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Robust Backlash Estimation for Industrial
Drive-Train Systems—Theory and Validation

Dimitrios Papageorgiou , Mogens Blanke , Senior Member, IEEE,

Hans Henrik Niemann , and Jan H. Richter

Abstract— Backlash compensation is used in modern machine-
tool controls to ensure high-accuracy positioning. When wear
of a machine causes deadzone width to increase, high-accuracy
control may be maintained if the deadzone is accurately esti-
mated. Deadzone estimation is also an important parameter to
indicate the level of wear in a machine transmission, and tracking
its development is essential for condition-based maintenance.
This paper addresses the backlash estimation problem using
sliding-mode and adaptive estimation principles and shows that
prognosis of the development of wear is possible in both theory
and practice. This paper provides the proof of asymptotic
convergence of the suggested estimator, and it shows how position
offset between motor and load is efficiently utilized in the design
of a very efficient estimator. The algorithm is experimentally
tested on a drive-train system with the state-of-the-art Siemens
equipment. The experiments validate the theory and show that
expected performance and robustness to parameter uncertainties
are both achieved.

Index Terms— Adaptive deadzone estimation, backlash
estimation, experimental validation, machine tools, mechanical
drive train, nonlinear parameterization, parameter estimation,
robustness analysis, sliding-mode observer (SMO).

I. INTRODUCTION

DEVELOPING backlash in coupling equipment due to
wear is one of the main reasons for performance degra-

dation in machine-tool systems. Since high-accuracy tool
positioning is fundamental for maintaining the workpiece
tolerances, backlash compensation solutions are used in nearly
all modern computer numerical control algorithms. As such,
knowledge of the deadzone angles in advance is essential for
integrating backlash compensation in the position servo loops
of the machine drive motors. In this context, online estimation
methods may facilitate an automatic compensation solution for
developing backlash and also provide valuable information for
prognosis and equipment lifetime.
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The backlash phenomenon in various mechanical systems
has been extensively studied over the past three decades.
Indirect backlash estimation methods pertain to identifying
torques and accelerations of the system parts that are affected
by the backlash and from these signals drawing conclusions
on the width of the deadzones. A characteristic example is
the work in [1], where backlash estimation in a gearing
system was done via calculation of the speed change of
the driving part of the gear. An extended Kalman filter was
employed in [2] and [3] for estimating the backlash torque
in a two-mass motor arm and an automotive powertrain. The
backlash function parameters were identified offline based on
this estimated torque. Hågglund [4] used describing functions
to model the effects of backlash in a closed-loop motion
system. He presented an online calculation making use of a
static relation between backlash model parameters and con-
troller gains. Optimization techniques for offline identification
of backlash torque were employed in [5] for cascaded linear
systems and in [6] for a vehicle drive-line system, where
position, velocity, and torque measurements were used. The
backlash torque was modeled with a “contact”/“noncontact”
approach in [7]. The “noncontact” torque was modeled by
a differentiable function of deadzone width and assessed the
backlash amplitude indirectly through “noncontact” torque
estimation in a nonlinear observer. Experimental validation
was presented in [8] using a sliding-mode observer (SMO).

In most of the previous studies, backlash was described as
the resulting torque when contact of the two moving parts of
the coupling takes place. Direct estimation of the deadzone
angle has mainly been addressed as an offline identification
problem with methods that are valid for perturbations around
a linearization point of the system [2], [3], [5], [6]. In our
prior work [9], we proposed a smooth backlash model based
on variable shaft stiffness and outlined the basic ideas of a
cascaded architecture for backlash estimation based on sliding-
mode and adaptive principles along with simulations.

This paper extends our previous work by presenting a
complete theoretical framework for the design of the deadzone
angle estimator. Specifically, the varying-stiffness model is
modified to a more generic scheme that includes the initial
motor-to-load position offset. The cascaded design of the
estimation algorithm, outlined in [9], is presented in more
detail, and proofs of its convergence and stability properties in
connection to the estimator’s modular structure are provided.
Moreover, a robustness analysis of the algorithm with respect
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Fig. 1. Correspondence between mechanical drive-train and single-axis
machine-tool systems. The angular velocities of the motor and the load are
denoted by ωm and ωl , respectively.

to modeling uncertainties is carried out and bounds are given
for the deadzone estimation error. Finally, the theoretical
findings are validated both with simulations and through a
number of experiments performed on a real single-axis drive
train with the state-of-the-art Siemens equipment.

This paper is organized as follows. Section II states the
estimation problem discussed in this paper, describes the drive-
train system, and presents the modified backlash model based
on varying shaft stiffness. Section III analytically describes
the design of the deadzone estimation scheme and provides
the convergence and stability proof for the adaptive estimator.
The effect of model uncertainties on the performance of the
algorithm is discussed in Section IV, where a proof for the
boundedness of the estimation error is presented. Section V
illustrates the estimator performance in a simulation environ-
ment. Experimental validation of the theoretical findings is
provided in Section VI. Finally, conclusions are drawn and
future work is discussed in Section VII.

II. SYSTEM MODELING AND PROBLEM FORMULATION

A. Drive-Train Modeling

As discussed in [9], a typical single-axis machine tool can
be described as a drive train, which consists of the drive motor,
a flexible shaft with damping and backlash, and a generalized
load with friction. The correspondence between the single-axis
machine tool and the abstraction of the drive train can be seen
in Fig. 1.

The drive component is a permanent magnet synchronous
motor (PMSM) that is typically used for actuating linear axes
in machine tools, especially for highly dynamic tasks. The
motor is position-controlled with a cascade of a proportional
and a proportional–integral controller, used for the position
and the velocity loops, respectively.

In general, the electrical closed-loop dynamics is much
faster than that of the mechanical system. Moreover, since the
focus of this paper is on the identification of backlash, i.e., on
the level of the accelerations, and since the torque produced
by the motor is measured, the closed-loop electrical dynamics

Fig. 2. Block diagram of the open-loop mechanical drive-train system. The
block labeled “DZ” represents the backlash deadzone.

of the motor will not be considered in this paper. This does
not affect the design of the estimation algorithms as it will
become clearer later in the analysis.

The dynamics of the mechanical drive-train system reads

ω̇m = 1

Jm

(
u − TF,m(ωm) − 1

N
T BF

l (x)

)
(1)

θ̇m = ωm (2)

ω̇l = 1

Jl

(
T BF

l (x) − TF,l(ωl)
)

(3)

θ̇l = ωl (4)

where ωm, θmandωl, θl are the angular velocity and position
of the motor and the load, respectively, Jmand Jl are the
corresponding inertias and N is the gearing ratio. In the
backlash-free case, the interconnecting torque T BF

l is given as

T BF
l (x) = KS

(
1

N
θm − θl

)
+ DS

(
1

N
ωm − ωl

)
(5)

where KS is the shaft stiffness and DS is the damping
coefficient and the superscript “BF” stands for “backlash-free.”
The friction torques acting on the drive motor and the load
express different frictional phenomena. TF,m comes mostly
from the contacting surfaces of the motor bearings, while
TF,l describes the total Coulomb and viscous friction in the
load. The two friction torques are modeled as described in the
following equations [10]:

TF,m(ωm) = TC,msgn(ωm) + βmωm (6)

TF,l(ωl) = TC,lsgn(ωl ) + βlωl (7)

where sgn(·) is the signum function defined in (63) in
Appendix A. The parameters βm, βl , TC,m , and TC,l are con-
sidered as constant. Fig. 2 shows the block diagram of the
drive-train system in the open loop.

