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Abstract 

Higher brain function relies upon the ability to flexibly integrate information 

across specialized communities of brain regions, however it is unclear how this 

mechanism manifests over time. In this study, we used time-resolved network 

analysis of functional magnetic resonance imaging data to demonstrate that the 

human brain traverses between functional states that maximize either 

segregation into tight-knit communities or integration across otherwise disparate 

neural regions. Integrated states enable faster and more accurate performance on 

a cognitive task, and are associated with dilations in pupil diameter, suggesting 

that ascending neuromodulatory systems may govern the transition between 

these alternative modes of brain function. Together, our results confirm a direct 

link between cognitive performance and the dynamic reorganization of the 

network structure of the brain. 
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Within the brain, a highly dynamic functional landscape unfolds on a relatively 

fixed structural scaffold (Deco et al., 2015; Shen et al., 2015) in which the 

emergence of momentary neural coalitions forms the basis for complex cognitive 

functions (Bassett et al., 2015; Cole et al., 2014), learning (Bassett et al., 2011) and 

consciousness (Barttfeld et al., 2015; Godwin et al., 2015). This view of brain 

function highlights the role of individual brain regions within the context of a 

broader neural network (Bullmore and Sporns, 2012). Others have noted the 

importance of time-sensitive descriptions of brain activity in understanding the 

functional relevance of alterations in this network structure under different 

behavioral conditions (Varela et al., 2001). 

 

Time-resolved analyses of functional neuroimaging data provide a unique 

opportunity to examine these time-varying reconfigurations in global network 

structure. These experiments provide a sensitive method for non-invasively 

identifying time-sensitive shifts in inter-areal synchrony, which has been 

proposed as a key mechanism for effective communication between distant 

neural regions (Fries, 2015; Varela et al., 2001). To this end, recent experiments 

using functional MRI data have demonstrated that global brain signals transition 

between states of high and low connectivity strength over time (Zalesky et al., 

2014) and that these fluctuations are related to coordinated patterns of network 

topology (Betzel et al., 2015), however the psychological relevance of these 

fluctuations in network topology remain poorly understood. 

 

In the present work, we show that dynamic fluctuations in network structure 

relate to ongoing cognitive function, and further demonstrate a relation between 

these fluctuations and integration within a network of frontoparietal, striatal and 

thalamic regions that track with the ascending neuromodulatory system of the 
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brain, as characterized using pupillometry (Joshi et al., 2016). Together, the 

results of our experiments provide mechanistic evidence to support the role of 

global network integration in effective cognitive performance. 

 

Results 

Fluctuations in Network Cartography 

To elucidate fluctuations in the network structure of the brain over time, we 

computed a windowed estimate of functional connectivity (Shine et al., 2015) 

from a cohort of 92 unrelated subjects obtained from the Human Connectome 

Project (HCP; see Materials and Methods; Smith et al., 2013). After identifying the 

community structure of the brain’s functional connectivity network (Rubinov 

and Sporns, 2010), we estimated the importance of each region for maintaining 

this evolving network structure by calculating its connectivity both within (WT) 

and between (BT) each community (see Experimental Procedures; Guimerà and 

Nunes Amaral, 2005; Sporns and Betzel, 2015). While previous studies have 

clustered these metrics at the regional level using pre-defined cartographic 

boundaries (Guimerà and Nunes Amaral, 2005; Mattar et al., 2015), we 

hypothesized that the brain should fluctuate as a whole between cartographic 

extremes that were characterized by either segregation (i.e. the extent to which 

communication occurs primarily within tight-knit communities of regions) or 

integration (i.e. the degree of communication between distinct regions; Deco et 

al., 2015), which might otherwise be obscured by reduction into classes defined 

by these arbitrary cartographic boundaries. 

 

To test this hypothesis in the resting state, we created a novel analysis technique 

to assess the temporal classification into two states without requiring the 

grouping of each region into a pre-defined cartographic class (Guimerà and 
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Nunes Amaral, 2005) which we refer to here as the “cartographic profile”. 

Subject-level k-means clustering of these full profiles across time (k = 2, with 

stable clustering at higher values of k; see Materials and Methods and Figure S1) 

identified modes of information processing that were characterized by either 

integration or segregation (Figure 1a). The resting brain explored a dynamical 

repertoire within this topological regime (greater than expected by a stationary 

null model), fluctuating aperiodically between the integrated and segregated 

temporal states, with the majority of time spent in integrated states (70.32 ± 1.4% 

of rest session; all variability measures reported as standard deviations). 

Although the majority of the group-level fluctuations occurred in inter-modular 

connectivity (i.e. BT values transitioned between high and low states en masse), 

we also observed window-to-window fluctuations in intra-modular connectivity 

(WT) within individual parcels (see Video 1 

[http://github.com/macshine/coupling] for a demonstration of the fluctuations of 

the cartographic profile over time). 

 

The two states also showed differential patterns of regional inter-modular 

connectivity (Figures 1c and 2d), with the integrated states characterized by a 

global increase in inter-modular communication across the brain (FDR α < 0.05 

for all 375 individual parcels). This was also reflected in graph-theoretic 

measures of network-wide integration: temporal windows associated with 

segregated states had significantly elevated modularity (QS = 0.55 ± 0.1 vs. QI = 

0.42 ± 0.2; Cohen’s d = 0.9; p = 10-11; Sporns and Betzel, 2015) whereas those 

associated with the integrated states had greater global efficiency (ES = 0.18 ± 0.03 

vs. EI = 0.24 ± 0.05; d = 1.5; p = 10-8; Bullmore and Sporns, 2012). The shift towards 

integration was most prominent in sensory and attentional networks (Figure 1d; 

FDR α < 0.05), whereas segregated states were associated with relatively higher 
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participation within regions in the default mode network, suggesting that the 

cartographic profile may reflect changes in the engagement of attention and 

cognition over time (Corbetta and Shulman, 2002). Importantly, the fluctuations 

in global network topology occurred independently of the mean framewise 

displacement in each TR (mean r = 0.01 ± 0.01), nuisance signals from 

cerebrospinal fluid and deep cerebral white matter (mean r = -0.02 ± 0.01) and of 

the number of modules estimated within each temporal window (mean r = 0.03 ± 

0.10).  

