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Thesis Abstract 

Background Senescence of the musculoskeletal system is characterised by declines in muscle strength, 

muscle mass and physical function. These changes that accompany the ageing process were 

conceptualised into the condition known as sarcopenia, which is associated with adverse health 

outcomes and affects over 70% of older adults. Sarcopenia has been recently recognised as a geriatric 

syndrome; migrating from its original gerontological concept. As the proportion of older adults 

continues to rise across the world, sarcopenia presents an ever-increasing major health concern and 

socioeconomic burden. The research to date predominantly focuses on the appendicular muscles, 

despite the recognised importance of the lumbar musculature in maintaining physical function and 

independence in older age. Indeed, some researchers have suggested that the lumbar paravertebral 

muscles (LPMs) may be more susceptible to the effects of age-related sarcopenia than the 

appendicular muscles, although mechanisms for this phenomenon are ambiguous. With renewed 

interest, researchers are increasing efforts to understand sarcopenia of the spine which has led to the 

emerging concept of “spinal sarcopenia”. Given the lack of research on this topic, it is of prime 

importance to investigate the effects of ageing on muscle morphology, strength and biomechanical 

function in the lumbar spine. Furthermore, it is important to understand the normal progression of 

age-related changes in this region to allow identification of sarcopenic and pathological deviations. 

Therefore, research should initially target healthy adults as undetermined phenotypes are likely 

hidden in the demographics of general populations. Extending our understanding of age-related 

changes in the LPMs will also provide guidance for effective clinical and public health intervention 

strategies to offset adverse health outcomes related to spinal sarcopenia in older adult populations. 

 

Aim The main aim of the thesis was to explore age-related differences in lumbar spine specific 

measures of sarcopenia (i.e. muscle morphology, strength and biomechanical function) in healthy 

younger and older men. The secondary aim was to evaluate the interrelationships between muscle 

morphology, strength and biomechanical function in the lumbar spine alongside differences as a result 

of age. 

 

Methods A range of methods was used due to the multidisciplinary nature of the research. Initially, a 

systematic review with meta-analysis was conducted to establish the relationship between ageing and 

degeneration of the lumbar musculature. Findings from the meta-regression were also used to inform 

methodological decisions regarding investigation of LPM morphology. Subsequently, quantitative MRI 

was performed to evaluate age-related volumetric and compositional differences in the LPMs. This 
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study was the first of three prospective observational studies to obtain primary data. Twelve healthy 

older men (67.3 ± 6.0 years) and 12 healthy younger men (24.7 ± 3.1 years) were included. Participants 

in the young group (YG) were matched to participants in the older group (OG) based on sex, ethnicity 

and physical activity (PA) level. To obtain strength data specific to the lumbar spine musculature, 

isokinetic dynamometry was applied to the trunk in the second experimental study. The OG and YG 

completed a protocol which included concentric and eccentric contractile modes as well as a wide 

range of angular velocities (15°·s-1 to 180°·s-1). Finally, age-related differences in biomechanical 

function of the trunk during walking gait was explored using 3-D motion analysis. Statistical parametric 

mapping was used as a novel approach to determine phase-specific differences in kinematic and 

kinetic waveforms between the young and older age groups. As muscle measures are sensitive to 

lifestyle factors and health status, confounding variables such as PA level and physical disability were 

measured and controlled for where appropriate. 

 

Results From the 34 studies (n = 6047) included in the meta-analysis, ageing was associated with 

atrophy (r = -0.255) and fat infiltration (r = 0.394) in the lumbar musculature. These degenerative 

changes also showed muscle, lumbar level and sex-specific responses. It was recommended that 

studies should use high-resolution imaging modalities to measure muscle volume across levels and 

across all muscles in the lumbar spine. Subsequently, the T2-weighted axial MRI images of the lumbar 

spine showed that increased fat infiltration was a global change across the lumbar musculature in 

older age. However, atrophy was muscle specific with age explaining 42% and 18% of the variance in 

quadratus lumborum and erector spinae muscle atrophy, respectively. Interestingly, PA level did not 

moderate the effect of age on muscle morphology degeneration (i.e. atrophy and fat infiltration). 

Concentric strength of the back muscles declined with age, which was more pronounced at greater 

movement speeds. However, loss of muscle volume and increase in fat infiltration was not able to 

explain age-related concentric strength loss in the trunk extensor muscles. It was likely that 

neuropathic processes with ageing were the cause of reduced concentric extensor strength in the OG. 

There was also an apparent preservation of eccentric trunk strength in older age, which was negatively 

associated with quadratus lumborum fat infiltration but not age. Regarding biomechanical function of 

the trunk during walking, the OG demonstrated reduced movement amplitudes in all planes of motion. 

However, reduced trunk movements in the coronal plane were likely a reflection of decreased range 

of pelvic obliquity motion. Few differences existed in trunk kinetics between the YG and OG, although 

the YG performed significantly more negative work in the coronal plane during the gait cycle (GC). This 

was likely due to greater lateral flexion excursions. Walking was on average 20% more functionally 

demanding on the trunk muscles in the OG compared to the YG, although this difference was not 
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statistically significant. There was also evidence of interplanar uncoupling of trunk motion in older 

age, which may increase the energetic demand of walking. Loss of muscle volume and increase in fat 

infiltration was unable to explain age-related differences in biomechanical trunk function. 

 

Conclusion This thesis represents the first research to investigate lumbar spine specific measures of 

age-related sarcopenia. The dataset will provide a useful step in establishing normal features of 

muscle degeneration, strength loss and functional decline in the lumbar spine with ageing. This thesis 

will also help to establish the concept of spinal sarcopenia, which is an emerging field of interest in 

healthy ageing and musculoskeletal research. Furthermore, the findings within this thesis can be used 

in future research to design more effective targeted interventions aiming to improve physical function 

and health outcomes in older adults. 
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Highlights 

• The first study to investigate age-related differences in muscle morphology, strength and 

biomechanical function of the lumbar spine 

• The lumbar musculature degenerates with ageing 

• High-resolution imaging modalities should be used to evaluate age-related morphological 

degeneration in the lumbar paravertebral muscles 

• Age-related fat infiltration is a global change in the lumbar musculature whilst atrophy is 

muscle-specific 

• Concentric strength of the trunk extensor muscles declines in older men (> 60 years) and the 

effect is greater with faster movements 

• Eccentric trunk strength is somewhat preserved in older men 

• In older age, trunk kinematics during gait are altered predominantly in the coronal and 

transverse planes 

• Walking is more biomechanically demanding on the trunk musculature in older adults 

• Decrements in lumbar muscle morphology do not appear to influence trunk strength loss and 

biomechanical function in older age  

• The work presented in this thesis represents an extension to academic understanding of spinal 

sarcopenia 
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Chapter 1 Rationale and Narrative Review of the Literature 

 Introduction 

The ancient Greeks were the first to document the loss of “flesh” and “vigour” as features of ageing; 

viewing ageing as an incurable, chronic and progressive disease (Narici and Maffulli, 2010). Galen of 

Pergamon (Green, 2012) proposed new ideas of ageing, viewing it as a condition midway between 

illness and health rather than a progressive disease. Although senescence of the musculoskeletal 

system continued to be explored over the centuries, Rosenberg (1989) was the first to assign a specific 

term to the age-related loss of muscle mass. Sarcopenia, derived from the Greek “sarx” meaning flesh 

and “penia” meaning a lack of, was the term proposed to describe the loss of lean mass with ageing 

independent of disease. Later, studies showed that muscle mass decreases at a rate of 1 – 2 % per 

year after the 6th decade of life (Doherty, 2003; Abellan Van Kan, 2009). The definition of sarcopenia 

has been refined over 30 years, encompassing elements of strength and function loss in addition to 

muscle mass loss (Cruz-Jentoft et al., 2019). Sarcopenia is a powerful risk factor for frailty and 

incidence risk of falls and fractures, loss of independence, weakness, functional impairment, physical 

disability and highly predictive of mortality in older populations (Roubenoff, 2000; Rantanen et al., 

1999; Janssen, Heymsfield and Ross, 2002; Cawthon et al., 2014; Rizzoli et al., 2013). Sarcopenia has 

also been reported to increase the risk of concomitant diseases (Lu et al., 2013; Papalia et al., 2014) 

and ultimately lead to a poorer quality of life (Rizzoli et al., 2013). Age-related loss of muscle mass, 

strength and physical function is a major health concern and represents a substantial socioeconomic 

burden (Pinedo-Villanueva et al., 2019; Janssen et al., 2004). As the prevalence of sarcopenia, affecting 

up to 73% of older individuals (Sobestiansky, Michaelsson and Cederholm, 2019), and its impact has 

continued to increase due to ageing populations across the world (Department of Economic and Social 

Affairs Population Division, 2019), there has been a surge of interest in the condition (Figure 1.1).  

Figure 1.1 Increasing number of publications on “sarcopenia” from 
inception to Jan 2021 using PubMed with the search term "sarcopenia"  
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 Sarcopenia Research in the Trunk 

Sarcopenia migrated from its original gerontological concept to a clinical condition (Cruz-Jentoft et al., 

2010b); recently being recognised as a geriatric syndrome (Gupta, 2019). This shift resulted in research 

groups and clinicians focusing more on the functional consequences of muscular deficits in older age 

and the impact of extrinsic factors such as nutrition, lifestyle and disease (Malafarina et al., 2012). For 

the purposes of this thesis, older age is defined as adults aged 60 years and above. During the seventh 

decade of life, the rate of muscle mass and strength loss increases marking 60 years of age as an 

important point when the musculoskeletal system undergoes involutional changes (von Haehling, 

Morley and Anker, 2010). Most of the research on sarcopenia focuses on appendicular muscle mass 

and basic measures of muscle strength and function. Indeed, the main working groups’ diagnostic 

criteria include handgrip strength, gait speed (as a proxy for muscle function) and appendicular muscle 

mass index as primary assessments (Fielding et al., 2011; Studenski et al., 2014; Muscaritoli et al., 

2010; Morley et al., 2011; Chen, L. K. et al., 2014; Cruz-Jentoft et al., 2019). Whilst assessment of the 

limbs is valuable, the importance of the spinal musculature in maintaining health and physical function 

in older age is being increasingly recognised. However, the concept of spinal sarcopenia is yet to be 

established.  

According to Narici and Maffulli (2010), the postural muscles in the spine may be more susceptible to 

the effects of sarcopenia than the appendicular muscles. Knowledge on this topic is still limited by 

relatively few studies (approximately 1 % of published articles on sarcopenia concern the spinal 

musculature using PubMed searches from inception to Jan 2021) and a range of measurement 

techniques that precludes comparisons between them. Furthermore, research on sarcopenia of the 

trunk has tended to focus on populations with spinal diseases (Eguchi et al., 2017; Urrutia et al., 

2018b), which makes it difficult to separate the independent effects of ageing from associated 

degenerative processes in the lumbar spine (Urrutia et al., 2018b). Analogous to the diagnostic criteria 

for sarcopenia, understanding the effects of age-related sarcopenia in the trunk is imperative in 

preventing immobility and maintaining physical independence in older age. Due to the paucity of 

studies investigating the lumbar musculature in healthy older adults, further research is warranted to 

understand the normal progression of age-related muscle degeneration, strength loss and functional 

decline in the trunk. Furthermore, the basic clinical assessments currently used to diagnose sarcopenia 

may be insufficient to detect subtle changes in muscle morphology or declines in physical function 

with ageing in the trunk. Therefore, more sophisticated measurements and analyses in the trunk may 

provide new insights into degenerative features of age-related sarcopenia. 
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 Anatomy and Functional Roles of the Paravertebral Muscles in the Lumbar Spine 

The trunk muscles play an important role in performing activities of daily living (ADLs), particularly the 

LPMs (Figure 1.2) which provide stability to the trunk (Crisco and Panjabi, 1991; Panjabi, 1992) and 

have a key function in the performance of lower limb tasks (Hicks et al., 2005a). Therefore, 

degeneration of the LPMs may be particularly detrimental to physical function in older age (Kita et al., 

2013; Hicks et al., 2005b; Williams et al., 2017) given that the ability of the lumbar spine to withstand 

high loads is almost entirely attributable to the dynamic stabilising capacity of the trunk musculature 

(Cholewicki and McGill, 1996; Mcgill et al., 2003). Indeed, a cadaveric osteoligamentous spine will 

buckle under a compressive load of approximately 90 N (Crisco et al., 1992). Further assessment of 

strength and composition of the spinal musculature as well as physical function in older adults has 

been recommend due to substantial heterogeneity amongst studies (Hicks et al., 2005a; Granacher et 

al., 2013). To better understand the effect of ageing on LPM degeneration and loss of strength and 

physical function in the trunk, the intrinsic roles of the LPMs must first be established. 

Figure 1.2 Cross section of the musculature and fascia at the third lumbar level. The psoas, erector spinae 
(longissimus and iliocostalis), multifidus and quadratus lumborum muscles make up the lumbar 
paravertebral musculature. Image taken from Finneson (1980) 
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1.3.1  Intrinsic Muscles of the Lumbar Spine 

The muscles surrounding the lumbar spine are key to achieving spinal stability; withstanding forces 

encountered in everyday life (Barr, Griggs and Cadby, 2005), assisting in controlling movement and 

providing mechanical stability (Meakin et al., 2013). These muscles comprise of two main groups, the 

intrinsic muscles that are characterised by their intervertebral connections (Choi and Kim, 2012) and 

the extrinsic muscles that attach vertebrae to the limbs (Vasavada et al., 2011). The LPMs that are 

located deeply are also responsible for small movements that stabilise the spine (Ward et al., 2009; 

Cornwall, Stringer and Duxson, 2011; Hansen et al., 2006). Indeed, the actions of the MF account for 

more than two thirds of the stiffness of the spine (Wilke et al., 1995). Its short fibres and relatively 

large cross-sectional area (CSA) make it well suited to controlling intersegmental motion (Moseley, 

Hodges and Gandevia, 2002). The ability of the MF to produce large forces over a small operating 

range (Rosatelli, Ravichandiran and Agur, 2008) also demonstrates that it is biomechanically designed 

for stabilisation rather than movement (Ward et al., 2009). The MF itself is comprised of two types of 

fibre, deep and superficial (Figure 1.3). The deep fibres span two vertebral levels and function 

tonically, whereas the superficial fibres span three to five vertebrae and activate phasically (Macintosh 

and Bogduk, 1986; MacDonald, Lorimer Moseley and Hodges, 2006). Similar to the gross arrangement 

of the LPMs, the anatomical arrangement of the lumbar MF makes the deeper fibres more suited to 

stabilisation. (Jones, 2020) 

 

 

Figure 1.3 Anatomy of the multifidus muscle. Image adapted from Jones (2020) 

Some materials have been removed from this thesis due to Third Party 
Copyright. Pages where material has been removed are clearly marked in 
the electronic version. The unabridged version of the thesis can be viewed 
at the Lanchester Library, Coventry University.
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The erector spinae (ES) in the lumbar spine is composed of the iliocostalis and longissimus muscles 

(Figure 1.4). It is a large muscle group that lies deep to the lumbodorsal fascia and attaches to an 

aponeurosis on the sacrum, iliac crest, and thoracolumbar spinous processes (Bogduk, 1980; 

Daggfeldt, Huang and Thorstensson, 2000). Its main function is extension of the spine (Danneels et al., 

2000), although others have suggested that it primarily restricts excessive trunk movements during 

walking (Thorstensson et al., 1982). Since the ES has a large moment arm to bring about extension 

and lateral flexion of the spine (Lin et al., 2001) it is likely that it plays an important role in controlling 

sagittal and coronal plane trunk movements during walking (Masaki et al., 2016). Although the MF 

and ES have distinct primary roles (stabiliser and prime mover, respectively), their coordination elicits 

stability and optimum functioning of the trunk during dynamic tasks (Hicks et al., 2005a). 

 

1.3.2 Extrinsic Muscles of the Lumbar Spine 

The superficial muscles of the lumbar spine (Figure 1.5) generate torque for spinal motion and 

dissipate external forces acting on the spine (Bergmark, 1989). These muscles have also been shown 

to contribute to lumbar stability during load bearing movements (Kuukkanen and Mälkiä, 2000). The 

psoas (PS) and quadratus lumborum (QL) are frequently included in analyses of the lumbar 

Figure 1.4 Anatomy of the erector spinae. Image taken from Jones (2020) 

Some materials have been removed from this thesis due to Third Party 
Copyright. Pages where material has been removed are clearly marked in the 
electronic version. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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musculature, likely due to their relative size and the importance of their roles. The QL increases lumbar 

stiffness through its attachment to the transverse processes of the lumbar spine via the thoracolumbar 

fascia (Ebenbichler et al., 2001), assisting in lateral stabilisation of the spine (McGill, 2001). 

Electromyographical studies support this, suggesting that the dominant role of the QL is lumbar 

stabilisation (McGill, Juker and Kropf, 1996). However, others have suggested that the QL has a 

relatively modest action on the lumbar spine and its actual role in spinal biomechanics is yet to be 

determined (Phillips, Mercer and Bogduk, 2008). The PS has the largest CSA of any muscle in the lower 

levels of the lumbar spine (McGill, Patt and Norman, 1988). Its morphology, uniform fascicles lengths 

(Bogduk, Pearcy and Hadfield, 1992), together with electromyographical evidence suggests that the 

primary function of the PS is flexion at the hip (Bogduk, Pearcy and Hadfield, 1992; Juker et al., 1998). 

However, the PS also has the potential to flex the lumbar spine laterally and increase spinal stability 

through generating compressive forces (Santaguida and McGill, 1995). 

 

 

 Literature Review of Studies 

It has been recognised that more research is needed to fully understand the effect of age on muscle 

morphology, strength and physical function in the lumbar spine (Crawford et al., 2016c; Kalichman, 

Carmeli and Been, 2017; Granacher et al., 2013). To the author’s knowledge, only one study has 

investigated age-related changes in LPM morphology, trunk strength and physical function together 

Figure 1.5 Anatomy of the superficial lumbar muscles. Image taken from Jones (2020) 

Some materials have been removed from this thesis due to Third Party 
Copyright. Pages where material has been removed are clearly marked in the 
electronic version. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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in healthy adults (Shahtahmassebi et al., 2017). Other studies have included muscle morphology with 

either trunk strength or physical function measures (Williams et al., 2017; Hicks et al., 2005a; 

Schlaeger et al., 2019; Ikezoe et al., 2015; Lee et al., 2012) and not always in healthy populations 

(Williams et al., 2017; Lee et al., 2012). Discounting any of the three features of age-related sarcopenia 

could result in an incomplete understanding of the impact ageing has on the lumbar spine. Indeed, 

age-related strength loss can occur independent of morphological changes in skeletal muscle (Ochala 

et al., 2007) and decrements in strength may not necessarily result in functional declines in older age 

(Roubenoff, 2003). An approach that considers the interdependency between these with the age-

effect is needed. 

Only two studies (Lee et al., 2012; Schlaeger et al., 2019) have investigated the relationships between 

ageing, muscle morphology of the lumbar spine and trunk strength. Despite highly disparate methods, 

age was poorly associated with morphological degeneration and strength measures in both studies. 

However, reduced muscle CSA was related to declining trunk strength. Schlaeger and colleagues 

(2019) suggested that fat infiltration within the ES and PS improved the prediction of paraspinal 

muscle strength more than muscle size alone, whilst Lee et al. (2012) observed no associations 

between paraspinal and PS fat composition and trunk strength. This disparity is likely the result of 

sampling and methodological variance. Lee et al. (2012) included patients with low back pain (LBP) 

whilst Schlaeger et al’s (2019) study  was composed of healthy men and women. Furthermore, fat 

infiltration was qualitatively graded by Lee et al. (2012) compared to proton density fat fraction being 

quantitatively derived by Schlaeger et al. (2019). Strength measures also differed between the studies. 

Lee and colleagues (2012) used isokinetic dynamometry to measure peak trunk flexor and extensor 

concentric strength at 60°·s-1 whilst the other study (Schlaeger et al., 2019) measured trunk strength 

isometrically, which limits the information that can be obtained about the trunk’s dynamic force 

producing capacity through a range of motion (ROM). These studies also discounted physical function 

measures which may have revealed important relationships with age, trunk strength and muscle 

morphology. The considerable heterogeneity between these studies precludes conclusions from being 

drawn, warranting further research on this topic. 

Other studies have focused on the relationships between ageing, muscle degeneration and physical 

function decline (Williams et al., 2017; Hicks et al., 2005a; Ikezoe et al., 2015). However, the same 

issues complicate our understanding as these studies use a variety of tests and in different 

populations. These studies were also limited by not measuring trunk muscle strength. Indeed, physical 

function tests are more varied than strength assessments and often provide composite measures 

which makes it difficult to isolate where decline in physical function is most apparent. Similar to the 

other studies (Lee et al., 2012; Schlaeger et al., 2019), Williams and colleagues (2017) found that age 
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had little effect on degeneration of the trunk musculature. Lumbar spine muscle mass was also poorly 

associated with physical function, although intramuscular fat infiltration was able to identify physical 

function impairments amongst older adult cancer patients (Williams et al., 2017). These findings were 

consistent with Hicks et al. (2005a), who reported that trunk muscle composition, and not trunk 

muscle area, is associated with reduced functional capacity in a large cohort of well-functioning older 

adults. However, older institutionalised women have shown a reduction in walking ability with muscle 

atrophy of the ES, MF and PS muscles (Ikezoe et al., 2015).  

Whilst there appears to be a consensus that ageing muscle morphology in the lumbar spine is related 

to declining physical function, measurement of physical function varied greatly. Amongst these studies 

(Williams et al., 2017; Hicks et al., 2005a; Ikezoe et al., 2015) physical function tests included clinical 

assessments (e.g. Timed Up-and-Go test), performance batteries (e.g. The Health ABC Physical 

Performance Battery), self-reported physical health and falls and maximum walking speed. The 

efficacy of these assessments regarding trunk function is questionable.  Whilst the performance of 

functional movements relies on the mechanical function of the spine (Cholewicki and McGill, 1996) 

and the engagement of its stabilising muscles (Hicks et al., 2005a), it is difficult to distinguish the effect 

of regional changes in muscle composition on functional outcomes (i.e. does degeneration of the 

spinal musculature affect physical function?). Concerns have also arisen over the presence of a ‘ceiling 

effect’ in such assessments (Frost et al., 2005; Sayers et al., 2006). It has been suggested that 

functional decline in active, independent individuals may not be detectable, which will give individuals 

a false sense of good health (Puthoff, 2008). These performance tests may also lack the sensitivity to 

identify sarcopenia or LBP as risk factors for functional decline (Eggermont et al., 2014; Cawthon, 

2015). Previous studies have focused on the peripheral musculature, however, given that the LPMs 

play an important role in measured functional changes (Cholewicki and McGill, 1996; Hicks et al., 

2005a) and stabilise the trunk during everyday activities (Panjabi, 1992; Crisco and Panjabi, 1991), it 

is pertinent to explore physical function in relation to the trunk using sophisticated methods to 

understand the age-effect specific to this region. Biomechanical analysis is able to derive kinematic 

and kinetic data of the trunk and could extend our knowledge of physical function in older adults. 

Shahtahmassebi et al. (2017) investigated the associations between trunk muscle morphology, 

strength and function with ageing in a healthy population. Advancing age was significantly and 

negatively correlated with functional outcomes but not with trunk flexion/extension strength nor MF 

atrophy. Shahtahmassebi et al. (2017) also found that trunk muscle strength was more consistently 

associated with functional performance than trunk muscle morphology after accounting for age. This 

may be explained by the disproportionately faster rate of strength loss compared to muscle atrophy 

with ageing (Delmonico et al., 2009). However, these findings must be taken with caution as there 
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were potential limitations associated with each of the primary data collection methods. Firstly, 

ultrasound was used to image the MF muscle, which has known limitations due to its low resolution 

and inability to differentiate between muscle and fat tissue (Hides, Richardson and Jull, 1995; Pressler 

et al., 2006; Wallwork et al., 2009). Strength was assessed using an isokinetic dynamometer which is 

considered the gold-standard approach (Dvir and Müller, 2019; Dvir, 2004), although the mode of 

contraction was isometric. Isometric assessment provides useful information about maximal strength 

producing capacity of the trunk (Roth et al., 2017; De Blaiser et al., 2018). However, torque measured 

at discrete joint angles may not accurately reflect dynamic muscle function (Rousanoglou and 

Boudolos, 2008). During gait, the trunk musculature is constantly changing between states of 

concentric and eccentric activation (White and McNair, 2002). Therefore, it is likely that 

Shahtahmassebi et al’s (2017) findings regarding trunk strength and physical function do not reflect 

real-world scenarios. Finally, physical function was examined using conventional performance 

batteries and clinical assessments such as the Six Minute Walk Test, the 30-second Chair Stand Test 

and the Sitting and Rising Test. These tests do not isolate the effects of ageing on the spine, rather 

they evaluate whole-body physical function. Therefore, the observed associations between trunk 

muscle strength and physical function are not wholly reflective of the ageing process in the spine. 

Given that this study represents the entire body of literature investigating age-related decrements in 

the lumbar musculature, trunk strength and physical function and their interdependencies, further 

research should be conducted using more sophisticated methods and outcomes specific to the lumbar 

spine. 

 

 Current Research and Advancements 

Age-related sarcopenia of the LPMs has received renewed interest, even stimulating the 

conceptualisation of spinal sarcopenia (Kuo et al., 2020; Kim et al., 2019). Initially this started with 

researchers using non-invasive imaging to characterise age-related muscle degeneration in the lumbar 

spine (Bukvić et al., 2019; Englesbe et al., 2010; Golse et al., 2017). There are now efforts to 

understand how ageing affects LPM morphology, trunk strength and physical function (Kim et al., 

2019; Shahtahmassebi et al., 2017) using the same conceptual framework as sarcopenia (Cruz-Jentoft 

et al., 2019). However, conventional sarcopenia indices are not sensitive enough or appropriate to 

explore age-related decline in muscle morphology, strength and function in the lumbar spine. 

Therefore, it is necessary to investigate age-related sarcopenia in the lumbar spine using measures 

and indices that are specific to the region. Furthering understanding will provide numerous benefits 

including identification of spinal pathologies, application of evidence-based training protocols 
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targeting the lumbar musculature that are contractile mode and muscle specific, and elucidation on 

whether sarcopenia is systemic or site-specific in older adults.  

 

 Aims of the Thesis 

The primary aim of the thesis was to explore age-related differences in lumbar spine specific measures 

of sarcopenia (i.e. muscle morphology, strength and physical function) comparing healthy younger 

and older men.  

The secondary aim was to evaluate the interrelationships between muscle morphology, strength and 

function in the lumbar spine alongside differences as a result of age .  

Each experimental chapter focused on a single component using specific measures to provide an in-

depth investigation into age-related differences in the lumbar spine. Subsequent chapters incorporate 

measures from previous chapters to draw together interdependencies between muscle morphology, 

strength and function as well as moderating effects such as PA. 

A thesis map is presented throughout the thesis, providing the “Problem Statements” and “Aims” at 

the start of each chapter and the “Key Findings” and “Implications” at the end of each chapter. 

 

 Thesis Structure 

This thesis explores normal age-related differences in muscle morphology, strength and function in 

the lumbar spine. The diagnostic criteria for sarcopenia was used as a conceptual framework and 

applied to the lumbar spine. This approach is in line with other research groups aiming to characterise 

‘spinal sarcopenia’, which is poorly understood at present. This also provided justification for studying 

age-related differences in a healthy population; normal changes in older adults must be established 

before sarcopenic and pathological deviations can be identified. Due to the multidisciplinary nature 

of the research and range of data collection methods used to assess muscle morphology, strength and 

function of the lumbar spine, this thesis is presented in a manuscript format comprised of self-

contained chapters. A key decision in laying out the thesis in this manner was including literature 

reviews within their corresponding chapters. Whilst chapters were theoretically and conceptually 

related, the literature relevant to each chapter generally did not acknowledge the other facets of age-

related sarcopenia (i.e. muscle morphology, muscle strength and physical function). Therefore, 

including literature reviews within chapters was an effort to focus the reader’s attention to specific 

topics whilst making the development of ideas clearer throughout the thesis. Chapters were 

inextricably linked and relationships between them were also explored, however, it was felt that the 
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diverse nature of the research areas were better represented as separate literature reviews within 

corresponding chapters.  

A chapter was also dedicated to confounding factors as age-related changes in musculoskeletal 

outcomes are sensitive to PA level, functional disability status and whole-body composition. Overall, 

the thesis was structured to highlight individual components of the research whilst sequentially 

building upon previous chapters by considering moderating effects and interrelationships. Therefore, 

chapters five (muscle morphology), six (strength) and seven (physical function) reflect the conceptual 

framework of sarcopenia but specific to the lumbar spine. The information gained in each 

experimental chapter was fed forward into the following chapter as indicated in the flow chart below. 
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Chapter 1

•The first chapter provides a rationale for the research and introduces key concepts that
frame the thesis. A narrative review of the literature is also included, focusing on studies
that have investigated age-related degeneration of the lumbar musculature, trunk
strength and physical function.

Chapter 2

•Chapter 2 describes the study design and research methodology in the thesis. Population
characteristics were presented in addition to the recruitment and matching procedures.

Chapter 3

•Potential confounding factors were explored in this chapter. Methods were outlined
regarding physical activity measurement, functional disability assessment, whole body
composition analysis and handgrip strength. Covariates were identified and retained for
future analyses.

Chapter 4

•A systematic review with meta-analysis is presented in chapter 4. The purpose of this
chapter was to establish the age-effect on muscle degeneration in the lumbar spine. In
addition, methodological covariates were investigated to assess whether they
moderated the relationship between ageing and muscle degeneration. The outcomes
from the meta-analysis were used to develop the primary data collection methods,
specifically in chapter 5.

Chapter 5

•Age-related atrophy and compositional changes of the four main muscles in the lumbar
spine were investigated in this chapter. An MRI protocol was developed and image
analysis techniques refined to quantify muscle volume and muscle fat infiltration. The
influence of physical activity on muscle outcomes was also explored. The moderating
effects of muscle atrophy and fat infiltration were explored in subsequent chapters.

Chapter 6

•The effect of age on trunk strength was explored. Dynamic trunk strength was measured
using isokinetic dynamometry. A range of contractile testing modes was used to explore
whether contraction type and movement speed affected trunk extensor and flexor
strength with ageing. Relationships with muscle morphology and physical activity were
also evaluated to ascertain whether strength was influenced by muscle degeneration
and lower engagement with vigorous physical activity in old age.

Chapter 7

•In chapter 7, biomechanical differences in trunk function during walking gait were
investigated between the younger and older participants. Spaciotemporal, kinematic
and kinetic variables were calculated. In addition, functional demand of the trunk was
calculated using strength data from chapter 6. This provided a measure of the
biomechanical challenge posed by walking in the trunk. Rather than focusing solely on
discrete data to investigate the effect of age, a novel statistical analysis technique was
used to identify whether age-related differences were phase specific. Relationships
between kinematic variables and muscle morphology were also explored to determine if
loss of trunk function was due to degenerative muscle morphology.

Chapter 8

•The final chapter draws the findings together and makes general conclusions. The
significant contribution of the research is highlighted and the wider implications are also
considered. Practical applications and areas of future research are recommended to
build on the work in this thesis.
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Chapter 2 Methodology and General Methods 

 Research Design 

The research design was cross-sectional, quantitative, and prospective, utilising comparative analyses 

between an OG and YG. The purpose of this methodological design was to investigate differences in 

LPM morphology, physical function and strength between age groups (old vs young) as well as analyse 

the interrelationships between them. Younger (18-30 years) and older (60-80 years) participants were 

chosen to represent a sufficient time period in which it would be reasonable to observe changes in 

skeletal muscle morphology, physical function and strength. Previous studies investigating age-related 

differences in muscle morphology and movement biomechanics have adopted a similar approach 

(Mian et al., 2007; Reeves et al., 2009; Ikezoe et al., 2012; Samuel et al., 2012; Crawford et al., 2016b). 

Muscle mass and strength decline after the age of 30 years then accelerate past the age of 60 years 

(Keller and Engelhardt, 2013; Hughes et al., 2002). Comparing age group extremes provides a useful 

reference point in which the onset of any observed responses between the ages of 30 and 60 years 

could be explored in the future. 

 

 Sample Size  

The sample size for each group (n = 12) was determined based on power calculations and on the 

balance of additional data collection efforts and the ability to detect significant effects within the 

boundaries of normal distribution. According to Desmond and Glover (2002), a group of 12 

participants is sufficient to ensure 80% power at α = 0.05 at the single voxel level in the use of MRI. 

From a statistical perspective, an increase in sample size past 12 participants may not offer any 

additional benefit in increasing statistical significance for a medium to large constant effect size or 

reducing the 95% confidence interval limit (Birkett and Day, 1994). Power calculations were also 

performed in G* Power (Version 3.1.9.2) based on the means and standard deviations of previous 

studies. Firstly, studies comparing LPM volume and fat infiltration in young and older adults were 

sought (Valentin, Licka and Elliott, 2015; Crawford et al., 2016a; Meakin et al., 2013). According to the 

power calculation estimate, a sample size of seven to ten participants per group was sufficient for the 

MRI study based on large observed effect sizes, equal allocation rates, an α rate of 0.05 and β rate of 

0.2. It should be noted that not all observed age effects were large; differences in some outcome 

measures between young and OGs in the aforementioned studies were small (Cohen’s d < 0.2) which 

yielded much larger sample size estimates. For the trunk strength study, a priori sample size 

estimation was performed using means and standard deviations from a previous study (Danneskiold-
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Samsøe et al., 2009) assessing isokinetic trunk torque in a similar population of healthy younger and 

older men. A sample size of eight to 12 participants per group was calculated for large observed effect 

sizes (α = 0.05, β = 0.2). Resource limitations were also considered in determining an appropriate 

sample size. Therefore, a total sample size of n = 24 represented the maximum number of participants 

that could be feasibly included in the study whilst providing sufficient power based on calculations 

from previous studies. 

 

 Participants 

2.3.1 Recruitment 

Healthy volunteers were recruited between November 2018 and June 2019. There were two reasons 

for recruiting healthy participants. Firstly, much of the research focuses on diseased populations which 

has confounded our understanding of normal changes with ageing in the lumbar spine musculature. 

Therefore, there is a need to establish the effect of healthy ageing. Secondly, selecting participants 

based on health status is important as undetermined phenotypes are likely hidden in the 

demographics of general populations. Potential participants were recruited using the following 

strategy: 

• Access a research database at Coventry University of older individuals living in Coventry and 
where participants have consented to data being made available for other projects.  

• Approach participants who are already participating in the “Faster, higher, older: 
multidisciplinary research into the effects of age-related sarcopenia” project.  

• Through targeted advertisement and poster placement (Appendix a) (e.g. social clubs, 
community groups, sports and leisure clubs, libraries, churches, newspapers/magazines, 
Coventry University)  

• Through social media (e.g. Twitter)  
• Public engagement (e.g. local communities, open days at UHCW, Coventry University)  

Volunteers who were eligible to participate in the study were sent a letter of invitation with the 

Participant Information Sheet (Appendix b) and consent form (Appendix c). Following a short interval 

(minimum of two days), potential participants were contacted by email or phone so that any questions 

about participation they had could be answered. Prior to the first measurement, participants had 

another opportunity to have any questions they had about the study or any of the documents they 

completed addressed. All participants were made aware of the option to withdraw at any time from 

the study, without prejudice or consequence, and for any reason. 
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2.3.2 Eligibility 

To be eligible to participate in the study and assigned to the OG an individual had to satisfy the 

following inclusion criteria: 

Inclusion criteria (OG) 
• Aged between 60 years and 80 years  
• Body mass index (BMI) in the range of 18.5 kg·m-2 to 30 kg·m-2  
• Generally healthy (free from disease, musculoskeletal injury or functional impairment, e.g. 

stroke)  
• Able to provide informed consent and follow study procedures  

 

To be eligible to participate in the study in the YG an individual had to satisfy the following inclusion 

criteria: 

Inclusion criteria (YG) 
• Aged between 18 years and 30 years  
• BMI in the range of 18.5 kg·m-2 to 30 kg·m-2  
• Generally healthy (free from disease, musculoskeletal injury or functional impairment, e.g. 

stroke) 
• Able to provide informed consent and follow study procedures 

 
 
Participants were excluded if any of the following conditions were met: 
 
Exclusion criteria (Both groups) 

• Unable to undergo MRI based on the MRI screening questionnaire  
• Current smokers, or ex-smokers ceasing < 6 months ago (assessed on the Health and lifestyle 

questionnaire)  
• Daily consumption of alcohol (assessed on the Health and lifestyle questionnaire)  
• Existing or past medical history of vascular disease, cancer, diabetes, neurological disorders, 

kidney, pulmonary, digestive (Coeliac disease), thyroidal disease, osteoporosis or history of 
falls  

• Neuromuscular disorders/injuries, unable to live independently or physical impairments that 
limit ‘normal’ physical function  

 

To mitigate the impact of biological variation across the life course, women were excluded. Women 

undergo distinct biological events during their life, namely the menopause. During the menopause, 

there is a sharp decrease in hormonal status (e.g. oestrogen levels), bone remodelling and muscle 

mass and strength (Maltais, Desroches and Dionne, 2009). As men do not experience such an extreme 

biological event, rather experiencing gradual senescence with age, including both men and women in 

the analyses would introduce a source of experimental error. Furthermore, controlling hormonal 

status on musculoskeletal outcomes was outside the remit of this thesis meaning that including only 

women would also introduce experimental error. As a first step, understanding degeneration of the 
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lumbar musculature in healthy men provides a baseline that can be used as a comparator in future 

studies seeking to elucidate inter-sex differences. 

To minimise temporal effects (i.e. time of day and seasonal variations), matched participants 

underwent testing concurrently rather than one of the age groups being tested before the other. PA 

levels are known to vary with seasonality (Tucker and Gilliland, 2007), therefore, efforts were made 

to ensure matched participants from the OG and YG were tested within the same time period. 

Furthermore, tests were conducted at approximately the same time of day for each participant which 

reduced the effect of daily biorhythms. 

The flow chart in Figure 2.1 illustrates the number of volunteers approached, the number of 

volunteers who met the inclusion criteria and the number of participants included in the study. 

 

Figure 2.1 Flow-diagram showing the recruitment and inclusion process, completion number and 
reasons for exclusion and non-enrolment  

 

2.3.3 Matching Procedure 

In the literature, comparative studies investigating age-related differences in muscle morphology, 

physical function and strength have provided limited information regarding matching procedure for 
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older and younger adults. There are a number of potential variables that could moderate 

morphological, strength and function-based measures of skeletal muscle as a function of age. PA level, 

sex and ethnicity are well-known to moderate skeletal muscle mass and strength (Goodpaster et al., 

2008, 2006; Delmonico et al., 2009). Therefore, for each participant stratified into the OG, a younger 

participant was matched based on these variables in a one-to-one participant matching procedure. 

Participant characteristics are presented in Table 2.1 

 

2.3.3.1 Physical Activity Matching Procedure 

Questionnaires are frequently used to obtain self-reported measures of PA. Although subjective 

reporting, recall and response bias, can affect the validity and reliability of such methods, they are 

practical, low cost and have a low participant burden (Shephard, 2003; Prince et al., 2008). The 

International Physical Activity Questionnaire (IPAQ) – long and short form have demonstrated good 

concurrent and construct validity for assessing PA levels when self-administered in healthy adults  

(Craig et al., 2003; Hagströmer, Oja and Sjöström, 2007). The brevity of the IPAQ-short form and its 

ability to provide an overall total PA estimate makes it particularly advantageous when seeking to 

establish PA levels in a population (Bauman et al., 2009). To reflect changes in PA patterns with ageing, 

a modified IPAQ was developed for older adult respondents known as the IPAQ-E. This modified 

version, suitable for over 65’s, has shown a high level of concurrent validity with the IPAQ and is able 

to classify older adults into PA categories (Hurtig-Wennlf, Hagstrmer and Olsson, 2010). However, 

recent research has questioned the suitability of the IPAQ for assessing habitual physical behaviour in 

older adults (Ryan et al., 2018). 

Participants in the YG completed the self-administered IPAQ – Short Form English (IPAQ) (Appendix 

d) whilst participants in the OG completed the IPAQ – Short Form English - elderly (IPAQ-E) (Appendix 

e). Responses were converted into a categorical score following the IPAQ scoring protocol (IPAQ 

Research Committee, 2005). The three categories for PA were: low, moderate and high. Younger 

participants were matched to an older participant based on their categorical IPAQ score. Eight older 

participants were categorised as highly active and four were categorised as moderately active. Eight 

highly active and four moderately active younger volunteers were therefore matched accordingly. Age 

group mean PA scores (met·min/week) were also compared (independent t-test, α < 0.05) once all 

participants were matched to determine whether PA levels were statistically different between the 

OG and YG. The OG (4662 ± 2133 met·min/week) were more active than the YG (4235 ± 2868) but not 

significantly (p > .05). 
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Table 2.1 Participant Characteristics 

 Younger group 
(n = 12) 

Older group 
(n = 12) T test 

Demographics    
Age (years) 24.7 ± 3.1 67.3 ± 6.0 t (22) = -21.8, p < .001 

Age range (years) 19 – 30 61 – 81  
Ethnicity (% white) 100 100  

Sex (% male) 100 100  
Anthropometrics and body composition  

Height (m) 1.78 ± 0.1 1.74 ± 0.1 t (22) = 1.2, p = .227 
Mass (kg) 76.4 ± 11.2 79.2 ± 10.8 t (22) = -0.6, p = .550 

BMI (kg·m-2) 24.1 ± 2.2 26.0 ± 2.7 t (22) = -1.9, p = .066 
Whole-body lean mass (kg) 59.7 ± 6.9 57.4 ± 6.3 t (22) = 0.8, p = .410 

Trunk lean mass (kg) 31.3 ± 3.9 33.3 ± 3.1 t (22) = -1.4, p = .180 
Appendicular lean mass (kg) 28.3 ± 3.1 24.1 ± 3.3 t (22) = 3.3, p = .003 

Whole-body fat mass (kg) 13.6 ± 4.9 19.2 ± 5.4 t (22) = -2.6, p = .016 
Physical limitation/disability    

Modified Oswestry Low Back Pain 
Disability Questionnaire (%) 2.2 ± 2.3 2.2 ± 3.5 t (22) = 0.0, p = 1.000 

Physical activity status    

IPAQ (low : moderate : high) 0 : 4 : 8 0 : 4 : 8  

IPAQ score (met·min/week) 4235 ± 2868 4762 ± 2133 t (22) = -0.5, p = .615 
Moderate physical activity (MPA) 

(average hours per day) 3.9 ± 0.8 4.2 ± 1.1 t (22) = -0.7, p = .514 

Moderate-to-vigorous physical activity 
(MVPA) (average hours per day) 6.6 ± 1.4 6.3 ± 1.5 t (22) = 0.5, p = .604 

Vigorous physical activity (VPA) 
(average hours per day) 2.6 ± 0.6 2.1 ± 0.6 t (22) = 2.4, p = .027 

Muscle function    

Dominant handgrip strength (kg) 45.0 ± 7.5 37.4 ± 9.1 t (22) = 2.2, p = .037 
Non-dominant handgrip strength (kg) 42.8 ± 5.3 36.3 ± 7.9 t (22) = 2.4, p = .027 

Note: bold text denotes a significant difference 

 

 Institutional Ethical Approval and GafREC 

Ethical approval for this study was obtained from the Coventry University Ethics Committee (P70399) 

on 13th September 2018. University Hospitals Coventry and Warwickshire (UHCW) was used as a site 

for data collection. Governance arrangements for Research Ethics Committees (GafREC) 

documentation was completed and approved by UHCW NHS Trust so that data collection could take 

place on site (Appendix f). Written informed consent was obtained from all participants prior to 

entering the study. Upon enrolment, all participants completed the Health and Lifestyle Questionnaire 

(Appendix g). Prior to each testing session that required any PA, participants completed a Pre-test 

Health Screening Questionnaire. Participants also completed an MRI Safety Questionnaire (Appendix 
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h) and MRI Consent Form (Appendix i) prior to undergoing their MRI scan. This was checked and 

counter-signed by the Research Radiographer at UHCW. 

 

 Research Setting 

Data collection was carried out across two different research facilities. Participants attended the 

Human Performance Laboratory at Coventry University on two separate occasions and UHCW on two 

separate occasions, within a four-week data collection period. Therefore, each participant’s data were 

collected within a four-week period. This was to ensure data were obtained within as minimal time 

period as possible whilst allowing sufficient recovery between successive test sessions. An example 

data collection overview is illustrated in Figure 2.2. 

 

 

Figure 2.2 Example of order of testing and familiarisation sessions 
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Chapter 3 Assessment of Variables that may covary with Age-related 

Differences in Muscle Morphology, Strength and Function 

 

Chapter Abstract 

Background Age-related changes in skeletal muscle morphology, strength and biomechanical function 

are highly sensitive to the moderating effects of LBP, whole-body composition and PA. Handgrip 

strength is also associated with functional capacity in older men. It is important to control the effect 

of these covariates on muscle related outcomes to separate them from the effects of ageing. 

Methods Whole-body composition, handgrip strength, LBP and PA level were measured in twelve 

healthy older (67.3 ± 6.0 years) and young (24.7 ± 3.1 years) men. Participants completed the Modified 

Oswestry Low Back Pain Disability Questionnaire (ODQ-m) and underwent bioelectrical impedance 

analysis. A handgrip dynamometer was used to measure handgrip strength and PA was analysed using 

wrist-worn accelerometers. Independent samples T-tests were used to compare differences between 

the YG and OG. Significance was set at 0.05 for all statistical tests. Cohen’s d values were calculated 

to assess the size of the difference between age groups. 

Results The YG had significantly more appendicular lean mass (ALM) (p = .003) and significantly less 

whole-body fat mass (p = .016) than the OG. Dominant and non-dominant handgrip strength were 

significantly greater in the YG than the OG (p = .037 and p = .027, respectively). The OG spent 

significantly less time in vigorous physical activity (VPA) intensities than the YG (p = .027). The ODQ-m 

scores were not significantly different between the YG and OG. 

Conclusions The large and significant difference in VPA between the YG and OG indicates that it should 

be controlled for when determining age-related differences in musculoskeletal measures. Whole-body 

fat mass and ALM should also be considered potential covariates. Low ODQ-m scores suggested that 

there was no evidence of LBP causing functional disabilities, and the high level of similarity between 

groups indicated that LBP was not likely to be a confounding factor. Given the large difference in 

handgrip strength between the OG and YG, it is an interesting exploratory factor that may associate 

with musculoskeletal outcomes of the lumbar spine and should be explored.  

 

Key words: physical activity; accelerometer; handgrip strength; whole-body composition; low back 

pain; ageing 
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Table 3.1 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of 
Variables that may covary 
with Age-related 
Differences in Muscle 
Morphology, Strength 
and Function 

• Physical activity level, 
body composition, 
handgrip strength and 
functional disability 
varies greatly with age 
and the values of each 
domain are highly 
individualised 

• These variables are 
known to influence 
measures of muscle 
mass, strength and 
function 

Aim • To establish whether there 
were significant differences 
in physical activity level, 
whole body composition, 
handgrip strength and 
functional disability 
between the older and 
younger groups 

Key findings  

Implications  

Chapter 4 Age-related 
Degeneration of the Lumbar 
Paravertebral Muscles: Systematic 
Review and Three-level Meta-
regression 

 Aim  

Key findings  

Implications  

Chapter 5 Age-related Differences 
in Lumbar Paravertebral Muscle 
Morphology in Healthy Younger 
versus Older Men 

 Aim  

Key findings  

Implications  

Chapter 6 Age-related Differences 
in Concentric and Eccentric 
Isokinetic Trunk Strength in 
Healthy Older versus Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences 
in Trunk Biomechanics during 
Walking Gait in Healthy Younger 
versus Older Men 

 Aim  

Key findings  

Implications  

 

 Introduction 

Muscle morphology of the lumbar spine, trunk strength and biomechanical function are highly 

sensitive to the moderating effects of LBP, whole-body composition and PA (Teichtahl et al., 2015b; 

Kalichman et al., 2010; Gabr and Eweda, 2019; Hicks et al., 2005b; Morie et al., 2010). Handgrip 

strength is also associated with functional capacity in older men (Desrosiers et al., 1995). Furthermore, 

the prevalence of LBP has been shown to increase with ageing (Dionne, Dunn and Croft, 2006), older 

adults exhibit increased adiposity (Ponti et al., 2020), handgrip strength generally declines in older age 

(Samuel et al., 2012) and PA levels reduce (Milanović et al., 2013). It is likely that there is a substantial 

amount of covariance between these variables and muscle related outcomes with advancing age. 

Therefore, it is important to assess and control the moderating effect of LBP, whole-body composition 

and PA on muscle related outcomes to separate them from the effects of ageing. 
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3.1.1 Low Back Pain and Physical Disability 

The Oswestry Low Back Pain Disability Questionnaire (ODQ) is a valuable tool for evaluating an 

individual’s functional status regarding LBP and has emerged as the most widely recommended 

condition specific outcome measure for spinal disorders (Fairbank and Pynsent, 2000). A recent 

modification by Fritz and Irrgang (2001) replaced the sex life section with a section concerning 

employment and home-making ability. Fritz and Irrgang (2001) made this change because the sex life 

item was frequently left blank or was not appropriate or applicable (Hicks and Manal, 2009; Mousavi 

et al., 2006; Fritz and Irrgang, 2001). The Modified ODQ (ODQ-m) has shown to have superior 

measurement properties compared to other back pain disability questionnaires and higher test-retest 

reliability over a 4-week period (Fritz and Irrgang, 2001). 

 

3.1.2 Whole-Body Composition 

Bioelectrical impedance analysis (BIA) offers a less expensive, less time consuming, safer and more 

easily performed method of determining body composition compared to the reference and criterion 

standard Dual-energy x-ray absorptiometry (DEXA) (Lukaski, 1987; Kyle, 2004; Verney et al., 2016). BIA 

has shown to be an acceptable and reproducible alternative amongst various populations, including 

healthy younger and older adults (Esco et al., 2015; Verney et al., 2015; Wang et al., 2013), although 

factors such as obesity (Verney et al., 2016) and ethnicity (Jakicic, Wing and Lang, 1998) may affect its 

validity and reliability. Efforts were made in this research to form two homogenous groups, varying 

only in age, to separate the age-effect from confounding factors such as ethnicity (see 2.3.3). More 

recently, segmental BIA has been developed to attenuate discrepancies between resistance and trunk 

mass (Kyle, 2004; Foster and Lukaski, 1996). This technique is particularly useful in determining 

appendicular skeletal muscle mass (De Lorenzo and Andreoli, 2003).  

 

3.1.3 Handgrip Strength 

Handgrip strength is one of three criteria used in the diagnosis of sarcopenia (Cruz-Jentoft et al., 2019, 

2010a; Fielding et al., 2011). Handgrip strength is a good predictor of physical performance, current 

health status (Desrosiers et al., 1995) and disability in older men (Giampaoli et al., 1999). However, 

others have suggested that handgrip strength may not be the most suitable measure to predict 

physical function (Samuel et al., 2012; Liu et al., 2016). Despite this, handgrip strength testing remains 

commonplace due to its simple and non-invasive application. In a large study (n = 6089) of  45-68 year 
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old men, handgrip strength was highly predictive of functional limitations and disability 25 years later 

(Rantanen et al., 1999), illustrating its efficacy in musculoskeletal ageing research. Handgrip strength 

therefore remains clinically relevant and is time and labour efficient as a measure of strength for use 

in older adult populations. 

 

3.1.4 Physical Activity Status 

PA contributes to healthy ageing (Nelson et al., 2007; Nilsson, Wåhlin-Larsson and Kadi, 2017), 

conversely sedentary behaviour has been associated with adverse health outcomes (Thorp et al., 

2011). PA typically reduces with ageing (Milanović et al., 2013), which may increase age-related 

decrements in muscular force production (Bassey, 1998; Skelton et al., 1994; Hunter, Thompson and 

Adams, 2001; Ferreira et al., 2012; Goodpaster et al., 2008; Rolland et al., 2004), muscle morphology 

(Goodpaster et al., 2008; Fragala et al., 2014; Cartee et al., 2016) and physical function (Skelton et al., 

1994; Hunter, Thompson and Adams, 2001; Haider et al., 2016; Ferreira et al., 2012; Fragala et al., 

2014). Subjective and objective methods have been used to assess habitual PA, although the literature 

relating to older adults is scarce (Copeland and Esliger, 2009). Whilst frequently used, self-reported 

questionnaires have many limitations including recall bias, socially desirable responses (Sallis and 

Saelens, 2000) and the influence of mood state (Rikli, 2000). Accelerometery-based measurement of 

PA eliminates many of the subjective challenges associated with questionnaires (Copeland and Esliger, 

2009) and is appropriate for use in older adult populations (Murphy, 2009). 

Actigraph accelerometers are commonly used in PA research (Gorman et al., 2014; Sasaki, John and 

Freedson, 2011; Holmquist et al., 2017; Nawrocka, Mynarski and Cholewa, 2017). Accelerations, 

measured in three individual orthogonal planes, are processed to form a single composite vector 

magnitude which provides a measure of PA intensity. The tri-axial GT3X model has been validated and 

cut points determined for moderate, hard and very hard PA intensities (Sasaki, John and Freedson, 

2011). However, cut points are not standardised, and studies have suggested different thresholds for 

PA intensities depending on the age, gender and health status of the population (Keadle et al., 2014; 

Santos-Lozano et al., 2013; Troiano et al., 2008; Freedson, Pober and Janz, 2005; Sandroff et al., 2014; 

Trost et al., 2012; Freedson, Melanson and Sirard, 1998). Interestingly, no cut points have been 

determined for wrist-worn accelerometers in older adults. This is surprising given that wrist-worn 

accelerometers may be able to capture activities that are commonly performed in older adult 

populations which typically involve less centre of mass (COM) movement, such as gardening and 

household cleaning. 



CHAPTER 3 
 

24 | P a g e  
 

PA estimates may also be affected by the location of the accelerometer on the body. Studies assessing 

PA in older populations have typically placed the accelerometer on the hip, although there is a lack of 

consensus on placement sites (Migueles et al., 2017). Some studies advocate hip placement (Ellis et 

al., 2014; Chen et al., 2003), whilst others have found comparable performance between hip and wrist-

worn accelerometers (Ozemek et al., 2014; Zhang et al., 2012; Kamada et al., 2016). Contrary to these 

studies, Staudenmayer et al. (2015) demonstrated that wrist placement yielded greater accuracy for 

PA classification and Choi et al. (2012) found wrist placement on the dominant hand was more 

sensitive in detecting non-wear-time. Others support placement at the wrist indicating that it is robust 

enough for daily PA monitoring (Zhang et al., 2012) and shows superior wear-time compliance 

compared to hip-worn accelerometers (Kamada et al., 2016; Fairclough et al., 2016). Despite the 

benefits and detriments of different device locations, there appears to be a negligible difference 

between wrist-worn and hip-worn Actigraph accelerometers when determining PA in free-living older 

adults (Kamada et al., 2016). 

