the two flows d2,1(k). Indeed, one can express the

distance between an occurrence of flow 2 and the previous occurrence of flow 1 as:

d2,1(k) = (d2,1(0) + kSI2) mod SI1 (5.1)

Where d2,1(0) is a reference distance between two resource allocations, d2,1(0) = SST2 − SST1

in Figure 5.2.

Later in this section, it will be formally shown that the previous sequence, d2,1(k), is indeed peri-

odic and that its elements can be expressed as d2,1(j) = dmin2,1 + j · gcd(SI1, SI2) j ≥ 0, where

dmin2,1 = d2,1(0) mod gcd(SI1, SI2), and gcd stands for greatest common divisor. Thus, an objective

way of increasing the separation between the service times of flows 1 and 2 is to increase dmin2,1 and/or

gcd(SI1, SI2).

Maximizing gcd(SI1, SI2) requires modifying the service intervals used to poll each flow, and is

intuitively achieved by setting both service intervals as similar as possible, for instance making them

all multiple of a certain value SIbasic, being this value as high as possible. However, manipulating

the service intervals assigned to each flow in order to maximize the separation between consecutive

allocations in the channel can have counter effects. It may turn into wasted bandwidth if the polling

interval does not efficiently match the application generation rate, i.e. in the case of voice or video

codecs, or it may result in increased delays if adjusting to a multiple of SIbasic results in a polling

interval above the desired delay bound. Therefore, in this chapter we consider that the service interval

used to poll each flow will be determined based on a set of different requirements (QoS, bandwidth

efficiency, power consumption,etc), and given the selected service intervals we attempt to separate the

allocation of flows as much as possible.

If we consider the service intervals SI1 and SI2 as given, the only way to increase the separation

between any two allocations of flows 1 and 2 in the previous example is to maximize the minimum

distance, dmin2,1 . Looking at the definition of dmin2,1 we can see that although dmin2,1 is bounded by

gcd(SI1, SI2) it can be maximized by properly setting d2,1(0) which is defined by the starting time

of each flow, SSTi. Note that SSTi can be determined by the scheduler and conveyed to the flows in

HCCA through the Schedule Element (33).

The previous example is too simplistic in the sense that we consider only two flows in the channel.

Consider now the case that N periodic flows are already scheduled and a new flow requests entry to the

system that has therefore to be granted a certain starting time SSTi. Clearly, in a general setting it is not

possible to select a SSTi for the new flow that maximizes the distances between the polling times of

the new flow and all of the already scheduled flows at the same time. In this case the distances between
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the new flow and each of the already scheduled flows could be weighted to decide on which distances

are more important to maximize. However a compelling argument from Real Time Scheduling Theory

(RTST) drives us towards again trying to maximize the minimum of those distances. The problem of

scheduling task sets in RTST can be stated in very similar terms to the problem of scheduling flows

in HCCA. It is known then from the feasibility tests devised in RTST that if a deadline is associated to

each flow and Earliest Deadline First (EDF)1, which has been proven optimal under many RTST settings,

is used as scheduling discipline, then the critical instant (112) occurs when all flows try to access the

shared resource at the same time. The critical instant is defined as the release time of a flow for which the

response time, and hence the probability of a deadline violation, is maximized. Maximizing minimum

distances is therefore an intuitive way of moving away from this worst-case situation trying hence to

maximize the number of admitted flows if an admission control for HCCA would be defined similar to

the feasibility tests employed in RTST.

Next, we present our DRA algorithm that allocates a start time for a new flow requesting access to

the system such that the minimum distance between the service periods of this new flow and the service

periods of the already scheduled flows is maximized. Although defined in the context of HCCA, the

presented DRA algorithm can be used in any context where scheduling of periodic flows is required.

5.2.2 The two flows case

To facilitate the understanding of the analysis of our proposal let us first consider a system consisting in

two flows. The first flow has already been scheduled and is periodically served according to its Service

Start Time (SST) SST1, Service Interval SI1 and serving time TXOP1
2. A second flow requests at

a certain point of time, which is considered to be t = 0, to be scheduled in the system with service

interval SI2 and serving time TXOP2. The goal of our algorithm is to find the service start time for

the requesting flow, SST2, that maximizes the minimum distance between the serving times of flows 1

and 2. In the rest of the chapter we refer to the regular instants where a flow is scheduled to be served as

the release instants of this flow. Figure 5.3 represents flows 1 and 2 and next rel time(1) is a variable

defined starting from t = 0 that contains the next release time of flow 1.

Let us define the left distances between flow 2 and flow 1, dl2,1(k) where k ∈ N, as the time

differences between the k − th release time of flow 2 and the last release time of flow 1. Similarly, the

right distances, dr2,1(k), are defined as the time differences between a release time of flow 2 and the next

release time of flow 1. Additionally let us define the left and right effective distances, dl eff2,1(k) and

1Formally, preemptive EDF has to be considered although maximizing the minimum distance is also a common-sense ap-
proach in the case of non preemptive EDF (113).

2TXOP stands for Transmission Opportunity and is the transmission time granted to a polled flow in HCCA.
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SIi Service interval used for flow i

TXOPi Transmission Opportunity used for flow i

dli,j (k) Sequence of left distances of flows i and j

dri,j (k) Sequence of right distances of flows i and j

dl effi,j (k) dli,j (k)− TXOPj

dr effi,j (k) dri,j (k)− TXOPi

dl mini,j
Minimum left distance of flows i and j

dr mini,j Minimum right distance of flows i and j

dl eff mini,j
dl mini,j

− TXOPj

dr eff mini,j
dr mini,j − TXOPi

φi,j Reference distance between flows i and j

Table 5.2: Variables used in the analysis.

dr eff2,1(k), as the difference between the end of the serving time of one flow and the release time of

the other flow. All these distances are depicted in Figure 5.3. In addition, Table 5.2 contains a summary

of the main variables used throughout this section.

t=0 SI1 SI2

dl21(0) dl21(1) dl21(2) dl21(3)

dr21(0) dr21(1) dr21(2) dr21(3)

next_rel_time(1)

SST

Flow 1

Flow 2

dl_eff21(0)
dr_eff21(0)

time

Figure 5.3: Distances between release times.

From our definitions it is immediate to derive that dl eff2,1(k) = dl2,1(k)−TXOP1 and dr eff2,1(k) =

dr2,1(k) − TXOP2. Therefore, in order to maximize the minimum effective distance between flows 1

and 2, we can focus our analysis in maximizing the minimum left and right distances.

Our goal is thus to find the SST of flow 2 that maximizes the minimum distance between the release

times of flows 1 and 2. Notice for this purpose that dl2,1(k) and dr2,1(k) can be expressed as:

dl2,1(k) = (dl2,1(0) + kSI2) mod SI1

dr2,1(k) = SI1 − dl2,1(k) (5.2)

Where dl2,1(0) is the initial left distance taken as reference.

Then, the first step towards our goal is to express the minimum value of dl2,1(k) and dr2,1(k), which

we want to maximize, as a function of the SST to be assigned to flow 2. For that purpose notice that
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dl2,1(k) can be expressed as:

dl2,1(k) = dl2,1(0) + kSI2 −mSI1 (5.3)

Where k,m ∈ Z. If we now separate the right hand size of the previous equation into terms that can

be divided by d = gcd(SI1, SI2), where gcd stands for greatest common divisor, we obtain:

dl2,1(k) = dl2,1(0) mod d+ pd+ kSI2 −mSI1 (5.4)

dl2,1(k)− dl2,1(0) mod d = jd (5.5)

Where k,m, p, j ∈ Z. Thus, considering that in Equation 5.2, dl2,1(k) ≤ SI1:

dl2,1(k) = dl2,1(0) mod d+ jd, 0 ≤ j < N =
SI1
d

(5.6)

Therefore, the minimum value of dl2,1(k) is dl min2,1 = dl2,1(0) mod gcd(SI1, SI2). In addition,

dr min2,1 can be obtained in the following way. Notice that dr min2,1 = SI1 − dl max2,1 , thus if there

are only N = SI1
d different values for dl2,1(k), then dl max2,1 = SI1 − (gcd(SI1, SI2) − dl min2,1),

and dr min2,1 = gcd(SI1, SI2)− dl min2,1 .

A simple transformation can now be used to express the minimum left and right distances as a

function of the SST to be assigned to flow 2. If this SST equals next rel time(1) the minimum left

distance will be zero, hence:

dl min2,1 = (SST − φ2,1) mod gcd(SI1, SI2) (5.7)

Where φ2,1 is an initial shift defined as φ2,1 = next rel time(1) mod gcd(SI1, SI2).

Having found the expression of the minimum value for the left and right distances it is immediate to

obtain an expression for the minimum left and right effective distances since dl eff min2,1 = dl min2,1−

TXOP1 and dr eff min2,1 = dr min2,1 − TXOP2.

Figure 5.4 illustrates the minimum values of dl eff2,1(k) and dr eff2,1(k) as a function of the selected

SST for given values of TXOP1 and TXOP2 (TXOP1 > TXOP2 in the figure). The minimum left

and right effective distances achieve maximum values of gcd(SI1, SI2)−TXOP1 and gcd(SI1, SI2)−

TXOP2 respectively, but these maximum values do not occur at the same time.

Considering again Figure 5.4, the overall minimum distance, i.e., min{dl eff min2,1 , dr eff min2,1},

is a periodic set of triangular shapes of unitary slope. This minimum distance function has period

T = gcd(SI1, SI2) and presents discontinuities at points φ2,1 + k · gcd(SI1, SI2), k ∈ N, which we
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refer hereafter as critical points. Thus, the values of SST that maximize the minimum distances between

any two release times of flow 1 and flow 2 are:

SSTOPT = φ2,1 + k · gcd(SI1, SI2)
2

+
TXOP1 − TXOP2

2

Where k is an odd integer, k = {...,−1, 1, 3, 5, 7, ...}.

Figure 5.4: Minimum left and right effective distances.

5.2.3 The N flows case

Based on the 2 flows case analysis, we extend our results now to the N flows case which consists in

N periodic flows already scheduled in a system with service intervals SIi and serving times TXOPi,

where i = 1...N , and a new flow arriving at time t = 0 which requires to be scheduled with service

interval SIN+1 and serving time TXOPN+1. As in the previous case, our goal is to find the initial

release time for the new flow, SSTN+1, that maximizes the minimum effective distance between this

flow and the already scheduled flows.

Defining as before the left and right distances of the new flow, N+1, with each of the already sched-

uled flows, i where i = 1...N , we can divide the N-flows problem into N different 2-flow problems:

dl minN+1,i
= (SST − φ

N+1,i
) mod gcd(SIi , SIN+1

)

dr minN+1,i
= gcd(SIi, SIN+1

)− dl minN+1,i

With φN+1,i = next rel time(i) mod gcd(SIi , SIN+1
).

Similarly, the left and right effective minimum distances can be defined as dl eff minN+1,i
=

dl minN+1,i
− TXOPi and dr eff minN+1,i

= dr minN+1,i
− TXOPN+1. Figure 5.5 represents the

minimum left and right effective distances in a system where two flows were already scheduled and

a new flow has requested access. In the figure dl eff minN+1,i
and dr eff minN+1,i

are not depicted
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separately but instead we directly plot min{dl eff minN+1,i
, dr eff minN+1,i

} for each scheduled flow.

Notice in the figure that TXOP1 > TXOP3 = TXOP2.

Figure 5.5: Minimum left and right distances.

Notice that in case of having N flows, our goal is to find SSTN+1 that maximizes

min{dl eff minN+1,i , dr eff minN+1,i} , which we refer to as the absolute minimum distance.

Thus, realizing that the absolute minimum distance is also a periodic set of triangular shapes of uni-

tary slope, a simple algorithm that finds the SSTN+1 that maximizes this distance can be implemented

in the following way:

1. Compute gcd(SIi, SIN+1) for all the N already scheduled flows, 0 < i ≤ N .

2. Compute the period of the absolute minimum distance:

T ′ = lcm(gcd(SIi, SIN+1), ..., gcd(SIN , SIN+1))

3. For each already scheduled flow generate all critical points, φN+1,i + k · gcd(SIi, SIN+1), con-

tained in T ′.

4. Define a sorted list L containing all critical points.

5. Define a function F that operating on list L obtains the SST that maximizes the minimum effective

distance.

In order to find the optimum SST, the function F needs to go through all the critical points contained

in L and obtain the maximum of the triangular shape between each two consecutive points. Hence, the

function F needs to examine in each critical point the value of min{dl eff minN+1,i , dr eff minN+1,i}

for all N already scheduled flows and find out the initial value of the triangular shape. Our implemen-

tation of function F has a worst-case time complexity bounded by O(M(N + 1)), where M is the
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Algorithm 5.1: Distributed Resource Allocation Algorithm (DRA).

1 – Variables definition SIi ← Service interval of flow i (obtained from the TSPEC).

2 next rel time(i)← Next release time of flow i.
3 list critical points← List that contains the critical points of the absolute minimum distance function.

4 – Routine for scheduling a new flow for i = 1 to N do
5 partial gcd(i)← gcd(SIN+1, SIi)

6 φN+1,i ← next rel time(i) mod gcd(SIN+1, SIi)

7 T ′ ← lcm(partial gcd(1), ..., partial gcd(N))

8 φmin = min{φN+1,1, ..., φN+1,N}
9 j ← 0

10 for i = 1 to N do
11 k ← 0

12 while φN+1,i + k · partial gcd(i) ≤ φmin + T ′ do
13 list critical points(j)← φN+1,i + k · partial gcd(i)
14 k ← k + 1, j ← j + 1

15 L← Quicksort list critical points in increasing order
16 SSTOPT ← F (L).

maximum size of list L and N is the number of already scheduled flows. For the sake of space and

clarity of the explanation our implementation of function F is provided in the Appendix at the end of

this chapter.

A pseudo-code implementation of our algorithm to distribute resource allocations is shown in Algo-

rithm 5.1. In the rest of the chapter we refer to this algorithm as the DRA algorithm.

It is interesting to discuss how the DRA algorithm behaves in an overloaded situation, since as

the number of flows increases, or flows with high TXOP s are considered, overlapping between flows

may be unavoidable. This situation though does not impose any constraint on the behavior of DRA. If

overlapping occurs the effective minimum distance will become negative, as illustrated in Figure 5.5,

and DRA will simply select the starting service time that results in the minimum amount of overlapping.

However, in order to limit the amount of overlapping such that no harm is done on the QoS requirements

of a specific flow, an admission control module complementing DRA would be needed.

Finally, to illustrate the distribution achieved under a max-min distance criteria Figure 5.6 depicts

two example allocations. The upper part of the Figure shows the resulting distribution when scheduling

three flows with a period of 40ms, where flow i enters the system before flow j if i < j. The lower

part of the Figure shows the resulting allocation when scheduling, again in the specified order, three

flows of periods 40ms, 60ms and 80ms. It is worth noticing that in a general setting when each flow

has a different period the resulting distribution does depend on the order of arrival of the flows. Indeed,

it is interesting to notice that under HCCA it is possible for the AP to reschedule the allocation times

of previously scheduled flows when a new flow wants to enter the system by sending a new Schedule
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Element to each existent flow in the system, hence paying a price in increased signaling and complexity.

In this chapter though we do not explore the problem of finding, given a set of N flows to be scheduled,

the scheduling order that results in the maximum separation under DRA.

SI1=40ms

Flow 1

Flow 2

SI2=60ms

SI3=80ms

Flow 3

time

SI1=40ms SI2=40ms

SI3=40ms

time

Figure 5.6: Resulting distributions with a max-min criteria.

5.2.4 Complexity of DRA

In this section we analyze the complexity of our proposed DRA algorithm in order to provide an upper

bound on the computational load to be expected when implementing it in practice.

Looking at Algorithm 5.1 the worst case time complexity of DRA can be analysed in the following

way. When a new flow has to be scheduled, DRA first computes gcd(SIi, SIN+1), ∀i = 1...N , having

a complexity of O(N logSImax), where SImax = maxi SIi and N is the number of flows already

scheduled in the system. After that, computing T ′ requires again a complexity of O(N logSImax) and

computing φmin requires a complexity of O(N). After these initial operations the algorithm constructs

the list containing the critical points of the absolute minimum distance function, list critical points,

which takes complexity O(M), being M the number of elements in this list. Once list critical points

is populated, it can be sorted with a worst case1 complexity of O(M logM). Finally, the function

F computes for each critical point the value of the absolute minimum distance2, taking a worst case

complexity of O(M(N + 1)), as illustrated in the Appendix at the end of this chapter.

Therefore, a key parameter to evaluate the complexity of the DRA algorithm is the size M of

list critical points. In order to obtain an upper bound on M an upper bound on the period of the

1Notice that in practice we use QuickSort which has a worse worst-case performance, O(M2), but provides the best perfor-
mance in average.

2Computing deff mini,j
takes linear complexity since it only involves a modulo operation.
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absolute minimum distance function (T ′) is needed:

T ′ = lcm(gcd(SIi , SIN+1
), ..., gcd(SI

N
, SI

N+1
)) ≤ SI

N+1

Hence, the maximum size of list critical points can be upper bounded as:

M =
N∑
i=1

T ′

gcd(SIi, SIN+1)
≤ SIN+1

N∑
i=1

1

gcd(SIi, SIN+1)
≤ SIN+1N

Based on the previous analysis we can express the overall worst case time complexity of DRA

as bounded by O(SI
N+1

N(N + logSI
N+1

N) + 2N logSImax). Notice that formally DRA has a

pseudo-polynomial complexity because SIN+1 and SImax are not necessarily polynomial in the size

of the problem description. In a practical setting though, the typical service intervals used in wireless

networks result in a reduced complexity of DRA, as it will be shown next.

Notice that the algorithm proposed in our early work in (106), which is based on the exploration of

the aggregated period of the different flows, has a worst case time complexity bounded by

O(lcm(SIi , ..., SIN+1
) N
precision ) where lcm stands for least common multiple and 0 ≤ precision ≤

SIN+1 is a parameter used to explore the space of possible starting times. Instead, DRA breaks the

dependency on the lcm of the different flows’ service intervals. An alternative approach to DRA is the

Dissimilar Offset Assignment (DOA) algorithm proposed in (116) in the context of Real Time Operating

Systems, which, like DRA, assigns offsets to different flows in order to maximize their relative distance.

This algorithm also breaks the dependency on the lcm of the flows’ service intervals achieving a worst

time complexity of O(N2(logSImax + logN2)). Next, we experimentally evaluate the performance of

these algorithms against the one of DRA both in terms of time complexity and achieved flow separation.

In our evaluation we consider that each flow has a service interval randomly selected between 10ms

and 100ms, and a serving time randomly selected between 0ms and 1ms1. In addition, we consider a

first setting where all flows have a service interval multiple of 10ms and a second one where all flows

have a service interval multiple of 20ms. Figure 5.7 depicts the results of our evaluation. More than 500

independent scheduling instances were used to obtain the presented average values, however we have

not depicted the 95% confidence intervals in the graphs because they were too small to add significant

information.

Figure 5.7(a) illustrates the ratio between the computational time required by the algorithms under

study and DRA, in order to schedule a new flow when N flows are already present in the system. It is

clear in the figure that, as predicted by the analysis, the complexity of an LCM based approach explodes

1This service time is arbitrarily chosen for the purpose of the experiment. Notice that the values of the service time of the
different flows have no impact on the complexity of the algorithm.
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Figure 5.7: Performance of DRA.

when the flows’ service intervals are multiple of 10ms. Instead, DRA and DOA exhibit a stable and

similar complexity regardless of the flows’ service intervals and the number of scheduled flows. Finally,

Figure 5.7(b) illustrates the average minimum left distance experienced with the three algorithms under

study. As observed in the figure the ability to separate flows increases for all algorithms when all flows

are multiple of 20ms, instead of 10ms, and DRA shows to always achieve the highest flow separation.

Based on these computational load and scalability results we conclude that in general the DRA algorithm

would be a feasible solution in practice. In addition, given that DRA is the algorithm providing the best

trade-off between flow separation and time complexity, in the rest of this chapter we consider DRA as

the algorithm representative of the Distribution approach.

5.3 Grouping of Resource Allocations (GRA)

In order to compare our proposed Distributed Resource Allocation algorithm (DRA) with a Grouping

one, we designed an enhanced Grouping of Resource Allocations algorithm (GRA) suited for stations

with strict power consumption requirements operating in S-APSD. The presented scheduler is based on

the common idea of defining a basic service interval, SIbasic, and scheduling the HCCA transmissions
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Algorithm 5.2: Grouping Resource Allocations Algorithm (GRA).

1 – Variables definition SIbasic ← Basic service interval.

2 next SST ← Variable indicating the next available slot.
3 D, r, S ← Delay bound, Mean Data Rate and Average MSDU size specified in the TSPEC.
4 Tx time← Transmission time of an MSDU of size S plus overhead.

5 – Routine for scheduling a new flow SI ← b D
SIbasic

cSIbasic
6 if next SST not initialized then
7 next SST ← current time

8 SST ← next SST + d current time−next SST
SI

eSI
9 next SST ← next SST + dSI×r

S
eTx time

consecutively, see Figure 5.1 for an example. However, we introduce two differences with respect to

the reference scheduler described in the 802.11e standard (32): i) we do not force all flows to be polled

every basic service interval, but allow flows to be polled at multiples of the basic service interval, and ii)

we do not allow any flow to be polled prior to its nominal polling time. This last constraint is appropriate

in the case of S-APSD where a station awakes to be polled at its nominal polling interval.

A pseudo-code implementation of our proposed grouping scheduler is shown in Algorithm 5.2. This

algorithm is run in the AP every time a new HCCA flow is admitted and returns the Service Start Time

(SST ) and the Service Interval (SI) for the new flow.

The algorithm starts by determining the service interval that will be used to poll the new flow.

For this purpose we make use of the delay bound, D, specified by the station in the TSPEC message.

Specifically, the flow will be polled at the maximum service interval below D that is a multiple of the

basic service interval SIbasic. Once SI has been determined, the algorithm computes the SST for the

new flow. A reference variable, next SST , contains the next available polling slot. Note that next SST

does not refer to the current time but to a reference time that is determined by the first flow admitted in

the system. The actual SST granted to the requesting station corresponds to the next nominal polling

time given next SST and SI . Finally, the next SST variable is updated for the next requesting flow.