B. Backlash Modeling

Backlash shows up as a loss of engagement between two
moving parts (e.g., motor and load) due to a developing gap
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Fig. 3. Backlash illustration. The straight dashed line denotes the relative
configuration between the motor and the load rotors that is taken as zero
position difference. When the difference between the motor and the load
position is larger than −δ1 or smaller than δ − δ1, then the two shafts are
disengaged and no torque is applied to the motor or the load.

(deadzone) in the coupling mechanisms, as shown in Fig. 3.
The backlash phenomenon can be interpreted as a sudden
change either in the load inertia or in the shaft stiffness.
In general, the backlash torque is modeled after the restor-
ing and damping torques in a mass-spring-damper system,
while in the deadzone, these two torques are either vanish-
ing or becoming very small, nearly zero. A number of studies
have been carried out regarding the description of the torques
due to backlash. The most intuitive and common one is the
deadzone model [10], [11], where the interconnecting torque
T BF

l becomes zero inside the deadzone. Outside the deadzone,
the angle difference is offset by the width of the deadzone
angle. A similar approach is found in [12], where the ratio of
the angle differences over the deadzone width is considered.
A generic backlash operator based on a discontinuous input–
output mapping was used in [13]–[15] to capture the hysteretic
behavior of mechanical systems with gearing. Dynamical
models described in [16] and [17] pertain to express the
backlash torque as a sudden impact. The torque is again
given by a mass-spring-damper system, where the elastic linear
relative deformation of the two colliding coupling parts has its
own stiff dynamics. Tao and Kokotovic [18] proposed a first-
order discontinuous model to describe the backlash between
commanded and real input of dynamical systems. The inverse
of the model is used for designing an adaptive control scheme.
A different dynamical model is described in [11] and [19],
where a backlash angle is defined and its dynamics is used
for calculating the impact torque.

In [9], we introduced a smooth backlash model based on
changing shaft stiffness to overcome the numerical difficul-
ties present in the state-of-the-art discontinuous models. This
model is modified in this paper to include an initial position
offset between motor and load, as shown in Fig. 3.

Defining the angular position and velocity differences
between drive motor and load as

�θ � 1

N
θm − θl (8)

�ω � 1

N
ωm − ωl (9)

TABLE I

SYSTEM MODEL NOMENCLATURE

the interconnecting torque T BF
l in the deadzone model is

replaced by the backlash torque

T D Z
l =

⎧⎪⎨
⎪⎩

KS(�θ + δ1) + DS�ω, �θ < −δ1

KS(�θ + δ1 − δ) + DS�ω, �θ > δ − δ1

0, 0 ≤ �θ + δ1 ≤ δ

(10)

where δ is the width of the deadzone in rad. In the modified
smooth model proposed in [9], the shaft stiffness and the
backlash torque are described by

KBL = KS

π
[π + arctan(α(�θ − δ + δ1))

− arctan(α(�θ + δ1))] (11)

Tl(x, δ) =
[
�θ + δ1 − δ

2
· (1 + sgn(�θ)) + DS

KS
�ω

]

· KBL(�θ, δ) (12)

where

x � [ωm θm ωl θl ]T

is the state vector, 0 ≤ δ1 ≤ δ is the initial motor-load position
offset, and α is a large positive real number that parameterizes
how steep the change in the stiffness is. For α → ∞, it is clear
that Tl → T D Z

l . This can also be seen in Fig. 4, where the
stiffness KBL(�θ, δ) and the corresponding backlash torques
are plotted for different values of the parameter α. A complete
explanation of the most important variables and notation used
in the modeling of the system is provided in Table I.

C. Problem Formulation

The collective objective can be summarized in the following
problem formulation.
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Fig. 4. Left: shaft stiffness varying between two values. The larger the value of α is, the steeper the change in the stiffness is. Right: backlash torque for a
sinusoidal motion profile using the deadzone model (red dotted curve) and the varying-stiffness model (solid lines) for different values of α.

Problem 1 (Deadzone Angle Estimation): Consider the
single-axis drive-train system described in (1)–(4), (6), and (7),
where T BF

l is replaced by the backlash torque defined in
(11) and (12) with the known initial position offset δ1. Design
an online dynamic estimator for the deadzone angle δ, such
that the estimate δ̂ fulfills the following requirements.

1) Convergence to a compact set containing the real dead-
zone angle value δ = δ∗.

2) Maximum steady-state absolute estimation error is less
than 10−2 rad.

III. BACKLASH DEADZONE ANGLE ESTIMATION

The estimation of the deazone angle belongs to the family
of problems of online parameter estimation in systems with
nonlinear parameterization, treated in numerous works in the
literature. The reader is indicatively referred to [20]–[25].

The approach presented in [9] is partially based on a
method for parameter estimation in nonlinearly parameterized
systems presented in [26]. The basic idea relates to estimating
a perturbation of the system dynamics that depends on the
unknown parameter and then finding an adaptation law for
estimating the parameter itself. In [26], both the perturbation
and the unknown parameter are estimated simultaneously
using the two estimation blocks (perturbation and parameter)
in the feedback interconnection. In [9], these two estimation
tasks are separated to allow for an independent design for
each of them. In this section, the estimation scheme presented
in [9] is elaborated and a proof of its convergence and stability
properties is provided.

A. Method Overview

As in [9], the dynamics of the load shown in (3) is used to
apply the method for the deadzone angle estimation. This is
because all the states are measured and the unknown parameter
δ affects the dynamics of both the motor and the load in
the same way, i.e., through the torque Tl . The load velocity

subsystem can be rewritten in the form

ω̇l = − 1

Jl
TF,l(ωl) + φ(x, δ) (13)

with

φ(x, δ) � 1

Jl
Tl(x, δ) (14)

and δ = δ∗ being the unknown parameter, which belongs to a
compact set D ⊂ R≥0. The method is divided in two parts.

1) Obtain an estimation φ̂ of the perturbation φ(x, δ∗).
2) Derive an adaptation law for the deadzone angle

˙̂
δ � ρ(x, φ̂, δ̂) (15)

based on φ̂.

B. Sliding-Mode Perturbation Observer

A second-order SMO is used for finding an estimate of φ.
Its structure is given by [27], [28]

˙̂ωl = − 1

Jl
TF,l(ωl ) + v (16)

where ω̃l = ωl − ω̂l is the velocity estimation error and v is
an appropriate high frequency term, called the injection signal,
that depends on the innovation signal ω̃l .

From (3) and (16), the dynamics of the velocity estimation
error in the absence of any model or parameters uncertainties
reads

˙̃ωl = ω̇l − ˙̂ωl = 1

Jl
Tl(x, δ∗) − v. (17)

With the sliding manifold that is defined as

S � {ω̃l ∈ R : ω̃l = ˙̃ωl = 0} (18)

the design of v is given in [29]

v = k1|ω̃l | 1
2 sgn(ω̃l ) + k2

∫ t

0
sgn(ω̃l(τ ))dτ (19)
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where k1 and k2 are positive gains. The resulting observer
is called the supertwisting sliding-mode observer (STSMO),
and it is proven in [30] and [31] that for appropriate positive
gains k1 and k2, the injection signal v brings the observer
error dynamics on the sliding manifold S in finite time, where
it remains thereafter.