 

Task-based Alterations in the Cartographic Profile 

We next examined whether the balance between network integration and 

segregation tracked with ongoing cognitive function using data from a 

cognitively-demanding “N-back” task (Barch et al., 2013). We observed a strong 

correlation between fluctuations in cartography across all parcels and the blocks 

of the experimental task (group mean Pearson’s r = 0.521; R2 = 0.27; p = 10-10; 

Figure 2a & Video 2), as well as a distinct alteration in the cartographic profile 

when compared to the resting state (Figure 2b). These changes were coincident 

with increased task-driven connectivity between frontoparietal, dorsal attention, 

cingulo-opercular and visual networks (2-back versus 0-back blocks; FDR q < 

0.05; Figure S4), suggesting that global integration may have facilitated 

communication between otherwise segregated systems during more challenging 

2-back condition. Importantly, the extent of integration remained correlated with 

the task regressor even after controlling for the global signal (mean r = 0.452 ± 

0.21; p = 10-10) and the mean time-resolved connectivity across all parcels (mean r 

= 0.393 ± 0.14; p = 10-9), suggesting that the fluctuations in topology were not 

simply driven by constraints imposed by the task structure. 
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Together, these results suggest that the brain transitions into a state of higher 

global integration in order to meet extrinsic task demands. Indeed, all of the 375 

regions showed a significant shift towards greater inter-modular connectivity 

(BT) during the N-back task when compared to the resting state (FDR α < 0.05 for 

all 375 regions). Despite this global shift towards integration, the effect was most 

pronounced within frontoparietal, default mode, striatal and thalamic regions 

(Figure 2c), many of which have been previously identified as belonging to a 

‘rich club’ of densely-interconnected, high degree ‘hub’ nodes that are critical for 

the resilience and stability of the global brain network (van den Heuvel and 

Sporns, 2013). Importantly, the involvement of these highly interconnected hub 

regions during the task would likely facilitate effective communication between 

specialist regions that would otherwise remain isolated, thus affording a larger 

repertoire of potential responses to deal with the challenges of the task. 

 

To determine whether network topology was sensitive to specific task demands, 

we calculated the cartographic profile in the remaining six tasks from the HCP in 

the same cohort of 92 subjects (Barch et al., 2013). While the performance of each 

task also led to an increase in global integration relative to rest, the effect was less 

pronounced than the lateral shift observed in the N-back task, particularly when 

compared to the relatively simple Motor task (88.8% of parcels showed higher BT 

in the N-back task; FDR α < 0.05). This effect was quantified by estimating the 

affine transformation required to align each subjects resting cartographic profile 

with their profile during each task (transformation along the BT axis relative to 

rest; Figure 2d). These results demonstrate that the extent of reconfiguration 

varies as a function of task: the relatively simple motor task, which involved 

repetitive movements of specific effectors, was associated with greatest 

segregation, whereas the more complex N-back task, which required complex 
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working memory updating and cognitive control, was associated with greatest 

integration. The other five tasks recruited levels of integration between these two 

extremes. Together, these results suggest that integration may be particularly 

important for more difficult tasks, perhaps involving cognitive control, however 

additional work will be necessary to identify the specific demands that drive 

global integration. 

 

Investigating the Relationship Between Cartography and Behavior 

Based on these findings, we predicted that a more globally integrated network 

architecture would give rise to faster, more effective information processing 

during task performance. To test this hypothesis, we fit a drift diffusion model to 

each subject’s behavior (response time distributions and accuracy) on the more 

cognitively challenging 2-back trials within the N-back task using the EZ-

diffusion model (Wagenmakers et al., 2007; Figure 3a). The diffusion model 

provides a decomposition of behavioral performance into cognitively-relevant 

latent variables representing the speed and accuracy of information processing 

(drift rate – ‘v’), the speed of perceptual and motor processes not directly related 

to the decision process (non-decision time – ‘t’) and a flexible measure of 

response caution (boundary separation – ‘a’; Ratcliff, 1978). Theoretically, faster 

progression throughout all stages of information processing from perception 

through action should be reflected in a positive relationship between global 

integration and both faster drift rate and shorter non-decision time, whereas 

integration should be independent of the boundary parameter. 

 

We compared these model parameters to the mean N-back cartographic profile 

across the Discovery cohort (Figure 3a). The extent of global network integration 

in the cartographic profile was positively correlated with drift rate (Figure 3b), 
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inversely correlated with non-decision time (Figure 3c), and had no relationship 

to the boundary threshold. Each of these patterns was replicated in a separate 

cohort of 92 subjects. For both drift rate and non-decision time (and in both the 

Discovery and Replication cohort), the relationship between cognitive function 

and integration was most pronounced across frontoparietal, striatal, thalamic 

and pallidal regions (FDR α < 0.05; Figure 3b and 3c). Together, these results 

suggest that a globally efficient, integrated network architecture supports fast, 

effective computation throughout the cognitive processing stream (Krienen et al., 

2014), potentially through the facilitation of parallel processing mechanisms 

(Sigman and Dehaene, 2008).  

 

Network Cartography Fluctuates with Pupil Diameter 

Based on the results of these experiments, we hypothesized that 

neuromodulatory brain systems that mediate neural gain control (Aston-Jones 

and Cohen, 2005) may play an important role in regulating global integration. 

Recent invasive electrophysiological recordings in non-human primates have 

shown that non-luminance-related fluctuations pupil diameter tracks with neural 

firing in ascending neuromodulatory systems, such as the locus coeruleus, 

confirming the well-established proposal (Kahneman, 1973) that pupil diameter 

is a surrogate measure for arousal and task engagement (McGinley et al., 2015). 