Our proposed grouping scheduler allocates for the current flow a transmission slot computed based

on the expected average TXOP, which depends on the mean data rate, nominal MSDU size, assigned

polling interval and experienced radio conditions. Different allocation polices, like a peak rate police,

could also be used to compute the transmission slot, although a price would be paid in the maximum

number of admitted flows. The admission control modules for both DRA and GRA schedulers are left

out of the scope of this chapter.
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5.4 Performance evaluation

In this section we compare the performance of the Distributed (DRA) and Grouping (GRA) schedulers

presented in this chapter. The goals of this study are: i) Evaluate whether the additional complexity

required by DRA is justified by relevant performance improvements and ii) Gain a deep insight on

the reasons for the performance differences due to the DRA and GRA schedulers both on HCCA and

EDCA stations. We consider specially relevant a scenario where both centralized and contention based

schemes coexist in order to understand how HCCA, if eventually deployed, can affect the performance

of the large number of devices already in the market implementing EDCA.

The analysis has been performed via simulations. We extended the 802.11 libraries provided by

OPNET (64) to include the power saving extensions defined in 802.11 and 802.11e, EDCA, HCCA and

our designed DRA and GRA scheduling algorithms.

We consider an infrastructure Wi-Fi where all the stations use the 802.11g physical layer transmitting

at 54Mbps and the Access Point (AP) generates Beacon frames every 100ms.

Four different kinds of stations are considered in our evaluation that constitute a basic Cluster for

our experiments. The traffic transmitted by each station in our cluster, together with the QoS and power

saving protocols are described in Table 5.3.

Description Medium
Access

Power
Saving

Voice
Bidirectional Voice calls using G.711
(64Kbps) with a packetization interval of
20ms.

HCCA S-
APSD

Video
Bidirectional Video conference calls emu-
lated by means of a VBR stream (65) at
30fps with an average rate of 1Mbps and a
peak rate of 9Mbps.

HCCA S-
APSD

Voice
Bidirectional Voice calls using G.711
(64Kbps) with a packetization interval of
20ms.

EDCA
(AC VO)

U-
APSD

FTP App: FTP downloads of a 50MB file. We
consider TCP New Reno and a RTT of 20ms
between the AP and the server storing the
file. The AP has a Power Save buffer with
a size of 100 packets. The TCP advertised
window is configured such that it does not
limit the growth of the TCP congestion win-
dow.

EDCA
(AC BE)

U-
APSD

Table 5.3: Applications Description.
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U-APSD is configured differently for Voice and FTP stations. Voice stations running U-APSD

generate trigger frames when an uplink data frame is available, or generate a QoS Null frame after 20ms

without sending an uplink frame in order to retrieve the downlink data buffered in the AP. FTP U-APSD

stations generate a trigger frame upon receiving a Beacon frame indicating that there are downlink

frames buffered for them. The interested reader is referred to (47) or to the discussion in Chapter 3 for

more details on this U-APSD implementation.

In order to decide the TXOP to be granted to a flow in HCCA every time it is polled we use the

description of each flow included in the TSPEC message, a similar method is used in (114).

The following EDCA settings have been used at the stations and AP in our evaluation:1

EDCA AIFS CWmin CWmax TXOP length
AC VO 2(1) 3 7 1.5 ms

AC BE 3 15 1023(63) 0 ms

Table 5.4: EDCA configuration for the different ACs.

Regarding power consumption, we use our regular power model based on the chipset data disclosed

in (66). The power consumption values used in our model are shown in Table 5.52.

Cisco AironetTM Sleep Listen Rx Tx
Current (mA) 15 203 327 539

Table 5.5: Current consumption levels of a popular PCMCIA card.

Based on this simulation setup, in order to compare the performance of the GRA and DRA sched-

ulers we performed an experiment that consisted in increasing the number of clusters until a point where

the Wi-Fi network can not meet the QoS demands of the Voice and Video stations. In addition, we study

the effect of varying the service interval used to serve HCCA traffic by defining two different configu-

rations. In the first configuration, referred as <20,40> configuration, HCCA Voice stations are polled

every 20ms and HCCA Video stations every 40ms. In the second configuration, referred as <40,80>

configuration, HCCA Voice stations are polled every 40ms and HCCA Video stations every 80ms. Each

point in the following graphs has been obtained considering at least 15 independent simulation runs of

300 seconds. Average values are plotted with the correspondent confidence intervals at 95%, and cumu-

1Parenthesis indicate that a different value is used at the AP.
2For the sleep mode we used the value of a previous model of a Cisco PCMCIA card (Cisco Aironet 350) since no information

was available for the referenced one.
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lative distribution functions are obtained considering together the values obtained across all simulation

runs.

In the following, we present our major findings based on these experiments which are divided for

clarity reasons in three subsections: i) Performance of HCCA stations, ii) Performance of EDCA Voice

stations and iii) Performance of EDCA FTP stations.

5.4.1 Performance of HCCA stations

The upper part of Figure 5.8(a) shows the delay value at 99% of the cumulative distribution func-

tion (cdf99) experienced by the Voice connections over HCCA for the two configurations under study:

<20,40> and <40,80>. Due to space reasons only downlink (AP→ STA) results are shown although

similar results were observed in uplink (notice that there is no contention in the uplink for HCCA). We

can see in the figure how when congestion increases (>5 clusters) DRA can still maintain a delay close

to the configured deadline, while GRA results in deadline violations of around 10ms. The reason for the

improved behavior of DRA is that the probability of a Voice connection being delayed by a big Video

connection (VBR) is lower since DRA separates HCCA flows as much as possible.

The middle part of Figure 5.8(a) illustrates the cdf of the instantaneous packet delay variation or

jitter1 experienced by the HCCA Voice connections, when the DRA and GRA schedulers are used.

For the sake of clarity we only include the results for the <20,40> configuration; the results for the

<40,80> configuration did not significantly differ from the presented ones. In addition, we include

a cdf curve for each simulated scenario (number of clusters from 1 to 11), and we add a label next

to each curve to identify the simulated scenario. Notice that since in the <20,40> configuration the

polling rate of a Voice flow equals the flow’s packet generation rate, the theoretical jitter should be zero.

However, when the number of flows increases, and due to the variability in the service times of Video

flows, the jitter experienced by a Voice flow increases substantially. It is remarkable though that due to

a higher separation between service times, the jitter of a Voice stream under DRA is kept lower than

under GRA. In addition, the presented cdf curves show a step at 20ms which corresponds to the Voice

packet generation interval. This step appears when due to an excessive delay several Voice packets are

downloaded in a single service period and is significantly higher in the case of GRA.

The lower part of Figure 5.8(a) plots the relation between the average power consumed by the

Voice stations running S-APSD under the DRA and GRA schedulers. This ratio is computed as ρ =

PowerGRA−PowerDRA

PowerGRA
and can be understood as the average power reduction obtained with DRA. The

results show that the higher separation between flows obtained with DRA results in up to a 35-45%

1jitter(k) = |Delay(k + 1)−Delay(k)|
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Figure 5.8: Performance of HCCA stations.
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power reduction for each configuration. The reason is that by separating the different flows we minimize

the waiting time of a station since the moment it awakes until it is served. With a detailed look at the

graph we can also see that the difference between GRA and DRA is maximum just before the network

saturates.

Regarding the Video conference connections, Figure 5.8(b) shows the performance obtained by

DRA and GRA, where we can see that smaller but still significant improvements than for Voice are ob-

tained for Video in terms of delay, jitter and power consumption. The reason for the smaller differences

observed in the case of Video, specially in terms of delay and jitter, is the bigger size of the Video flows.

In this case, the amount of traffic transmitted by the flow itself is the major contributor to the delay or

jitter, rather than the time the flow has to wait to be served once it awakes, which is one of the main

differences between the DRA and GRA schedulers.

5.4.2 Performance of EDCA voice stations

The upper part of Figure 5.9(a) depicts the downlink delay results experienced by the EDCA Voice

stations in our experiment. A smaller delay and jitter is experienced by these stations when DRA is

used, instead of GRA, for HCCA. In addition, looking at power consumption in the lower part of Figure

5.9(a) we observe that up to a 49% power consumption reduction can be achieved with DRA with

respect to GRA.

In order to better understand the impact of GRA and DRA over EDCA Voice stations we perform a

modification in our previous experiment. Instead of increasing at the same time all the stations belonging

to our basic cluster, we fix the number of HCCA Voice and Video stations to 10 (5 stations of each),

consuming approximately a 50% of the available bandwidth, and increase only the number of EDCA

stations (Voice and FTP). The results of this modified experiment with fixed HCCA load are shown in

Figure 5.9(b).

The upper part of Figure 5.9(b) shows the delay experienced by the EDCA Voice stations in our

modified experiment. Interestingly, even when the EDCA load in the network is very small, e.g., 1

station, a bigger worst case delay is experienced by the EDCA Voice stations when GRA is used for

HCCA instead of DRA. Indeed, the delay experienced by the EDCA Voice stations shows a strong

dependency on the service interval used for HCCA in the case of GRA but not in the case of DRA. The

reasons for the observed behavior are the following. In case of using GRA, which places consecutively

all HCCA transmissions, and having allocated approximately 50% of the bandwidth for HCCA, an

EDCA transmission may have to wait up to 1/2 of the GRA basic service interval, which is 20ms

in the <20,40> configuration and 40ms in the <40,80> configuration, before accessing the medium.
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(a) Increasing cluster experiment.
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(b) Fixed HCCA load experiment.

Figure 5.9: Performance of EDCA Voice stations.
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5.4 Performance evaluation

Thus, when the service interval for HCCA increases, the contiguous HCCA allocation under GRA also

increases and so does the worst case delay experienced by EDCA Voice stations. On the other hand,

when DRA is used, the EDCA Voice stations see a medium without long allocations for HCCA, which

results in a lower worst case delay and a smaller dependency on the HCCA service interval.

The previous effect has also a significant impact on jitter as observed in Figure 5.9(b). In this case,

in order to illustrate the underlying dynamics we present the results of the <40,80> configuration,

where we can see how blocking the channel for long periods as in GRA, results in backlogged EDCA

Voice packets and a bigger jitter. This effect is minimized with DRA.

Finally, the lower part of Figure 5.9(b) depicts a consistent power consumption reduction with

DRA between 35% and 45% until the network starts to saturate and slightly higher in the <40,80>

configuration. We have observed that an important factor affecting the power consumed by EDCA

Voice stations is the increased number of retransmissions experienced under the GRA scheduler. The

reason is that the long HCCA allocations created by GRA synchronize the EDCA Voice stations trying

to access the medium creating regions of a higher collision probability.

Notice that the long HCCA allocations created under GRA could be reduced by computing the

transmission slots in GRA considering a worst case transmission rate for the HCCA stations. Thus,

if HCCA stations would actually transmit at higher rates, holes between consecutive GRA allocations

would be created that could be used by EDCA stations. A price though would be paid in the number of

simultaneous flows that can operate under HCCA. Instead, DRA by its principle of operation reduces

the access delay of EDCA stations to the channel even in the case that HCCA stations operate at their

worst-case transmission rate.

5.4.3 Performance of EDCA FTP stations

No significant differences in the performance of EDCA FTP connections were observed in our basic

experiment when the DRA or GRA schedulers were used. Therefore, in order to gain a deeper under-

standing on the behaviour of TCP with the two HCCA schedulers under study, we perform the following

simplified experiment. We consider 5 HCCA Video conference and 5 HCCA Voice stations and a single

EDCA station performing a FTP download and modify the size of the Power Save (PS) buffer at the AP.

The RTT between the AP and the FTP server is kept at 20ms.

Figure 5.10(a) shows the average throughput experienced by the EDCA FTP connection when DRA

and GRA are used to schedule the HCCA traffic considering the <20,40> and <40,80> configurations.

In addition, in order to better understand the dynamics depcited in Figure 5.10(a), Figure 5.10(b) depicts
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for GRA and DRA a sample trace containing the number of packets in the PS buffer, the TCP Congestion

Window and the lost TCP packets when the size of the PS buffer in the AP is 40 packets.
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Figure 5.10: Performance of EDCA FTP stations.

Looking at the number of packets in the PS buffer for the GRA trace we can see two clear periodic

behaviors superimposed. First, a slow saw-tooth pattern due to New Reno’s congestion avoidance.

Second and more interesting, we observe how the PS buffer empties and fills up periodically. The

reason for this second behaviour is the power saving method being employed by the Wi-Fi station. The

station awakes to receive the Beacon frame, downloads the buffered frames in the AP, generates the

correspondent TCP ACKs in uplink and goes back to sleep before the next window of TCP packets

arrives at the AP. This phenomena, first pointed out in (39), increases the effective RTT perceived

by the TCP sender and reduces the experienced TCP throughput. However, a different behavior can be

observed in the equivalent trace for DRA. Here, after cumulating certain number of packets in the queue,

the next window of TCP packets arrives before the station can go back to sleep forcing the station to

remain awake. This results in a reduction of the experienced RTT and in an increased throughput. The

reason for the previous phenomena is related with the performance inversion effect described in (39)

and is explained as follows. Under GRA, TCP traffic is transmitted immediately after a long HCCA

allocation. This means that the medium is free for EDCA for a long time until the next HCCA allocation,

and so the exchange of TCP packets between the AP and the EDCA FTP station can complete before

the new window of TCP packets arrive at the AP, which results in the station going to sleep and the RTT

of the TCP connection increasing due to the Beacon interval. Instead, under the DRA scheduler the
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5.5 Summary and conclusions

EDCA TCP transmissions are more often interrupted by HCCA transmissions. Thus, the transmission

of the TCP buffered data takes longer to complete, which results in a new window of TCP data arriving

at the AP before the station goes back to sleep, and TCP observing a reduced RTT. The previous effect

is specially relevant in the <20,40> configuration.

Based on the previous effect, the dynamics exhibited in Figure 5.10(a) can be easily explained.

When the buffering in the AP is small, the EDCA FTP station always goes back to sleep, in both DRA

and GRA, before the new window of TCP packets arrives at the AP resulting in a lower throughput. In

addition, when the buffering is large, in both DRA and GRA, the TCP congestion window can grow

big enough, and the EDCA FTP station stays awake during the lifetime of the TCP connection resulting

in an increased throughput. However, it is in the intermediate zone that DRA can provide a signifi-

cant throughput gain due to the reasons previously stated. Note that a situation of limited buffering is

specially relevant for mobile devices that usually support small TCP advertised windows.

With respect to power consumption, no significant differences were observed between DRA and

GRA. The reason is that the total power consumed by the EDCA FTP station in this scenario mostly

depends on the size of the file being downloaded which is the same in both cases.

5.5 Summary and conclusions

In this chapter we have proposed and analyzed an efficient and scalable scheduler (DRA) for the cen-

tralized IEEE 802.11e QoS (HCCA) and power saving (S-APSD) solutions that, unlike most of the

proposals existent in the literature, distributes in the channel as much as possible the resource alloca-

tions of the different admitted flows. The performance of our distribution proposal, DRA, has been

compared to a grouping one, GRA, and the results indicate that significant improvements are to be

expected.

Specifically, the main conclusions that can be drawn from our study are fourfold: i) Distributing in

the channel HCCA allocations benefits the isolation of the different flows resulting in significant power

savings for stations running S-APSD, up to 45% in our scenarios ii) QoS stringent applications running

EDCA and U-APSD, e.g., Voice, also benefit from the distribution of HCCA allocations by experiencing

reduced worst case delays and increased power savings, up to 45% in our experiments, iii) Distributing

HCCA transmissions in the channel results in a more uniform medium from the perspective of TCP

connections in power saving running over EDCA, which significantly improves throughput, depending

on the amount of buffering available in the AP, and iv) DRA can significantly increase the capacity of

an admission controlled network as described in Appendix 5.B.
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Appendix 5.A F function description

Main body of function F

The function F iterates over the list, L, containing the critical points of the absolute minimum dis-

tance function in order to find where the maximum of this function is. Since the absolute minimum

distance function is composed by consecutive triangular shapes that have as starting and finishing

points the critical points, refer to Figure 5.11, our implementation of function F iterates over all

critical points in order to find out for which flow min(dl eff minN+1,i, dr eff minN+1,i), where

N + 1 is the new flow to schedule and i is an already scheduled flow, is minimum at each critical

point. Notice though, that since min(dl eff minN+1,i, dr eff minN+1,i) has discontinuities at its

own critical points, i.e. φN+1,i + k · gcd(SIi, SIN+1), there is an ambiguity about which value for

min(dl eff minN+1,i, dr eff minN+1,i) to select at these points. Considering for instance critical

point L(j) and considering that min(dl eff minN+1,i, dr eff minN+1,i) has a discontinuity at that

point the proper value to chose will depend on whether we are computing the maximum of the triangular

shape in the interval [L(j − 1), L(j)) or in the interval [L(j), L(j + 1)). In order to handle these cases

we define two lists that contain the proper minimum value to select at each critical point for each case,

we name these lists the left and right lists; please refere to Figure 5.11 for an illustration of this idea.

Once the minimum value of min(dl eff minN+1,i, dr eff minN+1,i)∀i at each critical point is

known, then each pair of consecutive critical points is analyzed to see which is the maximum of the

triangular shape contained between them. The complexity of our implementation is O(M(N + 1)),

where M is the number of critical points in L and N is the number of flows already scheduled in the

system. Algorithm 5.3 contains a pseudo-code implementation of function F .

Figure 5.11: F function implementation
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5.A F function description

Algorithm 5.3: F : function that finds the maximum value of the absolute minimum distance

1 – Variables definition
2 L← Sorted list containing the critical points of the absolute minimum distance.
3 partial gcd, next rel time, exec time← Lists containing gcd(SIi, SIN+1), the next release time of each

scheduled flow and the execution time of each scheduled flow.
4 new exec time← Execution time of the new flow.
5 val crit point left, val crit point right← Lists containing the minimum values at each critical point when looking

the critical point from left or right.
6 dir crit point left, dir crit point right← Lists containing the directions, UP or DOWN, of the triangular shape

having the minimum value in each critical point.
7 N,M ← Number of already scheduled flows and size of list L.
8 SSTopt,max of absolute min dist← Values returned by F .

9 – Main body of function F

10 // Populating the left and right lists of minimum values in each critical point
11 for i = 1 to M do
12 for j = 1 to N do
13 [value, direction, discontinuity, in max]←

compute value in crit point(L(i), next rel time(j), partial gcd(j), exec time(j), ...

new exec time)

14 if !discontinuity then
15 if value < min value left then
16 min value left← value

17 in max is FALSE ? direction left← direction : direction left← DOWN

18 if value < min value right then
19 min value right← value

20 in max is FALSE ? direction right← direction : direction right← UP

21 else
22 if −exec time(j) < min value left then
23 min value left← −exec time(j)

24 direction left← UP

25 if −new exec time < min value right then
26 min value right← −new exec time

27 direction right← DOWN

28 val crit point left(i)← min value left, dir crit point left(i)← direction left,
val crit point right(i)← min value right,dir crit point right(i)← direction right

29 // Computing the maximum value between each two consecutive critical points
30 for i = 1 to M − 1 do
31 if dir crit point left(i) is DOWN then
32 peak this gap← val crit point left(i)

33 if peak this gap > max of absolute min dist then
34 max of absolute min dist← peak this gap

35 SSTopt ← L(i)

36 else
37 if dir crit point right(i+ 1) is UP then
38 peak this gap← val crit point right(i+ 1)

39 if peak this gap > max of absolute min dist then
40 max of absolute min dist← peak this gap

41 SSTopt ← L(i+ 1)

42 else
43 peak this gap← |val crit point left(i)−val crit point right(i+1)|+L(i+1)−L(i)

2
+

min{val crit point left(i), val crit point right(i+ 1)}
44 if peak this gap > max of absolute min dist then
45 max of absolute min dist← peak this gap

46 SSTopt ← val crit point right(i+1)−val crit point left(i)+L(i+1)+L(i)
2
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Function compute flow value in crit point()

This function is called by funtion F and computes the value of min(dl eff minN+1,i, dr eff minN+1,i),

N + 1 being the new flow to schedule and i a given scheduled flow, at a given critical point. Algorithm

5.4 contains a pseudo-code implementation of this function.

Algorithm 5.4: compute flow value in crit point(): Function that finds the value of

min(dl eff minN+1,i, dr eff minN+1,i) at a given point

1 – Variables definition
2 pos← Point where min(dl eff minN+1,i, dr eff minN+1,i) has to be evaluated.
3 next rel time← Next release time of the already scheduled flow i.
4 partial gcd← gcd(SIi, SIN+1).
5 exec time, nex exec time← Variables containing the execution times of the already scheduled flow i and the new

flow.
6 value, direction, discontinuity, in max← Returned variables.

7 – Body of function compute flow value in crit point()

8 //Translating the point into the reference period of its minimum distance signal, i.e.
min(dl eff minN+1,i, dr eff minN+1,i).

9 pos ref ← (pos− next rel time) mod partial gcd

10 if pos ref is 0 then
11 discontinuity ← TRUE, in max← FALSE

12 else
13 discontinuity ← FALSE

14 //Computing the maximum of min(dl eff minN+1,i, dr eff minN+1,i) and its position.

15 max value← |new exec time−exec time|+partial gcd
2

−max{new exec time, exec time}
16 pos max← partial gcd+exec time−new exec time

2

17 //Returning the value of min(dl eff minN+1,i, dr eff minN+1,i) at this critical point
18 if pos ref equals pos max then
19 value← max value

20 in max← TRUE

21 else
22 if pos ref < pos max then
23 value← max value− (pos max− pos ref)

24 direction← UP , in max← FALSE

25 if pos ref > pos max then
26 value← max value+ (pos ref − pos max)

27 direction← DOWN , in max← FALSE
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Appendix 5.B An initial admission control algorithm based on DRA

In this Appendix we discuss how an admission control algorithm based on our DRA algorithm could

be designed, and present an initial performance evaluation of the gains in terms of admission capacity

when DRA is employed.

5.B.1 An admission control algorithm for DRA

In order to design an admission control module, the first necessary step is to define a scheduling policy

use by the Access Point (AP) whenever more than one flow is waiting for transmission. We will assume

in our discussion that this scheduling policy is Earliest Deadline First (EDF), which has been proven

optimal under many different settings (113).

Thus, we consider each flow in our system to be defined by the following parameters:

• Service Start Time, SSTj . This is initial scheduling time to serve flow j. This value may be

determined by an algorithm like DRA.

• Service Interval, SIj . This is the periodic interval at which flow j is granted access to the channel.

• Transmission Opportunity, TXOPj . This is the air time granted to flow j every time that this

flow is scheduled for transmission.

• Deadline, Dj . This is the deadline before which the TXOPj of flow j has to be completely

served, since the moment flow j gets access to the channel. Notice thus that under this definition,

Dj ≥ TXOPj .

The previous flow definition is illustrated in Figure 5.12.