If the error dynamics reaches the sliding manifold, then
˙̃ωl = ω̃l = 0 for all future times, which from (17) leads to

v = 1

Jl
Tl(x, δ∗). (20)

In other words, if the injection signal v is designed such that
the estimation error dynamics reaches the sliding manifold
S and remains thereafter, then the unknown perturbation
φ = (1/Jl)Tl is indirectly calculated from (20) [32]. Hence,
the unknown perturbation can be estimated at each time
instant t by

φ̂ = k1|ω̃l | 1
2 sgn(ω̃l) + k2

∫ t

0
sgn(ω̃l(τ ))dτ. (21)

Remark 1: The choice of a second-order SMO for a system
of relative degree 1 (the subsystem is scalar) was made due to
the property of higher order SMOs of alleviating the chattering
in the injection and estimation signals [28], [33].

Remark 2: Apart from the appropriate selection of
k1 and k2, the finite-time estimation additionally requires that
Tl and Ṫl are bounded. This is ensured by the boundedness
of the state vector and the smoothness of the backlash model.
However, the bound on Ṫl is proportional to α. This means
that the closer the model is to the deadzone model, the larger
this bound will be, which in turn leads to higher gains for the
observer and, consequently, more chattering in the estimation
signal.

Remark 3: Since |Ṫl | is bounded by a positive number ρ,
selecting the STSMO gains k1 and k2, such that k2 > ρ, k1 >
1.41(k2 + ρ)1/2 ensures finite-time convergence of the veloc-
ity estimation error to the sliding manifold [34]. Given the
discontinuous nature of the backlash phenomenon (abrupt
engagement/disengagement between motor and load), such a
selection may lead to large gains and unacceptable levels of
chatter in the estimation signal. An alternative way to tune
the STSMO is to start with small values of k1 and k2 and
increase k1 until before substantial chatter shows up in the
estimation signal. At that point, the system will not be in the
sliding motion, which means that ˙̃ωl(t) = s(t, ωl(t)) ⇒ v =
(1/Jl)Tl + s(t, ωl(t)), where s(t, ωl (t)) 
= 0 is bounded for
bounded ωl . Further increase of k2 will improve the accuracy
of the perturbation estimation without significantly increasing
the chatter. The effect of not perfect estimation of φ on the
deadzone angle estimation accuracy is extensively discussed
in Section IV.

C. Adaptive Backlash Angle Estimator

The adaptive deadzone angle estimator is based on the
design proposed in [26] for the estimation of unknown para-
meters in nonlinearly parameterized systems. For the rest of
the analysis, we consider that the unknown parameter δ = δ∗
lies in a compact set D = [0, δmax] ⊂ R≥0, where δmax is the

largest considered deadzone angle, and we define the backlash
angle estimation error as

δ̃ = δ∗ − δ̂.

The following assumptions are made.
Assumption 1: The deadzone angle is constant or slowly

varying, i.e.,

δ̇∗ ≈ 0.

Two auxiliary functions, σ : R
4 → R≥0 and μ : R

4 ×D → R,
are needed for proving convergence and stability. Both are
bounded for bounded state vector x and piecewise continuous.
They have the following properties.

Property 1: For all pairs, δA, δB ∈ D

μ(x, δA)
1

Jl

∂Tl

∂δ
(x, δB) ≥ σ(x). (22)

Property 2: There exists a positive real constant number
L > 0 such that ∀δA, δB ∈ D

1

Jl
|Tl(x, δB) − Tl(x, δA)| ≤ L

√
σ(x)|δB − δA|. (23)

The selection of functions μ(x, δ) and σ(x) will be detailed
later in this section. A persistence of excitation (PE) condition
is also needed.

Assumption 2: There exist positive real numbers T and ε
such that ∀t ∈ R≥0∫ t+T

t
σ(x(τ ))dτ ≥ ε. (24)

The main result of this paper is an adaptive estimator design
that is expressed in Theorem 1.

Theorem 1: Consider the dynamics of the load velocity
given by (11)–(14) and the functions μ(x, δ) and σ(x) with
properties 1 and 2. Also, consider an estimate φ̂ of the
interconnecting perturbation φ = φ(x, δ∗) with the associated
estimation error defined as

φ̃ � φ − φ̂. (25)

The adaptive estimator

˙̂
δ = ρ(x, φ̂, δ̂) = Proj

[
δ̂, γμ(x, δ̂)

(
φ̂ − 1

Jl
Tl(x, δ̂)

)]
(26)

with γ > 0 the adaptation gain and Proj(·, ·) the projection
operator defined in Appendix B, ensures that the estimation
error δ̃ asymptotically converges to 0, uniformly in x if
assumptions 1 and 2 are satisfied and φ̃∗ = 0 is an uniformly
globally asymptotically stable (UGAS) equilibrium of the
perturbation estimation error dynamics φ̃.

Proof: The proof is inspired by the proof of [26, Propo-
sition 4] and the stability theory of interconnected systems
in [35]. Under Assumption 1 and the definition of the pertur-
bation estimation error in (25), the dynamics of the parameter
estimation error δ̃ is written as

˙̃δ = −Proj

[
δ̂, γμ(x, δ̂)

(
φ − φ̃ − 1

Jl
Tl(x, δ̂)

)]
. (27)
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Fig. 5. Cascaded interconnection of the perturbation and angle estimation
error systems.

From (27), it can be easily seen that the total error dynamics
can be described as the cascaded interconnection of the unper-
turbed error system given by (27) for φ̃ ≡ 0 and the output φ̃
of the (interconnecting torque) perturbation estimation error
system, as shown in Fig. 5.

The proof is now split in two parts. First, it is shown that
the unperturbed system of the deadzone angle estimation error
is uniformly locally exponentially stable (ULES), and then,
it will be shown that a UGAS estimate of φ renders the total
cascaded system UGAS.

For φ̃ = 0 in (27), the unperturbed error dynamics reads

˙̃δ = −Proj

[
δ̂, γμ(x, δ̂)

1

Jl
(Tl(x, δ∗) − Tl(x, δ̂))

]
. (28)

The shortened notation

μ � μ(x, δ̂)

Tl � Tl(x, δ∗)
T̂l � Tl(x, δ̂).

will be used in the following for brevity. Define the Lyapunov
function candidate

V (t, δ̃) = 1

2

(
1

γ
− κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

)
δ̃2 (29)

where κ is a real positive number to be defined. The function
is positive definite since

α1(|δ̃|) ≤ V (t, δ̃) ≤ α2(|δ̃|)
with α1 and α2 class-K∞ functions (see Definition 3) defined as

α1(|δ̃|) =
(

1

γ
− κ sup

x∈Br

σ(x)

)
|δ̃|2 (30)

α2(|δ̃|) = 1

γ
|δ̃|2 (31)

for κ < 1/(γ supx∈Br
σ(x)), where Br = {x ∈ R

4
∣∣‖x‖ ≤

r, r < ∞}. The time derivative of V along the trajectories of
the estimation error reads

V̇ (t, δ̃)

= ∂V

∂ t
(t, δ̃) + ∂V

∂δ̃
(t, δ̃) ˙̃δ

= 1

2
δ̃2 ∂

∂ t

[
−κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

]

+ δ̃

(
1

γ
− κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

)
˙̃δ

= κ

2
δ̃2
[

∂

∂ t

∫ t

0
e(t−τ )σ (x(τ ))dτ −

∫ ∞

0

∂

∂ t
e(t−τ )σ (x(τ ))dτ

]

− δ̃

(
1

γ
−κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

)
Proj

[
δ̂, γμ · Tl − T̂l

Jl

]
.