Therefore, we measured pupil diameter from individuals in a separate resting 

state dataset (14 individuals; TR = 2s; 3.5mm3 voxels; 204 volumes; Murphy et al., 

2014) and compared alterations in pupil diameter with the cartographic profile 

(w = 10 TRs). As predicted, we observed a positive correlation between pupil 

diameter and mean BT (group mean r = 0.241 +/- 0.06; R2 = 0.06; p = 10-5; Figure 4) 

that was maximal within frontoparietal, striatal and thalamic regions. In keeping 

with Eldar et al. (2013), these results suggest that the observed global fluctuations 



 10 

in network structure over time may have been driven by ongoing dynamic 

alterations in ascending neuromodulatory input to the cortex and subcortex, 

which through the modulation of neural gain, may have mediated increases in 

connectivity between otherwise segregated regions of the brain. 

 

Identifying Regions Related to Global Integration 

To further investigate the neurobiological mechanisms responsible for 

fluctuations in network topology over time, we used a parcel-wise conjunction 

analysis (Nichols et al., 2005) to identify a set of regions that were significantly 

related to drift rate, non-decision time and pupil diameter. This analysis revealed 

a right-lateralized network of frontal, parietal, thalamic and striatal regions that 

were associated with consistently elevated BT across the three comparisons (blue; 

Figure 4c) and a set of regions in visual cortex and insula that were associated 

with elevated WT (red; Figure 4c). Together, these results highlight a distributed 

network of brain regions that mediate the computational integration required for 

effective cognitive processing. 

 

Reproducibility 

To test the reproducibility of our results, we performed three separate replication 

analyses: i) on a second resting state session from the same cohort of 92 unrelated 

subjects; ii) on a different cohort of 92 unrelated subjects from the HCP 

consortium; and iii) on 152 subjects from a separate dataset acquired at a 

different scanning site, using high-resolution functional data from the NKI 

Rockland dataset (Nooner et al., 2012). For each analysis in the resting state, we 

replicated the analyses described above and then summarized each outcome 

measure of interest at the group level (minimum r = 0.564; all p < 0.001; see 

Materials and Methods). In the task data, each of the relationships identified 
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between the cartographic profile and behavior were replicated in the second set 

of 92 individuals from the HCP (both r > 0.610; p < 0.001; Figure S2). These results 

suggest that the time-resolved measures identified in this study were reliable 

across sessions, individuals and independent datasets collected using different 

scanners and imaging protocols.  

 

Discussion 

In this manuscript, we mapped the spatiotemporal dynamics of complex 

network structure in the human brain, revealing a dynamical system that 

fluctuates between segregated and integrated network topology (Figure 1). The 

cartographic profile observed in the resting state was modulated by the 

performance of a range of cognitive tasks in proportion to task demands (Figure 

2). Importantly, the extent to which the brain was globally integrated was 

correlated with faster drift rate and shorter non-decision time during the N-back 

task, suggesting that integration relates to fast and effective cognitive 

performance (Figure 3). We then showed that integration within the functional 

connectome correlated with increases in pupil diameter (Figure 4), highlighting a 

potential neurobiological mechanism responsible for modulating network-level 

dynamics in the human brain. Finally, we were able to demonstrate that a 

network of right-lateralized frontoparietal, striatal and thalamic regions were 

responsible for mediating the effects of integration on cognitive function (Figure 

4c). 

 

In our final experiment, we demonstrated that the fluctuations in network 

cartography in the resting state correlate with changes in pupil diameter (Figure 

4), which itself is a marker of arousal and behavioral engagement (McGinley et 

al., 2015). The locus coeruleus (Aston-Jones and Cohen, 2005) is known to 
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modulate pupil diameter (Joshi et al., 2016), and thus by inference, may play a 

role in the modulation of fluctuations in global network topology through phasic 

alterations in neural gain (Eldar et al., 2013). Thus, our results extend previous 

studies that have demonstrated a crucial link between neural gain and functional 

connectivity (Eldar et al., 2013; Yellin et al., 2015) by showing that fluctuations in 

neural gain are linked to alterations in network topology, that in turn, relate to 

effective behavioral performance. 

 

There is a wealth of evidence to suggest that neuromodulatory inputs can have 

complex, non-linear effects on network organization and behavior (Bargmann 

and Marder, 2013), perhaps as a result of the balance between the ‘top-down’ 

attentional modulation of network architecture (Sara, 2009) and ‘bottom-up’ 

neuromodulatory input from the brainstem (Safaai et al., 2015). The network of 

right-lateralized cortical regions consistently associated with elevations in 

integration in our study provides further support for this hypothesis (Figure 4c), 

as ascending noradrenergic inputs preferentially impact neural function within 

the right cortical hemisphere (Pearlson and Robinson, 1981). While our results 

suggest a crucial role for ascending noradrenergic gain control, the topological 

organization of the functional connectome is likely to arise as the end result of 

multiple competing factors, including changes in tone within other 

neuromodulatory systems, such as the basal cholinergic nuclei (Steriade and 

McCarley, 2013), local interactions among functional regions, and activity in 

other diffuse projection systems, such as the intralaminar thalamic nuclei (Van 

der Werf et al., 2002). 

 

Irrespective of the precise mechanism driving global fluctuations, our results 

suggest that system-wide alterations in network topology facilitate more 
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effective behavioral performance, a hypothesis that has already garnered support 

from studies both in network dynamics (Kitzbichler et al., 2011) and 

pupillometery (Murphy et al., 2016). There is now growing evidence to support 

the notion that the brain traverses a metastable state-space in time (Deco et al., 

2015), balancing the opposing tendencies for specialized, segregated processing 

with the need for global coordination and integration (Tognoli and Kelso, 2014). 

In addition, others have recently shown that fluctuations in network topology 

relate to distinct patterns of behavior during cognitive tasks (Alavash et al., 2016; 

Vatansever et al., 2015). Here, we extend these studies by demonstrating 

fluctuations in network topology that relate to computationally-meaningful 

measures of effective behavioral performance.  