��� ����� �� ��
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�

Figure 5.12: Definition of a flow. Notice that since its release time, a flow can be scheduled within a time Dj

in order to avoid deadline violations.
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Given the previous system definition, the EDF scheduling policy executed in the AP becomes the

following. Among the flows pending for transmission at time t, the AP will select the one that fulfills:

min
j
{SSTj + b

t− SSTj

SIj
cSIj +Dj − t} (5.8)

In addition, given the previous system model, an admission control algorithm can be defined as

an algorithm that is able to answer the following question: Given a set of flows defined by the 4-tuple

S = {< SSTj , SIj , TXOPj , Dj > j = 1...N}, and assuming EDF as defined in Equation 5.8 as

scheduling policy, do all N flows always fulfill their deadlines?. If the answer to the previous question

is affirmative, the new requesting flow will be granted admission.

Admission control algorithms able to answer the previous question have been extensively studied in

Real Time Scheduling Theory (RTST). In particular, in (118) an algorithm is proposed that is able to

perfectly answer the previous admission control test by means of essentially simulating the execution

of the EDF algorithm during a time T = lcm(SI1, ..., SIN ), where lcm stands for least common mul-

tiple. In (118) it is also proved that this algorithm is NP-complete. However, given the usually limited

number of flows in a Wi-Fi network (maximum in the order of hundred per AP) and the processing

power available in current APs or network controllers, we consider such an algorithm to be feasible in

practical Wi-Fi deployments. In addition, an alternative algorithm that allows to trade-off complexity

with admission accuracy1 while also considering our system definition is presented in (119).

Thus, we envision an AP implementing the HCCA building blocks illustrated in Figure 5.13:

1. When a new flow requests access to the network, the AP first runs an algorithm, like DRA, to

decide on the SSTj to be assigned to this flow. The rest of parameters in the 4-tuple that defines

a flow are explicitly defined or can be derived from the TSPEC sent by the requesting flow. Once,

the 4-tuple defining the flow is obtained, the AP adds the requesting flow to the set of the already

scheduled flows, and runs the NP complete algorithm defined in (118) to decide whether the new

flow can be accepted or not.

2. Whenever several flows are requesting access to the channel at the same time, the AP runs EDF

as defined in Equation 5.8 in order to schedule the different flows.

Our goal in this Appendix is to study how an algorithm like DRA, that tries to separate flows as

much as possible, can increase the capacity of the network. For this purpose we consider the system

1Such an algorithm can result in false negatives, where flows are denied entry to the network when there would actually be
enough capacity.
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Figure 5.13: Considered HCCA architecture.

defined in Figure 5.13 and study different algorithms to decide on the SSTj to be assigned to each flow.

These algorithms are:

• Random. Each flow is assigned an SSTj randomly, specifically: SSTj = unif(0, SIj).

• Same-Time. All flows are granted the same SSTj = 0.

• DOA. This algorithm corresponds to the Dissimilar Offset Assignment algorithm defined in (116).

• DRA. This algorithm corresponds to our DRA algorithm as defined in section 5.2.

• DRA-no exec. This algorithm corresponds to our DRA algorithm whithout considering execution

times, i.e. TXOPj = 0.

• DRA-deadline. This algorithm corresponds to our DRA algorithm where instead of maximizing

the minimum effective distance between flows, i.e. deff , we maximize an abstract definition of

distance. Note that the left and right distances used in DRA, can be re-defined respectively as

d′l minN+1,j
= dl minN+1,j

− pj and d′r minN+1,j
= dr minN+1,j

− pN+1, where pj and pN+1

represent the priority of this flow in the optimization problem, i.e. the bigger pj the higher the

priority of this flow. Thus, in the algorithm at hand we consider pj = TXOPj + TXOPN+1 −

DN+1 and pN+1 = TXOPj + TXOPN+1 − Dj , hence giving a higher priority to flows with

smaller deadlines.

• DRA-rellocation. This algorithm corresponds to the DRA algorithm defined in section 5.2, where

flows are pre-sorted before DRA schedules them. In particular DRA schedules flows in decreasing

order of execution time, TXOPj . In this way DRA tries to ensure that big flows (those with a

big TXOPj) are scheduled further away from each other. Notice that this algorithm assumes that

existing flows can be rellocated once a new flow requests access to the system.
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5.B.2 Performance evaluation

In order to evaluate the admission capacity of the previous algorithms under study we perform the

following experiment. We fix the number of flows N , the network utilization that these flows incurr U ,

the maximum allowed service interval SImax = 100ms, and a minimum service interval SImin such

that SIj = kSImin. Then we assign to each flow a random service interval SIj = kSImin, where

k = unif(1, SImax

SImin
) with k ∈ Z. We assign to each flow a random TXOPj = unif(0, SIj) which is

then normalized such that
∑N

j=1
TXOPj

SIj
= U . Finally, we assign to each flow a random deadline Dj

which we allow to be up to 20% higher than TXOPj , i.e. Dj = TXOPj × unif(1, 1.2). Notice that

using tight deadlines is a way to guarantee energy efficiency because stations will immediately go back

to sleep after tranmitting or receiving their data. In our experiments we vary the utilization level U from

0 to 1 while observing the percentage of scheduling sets S that can be accepted in the network without

any deadline violation, using our different algorithms under study. The results of this experiment are

depicted in Figure 5.14 for SImin = 10ms, 20ms and N = 10, 20 flows.

As clearly observed in Figure 5.14, DRA and its correspondent variants can significantly increase the

capacity of the network, being specially noticeable the improvement achieved by the DRA-rellocation

algorithm when SImin = 20ms and N = 20 flows. The intuition of why DRA can improve the

admission capacity is simple, by scheduling flows further away from each other the likelihood that

several flows try to access the channel at the same and a deadline violation occurs is reduced. Further

work is needed to further understand the implications of DRA in terms of admission capacity.
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(a) 10 Flows and SImin = 10 ms
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(b) 20 Flows and SImin = 10 ms
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(c) 10 Flows and SImin = 20 ms
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6

Enhancing the performance of TCP
over Wi-Fi Power Saving Mechanisms

Having addressed in the previous chapters the performance and energy efficiency of real-time appli-

cations, in this chapter we turn our attention towards the performance and energy trade-off of Data

applications in Wi-Fi, where as representative Data applications we consider File Transfers and Web

browsing. Notice that only the distributed QoS and power saving protocols in Wi-Fi, i.e. EDCA and

802.11 PSM/U-APSD, are suited to transport data traffic, hence these are the protocols considered in

this chapter.

It was soon realized that, given the extra latency they introduce, the operation of Wi-Fi power saving

protocols could be detrimental to the performance of data applications. Notice that if a station is in power

save mode, data arriving at the Access Point may have to wait until the next Beacon transmission time to

be delivered, therefore the RTT experienced by a TCP connection may increase and performance may

degrade1. This degradation can be particularly severe in applications dominated by latency like Web

traffic.

In order to address this concern, an extended practice in the industry is to configure a Wi-Fi device

to operate in power save mode only until there is traffic to be sent, and then switch the device to active

mode until a timeout expires without having sent or received any traffic2. An obvious drawback of this

approach though, is that when there is a continuous flow of traffic, the device stays all the time in active

mode, achieving no energy saving. As discussed in Chapter 2, several works in the literature have also

tried to address this concern. The proposed solutions though, either target very specific applications

1Note that in a lossy environment the throughput achieved by TCP New Reno degrades as ∼ 1
RTT

(104).
2Notice that a Wi-Fi station can alternate between active mode and power save mode by using the power management bit in

data frames transmitted to the AP.
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like Web, or relay on information coming from the higher layers. We believe that the previous two

facts hinder the deployment of these solutions in the market. Therefore, in this chapter we focus on

the problem of how to make Data applications energy efficient in Wi-Fi, while adhering to the design

guidelines postulated in Chapter 2 which should ensure deployability.

Specifically, our work in this chapter focuses on studying the detailed interactions between Wi-Fi

power saving protocols and TCP. To the best of our knowledge this is the first attempt in the literature of

such a detailed study. The contents of this chapter have been submitted to (29) and its main contributions

are the following:

• We study by means of analysis and simulations, the effect that Wi-Fi power saving protocols have

on the performance/energy trade off of long lived TCP traffic. Our study unveils that the efficiency

of Wi-Fi power saving protocols critically depends on the bottleneck bandwidth experienced by a

TCP connection.

• Based on the obtained insight, we design and evaluate a novel algorithm, BA-TA, which runs in

a Wi-Fi station, does not require any modification to existing 802.11 standards, and using only

information available at layer two, optimizes the performance/energy trade off experienced by

TCP traffic.

This chapter is organized as follows: Section 6.1 analyses the effects of Wi-Fi power saving proto-

cols on long lived TCP traffic. Based on the insights obtained in this section, Section 6.2 introduces the

design of our BA-TA algorithm, which is then thoroughly evaluated in Section 6.3. Finally, Section 6.4

summarizes and concludes the chapter.

6.1 TCP performance over Wi-Fi PSM

In order to study the performance of TCP over Wi-Fi power saving protocols we consider the scenario

depicted in Figure 6.1. This scenario represents a typical deployment, where a battery limited handheld

device accesses the Internet through a Wi-Fi Access Point, which is in turn provisioned by an access

technology, typically xDSL. Our goal is to study the performance/energy trade-off achieved by Wi-

Fi power saving protocols when used with data applications. In particular, we focus on long lived

TCP connections1, since the effect of power saving protocols on short lived connections, like Web, has

already been thoroughly studied in the literature (39). In our study, we have modeled a long lived TCP

connection using a 50MB File Transfer, which is close to the median size of a video File in the Internet

1We define long lived connections as those that enter congestion avoidance.
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(91), and have used TCP New Reno as transport protocol which was the most widely spread TCP flavor

around 2005 (97)1.

DSL 
Line

Wi-Fi station

Wi-Fi AP

Modem
DSLAM

File Server

Internet

Figure 6.1: Scenario under study.

As it will be shown throughout this section, the performance of such a File Transfer depends on

several key parameters in the scenario depicted in Figure 6.1, e.g. the bandwidth of the access and

Wi-Fi networks, the amount of available buffering, or the RTT experienced by the connection. In order

to analyze the influence of these parameters, we study the scenario depicted in Figure 6.1 by means of

packet level simulations using OPNET (64).

Regarding the choice of access technology, we select three representative scenarios that capture to-

day’s heterogeneous broadband market. In particular, the selected scenarios span from what are nowa-

days considered slow access technologies to what are considered fast access technologies. These sce-

narios are described in Table 6.1.

DL/UL Rate Description
Slow DSL 1Mbps/128Kbps Close to the average con-

nection speed in China (99).

Fast DSL 16Mbps/1Mbps Close to the average con-
nection speed in South Ko-
rea (99).

WiFi
Bottleneck

100Mbps/100Mbps Speeds in this range repre-
sent FTTH deployments in
South Korea or Japan (99).

Table 6.1: Access Technologies under study.

1Notice that although new high-speed TCP versions are becoming popular in the last years, e.g. TCP CUBIC is now the
default congestion control algorithm in the Linux kernel (98), these high speed TCP versions usually behave like TCP New Reno
when they operate in a low bandwidth regime, as in Wi-Fi.
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The choice of the Wi-Fi technology is another important factor to consider when studying the per-

formance of power saving protocols. However, there is also a wide variation in today’s deployed Wi-Fi

technologies, ranging from legacy 802.11b networks to the latest 802.11n networks. In order to capture

this variation, we consider in our study that the Wi-Fi network depicted in Figure 6.1 can operate ac-

cording to two different configurations: i) a Slow Wi-Fi configuration, where a low over-the-air priority

is used and no Transmission Opportunities (TXOP) are allowed1, and ii) a Fast Wi-Fi configuration,

where a high over-the-air priority is used and TXOPs are allowed. The used Wi-Fi configurations are

described in Table 6.2.

Data/Control Rate AIFS/CWmin/CWmax/TXOP
Slow WiFi 54/24 Mbps 3/15/1023/0ms

Fast WiFi 130/24 Mbps 2/7/15/3ms

Table 6.2: Wi-Fi Configurations under study.

For each of the previous scenarios we will evaluate the performance/energy trade-off of a generic

File Transfer, using two different algorithms. The first one represents the common industry practice of

switching to Active Mode once traffic is detected, which should be optimal in terms of performance.

Hereafter we refer to this algorithm as the Active Mode algorithm. The second algorithm consists of

having the station all the time in power save mode, which should be optimal in terms of energy. We

refer to this algorithm as the Wi-Fi PSM algorithm. In particular, we use U-APSD as Wi-Fi power saving

protocol, where the station wakes up at every Beacon to check if there is buffered traffic and in that case

retrieves it using a single signaling trigger. More details on this U-APSD implementation can be found

in (47).

In order to evaluate energy consumption, we make use of our regular power consumption model

that consists of four basic states: Sleep, Listen, Reception and Transmission. Energy is computed by

integrating the power that a Wi-Fi device spends in each of the previous states over a certain target time,

which in our evaluation will be the time to transfer a File. The power consumption values used are

shown in Table 6.3 (24).

Broadcom 4311TM Sleep Listen Rx Tx
Power (mW) 20 390 1500 2000

Table 6.3: Power consumption levels used in our study.

1TXOPs allow a Wi-Fi device to transmit several frames with a single access to the channel, hence significantly reducing
overhead. A description of the EDCA protocol is included in Chapter 2.
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Finally, for each of the scenarios and algorithms under study, we have performed two different

experiments that aim to represent the different conditions that can be experienced by a TCP connection,

specifically:

• Buffer Experiment, where we configure RTTbase = 20ms in Figure 6.11, and vary the buffering

available in the DSLAM or in the AP (depending on the considered scenario), from 20 to 160

packets. Notice that given the potential harm caused by large buffers (101), it is important to

study the performance delivered by the protocols under study with small buffers.

• RTT experiment, where we fix the buffering available in the DSLAM and AP to 50 packets and

100 packets respectively, and vary the value of RTTbase in Figure 6.1 from 10ms to 310ms.

6.1.1 Buffer experiment

We start analyzing the results of our first experiment, where we fix RTTbase = 20ms in Figure 6.1 and

vary the amount of buffering available in the DSLAM and in the AP in our scenarios under study.

6.1.1.1 Slow DSL scenario

The upper graphs in Figures 6.2(a) and 6.2(b) depict respectively the throughput and energy consump-

tion experienced by a Wi-Fi station when retrieving a 50MB File from a server located in the Internet, as

depicted in Figure 6.1. It is clearly seen in these figures how all the algorithms under study deliver a sim-

ilar throughput, which corresponds to the bottleneck bandwidth (1 Mbps), and how being in power save

mode during the File Transfer drastically reduces the energy required by the Wi-Fi station to retrieve the

File (up to a five fold decrease).

In order to understand why Wi-Fi PSM achieves such a significant energy reduction at no perfor-

mance penalty, Figure 6.3(a) depicts the time evolution of the TCP congestion window (blue line), the

queue occupancies at the DSLAM (red line) and the Wi-Fi AP (black line), and the power state of the

Wi-Fi station (awake or sleep) during the File Transfer. We can see in the graph, how the Wi-Fi station

wakes up before the Beacon is sent (dotted vertical lines in the graph), quickly empties the AP buffer

using the high bandwidth available in the Wi-Fi network, and efficiently sleeps until the next Beacon.

Instead, in the Active Mode algorithm, the Wi-Fi station stays most of the time awake but inactive,

waiting for the next TCP packet2.

1Typical RTT in a domestic Internet path (86).
2A 1.5KB packet needs 12ms to traverse a 1Mbps DSL line.
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Figure 6.2: Buffer Experiment. For each of the algorithms and scenarios under study, throughput is depicted
on the left graph and energy on the right one. Notice that the same legend applies to all sub-figures.

The key to understand why the on/off behavior introduced by the power saving protocol does

not reduce performance, is to realize that in this experiment the bottleneck queue (red line in Fig-

ure 6.3(a)) never gets empty. Thus, a necessary condition to avoid degrading throughput in Wi-Fi

PSM, is that the TCP source’s congestion window (hereafter referred to as cwnd) needs to grow big

enough in order to compensate for the increased RTT introduced by the power saving protocol, i.e.

RTTeff = dRTTbase

BI eBI , where RTTeff stands for effective RTT, BI is the Beacon Interval and

RTTbase is depicted in Figure 6.1. Thus, the minimum cwnd, in MTU-sized packets, required to avoid

any throughput degradation equals to:

cwnd >
RTTeff ×RDSLDL

MTU
=
dRTTbase

BI eBI ×RDSLDL

MTU
(6.1)

Given the low speed of the DSL link (RDSLDL
= 1Mbps) and the small RTTbase (20ms) consid-

ered in this scenario, Equation 6.1 results in cwnd > 8.53 packets, which is easily achieved given the

considered buffer sizes.
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Figure 6.3: TCP dynamics. The upper graph depcits the Slow DSL scenario, and the lower one the Fast DSL
scenario.

6.1.1.2 Fast DSL scenario

We now repeat the previous experiment in the Fast DSL scenario. Throughput and energy results are

depicted respectively in the middle graphs of Figures 6.2(a) and 6.2(b), and reveal a very different

behavior than the one observed in the Slow DSL scenario. In this case the File Transfer throughput

significantly degrades with Wi-Fi PSM, specially when the DSLAM buffer is small, and interestingly it

degrades even more when more bandwidth is available in the Wi-Fi network (Fast Wi-Fi configuration).

Regarding energy, Wi-Fi PSM continues to be more efficient than the Active Mode algorithm, although

a smaller gain than in the Slow DSL scenario is obtained.

In order to get a deeper understanding on the underlying dynamics, Figure 6.3(b) illustrates, when

the station uses Wi-Fi PSM, an example of the AP and DSLAM queue dynamics (red and black lines)

and the evolution of the TCP sender’s cwnd (blue line). We can immediately see how the dynamics in

this case are much more involved that in the Slow DSL scenario. In particular, the performance of TCP

over Wi-Fi PSM depends in this case on the following three effects: i) The increased bandwidth delay

product introduced by Wi-Fi PSM, ii) Bursty increases in the DSLAM buffer due to ACK compression,

and iii) Extended awake periods experienced by the Wi-Fi station. Next, we describe these effects in
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detail.

We can clearly see in Figure 6.3(b), how the DSLAM queue (red line) often returns to zero leading

to periods where the DSL line is underutilized. Using the lessons learned in the Slow DSL scenario, we

can see that in order to keep the DSL line always busy in this scenario, the TCP sender’s cwnd should

be at least cwndmin >
dRTTbase

BI eBI×RDSLDL

MTU = 133.3 packets, which is not the case in Figure 6.3(b).

Notice thus, that when Wi-Fi PSM is used it is critical for the TCP sender to be able to achieve a high

cwnd in order to compensate for the increased badwidth delay product introduced by the power saving

protocol. The maximum cwnd achieved by a TCP sender depends on the bandwidth delay product of

the connection and on the buffering available in the bottleneck. However, another important factor limits

the achievable cwnd when Wi-Fi PSM is used. This factor is the ACK compression introduced by the

power saving protocol.

We can see in Figure 6.3(b), how when Wi-Fi PSM is used, the AP holds TCP packets for the station

until the Beacon time, and then transmits these packets to the station at the Wi-Fi rate, which is faster

than the bottleneck rate (the DSL rate). The Wi-Fi station then reflects back to the TCP source TCP

ACKs at the rate of the received data, which result in a compressed burst of new TCP packets arriving

at the DSLAM that causes a bursty queue increase, as clearly observed in Figure 6.3(b) (red line). This

process is graphically described in Figure 6.4, where it can be seen how the ACK compression rate is

typically limited by the upstream DSL bandwidth.

In order to understand how ACK compression affects the maximum cwnd achieved by the TCP

source, it is possible to compute the maximum burst size Nmax (in MTU-sized packets) that results in

no packet loss when arriving at the DSLAM buffer. Considering that, as illustrated in Figure 6.4, a new

window of TCP data hits the bottleneck node at a rate equal to RACKcomp MTU-sized packets/sec, and

that the rate at which the bottleneck queue is drained is in our case RDSLDL
MTU-sized packets/sec,

it is easy to see that while a new window of TCP data hits the bottleneck, this queue grows at a rate

of Rqbott = RACKcomp − RDSLDL . Thus, if the previous queue growth is sustained during a time

Twin, such that TwinRqbott > QDSLAM , there will be a loss in the bottleneck queue limiting the size of

cwnd. Considering that packets within a TCP window arrive at the bottleneck with an interarrival time

of Tarrival =
1

RACKcomp
, with RACKcomp defined in Figure 6.4, we have that Twin = Nmax

RACKcomp
, and

the maximum burst size, Nmax, that results in no drop in the bottleneck’s queue is:

Nmax < QDSLAM
RACKcomp

Rqbott
=

QDSLAM

1− RDSLDL

RACKcomp

(6.2)
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TTXbott = MTU/RDSLDL
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Bursty queue increase Buffered until the Beacon

TCP ACKs pile up in the DSL modem

Figure 6.4: ACK compression in a TCP connection, caused by Wi-Fi power saving protocols.

Where the previous equation only holds if RACKcomp > RDSLDL . Notice that Equation 6.2 results

in Nmax < 89 packets in the Fast DSL scenario, which limits the maximum value of cwnd. In the next

sections we will study in more detail the relation between Nmax and cwnd.

It is interesting to notice, looking at Equation 6.2, that when the amount of ACK compression

increases, e.g. if the DSL upstream capacity increases in Figure 6.4, then Nmax decreases and the TCP

connection throughput should degrade. Later we will evaluate the validity of this claim.

Finally, there is a third effect affecting the TCP connection throughput. Unlike the previous two

effects though, this effect will tend to increase TCP throughput, and is described as follows. If the time

required by the Wi-Fi station after the Beacon to retrieve the buffered TCP packets and generate the

correspondent TCP ACKs, is above RTTbase in Figure 6.1, then the Wi-Fi station will still be awake

when a new window of TCP data from the File Server arrives to the AP, and so this new window of data

will not suffer from an increased RTT. This fact is often observed in Figure 6.3(b), for instance between

103.2 secs and 103.4 secs. Notice though, that since in this scenario the Wi-Fi rate is higher than the

DSL rate, the Wi-Fi station eventually manages to empty the AP queue and return to sleep, resulting

again in an increased RTT and reduced throughput. In addition, notice that the previous effect is more

likely to occur when the bandwidth in the Wi-Fi network reduces, because in this case the AP takes

longer to transmit data to the station. This effect explains why when Wi-Fi PSM is used, the Slow Wi-Fi

configuration outperforms the Fast Wi-Fi one as depicted in Figure 6.2(a).