 

3.1.5 Aims, Objectives and Hypotheses 

The aim of this chapter was to establish whether there were significant differences in PA level, whole-

body composition, handgrip strength and functional disability between the OG and YG. Variables with 

significant age-related differences would be used as potential covariates in the analyses of subsequent 

experimental studies. In order to accomplish the aim, objectives were to: 

 

Table 3.2 Objectives and hypotheses for chapter 3 

Objective Null Hypothesis 

1 
Measure LBP-related functional 
disability using participant’s responses 
to the ODQ-m 

ODQ-m scores will not be significantly different 
between the OG and YG 

2 
Measure whole-body fat mass and 
whole-body, trunk and appendicular 
lean mass using BIA 

a) The OG will not have significantly greater 
whole-body fat mass than the YG 
b) The OG will not have significantly less whole-
body, appendicular and trunk lean mass than 
the YG 

3 
Measure dominant and non-dominant 
handgrip strength using a handgrip 
dynamometer 

Dominant and non-dominant handgrip strength 
will not be significantly weaker in the OG 
compared to the YG 

4 
Calculate the average daily time spent 
in moderate, moderate-to-vigorous and 
vigorous PA intensities using 
accelerometers 

Average daily time spent in moderate, 
moderate-to-vigorous and vigorous PA 
intensities will not significantly differ between 
the OG and YG 
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 Methods 

Participants completed a range of assessments for variables that were considered potential covariates 

or exploratory factors. The ODQ-m, BIA and handgrip strength were completed in that order in a single 

session at Coventry University. Following this session, participants were given an accelerometer to 

wear continuously for one week. 

 

3.2.1 ODQ-m Protocol 

Participants completed the self-administered ODQ-m (Figure 3.1). ODQ-m scoring instructions were 

followed. The questionnaire consists of ten items addressing different aspects of function. Each item 

is scored out of a possible score of five with higher values representing greater disability. The total 

score was then divided by the total possible score of 50 and expressed as a percentage. The 

interpretation of scores was as follows: 0 – 20% indicated minimal disability, 21 – 40% indicated 

moderate disability, 41 – 60% indicated severe disability, 61 – 80% indicated that LBP impinges on all 

aspects of the participant’s life and greater than 81% indicated that the participant was bed-bound 

(Alcántara-Bumbiedro et al., 2006). 
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Figure 3.1 Example of the Modified Oswestry Low Back Pain Disability Questionnaire 

Some materials have been removed from this thesis due to Third Party Copyright. Pages where material has been 
removed are clearly marked in the electronic version. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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3.2.2 Bio-electrical Impedance Analysis Protocol 

The Tanita MC-780 (Tanita Corp, Tokyo, Japan) is a multi-frequency segmental body composition 

analyser with reasonable sensitivity and specificity to diagnose low levels of appendicular lean mass 

(ALM) in community-dwelling older adults (Verreijen et al., 2018). Participants were asked to fast four 

hours prior to the BIA assessment as recommended by the National Institute of Health (1996). Some 

research suggests that there is a relatively minor impact of food and drink consumption on BIA 

measures (Androutsos et al., 2015). However, others have shown that 20 minutes after eating, percent 

body fat significantly increases and remains elevated for 60 minutes postprandial (Dixon, Masteller 

and Andreacci, 2013). Participants wore light clothing and stood on the scale platform barefoot whilst 

the device was in standard mode. Once body mass had been determined by the scale, participants 

gripped the hand-grip electrodes in both hands and held them alongside their body throughout the 

measurement. This was consistent with previous BIA protocols for the Tanita MC-780 (Malczyk et al., 

2016; Iizuka et al., 2015; Verney et al., 2015). Segmental fat and fat-free masses were recorded. ALM 

and trunk lean mass were reported separately. 

 

3.2.3 Handgrip Strength Protocol 

Handgrip strength was assessed using a handgrip dynamometer (Takei 5401, Takei Scientific 

Instruments Co Ltd, Japan). The Southampton protocol (Roberts et al., 2011) was adhered to (Figure 

3.2) based on the recommendations of Schaap et al. (2016). Participants completed three maximal 

effort trials on each hand. The order of trials alternated between the dominant and non-dominant 

hand, with 30 seconds rest between each trial. This allowed 60 seconds recovery between trials of the 

same hand. According to Mathiowetz (1990), 60 seconds rest between trials is a sufficient to attenuate 

the cumulative effects of fatigue. The highest score achieved for each hand across the three trials was 

used for final analysis.  
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3.2.4 Physical Activity Monitoring Protocol 

Participants wore an Actigraph GT9X accelerometer (Pensacola, FL, US) on their dominant wrist for 

seven consecutive days (Copeland and Esliger, 2009; Ryan et al., 2018). The small and lightweight 

devices are minimally intrusive and record accelerations between ± 8 G at a rate of 30 - 100 Hz, which 

is suitable for data capture of ADLs (Bouten et al., 1997). A 90 Hz sampling frequency was chosen 

based on the recommendations of Migueles et al. (2017) when using manufacturer signal processing 

methods. According to Migueles and colleagues (2017), placement of the accelerometer should be 

chosen based on reliability, validity and compliance. The decision for wrist-worn accelerometers was 

therefore based on maximising wear-time compliance and data fidelity. Hip placement potentially 

lacks the sensitivity to capture less traditional modes of PA more commonly performed in older adults 

(Sallis et al., 1986; Lawlor et al., 2002; Walsh et al., 2001; Shephard, 2003). Furthermore, wrist-worn 

accelerometers are able to identify walking and running (the dominant moderate and vigorous 

activities in most adults) with a 98% or greater accuracy (Zhang et al., 2012) and are better at 

predicting activities with significant arm movement (Ellis et al., 2014). Finally, the dominant wrist was 

preferred due to greater PA classification accuracy than the non-dominant wrist, albeit a negligible 

difference (Zhang et al., 2012). 

 

3.2.4.1 Accelerometer Data Analysis 

Data were processed using dedicated software (Actilife, version 6.13, Pensacola, FL, US). To ensure 

data were representative of PA performed in a typical day and week, wear-time criteria were 

 

Posture Subject seated, same chair for every 
measurement 

Arm position Forearms rested on the arms of the 
chair 

Wrist position Wrist just over the end of the arm of the 
chair, in a neutral position, thumb 
facing upwards 

Lower extremity 
position 

Feet flat on the floor 

Encouragement ‘I want you to squeeze as hard as you 
can for as long as you can until I say 
stop. squeeze, squeeze, squeeze, stop’ 
(when the needle stops rising) 

Number of trials Three trials on each side, alternating 
sides 

Score to use Maximal grip score from all six trials 
used 

Figure 3.2 Southampton protocol for hand grip strength test (Roberts et al., 2011) 
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established. To be valid, data must have been obtained for a minimum of four days including one 

weekend day and at least 10 hours of awake time during these days (Trost, Mciver and Pate, 2005; 

Migueles et al., 2017; Hagströmer, Oja and Sjöström, 2007; Ashe et al., 2008; Parker, Strath and 

Swartz, 2008; Kang et al., 2009; Ham and Ainsworth, 2010; Clark et al., 2011). Valid data were divided 

into 1 second epochs. Although no studies have investigated the influence of epoch length on 

accelerometer outcomes (Migueles et al., 2017), unpublished data suggest that shorter epochs (1 

second vs 60 seconds) are more sensitive in detecting time spent in MVPA (Migueles et al., 2017). 

Cut-points for moderate PA (MPA) and vigorous PA (VPA) have not been established for wrist-worn 

accelerometers in healthy older adult populations. Indeed, estimation of PA intensities are particularly 

difficult in older adults (Santos-Lozano et al., 2013). Colley and Tremblay (2011) derived moderate and 

vigorous intensity cut-points of 1535 and 3960 counts/minute, respectively. However, this was 

achieved using 60 second epochs in a younger adult sample. Copeland and Esliger (2009) defined 

MVPA cut-off as 1041 counts/minute in healthy older adults using hip-worn accelerometers. A similar 

cut-off of 1031 counts/minute for moderate intensity activities was identified by (Diaz et al., 2018) for 

wrist-worn accelerometers in healthy adults. Cut-off values for MPA (1031 counts/minute) and VPA 

(3589 counts/minute) intensities were chosen based on the recommendations of Diaz et al. (2018) 

due to their high sensitivity and specificity. Average time spent per day in MPA, MVPA and VPA 

intensities were calculated and used in the statistical analysis. 

 

3.2.5 Statistical Analysis 

Independent samples T-tests were performed to assess statistically significant differences between 

the young and older age groups. Alpha was set at 0.05. Effect sizes (Cohen’s d) were also calculated to 

estimate the magnitude of the difference between age groups. Effect size estimates were considered 

small (d = 0.2), medium (d = 0.5) or large (d = 0.8) (Cohen, 2013). Data are presented as means with 

standard deviations (mean ± SD) unless otherwise stated. All data were normally distributed (Shapiro-

Wilk test, p > .05) and homogeneous variances were assumed (Levene's test, p > .05).  
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 Results 

3.3.1 Modified Oswestry Low Back Pain Disability Questionnaire 

The ODQ-m scores were not significantly different between the young (2.2 ± 2.3%) and old (2.2 ± 3.5%) 

groups (t(22) = 0.00, p = 1.0).  

 

3.3.2 Whole-Body Composition 

The YG had significantly more (t(22) = -3.28, p = .003) ALM (28.3 ± 3.1 kg) and significantly less (t(22) 

= 2.62, p = .016) whole-body fat mass (13.6 ± 4.9 kg) than the OG (24.1 ± 3.3 kg and 19.2 ± 5.4 kg, 

respectively). The magnitudes of these differences were large (Cohen’s d > 1.1). No statistical 

differences were revealed for whole-body lean mass and trunk lean mass between the groups. 

 

3.3.3 Handgrip Strength 

Handgrip strength was greater in the YG than the OG. The YG’s dominant handgrip strength (45.0 ± 

7.5 kg) was significantly greater (t(22) = -2.22, p = .037) than the OG’s (37.4 ± 9.1 kg). The YG’s non-

dominant hand (42.8 ± 5.3 kg) was also significantly stronger (t(22) = -2.38, p = .027) compared to the 

OG’s (36.3 ± 7.9 kg). Effect sizes were large for both comparisons (Cohen’s d > 0.9). 

 

3.3.4 Physical Activity Level 

There was a significant difference between age groups for average time spent in VPA (t(22) = -2.371, 

p = .027, Cohen’s d = 0.97). The OG spent significantly less time in VPA intensities (2.07 ± 0.59 

hours/day) than the YG (2.64 ± 0.59 hours/day) (Figure 3.3). Differences between age groups for time 

spent in MVPA (p = .60) and MPA intensities (p = .51) were not statistically significant. 
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Figure 3.3 Physical activity level presented as means with SEM. MVPA = moderate to vigorous 
physical activity, MPA = moderate physical activity, VPA = vigorous physical activity. * independent T-

test: p < .05 

 

 

 

 Summary 

The current findings are consistent with other research showing a decline in VPA with ageing 

(Westerterp, 2000). Despite the known benefits of regular PA in reducing the risk of developing 

cardiovascular and metabolic diseases, obesity, falls and musculoskeletal disorders (Hamer, Lavoie 

and Bacon, 2014; Villareal et al., 2011; Gulsvik et al., 2012), participation in PAs remains low amongst 

older adults (McPhee et al., 2016). Although the current results show no significant difference in MPA 

with age, there is a dose-response relationship to suggest that more vigorous activities bring about 

greater health benefits (Swain and Franklin, 2006; Bruce, Fries and Hubert, 2008; Ebrahim, 2000; Kim, 

Adamson and Ebrahim, 2013; Wannamethee et al., 2005). This is particularly important for 

attenuating the detrimental effects of age-related sarcopenia. Higher intensity activities have been 

shown to be superior to lower intensities for improving strength in older adults (Steib, Schoene and 

Pfeifer, 2010). Therefore, VPA may combat the effects of sarcopenia (Steib, Schoene and Pfeifer, 2010) 
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by stimulating positive adaptations in muscle morphology (St-Jean-Pelletier et al., 2017) and 

improving strength and physical function in older adults (Chahal, Lee and Luo, 2014; Pau et al., 2014); 

where low-moderate intensities are less effective (Hamer, Lavoie and Bacon, 2014). However, it 

should be noted that the relationship between PA intensity and health outcomes is not always linear 

and indeed positive. This has been observed in endocrine function in older people, where high 

resistance training led to functional improvements whilst lower intensity exercises were more 

advantageous in terms of endocrine adaptations (Onambélé-Pearson, Breen and Stewart, 2010a). 

Furthermore, the addition of nutrition supplementation may diminish any additional benefit to 

metabolic adaptation, endocrine function and indeed strength improvements that high intensity PA 

may have over lower intensities (Onambélé-Pearson, Breen and Stewart, 2010b). Older adults may 

also be unable to cope with the demands of higher intensity PA, which may increase the risk of falls 

and musculoskeletal injury (Tiedemann et al., 2011) as well as increase the inflammatory response 

(Della Gatta et al., 2014). 

It should also be noted that PA was measured by the dynamic acceleration of the accelerometer. 

Whilst this is widely accepted as the gold-standard approach to objectively measure habitual PA levels 

(Migueles et al., 2017), it does not consider the metabolic demands of the tasks being performed. This 

may confound comparisons between the OG and YG as walking has been shown to be more 

metabolically demanding in older men than younger men, which cannot be explained by changes in 

mechanical work (Mian et al., 2006). Despite limitations associated with the data collection methods, 

the difference in VPA between age groups must be accounted for when investigating age-related 

changes in muscle morphology, strength and function. 

Given the large difference in handgrip strength between the OG and YG, it is an interesting exploratory 

factor that may associate with musculoskeletal outcomes of the lumbar spine. It is a well-known 

indicator of mobility and health status in older men (Desrosiers et al., 1995; Giampaoli et al., 1999), 

therefore, the association between handgrip strength and trunk function should be explored. It should 

be noted that the OG’s scores for the dominant (37.4 ± 9.1 kg) and non-dominant (36.3 ± 7.9 kg) hands 

were high with respect to the sarcopenia cut-off value of 27 kg (Cruz-Jentoft et al., 2019). This indicates 

that the OG participants were high-functioning and not sarcopenic based on diagnostic criteria (Cruz-

Jentoft et al., 2019). Therefore, caution should be taken when generalising findings in this thesis as 

participants were not representative of the wider population, rather a high-functioning and active 

sub-group within the general population. 

The influence of whole-body composition should also be considered given the large differences in ALM 

and whole-body fat mass between age groups. When determining age-related changes in 
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musculoskeletal measures (i.e. muscle volume atrophy, fat infiltration, peak torque generation), 

whole-body fat mass and ALM should be considered potential covariates. In this sample, functional 

disability is unlikely to influence muscle morphology, strength and physical function. Low ODQ-m 

scores suggested that there was no evidence of LBP causing functional disabilities, and the high level 

of similarity between groups indicated that LBP was not likely to be a confounding factor. 
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Table 3.3 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of 
Variables that may covary 
with Age-related Differences 
in Muscle Morphology, 
Strength and Function 

• Physical activity level, body 
composition, handgrip strength and 
functional disability varies greatly with 
age and the values of each domain are 
highly individualised 

• These variables are known to influence 
measures of muscle mass, strength and 
function 

Aim • To establish whether there were significant differences in 
physical activity level, whole body composition, handgrip 
strength and functional disability between the older and 
younger groups 

Key findings • The younger group were significantly more active 
regarding vigorous physical activity than the older group 

• Dominant and non-dominant handgrip strength was 
significantly greater in the younger group compared to 
the older group 

• Appendicular lean mass was significantly greater in the 
younger group, whilst whole-body fat mass was greater in 
the older group 

Implications • Vigorous physical activity level should be included as a 
potential covariate in statistical models comparing 
muscle morphology, spinal muscle strength and physical 
function between the age groups 

• The moderating effect of body composition measures and 
handgrip strength should be explored in statistical models 
assessing the effect of older age on trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

 Aim  

Key findings  

Implications  

Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

 Aim  

Key findings  

Implications  
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Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  
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Chapter 4 Age-related Degeneration of the Lumbar Paravertebral Muscles: 

Systematic Review and Three-level Meta-regression 

 

The work from this chapter has been published in a peer-reviewed journal.  

Dallaway, A., Kite, C., Griffen, C., Duncan, M., Tallis, J., Renshaw, D., and Hattersley, J. (2020) ‘Age-

related degeneration of the lumbar paravertebral muscles: Systematic review and three-level meta-

regression’. Experimental Gerontology 133, 110856 

Chapter Abstract 

Background Morphological changes of the lumbar spine muscles are not well characterised with 

ageing. To further the understanding of age-related degeneration of the lumbar spine musculature, 

normative morphological changes that occur within the paravertebral muscles must first be 

established. 

Methods A systematic review and meta-regressions were conducted adhering to PRISMA guidelines. 

Searches for published and unpublished data were completed in June 2019. 

Results Searches returned 4781 articles. 34 articles were included in the quantitative analysis. Three-

level meta-analyses showed age-related atrophy (r = -0.26; 95% CI: -0.33, -0.17) and fat infiltration (r 

= 0.39; 95% CI: 0.28, 0.50) in the lumbar paravertebral muscles. Degenerative changes were muscle-

specific and men (r = -0.32; 95% CI: -0.61, 0.01) exhibited significantly greater muscle atrophy than 

women (r = -0.24; 95% CI: -0.47, 0.03). Imaging modality, specifically ultrasound, also influenced age-

related muscle atrophy. Measurements taken across all lumbar levels revealed the greatest fat 

infiltration with ageing (r = 0.58, 95% CI: 0.35, 0.74). Moderators explained a large proportion of 

between-study variance in true effects for muscle atrophy (72.6%) and fat infiltration (79.8%) models. 

Conclusions Lumbar paravertebral muscles undergo age-related degeneration in healthy adults with 

muscle, lumbar level and sex-specific responses. Future studies should use high-resolution imaging 

modalities to quantify muscle atrophy and fat infiltration. 

 

 

Key words: back muscles, lumbosacral region, sarcopenia, muscle degeneration, healthy ageing 
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Table 4.1 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related 
Degeneration of the Lumbar 
Paravertebral Muscles: 
Systematic Review and 
Three-level Meta-regression 

• A quantitative analysis on the 
association between healthy ageing and 
morphological degeneration of the 
lumbar paravertebral muscles has not 
been performed to date 

• It is unknown how the muscles in the 
lumbar spine change in size and 

Aim • To perform a quantitative analysis of the literature to 
establish the relationship between normal ageing and 
lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important 
methodological parameters that moderate the 
relationship between ageing and degeneration of 
paravertebral muscle morphology 
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composition with healthy ageing in 
older adults. Understanding this 
phenomenon may elucidate 
mechanisms related to functional 
decline. 

• Studies use a wide range of methods to 
evaluate the lumbar musculature. A 
statistical model is needed to include 
each variable as a potential moderator 
to account for heterogeneity amongst 
studies 

• Multiple effects are typically reported 
by a single study. Meta-analyses 
typically adopt a reductionist approach 
by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical 
model is needed to account for 
interdependency amongst effect sizes 

Key findings  

Implications  

Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

 Aim  

Key findings  

Implications  

Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  
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 Introduction 

Age-related degeneration of skeletal muscle is characterised by intramuscular fat infiltration and a 

loss of muscle tissue (Doherty, 2001; Delmonico et al., 2009; Cruz-Jentoft et al., 2010a; McGregor, 

Cameron-Smith and Poppitt, 2014). These, together with the concomitant loss of muscle force 

generation (Frontera et al., 2000; Kent-Braun and Ng, 2000; Doherty, 2001), are associated with poor 

functional outcomes as well as increased risk of morbidity and mortality (Baumgartner et al., 1998; 

Roubenoff and Hughes, 2000; Sayer et al., 2005; Gale et al., 2007; Cruz-Jentoft et al., 2010a; Landi et 

al., 2012; Arango-Lopera et al., 2013; Landi et al., 2013; Beaudart et al., 2017). Sarcopenia 

encompasses the interrelationships between deteriorating muscle morphology, physical function and 

strength (Cruz-Jentoft and Sayer, 2019). Adverse outcomes associated with sarcopenia are a major 

health concern and socioeconomic burden, resulting in estimated excess annual healthcare costs of 

£2.5b in the United Kingdom (Pinedo-Villanueva et al., 2019) and $18.5b in the United States (Janssen 

et al., 2004). Research on sarcopenia has predominantly focused on the systemic loss of muscle and 

its impact on physical function (Batsis et al., 2013; Bahat et al., 2016). However, a systemic approach 

to understand sarcopenia may not be appropriate due to the muscle and location-specific nature of 

its progression (Candow and Chilibeck, 2005; Abe et al., 2014). Whilst studies have examined 

degeneration of the appendicular muscles (von Haehling, Morley and Anker, 2010; Müller et al., 2014; 

Cawthon et al., 2015; Woo and Leung, 2016) there is a paucity of available research focusing on age-

related changes in the trunk musculature. This has been acknowledged by other researchers 

(Crawford et al., 2016c; Kalichman, Carmeli and Been, 2017) despite the importance of paravertebral 

muscles in the maintenance of spinal health and physical function being increasingly recognised (Hicks 

et al., 2005b; Goubert et al., 2016; Kalichman, Carmeli and Been, 2017; Crawford et al., 2019a). 

Although age is known to influence paravertebral muscle morphology and attempts have been made 

to characterise degeneration of the paravertebral muscles with the natural ageing process (Meakin et 

al., 2013; Fortin et al., 2014; Valentin, Licka and Elliott, 2015; Crawford et al., 2016a; Kalichman, 

Carmeli and Been, 2017; Lee et al., 2017; Shahidi et al., 2017b; Burian et al., 2018) the phenomenon 

is not fully understood. 

The paravertebral muscles (i.e. MF, ES, PS and QL) all contribute to the stability of the lumbar spine 

(Santaguida and McGill, 1995; McGill, 2001; Barr, Griggs and Cadby, 2005); although the anatomy and 

biomechanics of the MF demonstrate that it is the most suited to this role (Macintosh and Bogduk, 

1986; Moseley, Hodges and Gandevia, 2002; MacDonald, Lorimer Moseley and Hodges, 2006; Ward 

et al., 2009). The larger more superficial muscles surrounding the lumbar region function primarily as 

torque generators for spinal movement. The PS acts primarily as a flexor muscle of the hip (Bogduk, 

Pearcy and Hadfield, 1992), the ES function primarily as extensor muscles (Potvin, McGill and Norman, 
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1991) and the QL brings about lateral flexion although its role in spinal biomechanics is undetermined 

(Phillips, Mercer and Bogduk, 2008). Senescence of the LPMs may have greater functional 

consequences compared to the appendicular muscles (Hicks et al., 2005a; Eguchi et al., 2017). 

However, whereas efforts have been made to reach consensus of a reference standard for the 

measurement of appendicular muscle mass in sarcopenia (Buckinx et al., 2018; Cruz-Jentoft et al., 

2019), such efforts have yet to translate to measurements of muscle morphology in the lumbar spine, 

resulting in disparate methods amongst studies. 

Relatively few studies have measured the morphology of all the four main LPMs. Indeed, previous 

systematic reviews focusing on paravertebral muscle degeneration have investigated the morphology 

of the MF and ES without examining the PS and QL (Hebert et al., 2009; Fortin and Macedo, 2013). 

Given the different functions of the LPMs and their potential for localised degeneration in diseased 

and healthy populations (Ploumis et al., 2011; Min et al., 2013; Crawford et al., 2016c; Baracos, 2017), 

normative features are of interest for each individual muscle surrounding the lumbar spine. 

Furthermore, there has been limited investigation into both muscle size and fat composition of the 

paravertebral muscles. These measurements have been typically performed at a single representative 

slice in the lumbar region (Parkkola, Rytokoski and Kormano, 1993; Gibbons et al., 1997; Watson, 

McPherson and Starr, 2008; Ikezoe et al., 2012; Yoshizumi et al., 2014; Hiepe et al., 2015; Frost and 

Brown, 2016; Hamaguchi et al., 2016; Kim et al., 2017; Burian et al., 2018; Ebadi et al., 2018; 

Hedermann et al., 2018; Kalafateli et al., 2018; Maltais et al., 2018; Rahmani et al., 2019) resulting in 

CSAs despite volumetric information being preferable due to its greater association with muscle 

function (Boom et al., 2008). Inconsistent imaging modalities and image analysis techniques across 

studies, as well as different measures representing muscle size and quality, also confound 

comparisons between studies.  

The considerable variation in methodological factors across studies makes comparing findings 

difficult, which has hampered our understanding of changes in lumbar muscle morphology with 

ageing. A necessary step to better understand this age-related phenomenon is to conduct a systematic 

review and meta-analysis. To the authors’ knowledge, a quantitative analysis of the research on this 

topic has not been performed to date. Therefore, bringing together the evidence and accounting for 

methodological differences will establish a reference for normal age-related degenerative features of 

LPM morphology and provide recommendations for future studies. Furthermore, findings from the 

moderators included in the meta-regression model will provide practical guidance for collecting 

primary data relating to LPM morphology. 
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4.1.1 Aims, Objectives and Hypotheses 

The aim of this study was to perform a quantitative analysis of the literature to establish the 

relationship between normal ageing and LPM degeneration. A secondary aim was to identify 

important methodological parameters that moderate the relationship between ageing and 

degeneration of LPM morphology. In order to accomplish these aims specific objectives were to: 

 

Table 4.2 Objectives and hypotheses for chapter 4 

Objective Hypotheses 

1 
Perform a scoping search of the literature on 
normative degeneration of the lumbar 
musculature 

n/a 

2 Develop a protocol and search strategy using 
appropriate terms 

n/a 

3 Perform a systematic review of the available 
literature 

n/a 

4 
Meta-analyse available data to establish the 
effect of age on atrophy and fat infiltration in 
the lumbar spine muscles 

a) the LPMs will not atrophy with ageing 
b) the LPMs will not increase in fat 
content with ageing 

5 Use appropriate methods to account for 
statistical dependency amongst effect sizes 

a) heterogeneity within studies will not be 
significant 
b) heterogeneity between studies will not 
be significant 

6 Identify key moderators that are responsible for 
methodological variation amongst studies 

a) imaging modality will not moderate the 
relationship between ageing and LPM 
degeneration 
b) LPM degeneration will not be 
significantly different between sexes 
c) age-related LPM degeneration will not 
be muscle-specific 
d) lumbar level will not moderate the 
relationship between ageing and LPM 
degeneration 
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 Materials and Methods 

4.2.1 Protocol and Registration 

This systematic review was registered on the Prospero International Prospective Register of 

Systematic Reviews (CRD42018093157) and is reported based on the guidelines of the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2009). 

 

4.2.2 Search Methods for Identification of Studies 

To assess the relationship between healthy ageing and changes in muscle morphology, data were 

sought from eligible studies. Table 4.3 presents the eligibility criteria for inclusion in this systematic 

review. Although it can be questioned how baseline data from experimental studies may represent 

age-related muscle degeneration, in the current study baseline data were treated as cross-sectional 

observations and deemed eligible provided the inclusion criteria were met. To meet the inclusion 

criteria for exposure, studies had to show ageing as a generally healthy process, stating that 

participants were healthy, physically independent and free from disease likely to affect paravertebral 

muscle morphology (e.g. spondylolisthesis, low back pain, stroke and cancer). This was not exhaustive 

as shown by the MeSH description for “healthy ageing”, and due to the lack of consensus on a 

definition for healthy ageing (Peel, Bartlett and McClure, 2004). If a study reported disease cases 

within an otherwise healthy sample, data were sought for the healthy participants only. If the health 

status of participants was unclear or ambiguous, confirmation was sought from the author(s). 

 

  

https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=93157
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Table 4.3 Eligibility criteria for including studies in this systematic review 

 

 

4.2.3 Information Sources and Data Extraction 

A search strategy was developed by (AD) for PubMed (Table 4.4), which was adapted to the syntax 

and appropriate subject headings of the other databases. The databases searched were MEDLINE and 

CINAHL (via EBSCOhost), PubMed, The Cochrane Central Register of Controlled Trials (CENTRAL), and 

EMBASE (via OvidSP). No study design, date or participant demographic restrictions were imposed on 

the search to ensure literature saturation. An English language restriction was used due to resource 

limitations. Final searches were completed June 1st, 2019. After initial searches were completed and 

Inclusion criteria: 

1. Study design: observational and baseline data from experimental studies 
2. Population: healthy sample including adults older than 40 years of age with an age range 

of at least ten years. If age is a dichotomous variable, older group’s mean age must be 
greater than 40 years and at least 10 years greater than the younger group’s mean age. 
Longitudinal studies must have a minimum follow-up of 10 years and the sample’s mean 
age must be greater than 40 years at follow-up. 

3. Exposure: healthy ageing 
4. Comparator: not required. If present, comparison group must meet the inclusion criteria 

for exposure and have a mean age more than ten years younger than the older group’s 
mean age  

5. Expected outcomes: quantitative measures of muscle size (atrophy) or quality (fat 
infiltration); Imaging modality – magnetic resonance imaging (MRI), computerised 
tomography (CT) or ultrasound; Lumbar level(s) of measurement – L1-L5/S1; Muscles 
measured – measurements include psoas, erector spinae, quadratus lumborum and or 
multifidus 

Exclusion criteria:  

1. Study design: case series, case reports, preclinical studies, reviews and meta-analyses 
2. Population: sample contains no participants aged over 40 years. If age is a dichotomous 

variable, older group’s mean age equal to or less than 40 years or within ten years of the 
comparison group’s age. Longitudinal studies’ follow-up period is less than ten years or 
sample’s mean age equal to or less than 40 years at follow-up 

3. Exposure: evidence of disease or impairment that is likely to affect lumbar paravertebral 
muscle morphology 

4. Comparator: if reported, comparison group shows evidence of disease or impairment, or 
has a mean age within ten years of the older group’s mean age  

5. Outcomes: semi-quantitative and qualitative measures of muscle size or quality; Imaging 
modality – use of imaging modality other than MRI, CT or ultrasound; Lumbar level(s) of 
measurement – does not include measurements with L1-L5/S1; Muscles measured – 
measurements do not include psoas, erector spinae, quadratus lumborum and or 
multifidus 
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duplicate records removed (AD), titles and abstracts were screened independently and in duplicate by 

AD and Griffen, C. (CG) against the eligibility criteria. Unpublished data and grey literature were sought 

through handsearching reference lists of included articles and searching electronic grey literature 

databases (i.e. OpenGrey) to ensure a more comprehensive search strategy and reduce the possibility 

of publication bias (Paez, 2017). Articles not excluded based on title and abstract and deemed relevant 

progressed to full-text review. Full-text eligibility screening was completed independently by two 

reviewers (AD, CG) and reasons for exclusion were provided. Disagreements on eligibility were 

resolved by discussion. Whilst it was planned that unresolved disagreements would be arbitrated 

independently by a third reviewer, Hattersley, J. (JH), this was never exercised due to the reviewers 

reaching consensus in all discussions. Where studies were described in multiple publications, the 

publication with the most comprehensive data was used as the primary reference, excluding the 

others if the same data were presented. Where multiple publications from the same study but 

different data were retrieved, all relevant publications were included. If data could not be obtained 

from the full-text or if clarification was required, authors were contacted by one reviewer (AD). If 

sufficient data could not be obtained for a study, the study was excluded. Two reviewers (AD, CG) 

extracted data independently from eligible studies on: study design; sample and comparator 

information [sample size, gender, mean age, age range, mean body mass index (BMI), ethnicity, 

additional information about the setting, definition of health status]; imaging modality; image analysis 

outcome measures; lumbar level(s) and paravertebral muscle(s) measured; study results including 

statistical findings and overall conclusions.  

 

Table 4.4 PubMed search strategy 

#1 Paraspinal muscles MeSH Terms  
#2 Paraspinal musc* Title/Abstract  
#3 Back muscles MeSH Terms  
#4 Back musc* Title/Abstract  
#5 Multifidus Title/Abstract  
#6 Lumbar multifidus Title/Abstract 
#7 Lumbar musc* Title/Abstract  
#8 Trunk musc* Title/Abstract  
#9 Paravertebral musc* Title/Abstract  
#10 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9  
#11 Aged MeSH Terms  
#12 Aged Title/Abstract  
#13 Age Title/Abstract  
#14 Aging MeSH Terms 
#15 Aging Title/Abstract  
#16 Ageing Title/Abstract  
#17 Elderly MeSH Terms 
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#18 Elderly Title/Abstract  
#19 Older adult* Title/Abstract   
#20 #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19  
#21 Atroph* Title/Abstract  
#22 Muscular atrophy MeSH Terms  
#23 Spinal Muscular Atrophy MeSH Terms  
#24 Degenerat* Title/Abstract 
#25 Morpho* Title/Abstract  
#26 Morphology MeSH Terms  
#27 Size Title/Abstract  
#28 Attenuation Title/Abstract  
#29 Infiltration Title/Abstract  
#30 Replacement Title/Abstract  
#31 Sarcopen* Title/Abstract  
#32 Sarcopenia MeSH Terms  
#33 #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 
OR #30 OR #31 OR #32  
#34 #10 AND #20 AND #33  
#35 Animals MeSH Major Topic NOT Humans MeSH Major Topic  
#36 #34 NOT #35 

 

 

4.2.4 Assessment of Risk of Bias in Individual Studies and Study Quality 

Risk of bias was assessed independently by two reviewers (AD, CK) at the study level using the National 

Institutes of Health (NIH) Study Quality Assessment Tools. Reviewers used the study rating tools to 

rate the quality of the study as good, fair or poor. The Risk of Bias Assessment Tool for Nonrandomised 

Studies (RoBANS) (Park et al., 2011; Kim, S. Y. et al., 2013) was also used (AD, CK) to independently 

assess risk of bias at the outcome level. A judgement of “low”, “high” or “unclear” was assigned to 

each question for all included studies. If ratings using the NIH Study Quality Assessment tool or 

judgements using the RoBANS tool differed between reviewers, reviewers discussed the study in an 

effort to reach consensus, otherwise a third reviewer (JH) arbitrated disagreements not due to 

assessor error.  

 

4.2.5 Synthesis of Results and Statistical Methods 

Standardised effect sizes were used in the meta-analysis due to studies using different measurement 

scales. Pearson’s product-moment correlation coefficient (r) was the principal summary measure. For 

studies reporting ageing as a continuous variable, correlations (r) were transformed into Fisher’s z 

units (z’) to approximate normally distributed data. Data were excluded from the meta-analysis when 

studies used non-parametric statistical tests as non-parametric data violate the meta-analytical 
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assumption of normal distribution. For studies that reported ageing as a dichotomous variable, the 

standardised mean difference (Cohen’s d) was calculated. Cohen’s d values were then converted into 

Fisher’s z units (Borenstein et al., 2009; Polanin and Snilstveit, 2016). To account for the large 

variability in spinal-level measurements and different slice orientations, evaluations were categorised 

into high (L1-L2), mid (L2/3-L3/4), low (L4-L5/S1) and all (combined measurements across high, mid 

and low levels) lumbar levels. If a study contributed multiple effect sizes, differing only by lumbar level 

measurements, they were aggregated into appropriate categories. For example, if a study measured 

PS CSA at the L1 and L2, these two effect sizes were aggregated to provide one effect size at the “high” 

level. 

The “metaSEM” package (Cheung, 2014a) was used in the RStudio (RStudio Team (2015). RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/. Version 

1.1.463) environment to perform three-level meta-analyses. Level 1 referred to participants within 

studies, level 2 (within-study variance) referred to interdependent effects within studies, and level 3 

(between-study variance) referred to the studies themselves. This approach allowed informative 

differences to be fully explored between outcomes whilst accounting for statistical dependency due 

to studies contributing multiple effect sizes. The three-level meta-analytical model was also adopted 

as the dependency between effect-sizes was unknown (Cheung, 2014a, 2014b). Due to the complexity 

of the data obtained, traditional meta-analytical methods were not appropriate and would have likely 

artificially reduced variance within and between studies (Cheung and Chan, 2008). Moderators were 

included in the models to assess their influence on the effect size estimate and to investigate the 

amount of between-study variance in true effects that could be explained by their inclusion. 

Categorical moderators included:  

1. sex: female*, male; 

2. muscle: psoas*, erector spinae, multifidus, quadratus lumborum, combined paraspinals 
(erector spinae + multifidus), combined paravertebral muscles (all four muscles);  

3. level: all*, high, mid, low; and  

4. imaging modality: CT*, MRI, ultrasound.  

Asterisks denote the reference category. Dummy codes were created for categorical moderators for 

entry into the meta-regression models. 

In addition, age (mean and range) and mean BMI were included as continuous. Continuous covariates 

were centred, but not standardised, to increase numerical stability. Additionally, random-effects 

meta-analyses, with effects aggregated within studies, were performed using the R-package 

“metaphor” (Viechtbauer, 2010) to estimate the robustness of the three-level meta-analyses. 

http://www.rstudio.com/
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Moderator coefficients and summary effects (z’) were transformed back to correlation coefficients (r) 

with their 95% confidence intervals. Before performing any meta-analyses, a Baujat plot was visually 

inspected to identify and remove effects that excessively contributed to heterogeneity and the overall 

result (Baujat et al., 2002). For muscle size, three effect-sizes (Aboufazeli et al., 2018; Hedermann et 

al., 2018), and for fat infiltration, two effect-sizes (Masaki et al., 2015; Frost and Brown, 2016) lay away 

from the majority and were deemed outliers. Sensitivity analyses were performed to explore how the 

main findings were affected by the removal of studies that: a) did not explicitly state that their sample 

were healthy and with a normal BMI (18.5-24.9) and b) were rated as fair or poor quality based on the 

NIH quality assessment tools. 

 

4.2.6 Investigation of Heterogeneity and Explained Variance in True Effects 

Heterogeneity within (level 2) and between studies (level 3) was evaluated using the Chi-squared test 

and I2 statistic. The I2 statistic describes the percentage of variability in the point estimates that is due 

to heterogeneity rather than sampling error (Deeks, 2011). Interpretation of heterogeneity followed 

Deeks’ (2011) suggestion that 0-40% might not be important, 30-60% may represent moderate 

heterogeneity, 50-90% may represent substantial heterogeneity and 75-90% considerable 

heterogeneity. The percentage of variance in true effects (R2) explained by the inclusion of moderators 

was calculated (Konstantopoulos and Hedges, 2009). 

 

4.2.7 Assessment of Risk of Bias Across Studies 

To explore publication bias potential, asymmetry was inspected visually using funnel plots and 

statistically using Egger’s regression intercept test (Egger et al., 1997), for which there were a sufficient 

number of studies. Sutton et al. (2000) suggest that five studies is usually too few to allow the 

detection of an asymmetric funnel. Duval and Tweedie’s trim and fill test (Duval and Tweedie, 2000) 

was performed if publication bias was indicated, providing a revised summary point estimate adjusted 

for publication bias. 
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 Results 

4.3.1 Study Selection 

 

Figure 4.1 PRISMA flow diagram depicting the selection process for studies 

 

The flow diagram (Figure 4.1) presents the study selection process applied in this meta-analysis. Of 

the 35 studies (Gibbons et al., 1997; Danneels et al., 2000; Stokes, Rankin and Newham, 2005; 

Crawford et al., 2016a; Lee et al., 2017; Burian et al., 2018; Watson, McPherson and Starr, 2008; Bailey 

et al., 2010; Marshall et al., 2011; Anderson et al., 2012; Beneck and Kulig, 2012; D’Hooge et al., 2012; 

Ikezoe et al., 2012; Anderson et al., 2013; Meakin et al., 2013; Yoshizumi et al., 2014; Hiepe et al., 

2015; Ikezoe et al., 2015; Masaki et al., 2015; Valentin, Licka and Elliott, 2015; Frost and Brown, 2016; 

Hamaguchi et al., 2016; Schweitzer et al., 2016; Thakar et al., 2016; Kim et al., 2017; Shahtahmassebi 

et al., 2017; Sions et al., 2017b; Aboufazeli et al., 2018; Hedermann et al., 2018; Johannesdottir et al., 
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2018; Maltais et al., 2018; Shadani et al., 2018; Sollmann et al., 2018; Lorbergs et al., 2019; Rahmani 

et al., 2019) included in the qualitative synthesis, 32 reported outcomes for muscle size (n = 5523) and 

18 studies reported outcomes for muscle quality (fat infiltration) (n = 3471). These studies comprised 

of one randomised controlled trial whilst all others adopted observational study designs. Of these, 10 

studies originated from North America, 12 from European countries, 11 from Asian countries and 2 

from Australia. For studies where separate data by sex were obtained, studies reporting on muscle 

atrophy with ageing as a continuous variable involved 2860 male and 2430 female participants. 

Studies comparing muscle size between older and younger groups involved 50 males and 64 females 

in the older group and 50 males and 69 females in the younger group. For studies reporting on muscle 

fat infiltration with ageing as a continuous variable, 1615 males and 997 female participants were 

included. Studies comparing muscle fat infiltration between older and younger groups involved 171 

males and 186 females in the older group and 293 males and 209 females in the younger group. Across 

all studies, age ranged from 18 to 94 years for women, whilst for men age ranged from 18 to 92 years. 

Women’s mean BMI was lower than men’s and ranged from 20.5 to 28.0, whereas men exhibited a 

mean range of 22.2 to 30.4, discounting younger comparison groups. Further details on study design, 

population characteristics, assessment of health, outcome measures and study quality are presented 

as a graphical overview in Table 4.5 for each included study. For the three-level meta-analytical model 

on age-related muscle atrophy, 29 studies were included giving 144 correlation coefficients. For the 

three-level model on age-related fat infiltration, 16 studies encompassing 92 correlation coefficients 

were included. 
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Note: Unable to obtain sufficient image quality in MS Word; please refer to Appendix j. 

Table 4.5 Graphical overview of study characteristics. 
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4.3.2 Assessment of Risk of Bias in Included Studies 

A risk of bias summary is presented in Figure 4.2 with the reviewers’ judgements on overall study 

quality and on each domain included in the graphical overview of study characteristics (Table 4.5). 

 

Figure 4.2 Risk of bias summary: review of authors' judgements on each item from the Risk of Bias 
Assessment Tool for Nonrandomised Studies (RoBANS) presented as percentages across all included 
studies 

 

4.3.3 Overall Summary 

Random-effects meta-analyses were performed where each study contributed one effect size. The 

correlation (with its 95% Wald CI’s) between healthy ageing and change in LPM size was estimated at 

r = -0.25 (-0.33, -0.18, p < .001). For change in intramuscular fat infiltration with ageing, the overall 

correlation was r = 0.38 (95% CI: 0.27, 0.49, p < .001). These correlations were similar to those obtained 

from the three-level meta-analyses (Table 4.6). To assess the robustness of the three-level models, 

the null hypothesis: τ2
(3) = 0 was tested. Likelihood-ratio tests for the muscle size model (-2LL (df1) = 

54.6, p < .001) and muscle quality model (-2LL (df1) = 56.3, p < .001) demonstrated that the three-level 

models were statistically better than the two-level models.  
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Table 4.6 Three-level meta-analysis models for age-related muscle atrophy and fat infiltration in the 
lumbar paravertebral muscles 

 No. of studies No. of effects Effect size (r) 95% CI p 
Three-level muscle atrophy model 

Intercept 29 144 -0.255 -0.333, -0.169 < 0.001 

Model 
summary 

Level 2: τ2
(2) = 0.004 (SE = 0.002), p = .05, I2 = 6.60% (95% LBCI 1.8% 17.5%) 

Level 3: τ2
(3) = 0.039 (SE = 0.014), p < .01, I2 = 73.97% (95% LBCI 56.3% 86.0%) 

Q(df143) = 367.44, p < .001, -2LL(df141) = -26.29 
  
Three-level fat infiltration model 

Intercept 16 92 0.394 0.278, 0.499 < 0.001 

Model 
summary 

Level 2: τ2
(2) = 0.006 (SE = 0.002), p < .05, I2 = 7.54% (95% LBCI 2.4% 20.0%) 

Level 3: τ2
(3) = 0.059 (SE = 0.025), p < .05, I2 = 79.84% (95% LBCI 61.7% 91.1%) 

Q(df91) = 411.96, p < .001, -2LL(df89) = -11.06 
CI = Wald confidence intervals; LBCI = likelihood-based confidence intervals; -2LL = -2 log likelihood 

 

For the random-effects meta-analyses, examination of the I2 statistic suggested a considerable level 

of heterogeneity (muscle size model: I2 = 94%, Q(df29) = 223.5, p < .001; muscle quality model: I2 = 

98%, Q(df16) = 464.1, p < .001). To explore potential reasons for heterogeneity, a sub-group analysis 

was performed by grouping study sample effect sizes by sex. One study analysing muscle size 

(Yoshizumi et al., 2014) and one analysing muscle fat infiltration (Lee et al., 2017) combined sexes in 

their analysis; these studies were removed from further analyses. For the muscle atrophy model, the 

random-effects meta-analysis produced summary effects of r = -0.22 (95% CI: -0.31, -0.13, p < .001) 

for females and r = -0.32 (95% CI: -0.40, -0.23, p < .001) for males, which were similar to those obtained 

in the three-level meta-regression model (Table 4.7). For the fat infiltration model, the random-effects 

meta-analysis produced summary effects of r = 0.42 (95% CI: 0.25, 0.57, p < .001) for females, and r = 

0.44 (95% CI: 0.31, 0.55, p < .001) for males. However, these correlations were considerably less than 

those obtained from the three-level meta-regression (Table 4.8). 

Substantial heterogeneity was still apparent in both muscle atrophy (females I2 = 71%, Q(df21) = 48.9, 

p < .001; males I2 = 74%, Q(df24) = 65.3, p < .001) and fat infiltration (females I2 = 82%, Q(df11) = 46.9, 

p < .001; males I2 = 82%, Q(df12) = 71.4, p < .001) random-effect meta-analyses when sub-grouped for 

sex. The three-level models also revealed greater variance between studies (level 3) than within 

studies (level 2) (Table 4.6), which was supported by rejection of the null hypothesis: τ2
(2) = τ2

(3) for 

both muscle size (-2LL (df1) = 15.3, p < .001) and muscle quality (-2LL (df1) = 14.0, p < .001) models. 

This indicates moderators are more likely to exist between than within studies. Therefore, potential 
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moderators (Sex, Muscle, Level, Imaging technique, Mean sample BMI, Mean sample age, Sample age 

range) were examined using meta-regression to further explore reasons for between-study variance.  

  

4.3.4 Three-level Meta-regression Models 

The potential differentiating role of moderators on the overall relationship between changes in muscle 

morphology and ageing in healthy older adults were evaluated using three-level meta-regression. 

After controlling for other potential covariates that may influence the relationship between the 

change in muscle size and ageing, males (r = -0.32) differed significantly (p < .01) with females (r = -

0.24). Muscle as a group was approaching significance (p = .06), whilst the ES (r = -0.32) and QL (r = -

0.33) were significant individual muscle moderators (p = .01 and p < .01, respectively). There was a 

significant moderation with the average correlation obtained in studies using ultrasound (r = 0.08, p < 

.001); this was reflected in imaging modality reaching significance as a group (p < .01). Moderators 

with their regression coefficients are presented in Table 4.7. The inclusion of all moderators explained 

72.6% of between-study variance in true effects (Figure 4.3), although the significant moderators 

alone explained 63.5%. 
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Table 4.7 Three-level meta-regression model estimating the moderating effects of Sex (Female = 
reference category), Muscle (Psoas = reference category), Level (All levels = reference category), 
Imaging technique (CT = reference category), BMI, mean age, and age range on the relationship 
between change in paravertebral muscle size and ageing 

Moderator β SE 95% CI P 
Intercept* -0.24 0.14 -0.47, 0.03 .02 

Male** -0.08 0.03 -0.14, -0.02 < .01 
Muscle (∆LL (df5) = 10.54, p = .06) 

Erector spinae* -0.08 0.03 -0.14, -0.02 .01 
Multifidus -0.03 0.06 -0.14, 0.08 .55 
Quadratus lumborum** -0.09 0.03 -0.15, -0.03 < .01 
Paraspinals 0.05 0.14 -0.09, 0.19 .50 
Combined paravertebrals -0.18 0.07 -0.44, 0.10 .20 

Level (∆LL (df3) = 1.79, p = .62) 
High levels 0.00 0.14 -0.27, 0.28 .98 
Mid levels -0.07 0.13 -0.32, 0.18 .59 
Low levels -0.05 0.13 -0.30, 0.21 .70 

Imaging modality** (∆LL (df2) = 9.91, p < .01) 
MRI 0.13 0.08 -0.02, 0.28 .09 
Ultrasound*** 0.32 0.10 0.14, 0.48 < .001 
BMI 0.00 0.03 -0.06, 0.07 .95 
Mean age 0.02 0.03 -0.04, 0.09 .49 
Age range -0.03 0.03 -0.09, 0.03 .28 

Level-2 variance 0.002 0.001 -0.001, 0.005 .23 
Level-3 variance 0.011 0.006 -0.002, 0.023 .09 

# of studies = 29, k = 144 correlation coefficients, Q(143) = 367.44; p < .001, -2LL(127) = -64.58,  
*< .05, **< .01, ***< .001 
 

 

 

 

The overall relationship between intramuscular fat infiltration and ageing was moderated by the 

selection of paravertebral muscle (p < .001), after controlling for other potential covariates. Within 

this group, the ES (r = 0.73), QL (r = 0.68) and paraspinals (r = 0.82) were significant individual 

Within studies 

26.03% 73.97% 
Between studies (I2) 

Unexplained 

27.45% 
Explained by model (R2) 

Total variance in true effects 

Between study variance 72.55% 

Figure 4.3 Visual representation of the amount of between-study variance in true effects explained 
by moderators for the relationship between muscle atrophy and ageing 
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moderators (p < .001). Level of lumbar measurement also made a significant difference in the 

estimated correlation between fat infiltration and ageing (p = .03). Measurements at the high (r = 0.12, 

p = .002), mid (r = 0.24, p = .012) and low (r = 0.22, p = .009) lumbar levels differed significantly with 

measurements taken across all lumbar levels (r = 0.58). BMI was close to having a significant 

moderating effect on overall relationship (β = 0.10, p = .08). Age range of the sample was however 

significant and had an even greater influence on the relationship between fat infiltration and ageing 

(β = 0.16, p < .001). Moderators with their regression coefficients are presented in Table 4.8. The 

inclusion of all moderators explained 79.8% of between-study variance in true effects (Figure 4.4), 

although the significant moderators alone explained 65.8%. 

 

 

Table 4.8 Three-level meta-regression estimating the moderating effects of Sex (Female = reference 
category), Muscle (Psoas = reference category), Level (All levels = reference category), Imaging 
technique (CT = reference category), BMI, mean age, and age range on the relationship between 
change in paravertebral muscle fat infiltration and ageing 

Moderator β SE 95% CI P 
Intercept*** 0.58 0.15 0.35, 0.74 < .001 

Male -0.05 0.03 -0.11, 0.02 .18 
Muscle*** (∆LL (df4) = 29.59, p < .001) 

Erector spinae*** 0.15 0.03 0.09, 0.20 < .001 
Multifidus 0.08 0.08 -0.08, 0.23 .33 
Quadratus lumborum*** 0.10 0.03 0.05, 0.16 < .001 
Paraspinals*** 0.24 0.06 0.13, 0.34 < .001 

Level* (∆LL (df3) = 8.85, p = .03) 
High levels** -0.46 0.16 -0.67, -0.18 .002 
Mid levels* -0.34 0.14 -0.56, -0.08 .012 
Low levels** -0.36 0.14 -0.58, -0.09 .009 

Imaging modality (∆LL (df2) = 1.40, p = .50) 
MRI -0.04 0.10 -0.23, 0.15 .66 
Ultrasound -0.24 0.20 -0.57, 0.15 .23 
BMI 0.10 0.06 -0.01, 0.22 .08 
Mean age -0.05 0.06 -0.16, 0.06 .36 
Age range*** 0.16 0.04 0.08, 0.25 < .001 

Level-2 variance 1e-10 0.001 -0.002, 0.002 .99 
Level-3 variance 0.012 0.007 -0.001, 0.025 .08 

# of studies = 16, k = 92 correlation coefficients, Q(91) = 411.96, p < .001, -2LL(76) = -64.83,  
*< .05, **< .01, ***< .001 
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4.3.5 Risk of Bias across Studies 

For studies assessing muscle size, Egger’s regression intercept test (z = 1.41, p = .16) indicated that 

publication bias was not present. For studies assessing muscle quality (fat infiltration), visual 

inspection of the funnel plot (Figure 4.5) suggested potential evidence of publication bias, which was 

consistent with the Egger’s regression intercept test (z = -2.03, p = .04). Due to the asymmetry 

detected in the funnel plot, Duval and Tweedie’s trim and fill test estimated six studies should be 

added to the right of the mean, which would yield an adjusted point estimate of r = 0.49 (95% CI: 0.39, 

0.58) for the relationship between fat infiltration and ageing. 

 

 

Within studies 

20.16%  79.84% 

Between studies (I2) 

Unexplained 

20.19% 
Explained by model (R2) 

Total variance in true effects 

Between study variance 79.81% 

Figure 4.4 Visual representation of the amount of between-study variance in true effects explained by 
moderators for the relationship between fat infiltration and ageing 

Significance contours showing 5% and 1% 
significance levels. 

Eggers regression slope 

Adjusted summary effect 

Summary effect 

Males 

Females 

Imputed studies with male samples 

Imputed studies with female samples 

95% confidence contours 

Figure 4.5 Contour enhanced funnel plot to illustrate potential publication bias for studies assessing muscle 
quality (fat infiltration) 
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4.3.6 Sensitivity Analyses 

For the relationship between muscle atrophy and ageing, removing studies that did not explicitly state 

that their sample were “healthy” and had a BMI outside of 18.5-24.9 yielded a lower overall 

correlation (r = -0.23, 95% CI: -0.36, -0.10, p < .001), no significant moderators and lower between-

study variance (I2 = 67%) when compared to the original three-level meta-analysis. The inclusion of 

moderators explained 100% of the between-study variance in true effects. Removal of fair and poor-

quality studies yielded a greater overall effect (r = -0.35, 95% CI: -0.47, -0.22, p < .001); significant 

moderators included sex (p < .02) and mean age of the sample (p < .05). Between-study variance was 

also lower in this model (I2 = 65%) compared to the original three-level meta-analysis, and the inclusion 

of moderators resulted in an R2 value of 77%. 

For the relationship between fat infiltration and ageing, removing studies that did not explicitly state 

that their sample were “healthy” or had a BMI outside of 18.5-24.9 yielded a lower overall correlation 

(r = 0.32, 95% CI: 0.21, 0.43, p < .001). No moderators were significant in this model, although 

between-study variance was substantially lower (I2 = 17%) compared to the original three-level meta-

analysis. Removal of fair and poor-quality studies slightly lowered the overall correlation (r = 0.39, 95% 

CI: 0.18, 0.56, p < .001). Males (p < .02), paraspinal muscles (p < .01), low lumbar levels (p < .05), 

ultrasound (p < .02), BMI (p < .01) and mean age of the sample (p < .01) all significantly moderated the 

relationship between fat infiltration and ageing in the adjusted three-level meta-regression. Muscle 

(p < .02) was also retained as a significant moderator group. Between-study variance was lower in this 

model (I2 = 72%) compared to the original three-level meta-analysis. Both sensitivity analyses resulted 

in 100% of the between-study variance in true effects being explained by the inclusion of moderators. 
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 Discussion 

This is the first study to present a systematic review and meta-analysis on age-related degeneration 

of the LPMs in healthy adults. Given the inconsistent methods and equivocal nature of findings on this 

topic, this work provides up-to-date evidence on normal age-related changes in the muscles 

surrounding the lumbar spine and constitutes an important contribution to the literature base to date. 

