1,615 research outputs found

    Development of ultrasound to measure deformation of functional spinal units in cervical spine

    Full text link
    Neck pain is a pervasive problem in the general population, especially in those working in vibrating environments, e.g. military troops and truck drivers. Previous studies showed neck pain was strongly associated with the degeneration of intervertebral disc, which is commonly caused by repetitive loading in the work place. Currently, there is no existing method to measure the in-vivo displacement and loading condition of cervical spine on the site. Therefore, there is little knowledge about the alternation of cervical spine functionality and biomechanics in dynamic environments. In this thesis, a portable ultrasound system was explored as a tool to measure the vertebral motion and functional spinal unit deformation. It is hypothesized that the time sequences of ultrasound imaging signals can be used to characterize the deformation of cervical spine functional spinal units in response to applied displacements and loading. Specifically, a multi-frame tracking algorithm is developed to measure the dynamic movement of vertebrae, which is validated in ex-vivo models. The planar kinematics of the functional spinal units is derived from a dual ultrasound system, which applies two ultrasound systems to image C-spine anteriorly and posteriorly. The kinematics is reconstructed from the results of the multi-frame movement tracking algorithm and a method to co-register ultrasound vertebrae images to MRI scan. Using the dual ultrasound, it is shown that the dynamic deformation of functional spinal unit is affected by the biomechanics properties of intervertebral disc ex-vivo and different applied loading in activities in-vivo. It is concluded that ultrasound is capable of measuring functional spinal units motion, which allows rapid in-vivo evaluation of C-spine in dynamic environments where X-Ray, CT or MRI cannot be used.2020-02-20T00:00:00

    Electromyography-Assisted Neuromusculoskeletal Models Can Estimate Physiological Muscle Activations and Joint Moments Across the Neck Before Impacts

    Get PDF
    Knowledge of neck muscle activation strategies prior to sporting impacts is crucial for investigating mechanisms of severe spinal injuries. However, measurement of muscle activations during impacts is experimentally challenging and computational estimations are not often guided by experimental measurements. We investigated neck muscle activations prior to impacts with the use of electromyography (EMG)-assisted neuromusculoskeletal models. Kinematics and EMG recordings from four major neck muscles of a rugby player were experimentally measured during rugby activities. A subject-specific musculoskeletal model was created with muscle parameters informed from MRI measurements. The model was used in the Calibrated EMG-Informed Neuromusculoskeletal Modelling toolbox and three neural solutions were compared: i) static optimisation (SO), ii) EMG-assisted (EMGa) and iii) MRI-informed EMG-assisted (EMGaMRI). EMGaMRI and EMGa significantly (p¡0.01) outperformed SO when tracking cervical spine net joint moments from inverse dynamics in flexion/extension (RMSE = 0.95, 1.14 and 2.32 Nm) but not in lateral bending (RMSE = 1.07, 2.07 and 0.84 Nm). EMG-assisted solutions generated physiological muscle activation patterns and maintained experimental co-contractions significantly (p¡0.01) outperforming SO, which was characterised by saturation and non-physiological "on-off" patterns. This study showed for the first time that physiological neck muscle activations and cervical spine net joint moments can be estimated without assumed a priori objective criteria prior to impacts. Future studies could use this technique to provide detailed initial loading conditions for theoretical simulations of neck injury during impacts.</p

    Combined musculoskeletal and finite element modelling of the lumbar spine and lower limbs

    Get PDF
    Bone health deterioration is a major public health issue increasing the risk of fragility fracture with a substantial associated psychosocioeconomic impact. In the lumbar spine, physical deconditioning associated with ageing and chronic pain is a potential promoter of bone structural degradation. General guidelines for the limitation of bone loss and the management of pain have been issued, prescribing a healthy lifestyle and a minimum level of physical activity. However, there is no specific recommendation regarding targeted activities that can effectively maintain lumbar spine bone health in populations at risk. The aim of this thesis was to develop a new predictive computational modelling framework for the study of bone structural adaptation to healthy and pathological conditions in the lumbar spine. The approach is based on the combination of a musculoskeletal model of the lumbar spine and lower limbs with structural finite element models of the lumbar vertebrae. These models are built with bone and muscle geometries derived from healthy individuals. Based on daily living activities, musculoskeletal simulations provide physiological loading conditions to the finite element models. Cortical and trabecular bone are modelled with shell and truss elements whose thicknesses and radii are adapted to withstand the physiological mechanical environment using a strain driven optimisation algorithm. This modelling framework allows to generate healthy bone architecture when a loading envelope representative of a healthy lifestyle is applied to the vertebrae, and identify influential activities. Prediction of bone remodelling under altered loading scenarios characteristic of lumbar pathologies can also be achieved. The modelling approach developed in this thesis is a powerful tool for the investigation of bone remodelling in the lumbar spine. Preliminary results indicate that locomotion activities are insufficient to maintain lumbar spine bone health. Specific recommendations to limit the effect of physical deconditioning related to muscle weakening back pain are suggested. The approach is also promising for the investigation of other lumbar pathologies such as age related osteoporosis and scoliosis.Open Acces