To conclude the analysis of the Fast DSL scenario, we turn our attention to Figure 6.2(b) that depicts

the energy spent by the Wi-Fi station to retrieve the 50MB File. The reason why the energy reduction

obtained by Wi-Fi PSM is less significant than in the Slow DSL scenario, is that the DSL line is closer

to saturate the Wi-Fi network, hence the station does not spend so much time inactive when being in

active mode. Finally, it is worth noticing that the Fast Wi-Fi configuration reduces energy consumption

because TCP packets are transmitted faster.
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6.1.1.3 Wi-Fi bottleneck scenario

We finalize the analysis of our Buffer experiment looking at the throughput and energy performance

obtained in the Wi-Fi Bottleneck scenario. These results are depicted in the lower graphs of Figures

6.2(a) and 6.2(b). Looking first at throughput, we can see that the effects observed in the Fast DSL

scenario appear now even more magnified: i) Wi-Fi PSM significantly degrades throughput, specially

when the buffer in the AP is small, and ii) the Fast Wi-Fi configuration provides the expected throughput

increase when the station uses Active Mode, but results in a severe throughput degradation when the

station uses Wi-Fi PSM.

Wi-Fi PSM also introduces ACK compression in this scenario, but, since upstream bandwidth is not

a problem in this case, the amount of ACK compression depends on the particular mechanisms em-

ployed in the Wi-Fi network. For instance, when the Slow Wi-Fi configuration is used, the AP and the

station compete in a fair way after each Beacon in order to transmit the buffered TCP packets and the

corresponding TCP ACKs. Therefore the average time between TCP ACK and TCP data transmissions

is the same, and no significant ACK compression is introduced. However, when the Fast Wi-Fi config-

uration is used, the AP first transmits to the station all its buffered TCP packets packed within a TXOP.

This transmission is then followed by transmission where the station packs all the TCP ACKs within

another TXOP. Thus, assuming that AP and station use the same data rate, the ACK compression rate

in this case can be approximated as RACKcomp

RWi−Fi
= Size TCP Packet

Size TCP ACK .

The overlapping between new TCP arrivals and the awake periods of the Wi-Fi PSM station also

occurs in this case, but mostly in the Slow Wi-Fi configuration. The high data rates and bursty transmis-

sions used in the Fast Wi-Fi configuration reduce the likelihood of this positive effect.

We highlight now another degradation1 introduced by Wi-Fi PSM, that is caused by an increase in

the time required by the TCP connection to complete the initial Slow Start+Fast Recovery phase. In

our experiments, a TCP connection typically finalizes the initial Slow Start phase when tree duplicated

ACKs are received at the TCP source; at that moment TCP New Reno triggers a fast retransmission and

the connection enters Fast Recovery until all outstanding data is successfully transmitted. Notice that

during the initial Slow Start, the TCP connection typically saturates the network, forcing the Wi-Fi PSM

station to stay awake. However, when Fast Recovery starts, the TCP source stops transmitting data until

half a window of duplicated ACKs is received (103), which allows the station in power save mode to

drain the AP buffer and return to sleep. After that moment, since Fast Recovery only injects new data or

retransmissions upon receiving duplicate or partial ACKs, transmissions only occur once every 100ms

1This phenomena also occurred in the Slow DSL and Fast DSL scenarios, but had a smaller impact.
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when the station wakes up after the Beacon, hence slowing down the completion of this phase. Figure

6.7(b) depicts a typical initial Slow Start+Fast Recovery phase when the station uses Active Mode and

when the station uses Wi-Fi PSM, in an experiment where RTTbase = 20ms.

Finally, we can see in Figure 6.2(b), that when the Wi-Fi network is the bottleneck the Active Mode

algorithm turns out to be the most energy efficient algorithm, because the Wi-Fi station spends all its

time transmitting and receiving useful data.

6.1.2 RTT experiment

We describe now the results of our second experiment, where we fixed the maximum buffering in the

DSLAM and AP and observed the throughput/energy trade-off when varying RTTbase from 10ms to

310ms. We considered a maximum buffer of 50 packets in the DSLAM in the Slow DSL and Fast DSL

scenarios, and of 100 packets in the AP in the Wi-Fi Bottleneck scenario.

6.1.2.1 Slow DSL scenario

As illustrated in the upper part of Figures 6.5(a) and 6.5(b), the behavior of the algorithms under study

in the Slow DSL scenario continues to be very similar than the one observed in our first experiment.

Following Equation 6.1 we can see that even when RTTbase = 310ms the cwnd required to keep the

DSL line always busy is cwnd > 33.3 packets, which is easily achieved considering the configured

DSLAM buffer of 50 packets.

6.1.2.2 Fast DSL scenario

The middle graph in Figures 6.5(a) and 6.5(b) depict respectively the throughput and energy perfor-

mance of the algorithms under study in the Fast DSL scenario. It is interesting to observe in this case

that when the station is in power save mode, there is a ripple effect in the connection’s throughput as

RTTbase varies. Notice that this ripple is contrary to the common knowledge that TCP throughput de-

grades when the RTT increases, as clearly observed when the station uses Active Mode. Next, we present

an analytical model aimed at capturing the interactions between the TCP congestion control mechanisms

and the Wi-Fi power saving protocols that result in the observed ripple effect. Our simplified model is

based on the following assumptions:

i. We consider the throughput experienced by the TCP connection during the congestion avoidance

phase.
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(b) Energy spent in the File transfer.

Figure 6.5: RTT Experiment. For each of the algorithms and scenarios under study, throughput is depicted
on the left graph and energy on the right one. Notice that the same legend applies to all sub-figures.
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ii. The Wi-Fi station retrieves all the TCP packets buffered at the AP and sends the corresponding

TCP ACKs before a new window of TCP data arrives. Notice that this behavior is more likely as

the Wi-Fi bandwidth increases (i.e. Fast Wi-Fi configuration).

iii. We consider that a packet is never lost in the AP but only in the DSLAM (i.e. QAP is big enough).

iv. The rate at which TCP ACKs arrive at the TCP source is assumed to be constrained by the uplink

DSL modem, i.e. Tarrival =
Size TCP ACK

RDSLUL
(see Figure 6.4).

Under the previous conditions, and leveraging Equation 6.2, we can define Nmax = QDSLAM

1−
RDSLDL

RACKcomp

,

as being the maximum burst size (in MTU-sized packets) that can hit the DSLAM node without resulting

in a packet drop. In addition, we will define ∆ as being the maximum number of TCP data packets

arriving from the DSLAM to the the AP that a Wi-Fi station can retrieve after the Beacon frame before

going to sleep1. ∆ depends on the relation between RTTbase and the Beacon Interval (BI), and on the

Wi-Fi rate. Specifically, we will approximate ∆ as ∆ = M + L, where M = BI−BI mod RTTbase

TTXbott
is

the maximum number of packets transferred from the DSLAM to the AP since the first packet of the

new TCP window hits the DSLAM until the next Beacon time, and L =
TTXWi−Fi

(M)

TTXbott
is the number of

packets that can be transferred from the DSLAM to the AP while the Wi-Fi station is retrieving the first

M packets; TTXbott
= MTU

RDSLDL
is defined in Figure 6.4, and TTXWi−Fi

(M) is the time to transmit M

packets and generate the corresponding TCP ACKs in the Wi-Fi network. These variables are illustrated

in Figure 6.6(a).

The key to understand the ripple effect observed in Figure 6.5(a), is to realize that when the station

is in power save mode, increasing RTTbase may result in the TCP source being able to achieve a higher

cwndmax and therefore a higher throughput. Specifically, the maximum size of cwnd depends on the

relation between Nmax and ∆.

We start considering the case where Nmax ≤ ∆, i.e. a new window of TCP packets is entirely

transferred to the station before this goes back to sleep. Under this condition cwndmax = Nmax, and

the RTT experienced by the connection is RTTeff = dRTTbase

BI eBI . This scenario is illustrated in the

left hand side of Figure 6.6(a), from where it is easy to see that the throughput of the TCP connection in

congestion avoidance can be computed as:

Thr =
1

2

cwndmax + cwndmin

RTTeff
=

3

4

Nmax

dRTTbase

BI eBI
(6.3)

Consider now that Nmax > ∆ and RTTbase ≤ BI . The dynamics in this case are again illustrated

in Figure 6.6(a). Notice in the figure how when cwnd grows above ∆, the station goes back to sleep
1Notice, that if RWi−Fi > RDSLDL

there is always going to be such maximum.

143



6. ENHANCING THE PERFORMANCE OF TCP OVER WI-FI POWER SAVING
MECHANISMS

������ ���� ������ �����
�������

���

� ���

	
���
��	
������	
�����


�

����������	
	�������
������	�
�����������
������ ��� ��� � ��� �


 	
���
��

��


 	
���
��

����

�

�����

(a) RTTbase < BI .

������ ����� ������ ���	�
���
�����������������
��������� 
�	

�����������	
���

������
	��������


	

� �

�

�
��

�

� � �

�

� ��
	
���

� �
	


	

� � �
	 �������
	

�

�

�

�
�

���

(b) RTTbase > BI .

Figure 6.6: TCP model. The two graphs depict the data arrivals from the DSLAM to the AP, the Beacon
transmissions from the AP to the Wi-Fi station, and the delivery of the buffered data after the Beacon.

before retrieving the complete TCP window, and a fraction of this TCP window remains in the AP and

is transmitted in a subsequent Beacon (see third Beacon in Figure 6.6(a)). Therefore, when cwnd > ∆,

the TCP connection effectively transfers cwnd + ∆ packets every 2BI . Instead, when cwnd < ∆ the

connection transfers a cwnd worth of packets every BI . Finally, notice that the maximum value of cwnd

is cwndmax = Nmax, and cwndmin = Nmax

2 . Hence, after the appropriate algebraic manipulation, the

TCP connection throughput in this case can be computed as:

Thr =

{
∆+ 3Nmax

4

2BI cwndmin ≥ ∆
1
2
Nmax+(3−α)∆+(1−α)

2BI cwndmin < ∆
(6.4)

Where α = ∆−cwndmin

cwndmax−cwndmin
.

Finally, let us consider that Nmax > ∆ and RTTbase > BI . The dynamics in this case are il-

lustrated in Figure 6.6(b), where it can be seen that every time that cwnd reaches a value multiple of

∆, i.e. cwnd = k∆ with k ≥ 1, packets start to be transmitted in a subsequent Beacon. Thus, only

when cwnd > dRTTbase

BI e∆ the amount of packets hitting the DSLAM after a Beacon, starts growing

above ∆ until Nmax. Therefore, in this case cwndmax = Nmax + dRTTbase

BI e∆, and the effective RTT

experienced by the TCP connection is RTTeff = (1 + dRTTbase

BI e)BI . Recalling that Nmax > ∆ and
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6.1 TCP performance over Wi-Fi PSM

RTTbase > BI , it can be derived that cwndmin > ∆, therefore:

Thr =
3

4

Nmax + dRTTbase

BI e∆
(1 + dRTTbase

BI e)BI
(6.5)

We can now understand the reasons behind the ripple effect depicted in Figure 6.5(a). We have

shown how small changes in the connection parameters, e.g. RTTbase, can result in a different phenom-

ena dominating the dynamics of RTTeff and cwnd, and in a completely different throughput, as identi-

fied in Equations 6.3, 6.4 and 6.5. In order to validate the presented model, we compare in Figure 6.7(a)

the throughput predicted by the model against the throughput obtained in simulations1. It is also interest-

ing to notice in Figure 6.7(a), how when the upstream DSL bandwidth increases (RDSLUL
= 3Mbps),

the connection throughput degrades due to an increase in ACK compression.
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Figure 6.7: TCP dynamics.

Regarding energy, it is worth to notice looking at the lower part of Figure 6.5(b), that an always

active configuration severely penalizes energy consumption when RTTbase increases, because TCP can

not keep the DSL always busy and hence the station is often inactive in this case.

1In our simulations, we choose the Fast Wi-Fi configuration, because it better fulfills condition ii. of our model, and consider
only the congestion avoidance phase of the connection.
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6.1.2.3 Wi-Fi bottleneck scenario

Finally, the lower graphs in Figures 6.5(a) and 6.5(b) depict respectively for our RTT experiment the

throughput and energy performance in the Wi-Fi Bottleneck scenario. We can see that, like in the Fast

DSL scenario, a ripple effect appears in throughput, but this time only in the case of the Slow Wi-Fi

configuration.

The analysis presented in the previous section can also be used in this case to understand the TCP

dynamics. For instance, recall from the previous section that M = BI−BI mod RTTbase

Tarrival
packets must

be buffered at the AP before a Beacon frame is sent, where Tarrival is the interarrival time of packets

arriving at the bottleneck. In the Fast DSL scenario we had that Tarrival =
Size TCP ACK

RDSLUL
, however

in this scenario packets may hit the bottleneck (the AP) with smaller interarrival times. For instance, as

previously explained, when the Fast Wi-Fi configuration is used the Wi-Fi station transmits TCP ACKs

within a TXOP which results in packets arriving at the AP with small Tarrival times. Thus, if Tarrival

is small enough so that M grows above QAP , a drop will occur at the AP’s power save buffer which

limits the maximum cwnd to cwndmax < QAP . Indeed, this is what happens in the case of the Fast

Wi-Fi configuration, and therefore the achieved throughput (during the congestion avoidance phase) in

this case is free of ripples and is described by:

Thr =
3

4

QAP

dRTTbase

BI eBI
(6.6)

The behavior is different in the Slow Wi-Fi configuration, where TCP packets do not arrive at the

AP so close to each other, i.e Tarrival is bigger, and therefore the ripple effect arises. For instance,

when RTTbase = 110ms a new window of TCP data arrives at the AP approximately 90ms before the

next Beacon time, which results in the AP having to be able to buffer 90ms worth of TCP Data arrivals

to avoid a packet drop. This is not possible given the considered buffer of QAP = 100 packets, and

therefore cwndmax = QAP in this case. However, when RTTbase = 150ms the AP only has to be

able to buffer 50ms worth of arrivals to avoid a packet drop, and so cwndmax can grow above QAP ,

obtaining a higher throughput in this case.

Regarding energy, a similar behavior like in the Fast DSL scenario is observed in this case.

Finally, we would like to notice that in this study we have only reported on the performance of

downlink File Transfers, i.e. from the File Server to the Wi-Fi station. We have however also studied

how uplink File Transfers behave, observing that, given the limited upstream bandwidths, Wi-Fi PSM

usually delivers a fairly good throughput/energy trade off for uplink connections.
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6.2 BA-TA: An adaptive triggering algorithm for TCP over Wi-Fi
PSM

As we have seen in Section 6.1, the performance of TCP over Wi-Fi PSM critically depends on the

characteristics of the network behind the AP. Therefore, our goal in this section is to design an adaptive

algorithm running in a Wi-Fi station, that will tune the operation of the Wi-Fi power saving protocol

according to the botleneck bandwidth experienced by a TCP connection. Hereafter, we refer to this

algorithm as the Bottleneck Aware - Triggering Algorithm (BA-TA).

We have seen in Section 6.1 that the default trigger interval used by Wi-Fi PSM (100ms), can severely

degrade the performance of a TCP connection, specially as the capacity of the bottleneck increases.

Therefore, the intuition behind BA-TA is to adapt this trigger interval in the following way. If the

connection’s bottleneck has a small bandwidth, the Wi-Fi station should use large trigger intervals which

do not decrease performance and are energy efficient. On the other hand, if the connection’s bottleneck

has a large bandwidth, the Wi-Fi station should use short trigger intervals (and potentially switch to

active mode), since this is the most efficient configuration in this case.

We establish the following constraints in the design of BA-TA:

• The algorithm has to run in the Wi-Fi station without any support from the Access Point, and

should not require modifications to existing standards. This will allow a Wi-Fi station to immedi-

ately use BA-TA in currently deployed Wi-Fi networks.

• The algorithm should run entirely at Layer two. This will allow to easily re-use BA-TA in any

device with a Wi-Fi interface.

BA-TA is composed of two independent modules. A first module that estimates the peak rate of

the TCP connection’s bottleneck, and a second module that given the previous estimation selects an

appropriate trigger interval in the power saving protocol. These two modules are described next.

6.2.1 A bottleneck bandwidth estimation algorithm

The goal of this algorithm is to estimate in a Wi-Fi station in power save mode, the peak bandwidth of

a TCP connection’s bottleneck, e.g. 1 Mbps and 16 Mbps in our Slow DSL and Fast DSL scenarios.

The intuition behind our peak bandwidth estimation algorithm is described in Figure 6.8. This figure

depicts the occupancy of the bottleneck line behind the AP, e.g. the DSL line in Figure 6.1, between two

(not necessarily consecutive) trigger frames sent by the station in power save mode. Notice that when
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Figure 6.8: Intuition behind the Peak Bandwidth Estimation Algorithm.

a service period completes1, the Wi-Fi station knows that the buffer in the AP is empty. Therefore,

the station can use the amount of data received between these two trigger frames in order to estimate

the botleneck’s peak bandwidth in the following way. Consider the botleneck line to be always busy

between the two triggers sent by the station. We have in this case that N × TTXbott
= ∆t + tα − tβ ,

where N is the number of frames received by the station between the two triggers, and TTXbott
, tα and

tβ are defined in Figure 6.8. Notice that 0 ≤ tα, tβ ≤ TTXbott
.

Considering now that TTXbott
= MTU

Rbott
, where MTU is the size in bits of a packet transmitted

over the bottleneck link and Rbott is the bottleneck peak transmission rate that we want to estimate, the

following lower and upper bounds on Rbott can be derived:

{
TTXbott

≥ ∆t

N+1 → Rbott ≤ (N+1)MTU
∆t

TTXbott
≤ ∆t

N−1 → Rbott ≥ (N−1)MTU
∆t

(6.7)

Notice that the upper bound on Rbott only holds if the bottleneck line is all the time busy between

the two triggers sent by the station. However, the lower bound on Rbott holds true even if the bottleneck

is not always busy.

Thus, our peak rate estimation algorithm works in the following way. When a service period com-

pletes and more than Tupdate seconds have past from the last algorithm update, BA-TA executes the

procedure described in Algorithm 6.1, which records a lower bound estimation on the bottleneck’s peak

rate as described in Equation 6.7. In addition, in order to get as close as possible to the true Rbott,

Algorithm 6.1 continuously updates the bottleneck rate estimation to the highest observed Rbott lower

bound (line 7 in Algorithm 6.1).

1In U-APSD a service period completes when the AP sets the EOSP bit to 1 in a transmitted frame, indicating to the station
that it has no more buffered frames.
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Algorithm 6.1: Routine executed when receiving EOSP=1, if tnow > t lastpeak + Tupdate.

1 – Variable definitions
2 rcvd datapeak ← Amount of data (bits) received since last update
3 t lastpeak ← Time of last update
4 first pkt size← Size of the first packet received in the last interval

5 – estimate peak rate()
6 lower bound← rcvd datapeak−first pkt size

tnow−t lastpeak

7 peak rate← max{peak rate, lower bound}
8 if !ActiveMode then
9 t lastpeak ← tnow

10 rcvd datapeak ← 0

There is an extra issue to be considered in Algorithm 6.1. If, as it will be explained in the next

section, the Wi-Fi station switches from power save mode to active mode, then the AP will start trans-

mitting the station’s remaining buffered packets at the rate of the Wi-Fi network, which can be above the

bottleneck rate. In order to avoid overestimating the bottleneck rate in this case, our peak rate estimation

algorithm always uses as previous reference a time where the Wi-Fi station was in power save mode, as

can be seen in line 9 in Algorithm 6.1.

6.2.2 A trigger interval adaptation algorithm

We now describe how BA-TA controls the trigger interval used by a Wi-Fi station in power save mode.

Our trigger adaptation algorithm is essentially a proportional controller (102), that controls the station’s

trigger interval in order to stabilize the connection’s throughput around a configurable operation point.

This operation point is an input to the algorithm, specified in terms of the desired ratio between the

connection’s throughput and the bottleneck peak rate, i.e. 0 < ratiomin < 1. Our detailed algorithm is

described in Algorithm 6.2, and is summarized next.

A Wi-Fi station implementing BA-TA maintains two estimates: i) a peak rate estimate provided

by our bottleneck bandwidth estimation algorithm, and ii) an estimate of the instantaneous connection

throughput, instant thr. This estimate is updated using an Exponentially Weighted Moving Average

(EWMA) filter with weighting factor α (line 15 in Algorithm 6.2).

A BA-TA station executes Algorithm 6.2 at regular intervals (every Tupdate), in order to update the

peak rate1 and instant thr estimates. In addition, after countmax consecutive estimation updates,

BA-TA evaluates whether the currently used trigger interval is appropriate. Notice that the configurable

1Notice that the peak rate estimate is only updated here when the station is in active mode, because in this case the station
does not generate triggers and does not receive frames with EOSP=1.
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countmax parameter enables BA-TA to use different intervals to update the throughput estimates, and

the used trigger interval.

In order to update the used trigger interval, BA-TA uses a proportional law. For this purpose, it

computes ratio = instant thr
peak rate as the currently used fraction of bottleneck bandwidth (line 16), and

compares it to the input value ratiomin. Specifically, BA-TA updates the used trigger interval in the

following way (line 27):

interval(n+ 1) = (1 +G(ratio− ratiomin))interval(n) (6.8)

Where G is the gain used in the control law, and ratio− ratiomin can be understood as the current

error incurred by the controller. Notice in Equation 6.8 that when ratio is below ratiomin, the trigger

interval decreases, which reduces the RTT experienced by the TCP connection and should improve

throughput. In addition, when ratio is above ratiomin the trigger interval increases, which is more

energy efficient. In the Appendix at the end of the chapter it is formally shown that this controller

converges with no steady state error when 0 < G < 2
ratiomin

. In addition, the trigger interval is only

allowed to vary between a minimum and maximum trigger intervals, intmin and intmax (line 38), which

are also inputs to the algorithm that can be configured according to the characteristics of each particular

Wi-Fi chipset.

Having described the basic operation of BA-TA, there are several issues that have to be considered

in a practical implementation. The first of these issues, is how to appropriately switch the station be-

tween active mode and power save mode. Notice that as seen in Section 6.1, being in active mode can

potentially result in a big energy waste, therefore BA-TA should configure a station in active mode only

when there is a clear throughput gain in doing so. BA-TA uses the following heuristic for this purpose:

• Enter active mode: If the interval selected in Equation 6.8 is below the minimum allowed in-

terval (intmin), and the average ratio increase experienced when the station is in active mode,

∆̂ratioAM , is significantly1 above the average ratio increase when the station is in power save

mode, ∆̂ratioPS
, (line 32).

• Leave active mode: Under two conditions. First, if ratio is below ratiomin, but being in active

mode is not effective, i.e. ratio does not increase in at least a minimum amount (γ) (line 36).