The current findings show that the LPMs undergo degenerative morphological changes as part of 

healthy ageing in older adults, with increases in fat infiltration more effectual than reductions in 

muscle size. This suggests that fat infiltration may be a better indicator of age-related decline in the 

lumbar musculature than muscle atrophy. Indeed, given the predominance of type I fibres in the LPMs 

(Ng et al., 1998; Mannion et al., 1997; Parkkola et al., 1993; Kimura, 2002; Sirca and Kostevc, 1985) 

and that type I fibres tend to accumulate fat deposits with age (Gueugneau et al., 2015; Choi et al., 

2016) whilst fast-twitch fibres typically exhibit greater atrophy with age (Gueugneau et al., 2015; 

Novotny, Warren and Hamrick, 2015; Lexell, Taylor and Sjöström, 1988), it is unsurprising that fat 

infiltration was the more apparent degenerative feature in the lumbar musculature. Although the 

findings in this review can be explained by established mechanisms that contribute to the 

development and morphological expressions of age-related sarcopenia (Larsson, Grimby and Karlsson, 

1979; Klitgaard et al., 1990; Doherty, 2003; Vettor et al., 2009; von Haehling, Morley and Anker, 2010; 

Bougea et al., 2016), confidence in the findings is diminished somewhat by the substantial variance 

between studies. However, disparate methods and population characteristics amongst studies 

included in this review were able to explain a large proportion of variance and shed light on which 

factors play a pivotal role in moderating the age-related changes in LPM morphology. 

 

4.4.1 Sex Differences in Muscle Atrophy 

The relationship between muscle atrophy and ageing differed significantly between males and females 

but not for fat infiltration. Males exhibited greater LPM atrophy with ageing compared to females. 

Males possess greater muscle mass than females, therefore having greater potential for atrophy with 

age (Janssen et al., 2000). However, this may be overly simplistic and not reflect the complex sex-

specific mechanisms that drive decrements in muscle morphology associated with sarcopenia (Payette 

et al., 2003; Kirchengast and Huber, 2009; Maggio, Lauretani and Ceda, 2013). Lifestyle factors, such 

as PA, may influence the sex-specific loss of muscle size. Given that PA reduces with ageing equally 

among men and women (Milanović et al., 2013) and PA has been shown to attenuate the loss of lower 

limb muscle volume in men but not women (Rivera et al., 2016), it is possible that males also 

experience greater age-related muscle atrophy in other muscles such as those located in the posterior 

trunk. However, paravertebral muscle size is relatively independent of PA level (Dasarathy and Merli, 
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2016; Fortin et al., 2014). A more likely explanation concerns the sex-specific muscle fibre phenotypes 

of the lumbar musculature. Males possess a greater proportion of type II muscle fibres in the ES than 

women (Mannion et al., 2000). Whilst type I fibres are more affected by inactivity and denervation-

induced atrophy, type II fibres are more susceptible to the effects of ageing (Wang and Pessin, 2013). 

Therefore, a greater proportion of type II fibres may predispose men to greater paravertebral muscle 

atrophy. This is reflected in the current findings where men exhibited greater age-related atrophy than 

women. However, intramuscular fat infiltration does not appear to be a sex-specific degenerative 

feature of the LPMs. 

 

4.4.2 Muscle-specific Degenerative Responses 

Muscle as a group significantly moderated the relationship between fat infiltration and ageing and 

was approaching significance for moderating the relationship between muscle atrophy and ageing. 

These findings indicate that there is a muscle-specific response in the lumbar musculature. Therefore, 

selection of LPMs may be important when evaluating age-related muscle degeneration in the lumbar 

spine. Atrophy and fat infiltration of the ES and QL showed significantly greater effects with ageing 

compared to the reference muscle (PS). The correlation between ageing and fat infiltration in the 

paraspinals was also significantly greater. Indeed, the paraspinals yielded the greatest estimate of fat 

infiltration amongst the LPMs, but exhibited the least amount of age-related atrophy, albeit without 

reaching significance. There are perhaps two main reasons to explain these findings. The first concerns 

how the paraspinal muscles’ region of interest (ROI) is defined. Measurements of the paraspinals are 

sometimes preferred due to the difficulty in discerning the ES and MF muscle boundaries (Lee et al., 

2012). The fascial line between the muscles is used to distinguish the medial border of the ES 

(Crawford et al., 2017). However, this non-muscular tissue, typically included in paraspinal muscle 

measurements (Ropponen, Videman and Battié, 2008; Lee et al., 2012; Gungor et al., 2015; Schlaeger 

et al., 2019), may overestimate fat infiltration especially when fat tissue under the lumbosacral plane 

has been excluded from the ROI (Crawford et al., 2017; Berry et al., 2018). With advancing age, a 

redistribution of fat and increase in non-contractile tissue between muscles is observed (Addison et 

al., 2014). Therefore, it is likely that the greater amount of fat infiltration in the paraspinals is an 

overestimation and in part caused by the inclusion of age-related increases in non-muscle tissue 

between the MF and ES. This approach may also explain why atrophy is seemingly attenuated in the 

paraspinals. Increases in non-contractile tissue size between the MF and ES may mask age-related 

muscular atrophy of the paraspinals. However, fat infiltration has been shown to exceed the loss of 

lean tissue; indicating that intramuscular adipose tissue does not simply replace the space left by 

muscle atrophy (Manini et al., 2007). As the paraspinal muscles (ES and MF) are composed mainly of 
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slow-twitch fibres (J∅rgensen, Nicholaisen and Kato, 1993; Rantanen, Rissanen and Kalimo, 1994; 

Mannion et al., 1997) that are more vulnerable to fat accretion than atrophy (Gueugneau et al., 2015; 

Choi et al., 2016), this may also explain why paraspinal muscle size is relatively spared in comparison 

to compositional changes. 

The second explanation concerns functional decline with ageing and low PA status in older adults and 

their effects on muscle morphology. The paraspinal muscles’ function, to provide postural support of 

the lumbar spine and actuate gross trunk movements (Crisco and Panjabi, 1991), may decline with 

ageing (McGill, Yingling and Peach, 1999; Singh, Bailey and Lee, 2011). PA also significantly decreases 

in older age (Morse et al., 2004), which results in the accumulation of intramuscular fat (Goodpaster 

et al., 2008; Marcus et al., 2010; Leskinen et al., 2013). Therefore, diminished age-related muscle 

function coupled with physical inactivity is likely to result in atrophy and fat accretion in the LPMs 

(Ikezoe et al., 2012; Teichtahl et al., 2015a). Indeed, skeletal muscle undergoes adaptive reductive 

remodelling in response to both physical inactivity (Paddon-Jones et al., 2006; Fortney, Schneider and 

Greenleaf, 2011) and ageing (Rogers and Evans, 1993; Roubenoff and Hughes, 2000; Kalichman, 

Carmeli and Been, 2017) and given their inter-relationship it is unsurprising that older adults are 

susceptible to muscle disuse atrophy (Wall, Dirks and Van Loon, 2013). Narici and Maffulli (2010) have 

suggested that postural muscles are particularly affected by age-related sarcopenia, although this 

claim warrants further investigation. Deterioration of the paravertebral muscles is likely due to 

reduced axial loading, as a result of physical inactivity in older age preferentially affecting the 

antigravity muscles (Ikezoe et al., 2012). Given that paravertebral muscles are predominantly 

composed of type I muscle fibres (Ng et al., 1998; Mannion et al., 1997; Parkkola et al., 1993; Kimura, 

2002; Sirca and Kostevc, 1985) that are suited to prolonged tonic activity (Schiaffino and Reggiani, 

2011; Crawford et al., 2016b) and this fibre type is susceptible to inactivity atrophy (Wang and Pessin, 

2013), less engagement with PA is a likely mechanism for muscle atrophy in older age.  

Muscles such as the paravertebrals may therefore be more vulnerable to degenerative changes in 

older age. Indeed, the lumbar musculature is more susceptible to progressive fat infiltration with 

ageing than the leg muscles (Dahlqvist et al., 2015). However, lower limb muscles appear to 

experience greater atrophy than the back muscles (Abe et al., 2014; LeBlanc et al., 1992). This suggests 

that the postural function of the LPMs may attenuate the loss of muscle size, although degenerative 

changes are still apparent in muscle composition. The results of the current review suggest that the 

ES and QL, which is frequently overlooked, experience the greatest degenerative changes amongst 

the lumbar musculature with normal ageing. These muscles in particular should be evaluated when 

determining age-related changes in the lumbar spine. However, researchers should look to include all 
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of the paravertebral muscles in such evaluations and obtain information on each muscle separately, 

as degenerative changes are muscle-specific and it is unlikely that any one muscle is representative.  

 

4.4.3 Lumbar Level-dependent Fat Infiltration 

The relationship between ageing and fat infiltration in older adults was significantly moderated by the 

lumbar level at which paravertebral muscles were measured. Studies evaluating muscles across all 

lumbar levels showed the greatest degenerative changes with ageing. However, the findings in this 

review indicate that age-related atrophy of the LPMs in healthy older adults is not influenced by the 

moderating effect of lumbar level. This reveals important methodological considerations as the level 

of measurement may not be significant for assessing age-related changes in muscle size, but it is of 

importance for assessing age-related changes in muscle quality. Assessing fat infiltration across all 

lumbar levels provided the greatest effect size estimate, whilst measurements taken at the high levels 

(L1-L2) provided the most conservative estimates of muscle quality change (increased fat infiltration) 

with ageing. Measurements at the mid (L2/3-L3/4) and low (L4-L5/S1) lumbar levels yielded similar 

small to moderate effect sizes. More importantly, the current findings infer that measurements at the 

high, mid or low lumbar levels are not representative of the muscle across the whole lumbar region. 

This finding is supported by the recommendations of Crawford et al. (2017), who suggest that a multi-

slice approach across all lumbar levels is superior to determine fat proportion within paravertebral 

muscle. Although more time-consuming, multi-slice approaches show clear benefits compared to 

more expedient single slice measurements, primarily as fat infiltration and size measurements at a 

single slice are not representative of the whole lumbar spine (Urrutia et al., 2018a). Furthermore, 

volumetric measures are preferable as they are more meaningful functionally (Boom et al., 2008) and 

potentially minimise errors associated with postural variations during scanning (Meakin et al., 2013). 

 

4.4.4 Influence of Imaging Modality on Muscle Atrophy 

Age-related muscle atrophy was significantly influenced by imaging modality, specifically ultrasound. 

The summary effect for ultrasound studies showed that muscle size increased with age in contrast to 

the summary effect for studies utilising MRI and CT. This finding suggests that pseudo-hypertrophy is 

more likely to be reported when using ultrasound to measure LPM size. It also contradicts 

expectations and raises questions about ultrasound as an accurate imaging modality to measure 

paravertebral muscle atrophy in generally healthy older adults. Discrepant findings between 

ultrasound and CT/MRI studies may be due to the evaluation of muscle size when defining the ROI. 

Typically, MRI and CT evaluations do not consider fat infiltration as part of the muscle, whereas 
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ultrasound measurements tend to involve the entire muscle including fat. Not considering the amount 

of fat infiltration within the muscle could mask reductions in muscle size and lead to spurious results 

(Elliott et al., 2008). Despite its limitations, the inclusion of fat within the ROI may provide a somewhat 

useful gross measure of muscle degeneration, whilst excluding regions of fat may demonstrate a more 

specific measure of muscle quality and potentially degenerative features within the muscle 

boundaries (Berry et al., 2018). Indeed, skeletal muscle measures derived from ultrasound are less 

able to distinguish intramuscular fat from muscle and accurate definition of the LPMs’ boundaries is 

challenging (Hides, Richardson and Jull, 1995; Pressler et al., 2006; Wallwork et al., 2009). MRI and CT 

provide high resolution images of soft tissues (Hyun et al., 2016). Compared to ultrasound, the 

superior soft tissue contrast of MRI/CT, particularly MRI (Hu et al., 2011), is thought to improve the 

visualisation of fascial boundaries (Upadhyay and Toms, 2015). Furthermore, the generally low 

resolution of ultrasonic images can make discernment of tissue types difficult (Hides, Richardson and 

Jull, 1995). This is particularly troublesome when investigating the deep muscles in the pelvis and 

trunk; sound is reflected or absorbed by superficial tissue layers which results in deeper muscles 

lacking sufficient resolution (Pillen, 2010).  

Another limitation associated with ultrasound concerns the operator’s ability to standardise pressure 

applied by the transducer to the scan site (Lukaski, 1987). Muscle thickness, as well as subcutaneous 

adipose tissue, may be affected by excessive pressure (Abe et al., 1994). Therefore, avoiding excessive 

pressure whilst following a strict imaging protocol is paramount to achieving more accurate measures 

of muscle morphology when using ultrasound (Dupont et al., 2001). Finally, ultrasound typically has a 

limited field of view (FOV) (Sions, Teyhen and Hicks, 2017), unlike MRI and CT which are capable of 

imaging the entire lumbar musculature whilst retaining sufficient resolution. Increasing the FOV to 

capture more of the lumbar musculature may compromise image quality for ultrasound, compounding 

the limitations stated above. Although imaging modality did not significantly influence the relationship 

between fat infiltration and ageing, ultrasound again exhibited marked differences with CT and MRI. 

Therefore, overestimation of muscle size was most likely due to the inclusion of non-contractile tissue 

(Sions, Teyhen and Hicks, 2017), whilst the underestimation of fat infiltration was likely a consequence 

of echo intensity diminishing in deeper muscles of the trunk (Pillen, 2010). Despite ultrasound being 

acknowledged as a lower cost and portable alternative to assess skeletal muscle morphology in clinical 

and community settings (Stringer and Wilson, 2018; Mourtzakis and Wischmeyer, 2014), the current 

findings indicate that studies should ideally use MRI or CT to evaluate age-related atrophy in the LPMs. 

However, recent advances in ultrasound technology indicate that this modality may be more clinically 

relevant and applicable in research settings going forward (Romero-Morales et al., 2021). A recent 

study has shown that panoramic ultrasound imaging is a valid tool for monitoring muscle atrophy in 
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the lower limbs (Scott et al., 2017). Furthermore, high spatial resolution and image quality is now 

achievable using ultra-high frequency ultrasonography, which has the potential to generate novel and 

innovative uses in musculoskeletal imaging (Izzetti et al., 2020). 

 

4.4.5 Influence of BMI, Mean Age and Age Range on Muscle Degeneration 

The continuous covariates did not have a moderating effect on the relationship between ageing and 

muscle atrophy. However, age range of the sample significantly influenced the relationship between 

fat infiltration and ageing, and mean BMI of the sample was approaching significance. It seems 

intuitive that an increase in BMI would increase the amount of fat infiltration in the LPMs with ageing. 

Since increases in BMI are largely attributed to increases in whole-body adiposity (Gallagher et al., 

1996), it is likely that the amount of fat infiltrating the paravertebral muscles would also increase. 

Increasing age range also increased the effect of fat infiltration with ageing. Simply put, as age range 

increases for a population of healthy older adults, greater degenerative changes in the paravertebral 

muscles can be observed. This is reflected in longitudinal observations as small time periods (e.g. 12 

months) are likely to highlight only modest age-related changes in muscle morphology (Gibbons et al., 

1997; Ikezoe et al., 2015), whereas longer periods (e.g. 15 years) have the potential to exhibit greater 

changes (Fortin et al., 2014), specifically in fat infiltration. 

 

4.4.6 Sensitivity Analyses 

The sensitivity analyses showed that older adults, who are explicitly defined as healthy with a normal 

BMI, undergo less muscular degeneration in the lumbar region with normal ageing. Furthermore, all 

moderators were non-significant, suggesting that study level covariates are unable to moderate the 

relationship between ageing and LPM degeneration in this population. Although samples included 

from the eligible studies were generally healthy, free from disease and without physical limitations, 

only 51% of these studies explicitly stated that their sample were healthy in the article. Based on 

information within articles and correspondence from authors, it is unlikely that the health status of 

samples between studies differed greatly. However, the sensitivity analyses suggest that older adult 

participants selected for health (i.e. explicitly defined as healthy with a normal BMI), exhibit less 

degeneration within the lumbar musculature. Similar discrepancies are seen in the degeneration of 

the LPMs between healthy and diseased populations (Kalichman, Carmeli and Been, 2017). Although 

the samples included in the current review were not from diseased populations, the subtle differences 

in the definition of health status had a clear influence on age-related muscle atrophy and fat 

infiltration. Removal of ‘poor’ and ‘fair’ quality studies showed that greater atrophy was apparent with 
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ageing. This suggests that good quality studies, most likely through better outcome measurement, are 

able to detect greater changes in paravertebral muscle size. Caution should be taken with this 

interpretation due to substantial between-study heterogeneity (I2 = 72%), although differences in 

methodologies and study population characteristics can explain all of the variance (R2 = 100%).  

4.4.7 Clinical and Practical Applications 

Measurement of muscle morphology is performed as part of sarcopenia diagnostic criteria (Studenski 

et al., 2014; Chen, L. K. et al., 2014; Fielding et al., 2011; Cruz-Jentoft et al., 2019). Whilst appendicular 

skeletal muscle mass is typically measured (Correa-de-Araujo, 2017; Tosato et al., 2017), lumbar (L3) 

muscle CSA derived from CT or MRI offers a promising alternative (Gu et al., 2018; Schweitzer et al., 

2015; Shen et al., 2004; Golse et al., 2017). However, the current results indicate that measurements 

derived from a single slice are not representative of the entire lumbar musculature. Volumetric 

measures across the lumbar are recommended; however, time costs involved in such an approach 

may not be suited to clinical settings. The choice of muscles should also be considered when 

investigating changes in lumbar muscle morphology. Whilst analysing each muscle in the lumbar spine 

would provide the most comprehensive assessment, the ES and QL should be included in 

measurements as they show significant atrophy and fat infiltration with ageing. Based on the results 

of this review, MRI and CT are recommended over the use of ultrasound to measure changes in muscle 

quality and size with ageing. Indeed, MRI and CT are considered gold standard modalities for non-

invasive assessment of muscle size (Cesari et al., 2012; Olsen, Qi and Park, 2005). However, their use 

is limited in primary care settings by their availability, costs, radiation dosage (CT), inapplicability to 

persons with older generation implanted medical devices that are not MRI compatible (i.e. 

ferromagnetic), and requirement for highly specialised operators (Beaudart et al., 2016; Correa-de-

Araujo, 2017). Despite these barriers, the use of high resolution imaging modalities to assess muscle 

degeneration is expected to become more commonplace in clinical practice (Cruz-Jentoft et al., 2019). 

Perhaps the greatest advantage of high-resolution imaging modalities is their ability to provide 

accurate estimates of muscle quality (McGregor, Cameron-Smith and Poppitt, 2014). However, this 

review found numerous measures used in the literature, which makes transference into clinical 

practice difficult due to a lack of consensus.  

The importance of muscle fat composition as a key determinant of muscle function is being 

increasingly recognised and changes in muscle quality may precede those in muscle size with ageing 

(McGregor, Cameron-Smith and Poppitt, 2014; Correa-de-Araujo et al., 2017; Shahidi et al., 2017b; 

Anderson et al., 2016). Therefore, specific measures of fat infiltration to estimate changes in 

paravertebral muscle quality may be particularly useful in clinical settings. The findings of this study 

suggest that any fat infiltration measures derived from high resolution imaging modalities are suitable, 
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although further research is needed to determine the optimal approach for future research and 

clinical applications. Applying the results from the regression analyses in this review to clinical practice 

could add to the current clinical perspective. As a measure of magnitude for age-related degeneration 

in the LPMs, correlation coefficients obtained from clinical assessment data can be compared to the 

current findings, which may enable identification of abnormal degenerative changes with ageing. 

However, caution should be exercised due to the wide confidence intervals. 

 

4.4.8 Limitations 

Although this review was systematically rigorous, there were limitations that should be acknowledged. 

Firstly, data were collated from observational studies and baseline evaluations from experimental 

studies. Despite being the best available source, observational studies are considered to produce 

lower quality evidence than experimental studies and include a greater potential risk of bias. 

Furthermore, all data were collated from cross-sectional observations, making it difficult to ascertain 

the exact nature of age-related changes in muscle morphology. There is a need for more longitudinal 

studies directly investigating normative changes in lumbar paravertebral muscle morphology over 

longer time periods (>10 years).  

Ill-defined and inconsistent definitions of health status also limited the ability to compare studies. 

Although 18 studies (51%) explicitly stated that their sample were healthy, many of these studies 

provided insufficient detail on what constituted as ‘healthy’. Furthermore, whilst some studies 

considered matched controls representative of healthy individuals, caution should be taken with this 

approach as undetermined phenotypes are likely hidden in the demographics (Määttä et al., 2015). 

Insufficient selection of participants based on their health status and lack of reporting clarity were 

substantial limitations. A standardised definition should be adopted to allow comparison between 

healthy populations as well as with diseased populations. Such advances would provide a reference 

to facilitate understanding of spinal disease progression and pain-related expressions of muscle 

degeneration. Despite large sample sizes present in some studies, it is likely that many of the included 

data were not sufficiently powered to detect meaningful changes to muscle morphology with ageing; 

only six studies (17%) provided sample size justifications.  

It should be recognised that the English language restriction may have also limited the number of 

articles that were returned, although it was unlikely to result in systematic bias (Morrison et al., 2012). 

Data regarding PA were scarce from the studies included in this review. Although exercise is known to 

affect muscle morphology (Konopka et al., 2018; Ikenaga et al., 2017; Belavý, Gast and Felsenberg, 

2017; Stec et al., 2017; Janssen et al., 2016; Manini et al., 2007), changes in paravertebral muscle 
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morphology are relatively independent of PA (Fortin et al., 2014; Dahlqvist et al., 2015; Dasarathy and 

Merli, 2016). Future studies should consider PA level when evaluating age-related degeneration of the 

lumbar musculature. 

 

 Conclusion 

This systematic review, for the first time, draws together the extant literature relating to age-related 

changes in the lumbar musculature. The findings are based on older adults free of diseases or 

impairments that likely affect paravertebral muscle morphology. This is a necessary first step in 

furthering our understanding of normative expressions of ageing muscle as well as providing 

recommendations to establish continuity amongst protocols in future studies. The findings in this 

review indicate that the paravertebral muscles undergo degenerative changes (atrophy and fat 

infiltration) with normal ageing. Future studies investigating muscle morphology in the lumbar spine 

should consider the sex and age range of their sample, look to use MRI/CT to image the paravertebral 

muscles and analyse all the individual muscles across the entire lumbar region. However, these 

methodological decisions should not be uniform, rather based on the morphological outcome of 

interest. In summary, this review will provide a reference for normal age-related changes observed in 

LPM morphology, which may enable identification of pathological deviations. Furthermore, the 

practical applications of this meta-analysis will provide guidance to future studies investigating age-

related degeneration in the lumbar musculature. 
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Table 4.9  Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related 
Degeneration of the Lumbar 
Paravertebral Muscles: 
Systematic Review and 
Three-level Meta-regression 

• A quantitative analysis on the 
association between healthy ageing and 
morphological degeneration of the 
lumbar paravertebral muscles has not 
been performed to date 

• It is unknown how the muscles in the 
lumbar spine change in size and 
composition with healthy ageing in 
older adults. Understanding this 
phenomenon may elucidate 
mechanisms related to functional 
decline. 

• Studies use a wide range of methods to 
evaluate the lumbar musculature. A 
statistical model is needed to include 
each variable as a potential moderator 

Aims • To perform a quantitative analysis of the literature to 
establish the relationship between normal ageing and 
lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important 
methodological parameters that moderate the 
relationship between ageing and degeneration of 
paravertebral muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant 
atrophy and fat infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy 

with ageing in the lumbar musculature 
• Imaging modality significantly influences the relationship 

between ageing and paravertebral muscle atrophy 
• There is a considerable amount of between-study 

heterogeneity, although methodological factors explain a 
substantial amount of explainable variance 
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to account for heterogeneity amongst 
studies 

• Multiple effects are typically reported 
by a single study. Meta-analyses 
typically adopt a reductionist approach 
by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical 
model is needed to account for 
interdependency amongst effect sizes 

Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to 
image to spinal musculature 

• Volumetric measures covering multiple lumbar levels are 
superior to cross-sectional measures taken at single levels 

• Measurements should be obtained for each of the main 
paravertebral muscles in the lumbar to better represent 
the degenerative effects of ageing 

Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

 Aim  

Key findings  

Implications  

Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  
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Chapter 5 Age-related Differences in Lumbar Paravertebral Muscle 

Morphology in Healthy Younger versus Older Men 

 

The work from this chapter has been accepted for publication in a peer-reviewed journal.  

Dallaway, A., Hattersley, J., Diokno, M., Tallis, J., Renshaw, D., Wilson, A., Wayte, S., Weedall, A., and 

Duncan, M. (in press) ‘Age-related Degeneration of Lumbar Muscle Morphology in Healthy Younger 

versus Older Men’. The Aging Male 

Chapter Abstract 

Background The lumbar paravertebral muscles are important in maintaining health and mobility in 

older age. Despite this, no studies have quantified age-related differences in muscle volume and fat 

infiltration for all of the main paravertebral muscles. Given the difference in their functional roles, 

investigating morphological changes with age are of interest for each of these muscles. Therefore, the 

main aim of this study was to evaluate age-related differences in lumbar paravertebral muscle 

morphology in healthy young and older adult men. 

Methods T2-weighted axial MRI of the lumbar spine were obtained for twelve healthy older (67.3 ± 

6.0 years) and young (24.7 ± 3.1 years) men. Normalised muscle volume (NMV) and muscle-fat-

infiltrate (MFI) were determined bilaterally for the psoas (PS), quadratus lumborum (QL), erector 

spinae (ES) and multifidus (MF). MANOVA was used to compare NMV and MFI between age groups. 

Follow-up ANOVA compared NMV and MFI for each muscle between age groups, with PA as a 

covariate. Stepwise regression was used to explore the association between muscle morphology. 

Results NMV of the ES and QL were significantly lower in the OG (p = .040 and p < .001, respectively). 

MFI across all muscles was significantly greater in the OG (p<.001). PA did not moderate the 

relationship between age and muscle degeneration. Non-dominant handgrip strength was associated 

with NMV (p = .003). 

Conclusions Age-related atrophy is muscle-specific in the lumbar spine; changes in lumbar 

musculature is independent of PA, handgrip strength may reflect morphological changes in the 

postural muscles with age. This study supports establishing effective targeted exercise interventions 

in the lumbar musculature 

 

Key Words: paravertebral muscles, MRI, segmentation, morphology, fat infiltration, atrophy
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Table 5.1 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline. 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 

Chapter 5 Age-related 
Differences in Lumbar 
Paravertebral Muscle 

• Studies investigating muscle 
degeneration with ageing have typically 
focused on the appendicular muscles 

Aims • To investigate age-related differences in LPM morphology 
• A secondary aim was to investigate the age-response on 

fat infiltration and volume of the different lumbar 
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Morphology in Healthy 
Younger versus Older Men 

• There is increasing recognition for the 
importance of the lumbar paravertebral 
muscles in maintaining health and 
mobility in older age 

• Few studies have characterised 
features of age-related degeneration in 
the lumbar musculature 

• Few studies have provided volumetric 
information on all of the paravertebral 
muscles using high-resolution imaging 
modalities 

muscles (i.e. multifidus, erector spinae, quadratus 
lumborum and psoas) 

• An additional aim was to explore other predictors of 
lumbar paravertebral muscle degeneration 

Key findings  

Implications  

Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  

denotes links to previous chapters. Links to chapter 3 – 1) VPA was included as a potential covariate; 2) The moderating effects of body composition 
measures and handgrip strength were explored with respect to muscle morphology degeneration. Links to chapter 4 – Methodological decisions 
for imaging the LPMs were based on the findings from the meta-analysis 
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 Introduction 

Sarcopenia is a major health concern (Marcus et al., 2010; Landi et al., 2013; Beaudart et al., 2017) 

and socioeconomic burden, responsible for considerable healthcare expenditure in the United 

Kingdom (Pinedo-Villanueva et al., 2019) and United States (Janssen et al., 2004). With worldwide 

increases in the number of older adults, the challenges posed by sarcopenia are increasingly great at 

patient, societal and clinical levels (Dodds and Sayer, 2016; Beaudart et al., 2014). 

Diagnostic criteria for sarcopenia typically include measurement of appendicular muscle mass (Cruz-

Jentoft et al., 2019; Chen, L. K. et al., 2014; Fielding et al., 2011; Studenski et al., 2014; Morley et al., 

2011; Muscaritoli et al., 2010), however, there is increasing evidence highlighting the value of 

measuring paravertebral muscle degeneration (atrophy and fat infiltration) (Dahlqvist et al., 2017; 

Hicks et al., 2005a; Crawford et al., 2019b; Shahtahmassebi et al., 2017; Sions et al., 2017a; Fortin et 

al., 2015). Narici and Maffulli (2010) suggest that the postural muscles may be more susceptible to the 

effects of age-related sarcopenia than the appendicular muscles. This suggestion is supported as the 

lumbar musculature is more susceptible to progressive fat infiltration with ageing than the lower limbs 

(Dahlqvist et al., 2015). Degeneration of the lumbar musculature has attracted interest in recent years, 

even stimulating ideas of spinal sarcopenia (Debiane et al., 2015; Kim et al., 2019). This focus is likely 

due to the importance of the paravertebral muscles in the maintenance of spinal health (Eguchi et al., 

2017; Hicks et al., 2005b; Sions et al., 2017a), postural support, falls prevention, and assisting with 

trunk movements during ADLs (Suri et al., 2009; Granacher et al., 2013; Hicks et al., 2005a; Barr, Griggs 

and Cadby, 2005; Meakin et al., 2013; Crisco and Panjabi, 1991). Therefore, degradation of these 

muscles may be particularly detrimental to biomechanical and physical function, evidenced by adverse 

health outcomes in older age (Kita et al., 2013; Hicks et al., 2005b; Katzman et al., 2012; Williams et 

al., 2017).  

Studies have shown that lower back pain and pathology modifies the size and composition of the LPMs 

(Beneck and Kulig, 2012; Danneels et al., 2000; Chen, Y. Y. et al., 2014; Kalichman et al., 2010, 2016; 

Teichtahl et al., 2015b). However, the extent of muscle atrophy and fat infiltration is confounded by 

physiological declines associated with normal ageing (Hicks et al., 2005a; Kalichman et al., 2010; Le 

Cara et al., 2014; Shahidi et al., 2017b; Valentin, Licka and Elliott, 2015; Hebert et al., 2014). Few 

studies have directly investigated the effects of healthy ageing on muscle size and fat infiltration in 

the lumbar spine (Valentin, Licka and Elliott, 2015; Crawford et al., 2016a; Fortin et al., 2014). 

Furthermore, the range of approaches used to evaluate age-related changes in LPM morphology 

makes comparing findings difficult (see 36). 
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Attenuating atrophy and fat infiltration in the LPMs is important to maintain quality of life and offset 

adverse health outcomes in older age (Kader, Wardlaw and Smith, 2000; Ekin, Yıldız and Mutlu, 2016; 

Ikezoe et al., 2015; Fortin et al., 2015; Kalichman, Carmeli and Been, 2017; Anderson et al., 2016). It is 

widely acknowledged that further investigation is needed to extend our understanding of age-related 

degeneration in the lumbar musculature (Crawford et al., 2016c; Kalichman, Carmeli and Been, 2017; 

Dahlqvist et al., 2015; Valentin, Licka and Elliott, 2015; Shahidi et al., 2017b), particularly in healthy 

volunteers as undetermined phenotypes are likely hidden in the demographics of general populations 

(Määttä et al., 2015; Crawford et al., 2019b). To the author’s knowledge, no study to date has included 

volumetric and fat infiltration measures for the PS, QL, ES and MF in relation to healthy ageing. 

Investigating age-related differences in muscle volume and fat infiltration in the lumbar spine of 

healthy adults will provide further evidence for future comparative studies to identify pathological 

deviations. Furthermore, understanding this information may elucidate mechanisms related to 

functional decline and provide much needed evidence for effective targeted interventions in the 

lumbar spine. 

 

5.1.1 Age-related Differences in Lumbar Paravertebral Muscle Morphology 

Different outcome measures amongst studies has hampered our understanding of muscle atrophy in 

the lumbar spine. Factors such as the inclusion or exclusion of non-contractile tissue within the 

muscle’s ROI has also contributed to discrepant findings. Studies accounting for non-contractile tissue 

have shown that the LPMs atrophy with ageing (Valentin, Licka and Elliott, 2015; Crawford et al., 

2016a; Fortin et al., 2014), contrary to studies measuring total muscle CSA without consideration of 

fat infiltration (D’Hooge et al., 2012). Discounting fat infiltration may mask atrophic changes resulting 

in an apparent preservation of muscle size with ageing (Elliott et al., 2008). In 36 it was shown that 

men experience LPM atrophy. However, many of the studies included in the analysis used cross-

sectional measures and sampling variance was high. Furthermore, no study included all of the main 

LPMs and definitions of health were inconsistent. It is therefore difficult to assert with any degree of 

confidence that healthy men undergo atrophic changes in the lumbar musculature. A study addressing 

these issues is needed to establish the extent of LPM atrophy in healthy older men. 

Fat infiltration within skeletal muscle (myosteatosis) is a degenerative feature signalling a decline in 

muscle structure and quality (Mitchell et al., 2012; Elliott et al., 2013). Indeed, strength decrements 

often exceed the loss of muscle mass (Delmonico et al., 2009; Hughes et al., 2002; Narici and Maffulli, 

2010), which suggests that intrinsic factors contribute to this decline. Alongside a shift towards a 

slower phenotype, due to a preferential loss of fast motor units (Campbell, McComas and Petito, 1973; 
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Evans and Lexell, 1995), fat deposits infiltrate skeletal muscle with ageing (Marcus et al., 2010). Rather 

than being characterised as an atrophic change however, intramuscular fat infiltration is seen as a 

feature of structural remodelling (Hodges et al., 2015). Studies have shown that increased fat 

infiltration in the lumbar musculature is associated with reduced muscle strength (Goodpaster et al., 

2001), poor physical function (Hicks et al., 2005a) and impaired mobility (Goodpaster et al., 2006), as 

well as degenerative spinal features (Kalichman et al., 2010; Teichtahl et al., 2016, 2015b). Whilst 

methodological differences, inconsistent results (Fortin and Macedo, 2013; Fortin et al., 2014; Fortin, 

Yuan and Battié, 2013) and disease (Kalichman et al., 2010; Takayama et al., 2016; Lorbergs et al., 

2019; Shahidi et al., 2017a; Masaki et al., 2016; Bayat et al., 2019) preclude any conclusions on 

compositional changes within the lumbar musculature from being drawn, the evidence suggests that 

fat infiltration in the LPMs is a normal feature of ageing (Shahidi et al., 2017b; Crawford et al., 2016a; 

Valentin, Licka and Elliott, 2015; Lee et al., 2017) . 

The LPMs may be particularly susceptible to fat infiltration with advancing age. Given that these 

muscles are mainly composed of type I fibres (Ng et al., 1998; Mannion et al., 1997; Parkkola et al., 

1993; Kimura, 2002; Sirca and Kostevc, 1985) which have a propensity to accumulate more 

intramyocellular lipid with ageing than type II fibres (Gueugneau et al., 2015; Choi et al., 2016), it is 

unsurprising that fat infiltration is particularly apparent in the lumbar musculature. Furthermore, 

changes in muscle fat content have been suggested to precede changes in muscle size with ageing 

(Ismail et al., 2015; Watanabe et al., 2013; Goodpaster et al., 2006; McGregor, Cameron-Smith and 

Poppitt, 2014). This highlights the importance of fat infiltration measures as an early indicator of 

degenerative muscle in older age. Such measures, sensitive to small changes in muscle morphology, 

may enable preventative interventions to be implemented earlier and maintain healthy muscle in 

older adult populations (McGregor, Cameron-Smith and Poppitt, 2014).  

 

5.1.1.1 Muscle-specific Changes in Paravertebral Muscle Morphology 

The LPMs most frequently measured in the literature are the MF, ES, QL and PS (Figure 5.1). Given 

their different functions and propensity for localised degeneration in healthy and diseased 

populations (Ploumis et al., 2011; Min et al., 2013; Crawford et al., 2016c; Baracos, 2017; Sollmann et 

al., 2020), age-related differences are of interest for each of these muscles. Of the LPMs, the MF 

(Crawford, Elliott and Volken, 2017; Crawford et al., 2016c, 2016a; Marshall et al., 2011; Valentin, Licka 

and Elliott, 2015) and ES (Crawford, Elliott and Volken, 2017; Fortin et al., 2014; Lee et al., 2017; Fortin 

et al., 2016; Anderson et al., 2013; Valentin, Licka and Elliott, 2015) appear most vulnerable to age-

related degeneration. However, it should be noted that fat infiltration, rather than atrophy, appears 
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to be the main degenerative feature of the MF (Valentin, Licka and Elliott, 2015; Crawford et al., 

2016a). Other studies have shown that the QL exhibits the greatest decrements with ageing (Sions et 

al., 2017b; Johannesdottir et al., 2018), whilst the size and quality of the PS seems to be somewhat 

spared (Crawford, Elliott and Volken, 2017; Lee et al., 2017). This is possibly due to its involvement in 

hip flexion and the fact that adults rely more on hip power for walking in older age (DeVita and 

Hortobagyi, 2000; Neptune, Zajac and Kautz, 2004). It is not fully understood which mechanisms 

increase or attenuate the effects of ageing on degenerative muscle morphology in the lumbar spine. 

Indeed, the lumbar musculature is more susceptible to progressive fat infiltration with ageing than 

the lower limbs (Dahlqvist et al., 2015). Although, lower limb muscles appear to undergo greater 

atrophic changes than the back muscles (Abe et al., 2014; LeBlanc et al., 1992). This suggests that the 

postural function of the LPMs may attenuate the loss of muscle size, although degenerative changes 

are realised in muscle composition. 

 

Figure 5.1 Axial MRI image depicting the psoas (PS), quadratus lumborum (QL), erector spinae (ES) 
and multifidus (MF) muscles. 

 

5.1.1.2 Moderating Effect of Physical Activity and Lumbar Curvature 

Lifestyle factors, such as PA, may also modify the relationship between ageing and muscle 

degeneration. Inactivity is a well-known factor that contributes to sarcopenia (Steffl et al., 2017), due 

to alterations in the rates of protein synthesis and degradation (Evans, 2010). Paravertebral muscle 

size has been associated with PA levels (Peltonen et al., 1997; Gibbons et al., 1998), although not 

unequivocally (Teichtahl et al., 2015a). Indeed, some studies report that changes in LPM morphology 

are relatively independent of PA (Fortin et al., 2014; Dahlqvist et al., 2015; Dasarathy and Merli, 2016). 

PS PS 

QL QL 

ES ES 
MF MF 



CHAPTER 5 
 

76 | P a g e  
 

In the author’s view, PA level has been generally overlooked as a potential covariate in the literature. 

Anatomical variations in lumbar sagittal curvature (Meakin et al., 2013) may also influence age-related 

changes in LPM morphology and their moderating effect should be considered. Understanding which 

muscles are most affected by the deleterious effects of ageing and the influence of PA and anatomical 

variations, may provide better guidance in identifying where exercise programmes and resistance-

based training interventions are best targeted.  

 

5.1.2 Methodological Considerations 

In the previous chapter, it was suggested that the evaluation of LPM morphology requires specialist 

imaging tools such as MRI or CT. Although US has been frequently used to assess muscle morphology 

in the lumbar spine (Stokes, Rankin and Newham, 2005; Watson, McPherson and Starr, 2008; Ikezoe 

et al., 2012, 2015; Masaki et al., 2016; Frost and Brown, 2016; Aboufazeli et al., 2018; Rahmani et al., 

2019; Shahtahmassebi et al., 2017; Shadani et al., 2018; Hides, Richardson and Jull, 1995), its 

limitations may cause erroneous measurements. Compared to MRI/CT, ultrasonic measures are less 

able to distinguish intramuscular fat from muscle tissue which also makes defining boundaries of 

individual LPMs challenging (Hides, Richardson and Jull, 1995; Pressler et al., 2006; Wallwork et al., 

2009). MRI is the gold standard for examining the paravertebral musculature (Crawford et al., 2019a). 

The superior soft tissue contrast and high resolution images of MRI/CT, particularly MRI (Hyun et al., 

2016; Hu et al., 2011; Crawford et al., 2019a) improves the visualisation of fascial boundaries 

(Upadhyay and Toms, 2015), which may increase accuracy when identifying deep muscles in the 

lumbar spine. Methods for identifying muscle ROI with MRI may still vary and influence measures of 

paravertebral muscle degeneration. Inclusion of fat between the iliocostalis lumborum and 

longissimus thoracis and lateral to the iliocostalis, interposed between the epimyseal border and the 

fascial plane, may increase estimates for muscle size and fat infiltration (Berry et al., 2018). However, 

the decision to include this fatty ROI does not render muscle size and fat infiltration measures useless. 

Rather, such measures are indicative of a gross measure of muscle degeneration whereas excluding 

this fatty ROI may provide more specific measures of degeneration (Berry et al., 2018). 

Another factor that may cause disparity amongst studies is the choice of MRI sequence. T1- and T2-

weighted images are widely used to analyse soft tissue morphology in the lumbar spine (Fortin et al., 

2014; Hebert et al., 2014; Shahidi et al., 2017a, 2017b; Beneck and Kulig, 2012; D’Hooge et al., 2012; 

Valentin, Licka and Elliott, 2015; Gibbons et al., 1997). Quantification techniques are achieved by 

distinguishing regions (pixels / voxels) of fat from contractile tissue within a selected muscle’s ROI. 

Quantitative techniques are more accurate and have shown greater reliability than qualitative grading 
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(Abbott et al., 2018) and semi-quantitative methods (Mhuiris et al., 2016). However, accurately 

defining muscles’ boundaries is paramount to achieving high accuracy. High contrast between 

contractile and non-contractile tissue in T2-weighted images (Bloem et al., 2018) is thought to improve 

visualisation of muscle boundaries (Upadhyay and Toms, 2015). This may increase accuracy when 

identifying a muscle and defining its ROI. Visualisation of fat infiltration within the muscle is also 

improved, although there is no consensus regarding the choice of T1 or T2 sequences (Upadhyay and 

Toms, 2015). Furthermore, T1- and T2-weighted images may be too simplified to precisely 

discriminate different structures of similar signal intensity (Bloem et al., 2018). Multi-echo acquisitions 

have been recently used to determine fat infiltration within the LPMs (Crawford, Elliott and Volken, 

2017; Crawford et al., 2019b). Such techniques are purported to be superior in soft tissue analysis 

(Fischer et al., 2013; Reeder, Hu and Sirlin, 2012; Yoo et al., 2015; Ma et al., 2004), although errors 

may still occur due to field inhomogeneities (Crawford et al., 2017).  

Finally, it is important to consider the advantages and disadvantages of volumetric versus cross-

sectional measures. Assessing muscle volume, rather than CSA or thickness, is advantageous due to 

its greater association with muscle function and strength (Akagi et al., 2009; Blazevich et al., 2009; 

Boom et al., 2008), minimisation of errors associated with postural variations during scanning (Meakin 

et al., 2013) and more accurate representation of the entire lumbar musculature (Urrutia et al., 

2018a). Despite the benefits of volumetric measures, CSA measurements remain more commonplace 

in the literature, likely due to expediency (Urrutia et al., 2018a) and being representative of a whole 

muscle in estimating volume and fat infiltration (Hogrel et al., 2015). However, this has been contested 

by other researchers focusing on the lumbar musculature (Urrutia et al., 2018b). Crawford et al. (2017) 

suggest that a multi-slice approach across all lumbar levels is superior to determine fat proportion 

within paravertebral muscle. Furthermore, contraction of a muscle will increase its CSA, whilst passive 

elongation will decrease its CSA. These factors make CSA measures of the spine particularly 

susceptible to postural changes, particularly as the spine has a large degree of flexibility and trunk 

flexion results in decreased CSA measurement of the extensor muscles (Jorgensen, Marras and Gupta, 

2003). Measuring volume may minimise errors associated with passive elongation and active 

contraction as muscle tissue is generally considered to be incompressible (Ehret, Böl and Itskov, 2011). 

Therefore, changes in muscle length and CSA would not be expected to alter volume (Barber, Barrett 

and Lichtwark, 2009). 

 

5.1.3 Aims, Objectives and Hypotheses 

The aim of this study was to investigate age-related differences in LPM morphology. A secondary aim 

was to investigate the age-response on different muscles in the lumbar spine. An additional aim was 
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to investigate the association between exploratory variables and age-related LPM degeneration. To 

achieve these aims, specific objectives were to: 

 

Table 5.2 Objectives and hypotheses for chapter 5 

Objective Null Hypothesis 

1 
Determine an appropriate imaging 
modality and image processing 
technique to quantify muscle volume 
and fat infiltration in the lumbar spine 

n/a 

2 Accurately and reliably perform manual 
segmentation of the LPMs n/a  

3 Calculate volumetric and fat infiltration 
data for each LPM in the YG and OG 

Age-related differences in LPM morphology will 
not be muscle specific 

4 
Analyse volumetric and fat infiltration 
data using appropriate statistical tests 
to allow inference of age-related 
differences 

a) Normalised volume of the lumbar spine 
muscles will not be significantly less in the OG 
compared to the YG 
b) Fat infiltration in the lumbar spine muscles 
will not be significantly greater in the OG 
compared to the YG 

5 Control for the moderating effect of 
VPA 

VPA will not moderate the relationship between 
muscle degeneration and age 

6 

Use regression modelling to explore the 
association between age-related 
degeneration and exploratory factors 
(e.g. PA level, whole-body composition, 
handgrip strength and anatomical 
variations in lumbar curvature) 

PA, BMI, whole-body fat and lean mass, 
handgrip strength and lumbar lordotic angle will 
not significantly associate with age-related loss 
of muscle volume or increase in fat infiltration 
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 Methods 

5.2.1 Imaging Acquisition 

Scans of the lumbosacral spine were performed in a 3T MR imaging scanner (Discovery MR750w, GE 

Medical Systems, Milwaukee, Wisconsin, USA). Participants were positioned supine in the magnetic 

bore with a pillow placed under their legs resulting in slight flexion of the hips and knees. This position 

was assumed as lying supine with a neutral spine has been shown to provide the most accurate 

measure of paraspinal muscle anatomical CSA (Jorgensen, Marras and Gupta, 2003). A flexible 16-

element body-matrix coil (GEM Anterior Array, GE Healthcare, Waukesha, Wisconsin, USA) was used 

in combination with an in-table GEM Posterior Array (GE Healthcare, Waukesha, Wisconsin, USA) 

consisting of a 5 x 8 array to improve signal reception. Axial T2-weighted fast recovery fast spin-echo 

(FRFSE) images were acquired from the L2 inferior endplate to the L5 inferior endplate, using a slice 

thickness of 4 mm, no interslice gap, repetition time (TR) 6643 ms, echo time (TE) 107 ms, acquisition 

matrix 240x240, flip angle 150°, field of view (FOV) 240 mm, voxel size 0.938 x 0.938 x 4 mm, 30 slices 

provided sufficient coverage. Images were stored as DICOM format for processing. 

 

5.2.2 Image Analysis 

Image analysis was performed using ITK-SNAP (ITK-SNAP, version 3.8.0, www.itk-snap.org) 

(Yushkevich et al., 2006), a general-purpose interactive tool for image visualisation and segmentation. 

Right and left sides of the PS, QL, ES and MF were manually segmented for each axial slice between 

the superior endplate of L3 to the superior endplate of L4 (Figure 5.2). The superior endplate of L4 

was chosen as the inferior-most level to avoid obliquity at lower levels. Age-related differences in 

lumbar lordotic angle (LLA) (Arshad et al., 2019), and steep angulation of the L5 vertebra (Keller et al., 

1999), would likely confound within and between-group comparisons. Therefore, the chosen levels 

provided identifiable anatomical planes that were approximately parallel to the axial slices in all 

participants, minimising inter-subject measurement error. Each muscle’s boundary was identified 

following the instructions of Crawford et al. (2017). When a large fat-filled “tent” was observed 

between the longissimus thoracis and iliocostalis lumborum, this region was excluded from the ROI. 

Fatty regions lateral to the illiocostalis lumborum and beneath the fascial plane were also excluded. 

 

5.2.2.1 Muscle Volume 

The summation of axial ROIs provided volumetric measurements for each muscle. Volumetric 

measures are preferable to CSAs as they are more meaningful functionally (Akagi et al., 2009; 

Blazevich et al., 2009; Boom et al., 2008) and minimise errors associated with postural variations 

http://www.itk-snap.org/
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during scanning (Meakin et al., 2013). Due to variations in participants’ anatomy, the number of 

analysed slices ranged from 10 to 11. To account for differences in muscle volume as a result of 

stature, muscle volumes were normalised to the straight-line distance between the anterior superior 

border of the L1 vertebra and the anterior superior border of the S1 vertebra (Deng et al., 2015) 

(Figure 5.3) giving normalized muscle volume (NMV) in arbitrary units (a.u.). Normalisation to 

vertebral body CSA (Thakar et al., 2016) and stature (Hamaguchi et al., 2016) has also been performed 

to account for differences in body size. However, the current approach was adopted as vertebral 

column length is moderately to strongly associated with stature (Nagesh and Pradeep Kumar, 2006) 

and provides reliable normalisation while negating postural variations (Voss et al., 1990). 
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Figure 5.2 Sagittal (a) and selective axial MRI images (b) of the spine showing the ROI for the psoas (red), quadratus lumborum (green), erector spinae 
(blue) and multifidus (yellow) muscles at the superior endplate L3, mid-vertebral slice L3, intervertebral disc L3/L4 and superior endplate L4. 3-D 
rendering of the axial image segmentations (c) is show with additional region of subcutaneous back fat (turquoise) and vertebral column (pink) for 
visualisation. 

L1 

S1 

a b 

c 
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5.2.2.2 Fat Infiltration 

MFI was used to estimate and compare intramuscular fat infiltration between participants. For MFI, 

mean signal intensity (MSI) of each muscle across all included slices was reported as a percentage 

relative to MSI of a homogenous region of subcutaneous back fat across all included slices, given by 

the equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 (%) =  
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀 𝑀𝑀𝑆𝑆𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀
 × 100 

Similar approaches have been used previously (D’Hooge et al., 2012; Hyun et al., 2016; Valentin, Licka 

and Elliott, 2015; Gibbons et al., 1997) to account for inter-subject and temporal variations in 

measured signal intensity due to field strength variations and distance of voxels from the detector 

coils. Variations in field strength and background intensity between images introduces error when 

comparing the signal intensities of paravertebral muscle and fatty tissue. Adjusting muscle signal 

intensity to the signal intensity of subcutaneous back fat allowed comparison between participants. 

The fat ROI was selected from an area of subcutaneous back fat as defining a region of intermuscular 

fat may be difficult in every individual (D’Hooge et al., 2012). Other studies have used cerebrospinal 

fluid to adjust signal intensity (Battié et al., 1995; Videman et al., 1994; Gibbons et al., 1997). 

Deposition of fat and connective tissue show as high signal intensity on fast spin echo T2-weighted 

images (Kader, Wardlaw and Smith, 2000). Therefore, hyperintense regions within the paravertebral 

muscles observed on T2 axial images were considered fatty tissue (Teichtahl et al., 2015a; Kader, 

Wardlaw and Smith, 2000). It should be noted that a range of approaches to quantify LPM fat 

infiltration have been reported in the literature (Crawford et al., 2017). Whilst none of these have 

been validated, the current approach has shown high inter and intra-observer reliability (Hu et al., 

2011), low variability in several studies (D’Hooge et al., 2012; Hyun et al., 2016; Valentin, Licka and 

Elliott, 2015; Gibbons et al., 1997) and minimises inter-subject variance seen with histogram 

techniques that do not correct for temporal variations in signal intensity. 

 

5.2.2.3 Lumbar Lordotic Angle 

Sagittal plane images were acquired to measure LLA. The images were acquired using a T2-weighted 

FRFSE sequence with a magnetic field strength of 3T, slice thickness 6 mm, interslice gap 8 mm, TR 

2877 ms, TE 109 ms, flip angle 142°, voxel size 1.41 x 1.41 x 8 mm, images in acquisition 12. The slice 

representing the mid-vertebral line was identified by the presence of the conus medullaris and spinous 

processes and used for analysis. The Cobb L1-L5 method was used to measure LAA (Hong et al., 2010); 

the angle between the superior endplate of L1 and the inferior endplate of L5 (θL1-L5) (Figure 5.3).  



CHAPTER 5 
 

83 | P a g e  
 

 

5.2.3 Statistical Analysis 

Statistical analyses were performed using SPSS software (Version 24.0, IBM, Armonk, New York) and 

graphical presentation performed using GraphPad Prism (Version 8.3.1, San Diego, California). For 

each muscle group, right and left sides were combined and NMV and MFI were presented as mean ± 

standard deviation (SD) unless otherwise stated. All variables were normally distributed (Shapiro 

Figure 5.3 LLA measured using Cobb's method. T2-weighted mid-sagittal MRI image with lines 
drawn along the superior endplate of L1 and inferior endplate of L5, extending past the vertebral 
body. Orthogonal lines were added, on the side of convergence of the two lines, and the angle of 
the intersection (θ) was measured. The straight-line distance (d) was measured between the 
anterior superior border of the L1 vertebra and the anterior superior border of the S1 vertebra. 
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Wilk’s test: p > .05) and equal variances between groups were assumed (Levene’s test: p > .05). 

Multivariate analysis of covariance (MANCOVA) were conducted for NMV and MFI; VPA was included 

as a potential covariate. Group differences were investigated based on the linear composite of 

outcome variables for each muscle. Significant between-subject results were followed up with 

univariate analysis of variance (ANOVA) to compare NMV and MFI for each muscle between age 

groups.  

An independent t-test was used to compare LLA between groups. The strength of the relationships 

between LLA and muscle morphology outcomes were assessed from the Pearson correlation 

coefficient. Stepwise multiple linear regression was used to explore potential variables that may be 

related to total NMV (summation of each muscle’s NMV) and mean MFI (mean MFI across all muscles). 

Input variables included: age (age group), MVPA (hrs/day), VPA (hrs/day), BMI, whole body fat 

composition (%), whole body lean mass (kg), dominant and non-dominant handgrip strength (kg), and 

LLA (°). A stepwise regression model was chosen due to its ability to reduce the number of predictor 

variables without substantially reducing the explanatory power of the data (Huang and Townshend, 

2003). An alpha level of 0.05 was required for statistical significance in all tests. Standardized effect 

size (ηp
2) and observed power (1-β) were also determined where possible. 

 

5.2.3.1 Reliability 

Segmentation of the LPMs was performed independently and sequentially for every participant. 

Segmentation was repeated on a random sub-sample (n = 4) after six months to assess long-term 

intra-observer reliability and measurement error. To avoid bias, the observer was blinded to the first 

measurement before the second measurement was completed. The observer was also blinded to the 

participant’s information. Intra-rater reliability of the NMV and MFI measurements were assessed by 

calculating the average measures intra-class correlation coefficient (ICC) using a two-way mixed 

absolute agreement model. Intra-rater reliability was excellent across measures of Volume, NMV and 

MFI. ICC [95% CI], root mean square difference (RMSD) and mean residual difference (%) values are 

presented in Table 5.3. Segmentation agreement maps for visualisation are presented in Appendix k, 

with reported values for the first and second measurements in Appendix l. 
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Table 5.3 Intra-rater reliability for the MRI analysis outcome measures presented as Intraclass 
Correlation Coefficient (ICC) with 95% Confidence Intervals [95% CI], Root Mean Squared Difference 
(RMSD) and percentage mean difference in residuals. 