    Cervical spine injuries: A whole-body musculoskeletal model for the analysis of spinal loading

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cervical spine trauma from sport or traffic collisions can have devastating consequences for individuals and a high societal cost. The precise mechanisms of such injuries are still unknown as investigation is hampered by the difficulty in experimentally replicating the conditions under which these injuries occur. We harness the benefits of computer simulation to report on the creation and validation of i) a generic musculoskeletal model (MASI) for the analyses of cervical spine loading in healthy subjects, and ii) a population-specific version of the model (Rugby Model), for investigating cervical spine injury mechanisms during rugby activities. The musculoskeletal models were created in OpenSim, and validated against in vivo data of a healthy subject and a rugby player performing neck and upper limb movements. The novel aspects of the Rugby Model comprise i) population-specific inertial properties and muscle parameters representing rugby forward players, and ii) a custom scapula-clavicular joint that allows the application of multiple external loads. We confirm the utility of the developed generic and population-specific models via verification steps and validation of kinematics, joint moments and neuromuscular activations during rugby scrummaging and neck functional movements, which achieve results comparable with in vivoand in vitrodata. The Rugby Model was validated and used for the first time to provide insight into anatomical loading and cervical spine injury mechanisms related to rugby, whilst the MASI introduces a new computational tool to allow investigation of spinal injuries arising from other sporting activities, transport, and ergonomic applications. The models used in this study are freely available at simtk.org and allow to integrate in silico analyses with experimental approaches in injury prevention.Funding: This project is funded by the Rugby Football Union (RFU) Injured Players Foundation. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    A Model-Based Approach for Estimation of Changes in Lumbar Segmental Kinematics Associated with Alterations in Trunk Muscle Forces

    Get PDF
    The kinematics information from imaging, if combined with optimization-based biomechanical models, may provide a unique platform for personalized assessment of trunk muscle forces (TMFs). Such a method, however, is feasible only if differences in lumbar spine kinematics due to differences in TMFs can be captured by the current imaging techniques. A finite element model of the spine within an optimization procedure was used to estimate segmental kinematics of lumbar spine associated with five different sets of TMFs. Each set of TMFs was associated with a hypothetical trunk neuromuscular strategy that optimized one aspect of lower back biomechanics. For each set of TMFs, the segmental kinematics of lumbar spine was estimated for a single static trunk flexed posture involving, respectively, 40° and 10° of thoracic and pelvic rotations. Minimum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 0° to 0.7° and 0 mm to 0.04 mm, respectively. Maximum changes in the angular and translational deformations of a motion segment with alterations in TMFs ranged from 2.4° to 7.6° and 0.11 mm to 0.39 mm, respectively. The differences in kinematics of lumbar segments between each combination of two sets of TMFs in 97% of cases for angular deformation and 55% of cases for translational deformation were within the reported accuracy of current imaging techniques. Therefore, it might be possible to use image-based kinematics of lumbar segments along with computational modeling for personalized assessment of TMFs

    Multi-Scale Vertebral-Kinematics Based Simulation Pipeline of the Human Spine With Application to Spine Tissues Analysis

    Get PDF
    This study developed an analytical tool for understanding spine tissues’ behavior in response to vertebral kinematics and spine pathology over a range of body postures. It proposed a novel pipeline of computational models based on predicting individual vertebral kinematics from measurable body-level motions, using musculoskeletal dynamics simulations to drive the vertebrae in corresponding spine FEMs. A reformulated elastic surface node (ESN) lumbar model was developed for use in MSD simulations. The ESN model modifies the lumbar spine within an existing MSD model by removing non-physiological kinematic constraints and including elastic IVD behavior. The model was scaled using subject-specific anthropometrics and validated to predict in vivo vertebral kinematics and IVD pressures during trunk flexion/extension. The ESN model was integrated into a novel simulation pipeline that automatically maps it to a kinematics-driven FEM (KD-FEM). The KD-FEM consisted of lumbar vertebrae scaled to subject-specific geometries and actuated by subject-specific vertebral kinematics from the ESN model for different activities. The pipeline was validated for its ability to predict in vivo IVD pressures at L4-L5 level during flexion and load carrying postures. A detailed multi-layered multi-phase lumbar canal FE model was integrated into the KD-FEM to quantify risks to canal tissues due to vertebral kinematics and progressive canal narrowing (stenosis). This enabled distinct computation of proposed stenosis measures, including cerebrospinal fluid pressure, cauda equina deformation and related stresses/pressure/strains, among others. Model outputs included measures during flexion and comparison of three clinically relevant degrees of progressive stenosis of the bony vertebral foramen at L4 level
    corecore