Second, when ratio is above ratiomin, i.e. we have achieved the desired throughput, and the

station is not saturating the network, i.e. utillast ≤ utilmin (line 29). Recall from Section 6.1

1We force ∆̂ratioAM
> ∆̂ratioPS

+ |∆̂ratioPS
| as a heuristic way to ensure that switching to active mode is indeed

significantly better than operating in power save mode (line 33).
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Algorithm 6.2: BA-TA executed every Tupdate.

1 – Variable definitions
2 ratiomin ← Desired operation point
3 intmin, intmax ←Minimum and maximum trigger intervals
4 countmax ← Update interval
5 Nmax ←Maximum number of attemtps
6 G← Controller gain
7 α←Weights used in the EWMA averages
8 γ ← Comparison margin on ∆ratio

9 rcvd dataint ← Amount of data (bits) received since last update
10 utilmin ←Minimum utilization to remain in Active Mode

11 – update trigger interval()
12 if ActiveMode then
13 utillast ← TX time+RX time+Backoff Time

Tupdate

14 if tnow > t lastpeak + Tupdate then
15 estimate peak rate

16 instant thr ← α× instant thr + (1− α) rcvd dataint
t−t lastint

17 ratio← min{ instant thr
peak rate

, 1}
18 if peak rate, instant thr > 0 and n trigs < n trigmax then
19 count← count+ 1

20 if ratio− ratiolast < −2γ then
21 count← countmax

22 if ActiveMode then
23 ∆̂ratioAM

← α∆̂ratioAM
+ (1− α)∆ratio

24 else
25 ∆̂ratioPS

← α∆̂ratioPS
+ (1− α)∆ratio

26 if count = countmax then
27 count← 0, ∆ratio ← ratio− ratiolast, ratiolast ← ratio

28 interval← (1 +G(ratio− ratiomin))interval

29 if ratio ≥ ratiomin then
30 if ActiveMode = true and utillast ≤ utilmin then
31 Leave active mode

32 else
33 if ActiveMode = false and interval < intmin and rcvd dataint > 0 then
34 if ∆̂ratioAM

> ∆̂ratioPS
+ |∆̂ratioPS

| or nAM = Nmax − 1 then
35 Enter active mode
36 nAM ← (nAM + 1) mod Nmax

37 if ActiveMode = true and ∆ratio < γ then
38 Leave active mode

39 interval← max{min{interval, intmax}, intmin}

40 else if rcvd dataint = 0 or n trigs ≥ n trigmax then
41 ratiolast ← ratio

42 if ActiveMode then
43 Leave active mode
44 else
45 interval← min{interval + stepmin, intmax}
46 else
47 interval← intmax

48 n trigs← 0, rcvd dataint ← 0, t lastint ← tnow

49 TX time,RX time,Backoff T ime← 0
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that staying in active mode is effective while the station saturates the Wi-Fi network. Therefore,

while in active mode a BA-TA station tracks whether its traffic is saturating the Wi-Fi network by

measuring network utilization as the fraction of used time during the last Tupdate period (line 12).

For further details on how to measure network utilization in a Wi-Fi station, the interested reader

is referred to (100).

The ∆̂ratioAM
and ∆̂ratioPS

estimates are also obtained with an EWMA filter of weighting factor

α, and allow BA-TA to measure the effect that being in active mode or in power save mode has on

the experienced throughput (lines 21 to 24). Notice however, that the previous estimates may contain

innacuracies. For instance, if while being in active mode TCP suffers a loss and decreases its congestion

window, BA-TA will observe a decrease in throughput and may wrongly believe that being in active

mode is not efficient. Thus, in order to avoid BA-TA from getting permanently stalled in a sub-optimal

configuration, a switch to active mode is always allowed after Nmax refrained attempts (line 33). In

addition, if a sudden1 decrease in ratio is detected, BA-TA quickly updates the used trigger interval

(line 19).

Finally, another issue to consider in BA-TA is the fact that certain applications, like Web, may sim-

ply not offer enough load to achieve the desired bottleneck link utilization, i.e. maintain ratio above

ratiomin. The previously described logic would in this case drive a Wi-Fi station to use aggressive trig-

ger intervals, or even switch to active mode, which is undesirable from an energy point of view. In order

to prevent the previous from happening, BA-TA limits the maximum number of triggers that a station

can send to the AP without receiving any data in return (n trigmax). If that limit is surpassed, BA-TA

considers that the used trigger interval is too small and immediately increases it by a pre-configured

amount (stepmin) (lines 39 to 44).

6.3 BA-TA Performance Evaluation

In this section we evaluate the performance of BA-TA and study the effect of its configurable parameters.

This section is divided in three sub-sections: i) a first sub-section illustrating the basic dynamics of BA-

TA, ii) a second sub-section studying how to configure the different BA-TA parameters, and iii) a final

sub-section that will extensively evaluate the performance of BA-TA compared to the algorithms studied

in Section 6.1. For the purpose of this evaluation, we consider only the Fast Wi-Fi configuration defined

in Section 6.1. This configuration poses a bigger challenge to BA-TA because, as previously seen, it

1Defined as a decrease in ratio above 2γ.
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delivers the best energy efficiency, but results in the highest throughput degradation when used with

Wi-Fi PSM.

Unless otherwise stated, BA-TA is configured in the following way. The maximum and minimum

trigger intervals are set to intmax = 100ms, which is equivalent to the operation of Wi-Fi PSM, and

intmin = 20ms, which is a trigger interval commonly used by current Wi-Fi chipsets with Voice

traffic (47). The update interval, Tupdate, is set to 100ms, which is a convenient value that allows to

synchronize the operation of BA-TA with other periodic operations done by a station, like receiving the

Beacon frame. The weight α used in the EWMA filters is empirically set to α = 0.9, and utilmin is

set to 0.8 in order to keep a station in Active Mode only if it can saturate the channel. Finally, The

parameter γ is set to γ = 0.1, which results in BA-TA requiring a 10% increase in ratio when being in

active mode (line 36 in Algorithm 6.2), and forcing a sudden interval update if ratio decreases by more

than a 20% (line 19 in Algorithm 6.2).

The effect of the rest of BA-TA parameters, i.e. ratiomin, the controller gain G, the update interval

countmax, the parameter Nmax, and the parameters n trigmax and stepmin, will be studied in this

section.

6.3.1 Basic dynamics of BA-TA

Figures 6.9 and 6.10 depict the dynamics of BA-TA when a Wi-Fi station using BA-TA retrieves a 50MB

File from the Internet. We start our analysis by looking at Figure 6.9 that illustrates the dynamics of

BA-TA in the Fast DSL scenario with ratiomin = 0.9 (upper graph) and ratiomin = 0.7 (lower graph).

The value of the rest of configuration parameters is included on the top of each figure. Notice that a

double y-axis is used in the figure, where the left y-axis plots the trigger interval used by BA-TA while

retrieving the File (black line), and the right y-axis plots the estimated bottleneck rate (red line) and the

instantaneous throughput (blue line) estimated by BA-TA.

We can see in Figure 6.9 how BA-TA operates with an interval of 100ms until the File Transfer

begins. From that point on, BA-TA starts adjusting the trigger interval (black line) in order to drive the

obtained throughput (blue line) around the desired utilization level, i.e. ratiomin × peak rate (purple

dashed line). After a transient period, BA-TA converges around the configured throughput, requiring,

as expected, a smaller trigger interval for ratiomin = 0.9 (upper graph) than for ratiomin = 0.7 (lower

graph). After the File Transfer completes, BA-TA switches off and the station returns to wake up only

at every Beacon frame.

The upper part of Figure 6.10 illustrates now how BA-TA behaves in the Wi-Fi Bottleneck scenario.

We can see that after an initial transient period, TCP manages to saturate the Wi-Fi network and therefore
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BA-TA configures the station to operate all the time in active mode, which as seen in Section 6.1 is the

most efficient operation mode in this case.
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(a) Fast DSL, ratiomin = 0.9 (upper graph), ratiomin = 0.7 (lower graph).

Figure 6.9: Basic BA-TA Dynamics. The figures represent the variation over time of BA-TA used interval
(black line), the instant thr estimation (blue line), and the peak rate estimation (red line).

For the sake of space we do not report the dynamics of BA-TA in the Slow DSL scenario, where

BA-TA delivered the bottleneck throughput using the maximum trigger interval, i.e. intmax = 100ms.

Instead, the lower part of Figure 6.10 depicts the dynamics of BA-TA with Web traffic. Web traffic is

modeled using HTTP 1.1 where the Wi-Fi station establishes a persistent TCP connection with the Web

server in Figure 6.1, and retrieves all the objects in a Web page in a sequential way. A Web page is

modeled according to the statistics provided in (91).

The figure depicts the interval used by BA-TA while retrieving three Web pages, where the value of

RTTbase between the AP and the Web server in Figure 6.1 is set to 150ms, i.e. there is a latency of at

least 150ms between two consecutive Web page objects retrieved from the Web server. Interestingly,

the interval used by BA-TA in this case converges to a value around 35ms. The reason is the following.

We configured in this scenario n trigmax = 4 and stepmin = 10ms, recall now that if Tupdate

n trigmax
≤

interval ≤ Tupdate

n trigmax−1 , and the application does not offer enough load, e.g. Web, BA-TA may receive

n trigmax empty triggers within a Tupdate interval and will increase the used trigger interval by stepmin

(line 44 in Algorithm 6.2). Therefore, the used interval must converge to a value around Tupdate

n trigmax
and

Tupdate

n trigmax−1 + stepmin. The previous fact can be used as a configuration guideline for the parameters
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Figure 6.10: Basic BA-TA Dynamics. The figures represent the variation over time of BA-TA used interval
(black line), the instant thr estimation (blue line), and the peak rate estimation (red line).

n trigmax and stepmin, which we hereafter configure as n trigmax = 4 and stepmin = 10ms.

6.3.2 Effect of BA-TA parameters

We divide the study of the effect of the BA-TA parameters in two different parts. First, we benchmark

the effect of the BA-TA parameters when a station retrieves a File from the Internet. Second, we study

the effect of these parameters in a scenario where multiple flows share the bottleneck link.

6.3.2.1 Effects on a single flow

Figure 6.11 depicts the results of a set of experiments, where the evaluation methodology described

in Section 6.1 is applied, while varying different BA-TA parameters. In particular, the following three

experiments are shown:

• Exp. 1: Configure G = 0.1, 0.5, 0.9, which according to the analysis in the Appendix at the

end of this chapter should guarantee monotonic convergence, while fixing countmax = 10 and

Nmax = 5 (Figure 6.11(a)).

• Exp. 2: Configure countmax = 5, 10, 20 while fixing G = 0.5, and Nmax = 5 (Figure 6.11(b)).

• Exp. 3: Configure Nmax = 2, 5, 8 while fixing G = 0.5, and countmax = 10 (Figure 6.11(c)).
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For the sake of space Figure 6.11 only depicts the results of our Buffer Experiment for the Fast DSL

(upper graph) and Wi-Fi bottleneck (lower graph) scenarios. In addition, the throughput (solid lines)

and energy (dashed lines) performance depicted in the graph is normalized to the maximum throughput

and minimum energy achieved by the algorithms considered in Section 6.1 for the same experiment,

i.e. ˆThr = ThrBA−TA

max{ThrActive,ThrPSM} , ˆEnrg = min{EnrgActive,EnrgPSM}
EnrgBATA

. Thus, ideally BA-TA would

provide a performance for both indexes with a value as close as possible to 1, or bigger.

The following configuration guidelines are identified from Figure 6.11. First, a too small value of

the controller gain, G < 0.5, can degrade throughput performance because the transient period takes too

long in this case. Second, big values of Nmax or countmax slightly degrade the throughput achieved

by BA-TA in the Wi-Fi Bottleneck scenario. The reason is that BA-TA often switches to active mode in

this case, and if it gets stalled in a suboptimal configuration, due to a misestimation of ∆̂ratioAM and/or

∆̂ratioPS , a time equal to Nmax×countmax×Tupdate seconds is required to recover. Therefore, smaller

values of Nmax and countmax allow BA-TA to recover earlier in these cases.

6.3.2.2 Effects on sharing scenarios

We evaluate now the performance of BA-TA in scenarios where a Wi-Fi station running BA-TA shares

the bottleneck link with another station, which we configure to be in active mode since this should be

the most common situation in practice. The goal of this section is to show that a station running BA-TA

is able to share a bottleck link with an active mode station, without any station starving.

Figure 6.12(a) depicts an example where a station using BA-TA and a station in active mode share,

between 230 and 300 seconds, the DSL link in the Fast DSL scenario. Notice that in this case, BA-TA’s

proportional law drives the power saving station towards using small trigger intervals or switching to

active mode, because the power saving station’s throughput can not reach the configured fraction of the

bottleneck peak bandwidth (because the link is shared). However, being in active mode is not efficient in

this case, i.e. ∆̂ratioAM
is not significantly bigger than ∆̂ratioPS

, and BA-TA switches the power saving

station between active mode and power save mode. Notice that it is possible to control in these sharing

scenarios how often a power saving station switches to active mode by adjusting the parameter Nmax,

because BA-TA always enters active mode after Nmax refrained attempts. Finally, when the flow from

the station in active mode completes, after 300 seconds, BA-TA quickly returns to its normal operation.

Figure 6.12(b) depicts, between 300 seconds and 350 seconds, an effect that occurs when a station in

power save mode receives a flow through the DSL link, while at the same time another Wi-Fi station in

active mode retrieves a File from an Ethernet network behind the AP. Interestingly, if the power saving

station uses Wi-Fi PSM (purple line), its throughput reduces to almost zero while the station in active
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Figure 6.11: Effect of BA-TA parameters. The upper part of each figure depicts the Fast DSL scenario,
and the lower part of each figure depicts the Wi-Fi Bottleneck scenario. In addition, notice that the depicted
throughput and energy metrics are normalized.
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(b) A Wi-Fi PSM flow through a 16Mbps DSL link and an Active Mode flow
through 100Mbps Ethernet.

Figure 6.12: BA-TA dynamics with multiple flows.

mode is retrieving its File. This unfairness occurs because the flow from the station in active mode

saturates the Wi-Fi network. Thus, when the station in power save mode wakes up and sends a trigger

to the AP to retrieve its buffered frames, the AP dequeues a frame from the power saving buffer but

often can not transmit it because the AP’s transmission queues are full with packets from the station

in active mode. This unfairness could be avoided by deploying enhanced scheduling algorithms in the

AP, however these algorithms are not generally implemented in existing APs. Instead, notice in Figure

6.12(b) that BA-TA avoids the previous unfairness regardless of the scheduling strategy used in the AP,

by maintaining the power saving station most of the time in active mode while the other flow is active.

6.3.3 BA-TA extensive evaluation

In this section we report the performance of BA-TA using the same evaluation setup described in Section

6.1. Based on the insight obtained in the previous section we configure BA-TA with the following

parameters, G = 0.9, countmax = 10, Nmax = 3, n trigmax = 4 and stepmin = 10ms.

Figure 6.13 reports the performance delivered by BA-TA in the Buffer and RTT experiments defined

in Section 6.1 for the Slow DSL, Fast DSL and Wi-Fi Bottleneck scenarios, where we have used the
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Figure 6.13: BA-TA Extensive Evaluation. The upper part of each graph depicts the results for the Buffer
Experiment, and the lower part of each graph depicts the results for the RTT Experiment. In addition, notice
that the depicted throughput and energy metrics are normalized.
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previously defined normalized throughput and energy metrics, i.e. ˆThr and ˆEnrg. In addition, to put

BA-TA’s performance in perspective, the graphs also depict the normalized throughput obtained by the

Wi-Fi PSM algorithm, and the normalized energy obtained by the Active Mode algorithm. As observed

in Figure 6.13, BA-TA delivers a very good performance, i.e. both normalized metrics are close or

above 1, for all considered scenarios and parameter range. Only when RTTbase increases significantly

or very small buffers are considered in the Wi-Fi Bottleneck scenario, BA-TA struggles to match the

Active Mode throughput, but still clearly outperforms Wi-Fi PSM in terms of throughput and Active

Mode in terms of energy. Notice that with a big RTTbase, the parameters n trigmax and stepmin can

be adjusted to trade off throughput and energy, as explained in the case of Web.

0 50 100 150 200 250 300
0

10

20

30

40

RTT
base

 (ms)

A
ve

ra
ge

 W
eb

 P
ag

e 
   

D
ow

nl
oa

d 
T

im
e 

(s
ec

s)

Fast DSL, Fast Wi−Fi

Active Mode
Wi−Fi PSM
BA−TA

(a) Average Web Page download time.

0 50 100 150 200 250 300
0

5

10

15

RTT
base

 (ms)

A
ve

ra
ge

 E
ne

rg
y 

 
pe

r 
W

eb
 P

ag
e 

(J
)

Fast DSL, Fast Wi−Fi

Active Mode
Wi−Fi PSM
BA−TA

(b) Average Energy per Web Page.

Figure 6.14: BA-TA performance with Web Traffic.

Finally, although we have focused in this paper in the performance of long lived TCP connections,

we believe it is important to illustrate how BA-TA behaves with short TCP flows, like Web traffic. For

this purpose, Figures 6.14(a) and 6.14(b) illustrate respectively the average Web page download time

and the average energy consumption per Web page, when a Wi-Fi station uses the different algorithms

under study. Since Web traffic is mostly affected by latency, we only report the results obtained in the

RTT experiment for our Fast DSL scenario. We can see in Figure 6.14(a) and 6.14(b) how, thanks to
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the BA-TA dynamics for Web traffic previously explained, that drive the trigger interval to converge to

a value around Tupdate

n trigmax
and Tupdate

n trigmax−1 + stepmin, BA-TA delivers Web page download times similar

to the ones of the Active Mode algorithm, at an energy cost similar to the one of Wi-Fi PSM.

6.4 Conclusions

In this chapter we have studied, by means of analysis and simulation, the effect that current Wi-Fi power

saving protocols have on the throughput/energy trade off experienced by long lived TCP traffic. Our

study unveils that the efficiency of Wi-Fi power saving protocols critically depends on the bottleneck

bandwidth experienced by a TCP connection.

Based on the obtained insights, we have also designed a novel algorithm, BA-TA, which runs in a

Wi-Fi station, does not require any modification to existing Wi-Fi standards, and using only information

available at layer two, optimizes the throughput/energy trade off of long and short TCP connections.

Finally, a thorough performance evaluation has been presentend that illustrates how BA-TA manages

to significantly improve the performance energy trade-off of data traffic over Wi-Fi with respect to

alternative approaches in the state of the art.

161



6. ENHANCING THE PERFORMANCE OF TCP OVER WI-FI POWER SAVING
MECHANISMS

Appendix 6.A BA-TA convergence analysis

In order to simplify the analysis while capturing the essence of the controller used in BA-TA we abstract

the behavior of TCP in the following way. We notice that the RTT experienced by a TCP connection

depends on the trigger interval in BA-TA. Therefore, we assume that between interval updates in BA-TA,

a long lived TCP connection delivers a throughput that is inversely proportional to the trigger interval

used by BA-TA, i.e. thr(n) = A
int(n) , where A is assumed to be a constant value in this simplified

model (TCP is assumed to converge within a time equal to Tupdate × countmax), and n represents the

n-th update interval of BA-TA. Under this premise, the ratio value computed by BA-TA in the n-th

interval update can be expressed as:

ratio(n) =
thr(n)

peak rate× ratiomin
=

B

int(n)

Where B is again a constant. Now recall from Equation 6.8 that the error incurred by BA-TA in the

n-th interval update can be computed in the following way:

error(n) = ratio(n)− ratiomin =
B

int(n)
− ratiomin

We can now see how the proportional controller used in BA-TA evolves in time, noting that:

int(n+ 1) = int(n)(1 +Gerror(n)) = int(n)(1−Gratiomin) +GB

Where G is the gain used in the control law. Therefore, it can be proved by induction that:

int(n+ k) = int(n)(1−Gratiomin)
k +GB

k−1∑
j=0

(1−Gratiomin)
j =

= (int(n)− B

ratiomin
)(1−Gratiomin)

k +
B

ratiomin

Therefore, when k →∞ the selected interval converges as (1−Gratiomin)
k, where 0 < ratiomin <

1. It is then easy to see that int(n+ k) has the following convergence properties as k →∞:
G ≤ 0→ Unstable
0 < G < 1

ratiomin
→Monotonic convergence

1
ratiomin

< G < 2
ratiomin

→ Oscillatory convergence

G ≥ 2
ratiomin

→ Unstable

Thus, when 0 < G < 2
ratiomin

the controller is stable and the selected interval converges to:

lim
k→∞

int(n+ k) =
B

ratiomin
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Where, as seen in Figure 6.9, the selected interval logically converges to a value that is inversely

proportional to ratiomin. In addition, when the algorithm converges the steady state error is:

lim
k→∞

error(n+ k) =
B
B

ratiomin

− ratiomin = 0
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7

Designing Energy Efficient Access
Points with Wi-Fi Direct

In the previous chapters of this thesis we have addressed the challenge of having a Wi-Fi station operate

in an energy efficient way while considering a variety of applicantions and protocols. The reason for

focusing on a Wi-Fi station stems from the fact that mobile computing devices have traditionally played

this role in a Wi-Fi network. However, as explained in Chapter 2, the Wi-Fi Direct technology enables

novel device to device use cases by allowing Wi-Fi devices to negotiate the roles of AP and client

in order to set up an infrastructure-like network, without the presence of a traditional AP. Therefore

achieving an energy efficient operation in Wi-Fi APs will become a critical issue in the near future.

Therefore, our work in this chapter focuses on the AP power saving protocols defined by Wi-Fi

Direct. Specifically, we target the case where the Wi-Fi Direct device acting as AP is a battery limited

device (e.g. a mobile phone) and offers its connected clients access to an external network (e.g. a

cellular network). Figure 7.1 depicts an example of our target scenario. In this context, we design and

evaluate algorithms that address the trade-off between the power consumed by the Wi-Fi Direct AP

and the performance experienced by its connected clients. The work presented in this chapter has been

published in (30).

The rest of the chapter is organized as follows. Section 7.1 provides an overview of the AP power

management protocols defined by Wi-Fi Direct. Sections 7.2 and 7.3 design and evaluate, respectively,

our proposed Wi-Fi Direct Adaptive Single Presence Period (ASPP) and Adaptive Multiple Presence

Periods (AMPP) algorithms. Finally, Section 7.4 concludes this chapter.
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3G

P2P Group
Wi-Fi

3G Core+Internet 
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Figure 7.1: Our target scenario. A mobile phone sharing access to a 3G network with a set of connected
devices using Wi-Fi Direct.