Outcome 
Measure Muscle        ICC [95% CI] RMSD Mean Residual 

Difference (%) 

Volume (cm3) 

PS 1.000 [.996, 1.000] 0.45 0.3 
QL .997 [.966, 1.000] 1.49 2.6 
ES .999 [.986, 1.000] 1.58 1.0 
MF .995 [.943, 1.000] 0.91 1.5 

NMV (a.u.) 

PS .998 [.976, 1.000] 0.07 1.2 
QL .994 [.940, 1.000] 0.09 2.9 
ES .997 [.970, 1.000] 0.11 1.2 
MF .995 [.944, 1.000] 0.05 1.7 

MFI (%) 

PS .918 [.075, .995] 0.58 3.4 
QL .990 [.895, .999] 0.98 7.9 
ES .998 [.973, 1.000] 0.66 2.0 
MF .999 [.978, 1.000] 0.74 1.7 

Vertebral Height (cm) .982 [.710, .999] 0.2 1.0 
LLA (°) .989 [.844, .999] 1.9 3.3 

PS = Psoas, QL = Quadratus lumborum, ES = Erector spinae, MF = Multifidus, NMV = Normalised 

Muscle Volume, MFI = Muscle-fat-infiltrate, LLA = Lumbar Lordotic Angle  
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 Results 

Descriptive statistics (mean ± SD) for each muscle outcome stratified by age group are presented in 

Table 5.4. MANOVA revealed statistically significant differences in NMV (F(4,19) = 5.07, p = .006; Wilks’ 

Λ = 0.48, ηp
2 = 0.52) and MFI (F(4,19) = 9.64, p < .001; Wilks’ Λ = 0.33, ηp

2 = 0.67) between age groups. 

 

Table 5.4 Means ± SD for muscle volume normalised to vertebral height (NMV) and mean 
intramuscular fat infiltration (MFI). 

 
NMV (a.u.)   MFI (%)  

Young Old Cohen’s 
d 

 Young Old Cohen’s 
d 

Psoas 6.40 ± 0.85 6.09 ± 0.78 0.38 
 

10.18 ± 1.77 13.04 ± 2.53** 1.31 

Quadratus 
lumborum 3.03 ± 0.51 2.23 ± 0.50*** 1.58 

 
9.46 ± 1.56 14.87 ± 3.56*** 1.97 

Erector 
spinae 10.13 ± 1.00 8.94 ± 1.65* 0.87 

 
13.48 ± 2.79 23.77 ± 5.56*** 2.34 

Multifidus 3.05 ± 0.50 3.38 ± 0.84 0.48 
 

18.53 ± 4.74 33.48 ± 6.63*** 2.59 

Significant difference with young group * p < .05, ** p < .01, *** p < .001 

 

 

5.3.1 Age-related Differences in Normalised Muscle Volume 

Follow-up ANOVA revealed a significant effect of age on NMV for the QL (F(1,22) = 15.98, p < .001, ηp
2 

= 0.421, 1-β = 0.968) and ES (F(1,22) = 4.77, p = .040, ηp
2 = 0.178, 1-β = 0.551) muscles (Figure 5.4). 

Compared to the YG, the OG had significantly lower NMV for the QL (2.2 ± 0.5 vs 3.0 ± 0.5 a.u.) and ES 

(8.9 ± 1.7 vs 10.1 ± 1.0 a.u.). Differences in NMV between groups were not significant for the PS and 

MF muscles. The greatest difference between groups was observed in the QL, where the YG exhibited 

a 36.47% greater NMV than the OG.  
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Figure 5.4 Paravertebral muscle volume (L3 superior endplate - L4 superior endplate) normalised to 
L1-L5 vertebral height (mean ± SEM). * p < .05, ** p < .01, *** p < .001 

 

 

5.3.2 Age-related Differences in Intramuscular Fat Infiltration 

There was a significant effect of age on fat infiltration for all muscle groups: PS (F(1,22) = 10.30, p = 

.004, ηp
2 = 0.318, 1-β = 0.864); QL (F(1,22) = 23.10, p < .001, ηp

2 = 0.512, 1-β = 0.996); ES (F(1,22) = 

32.73, p < .001, ηp
2 = 0.598, 1-β = 1.0); MF (F(1,22) = 40.43, p < .001, ηp

2 = 0.648, 1-β = 1.0) (Figure 

5.5). The greatest mean difference in MFI was observed in the MF, where MFI was significantly greater 

in the OG compared to the YG (33.48 ± 6.63 % vs 18. 53 ± 4.74 %). The OG also exhibited significantly 

greater fat infiltration in the PS (13.04 ± 2.53 % VS 10.18 ± 1.77 %), QL (14.87 ± 3.56 % vs 9.46 ± 1.56 

%) and ES (23.77 ± 5.56 % vs 13.48 ± 2.79 %). 
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Figure 5.5 Paravertebral muscle mean fat infiltration (mean ± SEM).  ** p < .01, *** p < .001 

 

5.3.3 Moderating Effect of Physical Activity 

VPA was not significantly related to NMV (p = .44) or MFI (p = .94), when included as a covariate in 

statistical models (MANCOVA). The effect of age on MFI for all muscles remained significant after 

controlling for VPA. However, whilst a significant main effect of age on NMV for the QL remained after 

controlling for VPA, age did not have a significant effect on NMV for the ES after controlling for VPA 

(p > .05). Adjusted values indicated that ES NMV remained lower in the OG (9.0 ± 1.5 a.u.) compared 

to the YG (10.0 ± 1.5 a.u.). 

 

5.3.4 Lumbar Lordotic Angle 

The OG (36.9 ± 10.6°) had a significantly greater LLA than the YG (26.6 ± 5.2°), t(22) = 3.02, p = .006; 

Cohen’s d = 1.23. Of the morphological features measured across all muscles, only MF NMV was 

significantly correlated with LLA, r(22) = 0.434, p = .034. 
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5.3.5 Exploration of Influential Variables 

Of the variables included in the stepwise linear regression, only non-dominant handgrip strength was 

found to be a significant predictor of total NMV, F(1,22) = 10.93, p = .003, R2 = 0.332. Predicted total 

NMV was equal to 13.511 + 0.205*(non-dominant handgrip strength). Age was the only significant 

predictor of mean MFI, F(1,22) = 38.27, p < .001, R2 = 0.635. Predicted mean MFI across all LPMs was 

equal to 12.922 + 8.370*(age group), where age group was coded as 0 = YG, 1 = OG. Mean MFI in the 

OG was 8.4 % greater than the YG. 

 

 

 Discussion 

Ageing skeletal muscle is known to undergo adaptive reductive remodelling (Rogers and Evans, 1993; 

Roubenoff and Hughes, 2000; Kalichman, Carmeli and Been, 2017), characterised by muscle atrophy 

and fat infiltration (Marcus et al., 2010; Addison et al., 2014; Miljkovic et al., 2015; McGregor, 

Cameron-Smith and Poppitt, 2014; Frontera et al., 2000; Mitchell et al., 2012; Narici and Maffulli, 

2010; Delmonico et al., 2009). The extent of these morphological alterations in the lumbar 

musculature is not fully understood, especially in healthy populations. Therefore, this study aimed to 

investigate age-related differences in LPM morphology in healthy younger versus older men. The main 

finding of this study was that the OG exhibited increased fat infiltration across the lumbar musculature 

whilst muscle atrophy was only found in the QL and ES muscles. These findings suggest that 

morphological changes in muscle fat content, rather than size, are a better indicator of age-related 

degeneration in the lumbar musculature.  

Type I fibres are susceptible to fat infiltration with advancing age (Gueugneau et al., 2015; Choi et al., 

2016; St-Jean-Pelletier et al., 2017), whilst type II fibres are more vulnerable to atrophic changes 

(Gueugneau et al., 2015; Novotny, Warren and Hamrick, 2015; Lexell, Taylor and Sjöström, 1988). 

Since the LPMs are predominantly composed of slow-twitch fibres (Ng et al., 1998; Mannion et al., 

1997; Parkkola et al., 1993; Kimura, 2002; Sirca and Kostevc, 1985), it is unsurprising that changes in 

muscle fat content were more apparent than those in muscle volume. Other MRI studies have 

observed similar results, reporting greater fat infiltration with ageing than atrophy in the LPMs 

(Crawford et al., 2016a; Valentin, Licka and Elliott, 2015; Dahlqvist et al., 2017). A longitudinal study 

showed that muscle size decreased and fat infiltration increased with ageing over 15 years (Fortin et 

al., 2014), although the effect of age itself had a surprisingly small effect on the degree of change in 

fat infiltration. Whilst the current findings are supported by other studies assessing age-related 

degeneration of the muscles in the lumbar spine (Crawford et al., 2016a; Valentin, Licka and Elliott, 
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2015; Dahlqvist et al., 2017; Bayat et al., 2019), this study extends the concept of spinal sarcopenia 

(Kuo et al., 2020; Kim et al., 2019) by presenting volumetric and fat infiltration data for all of the main 

LPMs in relation to healthy ageing. This new knowledge will help in designing effective exercise 

training programmes that target the LPMs. 

 

5.4.1 Fat Infiltration of the Lumbar Musculature  

5.4.1.1 Psoas Muscle Fat Infiltration  

The current results show that PS MFI is greater in healthy older than younger males, although support 

from the literature is equivocal. Whilst some studies show that fat infiltration increases in the PS with 

advancing age (Kita et al., 2013; Dahlqvist et al., 2017; Hedermann et al., 2018), others have shown 

the PS is resistant to age-related fat infiltration (Lee et al., 2017; Valentin, Licka and Elliott, 2015). 

Valentin and colleagues' (2015) sample was composed of healthy adults who were demographically 

similar to the current study’s sample. A similar approach was also implemented to quantify fat 

infiltration. However, estimations in PS MFI of 37.0 ± 5.2 % in the older male group and 34.6 ± 6.4 % 

in the younger male group were considerably higher. The use of T1-weighted images may have caused 

disparity as pixel intensity represents different tissues compared with T2-weighted images (Bloem et 

al., 2018). Lee et al. (2017) also reported no ageing effects on PS muscle quality. Again, sample 

characteristics were comparable to the current study’s except for ethnicity. It has been demonstrated 

that the rate of change to muscle fat content in the lumbar differs between Asian and Caucasian 

populations (Crawford, Elliott and Volken, 2017). Therefore, differences with Lee et al. (2017) may be 

due to ethnicity. 

 

5.4.1.2 Quadratus Lumborum Fat Infiltration  

This study showed that QL MFI increases in older age in healthy men. In support of this finding, 

Johannesdottir et al. (2018) and Lorbergs et al. (2019) observed moderate to strong effects of ageing 

on QL muscle density in large population-based cohorts. However, conflicting results have been 

reported (Kim, H. et al., 2013; Zhang et al., 2019; Gibbons et al., 1997; Sions et al., 2017b). Indeed, 

Anderson et al. (2013) suggested that the effect of ageing on muscle quality was significantly less in 

the QL compared to the average effect across muscles in the thoracic and lumbar spine, indicative of 

less fat accumulation with age. Whilst the studies supporting the current findings use CT, most of the 

aforementioned studies in opposition use MRI (Gibbons et al., 1997; Sions et al., 2017b; Kim, H. et al., 

2013). Disparities may be due to the choice of MRI sequence. T2-weighted imaging is more likely to 

overestimate fatty muscle degeneration due to fat as well as water and high glycogen content 
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appearing hyperintense (Lollert et al., 2018; Bloem et al., 2018). However, Sions et al. (2017b) stated 

that intramuscular fat may comprise up to 54 % of QL CSA, compared to 14.9 ± 3.6 % in the current 

study. This discrepancy may be explained by the reference region of fat. A less intense extramuscular 

fat ROI was used by Sions et al. (2017b); the current study used a more intense subcutaneous fat ROI. 

Therefore, the relatively smaller difference in signal intensity between the fat reference and muscle 

ROI in Sions and colleagues' (2017b) study may have inflated estimations of fat infiltration in the QL 

muscle. Conflicting results are therefore likely due to technical differences; a factor that increases 

between-study heterogeneity as shown in Chapter 4 and precludes conclusions from being drawn. 

 

5.4.1.3 Paraspinal Fat Infiltration  

The OG exhibited an increase in ES and MF MFI compared to the YG. This is consistent with the 

literature (Lorbergs et al., 2019; Johannesdottir et al., 2018; Crawford et al., 2016a; Shahidi et al., 

2017b; Sasaki et al., 2017; Kalichman et al., 2010; Dahlqvist et al., 2017; Hedermann et al., 2018; Lee 

et al., 2017; Fortin et al., 2014), however, caution must be taken when comparing findings. Some 

studies have combined the MF and ES to define paraspinal muscle ROI (Dahlqvist et al., 2017; 

Hedermann et al., 2018), which may lead to overestimations in fat infiltration. An increase in non-

contractile tissue between muscles is seen with advancing age (Addison et al., 2014). It is therefore 

likely that the inclusion of age-related increases in non-contractile tissue between the MF and ES 

results in greater estimates of paraspinal fat infiltration. Dahlqvist et al. (2017) and Hedermann et al. 

(2018) indicated that fat fraction within the paraspinals is approximately 30 to 35 % at the same age 

as the mean of the OG in the current study. This is comparable to the results for MF MFI (33.5 ± 6.6 

%) but greater than MFI for the ES (23.8 ± 5.6 %), substantiating the assertion that overestimations 

are likely to occur when evaluating the ES and MF as a whole. Regardless, age explained a similar 

amount of variance in paraspinal muscle fat fraction (R2 = 46 – 56 %) (Dahlqvist et al., 2017; 

Hedermann et al., 2018) as it did with MF and ES MFI in the current study (ηp
2 = 60 and 65 %, 

respectively); support that these muscles undergo similar morphological changes over time (Fortin et 

al., 2014). 

 

5.4.1.4 Muscle-Specific Fat Infiltration 

Whilst the effect of age on MFI was different for each muscle, significantly greater fat infiltration was 

observed across the lumbar musculature with age. Indeed, age accounted for a large proportion (63.5 

%) of variation in mean MFI in the LPMs. This finding suggests that myosteatosis has a global effect on 

skeletal muscle in the lumbar spine. This reflects the effects of sarcopenia which are thought to be 
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systemic, making it difficult to explain localised changes in fat infiltration. However, efforts were made 

to explore muscle-specific differences in MFI in the lumbar spine and this should be considered the 

novel contribution of this chapter to the literature.  

The greatest change in MFI was observed in the MF followed by the ES, whilst the PS exhibited the 

smallest decline. Muscle fibre-type distribution could be responsible for muscle-specific differences. 

Whilst the PS and MF/ES muscles are typically slow twitch phenotypes, there is a greater proportion 

of type I fibres in the MF/ES than the PS (Ng et al., 1998; Mannion et al., 1997; Parkkola et al., 1993; 

Kimura, 2002; Sirca and Kostevc, 1985; Rantanen, Rissanen and Kalimo, 1994), with the PS comprising 

over 25% of fast type II isoforms (Regev et al., 2010). Therefore, the deeper intrinsic muscles such as 

the MF and ES are likely to be more prone to fatty degeneration (Gueugneau et al., 2015; Choi et al., 

2016). Muscle-specific denervation may also explain observed differences. The MF and ES are 

innervated by the dorsal rami of the spinal nerve (Kramer et al., 2001), while the ventral ramus 

innervates the PS (Mahan et al., 2017). Ageing is associated with degeneration of structures in the 

spine, such as nerves becoming compressed or impinged due to degenerative discs and vertebrae 

shifting (Benoist, 2003). Similar to wasting of the MF caused by Lumbar Dorsal Ramus Syndrome, this 

could lead to degeneration of structures innervated by the dorsal ramus nerve (e.g. MF and ES) (Kader, 

Wardlaw and Smith, 2000). However, there is insufficient evidence to suggest that dorsal rami are 

more damaged with ageing than ventral rami. Further research is needed to confirm the age-related 

effects on spinal nerve branches that innervate the different muscles in the lumbar spine. 

 

5.4.2 Age-Related Differences in Muscle Volume 

5.4.2.1 Quadratus Lumborum Atrophy 

The QL exhibited the greatest age-related atrophy in the current study. Few studies have directly 

investigated the effect of ageing on QL muscle size (Sions et al., 2017b; Aboufazeli et al., 2018; 

Johannesdottir et al., 2018), however, these studies all reported atrophy of the QL muscle with ageing. 

The rate of atrophy in the QL may be as great as 9 % per decade in males; greater than any other 

muscle in the lumbar spine (Johannesdottir et al., 2018). Whilst this supports the current results, 

comparison with Johannesdottir et al. (2018) may be confounded by methodological differences such 

as imaging modality and muscle size measures. Despite disparities, conversion amongst effect sizes 

revealed that ageing had an almost identical effect on the change in QL muscle size in Johannesdottir 

et al's (2018) and the current study. Whilst more studies are needed to substantiate the magnitude of 

the ageing effect on QL muscle size, it appears that this muscle is vulnerable to age-related atrophy. 
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However, the mechanism for its degeneration is ambiguous. This is reflected in the lack of consensus 

regarding its action on the lumbar spine.  

A plausible mechanism concerns hypertrophy of the QL in response to frontal plane segmental 

instability during dynamic movements (Ranson et al., 2008; de Visser et al., 2007). Whilst high impact 

movements, such as fast bowling in de Visser et al’s (2007) and Ranson et al’s (2008) studies, are not 

applicable to older individuals the same principles can be applied to typical activities performed in 

older adult populations, such as walking (Walsh et al., 2001). Older adults typically adopt a more 

conservative gait pattern to reduce trunk accelerations and maintain balance (Woollacott and Tang, 

1997; Kavanagh, Barrett and Morrison, 2004). Therefore, it is likely a reduced demand on lateral 

stabilisation of the trunk in older age may lead to a detraining effect and subsequently disuse atrophy 

(Ikezoe et al., 2012). The effect of age on trunk biomechanics during walking gait, and the moderating 

effect of LPM morphology, is explored in Chapter 7. 

 

5.4.2.2 Loss of Erector Spine Muscle Volume 

The OG exhibited a significantly lower NMV for the ES. Compared to 41% for the QL, age accounted 

for only 17% of the variance in ES atrophy, suggesting that factors other than age play an important 

role in mediating the loss of ES muscle size. The low coefficient of determination for age is reflected 

in the literature as a number of researchers have observed negligible age-related decrements in ES 

muscle size (Valentin, Licka and Elliott, 2015; Crawford et al., 2016a; Hiepe et al., 2015). Age-related 

declines may be due to a combination of disuse and denervation atrophy in the ES. Skeletal muscle 

has been shown to undergo adaptive reductive remodelling in response to both physical inactivity 

(Paddon-Jones et al., 2006; Fortney, Schneider and Greenleaf, 2011) and ageing (Rogers and Evans, 

1993; Roubenoff and Hughes, 2000; Kalichman, Carmeli and Been, 2017). The effect of muscle disuse 

atrophy in older adults is likely exacerbated by their inter-relationship (Wall, Dirks and Van Loon, 

2013). According to Ikezoe et al. (2015), mechanical unloading preferentially affects the antigravity 

muscles. Given that the ES muscles are the primary antigravity muscles of the spine and are 

predominantly composed of type I muscle fibres (Ng et al., 1998; Mannion et al., 1997; Parkkola et al., 

1993; Kimura, 2002; Sirca and Kostevc, 1985), which are susceptible to inactivity atrophy (Wang and 

Pessin, 2013), less engagement with VPA is a likely mechanism for ES muscle atrophy (Kalimo et al., 

1989). 

 



CHAPTER 5 
 

94 | P a g e  
 

5.4.2.3 Preservation of Psoas and Multifidus Muscle Volume 

Age-related atrophy of the PS and MF was not significant. Interestingly, MF NMV was larger in the OG. 

Change in LLA with age may explain why the MF is spared from atrophic decline. The NMV of the MF 

was significantly and moderately associated with LLA. Other studies have shown that lumbar MF 

muscle volume is moderately to strongly correlated with sagittal curvature of the lumbar spine 

(Meakin et al., 2013; Menezes-Reis et al., 2018), whilst the composition and volume of other muscles 

in the lumbar spine are not (Menezes-Reis et al., 2018). According to previous mathematical models, 

forces applied by the LPMs should be greater in spines with increased lumbar lordosis (Meakin and 

Aspden, 2012). Larger muscle forces are required to provide biomechanical stability in spines with 

greater lumbar curvature (Meakin and Aspden, 2012). Therefore, the significantly greater LLA in the 

OG may provide a training effect for the MF, whereby the MF plays a role in generating follower loads 

(Patwardhan et al., 1999) (i.e. resultant forces that travel tangentially to the spine’s sagittal curvature 

to provide lumbar spine stability) (Aspden, 1989). It should be noted that in contrast to this study, 

others have observed reductions in LLA with ageing (Takeda et al., 2009; Hammerberg and Wood, 

2003) although the mechanism for this may concern age-related degeneration of spinal features 

(Aylott et al., 2012; Takeda et al., 2009) and not the musculature. 

Methodological decisions may also explain why MF NMV was greater in the OG. It is likely that 

inclusion of intramuscular fat within the ROI masked MF atrophy (Elliott et al., 2008). Furthermore, 

exclusion of adipose tissue extraneous to the muscle border may explain why atrophy was observed 

in the ES but not the MF. Fatty regions were more visible under the posterior thoracolumbar fascia 

lateral to the MF than directly under the MF (Figure 5.6). The propensity for fat to accumulate in this 

region means that the ES is likely to exhibit a loss in muscle size with ageing compared to the MF, 

when this region is excluded from the measurement. 
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Figure 5.6 Axial MRI images at the superior endplate L4 of a younger (a) and older (b) participant. The arrows 
and outlined areas identify the region of fatty tissue under the fascial plane and between the longissimus 
thoracis (LT) and iliocostalis lumborum (IL).  
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Based on the current results, the PS does not appear to atrophy with ageing in healthy men. Previous 

studies are in agreement (Crawford et al., 2016a; Ikezoe et al., 2015; Hedermann et al., 2018) although 

not unequivocally so (Mäki et al., 2019). The relative preservation of PS NMV may be due to changes 

in motor control strategies in older age. Older adults exhibit a distal-to-proximal redistribution of joint 

power during gait (Cofré et al., 2011; DeVita and Hortobagyi, 2000), demonstrated by greater reliance 

on hip flexor activity to propel the leg into swing (Cofré et al., 2011). As the PS functions as a primary 

flexor of the hip joint (Penning, 2000; Juker, McGill and Kropf, 1998; Bogduk, Pearcy and Hadfield, 

1992; Santaguida and McGill, 1995; Yoshio et al., 2002), increased reliance on the hip flexor muscles 

in older age may provide sufficient stimulus to attenuate atrophy of the PS. 

 

5.4.2.4 Morphological Changes in the Paravertebral Muscles 

Of the degenerative features investigated, fat infiltration appears to have a global effect on the LPMs 

whereas atrophy appears to be muscle-specific. Mechanisms for this remain undetermined, although 

the suggestions above provide plausible explanations. Briefly, increase in intramuscular fat tissue is 

likely due to slow-twitch fibre distribution in the postural muscles and propensity for these fibres to 

accumulate fatty deposits with ageing. Muscle-specific atrophy likely concerns the specific functions 

of the lumbar muscles and their exposure to reduced mechanical loading resulting from a shift in the 

locus of function in motor performance with ageing (DeVita and Hortobagyi, 2000). Furthermore, 

accretion of intramuscular fat may be an early change in muscle as it ages, which may explain why fat 

infiltration was the more apparent degenerative feature in the lumbar musculature. 

 

5.4.3 Influence of Physical Activity on Muscle Degeneration 

Controlling for VPA did not influence age-related differences in MFI. VPA also had no effect on age-

related atrophy for the MF, PS and QL. However, VPA moderated age-related differences in ES muscle 

atrophy. This suggests that VPA may have a positive effect on attenuating ES muscle atrophy in older 

age, although this finding must be interpreted with caution as VPA was not significant as a covariate. 

Skeletal muscle tissue, like osseous tissue, is mechanoresponsive (Trumbull, Subramanian and 

Yildirim-Ayan, 2016). Yet PA seemingly has little or no effect on the size or fat content of the LPMs. In 

support of the current findings, it has been consistently demonstrated that PA does not relate to 

changes in LPM morphology with ageing (Dahlqvist et al., 2017; Lee et al., 2017; Anderson et al., 2013). 

Indeed, increases in PA levels over time has been shown to be ineffective at attenuating MF and ES 

muscle atrophy (Lee et al., 2017). This supports the idea that functional changes to the muscle in older 

age may be responsible for muscle degeneration rather than the mechanical loads exerted on them. 
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5.4.4 Handgrip Strength as a Predictor of Muscle Atrophy 

Handgrip strength is well-established as an indicator of muscle status, particularly in older adult 

populations (Bohannon, 2015). However, its ability as a predictor of LPM atrophy has not been 

previously investigated to the author’s knowledge. In this study, variance in non-dominant handgrip 

strength explained 33.2 % of the variance in the loss of total paravertebral NMV, which suggests that 

handgrip strength is a good indicator of muscle atrophy in the lumbar spine. However, mechanisms 

directly linking atrophy of the LPMs and forearm muscle strength are unlikely to exist. A more plausible 

explanation is that atrophy of the LPMs is simply representative of the systemic decline in muscle 

status throughout the body. 

 

5.4.5 Clinical and Practical Applications 

Being able to identify early signs of age-related muscle degeneration could assist clinical decision 

making with regards to the timely implementation of targeted intervention strategies. The current 

results indicate that T2-weighted MRI analysis is able to identify age-related differences in fat 

infiltration and atrophy of the LPMs. Whilst the Dixon sequence has been suggested as a superior 

method of measuring fat infiltration (Ma et al., 2004), this study showed that a routinely used 

sequence in clinical examinations (i.e. T2-weighted) is able to distinguish the age-effect in the LPMs. 

However, it should be noted that the approach used in this study (i.e. volumetric measures) may not 

be applicable in clinical settings due to the time cost. Manual segmentation is time consuming and 

requires a high level of expertise. Until automatic processes can be used to accurately and precisely 

segment the individual muscles that make up the lumbar musculature, measurements will likely 

remain as CSAs taken at single representative slices and aggregated values which masks the muscle-

specific nature of age-related degeneration as shown in this chapter. These findings should support 

the use of volumetric measures in current research whilst future research should look to establish 

reliable auto-segmentation procedures to facilitate clinical use of MRI analysis in the lumbar spine 

musculature. 

 

5.4.6 Limitations 

The current study was limited by its cross-sectional design, although the wide age range and close 

matching of the groups mitigated this somewhat. Longitudinal studies are needed to infer causality 

between ageing and degeneration of the lumbar musculature. Another limitation concerned the 



CHAPTER 5 
 

98 | P a g e  
 

measure of fat infiltration. Fat infiltration derived from T2-weighted images, whilst a conventional and 

useful measure (Kim et al., 2019; Ploumis et al., 2011; Heo et al., 2019; Gibbons et al., 1997; Fortin, 

Yuan and Battié, 2013), has known limitations. T2-weighted imaging risks overestimating fatty muscle 

degeneration because water and other tissues in addition to fat appear hyperintense. The Dixon MRI 

technique has demonstrated its superiority over T1- and T2- weighted imaging techniques in terms of 

fat fraction quantification (Ma et al., 2004). In addition to providing objective measurement of fat 

infiltration on a continuous and observer-independent scale, it is able to detect small changes in fat 

infiltration not achievable with T1- and T2-weighted imaging (Ma, 2008). In the current study, fat 

fraction quantification using a Dixon MRI sequence was not possible due to the poor quality of the 

resulting images (Figure 5.7). A systematic error was evident within each individual fat fraction image 

(increase in noise posteriorly-to-anteriorly), whilst the error between participant scans was random 

making it impossible to reliably remove noise. The results from the Dixon fat fraction images suggested 

that the PS had the highest intramuscular fat content, which is in direct contrast to numerous other 

studies. Confidence in the current approach is high, given that the findings from the T2-weighted 

images are in agreement with the literature (Lee et al., 2017; Lorbergs et al., 2019; Johannesdottir et 

al., 2018; Anderson et al., 2013; Hedermann et al., 2018; Sions et al., 2017b) and similar in value to 

comparable populations (Dahlqvist et al., 2017; Crawford et al., 2016a). However, it should be noted 

that fat composition of the LPMs in the literature has a wide range of 2 % to 45 % in younger adults 

(Pezolato et al., 2012; Valentin, Licka and Elliott, 2015). Discrepant findings and variance between 

studies is the result of methodological differences (see Chapter 4). Therefore, consensus is needed for 

a standardised measurement of MRI-derived muscle morphology in the lumbar spine. 
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Figure 5.7 Comparison between a) Dixon fat fraction image and b) T2-weighted image. The fat 
fraction image shows noise increasing posteriorly-to-anteriorly 

 

 Conclusion 

For the first time, this study provides age-related differences in volumetric and fat infiltration data for 

all the main LPMs. These findings will further understanding of age-related degeneration in the lumbar 

musculature and extend the concept of spinal sarcopenia, which is important in designing effective 

interventions that target the lumbar musculature as well as establishing normative features of ageing 

muscle morphology in this region. Furthermore, important relationships were revealed with 

exploratory variables (e.g. handgrip strength) that may enable early diagnosis of spinal sarcopenia. 

Such information would be valuable in clinical settings where handgrip strength tests can be easily 

performed and potentially allow interventions to be administered earlier. In this study older age had 

a detrimental effect on LPM morphology, although engaging in PA did not appear to attenuate muscle 

degeneration. The current findings indicate that age-related fat infiltration has a global effect across 

the lumbar musculature, whereas atrophic changes appear to be muscle-specific. The MF was most 

susceptible to compositional changes with age, whilst the QL exhibited the greatest reductions in 

muscle volume. Therefore, exercise interventions designed to attenuate the loss of muscle size and 

accumulation of fat in the lumbar spine may need to target specific muscles to maximise effectiveness. 

The design of effective muscle-specific exercise programs could potentially preserve mobility and 

reduce falls and injury risk in older adult populations. Whilst it was implied that muscle function is 

impaired by the accumulation of fatty deposits, changes in LPM morphology should be investigated 

with respect to muscle function in older age, specifically dynamic function under controlled 

conditions. 

Posterior Posterior 

Anterior Anterior 
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Table 5.5 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline. 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 

Aims • To investigate age-related differences in LPM morphology  
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Chapter 5 Age-related 
Differences in Lumbar 
Paravertebral Muscle 
Morphology in Healthy 
Younger versus Older Men 

• Studies investigating muscle 
degeneration with ageing have typically 
focused on the appendicular muscles 

• There is increasing recognition for the 
importance of the lumbar paravertebral 
muscles in maintaining health and 
mobility in older age 

• Few studies have characterised 
features of age-related degeneration in 
the lumbar musculature 

• Few studies have provided volumetric 
information on all of the paravertebral 
muscles using high-resolution imaging 
modalities 

• A secondary aim was to investigate the age-response on 
fat infiltration and volume of the different lumbar 
muscles (i.e. MF, ES, QL and PS) 

• An additional aim was to explore other predictors of 
lumbar paravertebral muscle degeneration 

Key findings • Older age negatively affected all paravertebral muscles, 
although some showed greater degenerative changes 
than others 

• Age-related fat infiltration has a global effect across the 
lumbar musculature, whereas atrophic changes appear to 
be muscle-specific  

• Only the QL and ES showed significant age-related 
declines in muscle volume 

• All muscles showed age-related declines in muscle quality 
(i.e. increase in intramuscular adipose tissue) 

• The MF was most susceptible to compositional changes 
with age, whilst the QL was most vulnerable to reductions 
in muscle volume 

• Physical activity did not influence age-related differences 
in muscle degeneration in the lumbar spine 

• Non-dominant handgrip strength was a predictor of 
muscle atrophy in the lumbar musculature 
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Implications • The QL and ES appear to be most affected in older age 
since they exhibited declines in size and quality 

• When investigating the effects of ageing on lumbar 
muscle function, macroscopic changes in the 
paravertebral muscles should be considered 

• Structural changes, resulting in a loss of contractile tissue, 
may reduce muscle function in the lumbar spine 

• Convenient and easily administered measures such as 
handgrip strength may be able to predict muscle atrophy 
in the lumbar spine 

Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

 Aim  

Key findings  

Implications  

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  
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Chapter 6 Age-related Differences in Concentric and Eccentric Isokinetic 

Trunk Strength in Healthy Older versus Younger Men 

The work from this chapter has been accepted for publication in a peer-reviewed journal.  

Dallaway, A., Hattersley, J., Tallis, J., Renshaw, D., Griffen, C., and Duncan, M. (in press) ‘Age-related 

changes in concentric and eccentric isokinetic peak torque of the trunk muscles in healthy older versus 

younger men’. Journal of Aging and Physical Activity 

Chapter Abstract 

Background The maximal capacity of the trunk muscles to generate torque is important for postural 

support and aiding in the performance of daily activities. It is well-known that appendicular muscle 

strength decreases with ageing, which has detrimental consequences on physical function. However, 

strength loss in the trunk musculature as a function of normal ageing is not fully understood. 

Therefore, this study investigated age-related differences in dynamic trunk muscle function in healthy 

men and the moderating effect of PA. 

Methods Twelve healthy older (67.3 ± 6.0 years) and 12 healthy younger men (24.7 ± 3.1 years) 

performed isokinetic trunk flexion and extension tests across a range of angular velocities (15°·s-1 - 

180°·s-1) and contractile modes (concentric and eccentric). Peak isokinetic torque normalised to body 

mass was obtained for each condition.  

Results For concentric trunk extension, mixed-effects ANCOVA revealed a significant interaction 

between angular velocity x age group (p = .026) controlling for VPA. Follow-up univariate ANCOVA 

revealed that the YG produced significantly greater peak torque for each concentric extension 

condition. Both groups exhibited a general decline in peak torque with increasing angular velocity, 

although strength loss was greater in the OG with increasing angular velocity. No significant 

interactions or main effects were observed for any other condition. 

Conclusions The normal loss of trunk muscle strength in older age is muscle and contractile mode 

specific. Concentric strength of the trunk extensor muscles decreases in older age and with increasing 

angular velocity. Loss of concentric flexor strength is somewhat attenuated, whilst eccentric strength 

of the trunk muscles is preserved in older age. These findings should contribute to the early 

identification of trunk strength deficits, which will assist public health and clinical decision making with 

regards to timely implementation of targeted intervention strategies. 

Key words: muscle strength, ageing, sarcopenia, abdominal muscles, paravertebral muscles
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Table 6.1 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 
Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

• Studies investigating muscle degeneration with ageing 
have typically focused on the appendicular muscles 

• There is increasing recognition for the importance of 
the lumbar paravertebral muscles in maintaining 
health and mobility in older age 

Aims • To investigate age-related differences in LPM morphology  
• A secondary aim was to investigate the age-response on fat infiltration and 

volume of the different lumbar muscles (i.e. MF, ES, QL and PS) 
• An additional aim was to explore other predictors of lumbar paravertebral 

muscle degeneration 
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• Few studies have characterised features of age-related 
degeneration in the lumbar musculature 

• Few studies have provided volumetric information on 
all of the paravertebral muscles using high-resolution 
imaging modalities 

Key findings • Older age negatively affected all paravertebral muscles, although some showed 
greater degenerative changes than others 

• Age-related fat infiltration has a global effect across the lumbar musculature, 
whereas atrophic changes appear to be muscle-specific  

• Only the QL and ES showed significant age-related declines in muscle volume 
• All muscles showed age-related declines in muscle quality (i.e. increase in 

intramuscular adipose tissue) 
• The MF was most susceptible to compositional changes with age, whilst the QL 

was most vulnerable to reductions in muscle volume 
• Physical activity did not influence age-related differences in muscle 

degeneration in the lumbar spine 
• Non-dominant handgrip strength was a predictor of muscle atrophy in the 

lumbar musculature 
Implications • The QL and ES appear to be most affected in older age since they exhibited 

declines in size and quality 
• When investigating the effects of ageing on lumbar muscle function, 

macroscopic changes in the paravertebral muscles should be considered 
• Structural changes, resulting in a loss of contractile tissue, may reduce muscle 

function in the lumbar spine 
• Convenient and easily administered measures such as handgrip strength may 

be able to predict muscle atrophy in the lumbar spine 

Chapter 6 Age-related 
Differences in Concentric 
and Eccentric Isokinetic 
Trunk Strength in Healthy 
Older versus Younger Men 

• Dynamic trunk strength in older adults 
has not been fully explored 

• Studies have typically investigated age-
related strength loss using handgrip 
dynamometry or lower limb isokinetic 
dynamometry 

• Majority of studies have used clinical 
assessments which may not be 
appropriate to assess maximal trunk 
strength 

• No study has assessed eccentric trunk 
strength in older adults and contractile 
modes are typically limited 

• The findings from chapter 5 have also 
influenced the need for this study. 
Research investigating how muscle 

Aims • To investigate age-related differences in dynamic trunk 
strength 

• The secondary aim was to explore the moderating effect 
of muscle morphology degeneration on extensor muscle 
strength 

Key findings  

Implications  



CHAPTER 6 
 

106 | P a g e  
 

morphology degeneration in the 
lumbar spine impacts on trunk extensor 
strength is warranted 

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  

denotes links to previous chapters. Links to chapter 3 – 1) VPA was included as a potential covariate; 2) The moderating effects of body composition 
measures and handgrip strength were explored with respect to trunk strength loss. Links to chapter 5 – Whilst it was implied that muscle function 
was impaired by the accumulation of fatty deposits in chapter 5, changes in LPM morphology should be investigated with respect to dynamic 
muscle function in older age. Therefore, muscle morphology measures were included as potential moderators to assess whether trunk strength 
changes were associated with atrophy or fat infiltration of specific paravertebral muscles. 
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 Introduction 

Skeletal muscle atrophy is associated with muscle weakness, however, studies have shown that the 

rate of strength loss is disproportionately greater than muscle atrophy (von Haehling, Morley and 

Anker, 2010; Frontera et al., 1991; Goodpaster et al., 2006; Metter et al., 1999; Overend et al., 1992; 

Delmonico et al., 2009; Narici and Maffulli, 2010; Mitchell et al., 2012) and better in predicting adverse 

health outcomes (Schaap, Koster and Visser, 2013; Menant et al., 2017; Schaap et al., 2018). Indeed, 

low muscle strength is now the principal determinant for identifying sarcopenia (Cruz-Jentoft et al., 

2019). In the previous chapter it was shown that the LPMs undergo age-related atrophy and fat 

infiltration. To understand the implications of this, assessment of dynamic muscle function is needed. 

Studies investigating age-related declines in muscle function typically focus on the appendicular 

musculature (Young, Stokes and Crowe, 1985; Rogers and Evans, 1993; Faulkner, Brooks and Zerba, 

1991; Heath et al., 1981; Mitchell et al., 2012), despite growing evidence for the importance of trunk 

muscles in performing ADLs (Hicks et al., 2005a; Granacher et al., 2013; Shahtahmassebi et al., 2017; 

Higuchi et al., 2018; Hernandez, Goldberg and Alexander, 2010) and constituting an important factor 

for overall health (Zouita et al., 2018; Ebenbichler et al., 2001; Valentin, Licka and Elliott, 2015; 

Crawford et al., 2016c; Cho et al., 2014). 

The abdominal and LPMs are inextricably linked, controlling trunk movement and promoting 

mechanical stability in the lumbopelvic region (Barr, Griggs and Cadby, 2005; Gardner-Morse and 

Stokes, 1998; Cholewicki, Juluru and McGill, 1999). The importance of maintaining strength in the 

lumbar extensor muscles is highlighted by the large forces they generate. Due to a relatively small 

moment arm, the lumbar extensor muscles must produce a substantially larger force than the weight 

of the upper torso and ventral loads to counterbalance the external moment. In older adults, 

decreased neuromuscular control of the trunk muscles compromises their ability to stabilise the spine 

in response to perturbations in the environment, which increases susceptibility to injury (Mannion, 

Adams and Dolan, 2000; Hwang et al., 2008). A strength reserve is therefore needed to react to 

unpredictable occurrences such as falls, sudden loading of the spine and quick movements (Barr, 

Griggs and Cadby, 2005). A sudden need to regain spinal stability may also result in excessive muscle 

activity; a mechanism implicated in the genesis of LBP and injury (Cholewicki and McGill, 1996; 

Mannion, Adams and Dolan, 2000). Since older adults exhibit slower trunk movements during ADLs 

(McGill, Yingling and Peach, 1999), it is imperative that trunk strength is maintained for balance 

(Granacher et al., 2013; Suri et al., 2009) and to mitigate excessive muscle activity in response to 

instability (Anderson and Behm, 2005). Therefore, maximum strength of the trunk muscles is an 

important factor in older adults when dynamic stabilisation is required (Rantanen, Era and Heikkinen, 

1994). 
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The effect of ageing on isokinetic trunk strength has been seldom studied with only a few studies 

reporting on adults over 50 years of age (Lee et al., 2012; Hasue, Fujiwara and Kikuchi, 1980; Gomez 

et al., 1991; Langrana and Lee, 1984; Hulens et al., 2002; Danneskiold-Samsøe et al., 2009). Of these 

studies, the effect of age on trunk strength varies from insignificant to large and it is unclear whether 

the age-response is equivalent between the abdominal and paravertebral muscles. Confounding 

factors which are often overlooked, such as PA level, may also moderate the age-response (Rantanen, 

Era and Heikkinen, 1997). Furthermore, the lack of consensus regarding isokinetic parameters, such 

as ROM limits, angular velocity and contractile mode, precludes conclusions from being drawn on age-

related loss of trunk strength.  Most importantly, research on eccentric trunk strength with respect to 

ageing does not exist to the author’s knowledge, leaving a considerable gap in our understanding of 

dynamic muscle function in older age.  

 

6.1.1 Strength Measurement in the Trunk Muscles 

Trunk extensor performance has typically been assessed with clinical tests, which usually measure 

endurance rather than absolute strength (Demoulin et al., 2012). In a recent review, Prieske, 

Muehlbauer and Granacher (2016) suggested that applied trunk muscle strength tests lack external 

validity as they do not evaluate the maximal force producing capacity of the trunk muscles 

appropriately for dynamic activities. However, clinical assessments such as the Sorensen test (Biering-

Sorensen, 1984; Demoulin et al., 2006) are quick and easy to perform, do not require specific 

equipment and are inexpensive. This often makes clinical tests more feasible compared to 

dynamometric tests. Dynamometric testing machines are expensive and have a high operational 

complexity (Barbado et al., 2016; Shahtahmassebi et al., 2017) although they provide a more precise, 

accurate and specific assessment of trunk muscle function (Demoulin et al., 2012). Studies using 

dynamometric approaches to evaluate trunk strength have typically opted for isometric conditions 

(Granacher et al., 2014; Shahtahmassebi et al., 2017; Sasaki et al., 2018; Hernandez, Goldberg and 

Alexander, 2010; Kassebaum et al., 2016; Sinaki et al., 2001; Porto et al., 2020). Although isometric 

measures provide valid and reliable outcomes for peak torque of the trunk musculature (Roth et al., 

2017; De Blaiser et al., 2018), torque measured at a single standardised joint angle may not reflect 

muscle function across the functional ROM effectively (Rousanoglou and Boudolos, 2008). Given that 

torque production is joint angle dependent (Samuel and Rowe, 2009), measurement at one or a few 

discrete joint angles provides limited information about the force generating capacity of the muscles. 

Continuous measurement of joint torque elicits more detailed evaluation of a muscle group’s function 

under controlled movement conditions. Furthermore, assessing force generation whilst the muscle is 

shortening and lengthening is more indicative of dynamic muscle activity during ADLs. Indeed, 
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isokinetic dynamometry permits continuous measurement through a predetermined ROM. It is a valid 

(Mueller et al., 2012) and widely accepted tool for measuring trunk muscle strength (Newton et al., 

1993) and considered the gold-standard approach for dynamic muscle performance testing (Felicio et 

al., 2014; Dvir and Müller, 2019; Stark et al., 2011; Nugent, Snodgrass and Callister, 2015; Dvir, 2004). 

 

6.1.2 Age-related Strength Loss in the Trunk 

While several studies have assessed trunk muscle strength for sports performance (Barbado et al., 

2016; Williams and Singh, 1997; Iwai et al., 2008), injury risk identification (Lee et al., 1999; Yahia et 

al., 2010; Cho et al., 2014) and progress monitoring of rehabilitation programs (Bayramoǧlu et al., 

2001; Ganzit et al., 1998), few studies have investigated strength loss in the trunk muscles with healthy 

ageing. Of these studies (Lee et al., 2012; Hasue, Fujiwara and Kikuchi, 1980; Langrana and Lee, 1984; 

Hulens et al., 2002; Danneskiold-Samsøe et al., 2009; Bidwell, Thauvette and Townshend, 1993; Sasaki 

et al., 2018), sampling variance and disparate methodologies makes it difficult to compare findings 

with any degree of confidence. An interesting finding that was consistent amongst studies was that 

reductions in strength loss appear to be biphasic. Numerous researchers (Danneskiold-Samsøe et al., 

2009; Smith et al., 1985; Hause, Fujiwara and Kikuchi, 1980) have reported that trunk strength is 

largely maintained up till the 5th decade of life in men, which then declines specifically in the extensor 

muscles (Smith et al., 1985). Women also demonstrate a biphasic reduction in trunk muscle strength, 

with substantial declines in trunk extensor and flexor torque after the age of 60 years (Skrzek and 

Bolanowski, 2006).  

Although the relationship between ageing and trunk strength appears unequivocal, these findings 

provide a limited understanding and caution must be taken when inferring relationships due to 

between-study variance. One source of variance between studies concerns the different isokinetic 

machines that were used. Greenberger, Wilkowski and Belyea (1994) suggest that errors are likely 

when comparing results from different dynamometers, possibly due to moderate inter-machine 

reliability (Bandy and McLaughlin, 1993; Lund et al., 2005). Positioning of participants also differed 

between prone/supine, standing and seated, which may affect trunk strength outcomes due to 

differing contributions from pelvic girdle and lower limb muscles (Langrana and Lee, 1984). This is 

exacerbated by the lack of consensus regarding ROM. Studies used maximum ROM from full extension 

to flexion, while others assessed trunk strength from 20° extension to between 30°-60° flexion. 

Amongst all the parameters, the angular velocity used to measure trunk muscle strength varied 

considerably (6°s-1 to 180°s-1), although 30°s-1, 60°s-1 and 120°s-1 were most common. A wide range of 

angular velocities at a greater number of increments would yield a more comprehensive 
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understanding of trunk muscle function. Another potential source of error is gravity correction; a 

procedure that corrects for gravitational torque produced by the limb-lever system (Baltzopoulos, 

2008). Failing to correct for gravity has shown to produce up to 52% greater trunk extension peak 

torque (Hulens et al., 2002). Despite this procedure being particularly important when testing the 

trunk as its larger mass accounts for a substantial gravitational moment, few studies have 

implemented it (Danneskiold-Samsøe et al., 2009; Hulens et al., 2002). Comparisons may therefore be 

confounded by overestimated flexor torques and underestimated extensor torques of the trunk 

muscles. Finally, none of these studies (Lee et al., 2012; Hasue, Fujiwara and Kikuchi, 1980; Langrana 

and Lee, 1984; Hulens et al., 2002; Danneskiold-Samsøe et al., 2009; Bidwell, Thauvette and 

Townshend, 1993) indicated that peak torque was obtained during the stable isokinetic phase of the 

movement. Indeed, one study suggested that their results may be invalid due to inclusion of torque 

overshoot (Bidwell, Thauvette and Townshend, 1993). Perhaps the most obvious oversight in the 

literature does not concern methodological differences, but the fact that no study to date has explored 

the effect of age on eccentric muscle function in the trunk. This represents a considerable gap in the 

literature and severely limits our understanding of dynamic trunk muscle function in older age. 

Characteristics of the studies mentioned in this literature review are presented in Table 6.2. 
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Table 6.2 Characteristics of studies investigating age-related changes in isokinetic trunk muscle strength 

Study Study sample characteristics Isokinetic 
dynamometer Isokinetic test conditions Gravity 

correction ROM Findings 

Hasue, 
Fujiwara and 

Kikuchi 
(1980) 

(Hasue , Fujiwara and Kikuchi, 1 980 ) 

Healthy males (n = 50) and 
females (n = 50) age stratified 
into decades ranging from 2nd 
to 6th decade of life 

Cybex 

Concentric flexion in a 
supine position and 
concentric extension in a 
prone position. Tests were 
performed at 12°.s-1 for 
flexion and at 6°.s-1 for 
extension 

  

Ageing was associated with declines in trunk 
strength. r = -0.58 for flexion and r = -0.53 
for extension trunk strength in males. r = -
0.57 for flexion and r = -0.55 for extension 
trunk strength in females. Decline in 
strength was greater after the age of 40 
years. 

Langrana 
and Lee 
(1984) 

(Langra na and Lee, 19 84) 

Males employees (n = 140), 
aged 20-65 years, working at a 
heavy manufacturing plant. n = 
19 with a previous history of 
back pain problems were 
excluded from the analyses 

Cybex II 

Concentric flexion and 
extension in a seated 
position. Tests were 
performed at 30°.s-1 

 

~ -20° 
(extension) 
to   ~ +40° 
(flexion) 

Ageing was associated with loss of trunk 
strength. Flexion torque decreased from 
approximately 170 Nm to 70 Nm, whilst 
extension torque decreased from 
approximately 230 Nm to 110 Nm. 

Smith et al. 
(1985) 

(Smith et al., 198 5) 

Sedentary and recreationally 
active male (n = 62) and female 
(n = 63) volunteers without 
neuromuscular disorders or 
back pain were stratified into 
age categories of 18-29 years, 
30-44 years and, > 45 years 

Cybex II 

Concentric flexion and 
extension in a standing 
position. Tests were 
performed at 30°.s-1, 60°.s-

1, 90°.s-1, 120°.s-1 and 
150°.s-1 (data not reported 
for 150°.s-1) 

 

~ 0° (neutral) 
to 

~ +50° 
(flexion) 

The extensor, but not flexor, muscles 
appeared slightly weaker with advancing 
age in men. There were no significant 
differences in flexor or extensor strength 
between the young and middle age groups. 
However, strength reduced after 45 years, 
specifically in the extensors of males. The 
same decrements were not seen in women. 

Gomez et al. 
(1991) 

(Gomez et al., 19 91) 

Males (n = 85) and females (n = 
83) without LBP or history of 
back surgery were stratified 
into age categories of < 30 
years, 30-39 years, 40-49 years 
and > 50 years 

Isostation B-
200 lumbar 

dynamometer 

Concentric extension and 
flexion in a standing 
position. Test velocity 
determined by 55% of peak 
isometric extension torque 

 

Maximal 
flexion and 
extension 

Strength was assessed through peak 
velocity against 55% of peak isometric 
extension torque. Peak flexion and 
extension velocity declined past the age of 
50 years for women and 40 years for men. 
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Bidwell, 
Thauvette 

and 
Townshend 

(1993) 
(Bidwell, T hauvette and T ownshend, 1993 ) 

Healthy male (n = 8) and 
female (n = 12) volunteers aged 
stratified into 6th and 7th 
decades of life 

Biodex with 
back station 
attachment 

Concentric flexion and 
extension in a seated 
position. Tests were 
performed at 60°.s-1, 
120°.s-1 and 180°.s-1 

 

Individually 
adjusted 

according to 
participant’s 

maximal 
flexion and 
extension 

Strength decreased with age for women but 
increased with age for men. Inferential 
statistics not used.  

Hulens et al. 
(2002) 

(Hule ns et al., 2002 ) 

Obese Caucasian women (n = 
241) aged 39 ± 12 years 

Cybex TEF 
unit 

Concentric flexion and 
extension in a standing 
position. Tests were 
performed at 60°.s-1 and 
120°.s-1 

Proportional 
mass of the 
trunk was 

used to 
calculate 

the gravity 
effect 
torque 
(GET) 

 

Significantly less trunk flexion and extension 
torque at both angular velocities in the older 
group (41-59 years) compared to the 
younger group (18-40 years). At 60°.s-1 low 
to moderate significant correlations were 
observed between ageing and trunk 
strength (r = -0.37 for extension and r = -0.16 
for flexion). 

Skrzek and 
Bolanowski 

(2006) 
(Skrzek and Bolanow ski, 2006 ) 

Women (n = 288) stratified into 
four age groups by decade 
ranging from 5th to 8th decade 
of life 

Biodex System 
3 Multi Joint 

Concentric flexion and 
extension in a seated 
position. Tests were 
performed at 90°.s-1 and 
120°.s-1 

 

-20° 
(extension) 

to +50° 
(flexion) 

Isokinetic extensor and flexor torque 
(normalised to body mass) significantly 
decreased with age. A substantial decline in 
trunk strength was observed after the age of 
60 years at both isokinetic velocities. 

Danneskiold-
Samsøe et 
al. (2009) 

(Danneskiold-Samsøe et al., 200 9) 

Randomly selected sample of 
healthy community-dwelling 
adults (n = 53 m : 121 f) 
stratified into age categories by 
decade ranging from 3rd to 8th 
decade of life 

Lido Active 

Concentric flexion and 
extension in a seated 
position. Tests were 
performed at 10°.s-1, 20°.s-

1 and 30°.s-1 

Standard 
gravity 

correction 
procedure 
for LIDO 

-20° 
(extension) 
to   ~ +30° 
(flexion) 

Isokinetic muscle strength decreased with 
age. For males, the decline in strength 
happened in two steps. A smaller decline 
was seen from 40–49 and an increased 
decline was seen from 50–59. Trunk 
strength in women declined from 40–49. 
Trunk extension torque decreased 
approximately 80-90 Nm, whilst flexion 
torque decreased about 40-60 Nm across all 
test conditions. 
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Lee et al. 
(2012) 

(Lee et al., 20 12) 

Patients (n = 7 m : 21 f) aged 48 
± 12 years with chronic low 
back pain 

Biodex 

Concentric flexion and 
extension in a seated 
position. Tests were 
performed at 60°.s-1 

 

Individually 
adjusted 

according to 
the patient’s 

maximal 
flexion and 
extension 

Age was significantly associated with trunk 
flexion strength loss in females only (β = -
1.32, p = .01). 