(32)

Using the property

−δ̃
1

γ
Proj

[
δ̂, γμ · 1

Jl
(Tl − T̂l)

]
≤ −δ̃μ · 1

Jl
(Tl − T̂l)

presented in [36, Lemma E.1], as well as, the property∫ ∞

0
e(t−τ )σ (x(τ ))dτ ≥ e−T

∫ t+T

t
σ(x(τ ))dτ, T > 0 (33)

(see Appendix D for a proof), (32) gives

V̇ (t, δ̃) ≤ κ

2
δ̃2
(

σ(x) − e−T
∫ t+T

t
σ(x(τ ))dτ

)

− δ̃

(
1

γ
− κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

)
γμ · Tl − T̂l

Jl

≤ κ

2
δ̃2
(

σ(x) − e−T
∫ t+T

t
σ(x(τ ))dτ

)
− δ̃μ

Tl − T̂l

Jl

+ |δ̃|κγ

∣∣∣∣
∫ ∞

t
e(t−τ )σ (x(τ ))dτ

∣∣∣∣ |μ| 1

Jl
|Tl − T̂l |

(34)

= κ

2
δ̃2
(

σ(x) − e−T
∫ t+T

t
σ(x(τ ))dτ

)

− δ̃

∫ 1

0
μ(x, δ̂) · 1

Jl

∂Tl

∂δ
(x, δ̂ + pδ̃)δ̃dp

+ |δ̃|κγ

∣∣∣∣
∫ ∞

t
e(t−τ )σ (x(τ ))dτ

∣∣∣∣ |μ| 1

Jl
|Tl − T̂l |

(35)

where [37, Th. 11.1] (see Appendix C) was used. Using
Assumptions 1 and 2 and Properties 1 and 2 in the inequality
mentioned earlier and introducing M and � as upper bounds
for |μ(x, δ)| and |σ(x)|, respectively, lead to

V̇ ≤ −
(

1 − κ

2

)
σ(x)δ̃2 − κ

2
εe−T δ̃2

+κγ · M · � · L
√

σ(x)|δ̃|2 = −ψT Qψ (36)

where

ψT = [|δ̃|√σ(x)|δ̃|]

Q =
⎡
⎣

κ

2
εe−T −κ

2
γ · M · � · L

−κ

2
γ · M · � · L 1 − κ

2

⎤
⎦

and the property ∫ ∞

t
e(t−τ )dτ = 1 (37)

was used. From inequality (36), it can be seen that V̇ is
negative definite if κ is chosen as

κ <
2

1 + eT

ε M2�2γ 2 L2
. (38)

For such κ and by defining

λmin(Q) = min
i∈{1,2}{λi ∈ R≥0|PQ(λi ) = 0}

where PQ is the characteristic polynomial of Q, (36) is written

V̇ (t, δ̃) ≤ − λmin(Q)︸ ︷︷ ︸
α3

∥∥∥∥ 1√
σ(x)

∥∥∥∥
2

2
|δ̃|2 ≤ −α3|δ̃|2. (39)
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Moreover,∣∣∣∣∂V

∂δ̃

∣∣∣∣ =
∣∣∣∣δ̃
(

1

γ
− κ

∫ ∞

t
e(t−τ )σ (x(τ ))dτ

)∣∣∣∣
≤
∣∣∣∣ 1γ − κe−T

∫ t+T

t
σ(x(τ ))dτ

∣∣∣∣ |δ̃|
≤
∣∣∣∣ 1γ − κe−T �

∫ t+T

t
dτ

∣∣∣∣ |δ̃|
≤
∣∣∣∣ 1γ − κe−T �T

∣∣∣∣︸ ︷︷ ︸
α4

|δ̃| = α4|δ̃| (40)

which implies that (∂V /∂δ̃) is uniformly bounded (UB). Then,
the equilibrium point δ̃∗ = 0 is ULES [38].

Next, it will be shown that the system in (27) is input-to-
state stable (ISS) (see Definition 5) with respect to φ̃.

Taking the time derivative of V along the trajectories of the
perturbed system (27) now and following the same steps as
for the unperturbed system give:
V̇ (t, δ̃)

≤ −α3|δ̃|2 − δ̃

(
1

γ
− κ

∫ ∞

t
et−τσ (x(τ ))dτ

)
γμφ̃

≤ −α3|δ̃|2 + |δ̃|
(

1 − κγ e−T
∫ t+T

t
σ(x(τ ))dτ

)
μ|φ̃|

≤ −α3|δ̃|2 + |δ̃|(1 − κγ e−T ς · T )M|φ̃|
≤ |δ̃|[(1 − κγ e−T ς · T )M|φ̃| − ϑα3|δ̃|]

− (1 − ϑ)α3|δ̃|2 ≤ −(1 − ϑ)α3|δ̃|2 (41)

for all δ̃ ∈ R that satisfy

|δ̃| ≥ (1 − κγ e−T ς · T )M

α3ϑ
|φ̃| = R|φ̃|︸︷︷︸

r(|φ̃|)

(42)

with 0 < ϑ < 1

R � (1 − κγ e−T ς · T )M

α3ϑ
(43)

and ς ≥ 0 being a lower bound for |σ(x)|. Then, according to
[38, Th. 419], the perturbed system (27) is ISS with respect
to φ̃.

Last, since the unperturbed system (28) is ULES and the
perturbed system (27) is ISS with respect to φ̃, then if
φ̃∗ = 0 is UGAS, then the deadzone angle estimation error δ̃
asymptotically converges to the real value δ∗ [35, Lemma 1],
which completes the proof.

The uniform global asymptotic stability of the equilibrium
φ̃∗ = 0 is theoretically guaranteed by the STSMO, which
ensures finite-time stabilization of the perturbation estimation
error to the origin (which is a stronger stability property).

The final steps of the design include determining μ(x, δ)
and σ(x) to satisfy Properties 1 and 2. Selecting μ(x, δ) as

μ(x, δ) = Jl

K 2
S

∂Tl

∂δ
(x, δ) (44)

makes condition (22) satisfied, with

σ(x)= 1

K 2
S

(
∂Tl

∂δ

∣∣∣∣
δ=�

)2

= 1

π2 [χ1(x,�) + χ2(x,�)]2 (45)

where the functions χ1, χ2 are defined as

χ1(x, δ) = 1

2
(1+sgn(�θ))

· [π+arctan(α(�θ−δ+δ1))−arctan(α(�θ + δ1))]
(46)

χ2(x, δ) =
[
�θ + δ1 − δ

2
· (1 + sgn(�θ)) + DS

KS
�ω

]

· α

1 + [α(�θ + δ1 − δ)]2 (47)

and � is a large finite positive value with � > δmax.
Since x and σ(x) are bounded and D is compact, it is easy

to show that there exits L > 0, such that condition (23) holds.
Indeed ∣∣∣∣∂Tl

∂δ

∣∣∣∣ =
∣∣∣∣KS

π
[χ1(x, δ) + χ2(x, δ)]

∣∣∣∣ (48)

is bounded, since x is bounded and δ belongs to a compact set.
Assume that σ(x) 
= 0 (for large �, the function σ approaches
0 asymptotically) and let ς > 0 be a lower bound for σ(x).
Equation (48) implies that there exists positive constant real
number L0, such that for each pair (δ∗, δ̂), the following
inequality holds:

1

Jl
|Tl(x, δ∗) − Tl(x, δ̂)| ≤ L0|δ̃| ≤ L0√

ς︸︷︷︸
L

√
σ(x)|δ̃|

= L
√

σ(x)|δ̃|

which shows that Property 2 is obtained.
Equations (45)–(47) show that the PE condition (24) does

not hold if during the time interval [t, t + T ], the system is
always within the deadzone. This, however, is expected, since
in that case, there is no engagement between motor and load
and, hence, no information about the stiffness of the shaft
connecting them.