7.1 AP power management in Wi-Fi Direct

Wi-Fi Direct devices, named Peer to Peer (P2P) devices (11), must be able to act both as a Wi-Fi AP or

as a Wi-Fi Client. In particular Wi-Fi Direct defines the concept of a P2P Group, where a P2P Group

Owner (P2P GO) acts as an AP for a set of connected P2P Clients. There are two possible ways to

decide which P2P device will act as P2P Group Owner:

1. A P2P device autonomously initiates a P2P Group.

2. Two P2P devices run a negotiation protocol after discovering each other.

Once the P2P Group is established new P2P devices can discover and join the group using active or

passive scanning mechanisms like the ones used in traditional Wi-Fi networks. Acting as P2P Group

Owner provides certain advantages. For instance, a P2P Group Owner is allowed to cross-connect a

P2P Group with an external network, e.g. a cellular network if the P2P Group Owner has a 3G inter-

face. However, becoming a P2P Group Owner requires performing certain functions (e.g. beaconing,

forwarding) that will result in a higher power consumption than the one of a P2P Client, which can

benefit from the power saving protocols already defined in IEEE 802.11. In order to address the power

consumption imbalance between a P2P Group Owner and a P2P Client, and to allow battery powered

devices to efficiently operate as P2P Group Owners, the Wi-Fi Direct specification defines two new

protocols that can be used by a P2P Group Owner: i) the Opportunistic Power Save protocol, and ii) the

Notice of Absence (NoA) protocol.

7.1.1 Opportunistic Power Save protocol

The Opportunistic Power Save protocol (OPS) allows a P2P Group Owner to opportunistically save

power when all its associated clients are sleeping. This protocol has a low implementation complexity

but, given the fact that the P2P Group Owner can only save power when all its clients are sleeping,
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the power savings that can be achieved by the P2P Group Owner are limited. OPS is based on the

design of the traditional power save mode used by clients in an infrastructure network. A P2P Group

Owner can save power by defining a limited presence period after every Beacon transmission, known

as CTWindow, where P2P Clients are allowed to transmit. If at the end of the CTWindow all associated

P2P Clients are sleeping, the P2P Group Owner is allowed to sleep until the next Beacon time. However,

if any P2P Client stays in active mode at the end of the CTWindow the P2P Group Owner is forced to

remain awake until the next Beacon time. The operation of the Opportunistic Power Save protocol is

depicted in Figure 7.2(a).

7.1.2 Notice of Absence protocol

Unlike Opportunistic Power Save, the Notice of Absence (NoA) protocol can be used by a P2P Group

Owner to save power regardless of the power state of its associated clients. The NoA protocol requires

a higher implementation complexity than Opportunistic Power Save but delivers to a P2P Group Owner

a higher control on its power consumption. The idea behind the NoA protocol is to let a P2P Group

Owner advertise a set of absence periods where its associated P2P clients are not allowed to transmit.

Thus, a P2P Group Owner may sleep during these absence periods in order to save power.

The NoA protocol provides a P2P Group Owner the means to signal a flexible absence schedule. In

particular, a NoA absence schedule is defined by a 4-tuple: start time, duration, interval and count.

• Start time defines the start time of the next absence period.

• Duration indicates the duration of an absence period in the schedule.

• Interval indicates the time between consecutive absence periods.

• Count indicates the number of absence period occurrences until the advertised schedule expires.

If count is set to 255 the advertised schedule repeats until is explicitely cancelled.

In order to keep complexity low, the Wi-Fi Direct specification allows a P2P Group Owner to adver-

tise at any point in time a single NoA schedule in Beacon frames and Probe Responses. A P2P Group

Owner can update the current NoA schedule simply by modifying the correspondent signaling element

in Beacon frames and Probe Responses, or can cancel it by omitting the correspondent signaling ele-

ment. A P2P Client always adheres to the most recently observed NoA schedule advertised by the P2P

Group Owner. Finally, the NoA protocol includes a mechanism, the P2P Presence Request/Response

handshake, that allows a P2P Client to request a P2P Group Owner to be present at certain intervals.

Although not mandatory, such a request mechanism is useful when a P2P Client runs applications that
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require QoS guarantees, like VoIP. Figure 7.2(b) depicts an exemplary NoA schedule and illustrates the

function of each parameter.

P2P GO

P2P Client timeCTWindow(n-1)Beacon CTWindow(n) CTWindow(n+1)Client switches to active mode here. P2P GO needs to stay awake.P2P GO AwakeP2P GO Sleep
Transmissions from clients in power save mode can only occur here.

(a) Example of Opportunistic Power Save operation.

P2P GO

P2P Client AbsenceAbs Abs Abs AbsAbs AbsNoA interval NoA interval timeNoA duration Count=2Start Time Count=4Beacon: NoA schedule-1 NoA schedule-2 NoA schedule-3Presence duration, LpP2P GO AwakeP2P GO Sleep
(b) Example of Notice of Absence operation.

Figure 7.2: Example operation of the Wi-Fi Direct power saving protocols for a P2P Group Owner.

In order to allow for product differentiation, the Wi-Fi Direct specification does not define how a

P2P Group Owner has to build a Notice of Absence schedule, or how CTWindow has to be adjusted in

case of Opportunistic Power Save. Therefore, the focus of this paper is to define algorithms that a P2P

Group Owner can use to reduce energy consumption while minimizing any effect on the performance

of its associated P2P Clients. In particular we designed and evaluated two novel algorithms:

• Adaptive Single Presence Period (ASPP) which can be used with both the Opportunistic Power

Save and the Notice of Absence protocols.

• Adaptive Multiple Presence Periods (AMPP) which can be used only with the Notice of Absence

protocol but improves the performance of ASPP.

7.2 ASPP: Adaptive Single Presence Period

In this section we present the design of the Adaptive Single Presence Period (ASPP) algorithm. This

algorithm is applicable to both power saving protocols described in the previous section, i.e. Oppor-

tunistic Power Save and Notice of Absence. Its basic idea is to adaptively adjust the size of the Presence
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Period that a P2P Group Owner advertises at every Beacon frame, as illustrated in Figure 7.2(a), based

on the consideration of the trade-off between service quality of experience and device power saving.

7.2.1 ASPP algorithm design

We start the design of our ASPP algorithm by establishing the architectural constraint that ASPP should

operate using only information available at layer two, i.e. running in the Wi-Fi driver of the P2P Group

Owner, without requiring any interaction with higher layers or other network interfaces. Note that this

design decision generalizes the applicability of the developed algorithm since it can be then applied even

if new network interfaces are incorporated at the P2P Group Owner or even if the P2P Group Owner is

not directly connected to the external network. An example of the previous case would be for instance

a laptop acting as P2P Group Owner where a 3G card is used to provide access to the Internet.

The main challenge to be solved by ASPP is hence how to dimension the advertised presence periods,

LP , every Beacon interval, in order to efficiently balance the energy consumed by the P2P Group Owner

and the performance experienced by the associated P2P Clients.

We study how to address the previous objective in the context of our scenario of interest depicted

in Figure 7.1, which consists of a mobile phone acting as P2P Group Owner and sharing access to a

3G network among its associated P2P Clients. It is fair to assume in this scenario that the bandwidth

available in a 3G link will normally be lower than the bandwidth available in the P2P Group. Note

that current Wi-Fi networks provide peak rates above 54Mbps (up to 300Mbps with 802.11n), while

the majority of deployed 3G networks with HSDPA have peak rates of up to 7.2Mbps in the downlink

(127). Thus, if the previous assumption holds, the maximum data rates achieved in the connections

established by the P2P Clients connecting through the mobile phone in Figure 7.1 will be limited by

the bandwidth available in the 3G network. Therefore, an ideal dynamic algorithm would advertise the

smallest presence periods that can deliver in the P2P Group the bandwidth available in the 3G link. In

this way a P2P Group Owner would maximize its sleep periods without the P2P Clients noticing any

performance degradation.

However, in order to implement this ASPP dynamic algorithm two challenges need to be addressed:

1. The bandwidth available in the 3G link can be highly variable and, given our Layer 2 information

only constraint, is not known by the P2P Group Owner.

2. Even if the bandwidth in the 3G link was perfectly known to the P2P Group Owner, applications

may not offer enough load to saturate the 3G link. Therefore, a P2P Group Owner should avoid
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over-dimensioning its advertised presence periods and instead, size them in order to satisfy the

minimum between the application’s required data rate, and the bandwidth available in the 3G link.

In order to adress the aforementioned challenges, ASPP will adapt the length of the presence periods

based on the amount of traffic flowing between the P2P Group and the 3G network. The assumption here

is that TCP connections will saturate in the 3G link, and thus reacting to the amount of traffic flowing

between the P2P Group and the 3G network, ASPP will indirectly follow the variations in the available

3G bandwidth. The implications of this assumption will be carefully analyzed in the ASPP algorithm

evaluation presented in Section 7.2.2.

Thus, we want to design an algorithm that dimensions presence periods in the following way:

• First, if the bandwidth available in the 3G link increases and the applications offer enough load,

the P2P Group Owner will measure an increase of traffic in the P2P Group and will increase LP

accordingly.

• Second, if either the bandwidth available in the 3G link or the load offered by the applications

decreases, the P2P Group Owner will measure a decrease of traffic in the P2P Group and will in

turn decrease LP .

The previous behavior can be implemented using the following proportional controller (a similar con-

troller was used in (54) in the context of solar powered APs, or by our BA-TA algorithm introduced in

Chapter 6):

LP (n+ 1) = LP (n) +K(Ulast − Utarget)LP (n) (7.1)

Where K is a constant used to trade-off convergence speed and stability, Ulast is the utilization

measured in the P2P Group during the last presence period LP (n), i.e. Ulast ∼ used time
LP

, and 0 ≤

Utarget ≤ 1 is the algorithm’s target utilization.

It can be observed that the previous controller adjusts LP according to the measured utilization,

Ulast, in order to maintain future utilizations around Utarget
1. For instance, a small value of Utarget

in Equation 7.1 will lead to high presence intervals even when the network utilization is light, which

can result in a good traffic performance but in an increased energy consumption in the P2P Group

Owner. In the next section we will study how to appropriately set the Utarget and K parameters. A

P2P Group Owner will execute Equation 7.1 prior to Beacon transmissions in order to decide on the

presence duration to be advertised.
1A formal proof of the convergence for this controller can be obtained re-using the convergence analysis of BA-TA included

in the Appendix of Chapter 6.

170



7.2 ASPP: Adaptive Single Presence Period

A critical aspect in the previous controller is the way a P2P Group Owner measures utilization in

the P2P Group. This is indeed a non trivial issue in contention based networks like Wi-Fi. For instance,

if low priority contention settings are used, a P2P Group Owner would sense less transmissions than if

higher priority contention settings are used, although in both cases a P2P Client might have a queue full

of packets. Therefore, we propose to compute Ulast in Equation 7.1 in the following way:

Ulast =
tx time+ contention time

LP (n)
(7.2)

Where a P2P Group Owner accumulates the duration of transmitted and received frames during a

presence period in the variable tx time. In order to capture the effect of contention, an estimate of the

average access delay, which is defined as the time since a packet is first in the transmission queue until

it is successfully transmitted, is kept in the variable Acc Del[AC] for each Access Category (AC). The

Acc Del[AC] estimates are updated by means of an Exponentially Weighted Moving Average (EWMA)

updated every time the P2P Group Owner transmits a frame through an AC:

Acc Del[AC](n) = α ·Acc Del[AC](n− 1) + (1− α)Last Acc Del[AC] (7.3)

where we empirically set α = 0.9. Thus, for each transmitted or successfully received frame1, the P2P

Group Owner accumulates in the variable contention time the correspondent Access Delay[AC].

Finally, in addition to the previous steps, presence periods are limited between LPmax
, the size of

the Beacon interval, and LPmin , a minimum configurable by the device manufacturer. Thus, when there

is no traffic, small presence periods are advertised achieving a significant energy reduction. As soon as

some traffic appears in the network the size of the presence periods is adjusted in order to accomodate

it until LPmax is reached.

7.2.2 ASPP: Algorithm evaluation

In this section we evaluate the performance of our proposed ASPP algorithm by means of packet level

simulations. We divide this evaluation in two stages, a first stage where we illustrate the algorithm

dynamics, and a second stage where we extensively evaluate the performance of the algorithm with

popular data applications like file transfers and Web traffic.

1Notice that a P2P Group Owner can discover the Access Category of a received frame looking at the User Priority field
present in the Wi-Fi header.
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7.2.2.1 Simulation framework

Our performance evaluation is carried out by means of packet level simulations using OPNET (64). We

implemented in OPNET the Opportunistic Power Save and the Notice of Absence protocols defined in

(11) and all the relevant Wi-Fi protocols required in Wi-Fi Direct for QoS and power saving, i.e. WMM

and WMM-PS (35). Table 7.1 contains all the Wi-Fi related simulation parameters employed in our

evaluation.

Data/Control/Mgmt Rate AIFS/CWmin/CWmax/TXOP
WiFi AC BK 54/24/1 Mbps 7/31/1023/0ms
WiFi AC VI 54/24/1 Mbps 2/7/15/3ms

Table 7.1: Wi-Fi Configurations under study.

Our simulations reproduce the scenario depicted in Figure 7.1, where in order to model the 3G

link we ported to OPNET the 3G simulation framework defined by the Eurane project (122), which

simulates a HSDPA link. For the purpose of our evaluation we use three baseline 3G channel models,

which capture a wide spectrum of possible 3G channels:

• Pedestrian-A channel model which represents a scenario of reduced mobility and good radio

conditions

• Typical Urban channel model which represents a scenario of moderate mobility and average radio

conditions

• Vehicular-A channel model which represents a scenario with high mobility and poor radio condi-

tions.

Figure 7.3 depicts an example of how the available PHY data rate varies in time with each of the previous

channel models. Table 7.3 contains all the 3G related parameters used in our evaluation. In addition,

the core network connecting the NodeB to the application servers in Figure 7.1 is modeled using a node

that introduces a configurable delay, hereafter referred to as RTTbase.

We consider Web browsing and File Transfers, e.g. Video streaming, as the most relevant applica-

tions to be evaluated in our scenario of interest, i.e. a mobile phone providing 3G access through Wi-Fi

Direct. TCP New Reno is the transport protocol used in our evaluation.

In order to evaluate the energy consumed by the Wi-Fi interface of the P2P Group Owner, we make

use of our model that captures the energy consumed by a Wi-Fi chipset. This model consists of four

basic states: Sleep, Listen, Reception and Transmission. Energy is computed by integrating the power
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(a) Pedestrian-A, 3Km/h, 100m, good channel.
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(b) Typical Urban, 50Km/h, 250m, average channel.
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(c) Vehicular-A, 120km/h, 500m, poor channel.

Figure 7.3: Sample of PHY rate variation in the HSDPA Channels considered in our evaluation.
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that a Wi-Fi device spends in each of the previous states over a certain target time. In our evaluation this

target time will be the time to transfer a file or a web page. The power values used were obtained from

a known embedded Wi-Fi chipset (23) and are shown in Table 7.2.

Wi-Fi Chipset Sleep Listen Rx Tx
Power (mW) 0.3 432 432 640

Table 7.2: Power Consumption levels in the Wi-Fi chipset.

Finally, in order to gain statistical confidence, we run every simulation with 15 independent seeds

and plot the 95% confidence intervals on the obtained average values. Notice though that sometimes

these confidence intervals are too small to be clearly observed.

Uplink 384Kbps CBR Bearer

Downlink HSDPA (UE Category=7,
max. PHY rate=7.2Mbps)

TTI 2ms

HARQ Feedback Delay 3 TTI

HARQ Retransmission Delay 6 TTI

HARQ Max Retransmissions 3

Reordering Buffer Size 32 PDUs

T1 Timer 100ms

Channel Models
Pedestrian-A
Typical Urban
Vehicular-A

Distance from BS
100m
250m
500m

Terminal speed
3 Km/h
50 Km/h
120 Km/h

Table 7.3: Default 3G Simulation Parameters.

7.2.2.2 Algorithm dynamics

In this section we study the dynamics of the ASPP algorithm and provide a deeper understanding on the

effect of its configuration parameters, i.e. K and Utarget in Equation 7.1. In addition, the maximum and

minimum allowed presence durations are set respectively to LPmax = 100ms and LPmin = 10ms.
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To illustrate the dynamics of ASPP we start performing an experiment where three P2P Clients

connect to a P2P Group Owner offering access to a 3G network. The first P2P Client downloads a

50MB file (close to the median video file size in the Internet (91)) from the 3G network, and the other

two P2P Clients exchange another 50MB file over the P2P Group. The Typical Urban channel model is

used in this example. Figure 7.4(a) depicts the results of this experiment, where a double y-axis is used.

The presence durations advertised by the P2P Group Owner are plotted against the left y-axis, while the

instantaneous PHY data rate offered in the 3G channel and the throughput being forwarded by the P2P

Group Owner are plotted against the right y-axis. As observed in the figure, when only the File Transfer

through the 3G link is active (e.g. after 370 seconds), the P2P Group Owner dimensions the presence

periods according to the bandwidth variations in the 3G link, in such a way that the P2P Group Owner

is only awake the minimum time required to deliver the bandwidth available in the 3G link. However,

when the intra-group transfer takes place (330-370 secs), this transfer saturates the Wi-Fi network and

the P2P Group Owner stays constantly awake (advertises a presence period of 100ms). Notice that this

approach, besides not slowing down the File Transfer, is energy efficient because, if the Wi-Fi network

is saturated, the P2P Group Owner spends all its awake time transmitting useful data.
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(c) Effect of Utarget and K on the throughput achieved by the
P2P Client.
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(d) Effect of Utarget and K on the energy spent by the P2P
Group Owner.

Figure 7.4: Dynamics of the ASPP algorithm.

We can see in Figure 7.4(a) that ASPP is indeed able to follow variations in the bandwidth available
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in the 3G link. In a general setting though this will depend on the characteristics of the 3G channel and

on the parameters used to configure ASPP, i.e. K and Utarget. To illustrate the effect of these parameters

Figure 7.4(b) depicts the dynamics of the presence periods advertised by the P2P Group Owner, in a

setting where a P2P Client retrieves a 50MB file through the 3G network characterized again using the

Typical Urban channel model. This time though, for the sake of clarity, the 3G PHY data rate or the

achieved throughput are not depicted. Figure 7.4(b) depicts the result of using two different parameter

configurations: i) Utarget = 0.8/K = 0.5 and ii) Utarget = 0.4/K = 0.1. Although the throughput

experienced by the P2P Client was very similar in both configurations, it is clear in the figure that the

advertised presence durations in each configuration significantly differ. The effect of each parameter

is the following. On the one hand decreasing Utarget increases the advertised presence periods, hence

increasing power consumption. The reason is that given a certain amount of load, if Utarget decreases,

higher presence periods are needed to maintain the utilization around Utarget (note that the duration

of presence periods is proportional to 1
Utarget

). On the other hand, K controls how fast ASPP adapts

to variations in the traffic flowing between the P2P Group and the 3G network. Clearly, a small K

decreases the ability of ASPP to adapt to changes and a too high K might result in a unwanted large

presence periods that penalize power consumption.

In order to configure ASPP, Figures 7.4(c) and 7.4(d) illustrate respectively the throughput achieved

by the P2P Client while transferring the 50MB file used in our previous example, and the energy spent

by the P2P Group Owner during this file transfer. In these figures we vary Utarget and K between 0 and

1, and report the results obtained with the Typical Urban channel model. Similar results were obtained

with the other channel models. Looking at Figure 7.4(d), we can see how a small Utarget penalizes

energy consumption in the P2P Group Owner. However, as depicted in Figure 7.4(c), the throughput

achieved by the P2P Client remains relatively stable, meaning that ASPP is able to deliver the required

throughput even for high values of Utarget. In the rest of the paper we will use Utarget = 0.8. Regarding

K, we can see that its effect, both in throughput and energy, is relatively small, thus in the rest of the

paper we will configure K = 0.5.

Finally, it is worth to notice that the same algorithm dynamics hold if an uplink File Transfer is

considered. For the sake of clarity though we have not included these results.

7.2.2.3 Steady State Evaluation

In this section we present the results of a steady state set of experiments where we asses the impact of

the proposed algorithm on the energy consumption of a P2P Group Owner and on the performance of

popular applications like File Transfers and Web browsing.
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The performance of a File Transfer transmitted over TCP depends on several parameters: i) the

bottleneck bandwidth, ii) the amount of buffering in the bottleneck, and iii) the path delay. In order to

account for the effect of each of these parameters we perform two different experiments.

1. NodeB Buffering Variation Experiment: TCP file transfer of 50 MB. For each considered 3G

channel, we vary the amount of buffering in the NodeB1 while maintaining a fixed RTTbase set

to 20ms.

2. Path Delay Variation Experiment: TCP file transfer of 50 MB. For each considered 3G channel,

we vary the path delay (RTTbase in Figure 7.1), while setting the maximum buffering in the

NodeB equal to 30 packets2 per flow.

In both experiments, we compare ASPP to two competing algorithms:

• Active algorithm: The P2P Group Owner switches to active mode once traffic is detected in the

network. This algorithm should provide an upper bound with respect to performance and a worst

case bound with respect to energy consumption.

• Static algorithm: The P2P Group Owner advertises a fixed presence duration equal to 25ms

(Beacon Interval
4 ).

Finally, in order to asses the effect that the amount of bandwidth available in the Wi-Fi network

has on the performance of the algorithms under study, we consider two different Wi-Fi configurations,

AC BK and AC VI, which are described in Table 7.1. The intent of these two Wi-Fi configurations is to

capture the effect of the bandwidth available in the Wi-Fi network on the algorithms under study. The

two configurations are named after the Wi-Fi priority3 used to transport data traffic, and are configured

following the recommendations given in the 802.11 standard (120). Thus, the AC BK configuration uses

slower contention settings and should provide a smaller bandwidth. Instead, the AC VI configuration

uses more aggressive contention settings and allows to aggregate several packets in one Transmission

Opportunity (TXOP), hence providing a higher bandwidth. Packet aggregation is also a key technology

in 802.11n (36), therefore we expect the performance of the AC VI configuration to provide hints on

the performance to be expected with 802.11n.

1In practice, buffering could also be limited by the mobile phone acting as P2P Group Owner instead of the NodeB. Notice
though that this would not affect the validity of the presented results.

