14 research outputs found

    Estimation of Human Body Shape and Posture Under Clothing

    Full text link
    Estimating the body shape and posture of a dressed human subject in motion represented as a sequence of (possibly incomplete) 3D meshes is important for virtual change rooms and security. To solve this problem, statistical shape spaces encoding human body shape and posture variations are commonly used to constrain the search space for the shape estimate. In this work, we propose a novel method that uses a posture-invariant shape space to model body shape variation combined with a skeleton-based deformation to model posture variation. Our method can estimate the body shape and posture of both static scans and motion sequences of dressed human body scans. In case of motion sequences, our method takes advantage of motion cues to solve for a single body shape estimate along with a sequence of posture estimates. We apply our approach to both static scans and motion sequences and demonstrate that using our method, higher fitting accuracy is achieved than when using a variant of the popular SCAPE model as statistical model.Comment: 23 pages, 11 figure

    Monocular 3D Body Shape Reconstruction under Clothing

    Get PDF
    Estimating the 3D shape of objects from monocular images is a well-established and challenging task in the computer vision field. Further challenges arise when highly deformable objects, such as human faces or bodies, are considered. In this work, we address the problem of estimating the 3D shape of a human body from single images. In particular, we provide a solution to the problem of estimating the shape of the body when the subject is wearing clothes. This is a highly challenging scenario as loose clothes might hide the underlying body shape to a large extent. To this aim, we make use of a parametric 3D body model, the SMPL, whose parameters describe the body pose and shape of the body. Our main intuition is that the shape parameters associated with an individual should not change whether the subject is wearing clothes or not. To improve the shape estimation under clothing, we train a deep convolutional network to regress the shape parameters from a single image of a person. To increase the robustness to clothing, we build our training dataset by associating the shape parameters of a “minimally clothed” person to other samples of the same person wearing looser clothes. Experimental validation shows that our approach can more accurately estimate body shape parameters with respect to state-of-the-art approaches, even in the case of loose clothes

    Towards Automatic Human Body Model Fitting to a 3D Scan

    Get PDF
    This paper presents a method to automatically recover a realistic and accurate body shape of a person wearing clothing from a 3D scan. Indeed, in many practical situations, people are scanned wearing clothing. The underlying body shape is thus partially or completely occluded. Yet, it is very desirable to recover the shape of a covered body as it provides non-invasive means of measuring and analysing it. This is particularly convenient for patients in medical applications, customers in a retail shop, as well as in security applications where suspicious objects under clothing are to be detected. To recover the body shape from the 3D scan of a person in any pose, a human body model is usually fitted to the scan. Current methods rely on the manual placement of markers on the body to identify anatomical locations and guide the pose fitting. The markers are either physically placed on the body before scanning or placed in software as a postprocessing step. Some other methods detect key points on the scan using 3D feature descriptors to automate the placement of markers. They usually require a large database of 3D scans. We propose to automatically estimate the body pose of a person from a 3D mesh acquired by standard 3D body scanners, with or without texture. To fit a human model to the scan, we use joint locations as anchors. These are detected from multiple 2D views using a conventional body joint detector working on images. In contrast to existing approaches, the proposed method is fully automatic, and takes advantage of the robustness of state-of-art 2D joint detectors. The proposed approach is validated on scans of people in different poses wearing garments of various thicknesses and on scans of one person in multiple poses with known ground truth wearing close-fitting clothing

    Thermal-Kinect Fusion Scanning System for Bodyshape Inpainting and Estimation under Clothing

    Get PDF
    In today\u27s interactive world 3D body scanning is necessary in the field of making virtual avatar, apparel industry, physical health assessment and so on. 3D scanners that are used in this process are very costly and also requires subject to be nearly naked or wear a special tight fitting cloths. A cost effective 3D body scanning system which can estimate body parameters under clothing will be the best solution in this regard. In our experiment we build such a body scanning system by fusing Kinect depth sensor and a Thermal camera. Kinect can sense the depth of the subject and create a 3D point cloud out of it. Thermal camera can sense the body heat of a person under clothing. Fusing these two sensors\u27 images could produce a thermal mapped 3D point cloud of the subject and from that body parameters could be estimated even under various cloths. Moreover, this fusion system is also a cost effective one. In our experiment, we introduce a new pipeline for working with our fusion scanning system, and estimate and recover body shape under clothing. We capture Thermal-Kinect fusion images of the subjects with different clothing and produce both full and partial 3D point clouds. To recover the missing parts from our low resolution scan we fit parametric human model on our images and perform boolean operations with our scan data. Further, we measure our final 3D point cloud scan to estimate the body parameters and compare it with the ground truth. We achieve a minimum average error rate of 0.75 cm comparing to other approaches

    Estimation of Human Body Shape in Motion with Wide Clothing

    Get PDF
    International audienceEstimating 3D human body shape in motion from a sequence of unstructured oriented 3D point clouds is important for many applications. We propose the first automatic method to solve this problem that works in the presence of loose clothing. The problem is formulated as an optimization problem that solves for identity and posture parameters in a shape space capturing likely body shape variations. The automation is achieved by leveraging a recent robust pose detection method Stitched Puppet. To account for clothing, we take advantage of motion cues by encouraging the estimated body shape to be inside the observations. The method is evaluated on a new benchmark containing different subjects, motions, and clothing styles that allows to quantitatively measure the accuracy of body shape estimates. Furthermore, we compare our results to existing methods that require manual input and demonstrate that results of similar visual quality can be obtained

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness

    “Caracterización de alteraciones posturales y su asociación con factores de riesgo en adolescentes de nivel medio superior de la UAEM”

    Get PDF
    Antecedentes: La postura es la capacidad de mantener el centro de gravedad en una base de sustentación y está determinada por factores como la personalidad, actitud mental, ocupación, genética, vestimenta, edad, estado de salud y modelos socioculturales; sin embargo existen algunos de los factores que predisponen el desarrollo de alteraciones posturales como el uso prolongado de dispositivos tecnológicos, obesidad, malos hábitos y uso de calzado, mochila o estación de trabajo inadecuados. Métodos: La muestra del estudio (n=69) se obtuvo por conveniencia en estudiantes de nivel medio superior de la UAEM y el estudio fue prospectivo, no experimental, transversal, descriptivo y de asociación cuantitativa. Se diseñó, estandarizó y validó un instrumento para evaluar la presencia de alteraciones posturales y factores de riesgo para posteriormente analizar su asociación. Resultados: La muestra se conformó por 71% mujeres, con una edad media de 14,7 ± 0,4 años. La prevalencia total de alteraciones posturales fue del 21%, presentando lateralización y rotación de la cabeza (62%), anteproyección de cabeza y hombros (58%), escoliosis y descenso de hombros (48%) cifosis (38%), pie cavo (39%), genu recurvatum (23%), genu valgum (12%), pie plano (12%) y valgo del tobillo (3%). Se asoció el uso de dispositivos electrónicos con presencia de lateralización de cabeza e hiperlordosis; el uso de mochilas con escoliosis y el tipo de calzado y obesidad con alteraciones de rodilla y tobillo. Conclusiones: Evaluar frecuente y eficazmente a los adolescentes y eliminar los factores de riesgo que predisponen al desarrollo de alteraciones posturales como un estilo de vida sedentario, obesidad, posturas inadecuadas al realizar las actividades diarias y la exposición a cargas excesivas, disminuirá la tasa de defectos y mejorará la calidad de vida durante el crecimiento
    corecore