Note:   denotes not reported
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6.1.3 Aims, Objectives and Hypotheses 

The loss of strength in older age is detrimental to physical function and is associated with adverse 

health outcomes, however, normal age-related decline in trunk strength is not fully understood. This 

study aimed to investigate age-related differences in trunk muscle strength in healthy men. The 

secondary aim was to explore the moderating effect of muscle degeneration of the LPMs on trunk 

extensor strength. In order to accomplish the aims, specific objectives for this study were to: 

 

Table 6.3 Objectives and hypotheses for chapter 6 

Objective Null Hypothesis 

1 
Identify appropriate parameters and 
develop a comprehensive protocol to 
assess dynamic trunk strength 

n/a 

2 
Measure concentric and eccentric 
torque of the trunk extensor and flexor 
muscles in healthy older and younger 
males using isokinetic dynamometry 

n/a 

3 
Analyse data to allow identification of 
peak torque values within the isokinetic 
phase of the movement 

n/a 

4 
Compare peak torque values between 
the YG and OG using appropriate 
statistical tests 

a) Peak concentric trunk strength will not be 
significantly lower in the OG compared to the 
YG  
b) Peak eccentric trunk strength will not be 
significantly lower in the OG compared to the 
YG 

5 Investigate the effect of angular 
velocity on isokinetic trunk strength 

Angular velocity will not have a significant effect 
on isokinetic trunk strength 

6 
Explore the moderating effect of 
muscle morphology measures by 
including them as potential covariates 
in statistical models 

a) Degeneration of the lumbar musculature will 
not be associated with changes in concentric 
extensor peak torque with age  
b) Degeneration of the lumbar musculature will 
not be associated with changes in eccentric 
extensor peak torque with age 
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 Methods 

6.2.1 Equipment 

A Trunk Modular Component (TMC) docked to a HUMAC® NORM™ isokinetic dynamometer (HUMAC® 

NORM™ Testing and Rehabilitation System, CSMI, MA, US) with proprietary software (HUMAC® 2009, 

v10.000.0082) was used for data acquisition. Calibration was performed according to the 

manufacturer’s guidelines before each testing session. The TMC (Figure 6.1) was docked on the base 

of the Humac® NORM™ and the adapter placed into the input arm to enable the system to assess 

trunk flexion/extension performance. 

 

6.2.2 Participant Positioning 

Incorrect positioning and stabilisation of participants, and differences in posture, can affect the fidelity 

of isokinetic dynamometry data (Shirado et al., 1995). Before each test session, the TMC was adjusted 

for each participant for maximal comfort while ensuring alignment of the dynamometer axis to the 

rotation axis of the trunk (Appendix m). The setup data were recorded and reproduced in following 

sessions. Participants stood on the footplate of the TMC with their heels placed against the footplate 

heel cups. Adhering to manufacturer’s recommendations, the footplate height was adjusted to 

achieve alignment between the participant’s vertical anatomical axis and the machine’s axis. The 

rubber alignment pointer was positioned approximately 3.5 cm below the top of the participant’s iliac 

crest, in direct line with the first segment below the iliac crest (approximately L5/S1). The pelvic belt 

was secured across the top of the anterior superior iliac spines (ASIS). Popliteal pads were positioned 

directly behind the patellae at the popliteal space. After the popliteal pad height was adjusted, a thigh 

pad was secured in place directly superior to the patellae and a tibial pad was secured directly inferior 

to the patellae. Participants assumed a comfortable position (standing with ≈ 15° knee flexion), whilst 

being stabilised by the lower body pads. Whilst supported against the sacral seat pad, the fore/aft 

position was adjusted until the rubber alignment pointer was approximately centred at the 

intersection of the participant’s mid-axillary line and lumbosacral junction. After the scapular pad was 

positioned across the centre of the scapulae and inferior to the spine of the scapulae, the chest pad 

was attached parallel to the scapular pad and tightened to prevent excessive upper body movement. 

Participants held the downward-facing handle in front of the chest to prevent motion of the upper 

limbs. Restricting upper-body motion and stabilising the lower body was performed to avoid 

extraneous movements and minimise the unwanted contribution of muscles not being tested (Smith 

et al., 1985; Pollock et al., 1989; Shirado et al., 1995). Whilst standing the participant’s anatomical zero 

position was determined as an angle of 0° between the trunk and thighs. Mechanical stoppers were 
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applied as a safety precaution to limit the participant’s movement to within their maximum ROM. 

Alignment of the participant to the dynamometer was recorded to allow reproduction during 

subsequent sessions. Gravity correction was performed according to the manufacturer’s instructions 

(i.e. trunk segment perpendicular to ground) to minimise the effect of gravity on reciprocal muscle 

groups (Baltzopoulos, 2008; Westing and Seger, 1989; Fillyaw, Bevins and Fernandez, 1986; Edouard, 

Calmels and Degache, 2009; Sugimoto et al., 2014; Hulens et al., 2002). Measured torque data were 

then adjusted based on the maximum gravity effected torque of the trunk as a product of the cosine 

of its angle.  
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Figure 6.1 Participant performing a concentric flexion trial on the TMC HUMAC® NORM™ system  
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6.2.3 Familiarisation 

Practice-based improvement is a known source of error that affects the reliability of repeated 

isokinetic dynamometer tests due to a learning effect. To attenuate these detrimental effects, 

familiarisation sessions were undertaken prior to testing. Impellizzeri et al. (2008) and Nugent, 

Snodgrass and Callister (2015) suggest that one familiarisation session is sufficient to ensure 

consistent peak torque values for isokinetic strength testing in healthy individuals. García-Vaquero 

and colleagues (2016) support this, recommending that reliable isokinetic trunk strength data can be 

obtained from one session. Therefore, participants performed a familiarisation session at least 10 days 

before testing to ensure adequate recovery. Participants were instructed to perform the 

familiarisation session at sub-maximal effort, approximately 50 % maximal voluntary contraction 

(MVC), to prevent excessive muscle damage (Deschenes et al., 2000). In accordance with previous 

studies (Ly and Handelsman, 2002), familiarisation was considered complete when participants were 

confident in performing the trials consistently for each condition. Confirmation was sought by visually 

inspecting torque-time graphs, where participants were able to successfully perform three sub-

maximal consecutive contractions. 

 

6.2.4 Test Protocol 

Participants abstained from caffeine ingestion on the day of testing and from undertaking strenuous 

PA within seven days of testing. A five-minute warm-up on a cycle ergometer (Wattbike Ltd, 

Nottingham, UK) against low resistance (target power = 50 W; cadence = 60-80 rpm) was completed 

before participants performed a series of sub-maximal concentric flexion/extension contractions on 

the TMC through a full ROM to specifically target the trunk musculature. During these sub-

maximalefforts, the testing ROM was determined by reducing the participant’s maximum ROM by 10° 

from maximum extension and flexion (YG ROM = 99.6 ± 5.9°; OG ROM = 91.1 ± 8.5°; t(22) = 2.85, p = 

.009) to minimise the injury risk (Page, 2012) and allow sufficient force production to initiate the 

movement during eccentric contraction trials. 

Prior to each test condition, participants performed five sub-maximal efforts (≈ 50 %) that replicated 

the test. This approach ensured sufficient preparation and correct performance whilst serving as 

another familiarisation to minimise learning effects (Johnson and Siegel, 1978; Nugent, Snodgrass and 

Callister, 2015). Following the warm-up trials participants rested for as long as required until they felt 

fully recovered and prepared for the three reciprocal flexion and extension MVCs. Similar protocols 

have been adopted previously for isokinetic strength testing of the trunk (Melo Filho, Eduardo and 

Moser, 2014; Karataş, Göğüş and Meray, 2002; Cramer et al., 2017; Holt et al., 2016) and lower limbs 
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(Segal et al., 2010). During the measurement verbal encouragement was given to facilitate maximal 

voluntary efforts (Matheson et al., 1992). The test conditions were performed in the order shown in 

Table 6.4. Contractions at slower angular velocities were tested first to increase the reproducibility of 

results between conditions (Wilhite, Cohen and Wilhite, 1992; Karataş, Göğüş and Meray, 2002). 

Previous studies have used a similar range of angular velocities to assess trunk muscle strength 

(Matheson et al., 1992; Bayramoǧlu et al., 2001; Wang et al., 2017; Gabr and Eweda, 2019; Cramer et 

al., 2017). 

 

Table 6.4 Isokinetic dynamometry protocol 

Test Order Condition Protocol 

1 15°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
2 15°·s-1 Ecc/Ecc Warm-up trials Rest Test trials 

  REST (min 60 secs)  
3 30°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
4 30°·s-1 Ecc/Ecc Warm-up trials Rest Test trials 

  REST (min 60 secs)  
5 45°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
6 45°·s-1 Ecc/Ecc Warm-up trials Rest Test trials 

  REST (min 60 secs)  
7 60°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
8 60°·s-1 Ecc/Ecc Warm-up trials Rest Test trials 

  REST (min 60 secs)  
9 90°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
10 120°·s-1 Con/Con Warm-up trials Rest Test trials 

  REST (min 60 secs)  
11 180°·s-1 Con/Con Warm-up trials Rest Test trials 

Con = Concentric contraction; Ecc = Eccentric contraction; warm-up trials consisted of 5 reciprocal sub-
maximal (~50% MVC) repetitions; the rest period after warm-up trials was not limited; test trials 
consisted of 3 reciprocal MVC repetitions with 5 second pauses between consecutive movements; the 
rest period following test trials had no maximum limit. 
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To avoid inflated concentric torques augmented by preceding eccentric contractions (Finni et al., 2003; 

Herzog et al., 2016), reciprocal muscle groups were paired (i.e. extensor contraction followed by flexor 

contraction) with inter-contraction pauses of at least five seconds. Other studies have used short 

pauses between consecutive contractions (Ripamonti et al., 2009; Dvir and Keating, 2001), although 

the rest times were between one and three seconds. Due to the strenuous nature of the slower 

angular velocity contractions, longer pause times were given between consecutive contractions to 

ensure the participants’ safety and recovery. To prevent the cumulative effects of fatigue influencing 

maximum muscle force generation (Sparto and Parnianpour, 1998; Nocella et al., 2011; Thomas and 

Raymond, 2000), adequate rest was given between trials. 30 seconds rest has been shown to provide 

sufficient recovery between isokinetic test conditions in older adult populations (Bottaro, Russo and 

Jacó De Oliveira, 2005), whilst others recommend a rest period of at least 60 seconds (Parcell et al., 

2002). As a precaution, a minimum of 60 seconds rest time was given between test conditions. If the 

participant required more rest time, this period was extended until the sensation of fatigue abated. A 

maximum rest time was not prescribed due to the individualised recovery response to fatigue, 

especially between older and younger adults (Wang-Price et al., 2017; Solianik et al., 2017; Hautala et 

al., 2006). 

 

6.2.5 Data processing 

Torque, angular velocity and trunk angle data were acquired at a sampling rate of 100 Hz. The 

analogue torque signal from the dynamometer was filtered and digitised by the system’s Digital Signal 

Processor (CYBEX, 1995). For each test condition, the contraction with the greatest peak torque was 

used for analysis. Peak torque values were identified during the isokinetic phase of the movement 

(Figure 6.2). Sagittal plane trunk strength outcomes are potentially affected by an initial spike in 

torque output followed by oscillations which appear in the initial part of the movement (Baltzopoulos 

and Brodie, 1989; Baltzopoulos, 2008; Ayers and Pollock, 1999; Perrin, 1993; Bemben, Grump and 

Massey, 1988). This limitation, known as torque overshoot, occurs due to the resistive force exerted 

by the dynamometer to decelerate the body segment to the pre-set angular velocity. As the limb 

accelerates beyond the pre-set velocity, the torque overshoot represents the torque required by the 

dynamometer to decelerate the limb-lever system (Baltzopoulos and Brodie, 1989; Baltzopoulos, 

2008; Sapega et al., 1982), not originating from prime movers alone (Guilhem et al., 2014). Therefore, 

data which were not within 5% of the target velocity were discarded (Baltzopoulos, 2008). In addition, 

the first 20 consecutive data points that fell within the target velocity limits signified the start of the 

isokinetic phase. These constraints were designed to remove artefacts associated with torque 



CHAPTER 6 
 

121 | P a g e  
 

overshoot and impacts at the start and end of the movement. Torque values were normalised to body 

mass. 

Figure 6.2 Analysis of a concentric extensor trial performed at 30°·s-1. The highlighted area 
represents the isokinetic phase of the movement 

 

6.2.6 Statistical Analysis 

Statistical analyses were performed using SPSS (SPSS® for Windows Version 24.0, IBM Corp, Armonk, 

New York) and graphical presentation performed using GraphPad Prism (Version 8.3.1, San Diego, 

California). Data are presented as means with standard deviations (mean ± SD) unless otherwise 

stated. Independent samples t-tests were performed to compare statistical differences in trunk range 

of movement between the OG and YG. For the isokinetic data, two-way mixed-effects ANCOVA 

(angular velocity x age group) controlling for VPA were performed to compare mean differences in 

peak torque between the OG and YG. Concentric and eccentric conditions for the extensors and flexors 

were analysed separately. Following a significant interaction or main effect, multiple univariate 

ANCOVA with Bonferroni adjustments were performed to assess significant differences between age 

groups for each test condition. In accordance with Huberty and Morris (1989) and Huberty and 

Petoskey (2000), multiple ANCOVA were conducted rather than initially conducting a multivariate 

analysis of covariance (MANCOVA). MANCOVA do not necessarily control for Familywise Type I error 
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probability and are inappropriate as a preliminary step to multiple ANCOVA (Huberty and Morris, 

1989; Huberty and Petoskey, 2000). Multiple linear regression analysis with stepwise elimination was 

also performed to explore the influence of LPM morphology and age on trunk extensor strength. Peak 

concentric and eccentric extensor torques at each angular velocity were the dependent variables. Nine 

independent variables were tested in the regression model: NMV and MFI of the PS, QL, ES and MF; 

and age group where the YG was coded as 0 and the OG coded as 1. An alpha level of 0.05 was required 

for statistical significance. Standardised effect size (ηp
2) and observed power (1-β) were also 

determined for each comparison where appropriate. Data for all conditions were normally distributed 

(Shapiro-Wilk test, p > .05) and homogeneous variances were assumed (Levene's test, p > .05). The 

assumption of sphericity was violated (Mauchly’s test < 0.05). Therefore, Greenhouse-Geisser 

corrections were adopted. 

 

6.2.6.1 Reliability 

A sub-sample (n = 10) composed of participants from the YG (n = 5) and OG (n = 5) repeated the test 

protocol after 16 weeks to assess long-term intra-operator reliability. For each test condition, intra-

class correlation coefficients (ICC) for peak torque were calculated using single-measurement, 

absolute-agreement, two-way mixed-effects models. ICC values less than 0.5 were considered 

indicative of poor reliability, values between 0.5 – 0.75 indicated moderate reliability, values between 

0.75 – 0.9 indicated good reliability and values greater than 0.9 were considered indicative of excellent 

reliability (Koo and Li, 2016). Linear regression (difference vs mean) was also used to determine the 

existence of proportional bias for each test condition (p ≤ .05). 

Test-retest reliability was good to excellent across the range of test conditions for the concentric 

extensor trials. Test-retest reliability was moderate to excellent for the concentric flexor trials (ICC = 

0.60 – 0.92), good to excellent for the eccentric extensor trials (ICC = 0.78 – 0.92) and moderate to 

good for the eccentric flexor trials (ICC = 0.72 – 0.86) (Table 6.5). For every test condition, regression 

coefficients were not significant (p > .05), indicating that proportional bias was not present. 
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Table 6.5 Intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) for test-retest 
reliability of each isokinetic test condition. Data are presented as ICC [95% CI] 

Angular 
velocity (°s-1) 

Concentric 
Extension 

Concentric 
Flexion 

Eccentric 
Flexion 

Eccentric 
Extension 

15 .881 [.599, .969] .897 [.642, .973] .910 [.682, .977] .720 [.225, .922] 
30 .922 [.730, .980] .635 [.048, .895] .889 [.562, .972] .718 [.243, .920] 
45 .899 [.665, .973] .813 [.397, .950] .917 [.365, .983] .861 [.532, .964] 
60 .966 [.871, .992] .693 [.180, .913] .780 [.356, .940] .813 [.410, .950] 
90 .859 [.527, .963] .599 [.034, .884]   

120 .953 [.829, .988] .916 [.706, .978]   
180 .976 [.912, .994] .645 [.107, .896]   

 

 

 

 Results 

Mixed two-way ANCOVA revealed a significant interaction between angular velocity x age group 

(F(3.3,69.8) = 3.2, p = .026) for concentric contractions of the trunk extensor muscles after controlling 

for VPA (F(1,21) = 0.32, p = .581). Significant main effects for age group (F(1,21) = 19.9, p < .001) and 

angular velocity (F(3.3,69.8) = 3.6, p = .015) were also revealed, showing that the YG produced greater 

peak concentric extension torque (4.64 N·m·kg-1) than the OG (3.04 N·m·kg-1) and that both groups 

showed a general decline in peak concentric extension torque with increasing angular velocity. No 

significant interactions or main effects were observed for any other condition. ALM was not a 

significant covariate of trunk extensor concentric strength between groups (F(1,21) = 0.03, p = .866). 

Peak torque data are presented in Table 6.6. 
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Table 6.6 Peak torque normalised to body mass for each isokinetic test condition 

Angular 
velocity 

(°·s-1) 

Concentric extension 
N·m·kg-1 

Concentric flexion 
N·m·kg-1 

Eccentric flexion 
N·m·kg-1 

Eccentric extension 
N·m·kg-1 

Young Old Young Old Young Old Young Old 
15 5.11 ± 0.89 3.71 ± 0.71 2.83 ± 0.33 2.68 ± 0.48 5.80 ± 1.06 5.26 ± 0.73 3.35 ± 0.36 3.28 ± 0.62 
30 4.92 ± 0.94 3.58 ± 0.73 2.89 ± 0.38 2.60 ± 0.45 6.12 ± 0.99 5.29 ± 1.05 3.42 ± 0.35 3.34 ± 0.80 
45 4.67 ± 0.80 3.47 ± 0.80 2.86 ± 0.40 2.70 ± 0.55 6.07 ± 1.16 5.30 ± 0.97 3.36 ± 0.39 3.39 ± 0.64 
60 4.83 ± 0.93 3.39 ± 0.90 2.97 ± 0.48 2.70 ± 0.63 5.75 ± 0.96 4.98 ± 1.02 3.35 ± 0.42 3.29 ± 0.62 
90 4.86 ± 1.15 2.99 ± 0.77 3.02 ± 0.37 2.78 ± 0.71 

 120 4.49 ± 1.03 2.60 ± 0.95 2.77 ± 0.58 2.57 ± 0.83 
180 3.62 ± 1.19 1.55 ± 0.81 2.14 ± 0.70 1.81 ± 0.86 

Note: Bold italics denote significant difference between groups 
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6.3.1 Age-related Differences in Peak Concentric Extensor Torque 

One-way univariate ANCOVA (Bonferroni adjustment) revealed significant differences between the 

OG and YG at all angular velocities for concentric contractions of the trunk extensors. At  

• 15°.s-1 (F(1,21) = 14.0, p = .001, ηp
2 = 0.399, 1-β = 0.945); Cohen’s d = 1.74 

• 30°.s-1 (F(1,21) = 13.0, p = .002, ηp
2 = 0.382, 1-β = 0.930); Cohen’s d = 1.59 

• 45°.s-1 (F(1,21) = 12.0, p = .002, ηp
2 = 0.364, 1-β = 0.911); Cohen’s d = 1.50 

• 60°.s-1 (F(1,21) = 14.0, p = .001, ηp
2 = 0.399, 1-β = 0.945); Cohen’s d = 1.57 

• 90°.s-1 (F(1,21) = 20.2, p < .001, ηp
2 = 0.491, 1-β = 0.990); Cohen’s d = 1.91 

• 120°.s-1 (F(1,21) = 20.9, p < .001, ηp
2 = 0.499, 1-β = 0.992); Cohen’s d = 1.91 

• 180°.s-1 (F(1,21) = 19.0, p < .001, ηp
2 = 0.475, 1-β = 0.986); Cohen’s d = 2.03 

the YG produced significantly greater peak concentric extensor torque than the OG. Peak concentric 

extensor torque was generally consistent from 15°·s-1 to 60°·s-1 for both groups. The OG exhibited 

decrements thereafter, whilst the YG showed declines from 120°·s-1. This resulted in a trend for 

increasing difference between OG and YG as angular velocity increased past 45°·s-1 (Figure 6.3). 

Significant pairwise differences (p < .001) in concentric extension peak torque were found between 

120°·s-1 and 180°·s-1 and between each of these conditions with all other angular velocities. 

 

Figure 6.3 Peak torque normalised to body mass produced for concentric contractions of the trunk 
extensor muscles. Error bars represent standard error of the mean. ** < .01, *** < .001 
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6.3.2 Moderating Effect of Muscle Morphology 

Across all concentric extensor conditions, only age group was a significant moderator of trunk 

strength. At the faster angular velocities (i.e. 90, 120 and 180°·s-1), the moderating effect of age was 

greater. Age group explained the largest amount of variance (R2 = 52.8%) in peak concentric extension 

torque at 180°·s-1, F(1,22) = 24.65, p < .001. Predicted peak concentric trunk extensor torque at 180°·s-

1 was equal to 3.620 – 2.066*(age group). Of the potential variables included in the multiple linear 

regressions for eccentric strength, muscle morphology variables were the only significant moderators. 

No variables were significant predictors of eccentric strength at 15°·s-1. At 30°·s-1, ES NMV and QL MFI 

were significantly associated with peak eccentric extensor torque, F(2,21) = 5.52, p = .012, R2 = 34.5%. 

Predicted peak eccentric trunk extensor torque at 30°·s-1 was equal to 4.332 + 0.322*(ES NMV) – 

0.083*(QL MFI). QL MFI remained the only significant moderator of eccentric extensor strength at 

45°·s-1 and 60°·s-1 (Table 6.7).
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Table 6.7 Multiple Linear Regression Analysis with Stepwise Elimination 

Moderators Peak Concentric Torque (Nm·kg-1)  Peak Eccentric Torque (Nm·kg-1) 
 15°·s-1 30°·s-1 45°·s-1 60°·s-1 90°·s-1 120°·s-1 180°·s-1  15°·s-1 30°·s-1 45°·s-1 60°·s-1 

Intercept 5.105  
(< .001) 

4.924  
(< .001) 

4.667  
(< .001)  

4.829  
(< .001) 

4.857  
(< .001) 

4.491  
(< .001) 

3.620  
(< .001) 

 5.525  
(< .001) 

4.332 
(.007) 

7.546  
(< .001) 

7.462  
(< .001) 

Age Group -1.400  
(< .001) 

-1.341  
(< .001) 

-1.198 
(.001) 

-1.438 
(.001) 

-1.863  
(< .001) 

-1.895  
(< .001) 

-2.066  
(< .001) 

 X X X X 

PS MFI X X X X X X X  X X X X 

QL MFI X X X X X X X  X -0.083 
(.035) 

-0.090 
(.039) 

-0.102 
(.011) 

ES MFI X X X X X X X  X X X X 

MF MFI X X X X X X X  X X X X 

PS NMV X X X X X X X  X X X X 

QL NMV X X X X X X X  X X X X 

ES NMV X X X X X X X  X 0.322 
(.022) X X 

MF NMV X X X X X X X  X X X X 

Values are presented as unstandardised regression coefficients with significance level, B value (p value). X denotes removed non-significant variables. PS = 

psoas, QL = quadratus lumborum, ES = erector spinae, MF = multifidus, MFI = muscle fat infiltrate, NMV = normalised muscle volume 
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 Discussion 

The current study demonstrates for the first time that the normal loss of dynamic trunk muscle 

strength in older age is muscle and contractile mode specific. The main findings were that trunk 

extensor muscles experience an age-related decrement in concentric strength and the age-effect 

increases with increasing angular velocity, eccentric strength is somewhat preserved in the trunk 

flexors and extensors, and the loss of concentric torque in the trunk extensor muscles is not 

moderated by muscle specific morphology measures. A progressive decline in muscle strength 

typically accompanies the ageing process, however, normal age-related decrements in the lumbar 

musculature are not fully understood. Given the inconsistent methods and equivocal nature of 

findings on this topic, this work provides an in-depth investigation into age-related differences in trunk 

strength and constitutes an important contribution to the literature base to date. 

 

6.4.1 Loss of Extensor Concentric Torque 

The results show that healthy men experience a loss of concentric extensor torque in older age in the 

trunk. The effect of age was large for all concentric extension conditions and is supported by other 

researchers reporting large effect sizes for the loss of concentric extensor strength with age in healthy 

men (Danneskiold-Samsøe et al., 2009; Hasue, Fujiwara and Kikuchi, 1980). As the proportion of 

contractile tissue in the LPMs decreases due to age-related atrophy and fat infiltration (see Chapters 

4 and 5), the muscles’ capacity to generate force and perform work is reduced (Ropponen, Videman 

and Battié, 2008). However, after the effect of age group on concentric extensor torque had been 

partialled out, the results of this study indicated that the loss of LPM volume and increased fat 

infiltration were unable to explain reductions in concentric extension strength in the trunk. This raises 

questions about how useful morphological measures in the LPMs are as they appear to have limited 

bearing on dynamic muscle function in healthy older men. Neurological changes in older age are more 

likely to have contributed to declines in trunk strength. 

Neuropathic processes in older age bring about a decline in neural drive and cause muscle to express 

a slower phenotype (Campbell, McComas and Petito, 1973; Evans and Lexell, 1995; Häkkinen et al., 

1996; Roos et al., 1997; Mitchell et al., 2012; Unhjem et al., 2015). The increasing disparity between 

groups in concentric extension torque with increasing angular velocity (Figure 6.3) suggests a shift 

towards a slower fibre-type composition in the OG. Indeed, muscles in the lumbar spine have a 

propensity towards slower isoforms (Regev et al., 2010). Given that the intrinsic strength of type I 

fibres is less than type II fibres (Bottinelli et al., 1996; Young, 1984), an increasing proportion of slow-

twitch fibres is likely to reduce muscular force production resulting in a loss of concentric extension 
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strength (Ivy et al., 1981; Robles et al., 2015). This age-related remodelling of muscle phenotype may 

explain why loss of concentric extensor torque is greater with increasing angular velocity and more 

pronounced in the OG. 

Motor unit remodelling is likely to contribute to this age-related shift towards slower muscle 

phenotypes. As the number of functioning motor units decreases with ageing, with a preferential loss 

of fast motor units, older adults experience a loss of muscle strength. Some of the denerved fibres are 

reinnervated by remaining motor units, resulting in a net conversion of faster glycotic muscle fibres 

into slow oxidative muscle fibres (Lexell, Downham and Sjöström, 1986). This shift towards a slower 

muscle phenotype compromises the force generating capacity of the muscle with a greater impact on 

faster movements, demonstrated by the disproportionately greater loss of muscle power than 

strength in healthy older adults (Skelton et al., 1994). This is reflected in current results, as concentric 

extensor torque loss was greater at higher movement speeds in the OG compared to the YG. In 

addition, increased co-activation of antagonist muscles has been implicated as another 

neuromuscular mechanism that contributes to lower force output in older adults (Macaluso et al., 

2002; Bautmans et al., 2011). 

 

6.4.2 Attenuation of Flexor Concentric Torque 

The OG exhibited lower concentric flexion torque, although differences with the YG did not reach 

significance for any of the angular velocities. Similar findings have been previously reported (Smith et 

al., 1985), although not undisputed (Hasue, Fujiwara and Kikuchi, 1980; Skrzek and Bolanowski, 2006). 

Hasue, Fujiwara and Kikuchi (1980) suggested that the discrepancy in abdominal and paravertebral 

muscle strength may be due to the constant use of antigravity muscles in daily life whereas intra-

abdominal pressure aids the function of the abdominal muscles. It is also likely that the apparent 

attenuation in trunk flexion strength is the result of abdominal morphometry preservation. Whilst the 

relative degeneration of the abdominal muscles compared to the paravertebral muscles cannot be 

determined, it has been shown that the abdominals are relatively spared from the effects of age-

related degeneration compared to the paravertebral muscles (Valentin, Licka and Elliott, 2015; Meakin 

et al., 2013). This may preserve the contractile unit of the abdominal muscles relative to the 

paravertebral muscles, which may explain why concentric flexion torque was not significantly different 

between the OG and YG whilst concentric extension torque was. 
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6.4.3 Preservation of Eccentric Strength 

This study found that both extensor and flexor muscle groups in the trunk experience a relative 

preservation of eccentric strength in older age. To the author’s knowledge, this is the first study to 

investigate age-related differences in eccentric trunk strength, which precludes comparisons with 

other studies. Age-related preservation of eccentric strength has been observed in other muscle 

groups (Klass, Baudry and Duchateau, 2005; Poulin et al., 1992) although no mechanisms have been 

fully accepted (Hortobágyi et al., 1995; Roig et al., 2010). Compared to concentric contractions, muscle 

exhibits significantly lower neural activation at a given force output during eccentric contractions 

(Kellis and Baltzopoulos, 1998). Concentric contractions are also affected by increased antagonist 

coactivation in older age (Larsen et al., 2008; Macaluso et al., 2002) whilst the effect is diminished in 

eccentric contractions (Kellis and Baltzopoulos, 1999). Therefore, age-related deficits in neural drive 

(Unhjem et al., 2015; Häkkinen et al., 1996; Roos et al., 1997) are likely to have greater impact on 

concentric contractions than eccentric. In the current study, lean trunk mass was unable to explain 

the preservation of eccentric strength. This supports Hortobágyi et al. (1995) who state that eccentric 

strength is maintained independent of age-related morphometric muscle changes. However, 

pathways may differ between the abdominal and paravertebral musculature. The current findings 

demonstrate that preservation of eccentric extensor strength in older age is dependent upon changes 

in muscle morphology, particularly fat infiltration within the QL muscle. 

Alterations in the passive structural elements and intrinsic factors associated with cross-bridge cycling 

may also mediate the relative preservation of eccentric strength (Hill et al., 2019; Power, Rice and 

Vandervoort, 2012; Herzog, 2014). According to Lombardi and Piazzesi (1990), the stretch produced 

during eccentric contractions may shift myosin heads into a strongly bound state. This would 

subsequently reduce the age-related deficits in force output during eccentric contractions that are 

commonly observed during concentric contractions (Phillips, Bruce and Woledge, 1991). However, it 

is still unknown why this phenomenon does not induce additional tension in the muscle fibres of 

younger adults. One explanation concerns the reduced speed of cross-bridge cycling. In older adults, 

the slower detachment rate of active cross bridges in muscle fibres (Larsson, Li and Frontera, 1997) 

may contribute to the preservation of eccentric strength (Ochala et al., 2006). As a result of strong 

cross-bridge binding, a configurational change of troponin and tropomyosin occurs that makes 

attachment sites available for titin on actin (Herzog, 2019). Once bound to actin, titin becomes stiffer 

due to a shorter free spring length and thus increases force output when a muscle is stretched (Herzog, 

2014). Upon deactivation, titin remains bound to actin but can be dissociated immediately when the 

muscle shortens quickly (Herzog, 2019). As older muscle fibres exhibit slower detachment rates and 

increased instantaneous stiffness following stretch (Ochala et al., 2006), there may be elevated levels 
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of residual force enhancement during eccentric contractions (Power, Rice and Vandervoort, 2012). 

Furthermore, as eccentric movements are performed faster, there may not be sufficient time for the 

cross-bridges to dissociate in older adults, thus preserving the residual force enhancement. This is 

reflected in the current findings as torque did not appear to decline with increasing angular velocity. 

Mechanisms regarding preservation of eccentric strength in older age focus on neurological, cellular 

and mechanical pathways (Roig et al., 2010; Hortobágyi et al., 1995), however, none consider 

biomechanical function, especially relating to the trunk. Thoracolumbar bending moment increases 

with ageing due to postural changes (Le Huec et al., 2018). The extensor muscles are subsequently 

activated to prevent forward flexion of the trunk (Waters and Morris, 1972; Cresswell, Oddsson and 

Thorstensson, 1994), which increases mechanical energy expenditure required for eccentric control 

of the lower trunk musculature (McGibbon and Krebs, 2001). Indeed, eccentric muscle contractions 

are inherently common during ADLs (Dickinson et al., 2000) to decelerate movements and store elastic 

recoil energy (LaStayo et al., 2003). This type of muscle contraction is highly important to most trunk 

movements during ADLs; evidenced during sit to stand preparation when the ES eccentrically contract 

to provide postural stability and movement control (Millington, Myklebust and Shambes, 1992; 

Dubost et al., 2005; Silva et al., 2015). Despite the low-level activity of trunk muscles during ADLs 

(McGill and Cholewicki, 2001), sustained low-intensity eccentric activation may provide enough 

stimulus for the muscles to maintain their strength. Even at low levels of exertion, eccentric resistance 

exercises can produce relatively large muscle workload (Lim, 2016) and improve strength in older 

adults (Chen et al., 2017). Given that kinematic changes in older age increase mechanical energy 

expenditure required for eccentric control of the LPMs during gait (McGibbon and Krebs, 2001), 

postural changes may inadvertently offset reductions in eccentric trunk strength. Whilst speculative, 

these suggestions are plausible and attempt to understand this phenomenon in a holistic manner. 

More importantly, the current results in the trunk reflect the eccentric strength age-response 

observed in the appendicular muscles (Klass, Baudry and Duchateau, 2005; Poulin et al., 1992). This 

suggests that eccentric strength preservation is systemic rather than a muscle- or site-specific 

phenomenon in the body. 

 

6.4.4 Moderating Effect of Physical Activity 

PA is generally believed to have a positive effect on muscular strength in older adults (Rantanen et al., 

2016). Whilst VPA is more beneficial, low-intensity PA can still lead to better functional ability amongst 

older adults (Avlund et al., 1994). However, the results of this study suggest that habitual VPA does 

not moderate age-related differences in trunk strength amongst healthy men. Although this may seem 
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counterintuitive, previous research in a large community-dwelling population supports this finding 

(Viljanen, Viitasalo and Kujala, 1991). It was suggested that the small proportion of adults engaging 

regularly in resistance training (< 1 %) may have been insufficient to observe a training effect on 

maximal isometric trunk strength in their sample (Viljanen, Viitasalo and Kujala, 1991). In the current 

study, PA was measured using accelerometery and a recognised limitation of using accelerometers is 

their inability to detect non-ambulatory activities such as resistance exercise (Lee and Shiroma, 2014; 

Viljanen, Viitasalo and Kujala, 1991). Since resistance exercise is known to increase muscular strength 

(Yarasheski et al., 1995; Taaffe et al., 1999; Peterson et al., 2010), its potential omission from 

accelerometer data acquisition may have confounded the current findings. 

 

6.4.5 Clinical and Practical Applications 

In clinical settings, understanding the age-related loss of trunk strength could be crucial due to its 

association with physical function (Shahtahmassebi et al., 2017), lower back pain (Cho et al., 2014) 

and falls risk (Granacher et al., 2013). Whilst the rehabilitation of upper and lower limb muscles is 

often based on the relative strength of the unaffected limb, bilateral comparisons cannot be made in 

the trunk. Therefore, age-specific normative trunk strength values across a range of contraction types 

and angular velocities are needed to allow healthcare professionals to evaluate a patient’s trunk 

strength and determine an effective rehabilitation intervention. Based on the current results, slower 

angular velocities than 60°·s-1 may not provide additional information about the maximal force 

generating capacity of trunk muscles in healthy men. The substantial decline in concentric trunk 

extension torque from 90°·s-1 to 180°·s-1 indicates that investigation at greater angular velocities may 

be valuable. However, the range of conditions used in this study accounted for trunk activity typically 

observed during ADLs (Lindemann et al., 2014; Pigeon et al., 2003; Goutier et al., 2010). Faster 

conditions would represent more dynamic movements that may offer additional insight into injury 

mechanisms of the lumbar spine. Furthermore, these results should support the use of isokinetic 

testing in the trunk and establishment of population specific norms that could provide useful clinical 

guidelines for trunk assessment and rehabilitation. 

 

6.4.6 Limitations 

There were limitations in this study that should be acknowledged. Firstly, the samples comprised of 

healthy physically active men. Caution should be taken when generalising these findings as the 

participants, particularly in the OG, are unlikely to be representative of a general population. Strength 

values in the OG may be considerably greater than in a general population, which would suggest that 
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age-related loss of concentric strength in the LPMs is even more pronounced in general populations. 

Generalising the findings to female populations should also be done with caution, as women tend to 

show greater declines in trunk muscle strength with age (Lee et al., 2012; Keller et al., 1999; 

Danneskiold-Samsøe et al., 2009). Comparison with diseased populations may however provide useful 

information regarding pathological deviations in trunk strength. The results suggested that the 

eccentric tests and concentric flexion test were underpowered. However, the sample size was large 

enough to observe sufficient power for the concentric extension test. These results should be used to 

determine sample sizes in future studies. Furthermore, these findings are specific to the testing 

methodology. For example, this study was limited to sagittal plane movements. Movements in coronal 

and transverse planes may reveal different age effects. Testing conditions should be considered 

carefully when generalising these findings. Finally, whilst the current study highlights an important 

feature of age-related musculoskeletal decline, longitudinal studies are needed to infer causation. 

 

 Conclusion 

This study indicates that ageing elicits a muscle and contractile mode specific response in isokinetic 

torque of the trunk muscles. Concentric extensor muscle strength declines in older age whilst eccentric 

trunk strength appears to be relatively preserved. Peak torque of the extensor muscles decreased with 

increasing angular velocity for concentric contractions and was more pronounced in the older group. 

As muscle morphology measures were not significant moderators of concentric trunk extension 

strength, the increasing disparity at greater angular velocities was likely due to age-related 

neuropathic processes affecting the intrinsic contractile function of the LPMs. VPA level did not 

moderate age-related differences in trunk strength, although this may be due to the way in which PA 

was measured. These findings are a useful step in establishing effective clinical and public health 

intervention strategies that could be used to offset adverse health outcomes related to trunk strength 

loss in older adult populations. Future research should look to assess trunk strength in a range of 

populations using a longitudinal design, which may enable identification of pathological deviations. 

Furthermore, there is a need to understand the consequence of these changes in relation to ADLs such 

as walking gait. 
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Table 6.8 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline. 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 
Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

• Studies investigating muscle degeneration with ageing 
have typically focused on the appendicular muscles 

• There is increasing recognition for the importance of 
the lumbar paravertebral muscles in maintaining 
health and mobility in older age 

Aims • To investigate age-related differences in LPM morphology  
• A secondary aim was to investigate the age-response on fat infiltration and 

volume of the different lumbar muscles (i.e. MF, ES, QL and PS) 
• An additional aim was to explore other predictors of lumbar paravertebral 

muscle degeneration 
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• Few studies have characterised features of age-related 
degeneration in the lumbar musculature 

• Few studies have provided volumetric information on 
all of the paravertebral muscles using high-resolution 
imaging modalities 

Key findings • Older age negatively affected all paravertebral muscles, although some showed 
greater degenerative changes than others 

• Age-related fat infiltration has a global effect across the lumbar musculature, 
whereas atrophic changes appear to be muscle-specific  

• Only the QL and ES showed significant age-related declines in muscle volume 
• All muscles showed age-related declines in muscle quality (i.e. increase in 

intramuscular adipose tissue) 
• The MF was most susceptible to compositional changes with age, whilst the QL 

was most vulnerable to reductions in muscle volume 
• Physical activity did not influence age-related differences in muscle 

degeneration in the lumbar spine 
• Non-dominant handgrip strength was a predictor of muscle atrophy in the 

lumbar musculature 
Implications • The QL and ES appear to be most affected in older agesince they exhibited 

declines in size and quality 
• When investigating the effects of ageing on lumbar muscle function, 

macroscopic changes in the paravertebral muscles should be considered 
• Structural changes, resulting in a loss of contractile tissue, may reduce muscle 

function in the lumbar spine 
• Convenient and easily administered measures such as handgrip strength may 

be able to predict muscle atrophy in the lumbar spine 

Chapter 6 Age-related 
Differences in Concentric 
and Eccentric Isokinetic 
Trunk Strength in Healthy 
Older versus Younger Men 

• Dynamic trunk strength in older adults 
has not been fully explored 

• Studies have typically investigated age-
related strength loss using handgrip 
dynamometry or lower limb isokinetic 
dynamometry 

• Majority of studies have used clinical 
assessments which may not be 
appropriate to assess maximal trunk 
strength 

• No study has assessed eccentric trunk 
strength in older adults and contractile 
modes are typically limited 

• The findings from chapter 5 have also 
influenced the need for this study. 
Research investigating how muscle 

Aims • To investigate age-related differences in dynamic trunk 
strength 

• The secondary aim was to explore the moderating effect 
of muscle morphology degeneration on extensor muscle 
strength 

Key findings • Age had a significant and negative effect on peak 
concentric trunk extensor torque across all angular 
velocities 

• The difference in concentric extensor torque between the 
older and younger group increased with increasing 
angular velocity indicating that the lumbar extensor 
muscles express a slower phenotype with ageing 

• Peak concentric torque of the trunk flexor muscles 
decreases in older age but not significantly 

• Peak eccentric torque of the extensors and flexors in the 
trunk is preserved in older age 
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morphology degeneration in the lumbar 
spine impacts on trunk extensor 
strength is warranted 

• Concentric strength of the trunk extensor muscles is 
negatively associated with age, but not paravertebral 
muscle morphology 

• Eccentric strength of the trunk is primarily related to 
quadratus lumborum muscle quality, but not age 

Implications • Loss of trunk strength in older age is contractile mode- 
and muscle- specific 

• Training interventions should target the extensor trunk 
muscles using concentric exercises to improve strength in 
older adults 

• Improving paravertebral muscle quality may further 
preserve eccentric strength of the trunk extensors 

• Internal trunk moments produced during daily tasks 
should be combined with the peak values measured in 
this study to determine how functionally demanding 
these tasks are on the trunk musculature 

Chapter 7 Age-related Differences in 
Trunk Biomechanics during Walking 
Gait in Healthy Younger versus Older 
Men 

 Aim  

Key findings  

Implications  
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Chapter 7 Age-related Differences in Trunk Biomechanics during Walking 

Gait in Healthy Younger versus Older Men 

 

Chapter Abstract 

Background The trunk plays an important role in mobility and providing postural support during 

everyday activities, such as walking. Gait analysis has tended to focus on the lower limbs. Therefore, 

kinematic and kinetic age-related changes in the trunk are not fully understood. The aim of this study 

was to investigate the effect of age on biomechanical function of the trunk during normal gait in 

healthy young and older men. 

Methods Three-dimensional motion analysis was used to determine spatiotemporal parameters as 

well as kinematic and kinetic variables of the trunk and pelvis in 12 healthy older (67.3 ± 6.0 years) 

and 12 healthy younger men (24.7 ± 3.1 years). All participants performed three successful gait trials. 

Kinematic and kinetic data were analysed in the sagittal, coronal and transverse planes. Functional 

demand (FD) of the trunk during the GC was calculated in the sagittal plane. Independent t-tests were 

performed to compare the effect of age on outcome parameters. To determine if age-related 

differences within the GC were phase-specific, statistical parametric mapping (SPM) was used to 

compare trunk kinematic and kinetic waveforms between the OG and YG. Zero-order and partial 

correlations, controlling for age group, were conducted to determine interplanar and intersegment 

relationships in ranges of trunk and pelvis motion. 

Results Trunk and pelvic rotations in all planes of motion were reduced with age. Trunk kinematics 

with respect to the global reference frame were most affected by age in the transverse plane. In the 

pelvic reference frame, trunk flexion/extension ROM was reduced in the OG as well as peak movement 

amplitudes in the coronal plane. Walking speed was not significantly different between the OG and 

YG (p > .05), therefore age-related differences in trunk kinematics were not due to walking speed. 

Phase-specific differences were observed in the coronal and transverse planes with midstance and 

swing phases highlighted as the instances when trunk and pelvic kinematics differed between age 

groups. Controlling for age, fewer correlations were revealed between trunk and pelvic ROMs and 

between planes of motion, indicating that older age causes an uncoupling of interplanar upper body 

movements during gait. The YG performed significantly more negative work during the GC than the 

OG (p = .023) and exhibited a significantly greater power absorption peak in the coronal plane during 

swing phase (p = .010). Trunk moment and power waveforms were similar between the YG and OG. 
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Walking was approximately 20 % more functionally demanding on the trunk in the OG than the YG 

across the GC. 

Conclusions Age-related differences in trunk kinematics were apparent in the OG, particularly in the 

coronal and transverse planes. However, changes in the pelvis were highly responsible for observed 

changes in the trunk with age. Trunk moments and powers in the sagittal and coronal planes may also 

be modified in older age, although these changes may not be phase specific. Age-related differences 

in biomechanical function of the trunk during walking may be indicative of a conservative gait strategy 

to reduce falls and injury risk at the cost of increasing energetic and functional demands. These 

findings may provide important information for rehabilitation programmes in older adults designed 

to improve trunk motion as well as enabling identification of higher risk movement patterns. 

 

Key words: 3-D motion analysis, walking gait, trunk, kinematics, kinetics, functional demand 
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Table 7.1 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline. 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 
Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

• Studies investigating muscle degeneration with ageing 
have typically focused on the appendicular muscles 

• There is increasing recognition for the importance of 
the lumbar paravertebral muscles in maintaining 
health and mobility in older age 

Aims • To investigate age-related differences in LPM morphology  
• A secondary aim was to investigate the age-response on fat infiltration and 

volume of the different lumbar muscles (i.e. MF, ES, QL and PS) 
• An additional aim was to explore other predictors of lumbar paravertebral 

muscle degeneration 
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• Few studies have characterised features of age-related 
degeneration in the lumbar musculature 

• Few studies have provided volumetric information on 
all of the paravertebral muscles using high-resolution 
imaging modalities 

Key findings • Older age negatively affected all paravertebral muscles, although some showed 
greater degenerative changes than others 

• Age-related fat infiltration has a global effect across the lumbar musculature, 
whereas atrophic changes appear to be muscle-specific  

• Only the QL and ES showed significant age-related declines in muscle volume 
• All muscles showed age-related declines in muscle quality (i.e. increase in 

intramuscular adipose tissue) 
• The MF was most susceptible to compositional changes with age, whilst the QL 

was most vulnerable to reductions in muscle volume 
• Physical activity did not influence age-related differences in muscle 

degeneration in the lumbar spine 
• Non-dominant handgrip strength was a predictor of muscle atrophy in the 

lumbar musculature 
Implications • The QL and ES appear to be most affected in older age since they exhibited 

declines in size and quality 
• When investigating the effects of ageing on lumbar muscle function, 

macroscopic changes in the paravertebral muscles should be considered 
• Structural changes, resulting in a loss of contractile tissue, may reduce muscle 

function in the lumbar spine 
• Convenient and easily administered measures such as handgrip strength may 

be able to predict muscle atrophy in the lumbar spine 
Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

• Dynamic trunk strength in older adults has not been 
fully explored 

• Studies have typically investigated age-related strength 
loss using handgrip dynamometry or lower limb 
isokinetic dynamometry 

• Majority of studies have used clinical assessments 
which may not be appropriate to assess maximal trunk 
strength 

• No study has assessed eccentric trunk strength in older 
adults and contractile modes are typically limited 

• The findings from chapter 5 have also influenced the 
need for this study. Research investigating how muscle 
morphology degeneration in the lumbar spine impacts 
on trunk extensor strength is warranted 

Aims • To investigate age-related differences in dynamic trunk strength 
• The secondary aim was to explore the moderating effect of muscle morphology 

degeneration on extensor muscle strength 
Key findings • Age had a significant and negative effect on peak concentric trunk extensor 

torque across all angular velocities 
• The difference in concentric extensor torque between the older and younger 

group increased with increasing angular velocity indicating that the lumbar 
extensor muscles express a slower phenotype with ageing 

• Peak concentric torque of the trunk flexor muscles decreases in older age but 
not significantly 

• Peak eccentric torque of the extensors and flexors in the trunk is preserved in 
older age 

• Concentric strength of the trunk extensor muscles is negatively associated with 
age, but not paravertebral muscle morphology 

• Eccentric strength of the trunk is primarily related to quadratus lumborum 
muscle quality, but not age 

Implications • Loss of trunk strength in older age is contractile mode- and muscle- specific 
• Training interventions should target the extensor trunk muscles using 

concentric exercises to improve strength in older adults 
• Improving paravertebral muscle quality may further preserve eccentric 

strength of the trunk extensors 
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• Internal trunk moments produced during daily tasks should be combined with 
the peak values measured in this study to determine how functionally 
demanding these tasks are on the trunk musculature 

Chapter 7 Age-related 
Differences in Trunk 
Biomechanics during 
Walking Gait in Healthy 
Younger versus Older Men 

• Studies investigating the relationship 
between ageing of the lumbar spine 
and loss of physical function have 
typically used clinical assessments 

• Clinical assessments and performance 
batteries are not specific to the lumbar 
spine 

• Few studies have investigated age-
related changes in trunk kinematics 
during gait, and fewer still have 
investigated kinetic changes in older 
age. Therefore, the effects of age on 
trunk movements and kinetics during 
gait are not well known 

• Functional demand is a measure that 
has been applied to the lower limbs to 
investigate how biomechanically 
demanding everyday activities are. 
However, functional demand has never 
been applied to the trunk 

• There is a need to understand how 
biomechanical function of the lumbar 
spine is related to muscle morphology 
degeneration and strength loss in older 
age 

Aims • To investigate age-related differences in trunk 
biomechanics during normal walking gait 

• A secondary aim was to determine the functional demand 
of the trunk during normal walking and investigate how it 
is affected in older age 

• A further aim was to investigate the relationship between 
morphological degeneration of the lumbar musculature 
and biomechanical outcomes 

Key findings  

Implications  

denotes links to previous chapters. Links to chapter 3 – VPA was included as a potential covariate. Links to chapter 5 – Muscle morphology measures 
were included as potential covariates to assess whether age-related differences in biomechanical trunk function covaried with atrophy or fat 
infiltration of the paravertebral musculature. Links to chapter 6 – Isokinetic strength measures were combined with functional moments during 
gait to calculate how functionally demanding walking was in the trunk 
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 Introduction 

Walking, the most common form of exercise amongst older adults (Sallis et al., 1986; Lawlor et al., 

2002; Walsh et al., 2001; Shephard, 2003), is an important daily task that requires synchronised actions 

of the musculoskeletal system to function independently. Changes in gait, such as reduced walking 

speed, are a useful indicator of overall health status and are associated with adverse health outcomes 

such as increased falls risk and mortality in older adults (Maki, 1997; Ferrucci et al., 2000; Hausdorff, 

Rios and Edelberg, 2001; Studenski et al., 2003; Verghese et al., 2009, 2006, 2007; Studenski et al., 

2011; Cesari et al., 2005). Indeed, low gait speed (≤ 0.8 m·s-1) is one criterion used to confirm a 

sarcopenia diagnosis (Cruz-Jentoft et al., 2019, 2010a). Spaciotemporal measures such as walking 

speed may not always be sufficient to explore the effects of ageing on gait (Stephan, Sutin and 

Terracciano, 2015). Biomechanical analysis however may be more useful in detecting subtle changes. 

For example, reduced plantarflexion power causes older adults to redistribute joint powers proximally 

(Judge et al., 1996; Cofré et al., 2011), which increases the metabolic cost of walking (Das Gupta, 

Bobbert and Kistemaker, 2019) due to involvement of greater muscle mass.  

Whilst biomechanical function of the lower limbs is well understood with the ageing process, age-

related changes in trunk biomechanics have not been established. Due to an ageing population (World 

Health Organization, 2011; Storey, 2018), understanding age-related changes in gait has become 

increasingly important and is the first step in devising effective strategies that preserve independence 

and quality of life in older adults. A greater understanding of the ageing process on trunk biomechanics 

during walking is therefore needed. Furthermore, in the previous chapters it was implied that 

morphological degeneration of the lumbar musculature and strength loss in the trunk affects physical 

function in older age. The need to relate these findings to biomechanical function of the trunk during 

a typical activity such as walking is great. Indeed, only one study (Shahtahmassebi et al., 2017) has 

attempted to understand these interdependencies but focused on physical performance rather than 

specific trunk measures. In the systematic review and meta-analysis this study was also judged as poor 

quality (Table 4.5). The findings from previous chapters has highlighted that high-quality research 

investigating the effect of ageing on trunk biomechanics during walking, as well as relationships with 

strength loss and morphological changes in the muscle, is warranted. 

 

7.1.1 The Gait Cycle 

Human gait is characterised by a complex bipedal locomotion pattern. Centre of gravity (COG) is 

maintained over a continually changing base of support (BOS) that alternates in cycles between single- 

and double-limb support (Harris et al., 2008). The GC (Figure 7.1) is defined by two consecutive 
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occurrences of initial contact (IC) by the same foot (ipsilateral limb) and divided into two phases 

(Neumann, 2017). The stance phase accounts for approximately 60% of the GC and defines the period 

of time when the foot is in contact with the ground. Stance phase is from IC to toe-off (TO) and 

functions to provide weight acceptance, vertical support and propulsion. Swing phase refers to when 

the foot is airborne, causing limb advancement. Accounting for approximately 40% of the GC, swing 

phase is initiated at TO and terminates at ipsilateral heel-strike (IC). Stance and swing phases are sub-

divided to identify specific periods during the GC. 

 

Figure 7.1 Illustration of a typical gait cycle (Neumann, 2017) 

 

7.1.2 Age-related Changes in Gait 

It is well-known that gait characteristics are modified with ageing (Cruz-Jimenez, 2017; Osoba et al., 

2019; Boyer et al., 2017). Some of these features are considered to not just change but decline in older 

adults. Preferred walking speed is the most consistently observed age-related change in usual gait 

(Winter et al., 1990; Judge et al., 1996; Cruz-Jimenez, 2017; Byrne et al., 2002; Monaco et al., 2009; 

Riley, Della Croce and Kerrigan, 2001; Kerrigan et al., 1998, 2001; Anderson and Madigan, 2014). 

Slower walking speed is related to fear of falls (Chamberlin et al., 2005), muscle weakness (Busse, 

Wiles and Van Deursen, 2006) and impairment of motor control (Kaya, Krebs and Riley, 1998). 

However, it is still ambiguous whether speed decline with ageing is a compensatory effort to reduce 

injury risk (Winter et al., 1990; Chamberlin et al., 2005) or merely the manifestation of deteriorated 

muscle activity (Ko, Hausdorff and Ferrucci, 2010), or both. Adoption of a more cautious gait to reduce 

falls risk in older age is indicative of changes in other spatiotemporal parameters such as a shorter 
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step length, greater step timing variability, increased double-support time and reduced step frequency 

(Hollman, McDade and Petersen, 2011; Kang and Dingwell, 2008; Menz, Lord and Fitzpatrick, 2003; 

Toebes et al., 2012; Osoba et al., 2019). 

Joint kinematics have also been shown to change with advancing age. Compared to younger adults, 

older adults exhibit reduced hip extension, reduced ankle plantarflexion and power generation, and 

increased anterior pelvic tilt during gait (Winter et al., 1990; Kerrigan et al., 2001; Byrne et al., 2002), 

independent of gait speed (Kerrigan et al., 1998; Cofré et al., 2011). Joint kinetics are also affected by 

ageing; representing an alteration in the motor pattern used to perform walking gait (DeVita and 

Hortobagyi, 2000). Walking ability in older adults is maintained through increased activity of the 

proximal muscles (DeVita and Hortobagyi, 2000; McGibbon and Krebs, 2001; Monaco et al., 2009). 

This results in changes in joint power generation and absorption throughout the GC, which act as key 

markers to identify differences in aged gait (DeVita and Hortobagyi, 2000). Older adults typically 

generate less propulsive power at the ankle during pre-swing but generate greater relative hip power 

to maintain trunk stability during stance and assist in leg swing (DeVita and Hortobagyi, 2000; Watelain 

et al., 2000; McGibbon, 2003; Silder, Heiderscheit and Thelen, 2008; Monaco et al., 2009; Winter et 

al., 1990; Judge et al., 1996; Kerrigan et al., 1998, 2001; Riley, Della Croce and Kerrigan, 2001). Studies 

suggest that older adults walk with greater hip flexion and reduced plantarflexion torque as a strategy 

to compensate for age-related decrements in plantarflexion strength and lower-limb ROM (DeVita 

and Hortobagyi, 2000; Silder, Heiderscheit and Thelen, 2008; Monaco et al., 2009; Judge et al., 1996; 

Goldberg and Neptune, 2007; Cofré et al., 2011). Whilst the exact mechanism is equivocal, it is 

established that hip power during pre-swing (PS) and initial swing (IS) increases in older adults to 

overcome the loss in ankle function and increase forward propulsion. As the majority of lower-limb 

joint power and mechanical work is generated or absorbed in the sagittal plane (Neptune, Sasaki and 

Kautz, 2008; Eng and Winter, 1995), most studies have focused on flexion/extension kinematics and 

kinetics with less attention on the coronal and transverse planes. However, functional gait is 

determined by biomechanical contributions in all three cardinal planes. 