 

Although we were able to demonstrate that greater system-wide integration was 

associated with improved cognitive performance on an N-back task, the precise 

role of network topology in cognition requires further exploration. The N-back 

task is often used as a measure of cognitive control, which itself is a complex 

construct composed of dissociable sub-components, such as updating, set-

shifting and response inhibition (Miyake et al., 2000), that likely rely on 

overlapping, yet distinct, neural architectures (Duncan, 2010; Poldrack et al., 

2011). We demonstrated that the extent of reconfiguration varies as a function of 

task: the relatively simple motor task, which involved repetitive movements of 

specific effectors, was associated with greatest segregation, whereas the more 

complex cognitive N-back task, which required complex working memory 

updating and cognitive control, was associated with greatest integration. The 

other five tasks recruited levels of integration between these two extremes (see 

Figure 2d). Together, these results suggest that integration may be particularly 

important for more difficult tasks, perhaps involving cognitive control, however 
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additional work will be necessary to identify the specific cognitive demands that 

drive global integration. 

 

There are also some important limitations to note in our study. Firstly, although 

we provide indirect evidence for the relationship between neural gain and 

effective cognitive performance, the direct relationship between ascending 

neuromodulatory input to the brain and network topology requires further 

confirmation, perhaps utilizing the temporal resolution afforded by 

electrophysiological measures or the direct investigation of the influence of major 

neurotransmitter systems using neuromodulatory techniques, such as 

optogenetics. Secondly, on the basis of fMRI data alone, it is not possible to 

determine whether global integration facilitated increased connectivity between 

otherwise disparate regions, or whether the topological changes were merely a 

necessary bi-product of increased communication between specialist regions of 

the brain (Ramsey et al., 2010). Although the resolution of this question would 

likely require the causal manipulation of the brain (Keller et al., 2014), the 

utilization of computational modeling approaches may offer some insight into 

the underlying mechanism (Deco et al., 2015). Finally, although we directly 

compared the MTD approach to sliding window Pearson’s correlation, the 

standard approach used to calculate time-resolved connectivity, there are many 

techniques used to estimate these measures (Hutchison et al., 2012) and as such, 

further work is required to determine the robustness of the fluctuations in 

network topology across multiple time-sensitive connectivity metrics. 

 

Together, our results demonstrate that global brain integration is closely related 

to cognitive function during an N-back task. By catalyzing communication 

between specialist regions of the brain that would otherwise remain segregated, 
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global integration increases an individuals ability to accomplish complex 

cognitive tasks, potentially accelerating behavioral innovation and improving 

fitness in novel scenarios (Shanahan, 2012). As such, global integration is an 

important candidate mechanism responsible for the evolution of complex brain 

networks (van den Heuvel et al., 2016), and hence, for explaining the mechanism 

through which the brain creates complex, adaptive behavior. 
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Experimental Procedures 

Data acquisition  

For the primary discovery analysis, minimally preprocessed resting fMRI data 

were acquired from 100 unrelated participants from the Human Connectome 

Project (mean age 29.5 years, 55% female; Glasser et al., 2013). For each 

participant, 14 minutes 30 seconds of resting state data were acquired using 

multiband gradient-echo EPI. The following parameters were used for data 

acquisition: TR = 720 ms, echo time = 33.1 ms, multiband factor = 8, flip angle = 52 

degrees, field of view = 208x180 mm (matrix = 104 x 90), 2x2x2 isotropic voxels 

with 72 slices, alternated LR/RL phase encoding.  

 

In addition to the discovery analysis, we also performed an extensive series of 

replication analyses including: i) data from the same participants using resting 

state data acquired during a second rest scan during the same scanning session; 

ii) an independent cohort of 100 unrelated participants from the HCP dataset 

using identical acquisition parameters at the same scanning site; and iii) an out-

of-sample replication using data collected from the NKI Rockland sample (TR = 

650msec; voxel-size 3mm3) as part of the 1000 Functional Connectomes Project 

(Nooner et al., 2012).  

 

Data pre-processing 

Bias field correction and motion correction (12 linear DOF using FSL’s FLIRT) 

were applied to the HCP resting state data as part of the minimal preprocessing 

pipeline (Glasser et al., 2013). The first 100 time points were discarded from the 

data due to the presence of an evoked auditory signal associated with noise in 

the scanner. Resting state data acquired from the NKI Rockland sample were 

realigned to correct for head motion and then each participants’ functional scans 
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were registered to both their T1-weighted structural image and then to the 

MNI152 atlas using FSLs boundary based registration and Advanced 

Normalization Tools software (Avants et al., 2008). After co-registration, data 

were manually inspected and of the 173 original participants, 11 [6.3%] scans 

were discarded due insufficient coverage of orbitofrontal cortex, temporopolar 

cortex and/or cerebellum.  

 

Temporal artifacts were identified in each dataset by calculating framewise 

displacement (FD) from the derivatives of the six rigid-body realignment 

parameters estimated during standard volume realignment (Power et al., 2014), 

as well as the root mean square change in BOLD signal from volume to volume 

(DVARS). Frames associated with FD > 0.5mm or DVARS > 5% were identified, 

and participants with greater than 20% of the resting time points exceeding these 

values were excluded from further analysis (HCP group 1: 8/100; HCP group 2: 

8/100; NKI group: 10/162). Due to concerns associated with the alteration of the 

temporal structure of the images, the data used in the main analysis were not 

‘scrubbed’ (Power et al., 2014), however we did compare the results of our 

experiment with scrubbed data (missing values corrected using interpolation) 

and found strong correspondence between the outcome measures of the two 

studies (see Validation). Following artifact detection, nuisance covariates 

associated with the 12 linear head movement parameters (and their temporal 

derivatives), FD, DVARS, and anatomical masks from the CSF and deep cerebral 

WM were regressed from the data using the CompCor strategy (Behzadi et al., 

2007).  Finally, in keeping with previous time-resolved connectivity experiments 

(Bassett et al., 2015), a temporal band pass filter (0.071 < f < 0.125 Hz) was applied 

to the data (see Validation). 
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Brain parcellation 

Following pre-processing, the mean time series was extracted from 375 pre-

defined regions-of-interest (ROI). To ensure whole-brain coverage, we extracted: 

333 cortical parcels (161 and 162 regions from the left and right hemispheres, 

respectively) using the Gordon atlas (Gordon et al., 2014), 14 subcortical regions 

from Harvard-Oxford subcortical atlas (bilateral thalamus, caudate, putamen, 

ventral striatum, globus pallidus, amygdala and hippocampus), and 28 cerebellar 

regions from the SUIT atlas (Diedrichsen et al., 2009). These ROIs were chosen to 

maximize our ability to interrogate fluctuations in network architecture over 

time, however it bears mention that functional divisions may differ across 

subjects (Laumann et al., 2015). 