Remark 4: The selection of functions μ(x, δ), σ (x) is not
unique. The specific choice of μ(x, δ̂) in (44) results into
a gradient-type adaptive law which is very common in the
literature of adaptive techniques. This choice, although it
is sufficient in the specific estimation problem, cannot be
generalized for nonlinearly parameterized systems, since it
does not always guarantee parameter convergence.

The adaptive law for the parameter estimate δ̂ is finally
given by

˙̂
δ = Proj

{
δ̂, γ

Jl

K 2
S

∂Tl

∂δ
(x, δ̂)

[
φ̂ − 1

Jl
Tl(x, δ̂)

]}
, γ > 0

(49)

where

∂Tl

∂δ
(x, δ̂) = − KS

π
[χ1(x, δ̂) + χ2(x, δ̂)]. (50)

The complete estimator design is shown in Fig. 6 and is
summarized in the Algorithm 1.
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Fig. 6. Block diagram of the single-axis mechanical drive-train system and
the estimation scheme.

Algorithm 1 Backlash Angle Estimation

IV. ROBUSTNESS ANALYSIS

Section III was discussed the problem of estimating the
deadzone angle in the case where an asymptotic estimate or an
exact measurement of the interconnecting torque Tl = Jlφ is
available. Specifically, it was shown that the adaptive estimator
ensures that the equilibrium point δ̃∗ = 0 of the estimation
error system is ULES if an exact measurement of φ is
available or UGAS if an asymptotic estimate φ̂ of the real
perturbation φ is used instead.

In real applications, however, such assumptions on the
availability of a measurement or even an asymptotic esti-
mate of φ may not necessarily hold. The effect of measure-
ment noise, parameters’ uncertainty, and modeling mismatches
allow, under the assumption of boundedness of the uncertain-
ties, at best for convergence of the interconnecting perturbation
estimation error to a compact set.

In order to illustrate this better, consider the real backlash
torque T ′

l defined as

T ′
l =

[
�θ+δ1− δ∗

2
· (1+sgn(�θ))+ DS + �DS

KS +�KS
�ω

]

· K ′
BL(�θ, δ∗)+�m(t) (51)

K ′
BL = KS + �KS

π
· [π+arctan(α(�θ+δ1−δ∗))−arctan(α(�θ+δ1))]

(52)

and the real friction torque

T ′
F,l = TF,l + �TF,l(t, ωl) (53)

where all the perturbations due to parameter uncertainty (�KS

and �DS) and model mismatches (�m(t) and �TF,l(t, ωl ))

are bounded for bounded states for all t ≥ t0. From (51)–(53),
it can be easily seen that the real interconnecting torque can
be written as the torque defined in (11) and (12) perturbed by
a bounded signal

T ′
l = Tl + �(t), (54)

where �(t), with |�(t)| ≤ K and K being a positive finite real
number, represents the effect of noise and all the uncertainties
on the model (including this of friction).

It is clear from the description mentioned earlier that using
the STSMO (16) and (19) (or any other asymptotic estimator
for the interconnecting torque) will lead to an estimate of
Tl + �(t) instead of just Tl . This implies that the perturbation
estimation error φ̃ will not decay to zero, but it will converge
to a compact set, specifically

|φ̃| ≤ � = 1

Jl
K . (55)

The assumption of uniform boundedness of the perturbation
estimation error φ̃ is not conservative considering that the
states (positions and velocities) of the closed-loop system,
as well as the friction torque are bounded signals and there
exists no feedback of the estimation φ̂ to the closed-loop
dynamics. It will be shown in the following that in this case,
the adaptive estimator (46), (47), (49), and (50) ensures global
uniform boundedness of the deadzone angle estimation error.

Proposition 1: The adaptive deadzone angle estimator
defined in (46), (47), (49), and (50), where the perturbation
estimation error φ̃ = (1/Jl)T ′

l −φ̂ is UB by a positive constant
real number �, ensures that the trajectories of the deadzone
angle estimation error δ̃(t) are uniformly globally bounded
(UGB). Moreover, as t → ∞, the bound is proportional to
the perturbation estimation error bound �.

Proof: The ISS property of the system (27) with respect
to the perturbing input φ̃ implies:

|δ̃(t)| ≤ β1(|δ̃(t0)|, t − t0) + β2

(
sup

0≤τ≤t
φ̃(τ )

)
∀|δ̃| ≥ r(|φ̃|)

(56)

where r(|φ̃|) = R|φ̃|, β1 : R≥0 × R≥0 → R≥0 is a class-KL
function, and β2 : R≥0 → R≥0 is a class-K function (see
Definitions 3 and 4), with β2 calculated as in the following
[38, Th. 4.19]:

β2

(
sup

0≤τ≤t
φ̃(τ )

)
=α−1

1 ◦ a2 ◦ r(�)= R√
1 − κ sup

x∈R

σ(x) · γ

︸ ︷︷ ︸
c>0

�

(57)

where R was defined in (43).
This implies that there exists an arbitrarily large positive

real number ζ , such that

∀η ∈ (0, ζ )∃υ = υ(η)

for which it holds

|δ̃(t0)| ≤ η ⇒ |δ̃(t)| ≤ υ ∀t ≥ t0. (58)
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Fig. 7. Real and estimated backlash torque scaled by the load inertia Jl .

Then, according to [38, Definition 4.6], the solutions of
an unperturbed deadzone estimation error system are UGB.
Moreover, since β ∈ KL, it holds that

lim
t→∞ |δ̃(t)| ≤ lim

t→∞(β(|δ̃(t0)|, t − t0) + c�) = c� (59)

which completes the proof.

V. SIMULATION RESULTS

Simulations were carried out in order to demonstrate the
convergence and accuracy properties of the estimation scheme.
The drive motor velocity was regulated to track a sinusoidal
reference signal ωr = 4π sin(4π t). The system parameters
(motor and load friction, shaft coefficients, and motor and load
inertias) were considered completely known, and the velocity
measurements were inflicted with zero-mean white Gaussian
noise with σmeas = 0.0316 rad s−1. Emulation of the backlash
phenomenon was done by using the deadzone model. The
deadzone angle was initially set to δ∗ = 0.2 rad. An increase
by a 5% step of its initial value was occurred after the first
3 s of the simulation. Finally, the position offset was taken
δ1 = (δ∗/2).