2A MTU of 1500B is considered in our evaluation.
3Notice that 802.11 defines four priorities for its contention based channel access, i.e. AC VO, AC VI, AC BE and AC BK.
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NodeB Buffering Variation Experiment

Figures 7.5(a) and 7.5(b) depict the P2P Group Owner performance under our first experiment in terms

of connection throughput and energy consumption. The upper, middle and lower plot show, respec-

tively, the performance in the Pedestrian-A channel model (good), the Typical Urban channel model

(average), and the Vehicular-A channel model (poor). In addition, the left column in Figures 7.5(a) and

7.5(b) depicts the results obtained with the Wi-Fi AC VI configuration, and the right column the results

obtained with the Wi-Fi AC BK configuration.

The algorithms under study exhibit a similar behavior in the Pedestrian and Typical Urban channel

models (upper and middle plots). Using these channel models, the Active algorithm, as expected, results

in the highest throughput (specially when the buffering in the NodeB is small) and in the highest energy

consumption. On the other hand, ASPP and the Static algorithm deliver similar throughput to a P2P

Client when the AC VI configuration is used, but significantly differ when the AC BK configuration is

used (with ASPP providing a much higher throughput). Regarding energy, ASPP results in the lowest

energy consumption, followed by the Static algorithm. Both algorithms achieve a much lower energy

consumption than the Active algorithm (> 50%).

Based on these results the following questions open up: i) Why does throughput degrade so much

in ASPP and the Static algorithm when the NodeB buffer is small?, ii) Why does the AC BK config-

uration, which in theory should deliver less bandwidth in the Wi-Fi network, outperform the AC VI

configuration in the case of ASPP?, and iii) Why do ASPP and the Static algorithm provide a very

similar performance with AC VI but significantly differ with AC BK?

In order to answer these questions, Figure 7.6 depicts the dynamics of a TCP connection traversing

a P2P Group Owner running a power saving algorithm like ASPP. As it can be seen in the figure,

scheduling one presence period every Beacon interval might increase the RTT experienced by the TCP

connection. Thus, if the TCP congestion window can not grow large enough to cover the increased

bandwidth delay product, as it is likely to be the case when the amount of buffering in the NodeB is

small, the 3G link becomes underutilized and the maximum achievable throughput reduces. In order to

understand why ASPP performs better with AC BK than with AC VI, it should be noted that the higher

the bandwidth in the Wi-Fi network, the smaller the presence durations that the P2P Group Owner needs

to schedule in order to maintain the required level of utilization, Utarget, in Equation 7.1. Notice that,

although reducing power consumption, this behavior reduces the probability that a new window of TCP

data arrives at the P2P Group Owner during an active presence period thus resulting in bursty behavior

and an increased RTT, see in Figure 7.6 the second Beacon interval of the AC BK case (lower P2P

Client) for an explanation of why throughput increases in AC BK. A similar interaction between TCP
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Figure 7.5: File transfer performance when varying the buffering in the NodeB. For each figure the left
column represents the results when using the Wi-Fi AC VI configuration, and the right column the results
when using the Wi-Fi AC BK configuration.
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and the 802.11 Power Save Mode (PSM) used by Wi-Fi clients was already pointed out in (39), and was

also described in Chapter 6. Finally, in the case of AC VI, ASPP and the Static algorithm provide a

similar throughput performance, and ASPP is slightly more efficient in terms of energy. The reason for

the similar throughput performance is that in this case a presence period of 25ms turns out to be enough

for the P2P Group Owner to deliver the packets that it has buffered at every Beacon frame. Indeed, when

the NodeB buffer is below 20 packets even a presence period below 25ms would be sufficient, which is

why the Static algorithm wastes some energy in this case. On the other hand, when AC BK is used the

P2P Group Owner needs much more than 25ms to deliver its buffered packets due to the reduced Wi-Fi

bandwidth. This is the reason for the lower throughput experienced by the P2P Client when the Static

algorithm is used.

App. Server

P2P GO

P2P Client 
with AC_VI

time

RTT increase due to 
waiting for Beacon

P2P Client 
with AC_BK

Presence Period 
AC_BK

Presence Period 
AC_VI

RTT_base

time

time

time

The next burst of TCP data 
arrives while the P2P Group 
Owner is still awake in AC_BK �
No RTT increase

Beacon

TCP Data

Figure 7.6: Dynamics of a TCP transfer when the P2P Group Owner runs a power saving protocol. Notice
that the two P2P Clients illustrate a different case: the upper one a case where the file is transferred over
AC VI, and hence the P2P Group Owner can use smaller presence periods, and the lower one a case where
the file is transferred over AC BK and so the P2P Group Owner uses larger presence periods.

Coming back to Figures 7.5(a) and 7.5(b) and focusing now on the performance achieved in the

Vehicular-A (poor) channel model, we can see how ASPP and the Static algorithm deliver a similar

throughput to the P2P Client, but ASPP does it in a more energy efficient manner. The reason is that

presence periods of 25ms are larger than necessary in this case to achieve the delivered bandwidth.

In addition, no difference is observed between the AC VI and AC BK configurations. This is due to

the fact that in this case the 3G link exhibits a good condition during such short times that although

AC BK results in slightly higher presence periods, TCP has no time to benefit from them. Finally, it is

worth to notice how much the energy consumption in the P2P Group Owner increases when the radio

conditions in the 3G link degrade and the Active algorithm is used: ∼ 3.5J/MB in the Vehicular-A

channel compared to ∼ 1J/MB in the Pedestrian-A chanel. The reason is that when the 3G radio
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conditions are poor and the Active algorithm is used the P2P Group Owner stays most of the time idle,

hence wasting power, in the Wi-Fi link.

Path Delay Variation Experiment

To conclude our File Transfer application performance evaluation with the different algorithms under

study, we analyze in this experiment the effect of varying the path delay experienced by the TCP connec-

tion (RTTbase). The corresponding results are depicted in Figure 7.7. It can be noticed that the lessons

learned from the previous experiment where we varied the amount of buffering in the NodeB, can also

be applied to explain the behavior observed in this case. A remarkable result from this experiment is the

very high energy consumption incurred by the P2P Group Owner in the Vehicular-A channel when the

Active algorithm is used (∼ 7.5J/MB). The reason is the poor radio conditions in the 3G link plus the

big path delays experienced by the TCP connection which result in the P2P Group Owner being almost

always idle in the Wi-Fi network.

Web Traffic Experiment

We look now at how the different algorithms under study perform with Web traffic. In order to model

Web traffic, we consider HTTP1.1 and have a P2P Client periodically1 requesting a new web page to the

Web server in the Internet, while varying RTTbase. The size and number of embedded objects of a Web

page are modelled according to the statistics reported in (91). Unlike in the case of the File Transfer, we

only depict the results for the Typical Urban (average) channel in the case of Web. The reason is that

Web is mostly dominated by the path delay, i.e. RTTbase, and hence the results obtained showed the

same dynamics in our different 3G channel models. For the same reason only the AC VI configuration

is considered in the case of Web. However, we introduce a variation with respect to our File Transfer

experiment, we consider the P2P Client to be in active mode or in power save mode (PSM). The reason

is that the performance of Web traffic already degrades when a Wi-Fi client is in power save mode (39),

therefore it is important to asses whether a power saving protocol used by a P2P Group Owner degrades

even further the performance experienced by a P2P Client in power save mode.

Figures 7.8(a) and 7.8(b) depict, respectively, the average web page transfer time and the average

energy consumed by the P2P Group Owner per Web page. Looking at Figure 7.8(a), we can see that

the P2P Client experiences with ASPP a Web page transfer time equivalent to the one that the P2P

Client experiences when it is in power save mode. This is because in both cases the P2P Client can only

transmit data during a certain period after the Beacon frame. Regarding the energy spent by the P2P

1More than 1000 Web pages are requested by the P2P Client in each simulation run.
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Figure 7.8: Web traffic performance.

Group Owner to transfer a Web page, Figure 7.8(b) shows that a very significant energy reduction in the

P2P Group Owner can be achieved with ASPP with respect to the Active and Static algorithms, specially

as RTTbase grows. The reason is that the little traffic generated by the Web application together with

the sequential nature of HTTP allows ASPP to operate with presence intervals as low as LPmin = 10ms,

while the P2P Group Owner remains idle for long times if the Active or Static configuration are used.

7.3 AMPP: Adaptive Multiple Presence Periods

In the previous section we have presented and analyzed the ASPP algorithm which schedules a sin-

gle presence period per Beacon interval and is applicable to the two Wi-Fi Direct power management

schemes described in Section 7.1: Opportunistic Power Save and Notice of Absence. We have seen

that ASPP has a low implementation complexity and significantly reduces energy consumption in a P2P

Group Owner. However, sometimes it could result in a degraded user experience with respect to an

algorithm that configures the P2P Group Owner to be in active mode upon detecting traffic in the net-

work. Our analysis has shown that the main reason why ASPP may degrade throughput is the fact that

it schedules a single presence period per Beacon interval which results in an increased RTT experienced
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by TCP connections. Therefore, a possible way to improve upon the performance of ASPP is to design

an algorithm that schedules not only one but multiple presence periods within a Beacon interval1. In

this section we present the design of such an algorithm, which is hereafter referred to as the Adaptive

Multiple Presence Periods (AMPP) algorithm. Note that while ASPP could be implemented in both

Opportunistic Power Save and Notice of Absence protocols, AMPP can only be implemented using the

Notice of Absence protocol since this is the only one that allows to schedule multiple presence periods

within a Beacon interval.

7.3.1 Algorithm design

The main goal of AMPP is to improve the performance experienced by P2P Clients compared to ASPP,

whilst keeping as much as possible the power saving achieved by the P2P Group Owner with ASPP. For

this purpose the design of AMPP is based on the following building blocks:

1. Adaptively dimension the size of the (multiple) presence periods advertised by AMPP. This is

done based on the ASPP algorithm.

2. Design of an algorithm that estimates the raw bandwidth available in the 3G link. Note that the

analysis of ASPP has shown that when the buffering in the NodeB is small a TCP connection does

not always saturate the 3G link, and the amount of data received in the P2P Group significantly

underestimates the bandwidth available in the 3G link.

3. Design of an algorithm that, based on the estimation of the 3G link available bandwidth, adjusts

the interval between consecutive presence periods in the Notice of Absence protocol. Hence,

controlling how many presence periods should be scheduled within a Beacon interval.

Next, we describe the design of the two new modules used by AMPP: i) the external bandwidth

estimation algorithm, and ii) the presence interval adaptation algorithm. During our description we

assume that more traffic is transmitted in downlink (network→P2P Client) than in uplink. Later in in

this section we will discuss how the presented algorithm could be tailored to the uplink case.

7.3.1.1 External network bandwidth estimation algorithm

In this section we describe the algorithm used by AMPP designed to estimate the bandwidth available

in an external network. Hereafter we will focus in the case of the external network being a 3G link.

However, the same bandwidth estimation algorithm could be applied to different external networks.
1Notice that we had a similar problem in Chapter 6 but from the perspective of the station. In that case BA-TA was used to

reduce the trigger interval used by the station.
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According to the architectural constraint set in the previous section, the designed bandwidth esti-

mation algorithm should not interact with the 3G interface. Therefore, we design a passive algorithm

that derives the bandwidth available in the 3G link by observing, in the Wi-Fi driver of the P2P Group

Owner, the interarrival times of packets arriving from the 3G link1. Note that such an algorithm will not

interfere with the traffic flowing between the P2P Group and the 3G network.

The design of the bandwidth estimation algorithm is based on the following observations. If the

buffer in the NodeB would be always full, the 3G link would modulate the arrival times of packets at

the P2P Group Owner, and the 3G bandwidth could be easily estimated. In general though, the buffer

in the NodeB may become empty during a TCP connection (specially if this buffer is small), and in this

case the interarrival times of packets at the P2P Group Owner will not follow the 3G bandwidth. Indeed,

since TCP packets are buffered by the P2P Group Owner and then transmitted during a presence period

at the rate of the Wi-Fi network (usually higher than the bottleneck rate), TCP ACK compression2 can

cause bursty increases in the bottleneck queue (NodeB) (123), see Figure 7.9. Therefore, when a TCP

connection is not fully utilizing the bandwidth in the 3G link, a P2P Group Owner typically observes

bursts of TCP packets modulated by the bandwidth in the 3G link separated by inter-burst times. This

characteristic arrival pattern is depicted in Figure 7.9. Thus, an ideal bandwidth estimation algorithm

should discard these inter-burst times and estimate the 3G bandwidth using only the interarrival times

within a burst. In order to accomplish this, an important observation is that the inter-burst times observed

at the P2P Group Owner are strongly correlated with the presence intervals being used by the P2P Group

Owner. This fact is also illustrated in Figure 7.9 where, assuming a constant RTT , the time between

the first packet of the two bursts of TCP data arriving at the P2P Group Owner is equal to the presence

interval being used by the P2P Group Owner. As a result of the previous observations, we design our

bandwidth estimation algorithm based on the following assumption : within a time interval equal to

a presence interval, the P2P Group Owner can only observe one or none inter-burst times. In the

Appendix we formalize this assumption and study under which conditions it holds.

Our bandwidth estimation algorithm is described in detail in Algorithm 7.1, and is run by a P2P

Group Owner before transmitting the Beacon frame. Thus, before building a Beacon frame a P2P

Group Owner estimates the bandwidth available in the 3G link during the last Beacon interval and uses

this estimation in order to decide how many presence periods should be scheduled in the upcoming

Beacon interval. Notice that, estimating the bandwidth available in the 3G link every Beacon interval

(e.g. 100ms) sets an upper limit on the 3G channel variation rate that AMPP will be able to follow.

1Note that we assume that the device’s clock granularity is accurate enough to derive meaningful bandwidth estimations from
the measured interarrival times.

2Notice that the same effect was discussed in detail in Chapter 6.
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Figure 7.9: Insight on the bandwidth estimation algorithm: From the perspective of the P2P Group Owner,
TCP data packets arrive in bursts modulated by the bandwidth of the 3G link, interleaved with inter-burst
times that appear when the buffer in the NodeB becomes empty. One can notice in the figure how within a
presence interval, there can only be one inter-burst time.

Algorithm 7.1: estimate 3g bw().

1 – Variables definition
2 interarrvs← array containing the interarrivals of the packets received in the last Beacon interval.
3 total bits← accumulated sizes of the packets received in the last Beacon interval.
4 num pkts← Number of packets received during the last Beacon interval.
5 tb2b ← interarrival time below which two packets are considered back to back.
6 M ← threshold on consecutive back to back packets.
7 interval← Current operating interval of the algorithm.
8 subintvl← {}

9 – Routine executed when a SP completes
10 ttotal, tsubint,m, interarrvmax ← 0, avglast ← −1
11 for i = 0 to num pkts− 1 do
12 if interarrvs(i) > tb2b then
13 ttotal ← ttotal + interarrvs(i)

14 tsubint ← tsubint + interarrvs(i)

15 if interarrvs(i) > interarrvmax then
16 interarrvmax ← interarrvs(i), imax ← i, mmax ← m

17 subintvl← {subintvl, interarrvs(i)}, m← m+ 1

18 if i = num pkts− 1 or m > 1, tsubint + interarrvs(i+ 1) > interval then
19 if m > 1 and !interarrvs(imax + 1, ..., imax +M) < tb2b then
20 avg ← tsubint−interarrvmax

m−1
, avglast ← avg

21 std←
√

1
m−1

∑m
j=1,j!=mmax

(subintvl(j)− avg)2

22 if interarrvmax > avg + 2std then
23 ttotal ← ttotal − interarrvmax + avg

24 else if m = 1 and avglast! = −1 then
25 ttotal ← ttotal − interarrvmax + avglast
26 m← 0, tsubint ← 0, interarrvmax ← 0, subintvl← {}
27 if num pkts > 0 and ttotal > 0 then
28 3g bw ← α× 3g bw + (1− α)× total bits

ttotal

29 num pkts← 0, total bits← 0
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This limitation though, is not intrinsic to AMPP but to the Notice of Absence protocol which can only

update the current schedule every Beacon interval. In addition, in order to follow the variations in the 3G

bandwidth, our bandwidth estimation algorithm uses an EWMA filter updated with the bandwidth esti-

mated every Beacon interval (line 28 in Algorithm 7.1). Next, we describe the details of our bandwidth

estimation algorithm.

A P2P Group Owner records in each Beacon interval the amount of received data, total bits, the

number of packets, num pkts, and a list of the interarrival times between packets received from the 3G

link, interarrvs(i). Note that this list can be fairly small, e.g. assuming a speed of 7.2Mbps in the 3G

link and 1.5KB size packets, only 60 packets could arrive within a Beacon interval of 100ms. Then,

the list interarrvs(i) is splitted in contiguous subintervals according to the current presence interval

(interval) used by the P2P Group Owner (line 18).

For each of these subintervals the maximum interarrival time (interarrvmax) is tagged as a poten-

tial inter-burst time (line 16), assuming that within a subinterval there can only be one inter-burst time.

Then it is decided whether interarrvmax is indeed an inter-burst time and should therefore be dis-

carded by comparing it against the average (avg) and standard deviation (std) of the other interarrival

times contained in subintvl. Specifically, if interarrvmax > avg + 2std we heuristically consider

interarrvmax to be an inter-burst time and substitute it by avg (line 23). Notice that the challenge is

to distinguish between the long tail in the distribution of interarrival times caused by the 3G link, and

the inter-burst times caused by an empty queue in the NodeB. Since the Chebychev inequality (125)

establishes that at maximum 1
k2 of the distribution values can be separated more than kσ from the dis-

tribution mean, setting k = 2 hints that 75% of the interarrival times due to the 3G bandwidth should be

correctly accounted for, while still providing a reasonable protection against inter-burst times. Notice

that this heuristic allows us to follow variations in the 3G link, because our threshold to detect inter-

burst times, i.e. avg+2std, adapts to the statistics of the 3G link. Obviously the presented heuristic can

fail, if the time to transmit a packet over a 3G link is higher than our threshold, although the Chebychev

inequality should limit the probability of that happening, or if an inter-burst time is actually smaller than

the threshold, although in that case the impact of mistaking an inter-burst time with an interarrival time

caused by the 3G link should not be significant. In the next section we will evaluate how effective this

heuristic is on estimating the bandwidth available in the 3G link.

We set one exception to the previous rule if there are M consecutive back to back packets after

interarrvmax (line 19), where back to back packets are defined as two consecutive packets arriving

within tb2b. The reason for this exception is that we empirically observed that a pattern of a long
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interarrival time followed by several consecutive back to back packets is typically caused by the Hybrid-

ARQ protocol in the 3G link (124), which buffers frames to guarantee in order delivery, and not by an

empty queue in the NodeB. In our implementation we set M = 2 and tb2b = 2ms which is the slot

size used in HSDPA. In addition, if there is only one sample in subintvl, this value is not trusted, and

instead the last recorded average interarrival time is considered, avglast (lines 24-25).

Finally, note that by adjusting the value of the variables tb2b and M Algorithm 7.1 could be tailored

to different cellular technologies, like LTE or WiMAX, which operate based on principles similar to the

ones outlined in this section.

7.3.1.2 Adapting the Number of Presence Intervals per Beacon

In this section, we describe how AMPP uses the input provided by our bandwidth estimation algorithm

in order to decide how many presence periods should be scheduled every Beacon interval. For this

purpose what AMPP does is to adjust the value of the presence interval advertised in the Notice of

Absence schedule being broadcasted in the Beacon, i.e. if interval = 25ms then there will be four

presence periods within a Beacon interval. Our interval adaptation algorithm shares the same design

phylosophy than the BA-TA algorithm presented in Chapter 6, and its main ideas are as follows:

• Underutilization Detection: AMPP maintains two estimates: i) an estimate of the bandwidth

available in the 3G link obtained with our bandwidth estimation algorithm, 3g bw, and ii) an

estimate of the traffic flowing between the P2P Group and the 3G link, thr. In order to detect

if the 3G link is being underutilized, AMPP computes the ratio between its two estimates, i.e.

ratio = thr
3g bw .

• Reaching Utilization Target: AMPP takes as input parameter a desired utilization target of the 3G

link, i.e. ratiomin. Based on this, AMPP checks if the desired utilization is satisfied and adjusts

the selected presence interval in the following way: i) if the 3G link is underutilized, i.e. ratio <

ratiomin, AMPP will decrease its operating interval (increase the number of presence periods)

within a Beacon interval in an attempt of reducing the RTT experienced by a TCP connection and

improve throughput, ii) if utilization is sufficient, i.e. ratio > ratiomin, AMPP will increase its

operating interval to check whether a higher presence interval still delivers the desired utilization.

Note that higher presence intervals are preferred since they allow for longer sleep times and thus,

higher power saving.

In addition to the previous main algorithm principles more issues need to be considered in practice to

achieve the desired functionality. Our first design decision is that, in order to be able to refresh the used

188



7.3 AMPP: Adaptive Multiple Presence Periods

presence interval every Beacon interval, AMPP will only select presence intervals that are sub-multiple

of the Beacon interval, i.e. interval = BI
kcurr

, where kmin ≤ kcurr ≤ kmax, kcurr, kmin, kmax ∈ Z.

Notice that if an absence period would overlap with a Beacon frame, a P2P Client might skip the Beacon,

missing the updated schedule. A detailed description of our interval adaptation algorithm is provided in

Algorithm 7.2 and summarized next.

We start discussing the case where ratio < ratiomin (lines 9 to 29). In this case AMPP considers

the link to be underutilized and thus, tries to decrease the current presence interval. However, in order

to reduce spurious updates, we introduce a memory, countdownmax , which establishes a number of

consecutive Beacon intervals before AMPP updates the current presence interval. We can see between

lines 20 and 29 how AMPP decreases the presence interval by increasing the parameter kcurr, where

interval = BI
kcurr

. In addition, under special circumstances AMPP may as well decide to keep the P2P

Group Owner awake during the upcoming Beacon interval. These circumstances are: i) if the current

presence duration, LP , is above the selected interval (line 24), or ii) if the desired utilization, ratiomin,

is not achieved even when operating at the minimum allowed interval, kmax, (line 28). Notice that when

staying awake the P2P Group Owner does not publish any Notice of Absence schedule in the Beacon

frame.

The P2P Group Owner should be in active mode (awake) only if the Wi-Fi interface is busy trans-

mitting packets. Hence, before deciding to keep the P2P Group Owner awake, Algorithm 7.2 records

in the variable ∆rslp the speed of increase of ratio. Thus, if the 3G link continues to be underutilized,

i.e. ratio < ratiomin, but the P2P Group Owner is in active mode (lines 13-19), the algorithm checks

whether the speed of increase of ratio, ∆ract , is above ∆rslp . If that is not the case, keeping the P2P

Group Owner awake is not being effective and the P2P Group Owner goes back to normal power saving

operation. In order to effectively compare ∆ract and ∆rslp , a hysteresis is introduced controlled by the

γ parameter.