 

Time-resolved functional connectivity 

To estimate functional connectivity between the 375 ROIs, we used a recently 

described statistical technique (Multiplication of Temporal Derivatives [MTD]; 

Shine et al., 2015) that allows greater temporal resolution of time-resolved 

connectivity in BOLD time series data when compared to the conventional 

sliding-window Pearson’s correlation coefficient (Shine et al., 2015). The MTD is 

computed by calculating the point-wise product of temporal derivative of 

pairwise time series (Equation 1). The MTD is averaged over a temporal window, 

w in order to reduce the contamination of high-frequency noise in the time-

resolved connectivity data. Code is freely available at 

https://github.com/macshine/coupling/. 

 

        𝑀𝑇𝐷𝑖𝑗𝑡 =
1

𝑤
∑

(𝑑𝑡𝑖𝑡×𝑑𝑡𝑗𝑡)

(𝜎𝑑𝑡𝑖×𝜎𝑑𝑡𝑗)

𝑡+𝑤
𝑡     [1] 

Equation 1 – Multiplication of Temporal Derivatives, where for each time point, t, the MTD for 

the pairwise interaction between region i and j is defined according to equation 1, where dt is the 
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first temporal derivative of the ith or jth time series at time t, σ is the standard deviation of the 

temporal derivative time series for region i or j and w is the window length of the simple moving 

average. This equation can then be calculated over the course of a time series to obtain an 

estimate of time-resolved connectivity between pairs of regions.  

 

Time-resolved functional connectivity 

Time-resolved functional connectivity was calculated between all 375 brain 

regions using the MTD (Shine et al., 2015) within a sliding temporal window of 

14 time points (10.1 seconds for HCP; 16 time points for NKI data ~ 10.4 seconds). 

Individual functional connectivity matrices were calculated within each temporal 

window, thus generating an unthresholded (that is, signed and weighted) 3D 

adjacency matrix (region × region × time) for each participant. Previous work 

has shown that, when using the MTD, a window length of seven time points 

provides optimal sensitivity and specificity for detecting dynamic changes in 

functional connectivity structure in simulated time series data (Shine et al., 2015). 

To balance these benefits with the need to track changes in slow cortical 

fluctuations which are hypothesized to fluctuate at ~0.1 Hz (Shen et al., 2015), we 

used a temporal window of 14 time points to calculate a simple moving average 

of the MTD, which allowed for estimates of signals at approximately 0.1 Hz. 

While there are statistical arguments to suggest that the potential effects of noise 

can render estimation of connectivity matrices difficult with smaller samples, it is 

currently unclear whether these issues will have the same effects on the 

covariance estimates created with the MTD. However, we note that the MTD is 

more sensitive to changes in covariance than connectivity (Shine et al., 2015) and 

others have shown that covariance is a more reliable marker of coupling strength 

in BOLD data (Cole et al., 2016). Most importantly, as we show, our analyses 

were reliable and replicable using the MTD across multiple datasets. 
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Time- resolved community structure 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT; 

(Rubinov and Sporns, 2010) was used in combination with the MTD to estimate 

both time-averaged and time-resolved community structure. The Louvain 

algorithm iteratively maximizes the modularity statistic, Q, for different 

community assignments until the maximum possible score of Q has been 

obtained (see Equation 2). The modularity estimate for a given network is 

therefore a quantification of the extent to which the network may be subdivided 

into communities with stronger within-module than between-module 

connections. 

 

  𝑄𝑇 =
1

𝓋+
∑ (𝑤𝑖𝑗

+ − 𝑒𝑖𝑗
+)𝛿𝑀𝑖𝑀𝑗𝑖𝑗 −

1

𝓋++𝓋−
∑ (𝑤𝑖𝑗

− − 𝑒𝑖𝑗
−)𝛿𝑀𝑖𝑀𝑗𝑖𝑗  [2] 

 
Equation 2 – Louvain modularity algorithm, where v is the total weight of the network (sum of 

all negative and positive connections), wij is the weighted and signed connection between regions 

i and j, eij is the strength of a connection divided by the total weight of the network, and δMiMj is 

set to 1 when regions are in the same community and 0 otherwise. ‘+’ and ‘–‘ superscripts denote 

all positive and negative connections, respectively.  

 

For each temporal window, the community assignment for each region was 

assessed 500 times and a consensus partition was identified using a fine-tuning 

algorithm from the Brain Connectivity Toolbox (BCT, http://www.brain-

connectivity-toolbox.net/). This afforded an estimate of both the time-resolved 

modularity (QT) and cluster assignment (CiT) within each temporal window for 

each participant in the study. All graph theoretical measures were calculated on 

weighted and signed connectivity matrices (Rubinov and Sporns, 2010) and the γ 

parameter was set to 1. 

 

Based on time-resolved community assignments, we estimated within-module 

connectivity by calculating the time-resolved module-degree Z-score (WT; within 
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module strength) for each region in our analysis (Equation 3; Guimerà and 

Nunes Amaral, 2005). 