In the absence of model parameters uncertainties,
the STSMO estimated the perturbation φ with a substantial
accuracy, as shown in 7. Fig. 8 shows the estimation of the
deadzone angle and the detection of the change in its value.
In both cases, convergence was achieved in less than 2 s,
while the absolute steady-state estimation error was less than
2.5 × 10−4 rad. This accuracy sufficiently meets the require-
ment set in Problem 1.

The �θ , Jl φ̂ and θm , θl plots in Fig. 9 illustrate the
estimated deadzone width and the corresponding backlash
hysteresis relation between the drive motor and load positions.

The relation between the bound K for the backlash torque
estimation error and the steady-state deadzone estimation
absolute error was investigated with additional simulation
scenarios, where only the STSMO gains k1 and k2 were varied.
In each scenario, the peak steady-state deadzone estimation
error was calculated as the MAEE over the last Tp seconds of

Fig. 8. Top: real and estimated change of deadzone angle. Bottom: estimation
error.

Fig. 9. Top: deadzone illustration through torque-position difference.
Bottom: backlash hysteresis.

the simulation

δ̃SS
peak = max

t f −Tp≤t≤t f
|δ̃(t)| (60)

where t f denotes the end time of each simulation. The
different obtained values for δ̃SS

peak were plotted against the

corresponding bounds for Jl |φ̂|. Fig. 10 shows the approxi-
mately linear relation between the two bounds with a slope
q ≈ 0.0023.

Remark 5: Although the deadzone estimation error is
always bounded (due to the projection), convergence of the
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Fig. 10. Linear relation between the bounds for the perturbation estimation
error φ̃ and the deadzone angle estimation error δ̃.

adaptive estimate δ̂ to the real deadzone angle is guaranteed
only if a certain PE criterion, expressed in Assumption 2,
is satisfied. Intuitively, this means that the reference signal
should make the motor move in a way, such that substantial
information on the deadzone is captured by the system mea-
surements, i.e., the motor should engage with and disengage
from the load as frequently as possible. For this reason, any
palindromic motion profile, e.g., a sinusoid, is suitable for
deadzone estimation experiments. The choice of the reference
signal directly affects the performance of the estimator, and it
may compromise it in cases where the backlash phenomenon
does not appear (e.g., unidirectional axis movement with the
motor and the load is already engaged).

Remark 6: The sensitivity of the estimated perturbation φ̂
with respect to the deadzone angle is proportional to the
steepness factor α, as can be easily seen from (46), (47),
and (50). A large value for the latter, e.g., 104, will make
the estimator very sensitive to small changes in δ, which is in
general desirable but will set larger gain requirements for the
STSMO. Indeed, selecting k1 and k2 based on the bound of
Tl leads to substantial chatter in the estimation signal (both
φ̂ and δ̂). For this reason, the observer gains were iteratively
tuned according to the discussion in Remark 3. The adaptation
gain γ represents the rate of estimation of the deadzone angle.
This depends on the levels of excitation, i.e., the frequency
of the velocity reference signal ωr . Slower reference signals
require larger adaptation gains if fast convergence is required.
Too large gains, however, lead to more abrupt “jumps” in the
estimation signal and increased sensitivity to sensor noise.
As with the STSMO gains, a good practice is to start with
small values for γ and increase it until the desired convergence
rate is achieved. Last, since the deadzone angle can only
increase in time (due to wear of the couplings), it is natural
to underestimate the initial estimation value δ̂(t0). Zero initial
conditions are chosen if no prior knowledge about the width
of the motor-to-load clearance is available.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental setup consists of two Siemens FT7042-
5AF70 PMSMs connected through a stainless steel shaft. Both
motors are equipped with a Siemens SINAMICS S120 drive

Fig. 11. Jaw coupling detail.

Fig. 12. Experimental setup. 1: 1FT7 drive PMSM. 2: 1FT7 load PMSM.
3: shaft. 4: backlash mechanism. 5: mounting base.

converter with 11-bit absolute encoders for the position. Three
custom-made jaw couplings are mounted (one at a time) on
a steel base and house the two parts of the interconnecting
shaft (see Fig. 11). The total deadzone angle for each of the
couplings is 1.027, 0.186, and 0.105 rad (58.8445°, 10.6685°,
and 6.0161°, respectively). The entire drive train with the
friction component is shown in Fig. 12.

The load motor (see Fig. 12) serves as a pure inertia in the
experiments. The design and tuning of the position, velocity,
and current control loops in the drive motor were not included
in this paper.

B. Test Scenarios

The identified parameters of the physical system were used
in the experiments for the assessment of the estimation algo-
rithm. Five more variation cases were considered for testing
the robustness and performance of the deadzone estimator
against parameter uncertainties. In each of these additional
tests, one of the four uncertain parameters (shaft and friction
coefficients) was increased by 100% of their identified value.
In the fifth test, all four parameters (KS , DS , TC,l , and βl)
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TABLE II

TEST SCENARIOS

were increased simultaneously. The reference for the position
of the drive motor was a sinusoid

θr (t) = �0 sin(2π fr t)

where in all the tests, �0 = 1 rad and fr = 0.5 Hz. The
15 different scenarios are shown in Table II. The parameters
of the identified physical system and the SMO and adaptive
estimator are collectively given in Table III.

C. Results

This section presents the results obtained from the exper-
iments on the estimation of the deadzone angle. The perfor-
mance of the estimator was evaluated based on the maximum
absolute estimation error (MAEE), which is defined over a
time interval T > 0 as

MAEE = sup
t0≤t≤t0+T

|δ̃(t)|. (61)

Fig. 13 shows the estimation of the deadzone angle for the
cases where the identified parameters of the system were used
(Tests 0A, 0B, and 0C). As it can be seen, the estimation error
δ̃ converges to a compact set including the origin, while the
corresponding MAEE is less than 10−2 rad in all the tests,
specifically 1.75 × 10−3, 1.90 × 10−3, and 0.66 × 10−3 rad
for Tests 0A, 0B, and 0C, respectively.

The position of the motor and the load can be seen
in Fig. 14 (top). While in the deadzone, the load does not move
although the drive motor shaft does. This loss of engagement
is also shown in the bottom of Fig. 14, where the connecting

TABLE III

SYSTEM AND ESTIMATOR PARAMETERS’ VALUES

Fig. 13. Deadzone angle estimated value (top) and the associated estimation
error (bottom) for the nominal cases (Tests 0A, 0B, and 0C).

shaft stiffness is depicted. Whenever the system is in the
deadzone, the shaft stiffness is 0. During the initial part of
the motion in the positive direction, the stiffness is 0 even
though the load is moving. This is due to the fact that impact
torque exerted by the drive motor on the load temporarily
accelerates the load, making it move even though there is no
actual engagement.

An illustration of the estimated deadzone is given in Fig. 15,
where the backlash torque Jl φ̂ estimate and the equivalent
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Fig. 14. Motor and load position (top) and the calculated shaft stiffness
(bottom) for the nominal case with δ∗ = 1.027 rad (Test 0A).

Fig. 15. Deadzone illustration through torque-position difference (top) and
torque-stiffness (bottom) plots during Test 0A. The deadzone is not symmetric
around �θ = 0 but offset due to the initial position difference δ1, specifically
by (δ∗/2) − δ1.

calculation based on the stiffness model (top) are depicted as
functions of the position difference between motor and load.
The oscillations at the two ends of the deadzone in the esti-
mated torque correspond to the impact between motor and load
upon engagement. Fig. 15 (bottom) shows the stiffness KBL
also as a function of �θ .

