3,489 research outputs found

    Simulations to benchmark time-varying connectivity methods for fMRI

    Get PDF
    Published: May 29, 2018There is a current interest in quantifying time-varying connectivity (TVC) based on neuroimaging data such as fMRI. Many methods have been proposed, and are being applied, revealing new insight into the brain’s dynamics. However, given that the ground truth for TVC in the brain is unknown, many concerns remain regarding the accuracy of proposed estimates. Since there exist many TVC methods it is difficult to assess differences in time-varying connectivity between studies. In this paper, we present tvc_benchmarker, which is a Python package containing four simulations to test TVC methods. Here, we evaluate five different methods that together represent a wide spectrum of current approaches to estimating TVC (sliding window, tapered sliding window, multiplication of temporal derivatives, spatial distance and jackknife correlation). These simulations were designed to test each method’s ability to track changes in covariance over time, which is a key property in TVC analysis. We found that all tested methods correlated positively with each other, but there were large differences in the strength of the correlations between methods. To facilitate comparisons with future TVC methods, we propose that the described simulations can act as benchmark tests for evaluation of methods. Using tvc_benchmarker researchers can easily add, compare and submit their own TVC methods to evaluate its performance.WHT acknowledges support from the Knut och Alice Wallenbergs Stiftelse (SE) (grant no. 2016.0473, http://kaw.wallenberg.org). PR acknowledges support from the Swedish Research Council (VetenskapsrĂ„det) (grants no. 2016-03352 and 773 013-61X-08276-26-4) (http://vr.se) and the Swedish e-Science Research Center (http://e- science.se/). CGR acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ÂȘSevero OchoaÂș Programme for Centres/Units of Excellence in R&DÂș (SEV-2015-490, http://csic.es/)

    The Dynamics of Functional Brain Networks:Integrated Network States during Cognitive Task Performance

    Get PDF
    Higher brain function relies upon the ability to flexibly integrate information across specialized communities of brain regions, however it is unclear how this mechanism manifests over time. In this study, we use time-resolved network analysis of functional magnetic resonance imaging data to demonstrate that the human brain traverses between two functional states that maximize either segregation into tight-knit communities or integration across otherwise disparate neural regions. The integrated state enables faster and more accurate performance on a cognitive task, and is associated with dilations in pupil diameter, suggesting that ascending neuromodulatory systems may govern the transition between these alternative modes of brain function. Our data confirm a direct link between cognitive performance and the dynamic reorganization of the network structure of the brain.Comment: 38 pages, 4 figure

    Improving fMRI Analysis and MR Reconstruction with the Incorporation of MR Relaxivities and Correlation Effect Examination

    Get PDF
    Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) use the physical principles of nuclear MR to provide high resolution representations of brain activity and connectivity. As the fMRI and fcMRI signals are detected from the excited hydrogen atoms in a magnetic field, the acquired data is determined by the underlying physical processes, such as the MR relaxivities. In fMRI and fcMRI, the Fourier encoded frequency space measurements are reconstructed into brain images, then spatiotemporal processing operations are applied before computing the brain activation and connectivity statistics. This dissertation seeks to utilize the magnetic resonance (MR) relaxivities at different stages of the fMRI pipeline, and aims to observe the statistical implications of the spatiotemporal processing operators on the fMRI and fcMRI data. We first develop a new statistical complex-valued nonlinear fMRI activation model that incorporates the MR relaxivities of gray matter into the brain activation statistics by utilizing the physical MR magnetization equation and the first scans of the fMRI data. We provide both theoretical and experimental comparison between the proposed model with the conventional linear magnitude-only and complex-valued fMRI activation models. Our statistical analysis results show that the new model provides better accuracy in computing brain activation statistics while theoretically eliminating false positives in non-gray matter areas. We then develop a linear Fourier reconstruction operator that incorporates the MR relaxivities into the image reconstruction process to account for their effects. The utilization of a linear system makes it achievable to theoretically compute the statistical implications of the use of the proposed operator. By focusing on longitudinal relaxation time, T1, to include into the image reconstruction, we show that the application of the proposed Fourier reconstruction operator provides better image contrast in the reconstructed images by recovering the information of the tissue characteristics that exist prior to T1 equilibrium. We finally examine the effects of time series preprocessing on computed functional correlations through the use of linear operators and provide ways of accounting for such effects in computing functional activity and connectivity statistics. Using both theoretical and experimentally acquired functional connectivity data, we examine the correlations induced by commonly used spatial and temporal processing operations. Furthermore, we provide the expansion of the statistical fcMRI and fMRI models to incorporate the quantified processing induced correlations in computing brain activity and connectivity statistics

    Neural Connectivity with Hidden Gaussian Graphical State-Model

    Full text link
    The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor space is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases

    Fluctuations between high- and low-modularity topology in time-resolved functional connectivity

    Full text link
    Modularity is an important topological attribute for functional brain networks. Recent studies have reported that modularity of functional networks varies not only across individuals being related to demographics and cognitive performance, but also within individuals co-occurring with fluctuations in network properties of functional connectivity, estimated over short time intervals. However, characteristics of these time-resolved functional networks during periods of high and low modularity have remained largely unexplored. In this study we investigate spatiotemporal properties of time-resolved networks in the high and low modularity periods during rest, with a particular focus on their spatial connectivity patterns, temporal homogeneity and test-retest reliability. We show that spatial connectivity patterns of time-resolved networks in the high and low modularity periods are represented by increased and decreased dissociation of the default mode network module from task-positive network modules, respectively. We also find that the instances of time-resolved functional connectivity sampled from within the high (low) modularity period are relatively homogeneous (heterogeneous) over time, indicating that during the low modularity period the default mode network interacts with other networks in a variable manner. We confirmed that the occurrence of the high and low modularity periods varies across individuals with moderate inter-session test-retest reliability and that it is correlated with previously-reported individual differences in the modularity of functional connectivity estimated over longer timescales. Our findings illustrate how time-resolved functional networks are spatiotemporally organized during periods of high and low modularity, allowing one to trace individual differences in long-timescale modularity to the variable occurrence of network configurations at shorter timescales.Comment: Reorganized the paper; to appear in NeuroImage; arXiv abstract shortened to fit within character limit

    Integrated metastate functional connectivity networks predict change in symptom severity in clinical high risk for psychosis

    Get PDF
    The ability to identify biomarkers of psychosis risk is essential in defining effective preventive measures to potentially circumvent the transition to psychosis. Using samples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who were administered a task fMRI paradigm, we used a framework for labelling time windows of fMRI scans as ‘integrated’ FC networks to provide a granular representation of functional connectivity (FC). Periods of integration were defined using the ‘cartographic profile’ of time windows and k‐means clustering, and sub‐network discovery was carried out using Network Based Statistics (NBS). There were no network differences between CHR and HC groups. Within the CHR group, using integrated FC networks, we identified a sub‐network negatively associated with longitudinal changes in the severity of psychotic symptoms. This sub‐network comprised brain areas implicated in bottom‐up sensory processing and in integration with motor control, suggesting it may be related to the demands of the fMRI task. These data suggest that extracting integrated FC networks may be useful in the investigation of biomarkers of psychosis risk
    • 

    corecore