 

     𝑊𝑖𝑇 =
𝜅𝑖𝑇−𝜅́𝑠𝑖𝑇

𝜎𝜅𝑠𝑖𝑇

     [3] 

Equation 3 – Module degree Z-score, WiT, where κiT is the strength of the connections of region i 

to other regions in its module si at time T, 𝜅́𝑠𝑖𝑇 is the average of κ over all the regions in si at time 

T, and 𝜎𝜅𝑠𝑖𝑇
 is the standard deviation of κ in si at time T. 

 

Time- resolved hub structure 

The participation coefficient, BT, quantifies the extent to which a region connects 

across all modules (i.e. between-module strength) and has previously been used 

to successfully characterize hubs within brain networks (e.g. see  Power et al., 

2013). The BT for each region was calculated within each temporal window using 

Equation 4. 

 

         𝐵𝑖𝑇 = 1 − ∑ (
𝜅𝑖𝑠𝑇

𝜅𝑖𝑇
)
2

𝑛𝑀
𝑠=1     [4] 

Equation 4 - Participation coefficient BiT, where κisT is the strength of the positive connections of 

region i to regions in module s at time T, and κiT is the sum of strengths of all positive connections 

of region i at time T. The participation coefficient of a region is therefore close to 1 if its 

connections are uniformly distributed among all the modules and 0 if all of its links are within its 

own module. 

 

Cartographic profiling 

To track fluctuations in cartography over time, we created a novel analysis 

technique that did not require the labeling of each node into a pre-defined 

cartographic class (Guimerà and Nunes Amaral, 2005). For each temporal 

window, we computed a joint histogram of within- and between-module 
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connectivity measures, which we refer to here as a “cartographic profile” (Figure 

1). Code for this analysis is freely available at 

https://github.com/macshine/integration/. To test whether the cartographic 

profile of the resting brain fluctuated over time between two topological 

extremes, we performed clustering of temporal windows without the use of 

cartographic class labels. To do so, we classified the joint histogram of each 

temporal window (which is naïve to cartographic boundaries) over time using a 

k-means clustering analysis (k = 2). As a result of this analysis, each window was 

assigned to one of two clusters. K-means was repeated with 500 random restarts 

to mitigate the sensitivity of k-means to initial conditions. 

 

To ensure that the a priori choice of two clusters for the k-means analysis was 

reflective of the broader patterns in the data across multiple values of k, we re-

ran the clustering analysis in the discovery cohort of 92 subjects across a range of 

k values (2-20) and then compared the resultant cluster partitions to the k = 2 

clusters by calculating the mutual information between the each pair of 

partitions. The partition identified at each value of k was strongly similar to the 

pattern identified at k = 2 (mean mutual information = 0.400 ± 0.02; Figure S1). We 

also provided further evidence for this partition by performing a principle 

component analysis for each subject’s data – this test demonstrated that the first 

two principle components for each subject were associated with the integrated 

(20.2 ± 1.4% variance) or segregated state (4.9 ± 2.3% of variance). 

 

To explicitly test whether the resting brain fluctuated more frequently than a 

stationary null model, we calculated the absolute value of the window-to-

window difference in the mean BT score for each iteration of a VAR null model. 

In keeping with Zalesky et al. (Zalesky et al., 2014), VAR model order was set at 
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11, appropriately mimicking the expected temporal signature of the BOLD 

response in 0.72s TR data. The mean covariance matrix across all 92 subjects from 

the discovery group was used to generate 2500 independent null data sets, which 

allows for the appropriate estimation of the tails of non-parametric distributions 

(Nichols and Holmes, 2002). These time series were then filtered in a similar 

fashion to the BOLD data. For each analysis, the maximum statistic was 

concatenated for each independent simulation. We then calculated the 95th 

percentile of this distribution and used this value to determine whether the 

resting state data fluctuated more frequently than the null model. In the 

discovery cohort, 16.1 ± 1.1% of temporal windows were associated with 

deviations ≥ 95th percentile of the VAR null model (i.e. greater than the predicted 

5%), suggesting that the resting state was associated with significant dynamic 

fluctuations in topology. Importantly, the significant fluctuations along the BT 

axis remained after correcting for ongoing changes in the number of modules per 

temporal window.  

 

To estimate patterns of topology associated with each state, the original 3D 

connectivity matrix containing MTD values was then reorganized into those 

windows associated with the two states (defined in the k-means analysis; k =2). 

The modularity of these windows associated with each of the two states were 

then compared statistically using an independent samples t-test. Importantly, the 

two states were matched on graph density, suggesting that the fluctuations in BT 

did not occur simply due to alterations in network sparsity over time. A similar 

technique was used to estimate the global efficiency of each temporal window. 

As global efficiency (Equation 5) cannot be computed from networks with 

negative weights (Barch et al., 2013), we first thresholded the connectivity matrix 
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within each window to include only positive edge weights before calculating 

global efficiency on the remaining connected component. 

 

    𝐸𝑔𝑙𝑜𝑏 =
2

𝑛(𝑛=1)
∑

1

𝑑𝑖,𝑗

𝑛
𝑖<𝑗∈𝐺     [5] 

Equation 4 – global efficiency of a network, where n denotes the total nodes in 

the network and di,j denotes the shortest path between a node i and neighboring 

node j. 

 

To estimate the patterns of brain connectivity associated with each state, we 

binned each region’s WT and BT scores into those windows associated with either 

integrated or segregated states (using the k = 2 partition). We then compared the 

regional WT and BT scores across the two states using an independent-samples t-

test. As expected, all 375 parcels demonstrated higher BT in the more Integrated 

states, whereas none of the 375 parcels showed significantly different WT in 

either state (FDR α < 0.05). For interpretation and display, regional BT scores 

were converted into Z-scores and then projected onto surface renderings (Figure 

1). We also performed a targeted analysis to determine whether activity and 

connectivity within the default network were related to fluctuations in BT 

(activity: group mean r = -0.044 ± 0.09; p = 10-5; and connectivity: group mean r = 

0.127 ± 0.09; p = 10-12). 