The backlash hysteresis can be seen in the top of Fig. 16,
which shows 4 s of the time response of the load position
with respect to the motor. Fig. 16 (bottom) shows the drive
motor and load phase portraits, i.e., the plots of their angular
velocities with respect to their positions.

Fig. 16. Backlash hysteresis (top) and phase portraits for the motor and load
(bottom) during Test 0A.

Fig. 17. Real and estimated load velocity (top) and the associated estimation
error (bottom) during Test 0A.

Fig. 17 shows the actual and estimated by the SMO
load angular velocity during Test 0A. As it can be seen
in Fig. 17 (bottom), the velocity estimation error is smaller
than 0.4 rad s−1 in magnitude. Such an error is sufficiently
small, so that the estimated backlash torque, shown in Fig. 18,
can be considered accurate enough to be used in the deadzone
estimation algorithm.

The deadzone angle estimation error for all the parameter
variations is shown in Fig. 19 (top for Tests 1A–5A, middle
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Fig. 18. Estimated backlash torque for the nominal case with δ∗ = 1.027 rad
(Test 0A).

Fig. 19. Deadzone angle estimation error during Tests 1A–5A (top), Tests
1B–5B (middle), and Tests 1C–5C 4 (bottom).

for Tests 1B–5B, and bottom for Tests 1C–5C). As it can be
seen, in all the considered cases, the estimates converge to a
constant value sufficiently close to the real one. Specifically, all
the estimation errors do not exceed 4×10−3 rad in magnitude,
which implies more than 40% better performance from that
required in Problem 1. The MAEE during all Tests is presented
in Table IV.

Remark 7: The sudden engagement between drive motor
and load has produced a periodic impact torque acting on both
parts. This caused a small displacement of the load, which
resulted in a shift of the position offset δ1. However, the effect
of this change in the offset on the quality of the estimation
was practically negligible.

TABLE IV

MAEE IN mrad FOR THE NOMINAL CASE (TESTS 0A, 0B, AND 0C) AND

ALL THE PARAMETER VARIATIONS (TESTS 1A–5A, 1B–5B, AND 1C–5C)

VII. CONCLUSION

A deadzone angle estimation method for a single-axis drive
train with backlash was presented in this paper. The design
is a modified version of the cascaded SMO-adaptive estimator
scheme presented in [9], which now includes an initial position
offset between drive motor and load. The stability and robust-
ness properties of the algorithm were discussed in the context
of model and parameter uncertainties. Specifically, it was
proven that the estimation error is UGAS in the absence of
model and parameter mismatches and UGB otherwise with the
bound being proportional to the total perturbation estimation
error bound.

The theoretical findings were experimentally validated on a
real single-axis drive train with the state-of-the-art Siemens
equipment for the cases where the deadzone was equal to
1.027, 0.186, and 0.105 rad. The method was tested both for
the identified system parameters and for the case of 100%
offset in each of these parameters. In all the tests, convergence
was achieved in approximately 40 s and with precision in the
order of 10−3 rad.

Future work will include the assessment of the algorithm
performance in estimating even smaller angles and also the
design of a joint estimation scheme for both the deadzone
angle and the initial position offset.

APPENDIX A
BASIC DEFINITIONS

Definition 1 (PE [39]): A piecewise continuous signal vec-
tor φ : R

+ → R
n is persistently exciting with a level

of excitation α0 > 0 if there exist constants α1, T0 > 0
such that

α0 I ≤ 1

T0

∫ t+T0

t
φ(τ )φT (τ )dτ ≤ α1 I (62)

where I is the n × n unity matrix.
Definition 2 (Signum Function): The signum function

sgn(·) is defined as

sgn(y) =

⎧⎪⎨
⎪⎩

1 if y > 0

υ ∈ [−1, 1] if y = 0

−1 if y < 0.

(63)

Definition 3 (K,K∞ Functions [38, Definition 4.2]): A
continuous function α : [0, a) → (0,∞] is said to belong to
class-K if it is strictly increasing and α(0) = 0. It is said to
belong to class-K∞ if a = ∞ and α(r) → ∞ as r → ∞.
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Definition 4 (KL Functions [38, Definition 4.3]): A con-
tinuous function β : [0, a)×(0,∞] → (0,∞] is said to belong
to class-KL if, for each fixed s, the mapping β(s, r) belongs to
class-K with respect to r and, for each fixed r , the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0 as
s → ∞.

Definition 5 (Input-to-State Stability [38, Definition 4.7]):
A system of the form

ẋ = f (t, x, u)

is said to be ISS with respect to the input u if there exist a
class-KL function β and a class-K function γ , such that for
any initial state x(t0) and any bounded input u(t), the solution
x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(
sup lim

t0≤τ≤t
‖u(τ )‖

)
.

(64)

APPENDIX B
PROJECTION OPERATOR

Let �c be a convex subset of the parameter space D defined
as �l � {δ ∈ D|h(δ) ≤ l}, where l > 0 and h : R → R is a
smooth convex function. The projection operator is defined as
follows [40]:

Proj(δ̂, τ )=

⎧⎪⎪⎨
⎪⎪⎩

τ, h(δ̂) < 0

τ, h(δ̂)≥0 & ∇hT τ ≤0

τ − ∇h

|∇h|
〈 ∇h

|∇h| , τ
〉

h(δ̂), h(δ̂)≥0 & ∇hT τ >0.

In this paper, the convex function h has been chosen according
to [40]

h(δ̂) � (εδ + 1)δ̂2 − δ2
max

εδδ2
max

. (65)

In the above definition of h, δmax is a conservative upper bound
for the backlash angle estimate δ̂ and εδ is a small positive
number. The operator 〈·, ·〉 denotes the inner product, which
in this case reduces into a real product.

APPENDIX C
TAYLOR EXPANSION

Reference [37, Th. 11.1]: Suppose that r : R
n → R

n is
continuously differentiable in some convex open set D and
that y and y + q are vectors in D. We then have that

r(y + q) = r(y) +
∫ 1

0

∂ r
∂ y

(y + pq)qdp.

Setting y � δ̂, q � δ̃, r � Tl , the theorem reads

Tl(x, δ̂ + δ̃︸ ︷︷ ︸
δ∗

) − Tl(x, δ̂) =
∫ 1

0

∂Tl

∂δ̂
(x, δ̂ + pδ̃)δ̃dp.

APPENDIX D
PROOF OF PROPERTY (33)

For t, T ≥ 0, it holds∫ ∞

0
e(t−τ )σ (x(τ ))dτ ≥

∫ t+T

t
e(t−τ )σ (x(τ ))dτ

= e−T
∫ t+T

t
e(t+T−τ )σ (x(τ ))dτ.

Moreover,

t ≤ τ ≤ T ⇒ t + T − τ ≥ 0 ⇒ e(t+T−τ ) ≥ 1

leading to

e−T
∫ t+T

t
e(t+T−τ )σ (x(τ ))dτ ≥ e−T

∫ t+T

t
σ(x(τ ))dτ

which proves the property.
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[18] G. Tao and P. V. Kokotović, “Adaptive control of systems with backlash,”
Automatica, vol. 29, no. 2, pp. 323–335, Mar. 1993.