 

7.1.3 Age-related Changes in the Trunk during Gait 

Previous research and clinical assessment have primarily focused on the lower limb joints in gait 

analysis. The role of the trunk during gait is often overlooked as an integral component that 

contributes to mobility and stability. The trunk muscles, particularly the LPMs, are critical to walking 

gait and actively contribute to dynamic balance during functional activities (Karthikbabu et al., 2011; 

Cromwell et al., 2001; Ceccato et al., 2009; Carmo et al., 2012; Hicks et al., 2005b; Cholewicki, Panjabi 
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and Khachatryan, 1997). They are responsible for maintaining an upright or neutral posture and 

controlling dynamic balance by maintaining COG over the BOS (Karthikbabu et al., 2011).  

Compared to the lower limbs, the trunk undergoes negligible excursions in the sagittal, coronal and 

transverse planes during gait in healthy adults (Krebs et al., 1992; Leardini et al., 2013; Titus et al., 

2018). However, trunk kinematics have been associated with age-related changes (Takahashi et al., 

2005) and with maintenance of dynamic stability in older adults (Hurt et al., 2010). Therefore, 

understanding trunk motion during gait is of clinical importance not only in the presence of pathology 

(Engsberg et al., 2001), but also in uncovering the effects of ageing. To separate comorbidities from 

the effects of ageing, establishing normal age-related changes in trunk biomechanics during gait is 

needed. Whilst the effect of age on lower limb kinematics and kinetics during gait is well documented, 

the trunk has received less attention. This is likely due to the complexity of the human spine and the 

fact that lower limb joints are more easily and accurately modelled. Equally, gait is an activity that is 

driven by the lower limb musculature and may therefore be seen as more important to analyse. 

Regardless, increasing our knowledge of normal age-related changes in trunk kinematics and kinetics 

is essential for targeted interventions in healthy older adult populations as well as identifying and 

treating pathological gait patterns. The paucity of research and a range of disparate methods used to 

analyse the trunk has confounded our understanding of age-related changes in trunk biomechanics 

during gait. 

 

7.1.3.1 Analysis of Trunk Kinematics during Gait 

Trunk ROM is typically variable amongst individuals, although evidence suggests that spine and trunk 

motion is affected by ageing (Intolo et al., 2009; Arshad et al., 2019). Despite this, few studies have 

investigated the effect of ageing on trunk kinematics during gait (Schmid et al., 2017; Crawford et al., 

2018; McGibbon and Krebs, 2001; Van Emmerik et al., 2005). Furthermore, Schmid et al. (2017) and 

Crawford et al. (2018) did not analyse the continuous time-series waveform of trunk kinematics, rather 

analysing discrete data points. This may have led to missed opportunities to uncovered subtle 

differences in trunk movements between older and younger adults during the GC. Schmid and 

colleagues (2017) analysed trunk kinematics in all three cardinal planes, reporting age-related ROM 

increases in all three (0.6° sagittal, 0.3° coronal and 1.0° transverse). These increases, whilst non-

significant, were attributed to the ageing process and not an artefact of spaciotemporal parameters 

as walking speeds were similar between age groups. McGibbon and Krebs (2001) evaluated the entire 

kinematic waveform to investigate trunk and pelvis leading strategies in gait. Older adults were found 

to adopt a trunk leading strategy in contrast to younger adults. Furthermore, trunk ROM relative to 
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the pelvis in the sagittal plane was significantly lower in the OG (3.95 ± 1.68°) compared to the YG 

(4.78 ± 1.80°). Modelling the thorax relative to the pelvis similar to McGibbon and Krebs (2001), Van 

Emmerik et al. (2005) also found that trunk flexion/extension in older individuals was reduced yet 

trunk axial rotation was increased compared to younger adults. Increased trunk rotations are an 

indicator of immature and pathological gait and generally seen as a destabilising feature of walking 

(Winter, 1995; Ledebt and Bril, 2000). To account for this, pelvic rotations in the coronal and 

transverse planes are able to create a more energy efficient gait by decreasing COM vertical 

oscillations (Saunders, Inman and Eberhart, 1953). Interestingly, Van Emmerik et al. (2005) also 

reported that pelvic rotations in all three planes of motion were systematically reduced with 

increasing age. This indicates that the pelvis may be particularly influential in determining age-related 

changes in trunk kinematics. However, it is important to note that these differences were specific to 

slower walking speeds (Van Emmerik et al., 2005), which were typically slower than preferred walking 

speeds in both younger and older adults (Table 7.2). This may cause inconsistent findings with other 

studies and ecological validity may be diminished by the prescription of unnatural walking speeds.  

Disparities in kinematics may have also occurred due to different modelling methods. Each of these 

studies used a different approach to define the trunk segment. This is reflected in the discrepancy 

between Schmid et al. (2017) and McGibbon and Krebs (2001). Schmid et al. (2017) defined the lumbar 

segment using individual markers representing each lumbar spinous process; McGibbon and Krebs 

(2001) used the mid-sections of the trunk and pelvis to approximate the L4/5 junction. The latter 

approach is more susceptible to skin movement artefact and with fewer degrees of freedom it may 

overestimate articulations in the lumbar spine (Raabe and Chaudhari, 2016). Whilst validation of these 

models is required to ascertain which is superior, the different modelling assumptions offers an 

explanation for the disparity in age-related changes in trunk kinematics during gait. Another model, 

Plug-in Gait (PIG), has been widely used in the literature to estimate lumbar spine kinematics as the 

intersection between modelled trunk and pelvic segments (Titus et al., 2018; Romkes et al., 2007; 

Sanz-Mengibar et al., 2017; Chung et al., 2010). Whilst more specific models for the assessment of 

spinal motion exist (Taylor, Goldie and Evans, 1999; Schmid et al., 2017; Konz et al., 2006), the 

increased complexity, data collection and computational time make such detailed approaches less 

clinically applicable (Gutierrez et al., 2003). Furthermore, more complex models may not necessarily 

produce more accurate data as each model will intrinsically contain modelling assumptions. Indeed, 

complex spinal models may even increase measurement error as the size of functional spinal units is 

small and limits our ability to position three non-colinear markers on the skin overlying multiple 

functional spinal units (Konz et al., 2006). Furthermore, as movement between vertebral bodies is 

smaller than between the trunk and pelvis segments, measurement error may be greater than 
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measured differences when modelling individual spinal units. This would prevent meaningful 

differences from being observed with any degree of confidence. 

Gait studies analysing trunk kinematics in all three cardinal planes (Schmid et al., 2017; Krebs et al., 

1992; Vogt, Pfeifer and Banzer, 2002; Fernandes et al., 2016; Chung et al., 2010; Hendershot and Wolf, 

2014; Stokes, Andersson and Forssberg, 1989; Opila-Correia, 1990; Thurston, 1985; Leardini et al., 

2013; Taylor, Goldie and Evans, 1999; Whittle and Levine, 1999; Sartor et al., 1999; Van Emmerik et 

al., 2005; Crosbie, Vachalathiti and Smith, 1997) have generally recruited healthy younger adults and 

not focused on the ageing process, although interesting findings have been revealed regarding the 

antiphase nature of the trunk and pelvis during gait (Titus et al., 2018; Krebs et al., 1992; Sartor et al., 

1999; Van Emmerik et al., 2005). Krebs et al. (1992) found that trunk axial rotation was 180° out of 

phase with the pelvis during loading response. This timing difference was attributed to the pelvis 

continuing to rotate in the opposite direction to the trunk after the trunk had finished rotating shortly 

after heel strike (Krebs et al., 1992). Similar kinematic patterns have been reported for the trunk 

relative to the pelvic and global reference frames (Thurston, 1985; Titus et al., 2018; Chung et al., 

2010; Vogt, Pfeifer and Banzer, 2002). However, other studies indicate that antiphase rotation 

between the trunk and pelvis does not reach 180° (Whittle and Levine, 1999; Taylor, Goldie and Evans, 

1999; Leardini et al., 2013). Interestingly, trunk motion in the sagittal plane is considered variable 

amongst individuals whilst trunk obliquity and rotation exhibit more consistent between-subject 

waveforms (Whittle and Levine, 1999; Thorstensson et al., 1982). This can be seen in Table 7.2, as 

standard deviations are generally greater relative to ROM means in the sagittal plane, meaning that 

coefficients of variation are larger than in the coronal or transverse planes. 

Studies analysing trunk kinematics have traditionally reported local maxima and minima values of the 

time series data (Table 7.2). To explore the age-response in trunk kinematics during gait, analysing 

phase-specific effects may be more valuable than simply comparing gait peaks and troughs. Indeed, 

comparing discrete measures may lead to inconsistent findings between studies. Needham, Stebbins 

and Chockalingam (2016) showed that trunk ROM in all three cardinal planes varied between clusters 

of studies due to specific configurations within different laboratories. Indeed, lumbar spine ROM could 

vary as much as 10° between studies depending on the plane of motion (Needham, Stebbins and 

Chockalingam, 2016). Despite differences in methodologies and equipment, the literature consistently 

shows less trunk ROM in the sagittal plane compared to the coronal and transverse planes (Table 7.2). 

However, it is unknown how trunk kinematics change with advancing age. In healthy ageing, gait speed 

decline is not always observed (Schmid et al., 2017), and possibly has little effect on trunk kinematics 

(Taylor, Goldie and Evans, 1999) although this is equivocal (McGibbon and Krebs, 2001). Therefore, 

typical changes associated with ageing gait may not alter trunk movement. Due to inconsistent 
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methods, disparate findings, a lack of research focusing on age-related changes in trunk kinematics 

and the importance of the trunk in performing ADLs, further investigation into age-related alterations 

in trunk kinematics during gait is warranted. 



CHAPTER 7 
 

149 | P a g e  
 

Table 7.2 Characteristics of studies analysing trunk kinematics during gait in healthy populations 

Study Sample 
characteristics Segment / model Gait 

conditions 
Model 

outcomes Planes Findings 

Thorstensson 
et al. (1982) 

Healthy men (n = 7) 
aged 18 to 34 years 

The angle between the line 
connecting C7 and L3 and the 
vertical in the frontal plane and 
the corresponding angle in the 
sagittal plane. 

Set range of 
walking 
speeds from 
1.0-2.5 m/s 

Absolute 
trunk angle 

Sagittal 
Coronal 

Trunk movements in the frontal plane (2-9°) were less 
variable than in the sagittal plane (2-12°) 

Thurston 
(1985) 

Healthy male 
controls (n = 10) 
aged 63.4 ± 8.1 
years 

Clusters attached to the upper 
lumbar spine and the sacrum. 

Self-selected 
walk speed 

Relative 
lumbar spine 

angle 

Sagittal 
Coronal 

Transverse 

Relative spine flexion/extension ROM was 5.2 ± 1.1°, 
lateral flexion ROM was 6.8 ± 1.8° and axial rotation 
was 8.8 ± 2.5°. 

Stokes, 
Andersson and 
Forssberg 
(1989) 

Normal females (n = 
3) and males (n = 5) 

LEDs attached to triangular plates 
fitted to the posterior of the pelvis 
and thorax via a waist belt and 
shoulder harness. 

Self-selected 
walk speed 

Absolute 
trunk angle 

Sagittal 
Coronal 

Transverse 

The thorax had a biphasic rotational pattern. Subjects 
inflexion points occurred near FC. The right shoulder 
was elevated (with respect to the left) in synchrony 
with the forward swing of the left leg. ROM was 3.2 ± 
0.9° in the sagittal plane, 4.7 ± 2.0° in the coronal plane 
and 4.6 ± 1.4° in the transverse plane. 

Opila-Correia 
(1990) 

Female subjects (n 
= 14) 

Abstract only, model not 
described. 

High vs low-
heeled gait 

Absolute 
trunk angle 

Sagittal 
Coronal 

Transverse 

Trunk ROM was 11.1° in the sagittal, 12.6° in the 
coronal and 17.5° in the transverse planes. 

Krebs et al. 
(1992) 

Healthy women (n 
= 6) and healthy 
men (n = 5) aged 
58.9 ± 17.9 years 

11 segment whole body model: 
head, trunk, pelvis, thighs, shanks, 
feet, and upper arms. Each 
segment was modelled as a rigid 
body having 6 degrees of 
freedom. 

Self-selected 
walk speed 
(1.1 ± 0.1 m/s) 

Absolute and 
relative 

trunk angles 

Sagittal 
Coronal 

Transverse 

Flexion peak near each heel-strike, with maximum 
extension occurring during single-limb support, but the 
amplitude of these motions was small. Frontal-plane 
trunk motions relative to the pelvis tended to occur 
toward the stance limb, reaching their maximum at the 
time of opposite side toe- off. Transverse trunk 
rotation relative to room coordinates was also 180 
degrees out of phase with the pelvis and achieved 
maxima about 10% of a cycle after each heel-strike, 
rotating so that the ipsilateral shoulder was posterior 
to the heel-strike limb, nearly directly over the foot at 
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mid-stance, and maximally anterior to the stance limb 
near toe-off. 

Crosbie, 
Vachalathiti 
and Smith 
(1997) 

Healthy volunteers 
(n = 108) from the 
local community. 
Men (n = 50) were 
aged 46.3 ± 18.3 
years and women 
(n = 58) were aged 
45.2 ± 18.6 years 

13 body markers were attached to 
the dorsal surface of the trunk and 
three each to the right and left 
thighs. Segments modelled as 
rigid bodies and movement 
defined within spinal regions in 
terms of the relative motion 
between the rigid body above and 
the rigid body below the region of 
interest. 

Self-selected 
walk speed 
(1.1 ± 0.1 m/s) 

Relative and 
absolute 

upper and 
lower trunk, 
and lumbar 

angles 

Sagittal 
Coronal 

Transverse 

Consistent patterns were observed within and 
between segments and movements, with apparent 
consequential trunk motion following pelvic 
displacements. This suggests that the spinal 
movements associated with walking are linked to the 
primary motions of the pelvis and the lower limbs. 
Pelvis variance was substantially greater than that of 
the trunk segments. Lumbar ROM was 3.5 ± 2.0° in the 
sagittal plane, 9.0 ± 3.5° in the coronal plane and 4.5 ± 
2.0° for axial rotation. 

Callaghan, 
Patla and 
McGill (1999) 

Healthy male 
university students 
(n = 5) aged 25.0 ± 
2.8 years 

Fifteen infrared diodes were 
attached to define a five-segment 
rigid link model: right foot, right 
leg, right thigh, pelvis, and trunk. 
A rigid plate with three markers 
was attached to the posterior 
aspect of the sacrum with a 
second similar plate attached at 
the T12/L1. 

Fast, slow and 
normal 
walking based 
on cadence 
(normal = 
103.2 ± 4.4 
steps/min) 

Relative 
lumbar 
angles 

Sagittal 
Coronal 

Transverse 

The motion of the trunk, at least at the straddle 
position, seems to offset the rotation of the pelvis 
maintaining a smaller net range of motion for the 
lumbar spine. Flexion extension of the trunk was found 
to be the most variable measure in lumbar kinematics. 
Mean ROMs were 6.2° (flexion/extension), 6.7° (lateral 
bend), 7.1° (axial twist). 

Sartor et al. 
(1999) 

Healthy men (n = 6) 
and women (n = 
11) with a mean 
age of 28 and range 
of 21 – 47 years 

Markers were placed on the 
spinous processes of T4 and T9, 
sternal notch, bilateral ASIS, 
spinous process of S2. For the 
trunk, the sternal notch and T4 
markers were used to create the 
anatomical axis, while the T9 
marker made up the plane. 

Self-selected 
walk speed 
(1.36 m/s) 

Absolute and 
relative 

trunk angles 

Sagittal 
Coronal 

Transverse 

Relative to the pelvis, the trunk was extended an 
average of 5° at initial contact. The trunk, relative to the 
pelvis, was extended throughout the gait cycle but 
exhibited two small peak oscillations in extension at 
the end of mid-stance and during mid-swing. Relative 
to the pelvis, the trunk was laterally extended an 
average of 1° toward the stance limb at initial contact. 
As the body moved through the gait cycle, the trunk 
continued to laterally extended until midstance, when 
it reached a maximum value of 6° of lateral extension 
over the stance limb. 
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Taylor, Goldie 
and Evans 
(1999) 

Normal healthy 
young adults (n = 
27) aged 23.5 ± 5.1 
years and 20.6 ± 
2.8 years 
dependent on 
walking speed 
group (slow and 
self-selected, 
respectively). 

Retroreflective markers placed on 
orthogonal rigs on subject’s 
sacrum and superior lumbar 
spine. Rigid segments created 
from markers to determine the 
angular movements of lumbar 
flexion/extension, axial rotation 
and lumbar lateral flexion. 

Self-selected 
treadmill walk 
speed 

Absolute and 
relative 
lumbar 
angles 

Sagittal 
Coronal 

Transverse 

Amplitude of lumbar lateral flexion decreased with 
slower walking. In contrast, absolute lumbar spine 
movements did not differ due to decreased walking 
speed. The lumbar spine should be interpreted with 
respect to a frame of reference. In the local reference 
frame, lumbar ROM was 3.8 ± 1.6° (sagittal), 12.0 ± 1.9° 
(coronal) and 6.4 ± 1.9° (transverse). In the global 
reference frame, lumbar ROM was 3.2 ± 0.7° (sagittal), 
3.5 ± 1.3 (coronal) and 9.0 ± 3.0° (transverse). 

Whittle and 
Levine (1999) 

Healthy young 
adult males (n = 20) 

Motion of the lumbar spine was 
derived from the differences 
between the motion of the pelvis 
and the motion of the thoraco- 
lumbar junction, as determined by 
the relative motion between the 
two sets of marker cluster rigs. 

Slow and self-
selected 
treadmill walk 
speed 

Relative 
lumbar spine 

angle 

Sagittal 
Coronal 

Transverse 

Change in lumber lordosis across the gait cycle was 
consistent within subjects but varied considerably 
between subjects. The phase relationships between 
pelvic tilt and lumbar lordosis also varied considerably 
between subjects. Movement patterns were more 
consistent in the coronal plane. Lateral bend generally 
followed the pattern of pelvic obliquity. The transverse 
plane showed similar waveforms between axial 
rotation of the pelvis and axial rotation of the lumbar 
spine, except that motion of the pelvis was of greater 
magnitude and occurred later in the gait cycle than the 
motion of the lumbar spine. Lumbar spine ROM was 4.0 
± 1.2° in the sagittal, 7.6 ± 1.7° in the coronal and 8.3 ± 
2.2° in the transverse planes. 

Cromwell et 
al. (2001) 

Healthy female (n = 
2) and male (n = 6) 
volunteers aged 
25.6 ± 3.3 years 

Trunk segment defined by 
markers placed at the interspace 
between the fifth lumbar and the 
first sacral vertebrae and the 
interspace between the sixth and 
the seventh cervical vertebrae. 
Segmental angles were calculated 
with respect to an external 
horizontal reference. 

Self-selected 
walk speed 

Absolute 
trunk angle Sagittal 

During initial double limb support, the trunk moved 
from a position of flexion toward extension. At the 
beginning of single limb support, the trunk was at 
maximum extension and then began to flex 
approaching terminal double limb support. Trunk 
maintained flexion throughout the gait cycle. Mean 
average excursion was 3.3° and mean forward position 
was 7.9°. 
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McGibbon and 
Krebs (2001) 

Healthy adults (n = 
93) stratified into 
an old group (70.7 
± 8.7 years) and 
young group (29.8 
± 6.8 years). 

Trunk defined as a rigid segment 
between the C1–C2 and L4–L5, 
and the pelvis as a rigid segment 
between the low-back joint 
and the hips. Lower trunk referred 
to the trunk–low-back joint–pelvis 
system. 

Self-selected 
walk speed  
(Old 1.1 ± 0.2 
m/s; Young 1.3 
± 0.2 m/s) 

Absolute and 
relative 

trunk angles 
Sagittal 

Low-back ROM was significantly greater in young 
subjects compared with old subjects 4.8 ± 1.8° vs 3.9 ± 
1.7°. However, trunk ROM not significant between age 
groups 4.4 ± 1.2° vs 4.0 ± 1.6°. Peak low back and trunk 
angles were also not significantly different (trunk: 5.5 ± 
2.1° vs 6.1 ± 4.0°; low back: 7.3 ± 3.5° vs 7.4 ± 4.8°). 

Vogt, Pfeifer 
and Banzer 
(2002) 

Healthy men (n = 9) 
aged 28.7 ± 4.4 
years 

Plate mounted ultrasound 
markers were attached on the S1 
and the T12. The projection 
method of angle definition was 
used for calculation of net angular 
displacements in the sagittal, 
transverse and frontal plane. 

Self-selected 
walk speed 
(1.1 m/s) 

Relative 
thorax angle 

Sagittal 
Coronal 

Transverse 

Differences exist for some angular lumbar spine 
movement parameters between walkway and 
treadmill locomotion, specifically in the coronal and 
transverse planes. Flexion/extension ROM was 4.4°, 
lateral flexion ROM was 3.9° and axial rotation ROM 
was 8.2°. 

Van Emmerik 
et al. (2005) 

Healthy men (n = 
15) and women (n 
= 15) stratified into 
equally sized (n = 
10) younger (23.3 ± 
4.0 years), middle 
(49.3 ± 5.4 years) 
and older (72.6 ± 
3.8 years) age 
groups. 

The trunk was defined by three 
markers, one aligned with C7 and 
the other two near the bottom of 
the rib cage. Markers on the pelvis 
were attached to the left and right 
posterior aspect of the ilium and 
the sacrum. Lumbo-sacral joint 
angle was defined as the rotations 
of the trunk with respect to the 
pelvic reference frame. 

Predetermined 
walking 
speeds (0.2 to 
1.8 m/s) 

Relative 
trunk angle 

Sagittal 
Coronal 

Transverse 

Pelvic rotations in sagittal, frontal and transverse 
planes of motion were systematically reduced with 
age. Older individuals showed reduced trunk flexion–
extension in the sagittal plane and increased trunk axial 
rotation in the transverse plane. 

Leteneur et al. 
(2009) 

Healthy young men 
(n = 25) aged 26.2 ± 
5.2 years 

14 body segment model. The neck 
and trunk were considered as a 
single segment using shoulder and 
hip markers. A marker was placed 
on the L5.  

Self-selected 
walk speed 
(1.4 ± 1.1 m/s) 

Absolute 
trunk angle Sagittal 

Trunk inclination variation is associated with the type 
of walking patterns. Forward leaners exhibit a flexed 
trunk position which is reversed in backward leaners. 
Regardless of trunk inclination, trunk ROM is 
approximately 2-3°. 

Chung et al. 
(2010) 

 
Healthy men (n = 
11) and women (n 
= 9) aged 32 ± 6 

PiG full body marker model  
Self-selected 
walk speed 
(1.2 ± 0.1 m/s) 

Absolute and 
relative 

trunk angles 

Sagittal 
Coronal 

Transverse 

Trunk motions to the ground showed narrow ranges in 
all three planes, whereas trunk motions relative to the 
pelvis tended to be larger. Trunk tilt relative to the 
pelvis and global reference planes of women were 
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years and 29 ± 6 
years, respectively 

about 5° less than those of men, meaning a more 
extended trunk posture in women. Trunk ROM relative 
to the global was 4° in an anterior position, 3° lateral 
flexion and 7° rotation. Whilst ROM relative to the 
pelvis was 5° in a generally extended position, 13° in 
the coronal plane and 14° in the transverse plane. 

Leardini et al. 
(2013) 
 

Healthy male (n = 
15) and female (n = 
15) participants 
aged 26.5 ± 3.5 
years 
 

Marker-set included 14 markers, 4 
on the pelvis and 10 on the trunk. 
At the thorax, a technical 
reference frame was first defined 
by applying the Single Value 
Decomposition procedure to the 
T2, MAI, PX and IJ markers for 
optimal pose, i.e. position and 
orientation, and estimation. 

Self-selected 
walk speed 
(1.3 m/s) 

Absolute and 
relative 

trunk angles 

Sagittal 
Coronal 

Transverse 

Sagittal thorax inclination attitude altered three-
dimensional kinematic patterns of the upper trunk 
segments during natural gait. Trunk flexion/extension 
ROM (~3°) was generally less than in lateral flexion 
(global = ~3°, relative = ~13°) and in axial rotation 
(global = ~7°, relative = ~ 12°). 

Hendershot 
and Wolf 
(2014) 
 

Male able-bodied 
controls (n = 20) 
aged 28.1 ± 4.8 
years 

Markers were placed on the S1, 
T10, C7, sternal notch, xiphoid, 
acromion processes, ASIS, PSIS, 
and lower extremities (modified 
Cleveland Clinic marker set). The 
trunk was a single rigid segment, 
defined proximally by the 
acromia, C7, and sternal notch, 
and attached distally to the pelvis 
at the lumbosacral (L5/S1) joint. 

Self-selected 
walk speed 
(1.4 ± 0.1 m/s) 

Relative 
trunk angle 

Sagittal 
Coronal 

Transverse 

In the frontal plane, the trunk flexed laterally towards 
the support leg, reaching a peak during single-limb 
stance (ROM ~ 8°). In the sagittal plane, the trunk 
flexed forward following heel strike, extending prior to 
subsequent heel strike (ROM ~ 2°). In the transverse 
plane, the trunk rotated towards the support leg, with 
peak rotations occurring around heel strike (ROM ~ 
13°). 

Fernandes et 
al. (2016) 
 

Convenience 
sample of healthy 
men (n = 11) and 
women (n = 12) 
aged 35 ± 7.3 years 

9-segment model. Lumbar joint 
centre was defined through a 
virtual marker created along the 
distance connecting the L5–S1 
marker and the midpoint between 
the two ASIS markers, projected 
from the thoracic joint centre. 

Self-selected 
walk speed 
(1.2 m/s) 

Relative 
lumbar angle 

Sagittal 
Coronal 

Transverse 

Varied reliability indices for multi-segment trunk joint 
angles and joint moments during gait and an 
acceptable level of error, particularly for sagittal plane 
parameters. Lumbar flexion/extension ranged from -
6.5 to -9.0°, lateral flexion ranged from 1.9 to -2.0° and 
axial rotation ranged from 0.9 to -4.3°. 
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Aminiaghdam 
et al. (2017) 

Healthy male (n = 
6) and female (n = 
6) volunteers aged 
26.0 ± 3.4 years 

A thirteen-body segment model. 
Trunk angle defined by the line 
connecting the L5 marker and the 
C7 marker with respect to the 
vertical axis of the lab coordinate 
system. 

Self-selected 
walk speed (~ 
1.5 m/s) 

Absolute 
trunk angle Sagittal 

Able-bodied individuals recovered almost all assessed 
kinematic parameters comprising the vertical position 
of the CoM, effective leg length and angle as well as hip, 
knee and ankle joint angles at the end of the step-up, 
suggesting an adaptive capacity and hence a 
robustness of human walking with respect to imposed 
trunk orientations. Trunk inclination at foot contact 
was 6.2 ± 3.4° and 5.0 ± 3.4° at foot off. 

Schmid et al. 
(2017) 
 

Healthy volunteers: 
n = 14 adolescents 
(14 ± 2 years); n = 
13 adults (27 ± 3 
years); n = 15 older 
adults (70 ± 2 
years) 

IfB full body marker set combined 
with PiG full body marker set. 

Self-selected 
walk speed 
(Adolescents 
1.3 ± 0.1 m/s; 
Adults 1.5 ± 
0.3 m/s; Older 
1.6 ± 0.1 m/s) 

Absolute and 
relative 
lumbar 
angles 

Sagittal 
Coronal 

Transverse 

Kinematic differences from early adulthood to older 
age are gait speed dependent. Lumbar ROM increased 
from 4.4 ± 1.2° to 5.0 ± 2.6° (sagittal), 6.5 ± 2.1° to 6.8 
± 2.7° (coronal) and 9.9 ± 3.8° to 10.9 ± 4.7° 
(transverse). 

Crawford et al. 
(2018) 

Asymptomatic 
women (n = 3) and 
men (n = 7) aged 
26.3 ± 2.5 years in 
the younger group, 
and nine 
asymptomatic 
adults (n = 3 
women) aged 67.1 
± 4.2 years in the 
older group 

Lumbar lordosis (defined by SACR, 
LUM, and TLJ markers), and trunk 
inclination (C7-SACR line versus 
vertical). 

Predetermine
d walk speeds 
of 2 and 4 
km/h 

Lumbar 
lordosis 

angle and 
trunk angle 

Sagittal 

Trunk kinematics change with ageing and lumbar 
lordosis angles are not gait speed dependent. Trunk 
inclination ROM decreased from 2.9 ± 0.8° to 2.3 ± 0.8° 
with age whilst lumbar lordosis decreased from 4.4 ± 
3.8° to 2.7 ± 1.4°. 



CHAPTER 7 
 

155 | P a g e  
 

7.1.3.2 Analysis of Trunk Kinetics during Gait 

Fewer studies have analysed trunk kinetics during gait compared to studies assessing kinematics. 

Whilst valuable to understand movement patterns, it is of prime importance to understand the 

internal forces that bring about these movements. Internal joint moments are crucial in maintaining 

dynamic stability (Yack and Berger, 1993) and actuating trunk movements (Hendershot and Wolf, 

2014). In the spine, the LPMs provide a continuous extensor moment to counteract the external flexor 

moment produced by the anterior location of the trunk’s COM (Cresswell, Oddsson and Thorstensson, 

1994). With ageing the thoracolumbar bending moment increases due to postural changes causing an 

anterior shift in the COM of the trunk (Le Huec et al., 2018), which may be further influenced by the 

age-related increase in abdominal adiposity (Ponti et al., 2020). The LPMs are more solicited under 

these conditions, which increases the compressive and shear forces on the lumbar discs by as much 

as 20% (Le Huec et al., 2018). The increase in external flexion moment and subsequent 

counterbalancing muscular effort may be theoretically great enough to cause vertebral fractures in 

older adults(Le Huec et al., 2018). 

To the author’s knowledge, no studies have investigated the effect of ageing on spinal moments in all 

cardinal planes during gait and only one has investigated age-related changes in lumbar spine joint 

power (McGibbon and Krebs, 2001). Of the gait studies identified, lumbar spine moments have been 

analysed to explore normal patterns in healthy individuals (Callaghan, Patla and McGill, 1999), 

pathological deviations in populations with lower-extremity amputation (Hendershot and Wolf, 2014), 

the effects of different postures (Leteneur et al., 2009) and test-retest reliability (Fernandes et al., 

2016). However, the reliability of lumbar spine moments  may be questionable due to data processing 

methods (Leteneur et al., 2009; Hendershot and Wolf, 2014; Callaghan, Patla and McGill, 1999). 

Different cut-off frequencies were used to filter kinematic and force data (Leteneur et al., 2009; 

Hendershot and Wolf, 2014; Callaghan, Patla and McGill, 1999), which may have introduced joint 

moment artefacts (Bisseling and Hof, 2006; Kristianslund, Krosshaug and Van den Bogert, 2012; Bogert 

and Koning, 1996). Furthermore, there is low confidence in what normal trunk moment waveforms 

look like during gait due to studies reporting highly disparate results (Callaghan, Patla and McGill, 

1999). These ambiguous findings were likely due to modelling assumptions as Callaghan, Patla and 

McGill (1999) excluded the left limb in their biomechanical model and subsequently observed 

conflicting joint moment and EMG results. These results, which show that the flexor muscles are 

solicited throughout most of the GC (Callaghan, Patla and McGill, 1999), are also in contrast to the 

literature; reporting extensor muscle activity is more dominant throughout the GC (Hendershot and 

Wolf, 2014; Fernandes et al., 2016; Leteneur et al., 2009; Raabe and Chaudhari, 2016). 
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McGibbon and Krebs (2001) found that peak eccentric low-back power increased with ageing, which 

may be a consequence of muscles absorbing more energy to compensate for increased tendon 

stiffness in older age (Tuite, Renström and O’Brien, 2007; Gajdosik et al., 2005). However, there are 

no other studies to substantiate these findings and increased tendon stiffness with ageing is not a 

universal observation. Other researchers have shown that tendon stiffness decreases with advancing 

age (Onambélé, Narici and Maganaris, 2006). Despite different methodological approaches, trunk 

kinetics are surprisingly consistent (Hendershot and Wolf, 2014; Fernandes et al., 2016; Leteneur et 

al., 2009). The LPMs appear to be active throughout most of the GC, evidenced through internal 

extensor moments (Hendershot and Wolf, 2014; Fernandes et al., 2016; Leteneur et al., 2009; Raabe 

and Chaudhari, 2016). A biphasic pattern is also apparent, where extensor peaks are produced at 

approximately 10 – 20 % (loading response to midstance) and 55 – 65 % (TO) of the GC (Hendershot 

and Wolf, 2014; Leteneur et al., 2009; Raabe and Chaudhari, 2016). EMG findings substantiate this 

phenomenon, revealing peaks of ES and MF electrical activity during the same GC phases (Lamoth et 

al., 2004; Callaghan, Patla and McGill, 1999). McGibbon and Krebs (2001) found that during double 

support and early single support, the LPMs contract eccentrically then concentrically during late single 

support in older adults. Interestingly, the activation pattern of the LPMs is reversed in older age 

(McGibbon and Krebs, 2001). It has also been suggested that older adults increase lower back joint 

power to advance the lower limbs into swing phase to compensate for weakened lower extremity 

muscles (McGibbon, Krebs and Puniello, 2001). However, due to the lack of available literature on this 

topic and variability in reported joint moments (Table 7.3), the effect of age on trunk kinetics during 

gait is not fully understood. 
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Table 7.3 Characteristics of studies analysing trunk kinetics during gait in healthy populations 

Study Sample 
characteristics Segment / model Gait 

conditions 
Model 

outcomes Planes Findings 

Callaghan, 
Patla and 
McGill (1999) 

Healthy male 
university students 
(n = 5) aged 25.0 ± 
2.8 years 

15 infrared diodes were attached 
to define a five-segment rigid link 
model: right foot, right leg, right 
thigh, pelvis, and trunk. A rigid 
plate with three markers was 
attached to the posterior aspect 
of the sacrum with a second 
similar plate attached at the 
T12/L1. 

Fast, slow and 
normal 
walking based 
on cadence 
(normal = 
103.2 ± 4.4 
steps/min) 

Joint 
moments at 

L4/5 

Sagittal 
Coronal 

Transverse 

The flexion/extension moment curve exhibited two 
maximums, which occurred approximately at toe off. 
The two minimum values started just prior to heel 
strike. At heel contact there was a flexor peak moment 
present followed by an extensor peak around toe off. 
Peaks ranged from -1.6 to 1.8 Nm/(kg*m). The lateral 
bend moment produced a consistent pattern, 
oscillating about the moment zero axis. Corresponding 
to heel contact there was a lateral bend moment to the 
side of contact. Prior to toe off and swing phase there 
was a lateral bend moment to the swing leg side 
returning to the opposite side following the 
consequent heel strike. Peaks ranged from -1.4 to 2.6 
Nm/(kg*m). Axial twist moments were small ranging 
from -0.7 to 0.7 Nm/(kg*m). From toe off to the 
following heel contact there was a twist moment to the 
contralateral side. 

McGibbon and 
Krebs (2001) 

Healthy adults (n = 
93) stratified into 
an old group (70.7 
± 8.7 years) and 
young group (29.8 
± 6.8 years). 

Trunk defined as a rigid segment 
between the C1–C2 and L4–L5, 
and the pelvis as a rigid segment 
between the low-back joint and 
the hips. Lower trunk referred to 
the trunk–low-back joint–pelvis 
system. 

Self-selected 
walk speed  
(Old 1.1 ± 0.2 
m/s; Young 1.3 
± 0.2 m/s) 

Net 
mechanical 

power at the 
L4/5 

Sagittal 

Net mechanical power waveform is reversed in older 
age for the low-back due to trunk leading strategy. 
Peak eccentric power is greater in elderly compared to 
younger adults and occurs when entering single-
support phases (approx. young = 4-5 Watts/kg vs old = 
10-15 Watts/kg). Peak concentric power is similar 
between old and young (approximately 4-7 Watts/kg). 

Leteneur et al. 
(2009) 

Healthy young men 
(n = 25) aged 26.2 ± 
5.2 years 

14 body segment model. The neck 
and trunk were considered as a 
single segment using shoulder and 

Self-selected 
walk speed 
(1.4 ± 1.1 m/s) 

Lumbosacral 
L5 moments Sagittal 

Thoraco-lumbar extension moment peaks were 1.4 
times higher for the forward leaners while flexion 
moment peaks were approximately 1.4 times higher 
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hip markers. A marker was placed 
on the L5.  

for the backward leaners. Moments ranged from 0.7 
Nm/kg in flexion to 1.2 Nm/kg in extension. 

Hendershot 
and Wolf 
(2014) 

Male able-bodied 
controls (n = 20) 
aged 28.1 ± 4.8 
years 

Markers were placed on the S1, 
T10, C7, sternal notch, xiphoid, 
acromion processes, ASIS, PSIS, 
and lower extremities (modified 
Cleveland Clinic marker set). The 
trunk was a single rigid segment, 
defined proximally by the 
acromia, C7, and sternal notch, 
and attached distally to the pelvis 
at the lumbosacral (L5/S1) joint. 

Self-selected 
walk speed 
(1.4 ± 0.1 m/s) 

Lumbosacral 
L5/S1 

moments 

Sagittal 
Coronal 

Transverse 

Increased and asymmetric peak moments at the low 
back among persons with unilateral lower-extremity 
amputation, particularly in the frontal plane, suggest 
potential mechanistic pathways through which 
repeated exposure to altered trunk motion and spinal 
loading may contribute to low-back injury risk. For the 
control group, mean low back moments were 0.2 ± 0.1 
Nm/(kg*m) in flexion/extension, 0.1 ± 0.1 Nm/(kg*m) 
in lateral flexion and 0.1 ± 0.03 Nm/(kg*m) in axial 
rotation. 

Fernandes et 
al. (2016) 

Convenience 
sample of healthy 
men (n = 11) and 
women (n = 12) 
aged 35 ± 7.3 years 

9-segment model. Lumbar joint 
centre was defined through a 
virtual marker created along the 
distance connecting the L5–S1 
marker and the midpoint between 
the two ASIS markers, projected 
from the thoracic joint centre. 

Self-selected 
walk speed 
(1.2 m/s) 

Lumbar joint 
moment 

Sagittal 
Coronal 

Transverse 

Varied reliability indices for multi-segment trunk joint 
moments during gait and an acceptable level of error, 
particularly for sagittal plane parameters. Moments in 
the sagittal plane varied from 0.42 to -0.23 Nm/kg, 
from 0.19 to -0.33 Nm/kg in the coronal plane and 0.07 
to -0.13 Nm/kg in the transverse plane. 
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7.1.3.3 Functional Demand 

Physical function has typically been assessed by scoring physical tasks based on timed performance 

(Zeng et al., 2016; Sternfeld, 2002; Hicks et al., 2005a; Shahtahmassebi et al., 2017). This approach 

may oversimplify complex biomechanics within the performance of a physical task; exemplified by 

DeVita and Hortobagyi (2000) showing altered kinetics and kinematics with ageing gait despite 

performance being similar amongst younger and older adults. Other studies have provided more in-

depth biomechanical analyses for assessing physical function in older adults (Reeves et al., 2008; 

Samuel et al., 2011; Samuel, Rowe and Nicol, 2013). These studies reported the FD of everyday tasks 

by normalising joint moments to their maximum capacity assessed through isokinetic dynamometry. 

For movements such as normal gait, muscles are constantly changing their role throughout the GC 

despite their relatively constant activation (Winter et al., 1990; Eng and Winter, 1995; Silder, 

Heiderscheit and Thelen, 2008). This is demonstrated by the function of muscles transitioning 

between propulsion and stabilisation causing contraction type and angular velocity to change 

accordingly. To accurately determine FD, the kinematics and contraction type corresponding to the 

joint during the movement must be replicated using isokinetic dynamometry. Therefore, FD as an 

expression of how biomechanically challenging a task is provides an intuitive metric. It is also easily 

translated to real-world settings as FD is expressed as a percentage of MVC, rather than more abstract 

quantities such as joint moments. Whilst FD has been applied to the lower limbs (Reeves et al., 2008; 

Samuel et al., 2011; Samuel, Rowe and Nicol, 2013), it has not been investigated in the trunk. Due to 

changes in trunk kinematics and muscular activation patterns in older age, mechanical energy 

demands of the lower-back muscles increases (McGibbon and Krebs, 2001). Together with trunk 

strength reductions (see Chapter 6), it is likely that older adults experience an increase in FD in the 

lower-back during gait. To fill this gap in the literature, investigation into the age-related change in FD 

of the trunk during gait is needed. 

 

7.1.4 Aims, Objectives and Hypotheses 

The main aim of this study was to investigate the effect of age on biomechanical function of the trunk 

during normal walking gait. A secondary aim was to determine FD of the trunk during normal walking 

and investigate how it is affected in older age. A further aim was to investigate the relationship 

between morphological degeneration of the lumbar musculature and biomechanical outcomes. To 

achieve the study aims, specific objectives were to: 
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Table 7.4 Objectives and hypotheses for chapter 7 

Objective Null Hypothesis 

1 

Determine an appropriate 
experimental set-up and biomechanical 
model to allow kinematic and kinetic 
analysis of the trunk in older and 
younger adults 

n/a 

2 
Analyse trunk kinematics relative to the 
global and pelvic reference frames in all 
three Cardinal planes during the GC 

Peak amplitudes and ranges of trunk motions 
will not be significantly reduced in the OG 
compared to the YG 

3 Analyse trunk moments and powers in 
all three Cardinal planes during the GC 

Peak trunk moments and powers in the OG will 
not be significantly different to the YG 

4 
Identify peak trunk moments at key 
instances during the GC and normalise 
to individual’s maximal capacity to 
derive a measure of functional demand 

Functional demand will not be significantly 
greater in the OG compared to the YG 

5 
Calculate total positive and negative 
work performed and trunk powers 
produced during the GC 

a) The OG will not perform significantly more 
negative work than the YG  
b) The OG will not perform significantly less 
positive work than the YG 

6 

Compare trunk kinematics, kinetics and 
FD between the OG and YG using 
traditional and novel statistical 
methods to explore discrete and phase-
specific differences in the GC 

b) Kinematic and kinetic differences between 
age groups will not be phase-specific 

7 
Analyse the moderating effects of LPM 
morphology and VPA by including them 
as covariates in appropriate statistical 
tests 

a) Age-related differences in LPM morphology 
will not significantly influence changes in trunk 
biomechanics during gait 
b) VPA will not significantly influence changes in 
trunk biomechanics during gait 
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 Methods 

7.2.1 Laboratory Set-up 

Data collection sessions were conducted in the Gait Laboratory at UHCW (Figure 7.2). Three-

dimensional (3-D) motion analysis was achieved using a Vicon motion capture system consisting of 14 

infrared cameras (Vero2.2, Vicon, Vicon Motion Systems, Oxford, UK) sampling at 100 Hz and three 

integrated floor-mounted force plates (AMTI-OPT400600-1K-STT, AMTI, Watertown, MA, US) 

sampling at 1000 Hz. The system also consisted of two synchronised Vue video cameras (Vicon Motion 

Systems, Oxford, UK) capturing at 50 Hz. Capture frequencies were chosen based on Nyquist theorem 

(Nyquist, 1928; Shannon, 1998), where sampling frequency must be greater than twice the highest 

frequency movement in the signal plus one. Typical kinematic frequency content of gait is less than 

15 Hz, therefore a minimum of 31 Hz capture frequency is required to preserve 99% of the signal 

power (Antonsson and Mann, 1985). Indeed, other studies have suggested that 10 Hz capture 

frequency is sufficient as the frequency of most fundamental harmonics during gait is less than 2 Hz 

(Dujardin et al., 1997). During normal gait the lower limb experiences a high frequency impulsive load 

at heel strike, with frequency components between 10 – 75 Hz (Simon et al., 1981). Therefore, a 

sampling frequency of 1000 Hz for the force plates should prevent signal aliasing. Others have 

suggested that sampling frequency should be ten times greater than the highest anticipated frequency 

in the signal to avoid signal aliasing (Challis, 2008). However, this is more pertinent when movements 

are atypical (Challis, 2008). Gait is highly cyclical and due to a large body of literature frequency 

content of gait is well established. Two sets of Brower timing gates (TCi System, Brower, Utah, US) 

were positioned 4 m apart in the centre of the 10 m walkway. This allowed sufficient distance for 

participants to achieve a steady walking speed. The timing gates were used to calculate walking speed 

for the gait trials and provided real-time feedback during the practice trials to ensure consistency.
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Figure 7.2 Schematic diagram of experimental set-up (a), 3-D viewpoint (b) and images of the Gait Laboratory set-up for data collection (c)  
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7.2.2 Anthropometric Measurements 

Anthropometric measurements, performed by AD, were obtained for each participant to the nearest 

millimetre using an anatomical tape measure and digital callipers (RS PRO 150mm Digital Calliper, RS 

Components, UK). The following measurements were input into Vicon’s proprietary software (Vicon 

Nexus 2.10.1, Vicon Motion Systems, Oxford, UK) to facilitate scaling and biomechanical modelling of 

segments with the PiG Model (Vicon, 2017): height (mm), body mass (kg), shoulder offset (mm), elbow 

width (mm), wrist width (mm), hand thickness (mm), leg length (mm), knee width (mm) and ankle 

width (mm). PiG automatically calculates other anthropometric parameters required by the 

biomechanical model (Appendix n). 

 

7.2.3 Three-dimensional Motion Capture 

7.2.3.1 Calibration Procedure 

In accordance with manufacturer guidelines, the system was initialised and cameras were given at 

least one hour to warm-up prior to each data collection to ensure temperature variations did not 

affect accuracy. A dynamic calibration was then performed by waving a calibration wand (Figure 7.3) 

to determine the capture volume. A systematic approach was adopted for the calibration procedure; 

always starting at ground level by the force plates and covering the capture volume within the 

cameras’ FOV (6 x 6 x 2 m). Once all cameras had processed the required number of samples in Full 

Calibration mode, a static calibration was performed to determine the laboratory global coordinate 

system. This was achieved by placing the calibration wand on the corner of force plate two (Figure 

7.2a). The global Z axis defined the vertical, the global X axis defined the antero-posterior axis 

(direction of walking) and the global Y axis defined the medio-lateral axis. Residual errors of less than 

2 mm were accepted for each camera. 

 

Figure 7.3 Calibration Wand (Vicon Active 
Wand v2)  
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7.2.3.2 Plug-in Gait Model 

Thirty-five passive retro-reflective markers (14 mm diameter with a 17 mm hard plastic base and 3 

mm thread) were attached to anatomical landmarks (Appendix o) on the participant according to the 

PiG Full Body Marker Model (Figure 7.4). Participants wore tight underwear only, allowing markers to 

be directly attached to the skin, eliminating marker movement artefacts caused by clothing. To 

eliminate inter-rater error, marker placement and data collection for all participants were performed 

by the same researcher (AD), who was experienced in 3-D motion capture and marker placement (8 

years of experience). Anatomical landmarks were located by palpating the joint area. Although 

accuracy is inevitably affected by marker movement artefacts caused by the interposition of soft 

tissues between the markers and bony landmarks (Gao and Zheng, 2008; Leardini et al., 2005; Della 

Croce et al., 2005), markers were placed precisely on the bony landmarks where the skin is thin and 

the markers move with the underlying bony structure (Dujardin et al., 1997). Precise marker 

placement was paramount as large errors can result from misplacement. For example, misplacement 

of the lateral epicondyle knee marker by 5 mm can cause an error of 2° in knee angles (Szczerbik and 

Kalinowska, 2011). Whilst the researcher applying the markers was experienced, ten familiarisation 

sessions prior to the first data collection session were undertaken to ensure anatomical landmarks 

could be reliably identified.  
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PiG requires four assumptions to be met for the model to be successfully applied: 1) Subject 

parameters are input and the minimum required markers are present for the lower body model (pelvis 

markers) and the upper body model (thorax markers); 2) Static values of each gait trial are needed for 

the definitions of the segments; 3) Rigid segment positions are defined on a frame-by-frame basis. 

Each segment is defined by an origin in the global coordinate system and three orthogonal axis 

directions. These local axes are defined from two directions derived from the marker data using a 

right-handed Cartesian coordinate system, whereby the principal direction is used to establish one of 

the axes in the segment, the second direction is subordinate to the first and in conjunction with it 

Figure 7.4 Marker placements for the Plug-in Gait Marker Model 
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defines a plane and the third axis is perpendicular to this plane; 4) Model outputs are calculated based 

on frame-by-frame positions of the segments.  

 

7.2.3.2.1 Definition of the Trunk and Pelvis 

The PiG model defines the trunk in three dimensions using a Cartesian coordinate system (Figure 7.5). 

The Z axis is the primary axis, pointing downwards along the longitudinal axis and perpendicular to the 

transverse plane. It is calculated from the midpoint between the 7th cervical spinous process (C7 

marker) and the sternal notch (CLAV marker) to the midpoint between the 10th spinous process of the 

thoracic spine (T10 marker) and xiphoid process of the sternum (STRN marker). The secondary 

direction is the X axis, which points forward along the sagittal axis and is perpendicular to the coronal 

plane. It is calculated from the midpoint between the C7 marker and T10 marker to the midpoint of 

the CLAV and STRN markers. The resulting Y axis points leftwards perpendicular to the X and Z axes 

and also to the sagittal plane. The origin is then calculated from the CLAV marker with an offset of half 

a marker diameter backwards along the X axis (Vicon, 2017).  

Figure 7.5 Trunk segment displayed with its local Cartesian coordinate system. 
Segment created in Vicon Polygon (version 4.4.5, Vicon Motion Systems, Oxford, UK) 

X 
Y 

Z 
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The dominant axis of the pelvis segment is the Y axis, with a direction derived from the RASI marker 

to the LASI marker. The secondary direction is derived using the mean of the left and right posterior 

superior iliac spines (LPSI and RPSI markers) to the RASI marker. The position and scale of the pelvis is 

determined by the LASI and RASI markers, since they also determine the origin of the orientation of 

the pelvis in the coronal plane (Vicon, 2017). The LPSI and RPSI markers determine the anterior tilt of 

the pelvis segment. The Z axis is upwards along the longitudinal axis whilst the X axis is forwards. The 

LASI and RASI markers are used to calculate the lateral positions of the hip joint centres within the 

pelvis segment (Vicon, 2017). The origin of the pelvis is initially taken as the midpoint between the left 

and right anterior superior iliac spines (LASI and RASI markers), which is then shifted to the midpoint 

of the hip joint centres once they are defined (Figure 7.6). A high degree of accuracy is required when 

positioning the LASI and RASI markers since they affect the determination of the femur segments 

which impacts on the angles of the hip and knee joints (Vicon, 2017). 

  

X 

Y 

Z 

Figure 7.6 Pelvis segment displayed with its local Cartesian coordinate 
system. Segment created in Vicon Polygon (version 4.4.5, Vicon Motion 
Systems, Oxford, UK) 
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7.2.3.2.2 Kinematic Model 

Segments were modelled as rigid bodies. Three non-colinear points were used to define the 

orientation of a segment. Using the relative orientation of two  segments, joint kinematics were 

calculated from Cardan/Euler angles (YXZ) (Kadaba, Ramakrishnan and Wootten, 1990). PiG uses Euler 

angles to calculate joint angles allowing clinical descriptions of motion (Vicon, 2017). Euler angles are 

typically used to describe relative rotations of one segment with respect to another reference segment 

in three-dimensions (Chao et al., 1983). These angles are a set of three finite rotations that describes 

the sequence of rotations used to achieve the final orientation of a segment from the reference 

orientation (Kadaba, Ramakrishnan and Wootten, 1990). The rotation order sequence was 

flexion/extension followed by abduction/adduction then internal/external rotation, which has been 

recommended as standard reporting of joint actions (Cole et al., 1993). Euler angles can be 

represented as absolute rotations relative to the global reference frame (laboratory axes) and as 

relative rotations (Vicon, 2017). To calculate relative Euler angles, a set of orthogonal embedded axes 

need to be defined in the moving segment and the reference segment (Kadaba, Ramakrishnan and 

Wootten, 1990). PiG uses embedded axes to calculate joint kinematics in the coronal and transverse 

planes (Vicon, 2017). Pelvis and trunk-G kinematics were expressed in the global reference frame, 

whilst trunk-P kinematics were expressed as the relative angle between the trunk and pelvis in the 

pelvic reference frame. Anterior/posterior movement of the trunk-G and pelvis referred to latero-

lateral rotation resulting in tilting in the sagittal plane. Flexion/extension described the sagittal plane 

motion of the trunk-P. Lateral tilt and obliquity referred to trunk-G and pelvic movements in the 

coronal plane, respectively. Lateral flexion referred to trunk-P movement in the coronal plane where 

ipsilateral flexion described movement towards the reference limb (i.e. first limb to contact the force 

plate) and contralateral flexion described movement away from the reference limb toward the 

contralateral limb. Finally, axial rotations of the trunk-G, trunk-P and pelvis occurred in the transverse 

plane. Motion in this plane was described as either protraction or retraction, where protraction was 

defined as rotation away from the reference limb whilst retraction was rotation toward the reference 

limb (Sartor et al., 1999). 

 

7.2.3.2.3 Kinetic Model 

Net joint moments (NJMs) were calculated using an inverse dynamics approach to solve the equations 

of motion. Kinetic calculations were based on external forces (GRF), kinematic data and segmental 

inertial properties, such as a segment’s mass, moment of inertia and radii of gyration. The assumptions 

for NJM calculations where gravity and force plate measurements were the only external forces in the 

system and segment masses, COG and radii of gyration were known (Dempster, 1955). NJMs order 
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sequence was flexion/extension, lateral flexion then axial rotation. Analogous to Sadeghi, Allard and 

Duhaime (2000), mechanical joint powers were expressed in the three anatomical planes rather than 

as the scalar product of joint moments and angular velocities. Whilst mathematically power is a scalar 

quantity, expressing power as three components enables a better understanding of the biomechanical 

actions of the trunk musculature. For example, when expressed as a scalar it is assumed that most of 

the power generated at a joint will be in the plane corresponding to the direction of COM progression. 

As trunk kinetics are not well characterised during normal walking gait, expressing joint powers as 3-

D vector quantities may highlight otherwise obscured complex interactions and be more meaningful 

physiologically. The kinetic hierarchy started from the foot as this segment is in contact with the force 

plate (Appendix p). 

 

7.2.3.3 Walking Protocol 

7.2.3.3.1 Static Trials 

Prior to dynamic trials, static calibration trials were completed in three different poses. Participants 

held a static pose for three seconds in the anatomical, fundamental and T-pose positions (Figure 7.7). 