 

Task-based alterations in the cartographic profile 

To assess task-based functional connectivity, preprocessed data from the original 

92 unrelated subjects from the discovery cohort were collected while these 

subjects performed seven different tasks in the fMRI (see Barch et al., 2013 for 

further details of each experimental paradigm). The mean time series was then 

extracted from the same 375 regions as defined in the resting state analysis. To 
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control for spurious patterns of connectivity associated with task-evoked activity, 

we first regressed the HRF-convolved task block data from each time series. The 

MTD metric was then calculated on the residuals of this regression using a 

window length of 14 TRs (~10 seconds at 0.72 second TR). These data were then 

subjected to a cartographic profiling analysis in a similar fashion to the resting 

state data. We also directly modeled the mean time-resolved network-level 

connectivity associated with 2-back and 0-back blocks in the N-back task using a 

mixed-effects general linear model (FDR q < 0.05; Figure S4). The network 

membership of each of the parcels was defined according to a previous study 

(Gordon et al., 2014). 

 

To compare the patterns of time-resolved connectivity across the N-back task to 

those observed during rest, we tested whether any bins within the 2-dimensional 

cartographic profile were significantly modulated by task by running a mixed-

effects general linear model analysis at the individual level, fitting the group-

averaged joint histogram to regressors tracking two-back, zero-back and rest 

blocks in both the Motor and the N-back task, separately. We then compared the 

task blocks and the resting state data statistically using separate two-sided, one-

sample t-tests across subjects (FDR α < 0.05). We observed a rightward deviation 

in the mean cartographic profile during the 2-back vs 0-back block, however to 

allow direct comparison across tasks and rest, we opted to include the mean 2-

back profile for each comparison described in the main manuscript. A similar 

analysis was run comparing the mean WT and BT across all 375 parcels. As in 

previous steps, the regional BT scores were converted into Z-scores (otherwise 

the regional heterogeneity associated with each task would be hidden within the 

much-larger mean effect) and then projected onto surface renderings (Figure 2). 
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In order to assess the alteration in the cartographic profile as a function of task 

performance, we estimated the affine transformation (using a correlation cost 

function with 3 degrees of freedom, including translation and rotation 

parameters) between each individual subjects’ resting state cartographic profile 

and the profile observed in each of the seven tasks. To ensure that any 

differences observed during task performance were not confounded by 

fluctuations in global signal or connectivity, we replicated the analysis after 

separately regressing the global signal and the mean MTD value across all 

parcels (global signal: mean r = 0.452 ± 0.21, p = 10-10; mean MTD: mean r = 0.393 ± 

0.14 p = 10-9). 

 

Investigating the Relationship Between Cartography and Behavior 

To interrogate the relationship between the cartographic profile and behavioral 

performance, we fit an EZ-diffusion model to the performance measures from 

the N-back task (Wagenmakers et al., 2007). This model takes in the mean RT on 

correct trials, mean variance of RT across correct trials, and mean accuracy across 

the task and computes from them a value for drift rate, boundary separation, and 

non-decision time – the three main parameters for the diffusion model (Figure 3). 

We used the EZ-diffusion model instead of alternative diffusion fitting routines 

(e.g. fast-dm or DMAT) because previous work has shown that the EZ-diffusion 

model is particularly effective for recovering individual differences in parameter 

values, which were of particular interest in this experiment (van Ravenzwaaij 

and Oberauer, 2009). After fitting each subjects data to the diffusion model, we 

then performed a group-level Pearson’s correlation between each bin of the mean 

joint histogram in each task and the three outcome measures associated with the 

N-back task: the drift rate (Figure 3b), the non-decision time (Figure 3c) and the 

boundary threshold (results not shown, as no bins survived multiple 



 27 

comparisons correction). The model was fit on results from the 2-back task 

blocks, as a many subjects made no errors on the 0-back condition, thus 

precluding our ability to fit their data to the parameters of the drift diffusion 

model. For each comparison, the null hypothesis of no relationship was rejected 

after false discovery rate correction (p < 0.05). We also compared the cartographic 

profile with median reaction time and accuracy for both the cohorts and 

observed a similar relationship between integration and improved performance. 

 

Some work suggests that the EZ-diffusion model performs poorly when there are 

"contaminants" in the data (Ratcliff et al., 2015), which are trials in which the 

usual diffusion parameters do not apply (like fast guesses and attentional lapses). 

We searched for evidence of contaminants in our data and found no evidence of 

them (i.e. the few fast responses [110 RTs <400ms across both samples] were not 

guesses [93% accuracy was the same as the 93% accuracy for all trials). Therefore, 

we proceeded with the EZ-diffusion model, which performs as well or better 

than more complicated fitting routines when contaminants are not present 

(Ratcliff et al., 2015; van Ravenzwaaij and Oberauer, 2009). 

 

Network Cartography Fluctuates with Pupil Diameter 

To test the hypothesis that fluctuations in cartography related to activity in 

ascending neuromodulatory systems, we acquired a separate dataset of 14 

individuals (mean age: 29 years; 8/14 male) in which pupil diameter was 

measured over time during the quiet resting state (TR = 2s; 3.5mm3 voxels; 204 

volumes; Murphy et al., 2014). Participants were instructed to relax, think of 

nothing in particular and maintain fixation for 8 min at a centrally presented 

crosshair (subtending 0.650 of the visual angle). BOLD fMRI data were 

preprocessed using SPM8 software (www.fil.ion.ucl.ac.uk/spm). Pupil diameter 
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was recorded continuously from the left eye at rest and during task using an 

iView X MRI-SV eye tracker (SMI, Needham, MA) at a sampling rate of 60 Hz. 

Pupillometric data were thoroughly pre-processed to remove potential sources of 

noise (see Murphy et al., 2014 for details) and then down-sampled to a 0.5 Hz 

sampling rate (in order to match the sampling frequency of the fMRI data). A 

pupil diameter vector for each scanning run was then convolved with the 

informed basis set to yield three pupil regressors of interest per participant. The 

mean of these regressors was then correlated with the cartographic profile across 

all temporal windows for each of the 14 subjects (mean correlation: r = 0.241 ± 

0.06). A set of one-sample t-tests was then used to test whether the correlation 

between each bin of the cartographic profile was significantly different from zero 

(FDR α < 0.05). A similar t-test was used to determine whether the correlation 

between the mean BT and pupil diameter was significantly greater than zero 

across the cohort of 14 subjects. 