[19] M. Nordin and P.-O. Gutman, “Controlling mechanical systems with
backlash—A survey,” Automatica, vol. 38, no. 10, pp. 1633–1649,
2002.

[20] C. Cao, A. M. Annaswamy, and A. Kojic, “Parameter convergence
in nonlinearly parameterized systems,” IEEE Trans. Autom. Control,
vol. 48, no. 3, pp. 397–412, Mar. 2003.

[21] I. Y. Tyukin, D. V. Prokhorov, and C. V. Leeuwen, “Adaptation and
parameter estimation in systems with unstable target dynamics and
nonlinear parametrization,” IEEE Trans. Autom. Control, vol. 52, no. 9,
pp. 1543–1559, Sep. 2007.

[22] H. F. Grip, A. Saberi, and T. A. Johansen, “Estimation of states and para-
meters for linear systems with nonlinearly parameterized perturbations,”
Syst. Control Lett., vol. 60, no. 9, pp. 771–777, 2011.

[23] H. F. Grip, A. Saberi, and T. A. Johansen, “State and parameter estima-
tion for nonlinearly parameterized systems: An H∞-based approach,”
IFAC Proc. Vol., vol. 44, no. 1, pp. 2997–3002, 2011.

[24] I. Y. Tyukin, E. Steur, H. Nijmeijer, and C. van Leeuwen, “Adaptive
observers and parameter estimation for a class of systems nonlin-
ear in the parameters,” Automatica, vol. 49, no. 8, pp. 2409–2423,
2013.

[25] I. Y. Tyukin, P. Rogachev, and H. Nijmeijer, “Adaptive observers for
nonlinearly parameterized systems subjected to parametric constraints,”
IFAC Proc. Vol., vol. 47, no. 3, pp. 10869–10874, 2014.

[26] H. F. Grip, T. A. Johansen, L. Imsland, and G.-O. Kaasa, “Parameter
estimation and compensation in systems with nonlinearly parameterized
perturbations,” Automatica, vol. 46, no. 1, pp. 19–28, 2010.

[27] S. K. Spurgeon, “Sliding mode observers: A survey,” Int. J. Syst. Sci.,
vol. 39, no. 8, pp. 751–764, 2008.

[28] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode
Control and Observation. New York, NY, USA: Springer, 2014.

[29] A. Levant, “Sliding order and sliding accuracy in sliding mode control,”
Int. J. Control, vol. 58, no. 6, pp. 1247–1263, Dec. 1993.

[30] J. Davila, L. M. Fridman, and A. Levant, “Second-order sliding-mode
observer for mechanical systems,” IEEE Trans. Autom. Control, vol. 50,
no. 11, pp. 1785–1789, Nov. 2005.

[31] J. A. Moreno and M. Osorio, “Strict Lyapunov functions for the
super-twisting algorithm,” IEEE Trans. Autom. Control, vol. 57, no. 4,
pp. 1035–1040, Apr. 2012.

[32] L. Fridman, J. Moreno, and R. Iriarte, Eds., Sliding Modes After the First
Decade of the 21st Century (Lecture Notes in Control and Information
Sciences). Berlin, Germany: Springer, 2012.

[33] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input
chattering-free second-order sliding mode control,” IEEE Trans. Autom.
Control, vol. 45, no. 9, pp. 1711–1717, Sep. 2000.

[34] A. Chalanga and F. Plestan, “Finite time stabilization of an uncer-
tain chain of integrators by integral sliding mode approach,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 9613–9618, 2017.

[35] A. Loría and E. Panteley, “Cascaded nonlinear time-varying systems:
Analysis and design,” in Advanced Topics in Control Systems Theory
(Lecture Notes in Control and Information Science), vol. 311. London,
U.K.: Springer, 2005, pp. 23–64.

[36] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design, 1st ed. Hoboken, NJ, USA: Wiley, 1995.

[37] S. Wright and J. Nocedal, Numerical Optimization, vol. 35. New York,
NY, USA: Springer-Verlag, 1999, pp. 67–68.

[38] H. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA:
Prentice-Hall, 2002.

[39] P. Ioannou and J. Sun, Robust Adaptive Control (Dover Books on
Electrical Engineering). New York, NY, USA: Dover, Nov./Dec. 2012.

[40] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory: Guaranteed
Robustness With Fast Adaptation (Advances in Design and Control).
Philadelphia, PA, USA: SIAM, 2010.

Dimitrios Papageorgiou received the Diploma
degree in electrical and computer engineering from
the National Technical University of Athens, Athens,
Greece, in 2011, and the M.Sc. degree in electrical
engineering (majoring in automation and robotics
technology) and the Ph.D. degree from the Technical
University of Denmark (DTU), Kongens Lyngby,
Denmark, in 2014 and 2017, respectively.

He is currently a Post-Doctoral Researcher with
the Automation and Control Group, Electrical Engi-
neering Department, DTU. His current research

interests include nonlinear and adaptive control and estimation of electro-
mechanical systems.

Mogens Blanke (M’74–SM’85) received the
M.Sc.E.E. and Ph.D. degrees from the Technical
University of Denmark (DTU), Kongens Lyngby,
Denmark, in 1974 and 1982, respectively.

He was a Systems Analyst with the European
Space Agency, Enschede, The Netherlands, from
1975 to 1976 and DTU from 1977 to 1984. He
was the Head of the Division, Lyngsø Marine, Hør-
sholm, Denmark, from 1985 to 1989, and a Professor
with Aalborg University, Aalborg, Denmark, from
1990 to 1999. He has been a Professor in automation

and control with DTU since 2000. He was an Adjunct Professor with the
Norwegian University of Science and Technology, Trondheim, Norway, from
2005 to 2018. His current research interests include diagnosis, prognosis, and
fault-tolerant control.

Dr. Blanke is a member of the International Federation of Automatic
Control (IFAC) SAFEPROCESS and the Technical Committee (TC) on
Marine Systems. He has held various positions at IFAC, including the Chair
of the TC on Marine Systems and the CC Chair. He was a Technical Editor
of the IEEE TRANSACTIONS OF AEROSPACE AND ELECTRONIC SYSTEMS

from 2006 to 2016. He is an Associate Editor of Control Engineering Practice.

Hans Henrik Niemann was born in Slagelse,
Denmark in 1961. He received the M.Sc. degree
in mechanical engineering and the Ph.D. degree
from the Technical University of Denmark, Kongens
Lyngby, Denmark, in 1986 and 1988, respectively.

From 1988 to 1994, he held a research position at
the Technical University of Denmark, where he has
been an Assistant Professor in control engineering
since 1994. He is the first author in over 80 jour-
nals and conferences papers. His current research
interests include optimal and robust control, fault

detection and isolation, active fault diagnosis, fault-tolerant control, controller
architecture for controller switching and fault-tolerant control, system and
performance monitoring, and controller antiwindup.

Jan H. Richter received the Diploma degree in
electrical engineering from the Technische Univer-
sität Hamburg, Hamburg, Germany, in 2004, and the
Ph.D. degree in control theory from Ruhr-Universität
Bochum, Bochum, Germany, in 2009.

He is currently an Expert in control, a Project
Manager, and a Researcher with the Digital Factory
Division, Siemens AG, Nuremberg, Germany. His
current research interests include the tool chain for
model-based systems engineering, model-based con-
troller design, verification and validation, and fault-

tolerant control in embedded and factory automation applications.


