924 research outputs found

    Invariant template matching in systems with spatiotemporal coding: a vote for instability

    Full text link
    We consider the design of a pattern recognition that matches templates to images, both of which are spatially sampled and encoded as temporal sequences. The image is subject to a combination of various perturbations. These include ones that can be modeled as parameterized uncertainties such as image blur, luminance, translation, and rotation as well as unmodeled ones. Biological and neural systems require that these perturbations be processed through a minimal number of channels by simple adaptation mechanisms. We found that the most suitable mathematical framework to meet this requirement is that of weakly attracting sets. This framework provides us with a normative and unifying solution to the pattern recognition problem. We analyze the consequences of its explicit implementation in neural systems. Several properties inherent to the systems designed in accordance with our normative mathematical argument coincide with known empirical facts. This is illustrated in mental rotation, visual search and blur/intensity adaptation. We demonstrate how our results can be applied to a range of practical problems in template matching and pattern recognition.Comment: 52 pages, 12 figure

    Adaptive observers for nonlinearly parameterized systems subjected to parametric constraints

    Full text link
    We consider the problem of adaptive observer design in the settings when the system is allowed to be nonlinear in the parameters, and furthermore they are to satisfy additional feasibility constraints. A solution to the problem is proposed that is based on the idea of universal observers and non-uniform small-gain theorem. The procedure is illustrated with an example.Comment: 19th IFAC World Congress on Automatic Control, 10869-10874, South Africa, Cape Town, 24th-29th August, 201

    Adaptive Observer for Nonlinearly Parameterised Hammerstein System with Sensor Delay – Applied to Ship Emissions Reduction

    Get PDF
    Taking offspring in a problem of ship emission reduction by exhaust gas recirculation control for large diesel engines, an underlying generic estimation challenge is formulated as a problem of joint state and parameter estimation for a class of multiple-input single-output Hammerstein systems with first order dynamics, sensor delay and a bounded time-varying parameter in the nonlinear part. The paper suggests a novel scheme for this estimation problem that guarantees exponential convergence to an interval that depends on the sensitivity of the system. The system is allowed to be nonlinear parameterized and time dependent, which are characteristics of the industrial problem we study. The approach requires the input nonlinearity to be a sector nonlinearity in the time-varying parameter. Salient features of the approach include simplicity of design and implementation. The efficacy of the adaptive observer is shown on simulated cases, on tests with a large diesel engine on test bed and on tests with a container vessel

    Adaptive Observers and Parameter Estimation for a Class of Systems Nonlinear in the Parameters

    Full text link
    We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly parameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.Comment: Preliminary version is presented at the 17-th IFAC World Congress, 6-11 Seoul, 200

    Observers for canonic models of neural oscillators

    Full text link
    We consider the problem of state and parameter estimation for a wide class of nonlinear oscillators. Observable variables are limited to a few components of state vector and an input signal. The problem of state and parameter reconstruction is viewed within the classical framework of observer design. This framework offers computationally-efficient solutions to the problem of state and parameter reconstruction of a system of nonlinear differential equations, provided that these equations are in the so-called adaptive observer canonic form. We show that despite typical neural oscillators being locally observable they are not in the adaptive canonic observer form. Furthermore, we show that no parameter-independent diffeomorphism exists such that the original equations of these models can be transformed into the adaptive canonic observer form. We demonstrate, however, that for the class of Hindmarsh-Rose and FitzHugh-Nagumo models, parameter-dependent coordinate transformations can be used to render these systems into the adaptive observer canonical form. This allows reconstruction, at least partially and up to a (bi)linear transformation, of unknown state and parameter values with exponential rate of convergence. In order to avoid the problem of only partial reconstruction and to deal with more general nonlinear models in which the unknown parameters enter the system nonlinearly, we present a new method for state and parameter reconstruction for these systems. The method combines advantages of standard Lyapunov-based design with more flexible design and analysis techniques based on the non-uniform small-gain theorems. Effectiveness of the method is illustrated with simple numerical examples
    • …
    corecore