To ensure all markers had been correctly assigned, marker labelling in Nexus software was manually 

performed following static calibration trials for each participant. This also enabled live tracking during 

dynamic gait trials which in turn allowed data quality to be visually inspect during the session (i.e. 

marker drop-out and ghost markers).  

  

a b c 

Figure 7.7 Static calibration poses. (a) Fundamental position, (b) anatomical 
position and (c) T-pose position 
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7.2.3.3.2 Dynamic Trials 

Participants performed a series of practice trials prior to data collection trials. Each participant was 

instructed to walk at their usual walking speed using a specific phrase to ensure consistency between 

participants: “Walk as if you were walking to the shops”. A successful trial was defined as a habitual 

steady state walk with complete force plate strikes for two consecutive foot contacts. Habitual steady 

state walking was determined by: 1) participants did not accelerate or decelerate from the start to 

finish of the walking trial and 2) each trial was similar in linear walking speed (within 5% of mean). The 

first foot contact with a force plate was also required to only contact the first force plate. To ensure 

this, participants were asked to adjust their starting position using the coloured lines at the start of 

the walkway (Figure 7.2a). This also helped to minimise force plate targeting as the purpose of start 

position adjustments was not obvious. A research assistant visually inspected foot contacts on the 

force plates, providing real-time feedback on whether any part of the foot had contacted the ground 

outside of the force plate area. If a participant’s foot made contact with the ground outside of the 

force plates or the first foot contact with force plate one was outside of its area, the trial was 

discounted. Once participants had established their optimal starting position and successfully 

completed three consecutive practice trials, data collection trials were performed. Using the same 

criteria as the practice trials, three successful trials were required to complete data collection for each 

participant. If a marker fell off during a trial, the trial was discounted and the marker replaced. Static 

calibrations were also repeated at the end of the data collection to ensure replaced markers were 

accurately repositioned. 

 

7.2.3.4 Data Processing 

All gait trials were processed in Vicon Nexus. Standard Vicon Nexus operations were used to perform 

preliminary marker reconstructions and auto-labelling. Data quality (i.e. unused markers, total gaps, 

markers labelled and correct labelling) for each trial was inspected. Manual labelling was performed 

where necessary. Marker trajectory gap filling was initially performed using the Woltring quintic spline 

filter on up to five samples joined by linear interpolation. Gaps in marker trajectories of the head, 

thorax and pelvis segments were filled using the Rigid Body function on up to 25 frames. Remaining 

gaps of up to 10 frames were interpolated using the Pattern Fill function, which uses the shape of 

another trajectory of a similar motion without a gap to fill the selected gap. Marker trajectory and 

force plate data were then smoothed using a low-pass 4th order zero-lag Butterworth filter with a 10 

Hz cut-off frequency.  
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Careful consideration was taken to select the optimal cut-off frequency. Whilst choosing the optimal 

filter is typically an interactive trial and error process which is best accomplished through visual 

inspection (van den Bogert, 1996), attempts were made to support decisions numerically. Therefore, 

power spectral density analysis of marker trajectories was performed to examine the cumulative 

content of the signal in the frequency domain. Based on the recommendations of Sinclair and 

colleagues (Sinclair et al., 2013a; Sinclair, Taylor and Hobbs, 2013), optimal cut-off frequency was 

chosen as the frequency at which 99% of the signal power was contained below (Sinclair et al., 2013b, 

2013a). The analysis was performed using a custom-built MATLAB script (R2019a version 

9.6.0.1072779, The MathWorks, Inc., Natick, MA, US) (Appendix q). 10 Hz was identified as the optimal 

cut-off frequency across marker trajectories for each participant. This was supported by the original 

decision for a cut-off of approximately 10 Hz based on visual determination. Furthermore, this cut-off 

frequency is able to attenuate noise without distorting high-frequency marker movement at ground 

contact (Sinclair, Taylor and Hobbs, 2013). Analogue GRF data were filtered using the same recursive 

Butterworth filter. Whilst the necessity to filter force plate data is less than marker position data as 

force data is not differentiated in the inverse dynamics equations, several researchers have indicated 

that artefacts are created when different cut-off frequencies are used to filter force and position data 

in inverse dynamics (Bisseling and Hof, 2006; Kristianslund, Krosshaug and Van den Bogert, 2012; 

Bogert and Koning, 1996). To avoid artefacts in the NJM curves, raw GRF data were also filtered with 

the same cut-off frequency of 10 Hz. An example of the effect of filtering is shown in Appendix r. 

Following data filtering, GC events (IC and TO) were detected using a sub-routine in Nexus. This 

operation checks for the vertical GRF crossing the threshold value, which was applied at 20 N, when 

the ankle and toe markers are within the force plate boundary. Trials were visually inspected using 

the video recordings to verify the correct timings of these events. GC events were manually adjusted 

where necessary. Where IC occurred off a force plate (i.e. second heel contact of the first limb), GC 

events were manually identified using visual inspection of the video data. GC parameters were 

calculated following this process. The “Process Dynamic PiG Model” pipeline was then run to generate 

the PiG biomechanical model, which outputs joint kinematics and kinetics and defines them in terms 

of their order and sign conventions (Vicon, 2017). Each trial was manually truncated to include one 

full GC for each limb before the trial (C3D and VSK files) was saved and data were exported in C3D 

format for analysis in Polygon (Version  4.4.5, Vicon Motion Systems, Oxford, UK).  
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7.2.4 Data Analysis 

Analysis of processed gait trials was performed in Vicon Polygon and data were exported as an ASCII 

file (CSV format) for further analysis in Microsoft Excel (Microsoft® Excel ® for Office 365, version 1908, 

Tokyo, Japan). All outcomes were normalised to one GC (100%) using linear interpolation to 101 data 

samples in Polygon. Each trial consisted of a left and right limb GC and three trials were processed for 

each participant. Therefore, kinematic and kinetic peak values as well as spatiotemporal parameters 

were averaged across six GCs for each participant. Ensemble-averages were also generated across 

trials and participants for trunk, pelvis and lower back kinematics and kinetics as well as GRFs. 

 

7.2.4.1 Spatiotemporal Parameters 

Usual gait parameters generated in Polygon included: Cadence (steps·min-1), Step Time (s), Stride Time 

(s), Single Support Time (s), Double Support Time (s), Foot Off (% of GC – referred to as % from here), 

Opposite Foot Contact (%), Opposite Foot Off (%), Step Length (m), Stride Length (m), Step Width (m). 

Walking speed (m·s-1) was calculated using the Brower timing gates. The timing gates were positioned 

4 m apart. This distance was then divided by time taken to walk through the timing gates to derive 

walking speed. Normalised Step Length and Normalised Stride Length were calculated in Microsoft 

Excel by dividing mean Step Length and Stride Length of each participant by their height (m). 

Spatiotemporal parameters with definitions are provided in Table 7.5. 
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Table 7.5 Spatiotemporal parameters with definitions 

Spatiotemporal Parameter Definition 
Cadence Number of steps taken per minute 

Step Time Time between contralateral and the following ipsilateral foot 
contact 

Stride Time Time between successive ipsilateral foot strikes 
Single Support Time Time from contralateral foot off to contralateral foot contact 

Double Support Time Time from ipsilateral foot contact to contralateral foot off plus time 
from contralateral foot contact to ipsilateral foot off 

Foot Off Percentage of the gait cycle of ipsilateral foot off 
Opposite Foot Contact Percentage of the gait cycle of contralateral foot contact 

Opposite Foot Off Percentage of the gait cycle of contralateral foot off 

Walking Speed Distance between timing gates divided by the time taken to walk 
between them 

Step Length Distance from ipsilateral toe marker position to contralateral toe 
marker position 

Normalised Step Length Step length normalised to height 

Stride Length Distance from ipsilateral toe marker position at first and second 
ipsilateral foot contacts 

Normalised Stride Length Stride length normalised to height 

Step Width Distance from contralateral toe marker position onto the first and 
second ipsilateral foot contacts 

 

 

7.2.4.2 Kinematic Outcomes 

Joint kinematics were generated for the trunk and pelvis segments relative to the global coordinate 

system in the sagittal plane (anterior/posterior tilt), coronal plane (obliquity) and transverse plane 

(axial rotation). The relative rotations between the pelvis and trunk segments were also calculated to 

provide joint kinematics for the lower back in the sagittal (flexion/extension), coronal (lateral flexion) 

and transverse (internal/external rotation) planes. Mean peak minima and maxima joint and segment 

angles were obtained during the GC for each participant. Mean ROM was also obtained for the trunk, 

pelvis and lower back throughout the GC for each participant. 

 

7.2.4.3 Kinetic Outcomes 

Lower back joint moments reflected the NJMs between the pelvis and trunk (Vicon, 2017). PiG derives 

NJMs from the local coordinate frame of the distal segment in the hierarchical kinetic chain (Vicon, 

2017). This meant that Vicon Polygon calculated joint moments in the external perspective. The net 

external moment is counterbalanced by the net internal moment produced by the muscles 

predominantly. Mathematically, the internal moment is equal and opposite to the external moment 
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(Derrick et al., 2020). Whilst there is no fundamental difference in adopting an internal or external 

perspective, the decision should be made based on the researcher’s view of the source of the 

moments (Derrick et al., 2020). Furthermore, describing joint moments in the external reference 

frame is not commonplace in biomechanical analysis. Therefore, in accordance with biomechanical 

convention and the fact that NJMs were considered to be the result of muscular actions, an internal 

perspective was adopted, and moment data were adjusted accordingly. Ensemble averages for lower 

back NJMs were calculated in the sagittal, coronal and transverse planes. Mean peak flexion/extension 

lower back moments were obtained at Loading Response (LR), Midstance (MS), Terminal Stance (TS), 

Pre-Swing (PSw), Initial Swing (ISw) and Terminal Swing (TSw). Mean peak minima and maxima lateral 

flexion and axial rotation moments were also obtained during the stance and swing phases. 

Mechanical joint powers for the trunk-P were calculated in Microsoft Excel from the dot product of 

the moment vector (M) and the joint angular velocity vector (ω). Trunk-P powers were expressed in 

the three Cardinal planes to make the results more meaningful physiologically. Therefore, joint powers 

in the trunk-P were given by the following equations: 

𝑃𝑃𝑥𝑥 =  𝑀𝑀𝑥𝑥𝜔𝜔𝑥𝑥 

𝑃𝑃𝑦𝑦 =  𝑀𝑀𝑦𝑦𝜔𝜔𝑦𝑦 

𝑃𝑃𝑧𝑧 =  𝑀𝑀𝑧𝑧𝜔𝜔𝑧𝑧 

Ensemble-averages were calculated for flexion/extension, lateral flexion and rotational lower back 

power. From these curves, key instances of power generation/absorption were identified. In the 

sagittal plane, S1 denoted a peak of lower back power generation during LR, S2 represented peak 

power absorption during MS and S3 was identified as the power generation peak during PSw. In the 

coronal plane, S4 was peak power absorption during LR, S5 was peak power generation at PSw and S6 

represented peak power absorption during swing phase. No key instances were identified for axial 

rotation power. The power curve exhibited local minima and maxima, however, amplitudes were very 

low indicating that the contribution of lower back rotational power was negligible. Finally, the time 

integral of the power curves (i.e. work) (Figure 7.8) was calculated in Microsoft Excel using the 

Trapezium Rule. Total positive work was calculated as the sum of positive areas under the curve 

contained by the X axis. Total negative work was the sum of negative areas above the curve contained 

by the X axis. Total positive and negative work was obtained in all three planes. Joint moments, powers 

and work were normalised to body mass of the participant. 
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Figure 7.8 Graphical representation of the power curve time integral. Orange area represents 
positive work performed and the blue area represents negative work performed. The sum of positive 

areas gave total positive work during the gait cycle, whilst the sum of negative areas gave total 
negative work across the gait cycle. 

 

FD of the lower back was calculated in Microsoft Excel by dividing the joint moment during gait by the 

peak isokinetic MVC moment (see Chapter 6). FD was calculated in the sagittal plane only as trunk 

isokinetic dynamometry was limited to flexion/extension movements. The mean peak 

flexion/extension moments of the lower back during LR, MS, TS, PSw, ISw and TSw were identified on 

the moment-phase curves for each participant. These curves were synchronised with the 

corresponding power-phase curves to determine the neuromuscular action of the lower back (e.g. 

extensors concentrically activated) during LR, MS, TS, PSw, ISw and TSw. The moment-phase curves 

for each participant were then matched up to the corresponding angular velocity-phase curves to 

determine the angular velocity of the lower back when the identified peak moments occurred. This 

information was then used to select peak moments from the most appropriate isokinetic condition 

(i.e. the isokinetic test condition that mimicked the lower back neuromuscular action and movement 

during the corresponding phase of the GC). For example, if a participant’s lower back extensor muscles 

were generating power during LR at 30°·s-1, the concentric extension isokinetic test at 30°·s-1 was 

sought. It should be noted that 15°·s-1 and 30°·s-1 were the most typical trunk angular velocities and 

this did not differ by age. The participant’s peak moment during LR was then divided by their peak 
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isokinetic moment and expressed as a percentage. Therefore, if the participant produced a moment 

of 1 Nm·kg-1 at LR and their peak isokinetic moment was 4 Nm·kg-1, the FD would be 25 %. If the 

demand and capacity were equal, the FD would be 100 %. For each of the identified phases (LR, MS, 

TS, PSw, ISw and TSw), individual FD values were calculated and averaged across age groups. FD was 

given by the following equation: 

𝑀𝑀𝑀𝑀𝑆𝑆𝑀𝑀𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀 𝐷𝐷𝑀𝑀𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷 =  
𝑀𝑀𝑆𝑆𝐷𝐷𝑀𝑀𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑆𝑆𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷 𝐷𝐷𝑀𝑀𝑝𝑝𝐹𝐹𝑆𝑆𝑑𝑑 𝑆𝑆ℎ𝑀𝑀 𝐷𝐷𝑆𝑆𝑚𝑚𝑀𝑀𝐷𝐷𝑀𝑀𝑆𝑆𝑆𝑆 𝐹𝐹𝑆𝑆 𝑆𝑆ℎ𝑀𝑀 𝑑𝑑𝑆𝑆𝐹𝐹𝑆𝑆 𝑀𝑀𝑐𝑐𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑆𝑆𝑀𝑀𝐹𝐹𝐷𝐷𝑀𝑀𝐷𝐷 𝑆𝑆𝑚𝑚𝑆𝑆𝐹𝐹𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀 𝐹𝐹𝑀𝑀𝑆𝑆𝑖𝑖𝐹𝐹𝑆𝑆𝑀𝑀𝑆𝑆𝐹𝐹𝑀𝑀 𝐷𝐷𝑆𝑆𝐷𝐷𝑀𝑀𝑆𝑆𝑆𝑆
 

 

 

7.2.5 Statistical Analysis 

Statistical analyses were performed using SPSS (SPSS® for Windows Version 24.0, IBM Corp, Armonk, 

NY, US) and MATLAB (R2019a, version 9.6.0.1072779, The MathWorks, Inc., Natick, MA, US). Graphical 

presentation was performed using GraphPad Prism (Version 8.3.1, San Diego, CA, US). Data are 

presented as means with standard deviations (mean ± SD) unless otherwise stated.  

 

7.2.5.1 Discrete Variables 

For spatiotemporal parameters, ROM data, kinematic and kinetic peaks, independent samples t-tests 

were performed to compare statistical differences between the OG and YG. Muscle morphology and 

PA covariates were assessed using univariate ANCOVA. Potential covariates were mean MFI and total 

NMV across all of the measured paravertebral muscles as well as VPA. For each discrete variable, 

differences between groups were analysed and reported using the ANCOVA test if a significant 

covariate was found. Zero-order and partial correlations, controlling for age group, were also 

performed between ROMs in the trunk-G, trunk-P and pelvis. Alpha level was set at 5% for all statistical 

tests and effect sizes (Cohen’s d) calculated where appropriate. All data were normally distributed, as 

assessed by Shapiro-Wilks test (p > .05). Where the assumption of homogeneity of variances was 

violated, as assessed by Levene's Test of Equality of Variances (p < .05), the Welch-Satterthwaite 

correction was used. 

 

7.2.5.2 Continuous Variables  

Age group differences in kinematic and kinetic waveforms were compared using Statistical Parametric 

Mapping (SPM) (Friston et al., 2007), which was performed in MATLAB R2019a (v. 9.6.0) and 

implemented using the open-source one-dimensional Statistical Parametric Mapping code (spm1D-
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package, version 0.4.3, http://spm1d.org/index.html) (Appendix s). Rather than basing age-related 

differences in gait on discrete information (i.e. peaks and ROM), SPM provides a novel method to 

investigate the phase-specific effect of age during the GC. Specifically, SPM two-tailed independent t-

tests were used to examine whether mean trunk, lower back and pelvis angle waveform patterns 

differed significantly (α = 0.05) between the age groups. Lower back joint moment and power 

waveforms as well as GRF waveforms were also compared between groups. For each SPM t-test, a 

statistical parametric map (SPM{t}) was created by calculating the SPM{t} test statistic separately at 

each individual point in the normalised time series (Pataky, Vanrenterghem and Robinson, 2017). To 

test the null hypothesis, Random Field Theory determined the critical threshold at which 5 % of 

smooth random curves would be expected to traverse. Field smoothness was based upon estimates 

of temporal gradients of the data residuals to determine statistical significance (Friston et al., 2007; 

Pataky, Vanrenterghem and Robinson, 2017). If SPM{t} crossed the critical threshold, a supra- or infra-

threshold cluster depicted by grey shading indicated a significant difference (p < .05) between groups 

at a specific phase in the GC. For all age-group comparisons, SPM{t} inference and cluster properties 

were provided.  

http://spm1d.org/index.html
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 Results 

7.3.1 Spatiotemporal Parameters 

Opposite foot contact occurred significantly later in the GC for the YG than the OG (t(22) = 2.22, p = 

.037) and stride length was significantly shorter in the OG (t(22) = 2.11, p = .047), however the 

difference in stride length between age groups became non-significant when it was normalised to 

participants’ height (p > .05). The difference between the OG’s mean and YG’s mean was large for 

opposite foot contact (Cohen’s d = 0.91) (Table 7.6). The difference in walking speed between the OG 

and YG was moderate and not significant (p > .05). 

 

Table 7.6 Spatiotemporal parameters (mean ± SD) for the younger and older groups during normal 
gait 

Parameter Young group 
(n = 12) 

Old group 
(n = 12) Independent t-test Cohen’s d 

Rhythm     
Cadence (steps·min-1) 113.9 ± 5.8 113.0 ± 7.2 t(22) = 0.34, p = .74 0.14 
Step Time (s) 0.53 ± 0.03 0.53 ± 0.04 t(22) = -0.40, p = .70 0.16 
Stride Time (s) 1.06 ± 0.05 1.07 ± 0.07 t(22) = -0.41, p = .68 0.17 
Single Support Time (s) 0.41 ± 0.02 0.42 ± 0.02 t(22) = -0.66, p = .51 0.27 
Phases     
Double Support Time (s) 0.22 ± 0.03 0.22 ± 0.04 t(22) = -0.12, p = .91 0.05 
Foot Off (%) 59.78 ± 1.00 60.16 ± 1.16 t(22) = -0.85, p = .41 0.35 
Opposite Foot Contact (%)* 50.39 ± 0.32 50.16 ± 0.17 t(22) = 2.22, p = .037 0.91 
Opposite Foot Off (%) 11.46 ± 0.93 10.87 ± 1.59 t(22) = 1.10, p = .28 0.45 
Pace     
Walking Speed (m·s-1) 1.45 ± 0.19 1.33 ± 0.16 t(22) = 1.70, p = .10 0.69 
Step Length (m) 0.76 ± 0.08 0.71 ± 0.06 t(22) = 1.85, p = .08 0.76 
Normalised Step Length 0.43 ± 0.05 0.41 ± 0.03 t(19.7) = 1.43, p = .17 0.59 
Stride Length (m)* 1.53 ± 0.15 1.41 ± 0.12 t(22) = 2.11, p = .047 0.86 
Normalised Stride Length 0.86 ± 0.09 0.81 ± 0.06 t(22) = 1.64, p = .12 0.67 
Base of Support     
Step Width (m) 0.14 ± 0.03 0.16 ± 0.03 t(22) = -1.22, p = .23 0.50 

* significant age effect 

 

 

7.3.2 Kinematic Parameters 

There were significant age-effects in trunk-G kinematics, predominantly in the transverse plane. The 

YG had significantly greater trunk-G ROM than the OG in the sagittal (2.96 ± 0.88° vs 1.99 ± 0.39°, t(22) 

= 3.49, p = .002) and transverse planes (6.87 ± 2.21° vs 5.04 ± 1.29°, t(17.7) = 2.48, p = .024) during the 

GC. Peak trunk-G protraction and retraction were also significantly greater in the YG compared to the 
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OG (Table 7.7). All significant differences were large according to effect size estimates (Cohen’s d = 

0.9 – 1.4). Whilst non-significant, age-group differences in maximum and minimum trunk-G anterior 

tilt, flexion/extension and axial rotation ROM in the trunk-P, peak trunk-P protraction and peak pelvic 

axial rotations were moderate to large (Cohen’s d = 0.54 – 0.84). 

 

Table 7.7 Trunk and pelvic kinematic peaks (mean ± SD) for the young and old groups during normal 
gait 

Parameter Young group 
(n = 12) 

Old group 
(n = 12) Independent t-test Cohen’s d 

Trunk-G (°)     
Antero-posterior Tilt ROM** 2.96 ± 0.88 1.99 ± 0.39 t(22) = 3.49, p = .002 1.43 
Max Anterior Tilt 5.08 ± 3.21 7.69 ± 6.10 t(22) = -1.31, p = .20 0.54 
Min Anterior Tilt 2.12 ± 3.34 5.70 ± 6.29 t(22) = -1.74, p = .10 0.71 
Lateral Tilt ROM 4.78 ± 2.28 4.95 ± 2.82 t(22) = -0.16, p = .88 0.06 
Contralateral Flexion 2.30 ± 1.18 2.38 ± 1.44 t(22) = -0.15, p = .88 0.06 
Ipsilateral Flexion -2.48 ± 1.11 -2.56 ± 1.39 t(22) = 0.16, p = .87 0.07 
Axial Rotation ROM* 6.87 ± 2.21 5.04 ± 1.29 t(17.7) = 2.48, p = .024 1.01 
Protraction Rotation* 3.42 ± 1.06 2.50 ± 0.58 t(16.9) = 2.64, p = .017 1.08 
Retraction Rotation* -3.45 ± 1.19 -2.54 ± 0.74 t(22) = -2.25, p = .035 0.92 
Trunk-P (°)     
Flexion/Extension ROM 2.85 ± 1.00 2.23 ± 0.69 t(22) = 1.76, p = .09 0.72 
Max Extension -6.45 ± 5.32 -4.87 ± 7.79 t(22) = -0.58, p = .57 0.24 
Min Extension -3.61 ± 5.31 -2.64 ± 7.82 t(22) = -0.35, p = .73 0.14 
Lateral Flexion ROM** 14.31 ± 3.08 10.22 ± 3.29 t(22) = 3.15, p = .005 1.29 
Ipsilateral Flexion** 7.19 ± 1.50 5.19 ± 1.64 t(22) = 3.10, p = .005 1.27 
Contralateral Flexion** -7.13 ± 1.59 -5.03 ± 1.66 t(22) = -3.18, p = .004 1.30 
Axial Rotation ROM 12.51 ± 3.85 9.55 ± 3.20 t(22) = 2.05, p = .053 0.84 
Protraction Rotation -6.21 ± 1.99 -4.78 ± 1.56 t(22) =-1.97, p = .062 0.80 
Retraction Rotation* 6.30 ± 1.88 4.77 ± 1.65 t(22) = 2.11, p = .047 0.86 
Pelvis (°)     
Antero-posterior Tilt ROM 2.31 ± 0.75 2.28 ± 0.65 t(22) = 0.11, p = .91 0.05 
Max Anterior Tilt 9.72 ± 4.00 11.60 ± 4.96 t(22) = -1.02, p = .32 0.42 
Min Anterior Tilt 7.41 ± 4.04 9.32 ± 4.97 t(22) = -1.03, p = .31 0.42 
Obliquity ROM*** 9.83 ± 2.45 5.64 ± 1.72 t(22) = 4.85, p < .001 1.98 
Upward Tilt*** 4.87 ± 1.23 2.84 ± 0.81 t(22) = 4.77, p < .001 1.95 
Downward Tilt*** -4.96 ± 1.23 -2.80 ± 0.94 t(22) = -4.83, p < .001 1.97 
Axial Rotation ROM 11.92 ± 4.35 8.62 ± 3.82 t(22) = 1.98, p = .061 0.81 
Protraction Rotation 6.01 ± 2.25 4.39 ± 1.93 t(22) = 1.90, p = .071 0.77 
Retraction Rotation -5.91 ± 2.12 -4.23 ± 1.93 t(22) = -2.03, p = .054 0.83 

Age effect significance values * p < .05, ** p < .01, *** p < .001; ROM = range of motion 
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Significant age-related differences in trunk-P kinematics were predominantly in the coronal plane 

although rotational kinematics also showed large differences (Cohen’s d = 0.8 – 0.9). Peak trunk-P 

retraction was significantly greater (t(22) = 2.11, p = .047) in the YG (6.30 ± 1.88°) compared to the OG 

(4.77 ± 1.65°). The YG also demonstrated greater peak protraction and rotational ROM than the OG 

although not statistically significant. However, the magnitudes of these differences were large and 

comparable to that of internal rotation (Table 7.7). During stance, the YG (7.19 ± 1.50°) exhibited 

significantly greater (t(22) = 3.10, p = .005) peak contralateral flexion compared to the OG (5.19 ± 

1.64°). The YG (-7.13 ± 1.59°) also demonstrated significantly greater (t(22) = -3.18, p = .004) peak 

ipsilateral flexion than the OG (-5.03 ± 1.66°) during swing phase, resulting in the YG possessing a 

lateral flexion ROM 40% greater than the OG (14.31 ± 3.08° vs 10.22 ± 3.29°, t(22) = 3.15, p = .005). 

Similar differences were found in pelvic obliquity where peak upward and downward tilt were 

significantly greater in the YG compared to the OG (Table 7.7). Pelvic obliquity ROM as a result was 

also significantly greater (t(22) = 4.85, p < .001) in the YG compared to the OG by 74%. Significant age-

related differences in trunk-P lateral flexion and pelvic obliquity were very large according to effect 

size estimates (Cohen’s d = 1.3 – 2.0). 
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 Figure 7.9 Ensemble averages for Trunk-G (trunk relative to global reference frame), Trunk-P (trunk relative to pelvic reference frame) 
and Pelvis kinematics. Orange line = YG mean, grey line = OG mean, orange shaded area = YG SD, grey shaded area = OG SD 
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There were numerous significant interplanar and intersegment correlations in ROMs (Table 7.8). 

However, after controlling for age group, only significant partial correlations remained between trunk-

P lateral flexion ROM and trunk-G lateral tilt ROM (r(21) = .43, p = .043), trunk-P lateral flexion ROM 

and pelvic obliquity ROM (r(21) = .56, p = .005) and trunk-P axial rotation ROM and pelvic axial rotation 

ROM (r(21) = .63, p = .001). There were no significant partial correlations in the sagittal plane. 

Trunk-G kinematic waveform patterns were highly similar between the older and YG throughout the 

GC (Figure 7.9). No significant SPM phase differences were revealed between groups (Figure 7.10).  
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Table 7.8 Zero-order correlation coefficients for ROM between the trunk-P, trunk-G and pelvis in all Cardinal planes 

 Trunk-P ROM Trunk-G ROM Pelvic ROM 

 Flexion/ 
Extension 

Lateral 
flexion 

Axial 
rotation Tilt Lateral 

tilt 
Axial 

rotation Tilt Obliquity Axial 
rotation 

Tr
un

k-
P 

RO
M

 

Flexion/Extension r = 1.0 r = .43* r = .37 r = .03 r = .14 r = .41* r = .23 r = .37 r = .27 

Lateral flexion  r = 1.0 r = .25 r = .46* r = .33 r = .44* r = .29 r = .73*** r = .06 

Axial rotation   r = 1.0 r = .12 r = .14 r = .45* r = .02 r = .37 r = .69*** 

Tr
un

k-
G

 
RO

M
 

Tilt    r = 1.0 r = -.02 r = .25 r = .13 r = .46* r = .14 

Lateral tilt     r = 1.0 r = .31 r = .01 r = -.13 r = -.14 

Axial rotation      r = 1.0 r = -.30 r = .39 r = .44* 

Pe
lv

ic
 R

O
M

 

Tilt       r = 1.0 r = .22 r = -.02 

Obliquity        r = 1.0 r = .43* 

Axial rotation         r = 1.0 

* p < .05, ** p < .01, *** p < .001 
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Figure 7.10 Statistical Parametric Mapping (SPM) output for Trunk-G kinematics. a = anterior tilt, b = lateral tilt, c = rotation 
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SPM phase differences between age groups were not significant for trunk-P flexion/extension (Figure 

7.11a). Two clusters were identified for trunk-P kinematics in the coronal plane (Figure 7.11b). A 

supra-threshold cluster (13.3 – 17.7%) and an infra-threshold cluster (62.5 – 67.2%) exceeded the 

critical threshold indicating that lateral flexion in the YG was significantly greater during midstance 

and initial swing than in the OG (t(22) = 3.247, p = .039; t(22) = 3.247, p = .038, respectively). In the 

transverse plane, one infra-threshold cluster (66.1 – 76.9%) exceeded the critical threshold of t(22) = 

3.346 as the YG exhibited significantly greater axial rotation than the OG during swing phase (p = .004) 

(Figure 7.11c). 
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Figure 7.11 Statistical Parametric Mapping (SPM) output for Trunk-P kinematics. a = flexion/extension, b = lateral flexion, c = axial rotation 
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No significant differences were revealed for pelvic tilt between groups (Figure 7.12a). Two clusters 

were identified for pelvic obliquity (Figure 7.12b). A supra-threshold cluster (10.3 – 24.6%) and an 

infra-threshold cluster (59.4 – 73.8%) exceeded the critical threshold indicating that pelvic obliquity in 

the YG was significantly greater during midstance and initial swing than in the OG (t(22) = 3.274, p = 

.003; t(22) = 3.247, p = .002, respectively). One infra-threshold cluster (67.8 – 76.3%) exceeded the 

critical threshold of t(22) = 3.222 as the YG exhibited significantly greater pelvic rotation than the OG 

during swing phase (p = .023) (Figure 7.12c). 
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Figure 7.12 Statistical Parametric Mapping (SPM) output for Pelvis kinematics. a = pelvic tilt, b = pelvic obliquity, c = pelvic rotation 
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7.3.3 Kinetic Parameters 

There were significant age effects for peak extension moment during MS (t(22) = 2.28, p = .032), peak 

flexion moment during TSw (t(22) = -2.16, p = .042) and peak contralateral moment during swing phase 

(t(22) = -2.65, p = .015). Peak spinal extension moments were on average 54.8% greater in the YG (0.96 

± 0.45 Nm·kg-1) compared to the OG (0.62 ± 0.24 Nm·kg-1) during MS, whereas during swing phase the 

OG produced significantly greater peak spinal flexion (1.05 ± 0.37 Nm·kg-1) and contralateral flexion 

moments (0.34 ± 0.11 Nm·kg-1) than the YG (0.74 ± 0.34 and 0.22 ± 0.12 Nm·kg-1, respectively). The 

difference in these outcomes between groups was large (Cohen’s d = 0.9 – 1.1). Whilst the mean 

difference in peak external rotation moments did not reach significance (t(22) = -2.02, p = .055), the 

difference between groups was also large (Cohen’s d = 0.8) (Table 7.9). 
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Table 7.9 Lower back kinetic peaks (mean ± SD) for the young and old groups during normal gait 

Parameter Young group 
(n = 12) 

Old group 
(n = 12) Independent t-test Cohen’s d 

Peak Moments (Nm·kg-1)     
Flexion/Extension     
Extension – LR 0.78 ± 0.39 0.74 ± 0.26 t(22) = 0.31, p = .76 0.13 
Extension – MS* 0.96 ± 0.45 0.62 ± 0.24 t(22) = 2.28, p = .032 0.93 
Flexion – TS 0.63 ± 0.27 0.70 ± 0.41 t(22) = -0.50, p = .62 0.20 
Extension – PSw 0.97 ± 0.34 0.99 ± 0.25 t(22) = -0.15, p = .89 0.06 
Extension – ISw 0.73 ± 0.29 0.63 ± 0.20 t(22) = 1.01, p = .33 0.41 
Flexion – TSw* 0.74 ± 0.34 1.05 ± 0.37 t(22) = -2.16, p = .042 0.88 
Lateral Flexion     
Ipsilateral Stance 0.24 ± 0.11 0.29 ± 0.12 t(22) = -0.92, p = .37 0.37 
Contralateral Stance -0.37 ± 0.10 -0.43 ± 0.09 t(22) = 1.59, p = .13 0.65 
Ipsilateral Swing* 0.22 ± 0.12 0.34 ± 0.11 t(22) = -2.65, p = .015 1.08 
Contralateral Swing -0.26 ± 0.12 -0.33 ± 0.15 t(22) = 1.28, p = .21 0.52 
Axial Rotation     
Retraction Stance 0.17 ± 0.05 0.18 ± 0.07 t(22) = -0.75, p = .46 0.31 
Protraction Stance -0.14 ± 0.05 -0.10 ± 0.06 t(22) = -2.02, p = .055 0.83 
Retraction Swing 0.14 ± 0.06 0.11 ± 0.08 t(22) = 1.26, p = .22 0.51 
Protraction Swing -0.17 ± 0.05 -0.19 ± 0.07 t(22) = 0.76, p = .46 0.31 
Peak Powers (W·kg-1)     
Flexion/Extension     
S1 (Generation) 0.29 ± 0.22 0.18 ± 0.16 t(22) = 1.32, p = .20 0.54 
S2 (Absorption) -0.21 ± 0.09 -0.16 ± 0.11 t(22) = -1.05, p = .31 0.43 
S3 (Generation) 0.32 ± 0.27 0.28 ± 0.19 t(22) = 0.44, p = .67 0.18 
Lateral Flexion     
S4 (Absorption) -0.33 ± 0.16 -0.25 ± 0.13 t(22) = -1.35, p = .19 0.55 
S5 (Generation) 0.20 ± 0.10 0.30 ± 0.20 t(22) = -1.57, p = .13 0.64 
S6 (Absorption)* -0.14 ± 0.10 -0.05 ± 0.04 t(22) = -2.82, p = .010 1.15 
Axial Rotation     
Generation 0.07 ± 0.04 0.05 ± 0.03 t(22) = 1.16, p = .26 0.47 
Absorption -0.08 ± 0.05 -0.07 ± 0.04 t(22) = -0.89, p = .38 0.36 
Peak GRF (% BW)     
Mediolateral     
Medial 5.3 ± 1.5 5.9 ± 1.1 t(22) = -1.13, p = .27 0.46 
Lateral -2.3 ± 0.9 -2.8 ± 1.2 t(22) = 1.09, p = .29 0.45 
Anteroposterior     
Braking -21.2 ± 4.9 -18.2 ± 4.0 t(22) = -1.59, p = .13 0.65 
Propulsive* 24.8 ± 5.1 21.1 ± 3.1 t(18.0) = 2.14, p = .046 0.88 
Vertical     
Passive 114.9 ± 14.4 111.6 ± 6.7 t(15.5) = 0.72, p = .48 0.29 
Active 119.2 ± 13.3 114.1 ± 5.3 t(22) = 1.23, p = .23 0.50 

* significant age effect; LR = loading response, MS = midstance, TS = terminal stance, PSw = pre-
swing, ISw = initial swing, TSw = terminal swing 
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The only between-group difference in peak spine powers was at S6 (t(22) = -2.82, p = .010), where the 

lateral flexor muscles in the YG (-0.14 ± 0.10 W·kg-1) absorbed significantly more power than in the OG 

(-0.05 ± 0.04 W·kg-1) during swing phase. The effect size for age-group difference at S6 was large 

(Cohen’s d = 1.2). Whilst non-significant, mean differences in peak powers between age groups were 

generally moderate (Table 7.9). There was also a significant and large age effect for propulsive GRF 

(t(18) = 2.14, p = .046, Cohen’s d = 0.9) where the YG (24.8 ± 5.1 %BW) produced an average 17.5% 

greater peak GRF along the anteroposterior axis than the OG (21.1 ± 3.1 %BW).



CHAPTER 7 
 

192 | P a g e  
 

 Figure 7.13 Ensemble averages for trunk-P joint powers and moments and GRFs. Orange line = YG mean, grey line = OG mean, 
orange shaded area = YG SD, grey shaded area = OG SD 
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The YG displayed significantly greater lower back extensor joint power than the OG during loading 

response (Figure 7.13). More precisely, the YG exhibited power generation in the extensor muscles 

whilst the OG exhibited power absorption during this period. This was shown by a supra-threshold 

cluster (4.9 – 5.4%) exceeding the critical threshold of t(22) = 3.966 (Figure 7.14a). The probability that 

a supra-threshold cluster of this size would be observed in repeated random samplings was p = .045. 

Lower back joint power waveforms in the coronal and transverse planes were similar between groups 

(Figure 7.13), resulting in a lack of significance (Figure 7.14b and c). 
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Figure 7.14 Statistical Parametric Mapping (SPM) output for lower back joint power. a = flexion/extension joint power, b = lateral flexion joint 
power, c = rotational joint power 

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

3

4

5

SP
M

 { 
t }

  = 0.05 ,     t* = 3.966

p = 0.045

0 20 40 60 80 100

-5

-4

-3

-2

-1

0

1

2

3

4

5

SP
M

 { 
t }

  = 0.05 ,     t* = 4.011

0 20 40 60 80 100

-4

-3

-2

-1

0

1

2

3

4

SP
M

 { 
t }

  = 0.05 ,     t* = 3.953

2 3 4 5 6 7

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

SP
M

 { 
t }

a b c 

Gait Cycle (%) 

Gait Cycle (%) 

Gait Cycle (%) Gait Cycle (%) 

α = 0.05, t* = 3.966 

SP
M

 { 
t }

 

p = 0.045 

SP
M

 { 
t }

 

SP
M

 { 
t }

 

SP
M

 { 
t }

 

α = 0.05, t* = 4.011 
α = 0.05, t* = 3.953 



CHAPTER 7 
 

195 | P a g e  
 

Mean lower back joint moments were highly similar between the older and YG in all planes throughout 

the GC. No significant SPM phase differences were found (Figure 7.15). 

Whilst the YG performed more positive and negative work than the OG in all three cardinal planes 

(F(6, 17) = 1.53, p = .23; Wilk’s ∆ = 0.65, ηp
2 = 0.35), the only significant difference was in total negative 

work in the coronal plane (F(1,22) = 5.95, p = .023, ηp
2 = 0.21, 1-β = 0.65). The YG (-0.051 ± 0.019 J·kg-

1) performed on average 49.8% more eccentric work in lateral flexion throughout the GC than the OG 

(-0.034 ± 0.013 J·kg-1) (Figure 7.16). 
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Figure 7.15 Statistical Parametric Mapping (SPM) output for lower back joint moments. a = flexion/extension joint moments, b = lateral flexion joint 
moments, c = rotational joint moments 
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Figure 7.16 Total positive and negative work performed during the gait cycle. a = work performed in the sagittal plane, b = work performed in the coronal 
plane, c = work performed in the transverse plane 
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7.3.3.1 Functional Demand 

The difference in FD between age groups was approaching statistical significance (F(6, 17) = 2.40, p = 

.073; Wilk’s ∆ = 0.54, ηp
2 = 0.46), however, there were no significant differences in lower back FD 

between the YG and OG for any individual phase (Figure 7.17). FD was generally higher in the OG, 

except during MS where the YG’s mean peak extensor moment was closer to their MVC. The 

difference in FD at TSw was greatest between groups and was approaching statistical significance 

(t(22) = -1.97, p = .062). The FD during TSw was on average 42% greater in the OG (34.8 ± 13.6%) 

compared to the YG (24.5 ± 12.1%). Across the phases shown in Figure 7.17, mean FD in the lower 

back was 20% greater in the OG. 
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key instances during the gait cycle 
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7.3.3.2 Moderating Effect of Muscle Morphology and Physical Activity 

Mean MFI and total NMV of the LPMs were not significant covariates for any of the discrete 

spatiotemporal, kinematic or kinetic outcome variables. However, VPA was a significant covariate for 

total negative work performed in the transverse plane (p = .034), pelvic ROM in the transverse plane 

(p = .047) and peak pelvic retraction (p = .020). After controlling for these covariates, pelvic ROM 

(F(1,19) = 4.38, p = .050, ηp
2 = .187, 1-β = .510) and peak retraction (F(1,19) = 5.22, p = .034, ηp

2 = .215, 

1-β = .582) in the transverse plane became significant. The difference in total negative axial rotation 

work performed remained non-significant (p > .05). 
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 Discussion 

Age related changes in 3-D trunk kinematics and kinetics are not fully understood. As the trunk plays 

crucial roles in mobility and postural support during ADLs (Panjabi, 1992; Hicks et al., 2005b), it is 

important to understand normal age-related changes in trunk movements as well as internal kinetics 

that drive these movements. It is also unknown how functionally demanding gait is on the lumbar 

spine for younger and older adults. Therefore, the current study sought to investigate age-related 

differences in biomechanical function of the trunk during normal gait. The results of this study extend 

our knowledge of ageing biomechanics in walking gait, highlighting kinematic and kinetic changes in 

the trunk in healthy older men. The main finding was that trunk-P kinetics are similar between healthy 

younger and older men during normal walking gait, whilst age-related differences in trunk-P 

kinematics are most apparent in the coronal and transverse planes. Furthermore, the initial periods 

of single limb support were identified as important phases during the GC capable of differentiating 

between young and older adult trunk kinematics. This suggests that age-related differences in the 

trunk are most apparent when dynamic balance is more compromised during initial single limb 

support phases. For the first time, the age-response was also elucidated for FD in the lower back. 

These observations stress the importance of upper body dynamics in gait and have potentially 

detrimental implications on walking efficiency and falls risk in older adults. 

 

7.4.1 Age-related Differences in the Sagittal Plane 

Sagittal plane kinematic waveforms were similar between the OG and YG across the GC for the trunk 

and pelvis segments, resulting in similar waveform patterns for the trunk relative to the pelvis. 

However, the OG adopted a more anteriorly tilted trunk position throughout the GC (Figure 7.9) and 

exhibited less ROM compared to the YG. Whilst waveforms were similar for the trunk and pelvis, there 

was a delayed phase-shift in the YG resulting in altered phase-specific flexion/extension movements 

of the trunk relative to the pelvis. However, these differences were small and non-significant.  

Previous studies have reported comparable trunk flexion/extension kinematics despite a variety of 

modelling techniques (Thurston, 1985; Stokes, Andersson and Forssberg, 1989; Krebs et al., 1992; 

Taylor, Goldie and Evans, 1999; Whittle and Levine, 1999; Cromwell et al., 2001; McGibbon and Krebs, 

2001; Vogt, Pfeifer and Banzer, 2002; Leteneur et al., 2009; Chung et al., 2010; Leardini et al., 2013; 

Hendershot and Wolf, 2014; Aminiaghdam et al., 2017; Crawford et al., 2018; Sartor et al., 1999; 

Crosbie, Vachalathiti and Smith, 1997). A study using the same marker model reported a similar ROM 

for the trunk relative to the global and pelvic reference frames (< 2°) yet a much greater mean trunk 

angle in an extended position (Chung et al., 2010). It is unlikely this difference was due to sampling 
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variance as participants were healthy and similar in age to the current study’s YG. Marker placement 

errors are also unlikely to explain the difference as anterior pelvic tilt was also similar (~10°). 

Disparities were most likely caused by postural differences. Participants may have adopted a backward 

leaning position (Chung et al., 2010) compared to the participant’s in the current study, which has 

been shown to result in more extended spinal angles during gait (Leteneur et al., 2009). More 

importantly, trunk flexion and extension were opposite in phase to those reported in the current study 

and previous studies (Thorstensson et al., 1982; Sartor et al., 1999; Van Emmerik et al., 2005). The 

model used by Sartor et al. (1999) was also similar; modelling the trunk relative to the pelvic reference 

frame. As the pelvis was tilted anteriorly throughout the GC, this would predispose the trunk-P to be 

in an extended position (Sartor et al., 1999). In both the YG and OG, the trunk was extended relative 

to the pelvis throughout the GC (Figure 7.9). Given the consistency with previous studies and from an 

anatomical perspective, the current results suggest that the modelling approach was indicative of 

spinal motion and not artefacts of the procedure. 

Trunk-G tilt exhibited a biphasic oscillation, corresponding to one flexion/extension cycle for each 

step. These findings are supported by other gait studies assessing trunk movements in the sagittal 

plane (Thorstensson et al., 1982; Sartor et al., 1999; Crosbie, Vachalathiti and Smith, 1997), and 

substantiated by EMG studies that have shown peaks of ES and MF electrical activity at early 

midstance and around FO (Lamoth et al., 2004; Callaghan, Patla and McGill, 1999). Indeed, ES muscle 

activity precedes corresponding kinematics indicating that the paravertebral muscles drive trunk 

movement by anticipating propulsive phases in walking (Ceccato et al., 2009). However, others have 

reported different kinematics (Chung et al., 2010; Hendershot and Wolf, 2014), which may be due to 

modelling assumptions. More importantly, the current results indicate that trunk-P kinematics are 

largely unaffected by ageing likely due to the similarity in pelvic anterior/posterior tilt between age 

groups. However, the OG adopted a more forward tilted trunk-G and had significantly less trunk-G 

ROM. 

Less trunk-G ROM during normal walking may simply reflect the reduction in total ROM in the lumbar 

spine with ageing (Yukawa et al., 2019; Intolo et al., 2009; Sullivan, Dickinson and Troup, 1994); a 

plausible explanation given that the LPMs become stiffer with age (Vazirian et al., 2016) and ROM is 

negatively correlated with muscle stiffness (Miyamoto et al., 2018). Reduced trunk-G ROM may also 

be indicative of a more conservative gait strategy to prevent larger destabilising forces in the sagittal 

plane (Van Emmerik et al., 2005), despite this being less efficient as more muscular work would be 

required for horizontal displacement of the COM. According to Chung et al. (2010), trunk movement 

in the sagittal plane counterbalances the cyclic motion of the lower limbs during swing phase. It was 

expected that the OG may extend the trunk to drive the lower limb into swing due to reduced ankle 
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power generation. However, upon approaching FO trunk extension relative to the pelvic and global 

reference frames occurred earlier in the GC than for the YG and at a lower amplitude. This suggests 

that the OG prepared earlier for single limb support which may be indicative of a more cautious gait 

strategy. To account for a conservative gait and significantly lower propulsive GRF, the OG may have 

adopted a forward leaning trunk position. A similar strategy has been observed in lower-extremity 

amputees (Goujon-Pillet et al., 2008) assisting in forward progression to compensate for a lack of 

propulsive force (Hendershot and Wolf, 2014). According to Leroux, Fung and Barbeau (2002), tilting 

the trunk forward is the best strategy to generate greater forward propulsion during walking gait. 

Therefore, the OG may have adopted a greater anterior trunk-G angle to facilitate their forward 

progression. Tilting the trunk anteriorly may also play an injury prevention role; reducing lower limb 

stress by damping COM oscillations (Krebs et al., 1992). 

 

7.4.1.1 Modified Lower Back Moments in Older Age 

Additional demands may be placed on the trunk musculature in older adults as a consequence of 

flexed postures (Hendershot and Wolf, 2014). Greater internal extension moments generated by the 

paravertebral muscles are required to balance the external flexion moment about the lower back 

caused by an anterior shift in the COM of the upper body (Le Huec et al., 2018). However, this was not 

seen in the current results (Figure 7.13). Generally, the OG produced lower extension moments 

throughout the GC and performed less negative and positive work in the sagittal plane. 

Flexion/extension moment waveform patterns were similar between groups. Despite the OG having 

a lower strength reserve (see Chapter 6), differences in FD were also non-significant between the age 

groups. However, the OG generally operated nearer their maximal capacity to generate and absorb 

flexion/extension moments during gait, particularly near the end of the GC (Figure 7.17). This was 

highlighted by the significantly greater flexion moment absorbed by the OG during TSw compared to 

the YG. Whilst this eccentric activity in the trunk flexors may be a stability mechanism to reduce 

posterior translation of the body’s COM over its BOS in preparation for impact at IC, it is likely that the 

resulting motion of extension aids in forward progression of the body’s COM (Sartor et al., 1999). 

Indeed, trunk extension may also act as a stabilising mechanism for hip extensor activity, particularly 

during LR when the hip extensors control a large external flexor moment (Sartor et al., 1999).  

Trunk extension was demonstrated by the YG during LR whilst the OG exhibited altered neuromuscular 

control of the trunk during this phase (Figure 7.9). The OG fluctuated between extensor power 

generation and absorption whilst the YG predominantly generated extensor power during LR. Peak 

power generation was also smaller in the OG. This age-related disparity was replicated in the second 
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period of double limb support during PSw. Other studies support this finding that locomotor function 

of the trunk is altered in older age during gait (McGibbon and Krebs, 2001). It is possible that younger 

adults contract the lower back muscles concentrically during double limb support to adopt a pelvic-

leading gait strategy which is more efficient. In older adults, the trunk-leading strategy results in 

greater mechanical energy expenditure of the lower back musculature due to greater eccentric 

activation (McGibbon and Krebs, 2001). Consistent with the current findings, McGibbon and Krebs 

(2001) found that older adults have a greater reliance on eccentric control of the LPMs to mediate 

energy transfer during double limb support phases. Furthermore, lower power generation in the trunk 

may be indicative of the OG reducing concentric muscle activity to minimise energy transferred 

proximally to the trunk during periods of less stability such as single limb support (McGibbon and 

Krebs, 2001). The current results exemplify this as the YG generated significantly greater peak extensor 

moments during MS compared to the OG. This mechanism is supported by EMG studies showing lower 

muscle activity in the ES and psoas muscle groups of older adults compared to younger adults during 

walking (Ceccato et al., 2009; Schloemer et al., 2017).  

The moment waveforms for the OG and YG are similar to those produced in previous studies 

(Hendershot and Wolf, 2014; Leteneur et al., 2009), despite differences in biomechanical models. The 

most notable features are the extensor moment peaks produced during MS (YG = 0.96 ± 0.45 Nm·kg-

1 and OG = 0.62 ± 0.24 Nm·kg-1) and PSw (YG = 0.97 ± 0.34 Nm·kg-1 and OG = 0.99 ± 0.25 Nm·kg-1), 

which were similar to previously reported values of approximately 0.5 – 1.1 Nm·kg-1 in healthy adults 

(Leteneur et al., 2009; Hendershot and Wolf, 2014). Fernandes et al. (2016) reported lower extension 

moments of 0.23 Nm·kg-1, although they also reported substantially lower NJMs in the ankle, knee and 

hip than typically reported (Sadeghi, Allard and Duhaime, 2000; Chen, Kuo and Andriacchi, 1997; 

DeVita and Hortobagyi, 2000; Cofré et al., 2011). Therefore, peak extension moments in the lower 

spine were also likely underestimated. Peak extension moments in the trunk appear to be generally 

less than 1.0 Nm·kg-1 in healthy younger and older men and are therefore lower than peak moments 

typically seen in the lower limb joints during normal gait. However, Leteneur et al. (2009) observed 

that peak moments in the lumbar spine (~ 1.1 Nm·kg-1) were slightly larger than those developed in 

the hip (~ 0.8 Nm·kg-1) and knee during gait. Given the range of methods, it is difficult to conclude 

whether the trunk plays a more important role than the lower limbs during walking. Based on typical 

lower body joint moment patterns and the current results, it is likely that the dominant role changes 

between the trunk and lower limb joints throughout the GC. However, older age may not influence 

the contribution of lower back flexion/extension moments during the GC as phase-specific differences 

were not observed between age groups in this study. Researchers have suggested that low levels of 

loading, spinal motion and muscular activation during walking gait present a low risk of injury 
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(Leteneur et al., 2009; Callaghan, Patla and McGill, 1999), which also makes walking a suitable exercise 

for general back exercise and rehabilitation programmes in older adult populations (Callaghan, Patla 

and McGill, 1999). 

 

7.4.2 Age-related Differences in the Coronal Plane are a reflection of Pelvic Movement 

Trunk motion in the coronal plane was less variable than in the sagittal plane, consistent with the 

literature (Table 7.2). Movement patterns were similar between age groups. The OG and YG both 

demonstrated approximately 1° of trunk-P lateral flexion towards the ipsilateral limb at IC. The trunk 

relative to the pelvis continued to flex laterally over the reference stance limb until it reached a peak 

during early midstance. The trunk-P then flexed laterally towards a neutral position and maintained a 

neutral position throughout late midstance. During PSw the trunk-P flexed away from the reference 

limb in the coronal plane and reached its contralateral peak during early swing. Contra- and ipsilateral 

flexion peaks both occurred as single-limb support phases commenced, in agreement with previous 

findings (Chung et al., 2010). Trunk-P lateral flexion angle then returned to neutral from midswing 

until the subsequent IC.  

Results from the SPM indicate that there is a phase-specific age effect in trunk-P coronal plane 

kinematics during early midstance (13.3 – 17.7%) and early swing phase (62.5 – 67.2%). This is 

supported by movement amplitudes being significantly greater in the YG than the OG. Given that trunk 

movements relative to the global reference frame were similar in phase and amplitude between 

groups, and pelvic obliquity exhibited similar significant differences to trunk-P lateral flexion; it is likely 

that trunk-P motion in the coronal plane was simply a reflection of pelvic movement. This is supported 

by Crosbie, Vachalathiti and Smith (1997) who state that spinal movements associated with walking 

are linked to the primary motions of the pelvis. Furthermore, Krebs et al. (1992) found that greater 

trunk ROM in the pelvic reference frame was due to independent pelvis motions moving out of phase 

with the trunk. Indeed, several researchers have indicated that lumbar spinal motion is affected by 

pelvic motion (Callaghan, Patla and McGill, 1999; Feipel et al., 2001; Stokes, Andersson and Forssberg, 

1989; Crosbie, Vachalathiti and Smith, 1997; Vogt and Banzer, 1999). 

Decreased trunk-P motion may partially explain why falls are more prevalent in older adults (Sharif et 

al., 2018). According to Balaban and Tok (2014), increased lateral trunk flexion and elevation of the 

hip elicits improved foot clearance in stroke patients. Lower lateral flexion peaks in the OG may lead 

to reduced foot clearance (Prince et al., 1997) and consequently increase risk of falling (Robinovitch 

et al., 2013). However, older adults may prevent impact injuries by decreasing trunk movement in the 

coronal plane. Reducing peak lateral flexion during the early stages of single-limb support allowed the 
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OG to decrease trunk-P angular velocity when it started to move towards the opposite side (Figure 

7.18), which may be an effort to reduce impact from heel strike (Chung et al., 2010). Indeed, the trunk 

acts to reduce angular velocity toward the contralateral side (Chung et al., 2010). However, pelvic 

obliquity plays an important role in creating a more energy efficient gait pattern by reducing COM 

vertical oscillations (Saunders, Inman and Eberhart, 1953). The reduced pelvic ROM with age may 

therefore impact upon the OG’s gait stability and efficiency during normal walking (Saunders, Inman 

and Eberhart, 1953; Van Emmerik et al., 2005). 