 

Identifying Regions Related to Global Integration 

We used a parcel-wise conjunction analysis (Nichols et al., 2005) to identify a set 

of regions in which the BT and WT were significantly related to drift rate, non-

decision time and pupil diameter. For each comparison in turn, we determined 

whether the WT/BT individual parcel was significantly correlated with each 

outcome measure of interest above chance (FDR α < 0.05). We then binarized the 

resultant parcel vectors and calculate a conjunction analysis, separately for both 

WT and BT. Results were then projected onto surface renderings for 

interpretation.  

 

Replication analysis  
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To quantify how well our results replicated across sessions and datasets, we 

calculated group-level correlations between each of the measures identified in 

our analysis. Overall, we observed a strong positive correlation between the 

outcome measures identified in the two sessions (for all statistical tests, p < 

0.001): graph measures – 𝑟𝑊𝑇
 = 0.982, 𝑟𝐵𝑇  = 0.957; and mean cartographic profiles 

𝑟𝐶𝑎𝑟𝑡 = 0.982 (Figure S2). We also confirmed the presence of these results in a 

unique cohort of 92 unrelated participants from the HCP: graph measures – 𝑟𝑊𝑇
 = 

0.971, 𝑟𝐵𝑇  = 0.967; and mean cartographic profiles – 𝑟𝐶𝑎𝑟𝑡 = 0.973 (Figure S2). We 

also observed similarly positive relationships between the group-level outcome 

measures estimated from the HCP and NKI data (for all statistical tests, p < 

0.001): graph measures – 𝑟𝑊𝑇
= 0.941, 𝑟𝐵𝑇  = 0.857; and mean cartographic profiles – 

𝑟𝐶𝑎𝑟𝑡 = 0.927 (Figure S2). In addition, the same fluctuations observed in the HCP 

dataset were also present in the NKI dataset (see Video 3 at 

http://github.com/macshine/coupling).      

 

Finally, the linear relationships between behavioral performance and the 

cartographic profile were consistent across the discovery and replication 

datasets. A spatial correlation between the two datasets was strongly positive for 

both the relationship with drift rate (r = 0.613; R2 = 0.37; p = 10-11; Figure S3) and 

non-decision time (r = 0.681; R2 = 0.46; p = 10-15; Figure S3), but the null hypothesis 

could not be rejected for the diffusion boundary (p > 0.500). 
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Figure Legends 

Figure 1: Dynamic fluctuations in cartography: a) upper: a representative time 

series of the mean BT for a single individual from the Discovery cohort (HCP 

#100307); lower: each temporal window was partitioned into one of two 

topological ‘states’ using k-means clustering (red: ‘Segregated’ and blue: 

‘Integrated’); b) the mean cartographic profile of both the Segregated and 

Integrated states (HCP Discovery cohort; n = 92); c) regions with greater WT in 

the Integrated than Segregated state; and d) regions with greater BT in the 

Integrated than Segregated state. 

 

Figure 2: Alteration of cartographic profile during task performance: a) time 

series plot demonstrating the close temporal relationship between mean BT 

across 100 subjects (thick black line; individual subject data plotted in grey) and 

task-block regressors (blue line) – Pearson’s correlation between regressor and 

group mean BT: r = 0.521); b) regions of the 2-dimensional joint histogram that 

were significantly different between N-back task blocks and the resting state 

(paired-samples t-test) – colored points indicate regions that survived false 

discovery correction (FDR α < 0.05): red/yellow – increased frequency during N-

back task blocks; blue/light blue – increased frequency during resting state (FDR 

α < 0.05); c) surface projections of parcels associated with higher WT (left) or BT 

(right) during the N-back task, when compared the resting state – frontoparietal 

and subcortical ‘hub’ regions showed elevated BT during task, whereas WT was 

elevated in primary systems and decreased in default mode regions; d) a plot 

quantifying the shift away from the cartographic profile in the resting state 

(along the between-module (BT) connectivity axis) across the six tasks in the HCP 

dataset (error bars reflect standard deviation across the Discovery cohort). 
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Figure 3 – Relationship between task performance and the cartographic 

profile: a) a graphical depiction of the drift-diffusion model, which uses the 

mean and standard deviation of a subjects reaction time and performance 

accuracy to estimate the ‘drift rate’, or rate of evidence accumulation (v), the 

length of non-decision time (t) and the response boundary (a); b) left – group-

level correlation between drift rate on the N-back task and each bin of the mean 

cartographic profile during the N-back task in the Discovery cohort; right – 

parcels showing a positive correlation between mean BT and drift rate; and c) left 

– group-level correlation between non-decision time on the N-back task and each 

bin of the mean cartographic profile during the N-back task in the Discovery 

cohort; right – parcels showing a negative correlation between mean BT and non-

decision time. False discovery rate, alpha = 0.05. No bins of the cartographic 

profile showed a consistent response with the response boundary. Similarly, no 

parcels showed a significant correlation between WT and any of the three 

diffusion model fits. 

 

Figure 4 – Relationship between cartography and pupillometery: a) an example 

time series (subject #1) showing the covariance between the pupil diameter (after 

convolution with a hemodynamic response function; blue) and mean between-

module connectivity (BT; red); b) mean Pearson correlation between each bin of 

the cartographic profile and the convolved pupil diameter. Across the cohort of 

14 subjects, we observed a positive relationship between pupil diameter and 

network-level integration (FDR α = 0.05); c) results from a conjunction analysis 

(FDR α < 0.05) that compared relationships between WT (red) or BT (blue) and 

drift-rate (positive correlation), non-decision time (inverse correlation) and 

pupillometery (positive correlation). There were no cerebellar parcels above 

threshold in all three contrasts. 
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