Now we consider the case where the 3G link is being sufficiently utilized, i.e. ratio ≥ ratiomin

(lines 30 to 37). In this case AMPP increases the operating interval by means of decreasing the variable

kcurr, where interval = BI
kcurr

. Note that, again, a memory has been introduced to reduce spurious

updates, countupmax . In addition, if the P2P Group Owner happened to be in active mode at that

moment, the last presence interval and presence duration used before switching to active mode are

restored (line 35).

One more practical aspect to be considered is the case where applications, e.g. Web, do not of-

fer enough load to saturate the 3G link. In this case the previous logic would drive the P2P Group

Owner towards using small presence intervals, which would not be energy efficient. In order to counter
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Algorithm 7.2: adjust interval().

1 – Variables definition
2 ratiomin ← 3G link utilization threshold.
3 countupmax/countdownmax ← Variables to control the speed of interval increase/decrease.
4 kmin/kmax ← Variables that control the maximum/minimum presence intervals.
5 n intmax ← Threshold on the maximum number of presence periods without data before updating the used interval.

6 – Routine executed every Beacon interval 3g bw ← estimate 3g bw(), thr ← estimate thr()

7 if 3g bw, thr > 0, n int no data < n intmax then
8 ratio← thr

3g bw

9 if ratio < ratiomin then
10 countup ← 0, countdown ← countdown + 1

11 if countdown = countdownmax then
12 countdown ← 0

13 if active is 1 then
14 ∆ract ←

ratio−ratiolast
countdownmax

15 if ∆ract < max{0, (1 + γ)∆rslp} then
16 countact ← countact + 1

17 if countact = n intmax then
18 active← 0, LP ← LPlast

, kcurr ← klast, last← up, countact ← 0

19 ratiolast ← ratio

20 else
21 go to active← (last = down and ratio > (1 + γ)ratiolast) or (last = up and

ratio < (1− γ)ratiolast)

22 if kcurr < kmax then
23 kcurr ← min{kmax, kcurr + 1}, ratiolast ← ratio, last← down

24 if BI
kcurr

< LP then
25 active← 1, ∆rslp ←

ratio−ratiolast
countdownmax

, countact ← 0

26 else
27 active← 0, LPlast

← LP , klast ← kcurr

28 else if go to active then
29 active← 1, ∆rslp ←

ratio−ratiolast
countdownmax

, ratiolast ← ratio, last← down, countact ← 0

30 else
31 countdown ← 0, countup ← countup + 1

32 if countup = countupmax then
33 countup ← 0, last← up, ratiolast ← ratio

34 if active is 1 then
35 active← 0, LP ← LPlast

, kcurr ← klast
36 else
37 kcurr ← max{kmin, kcurr − 1}
38 else if n int no data ≥ n intmax then
39 kcurr ← max{kmin, kcurr − 1}, n int no data← 0, last← up, ratiolast ← ratio, countup ← 0,

countdown ← 0

40 interval← BI
kcurr
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this effect, the variable n int no data is defined in Algorithm 7.2, which accounts for the number of

scheduled presence periods during the last Beacon interval where no data was transmitted. Thus, if

n int no data > n intmax the algorithm quickly increases the operating interval (lines 38-39).

Finally, the design of AMPP allows to trade-off energy and performance by configuring the param-

eters ratiomin, kmin/kmax (maximum/minimum presence intervals), and countdownmax /countupmax

(speed of decrease/increase). For instance applications with strict QoS requirements, e.g. VoIP, can be

easily accomodated within the presented framework, by configuring the presence interval, i.e. kmin/kmax,

to operate within limits that fulfill their delay constraints. These requirements can be conveyed by a P2P

Client to a P2P Group Owner using the Notice of Absence protocol by sending a P2P Presence Request

(see Section 7.1). In the next section we will study the effect of the previous parameters.

7.3.2 AMPP: Algorithm evaluation

In this section we will evaluate the performance of AMPP. Like in the case of ASPP, we will start

analyzing the algorithm dynamics, to then present a steady state evaluation with popular applications.

7.3.2.1 Algorithm dynamics

We start presenting the results of an experiment where two P2P Clients connected to a mobile phone

acting as P2P Group Owner download a 50MB file through the 3G network. The Typical Urban channel

model is considered in this experiment. The two File Transfers from each P2P Client experience differ-

ent connection delays, RTTbase1 = 40ms and RTTbase2 = 20ms, and a 30 packets per flow buffer is

considered in the NodeB.

Figure 7.10(a) illustrates the dynamics of the presence interval (solid line) and presence duration

(dashed line) advertised by the P2P Group Owner in this experiment. As it can be observed, before 60

seconds (no traffic present) the P2P Group Owner advertises a big interval of 100ms and a small duration

of 10ms. This is the default operation when there is no traffic in the network which allows a P2P Group

Owner to operate in a very power efficient way. After 60 seconds, when the first File Transfer starts

(signaled as con-1 in the figure), the algorithm starts adjusting the advertised presence intervals and

durations. In this case AMPP needs to schedule small intervals in order to keep the throughput of the

connection above the configured ratio (ratiomin = 0.8). In order to realize why this is needed recall

how ASPP’s throughput degraded with a buffer of 30 packets in the NodeB, shown in Figure 7.5(a).

At 140 seconds the second connection starts (con-2) and the aggregate load at the NodeB increases

which, together with a slight improvement in the 3G channel condition (that can be observed in Figure

7.10(b)), allows the P2P Group Owner to achieve the required throughput using bigger intervals and
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Figure 7.10: Dynamics of the AMPP algorithm.
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presence durations. After 200 seconds the first file transfer completes and the P2P Group Owner is

forced to use again smaller intervals to maintain throughput. However, it is interesting to notice in this

case that since RTTbase2 < RTTbase1 , the P2P Group Owner can now operate with bigger intervals

than with the first File Transfer.

Between 280 and 330 seconds, a second user enters the 3G cell that was serving the P2P Group

Owner halving the bandwidth available to the mobile phone (P2P Group Owner) in the 3G link1.

AMPP’s bandwidth estimation algorithm detects this bandwidth reduction (see Figure 7.10(b)) and,

in order to save energy, the P2P Group Owner starts operating with a bigger interval and a smaller

presence duration.

Finally, at 350 seconds a VoIP call enters the system. The VoIP client sends a P2P Presence Request

frame to the P2P Group Owner requesting the P2P Group Owner to be present at least every 40ms in

order to maintain the QoS needed in the Voice call. AMPP can easily accomodate the incoming call by

configuring kmin = 3 upon receiving a P2P Presence Request from the P2P Client, which establishes a

maximum presence interval of 33ms.

Figure 7.10(b) depicts for the same experiment the instantaneous rate in the 3G link, the 3g bw es-

timation and the throughput delivered to the P2P Client. Notice how by means of adapting interval and

duration, AMPP is able to deliver to the P2P Client all the bandwidth available in the 3G channel.

We study now how the AMPP algorithm behaves when not one but several TCP connections are es-

tablished concurrently through the P2P Group Owner. Figure 7.10(c) depicts the result of an experiment

where we analyze the average presence interval and duration selected by AMPP, together with the ratio

between the throughput delivered to the P2P Clients and the bandwidth available in the 3G link. In the

experiment we incrementally increase the number of P2P Clients connected to the P2P Group Owner

from 1 to 8. Each of the P2P Clients in our experiment retrieves a 50MB file using a TCP connection

that experiences a different path delay (RTTbase) between 20ms and 80ms. In the figure the average

presence interval and duration are plotted against the left y-axis while the AMPP ratio is plotted against

the right y-axis. Notice that from the perspective of AMPP it does not matter if packets come from the

same or different connections.

From the results in Figure 7.10(c) we can observe that in all cases AMPP is able to deliver the re-

quired ratio of the 3G bandwidth (ratiomin = 0.8). However, if only one client is present, AMPP needs

to use smaller presence intervals (schedule more presence periods within a Beacon frame). The reason

is that, as the number of concurrent TCP connections increases, the buffer in the NodeB becomes empty

1In our simulation the 3G cell operates using a Round Robin scheduler
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less often. Thus, AMPP benefits from this phenomenon by operating with higher presence intervals

which is more energy efficient.

In order to evaluate the accuracy of our bandwidth estimation algorithm, Figure 7.10(d) presents the

mean percentage error achieved by our bandwidth estimation algorithm in the following experiments.

A first experiment (left sub-graph) where we increase the value of RTTbase while keeping the same

buffer size in the NodeB. Notice that a higher path delay increases the bandwidth delay product and

hence the likelihood of having an empty buffer in the NodeB, which is the case that should be detected

by our bandwidth estimation algorithm. A second experiment (right sub-graph), where we introduce an

increasing jitter around an average path delay of 50ms.

Notice that, as shown in the Appendix, jitter is one of the conditions that challenge the fundamental

assumption of our bandwidth estimation algorithm, i.e. the existence of a single inter-burst time within

a presence interval. We repeated the previous two experiments for our different 3G channel models.

As seen in Figure 7.10(d) the error of our 3G bandwidth estimation algorithm is kept below 10% for

the whole parameter range in the Pedestrian-A and Typical Urban channels. Only in the fastly varying

Vehicular-A channel, the estimation error reaches values around 30% because the TCP connection often

stalls in this case not providing enough packets for AMPP to have a reliable estimation.

In order to gain a deeper understanding on the influence of the ratiomin, countdownmax and countupmax

AMPP parameters, Figures 7.10(e) and 7.10(f) depict respectively the throughput and energy spent in

the P2P Group Owner in the Typical Urban channel, when a P2P Client downloads a 50MB File and a

30 packets buffer is considered in the P2P Group Owner. In this experiment, ratiomin is varied between

0.5 and 0.9 and countdownmax is varied between 1 and 9, having countupmax = 10 − countdownmax .

We can see looking at the previous figures how increasing ratiomin or decreasing countdownmax and in-

creasing countupmax increases both throughput and energy consumption, being ratiomin the strongest

parameter, since it results in the P2P Group Owner offering more presence intervals within a Beacon

interval1.

Finally, note that AMPP could be applied also to uplink File Transfers. In this case though, AMPP

should estimate the 3G uplink available bandwidth from the returning TCP ACKs. We have not further

studied this approach because our experiments reveal that given the usually limited uplink 3G band-

width, ASPP (no interval adaptation) suffices to provide an adequate performance in this case.

1Notice though that the energy profile depicted in Figure 7.10(f) may slightly vary depending on the power characteristics of
the considered Wi-Fi chipset.
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7.3.2.2 Steady State Evaluation

In this section we evaluate the performance of our AMPP algorithm with popular applications like File

Transfers and Web traffic. The same experiments defined in section 7.2.2.3 for the ASPP evaluation are

used here to study AMPP’s steady state performance. In this case we will focus in the results obtained

with the AC VI settings since this was the Wi-Fi configuration providing the best energy efficiency in

ASPP but exhibiting the highest performance degradation. It is therefore the goal of AMPP to overcome

the performance problems of ASPP while achieving similar energy efficiencies.

Two different configurations for AMPP that illustrate the effect of its configurations parameters will

be considered:

• QoS configuration: ratiomin, countdownmax and countupmax set to 0.9, 5 and 10 respectively.

• Energy configuration: ratiomin, countdownmax and countupmax set to 0.8, 10 and 5 respectively.

The maximum and minimum allowed presence intervals kmin/kmax are set to 20ms and 100ms

respectively. Finally, the parameters n intmax and γ are empirically set to 3 and 0.1 respectively.

NodeB Buffering Variation Experiment

Figures 7.11(a) and 7.11(b) depict the performance of the considered algorithms during a File Transfer

when varying the buffering available in the NodeB and setting the path delay equal to RTTbase = 20ms.

In the figure it can be clearly observed how for all of our considered 3G channel models, i.e. Pedestrian-

A, Typical Urban and Vehicular-A, the AMPP algorithm significantly outperforms ASPP introducing

only a marginal power consumption increase. In particular, we note that the AMPP QoS configuration

delivers in all cases a File Transfer throughput very close to the one delivered when the P2P Group

Owner is always active and at the same time an energy consumption very close to the ASPP one. The

reason why AMPP is able to provide this improved performance is that it successfully identifies when

the 3G link is being underutilized and in such cases schedules additional presence periods within Beacon

intervals.

Path Delay Variation Experiment

Figures 7.12(a) and 7.12(b) depict the performance of the algorithms under study when varying the path

delay, RTTbase, and fixing the buffer size in the NodeB to 30 packets per flow. Like in the previous

experiment, AMPP significantly outperforms ASPP for all the considered 3G chanel models operating

close to the performance of an always Active solution while providing energy efficiencies similar to
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Figure 7.11: File transfer performance when varying the buffering in the NodeB.

those of ASPP. The only exception is the case when RTTbase is large for the Pedestrian-A (good) and

Typical Urban (average) channels. In these cases AMPP results in a higher energy consumption than

ASPP, although still much lower than the one of the Active algorithm. The reason for a higher energy

consumption in these cases is that TCP can not fill the path’s bandwidth delay product and AMPP ends

up operating with reduced intervals, i.e. 20ms in our experiments, with a small portion of the TCP

congestion window being transmitted in each presence period.

Web Traffic Experiment

Finally, we complete our evaluation by studying in Figure 7.13 how AMPP performs with Web traffic.

In the figure it can be observed how AMPP reduces the time to transfer a Web page compared to ASPP,

specially when RTTbase < 50ms. The reason is that since Web traffic usually can not fill up the 3G

link, ratio falls below ratiomin and AMPP decreases the used presence interval. However, when an

interval smaller than RTTbase, i.e, the delay between the NodeB and the Web server, is selected, the P2P

Group Owner schedules some presence periods where no data is transmitted and hence, AMPP increases

the used presence interval because n int no data > n intmax. Therefore, when RTTbase < 50ms,

the P2P Group Owner ends up scheduling a presence interval that ocillates around RTTbase, which
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Figure 7.12: File transfer performance when varying the path delay (RTTbase).

is obviously a desirable behavior in the case of Web. If RTTbase > 50ms AMPP often schedules

its immediately higher interval which is 100ms resulting in a behaviour similar to ASPP. Regarding

energy, we can see in Figure 7.13(b) how adapting the presence interval does not significantly increase

the energy consumption of AMPP with respect to the one of ASPP.

7.4 Summary and conclusions

Bringing device to device connectivity to a mass market is a key milestone in Wi-Fi’s evolution roadmap.

For this purpose, the Wi-Fi Alliance has recently developed the Wi-Fi Direct technology which should

become the key device to device communication enabler. Among the different requirements to be ful-

filled by this technology, battery usage efficiency is a central one due to the high penetration of Wi-Fi in

mobile devices.

In this chapter we have analysed the two power saving protocols defined in Wi-Fi Direct allowing

APs to save power, Opportunistic Power Save (OPS) and Notice of Absence (NoA), and designed two

algorithms to efficiently use them: Adaptive Single Presence Period (ASPP) and Adaptive Multiple

Presence Periods (AMPP). These algorithms allow a portable device implementing Wi-Fi Direct (e.g.
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Figure 7.13: Web performance.

a mobile phone) to offer access to an external network (e.g. a cellular network) while addressing the

trade-off between performance and energy consumption in a configurable manner. ASPP and AMPP

performance has been thoroughly analyzed considering both their dynamic and steady state behaviour.

From our results the following conclusions can be drawn: i) ASPP and AMPP successfully manage

to significantly reduce the power consumption of Wi-Fi Direct devices acting as Access Points (50-90%)

without introducing a major user experience degradation, ii) the NoA protocol in combination with the

AMPP algorithm delivers a close to optimal user experience and energy efficiency, and iii) AMPP’s

tuning parameters can be configured to prioritize either energy saving or user experience according to

the device manufaturer preferences.
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7.A Revisiting the assumptions of the 3g bandwidth estimation algorithm

Appendix 7.A Revisiting the assumptions of the 3g bandwidth es-
timation algorithm

Consider in Figure 7.9 a presence period at time tP with N packets in the P2P GO belonging to M ≥ 1

TCP connections. Each packet, i = 1...N , will result in one or two (if this packet is the last of the

current congestion window) new packets arriving at the NodeB at time tiarr = tP + tiwifi + RTT i,

where RTT i is the RTT experienced by packet i, excluding the time spent in the Wi-Fi network, and

tiwifi is the time to transmit the TCP Data and TCP Ack in the Wi-Fi network. Consider {tkarr} to be

the ordered set of arrivals at the NodeB. Algorithm 7.1 assumes that the buffer at the NodeB never gets

empty while processing these packets, which is true unless ∃k such that:

tkarr − t1arr = ∆k
wifi +∆k

RTT >
k−1∑
j=1

tj3g

Where tj3g is the time of transmitting packet j over the 3G link, ∆k
wifi = tkwifi − t1wifi and

∆k
RTT = RTT k − RTT 1. Given the fact that typically the Wi-Fi bandwidth is much higher than

the 3G bandwidth, in general ∆k
wifi is significantly smaller than

∑k−1
j=1 t

j
3g . In addition, ∆k

RTT con-

tains the RTT difference between two packets separated k positions in the set of arrivals at the NodeB.

This difference can be assumed to be small if these packets belong to the same TCP connection and

potentially high otherwise. However, it is interesting to notice that even packets belonging to different

connections, as shown in (126), tend to get clustered in a bottleneck queue, which would favor the bursty

behavior assumed in Figure 7.6. We have extensively evaluated whether this condition holds in practice

in Figure 7.10(d), where a random RTT i was introduced for each packet. Finally, notice in Figure 7.6

that the next burst of packets at the P2P GO will not arrive before tP + interval, therefore in general

only one or no inter-burst times will be present within a presence interval, which is the basic design

assumption of Algorithm 7.1.
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8

Conclusions and Future Work

Energy efficiency appears as one of the biggest challenges ahead to be solved by the Wi-Fi technology

in order to continue with its successful development, and foster even more the advent of the mobile

computing paradigm. Therefore, the goal of this thesis has been to develop a set of contributions that

address the fundamental trade-off between QoS and energy efficiency in Wi-Fi networks. This trade-off

has been addressed from a plurality of perspectives, namely real-time traffic, data traffic, distributed

Wi-Fi protocols, centralized Wi-Fi protocols and even energy efficient Access Points.

In particular, our major contributions can be summarized as follows:

• Our first and second contributions in Chapters 3 and 4, target energy efficiency for real-time

applications over distributed QoS and power saving protocols in Wi-Fi. In this context, we have

proposed algorithms that decide how a station in power save mode should trigger the Access Point

to recover its buffered data. By means of extensive performance evaluations we have shown that

our proposed solutions improve upon existing solutions in the state of the art.

• Our third contribution in Chapter 5 targets real-time applications but considers centralized Wi-Fi

QoS and power saving protocols. In this context we have proposed a novel scheduler running in

the Access Point that spreads in time the service periods of the stations. We have shown that our

proposed scheduler has a small complexity, and have analysed the benefits of this approach in

terms of QoS, energy efficiency and admission capacity.

• Our forth contribution in Chapter 6 focuses again on distributed Wi-Fi QoS and power saving

protocols, but this time from the perspective of data traffic. We have studied by means of analysis

and simulations the detailed interactions between TCP and the power saving protocols in Wi-Fi,

and have proposed a novel algorithm that configures the operation of the power saving protocol
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according to the bottleneck bandwidth experienced by TCP connections. Our proposed algorithm

significantly improves upon existing algorithms in the state of the art.

• Finally our fifth contribution in Chapter 7 has focused on the energy efficiency of Access Points

in the context of the Wi-Fi Direct technology. In this context we have designed and evaluated two

novel algorithms that balance the energy consumed by an Access Point with the QoS experienced

by its associated clients.

Therefore, we conclude that the work in this thesis proves that significant improvements in energy

efficiency are possible by designing smarter algorithms that only affect the devices with stringent power

saving requirements. Thus, by following the design guidelines stated in Chapter 2: i) focus on MAC

layer solutions, ii) design within the limits of current standards, and iii) favor client side solutions,

the algorithms proposed throughout this thesis represent a realistic path forward to improve energy

efficiency in Wi-Fi networks.

We would like to finalize this thesis by outlining possible lines of future work. In particular each

of the individual algorithms contributed in the different chapters of this thesis naturally leads to further

investigations which we detail next:

• The adaptive triggering algorithm presented in Chapter 3 and the CA-DFA algorithm introduced in

Chapter 4 should be combined and evaluated together, providing a solution where a Wi-Fi station

in power save mode adapts its polling interval to both the characteristics of the applications and

the amount of congestion in the network.

• An interesting line for future work would be to study the interactions between the CA-DFA al-

gorithm introduced in Chapter 4 and the PSMP protocol defined in 802.11n or the Multi User

MIMO capabilities that will be included in 802.11ac. PSMP or Multi User MIMO benefit from

having many users to be served at a given point in time, which is less likely to happen if stations

use large aggregation intervals.

• The DRA scheduler introduced in Chapter 5 could be extended in the following ways. First, the

initial work on admission control introduced in Chapter 5 should be extended to further assess

the impact of DRA in the admission region of a network with QoS and power consumption guar-

antees. Appropriate admission control algorithms should be designed for that purpose. Second,

algorithms could be devised that, by appropriately pre-sorting the flows to be processed by DRA,

improve even further the achieved flow separation. Third, DRA could be extended to allow a

set of overlapping co-channel APs to provide QoS and power saving guarantees in a distributed
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way1. Finally, it would be interesting to study how a new protocol like PSMP can enhance the

performance of a grouping scheduler by advertising an appropriate schedule at the beginning of

each group allocation period.

• A path for future work regarding the study presented in Chapter 6 is to further understand the

fairness interactions between TCP flows in active mode and TCP flows in power saving, and how

BA-TA can be used to mitigate potential unfairness.

• The power saving algorithms introduced in Chapter 7 could be improved in the following way.

For instance, algorithms could be devised to adaptively tune the multiple parameters involved in

AMPP based on remaining battery capacity. In addition, other algorithms could be devised that

control the fraction of bottleneck bandwidth obtained by the applications running directly in the

P2P Group Owner and the fraction delivered to the associated P2P Clients.

Finally, a clear line of future work is the generalization of the methods and algorithms proposed in

this thesis for technologies other than Wi-Fi. For instance, cellular technologies like WiMAX and LTE,

or even sensor networks like 802.15, all have power saving mechanisms that resemble those available in

Wi-Fi. It should therefore be possible to adapt the algorithms and insights presented in this thesis, e.g.

the TCP model developed in Chapter 6, for these technologies.

1Notice that DRA can already be directly applied to the Overlapping-BSS mechanisms being proposed in 802.11aa (117).
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