 

Figure 7.18 Trunk-P motion in the coronal plane. The difference between the young group's slope (blue 
arrow) and old group's slope (purple arrow) represents the difference in angular velocity. 

 

For both groups, trunk ROM in the coronal plane was greater relative to the pelvis than in the global 

reference frame. These results support the assertions of Saunders, Inman and Eberhart (1953) that 

pelvic motion in the coronal plane is particularly important for reducing trunk-G oscillations, which 

could excessively displace COM and cause lateral instability during walking. It should be noted that 

trunk-P ROM was related to both pelvic and trunk-G ROM in the coronal plane after controlling for 

age, which may be an indication of the out-of-phase rotations between these segments. Instability 

during the GC may be minimised by permitting a relatively larger ROM in the trunk relative to the 

pelvis than in the global reference frame, through the independent motions of the pelvis. The reduced 

pelvic and thus trunk-P ROM in the OG may decrease stability during gait, although relatively small 
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trunk lateral flexion ROM is required to transfer weight and assist foot clearance in the swinging leg 

during gait (Krebs et al., 1992). This may explain why the OG, despite reduced trunk-P and pelvis 

movement, exhibited similar trunk-G ROM to the YG. 

Moment waveforms were similar between the YG and OG, indicating no phase-specific differences 

throughout the GC (Figure 7.15b). However, significant differences were observed in peak values. 

Comparable peak lateral flexion moments have been previously reported (Fernandes et al., 2016; 

Hendershot and Wolf, 2014), increasing confidence in the current results. Peak ipsilateral flexion 

moment during swing phase was greater in the OG than the YG. Peak power absorption during swing 

phase however was significantly larger in the YG. These findings suggest that during swing younger 

adults rely more on angular velocity to conserve trunk momentum in the coronal plane whilst older 

adults rely more on muscular force to absorb trunk-P powers. This would increase the demands of 

walking in older adults, compounded by dysfunctional muscular activation patterns which further 

increases mechanical energy demands (McGibbon and Krebs, 2001). However, the YG performed 

significantly more negative work in the coronal plane than the older adults (Figure 7.16b). This is likely 

to be the result of greater trunk-P excursions, which contribute to larger lateral flexion moments 

(Hendershot and Wolf, 2014). As older adults are known to operate nearer their maximum physical 

capacity during ADLs compared to younger adults (Reeves et al., 2008), and a large amount of muscle 

activity is required to maintain balance in the coronal plane during walking (O’Connor and Kuo, 2009), 

the lower amount of negative work performed may mask the FD of walking in older adults. For 

example, it has been observed that decreased step lengths may result from declining trunk kinematics 

which cost an inordinate amount of energy to be expended to maintain erect posture and forward 

progression (Sartor et al., 1999). Given the differences in peak moments and powers and the phase at 

which they occurred between groups, it appears that older adults may solicit their trunk muscles to 

produce instances of high lateral flexion moment providing vertical support. Whereas younger adults 

appear to perform more work in the coronal plane to maintain forward progression (Sartor et al., 

1999), similar to the contributions of the lower limb muscles during gait (Kepple, Siegel and Stanhope, 

1997).  

 

7.4.3 Age-related Kinematics in the Transverse Plane 

Similar to kinematics in the coronal plane, pelvic and trunk movement patterns in the transverse plane 

were more consistent than in the sagittal plane. These results concur with the literature (Table 7.2). 

In the transverse plane, age-related differences in pelvic rotation peaks and ROM were approaching 

significance and became significant when VPA was controlled for. There was a significant age effect in 
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peak trunk-P retraction, with differences in peak trunk-P protraction and ROM also approaching 

significance between groups. Trunk-G axial rotation showed the greatest age-related differences; the 

YG demonstrated significantly greater trunk-G retraction and protraction peaks as well as a greater 

ROM. Whilst it appears that trunk-G axial rotation was most affected in older age based on peak values 

and ROM, no phase-specific differences were observed in the trunk-G. Furthermore, coinciding phase-

specific differences between groups were identified in the pelvis (68 – 76% of GC) and trunk-P (66 – 

77% of GC) during swing phase. Coupling between the trunk-P and pelvis was further supported by 

the significant correlation in their ROMs in the transverse plane. These results indicate that age-

related differences in the transverse plane involve a complex interrelationship between the trunk and 

pelvis. It appears that instances of peak rotational excursion during gait, immediately following heel 

strikes, are affected by age-related kinematic changes in the trunk-G. Whereas during single limb 

support, age-related differences in the pelvis appear to be more influential to trunk-P motion. 

However, significant age-related decrements in peak trunk-G motions may be misleading and possibly 

mask the relative contribution of the pelvis to the coordination of the upper body during walking gait.  

Concurrent with other research  (Krebs et al., 1992; Thurston, 1985; Chung et al., 2010), trunk-P curve 

reversals in the transverse plane were observed immediately after each heel strike. This was likely 

caused by the contravening rotation of the pelvis continuing after the rotation of the trunk-G had 

stopped (Krebs et al., 1992). This highlights that discrete kinematic values may be insufficient to 

understand how ageing affects the complex relationship between pelvis and trunk axial rotations 

during gait. The movement pattern of the trunk-P in the transverse plane is governed by the out-of-

phase rotations of the trunk-G and pelvis. Simply put, the trunk-G and pelvis rotate in opposite 

directions about the vertical axis relative to each other during the GC. This movement pattern has 

been consistently shown (Whittle and Levine, 1999; Chung et al., 2010; Leardini et al., 2013; Bruijn et 

al., 2008; Titus et al., 2018). At slow gait speeds the trunk and pelvis may demonstrate synchronous 

axial rotations (Lamoth et al., 2002), although this is equivocal (Chung et al., 2010). As walking speed 

in the OG was not significantly slower than in the YG, it is unsurprising that kinematic waveforms in 

the transverse plane were similar. However, this should be considered with caution. It is highly 

contested whether changes in walking speed affect trunk movements during gait (Van Emmerik et al., 

2005; Stephan, Sutin and Terracciano, 2015; Kavanagh, 2009; Taylor, Goldie and Evans, 1999). Bruijn 

et al. (2008) and Van Emmerik et al. (2005) suggested that rotational motion of the trunk is important 

to adapting to changes in walking speed. However, others have suggested that trunk motion is more 

dependent on loss of strength and flexibility in older age than slower walking speeds (Kang and 

Dingwell, 2008). When interpreting these findings, it should be noted that the difference between age 

groups in walking speed was moderate to large despite being non-significant. 
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The out-of-phase rotation between the trunk-G and pelvis is essential in reducing the momentum of 

the trunk-P to conserve angular momentum (Chung et al., 2010; Crosbie, Vachalathiti and Smith, 1997) 

and maintain stability during gait (Van Emmerik et al., 2005). There are a few reasons that may explain 

why ROM was decreased in the OG, such as increased rigidity in the trunk (Van Emmerik et al., 1999). 

This is questionable however as others have indicated that trunk-P kinematics in the transverse plane 

are not influenced by trunk stiffness (Prins et al., 2019). Another mechanism concerns decreasing ROM 

to maintain stability. Larger axial rotations in the trunk are indicative of instability in immature and 

pathological gait (Ledebt and Bril, 2000; Winter, 1995). The OG may have attempted to maintain 

stability by reducing trunk ROM, in agreement with previous findings (Van Emmerik et al., 2005). 

Finally, this may have been a strategy to increase energy in the trunk to compensate for reduced 

propulsive force (McGibbon, Krebs and Puniello, 2001). However, the current findings do not support 

this as trunk-P powers in the transverse plane were relatively small and there were no significant 

differences with age. Furthermore, there were no significant phase-specific or peak differences in 

rotational moments between the OG and YG, indicating that age-related differences in trunk 

kinematics were not caused by changes in kinetics. This suggestion is substantiated by the relatively 

small amount of rotational work performed in the transverse plane and non-significant difference 

between age groups. 

 

7.4.4 Age Effect on Interplanar Motions 

Older age appears to alter the coupling between motions in different planes. Zero-order correlations 

showed that there were numerous significant relationships between the ROM of the trunk-P, trunk-G 

and pelvis in different planes. For example, the range of flexion/extension in the trunk-P was 

moderately correlated with lateral tilt ROM. After controlling for age, only three significant 

correlations remained, all exclusive to their respective planes. These were between trunk-P ROM and 

trunk-G ROM, and between trunk-P ROM and pelvic ROM; both relationships in the coronal plane. The 

other significant partial correlation was between trunk-P and pelvic axial rotation ROMs. These results 

suggest that in older age, rotations of the upper body in a given plane become independent of 

rotations in orthogonal planes. Whilst this finding has never been reported before, others have shown 

that coronal and transverse plane trunk motions are inter-connected in younger adults (Chung et al., 

2010; Whittle and Levine, 1999) and that older adults exhibit reduced compensatory coordination 

between trunk and pelvis movements during walking (Van Emmerik et al., 2005).  

In older age, disassociation of trunk and pelvic movements in the Cardinal planes may increase the 

energetic demands of walking. To highlight this concept, more obvious examples can be drawn upon. 
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For example, upper body movements such as punching require axial trunk rotation to transfer kinetic 

energy from the lower to upper extremities. The interplanar relationship between the lower and 

upper extremities as well as the trunk is designed to minimise energy cost and increase horizontal 

punching force (Tong-Iam, Rachanavy and Lawsirirat, 2017). Therefore, walking is likely to be more 

energetically demanding in older adults if angular momentum cannot be conserved from motions in 

orthogonal planes to assist in forward progression of the body’s COM.  

It has been suggested that the vector of the spinal muscles may be responsible for the association 

between coronal and transverse plane trunk movement (Chung et al., 2010). MRI studies using 

diffusion-tensor techniques have shown that ageing affects the orientation of muscle fibres (Yoon et 

al., 2018; Sinha et al., 2015; Farrow et al., 2020). Therefore, it is likely that degeneration of paraspinal 

muscle structure and function is in part responsible for age-related uncoupling of trunk and pelvic 

kinematics in the Cardinal planes. Emerging evidence from ongoing research as part of this PhD project 

has shown that fractional anisotropy of the LPMs is greater in the OG than the YG. Whilst the exact 

mechanisms for the age-related disassociation of interplanar motions in the trunk are unknown, this 

ongoing research may provide a useful first step. 

 

7.4.5 Clinical and Practical Applications 

Understanding age-related differences in trunk biomechanics could assist clinical decision making and 

public health strategies with regards to older adults incorporating motor skills training into exercise 

interventions and physical activity programmes. Exercise interventions generally focus on promoting 

strength, endurance, balance and flexibility. Whilst useful, some evidence indicates that their impact 

on physical function and mobility is modest in older adults; increasing self-selected walking speed by 

up to 13% (Wolf et al., 2006; Pahor et al., 2006; Buchner et al., 1997; Bean et al., 2004). Incorporating 

such training into exercise interventions may potentially improve physical function and mobility to a 

greater extent. The current findings could provide a targeted approach by highlighting the movement 

patterns in the trunk which should be prioritised in exercise interventions to reduce gait inefficiencies 

in older age. This study found that trunk movements were most affected in older age in the coronal 

and transverse planes. Therefore, concentrating efforts on these planes of motion during motor skills 

training may reduce the impact of ageing on trunk movements during walking gait. This would 

consequently reduce the mechanical demand on the trunk musculature and possibly reduce the FD 

throughout the GC. 

In clinical gait analysis the upper body is typically overlooked whilst the lower limbs receive much of 

the focus. This study highlights the need to investigate trunk biomechanics; indicating that during low-
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impact everyday activities such as walking the trunk muscles are challenged more in older age. 

Routinely analysing the trunk will increase the evidence base and establish normative data in younger 

and older adults, which could be used to identify abnormal movement patterns higher up the kinetic 

chain that may not be apparent in the lower limbs. Furthermore, the PiG model would be appropriate 

in clinical settings where a balance of accuracy and practicality is needed. Therefore, clinicians and 

biomechanists analysing the trunk should look to use the full-body PIG model, which would allow 

sufficiently detailed analysis of the trunk in 3-D whilst having a negligible impact on data collection 

time. 

 

7.4.6 Limitations 

There were limitations in this study that should be acknowledged. Namely, it was inferred that the 

floating axis about which the pelvis and trunk segments rotated approximated the lumbar spine. PiG 

has been an effective and widely used modelling approach in biomechanics to analyse human gait 

(Ramanujam, Forrest and Sisto, 2008; Cockcroft, Louw and Baker, 2016), however, other modelling 

approaches that use the same marker set may be superior when analysing 3-D kinematics and kinetics 

of the lumbar spine (Stambolian, Asfour and Eltoukhy, 2014). Given that the current results are highly 

similar to kinematics and kinetics of the lumbar spine reported in previous studies, more complex 

models may not provide a positive additional information to computational time balance. This is more 

pertinent for musculoskeletal models, where the benefit of physiological accuracy may not outweigh 

the computational time to solve the inverse dynamics and optimisation problems (Shourijeh, Mehrabi 

and McPhee, 2017). Furthermore, musculoskeletal models are still susceptible to modelling 

assumptions and may therefore produce results that no more translatable to real-world situations 

than the PiG model. Indeed, validation of lumbar spine musculoskeletal models has typically included 

only one participant (Bassani et al., 2017; Raabe and Chaudhari, 2016). Comparison of PiG against the 

Full-Body Lumbar Spine Model (OpenSim) (Raabe and Chaudhari, 2016) and Lumbar Spine Model 

(AnyBody Technology) (de Zee et al., 2007) is a necessary first step in establishing concurrent validity 

between these approaches. If kinematics is the primary outcome, musculoskeletal modelling would 

be unnecessary. Future research should look to include more markers on the lumbar spine to better 

represent the movement of the individual vertebral bodies. However, researchers should be aware 

that this approach may lead to marker placement errors and additional inter-marker soft tissue 

artefacts. Confidence in the current results is high since the movement patterns and peak values in all 

planes were highly comparable to a study using indwelling bone pins to assess 3-D motion of the 

lumbar spine during gait (MacWilliams et al., 2013), which is considered the gold-standard approach. 
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Another limitation concerns the ecological validity of the testing procedure. The laboratory 

environment, barefoot walking and attachment of markers to participants’ bodies, may have 

influenced habitual gait patterns (Franklin et al., 2015). Also, the sample comprised of healthy active 

young and older adult men. It has been shown that trunk kinematics are affected by disease and 

physical impairment such as stroke (Titus et al., 2018). Therefore, caution should be taken when 

generalising the findings of the current study to populations other than healthy men. This study was 

also specific to walking gait biomechanics. Age-related differences may be more pronounced for more 

challenging movements such as stair negotiation and sit-to-stand. 

Finally, it was not possible to calculate FD for lateral flexion and axial rotation of the lumbar spine in 

the current study. Therefore, it is unknown whether walking was more functionally demanding for the 

OG in the coronal and transverse planes compared to the YG. Given that the only significant age-

related difference in work performed was in the coronal plane, obtaining isokinetic strength data for 

lateral flexion of the trunk may reveal useful findings about the FD of walking in the coronal plane. It 

should also be noted that FD is a relative measure of an individual’s maximal capacity to produce 

muscular force. Whilst it is an intuitive measure and provides useful information, it does not account 

for the fatigue resistant capabilities of the muscle group being assessed. Understanding the FD of the 

trunk during gait across longer distances or time periods may reveal other age-related mechanisms 

associated with neuromuscular fatigue. Since older adults are arguably more susceptible to the 

detrimental effects of muscle fatigue than younger adults (Kent-Braun, 2009; Sundberg et al., 2018; 

Allman and Rice, 2002), it is likely that the trunk musculature would not respond as well to the demand 

for prolonged force production. This may have greater consequences in older populations, limiting 

their ability to perform longer duration walking. 

 

 Conclusion 

Older age appears to alter trunk kinematics primarily in the coronal and transverse planes, indicative 

of a more conservative gait strategy. Kinematic changes with age were characterised by reductions in 

peak amplitudes and ROM in all planes of motion. Few age-related differences existed in trunk 

kinetics, although midstance and swing were identified as phases where older age alters 

flexion/extension and lateral flexion trunk moments. The mechanical demands of gait also seem to be 

largely unaffected in older age based on the total amount of work performed, although FD was 

generally greater in the OG compared to the YG. In the current sample of healthy men, older age 

appears to only significantly reduce the amount of negative work performed in the coronal plane 

during walking gait. Furthermore, muscle degeneration in the lumbar spine did not covary with 
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kinematic or kinetic outcomes. VPA also had little effect on age-related differences in trunk 

biomechanics, although it moderated the effect of age on pelvic motion in the transverse plane. Future 

research should look to calculate FD of the trunk during gait in the coronal plane. Further research in 

a range of healthy age groups and diseased populations should be undertaken to increase 

understanding of normal biomechanical trunk function during gait with ageing.
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Table 7.10 Thesis Map 

Chapter and Study Problem Statements  Outcomes 
Chapter 3 Assessment of Variables that 
may covary with Age-related 
Differences in Muscle Morphology, 
Strength and Function 

• Physical activity level, body composition, handgrip 
strength and functional disability varies greatly with 
age and the values of each domain are highly 
individualised 

• These variables are known to influence measures of 
muscle mass, strength and function 

Aim • To establish whether there were significant differences in physical activity level, 
whole body composition, handgrip strength and functional disability between 
the older and younger groups 

Key findings • The younger group were significantly more active regarding vigorous physical 
activity than the older group 

• Dominant and non-dominant handgrip strength was significantly greater in the 
younger group compared to the older group 

• Appendicular lean mass was significantly greater in the younger group, whilst 
whole-body fat mass was greater in the older group 

Implications • Vigorous physical activity level should be included as a potential covariate in 
statistical models comparing muscle morphology, spinal muscle strength and 
physical function between the age groups 

• The moderating effect of body composition measures and handgrip strength 
should be explored in statistical models assessing the effect of older age on 
trunk muscle strength 

Chapter 4 Age-related Degeneration of 
the Lumbar Paravertebral Muscles: 
Systematic Review and Three-level 
Meta-regression 

• A quantitative analysis on the association between 
healthy ageing and morphological degeneration of the 
lumbar paravertebral muscles has not been performed 
to date 

• It is unknown how the muscles in the lumbar spine 
change in size and composition with healthy ageing in 
older adults. Understanding this phenomenon may 
elucidate mechanisms related to functional decline. 

• Studies use a wide range of methods to evaluate the 
lumbar musculature. A statistical model is needed to 
include each variable as a potential moderator to 
account for heterogeneity amongst studies 

• Multiple effects are typically reported by a single 
study. Meta-analyses typically adopt a reductionist 
approach by aggregating effect sizes. To adopt an 
integrative approach, a novel statistical model is 
needed to account for interdependency amongst 
effect sizes 

Aims • To perform a quantitative analysis of the literature to establish the relationship 
between normal ageing and lumbar paravertebral muscle degeneration 

• A secondary aim was to identify important methodological parameters that 
moderate the relationship between ageing and degeneration of paravertebral 
muscle morphology 

Key findings • The lumbar paravertebral muscles experience significant atrophy and fat 
infiltration with ageing 

• Degeneration is muscle-, level- and sex-specific 
• Fat infiltration appears to be more effectual than atrophy with ageing in the 

lumbar musculature 
• Imaging modality significantly influences the relationship between ageing and 

paravertebral muscle atrophy 
• There is a considerable amount of between-study heterogeneity, although 

methodological factors explain a substantial amount of explainable variance 
Implications • Use high-resolution imaging modalities (e.g. MRI/CT) to image to spinal 

musculature 
• Volumetric measures covering multiple lumbar levels are superior to cross-

sectional measures taken at single levels 
• Measurements should be obtained for each of the main paravertebral muscles 

in the lumbar to better represent the degenerative effects of ageing 
Chapter 5 Age-related Differences in 
Lumbar Paravertebral Muscle 
Morphology in Healthy Younger versus 
Older Men 

• Studies investigating muscle degeneration with ageing 
have typically focused on the appendicular muscles 

• There is increasing recognition for the importance of 
the lumbar paravertebral muscles in maintaining 
health and mobility in older age 

Aims • To investigate age-related differences in LPM morphology  
• A secondary aim was to investigate the age-response on fat infiltration and 

volume of the different lumbar muscles (i.e. MF, ES, QL and PS) 
• An additional aim was to explore other predictors of lumbar paravertebral 

muscle degeneration 
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• Few studies have characterised features of age-related 
degeneration in the lumbar musculature 

• Few studies have provided volumetric information on 
all of the paravertebral muscles using high-resolution 
imaging modalities 

Key findings • Older age negatively affected all paravertebral muscles, although some showed 
greater degenerative changes than others 

• Age-related fat infiltration has a global effect across the lumbar musculature, 
whereas atrophic changes appear to be muscle-specific  

• Only the QL and ES showed significant age-related declines in muscle volume 
• All muscles showed age-related declines in muscle quality (i.e. increase in 

intramuscular adipose tissue) 
• The MF was most susceptible to compositional changes with age, whilst the QL 

was most vulnerable to reductions in muscle volume 
• Physical activity did not influence age-related differences in muscle 

degeneration in the lumbar spine 
• Non-dominant handgrip strength was a predictor of muscle atrophy in the 

lumbar musculature 
Implications • The QL and ES appear to be most affected in older age since they exhibited 

declines in size and quality 
• When investigating the effects of ageing on lumbar muscle function, 

macroscopic changes in the paravertebral muscles should be considered 
• Structural changes, resulting in a loss of contractile tissue, may reduce muscle 

function in the lumbar spine 
• Convenient and easily administered measures such as handgrip strength may 

be able to predict muscle atrophy in the lumbar spine 
Chapter 6 Age-related Differences in 
Concentric and Eccentric Isokinetic 
Trunk Strength in Healthy Older versus 
Younger Men 

• Dynamic trunk strength in older adults has not been 
fully explored 

• Studies have typically investigated age-related strength 
loss using handgrip dynamometry or lower limb 
isokinetic dynamometry 

• Majority of studies have used clinical assessments 
which may not be appropriate to assess maximal trunk 
strength 

• No study has assessed eccentric trunk strength in older 
adults and contractile modes are typically limited 

• The findings from chapter 5 have also influenced the 
need for this study. Research investigating how muscle 
morphology degeneration in the lumbar spine impacts 
on trunk extensor strength is warranted 

Aims • To investigate age-related differences in dynamic trunk strength 
• The secondary aim was to explore the moderating effect of muscle morphology 

degeneration on extensor muscle strength 
Key findings • Age had a significant and negative effect on peak concentric trunk extensor 

torque across all angular velocities 
• The difference in concentric extensor torque between the older and younger 

group increased with increasing angular velocity indicating that the lumbar 
extensor muscles express a slower phenotype with ageing 

• Peak concentric torque of the trunk flexor muscles decreases in older age but 
not significantly 

• Peak eccentric torque of the extensors and flexors in the trunk is preserved in 
older age 

• Concentric strength of the trunk extensor muscles is negatively associated with 
age, but not paravertebral muscle morphology 

• Eccentric strength of the trunk is primarily related to quadratus lumborum 
muscle quality, but not age 

Implications • Loss of trunk strength in older age is contractile mode- and muscle- specific 
• Training interventions should target the extensor trunk muscles using 

concentric exercises to improve strength in older adults 
• Improving paravertebral muscle quality may further preserve eccentric 

strength of the trunk extensors 
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• Internal trunk moments produced during daily tasks should be combined with 
the peak values measured in this study to determine how functionally 
demanding these tasks are on the trunk musculature 

Chapter 7 Age-related 
Differences in Trunk 
Biomechanics during 
Walking Gait in Healthy 
Younger versus Older Men 

• Studies investigating the relationship 
between ageing of the lumbar spine 
and loss of physical function have 
typically used clinical assessments 

• Clinical assessments and performance 
batteries are not specific to the lumbar 
spine 

• Few studies have investigated age-
related changes in trunk kinematics 
during gait, and fewer still have 
investigated kinetic changes in older 
age. Therefore, the effects of age on 
trunk movements and kinetics during 
gait are not well known 

• Functional demand is a measure that 
has been applied to the lower limbs to 
investigate how biomechanically 
demanding everyday activities are. 
However, functional demand has never 
been applied to the trunk 

• There is a need to understand how 
biomechanical function of the lumbar 
spine is related to muscle morphology 
degeneration and strength loss in older 
age 

Aims • To investigate age-related differences in trunk 
biomechanics during normal walking gait 

• A secondary aim was to determine the functional demand 
of the trunk during normal walking and investigate how it 
is affected in older age 

• A further aim was to investigate the relationship between 
morphological degeneration of the lumbar musculature 
and biomechanical outcomes 

Key findings • Trunk range of motion and peaks were reduced in all 
planes of motion with age 

• Age-related differences in trunk kinematics were most 
apparent in the coronal and transverse planes 

• Age-related differences in lateral flexion of the trunk 
appeared to be due to pelvic motions, whilst axial 
rotation reductions with age were due to trunk and pelvic 
alterations 

• Midstance and initial to mid-swing were identified as 
significant age-related phase-specific differences in trunk 
and pelvic kinematics 

• Controlling for age reduced the number of interplanar 
relationships between range of trunk and pelvis motions, 
suggesting that in older age trunk and pelvic movements 
are uncoupled during gait 

• Trunk moment and power waveform patterns were 
similar between the young and old groups 

• The younger group performed more negative work during 
the gait cycle in the coronal plane than the older group 

• Functional demand was greater in the older group, albeit 
the difference with the younger group was not significant 
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• Muscle morphology does not moderate the effect of age 
on trunk kinematics or kinetics 

Implications • Exercise interventions should look to target coronal and 
transverse plane ranges of lower back and pelvic motion 

• Improving ROM in older age may be beneficial although 
this may make walking a more functionally demanding 
task in the presence of lower trunk strength reserves 

• Reducing muscle atrophy or improving composition of 
the LPMs may not improve trunk biomechanics in older 
adults during normal gait, however, improving trunk 
strength may make walking less functionally demanding 
on the trunk 
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Chapter 8 General Discussion 

Sarcopenia is a major health concern and socioeconomic burden (Pinedo-Villanueva et al., 2019; 

Janssen et al., 2004). As the musculoskeletal system declines with advancing age (Cruz-Jentoft and 

Sayer, 2019) and the global population is ageing (Department of Economic and Social Affairs 

Population Division, 2019), the prevalence of sarcopenia is increasing and already affects a large 

proportion older adults (Sobestiansky, Michaelsson and Cederholm, 2019). Despite the importance of 

the LPMs in maintaining physical function and reducing adverse health risks in older age (Katzman et 

al., 2012; Hicks et al., 2005b), sarcopenia research typically focuses on the appendicular muscles (Cruz-

Jentoft et al., 2019). As a result, age-related declines in muscle morphology, strength and 

biomechanical function are not well characterised in the lumbar spine. This thesis addresses the gaps 

in the literature; exploring the effects of age on lumbar spine specific measures of sarcopenia. This 

was achieved through a series of experimental chapters, each with specific aims and objectives, which 

are outlined in the thesis map (Table 7.10). In order to analyse the complex data, a range of novel 

analytical techniques were applied (e.g. 3-level meta-regression hierarchical clustering, cumulative 

density power spectrum analysis andSPM), which added to the novelty of this thesis. A graphical 

overview of the main data collection methods and interrelationships between the primary measures 

are presented in Figure 8.1. 
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 Thesis Synthesis 

The work in this thesis fills a substantial gap in the literature and represents an original contribution 

related to the ageing musculoskeletal system. For the first time, specific measures of muscle 

morphology, strength and biomechanics of the lumbar spine have been investigated in relation to 

healthy ageing. Experimental chapters focused on one of these specific aspects and whilst each of 

these were original as standalone studies, the thesis draws together findings to provide new insights 

and a holistic view on spinal sarcopenia. Using analytical techniques in novel ways also revealed 

important insights that have not been previously observed using conventional indices (e.g. gait speed 

and Short Physical Performance Battery to measure physical function, handgrip strength to measure 

 

Figure 8.1 The graphical overview represents the three main measures obtained during the project that 
were specific to the lumbar spine: muscular strength of the trunk assessed using isokinetic dynamometry, 
MRI derived morphology of the lumbar paravertebral muscles and biomechanical function of the trunk 
during gait using 3-D motion analysis. The current findings suggest that relationships exist between each 
variable, although the magnitudes of the effects varied considerably, and the directions could not be 
determined due to the cross-sectional study design 
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muscle function, and BIA to measure ALM). The nature of this research is diverse; sarcopenia 

encompasses three distinct areas that are interrelated. Applying the approach undertaken in the 

current thesis to the spinal musculature was challenging and pushed the boundaries of knowledge on 

this topic. Rather than simply using performance batteries, clinical strength assessments, ultrasound 

devices and traditional meta-analytical methods, gold-standard approaches were adopted to address 

some of the limitations of previous research whilst also increasing the fidelity of the data presented. 

Covariates were also considered and controlled for in each study to isolate the effect of older age on 

each of the key outcomes. This represents an additional contribution as prior work has not tended to 

appropriately consider confounders in its examination of this topic. This thesis therefore provides 

novel insights into this ageing phenomenon that extends knowledge on sarcopenia and furthers the 

establishment of the concept ‘spinal sarcopenia’. 

It has been shown that muscles in the lumbar spine undergo degenerative remodelling (i.e. atrophy 

and fat infiltration) as a normal response to ageing. This finding, presented in Chapter 4, represents a 

significant contribution to the ageing musculoskeletal system literature. The systematic review and 

meta-analysis was the first to establish and quantify the relationship between healthy ageing and 

morphological degeneration of the LPMs. However, the considerable methodological variation 

amongst studies and lack of consistency regarding the term ‘healthy’ made it difficult to distinguish 

between features of age-related and pathological degeneration, as well as artefacts of the methods 

used. This warranted the need for further research in a healthy population. 

A unique aspect of Chapter 4 was the meta-regression model. Rather than aggregating effect sizes 

from interdependent study populations, which is the conventional approach, a novel 3-level model 

was applied to account for statistical dependency. This allowed several moderators to be accounted 

for simultaneously without the need to aggregate data and perform multiple sub-group analyses. The 

results showed that the LPMs undergo age-related degeneration in healthy adults with muscle, lumbar 

level and sex-specific responses. The meta-analysis also revealed that high-resolution imaging 

modalities should be used to analyse LPM atrophy and fat infiltration. These were important findings 

in the context of the thesis as they were used to inform methodological decisions in Chapter 5. 

MRI analysis was used to measure fat infiltration and muscle volume in the LPMs based on findings 

from the meta-analysis. Unlike the appendicular muscles, there are numerous factors that make MRI 

analysis in the LPMs challenging. Primarily, these muscles are deeper and poor imaging resolution can 

result in inaccurate segmentation. Despite advancements in imaging technologies and analysis 

techniques, the intricate geometry of the back muscles meant that automated procedures were not 

possible. Indeed, no automated methods have been successfully reported in the literature for 
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segmentation of the LPMs, which is one of the reasons why studies report CSAs at a single 

representative slice and combine the LPMs; it is time consuming and not always practical to provide 

volumetric data for each individual muscle. Whilst automated segmentation of the PS, QL, ES and MF 

was initially attempted, this approach was inaccurate as muscle boundaries were indistinguishable 

using thresholding and geometric techniques. Manual segmentation using T2-weighted axial slices 

was therefore performed to identify muscle boundaries, following the guidance of leading researchers 

(Berry et al., 2018; Crawford et al., 2017).  

Using known image analysis techniques (Valentin, Licka and Elliott, 2015; Gibbons et al., 1997; Kim et 

al., 2019), the results were comparable to other studies that had analysed LPM size and fat 

composition. Furthermore, the findings were consistent with the literature (Chapter 4), indicating that 

age predominantly modifies the fat composition of the muscles in the lumbar spine (i.e. increased fat 

infiltration) and causes atrophy of the ES and QL. Whilst this finding was not novel on its own, this 

study was the first to provide volumetric and fat infiltration data for all of the main LPMs; making the 

dataset unique. A surprising finding was that VPA did not covary with age-related muscle 

degeneration. The independence of PA on LPM morphology adds to the growing conflicting evidence 

questioning the effect of exercise interventions for spinal muscles, particularly those involving less 

volition like the shorter, deeper fascicles of the MF (Dahlqvist et al., 2017; Lee et al., 2017; Anderson 

et al., 2013). Following the results of this chapter, there was a need to understand how changes in 

muscle morphology related to changes in muscle function. Therefore, the next step in the thesis was 

to understand how this data related to age-related differences in dynamic trunk strength. 

Loss of strength is a well-known characteristic of ageing (Keller and Engelhardt, 2013), however, there 

is a paucity of available literature that has examined the age-related loss of dynamic trunk strength. 

Chapter 6 contributes original findings to the literature; no study has previously investigated the effect 

of age on eccentric strength in the LPMs. Isokinetic dynamometry was applied to the trunk using a 

range of angular velocities and both concentric and eccentric contractile modes. The range of test 

conditions was chosen to reflect the kinematics of the trunk and contractile function of its muscles 

during ADLs. The lumbar spine musculature is crucial to the performance of everyday activities (Hicks 

et al., 2005a; Ikezoe et al., 2015; Panjabi, 1992; Cholewicki, Panjabi and Khachatryan, 1997), therefore 

loss of strength may have an inordinately great impact in older adults manifesting as increased falls 

risk, and loss of mobility and independence (Suri et al., 2009; Granacher et al., 2013). 

In this chapter, the OG exhibited significant reductions in peak concentric extensor torque and the 

difference with the YG generally increased with faster movements. This is unsurprising given the shift 

towards a slower muscle phenotype in older age (Evans and Lexell, 1995; Mitchell et al., 2012; Unhjem 
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et al., 2015). There was also an apparent preservation of eccentric strength in older age, consistent 

with research in the lower limbs. A key part of this thesis was to understand how age-related 

differences in trunk strength related to functional movement. The application and method used to 

derive FD was unique. Whilst FD has been calculated before, it has only been achieved in the lower 

limbs and typically derived from isometric strength tests that lack functional relevance. The methods 

used in this thesis are more representative of the trunk muscles’ function during ADLs and represent 

an original contribution to the literature.  

Another unique aspect of this chapter was relating strength changes in the trunk extensor muscles to 

the morphology data in Chapter 5. Fat infiltration was related to the loss of eccentric trunk strength, 

despite eccentric strength being somewhat preserved in older age. However, neither atrophy nor fat 

infiltration was able to explain loss of concentric trunk extensor strength with age. Since this mode of 

contraction was where the largest declines in strength were observed, these findings are of clinical 

importance in understanding how to offset strength losses in the lower back. It may therefore be 

possible to identify and even predict degradation/loss of function early through the combination of 

MRI and isokinetic data; such multi-modal analysis is not considered clinically. Furthermore, the 

results suggest that changes in eccentric extensor strength may be a modifiable feature of strength 

loss in the trunk, unlike concentric extensor strength. Other age-related mechanisms were likely 

responsible for the loss of concentric extensor torque such as neuropathic processes (Hunter, Pereira 

and Keenan, 2016; Roos et al., 1997). Exercise interventions should therefore target the back muscles, 

not necessarily to improve their macroscopic structure, but to improve force producing capacity 

through other mechanisms which concomitantly decline with age (e.g. neural drive) (Hunter, Pereira 

and Keenan, 2016; Roos et al., 1997). The practical implications of this are particularly useful in 

improving the effectiveness of training programmes in older populations. Rather than using traditional 

resistance-based exercise interventions focused on muscle hypertrophy and slow movement speeds 

(Katula, Jack and Marsh, 2008), future research should explore the efficacy of power-based training 

on improving trunk strength and function in older adults. Indeed, power training has been 

recommended for older adults (Donnelly et al., 2009; Miszko et al., 2003) as the high-speed 

movements elicit positive responses in physical function (Bean et al., 2009) more effectively than 

conventional strength training (Rice and Keogh, 2009). These high-speed movements decrease fast-

twitch motor unit recruitment thresholds and increase firing rates (Van Cutsem, Duchateau and 

Hainaut, 1998). Such neuromuscular adaptations are likely to bring about improvements in power 

production and strength, which are positively related to improved functional capacity in older adult 

individuals (Häkkinen et al., 2001; Kyröläinen et al., 2005; Aagaard et al., 2010). It is not only 
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interesting, but important, to establish whether non-conventional training interventions could elicit 

similar positive responses in the trunk and in turn physical function in older adults. 

Independent living in older age relies on maintaining a sufficient level of physical functioning (Vaughan 

et al., 2016). As the LPMs are important in maintaining physical function in older age (Ikezoe et al., 

2015; Hicks et al., 2005b), it was important in the final experimental chapter to investigate how 

biomechanics of the lumbar spine is affected by age as well as how changes in muscle morphology 

and strength moderate the effect. Only one study has applied the conceptual framework of sarcopenia 

to investigate age-related changes in the lumbar spine (Shahtahmassebi et al., 2017). However, 

Shahtahmassebi et al. (2017) assessed physical function using a performance battery (i.e. Berg Balance 

Scale), clinical assessments (e.g. Timed Up and Go Test) and spaciotemporal measures (i.e. gait speed). 

Whilst such measures provide a general understanding of sarcopenia, they are not robust enough or 

have the fidelity to make specific conclusions on the age-effect in the lumbar spine.  

In this thesis, 3-D motion analysis was used to investigate biomechanical function of the lumbar spine. 

No study has analysed age-related differences in movement data, moments, powers, and work 

performed in the trunk during walking gait; therefore, the experimental approach in this chapter is a 

novel contribution to the literature. SPM was also used to compare age-related differences across 

entire waveforms which provided detailed information on phase-specific age-responses. Typically, 

studies have analysed discrete values rather than considering the entire movement waveform. 

Longitudinal ageing studies with large cohorts from a general population, such as the English 

Longitudinal Study of Ageing (Weber, 2016) and Baltimore Longitudinal Aging Study (Jerome et al., 

2015), have primarily focused on spaciotemporal parameters in gait analysis. This approach may have 

advantages when analysing large amounts of data, however, the opportunity to uncover important 

phase-specific age-effects may be missed. Discrete spaciotemporal measures may not be sensitive 

enough to distinguish the age-effect in healthy older versus younger adults. 

The results of this chapter indicated that older adults adopt conservative upper body strategies in the 

coronal and transverse planes of motion, whilst maintaining forward progression through increased 

anterior trunk tilt. Reductions in coronal plane trunk movement in the OG were predominantly due to 

pelvic obliquity, whilst decreases in axial rotation were due to decrements in the out-of-phase 

relationship between the trunk and pelvis in the transverse plane. Indeed, peak movement amplitudes 

were reduced in all planes of motion in the OG. This was indicative of a conservative gait strategy, 

which was substantiated by lower peak functional trunk moments and powers in the OG.  

Data derived from 3-D motion analysis were used in combination with the isokinetic data in Chapter 

6 to calculate the FD of walking gait in the trunk. NJMs of the lower back were matched on contractile 
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mode and angular velocity to the corresponding isokinetic condition, providing an accurate 

interpretation of FD. Despite having lower peak flexion/extension moments during the GC the OG 

found walking more functionally demanding than the YG, albeit not significantly. This was likely an 

artefact of lower trunk strength in the OG. Over longer durations, the cumulative effects of greater FD 

in the trunk may make everyday activities such as walking challenging in older age. Furthermore, 

uncoupling of interplanar motions in the trunk and pelvis with age may make walking less efficient 

and further increase its biomechanical challenge. This is a relatively novel assertion and mechanisms 

substantiating it have not yet been established. 

Similar to the relationship with strength measures, muscle morphology variables were unable to 

explain changes in trunk biomechanics with age. Age however significantly influenced the loss of 

dynamic trunk strength and trunk kinematics during gait. Although speculative, this suggests that 

neuropathic processes may alter muscle function in older age more so than changes in muscle 

morphology. Efforts should focus upon improving physical function and strength in older age through 

other means (e.g. neuromuscular adaptations to exercise interventions), rather than concentrating 

primarily on improving skeletal muscle size and fat composition through conventional resistance-

based interventions. The findings from each chapter illustrate that healthy older men experience age-

related declines in LPM morphology and trunk strength, but these have modest impacts on physical 

function (assessed by walking gait). Therefore, reduced trunk movement during gait may be a selective 

conservative strategy in older age, rather than a consequence of muscle degeneration and strength 

loss, that reduces internal loading whilst maintaining a similar walking speed to healthy younger men. 

 

 

 Thesis Limitations and Future Research 

Whilst the work in this thesis was rigorous and efforts were made throughout to ensure the highest 

standards of research were maintained, there were general limitations that should be acknowledged. 

 

8.2.1 Sample Population 

As with all studies, there is a compromise between measurement complexity, sustainability and 

resources. A fundamental understanding of spinal sarcopenia was sought in this thesis. Therefore, 

high data fidelity and measurement complexity was chosen over a larger dataset meaning some of the 

analyses were underpowered due to low sample size. The diverse nature of this thesis and unique 

focus of each chapter meant that it was not possible to select a sample size that would be sufficiently 
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powered for all outcomes within the limits of this project. Including 24 participants was the maximum 

sample size permissible due to the time constraints of a 3-year studentship and availability of hospital 

facilities. Efforts were made to match the groups as closely as possible, based on criteria most likely 

to affect skeletal muscle related variables (i.e. sex, PA level and ethnicity). Despite sample size being 

potentially low, the matching procedure increased confidence in the findings. The high level of 

homogeneity within and between groups meant that observed differences were likely due to ageing 

and not artefacts of high variability or confounding variables.  

The sample lacked individuals more representative of the general population as participants were 

highly selected for health. Given that the aim of the thesis was to investigate normal age-related 

differences in musculoskeletal outcomes, this is not necessarily a limitation. However, the participants 

included can only reflect a specific proportion of older adults with any degree of confidence and 

therefore the current findings should only be generalised to healthy older white men. In addition, 

most participants were highly active which further limits generalisation of the findings beyond this 

subgroup. The generally high strength and activity levels of the OG may also explain why only a few 

biomechanical variables differed significantly with the YG. Whilst lower than the YG, muscle strength 

in the OG may not have passed the threshold of low physical performance (Cruz-Jentoft et al., 2019). 

Although many confounding factors were controlled for, other covariates such as dietary information 

were not considered in this thesis. Protein supplementation has been shown to attenuate sarcopenic 

effects in older adult populations (Robinson, Cooper and Aihie-Sayer, 2012; Yanai, 2015), therefore 

differences in nutritional status may have influenced observations. Future studies should investigate 

whether nutritional status covaries with changes in LPM morphology, trunk strength and 

biomechanical function with ageing. 

 

8.2.2 Protocol 

Trunk strength was assessed in the sagittal plane. Measurement of trunk lateral flexion and axial 

rotation strength was not possible using the equipment available. Although isokinetic dynamometers 

have been used to measure torque in these other planes (Ellenbecker and Roetert, 2004; Huang and 

Thorstensson, 2000), there is currently no standardised approach to this form of assessment and the 

fidelity of prior works’ data are questionable. Future research should look to measure trunk strength 

in the coronal and transverse planes using valid procedures, which would also allow FD to be 

calculated in these planes of motion. Secondly, normal walking gait was the only functional task that 

was assessed. Due to the healthy and active status of the participants, age-related differences in trunk 

function were not as pronounced as expected. Indeed, walking speed did not significantly differ 
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between the groups and it is generally considered one of the most sensitive indicators of age-related 

gait dysfunction (Pirker and Katzenschlager, 2017). More challenging ADLs, such as negotiating stairs, 

may have revealed greater functional differences in the trunk between the YG and OG. Relationships 

between muscle morphology, trunk strength and trunk function may have also been more apparent 

in more challenging scenarios. Therefore, future research should assess a range of tasks that are 

representative of ADLs. The compromise between external and internal validity must also be 

acknowledged as a limitation. To obtain a high level of internal validity, laboratory-based assessments 

were conducted which may have reduced the real-world application of strength and function 

measures. An example of this is seen in Chapter 7, where walking in minimal clothing, barefoot, with 

markers attached and in a laboratory is not representative of real-world environments. To increase 

external validity, future studies may consider the use of inertial measurement units which can be 

seamlessly worn as individuals go about their daily activities. However, these methods have inherent 

problems such as cumulative drift (Fong, Ong and Nee, 2008) which may affect the fidelity of the data. 

Whilst efforts were made to control for PA participation prior to attending testing sessions, it cannot 

be confirmed that participants refrained from strenuous and atypical PA prior to undergoing the 

assessments. Similarly, it cannot be confirmed that participants did not consume food or caffeine prior 

to testing. Participants provided written and verbal confirmation that they had not performed 

strenuous PA, consumed caffeine or food prior to undergoing assessments. Collecting oxygen 

saturation, blood lactate and glucose levels through capillary blood sampling methods may have 

provided an objective means of screening for strenuous PA, caffeine and food ingestion. 

 

8.2.3 Group Analysis 

Participants were dichotomised into older and younger age groups. Whilst this approach is common 

in the literature to observe the effects of ageing (Valentin, Licka and Elliott, 2015; Hiepe et al., 2015; 

Anderson et al., 2013; Ikezoe et al., 2012; McGibbon and Krebs, 2001; Schmid et al., 2017) and 

provides a useful starting point, a greater age range and representation of ages between 30 and 60 

years is needed to observe the continuous age effect. Since this approach would have required more 

funding and time, it was not feasible within the scope of this project. However, the variables that 

showed the greatest age-related differences should be focused on in future studies including a greater 

range of ages and specifically covering the fourth to sixth decades of life. Between the ages of 30 and 

60 years has been identified as an important period in which the musculoskeletal system starts to 

decline (Doherty, 2003). Therefore, this age group should receive particular attention regarding age-

related changes in LPM morphology, trunk strength and biomechanical function. 



CHAPTER 8 
 

226 | P a g e  
 

8.2.4 Study design 

Using a cross-sectional design allowed important age-related differences to be revealed. A 

longitudinal design would have been superior in assessing age-related changes in muscle morphology, 

trunk strength and gait biomechanics. However, conducting a longitudinal study of sufficient time 

would have been outside the remit of this thesis. Research on this topic is still emerging, therefore the 

data collected is particularly valuable as it incrementally increases the knowledge base in a field that 

is largely unexplored. Whilst the study design precluded examination of causal relationships, it was an 

important first step that enabled initial investigations to be performed. Future studies should adopt a 

longitudinal design, exploring the causative effect of ageing on the most important variables 

highlighted in this thesis. 

 

 

 Conclusion 

There are wider implications of the work in this thesis. It furthers our understanding of sarcopenia, 

laying the first steps in establishing the age effect on muscle morphology, strength and biomechanical 

function in the lumbar spine. This will also allow identification of pathological deviations and 

sarcopenia in the lumbar spine as the current data are representative of a healthy population. This is 

highly valuable in clinical settings where knowledge of the lumbar musculature in relation to ageing 

has not been established. Whilst each experimental chapter contributes an original methodological 

approach or finding, the thesis as a whole extends the concept of ‘spinal sarcopenia’ which may help 

to distinguish it as a separate condition from sarcopenia going forward. Also, the findings provide 

compelling evidence that can help to focus targeted interventions in older adult populations. Given 

the important role of the LPMs in ADLs, improving trunk strength and biomechanical function may 

have considerable benefits in older age such as reducing falls risk and preserving independence. This 

may also have a positive impact at a societal level as associated primary, secondary and tertiary 

healthcare costs would be expected to reduce.  

In summary, this thesis has explored an emerging and multifactorial phenomenon using gold-standard 

approaches and novel techniques to make unique contributions to the literature. Research aiming to 

establish normative and sarcopenic features of age-related degeneration in the LPMs, as well as 

randomised-controlled trials aiming to combat the pervasive nature of these changes, will be of 

increasing importance as the proportion of older adults continues to rise in the UK and indeed globally. 
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Appendix b Participant Information Sheet 
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Appendix c Informed Consent Form 
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Appendix d International Physical Activity Questionnaire – Short Form 

 

Some materials have been removed from this thesis due to Third Party Copyright. Pages where material has been removed 
are clearly marked in the electronic version. The unabridged version of the thesis can be viewed at the Lanchester Library, 
Coventry University.
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Appendix e International Physical Activity Questionnaire – Short Form (elderly) 

  

Some materials have been removed from this thesis due to Third Party Copyright. Pages where material has been 
removed are clearly marked in the electronic version. The unabridged version of the thesis can be viewed at the 
Lanchester Library, Coventry University.
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Appendix f GafREC Approval Letter 

 

Content removed on data protection grounds
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Appendix g Health and Lifestyle Questionnaire 
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Appendix h MRI Safety Questionnaire 
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Appendix i MRI Consent Form 
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Appendix j Graphical Overview of Studies 

Adobe Acrobat 
Document  
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Appendix k Segmentation agreement maps showing the test (blue) and retest (pink) 
segmentations. Purple areas show the cross-over between test and retest measurements 
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Appendix l Morphology values for the first and second assessments 

 
 First assessment  Second assessment 
 Participant 

1 
Participant 

2 
Participant 

3 
Participant 

4 
 Participant 

1 
Participant 

2 
Participant 

3 
Participant 

4 

Volume 
(cm3) 

PS  109.5 101.1 143.8 96.4  109.7 101.2 144.7 96.6 
QL  50.1 43.6 74.2 62.7  51.1 42.1 76.1 64.8 
ES  193.0 150.5 216.8 188.5  191.6 148.8 214.2 189.5 
MF  49.8 64.0 61.8 64.5  48.8 63.8 60.6 65.6 

Normalised 
Volume 

PS  5.8 5.6 7.3 5.3  5.8 5.5 7.4 5.3 
QL  2.7 2.4 3.8 3.4  2.7 2.3 3.9 3.5 
ES  10.3 8.3 11.0 10.3  10.1 8.2 11.0 10.4 
MF  2.7 3.5 3.1 3.5  2.6 3.5 3.1 3.6 

Fat 
Infiltration 

(%) 

PS  12.5 13.8 10.7 12.3  12.7 13.7 11.5 13.3 
QL  11.5 22.7 10.0 11.4  12.1 21.8 11.4 12.7 
ES  18.5 33.1 16.1 14.2  18.7 32.1 16.5 15.3 
MF  24.6 43.6 23.6 17.9  24.6 42.4 24.1 18.9 

Vertebral height (cm)  18.76 18.13 19.69 18.31  18.98 18.25 19.46 18.28 
Lumbar lordosis angle (°)  42.8 37.3 21.4 28.0  46.5 37.4 21.6 29.9 
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Appendix m Participant positioning in the Trunk Module Component 
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Appendix n Anthropometric measurements for the Plug-in Gait Marker Model with descriptions 

Name Description Measure 
Left 

Measure 
Right 

Body Mass Body mass was measured using SECA scales (Hamburg, Germany) to 
the nearest 0.1 kg. _____ kg 

Height Height was recorded using a SECA stadiometer (Hamburg, Germany) 
to the nearest 0.01 m. _____ mm 

Upper Body Measurements 
*Head Offset Patient head offset in degrees. Only required if head is not 

level (calculated after running the Plug-in Gait model) _____ deg 

Shoulder Offset Vertical offset from the base of the acromion marker to shoulder 
joint center. _____ mm _____ mm 

Elbow Width Width of elbow along flexion axis (roughly between the medial and 
lateral epicondyles of the humerus). _____ mm _____ mm 

Wrist Width Anterior/Posterior thickness of wrist at position where wrist marker 
bar is attached. _____ mm _____ mm 

Hand Thickness Anterior/Posterior thickness between the dorsum and palmar 
surfaces of the hand. _____ mm _____ mm 

Arm Span Left arm middle finger to right arm middle finger distance when 
arms are abducted to 90 degrees. _____ mm _____ mm 

Lower Body Measurements 

*Inter-ASIS distance 
ASIS-ASIS distance is the distance between the left ASIS and right 
ASIS. This measurement is only needed when markers cannot be 
placed directly on the ASIS, for example, in obese patients. 

_____ mm 

Leg Length 

Full leg length, measured between the ASIS marker and the medial 
malleolus, via the knee joint. Measure with patient standing, if 
possible. If the patient is standing in the crouch position, this 
measurement is NOT the shortest distance between the ASIS and 
medial malleoli, but rather the measure of the skeletal leg length. 

_____ mm _____ mm 

*ASIS-Trochanter Distance 
ASIS-greater trochanter distance is the vertical distance, in the 
sagittal plane, between the ASIS and greater trochanter when the 
patient is lying supine. Measure this distance with the femur rotated 
such that the greater trochanter is positioned as lateral as possible. 

_____ mm _____ mm 

Knee Width The medio-lateral width of the knee across the line of the knee axis. 
Measure with patient standing, if possible. _____ mm _____ mm 

Ankle Width The medio-lateral distance across the malleoli. Measure with 
patient standing, if possible. _____ mm _____ mm 

*Shank Rotation Offset 
Shank Rotation Offset is automatically inputted by the Plug-in Gait 
Marker model as zero, as the model assumes the tibia marker is 
placed exactly in the sagittal plane between the knee and ankle joint 
centre. 

_____ deg _____ deg 

*Sole Thickness Delta 

The difference in the thickness of the sole at the toe and the heel. A 
positive sole delta indicates that the patient's heel is raised 
compared with the toe. This value was assumed to be 0 since 
participants were barefoot. 

_____ mm _____ mm 

* not required. PiG model calculates the parameter 
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Appendix o Plug-it Gait marker placements and definitions 

Marker 
label Definition Position on patient 

Head markers 
LFHD Left front head Left temple 
RFHD Right front head Right temple 
LBHD Left back head Left back of head (defines the transverse plane of the head, together with the frontal markers) 
RBHD Right back head Right back of head (defines the transverse plane of the head, together with the frontal markers) 

Torso markers 

C7 7th cervical 
vertebra 

On the spinous process of the 7th cervical vertebra 

T10 10th thoracic 
vertebra 

On the spinous process of the 10th thoracic vertebra 

CLAV Clavicle On the jugular notch where the clavicles meet the sternum 
STRN Sternum On the xiphoid process of the sternum 

RBAK Right back 

Anywhere over the right scapula  
(This marker has no equivalent marker on the left side. This asymmetry helps the autolabeling 
routine determine right from left on the subject. Placement is not critical as it is not included in 
the Plug-in Gait model calculations.) 

Left upper limb markers 
LSHO Left shoulder On the acromio-clavicular joint 

*LUPA Left upper arm On the upper lateral 1/3 surface of the left arm (Place asymmetrically with RUPA) 
LELB Left elbow On the lateral epicondyle 

*LFRM Left forearm On the lower lateral 1/3 surface of the left forearm (Place asymmetrically with RFRM) 

LWRA Left wrist marker A 
At the thumb side of a bar attached to a wristband on the posterior of the left wrist, as close to 
the wrist joint centre as possible. Loose markers can be used but for better tracking of the axial 
rotations, a bar is recommended. 

LWRB Left wrist marker B 
At the little finger side of a bar attached to a wristband on the posterior of the left wrist, as close 
to the wrist joint centre as possible. Loose markers can be used but for better tracking of the axial 
rotations, a bar is recommended. 

LFIN Left finger Just proximal to the middle knuckle on the left hand 
Right upper limb markers 

RSHO Right shoulder On the acromio-clavicular joint 
*RUPA Right upper arm On the lower lateral 1/3 surface of the right arm (Place asymmetrically with LUPA) 
RELB Right elbow On the lateral epicondyle approximating the elbow joint axis 

*RFRM Right forearm On the lower lateral 1/3 surface of the right forearm (Place asymmetrically with LFRM) 

RWRA Right wrist marker 
A 

At the thumb side of a bar attached symmetrically with a wristband on the posterior of the right 
wrist, as close to the wrist joint centre as possible 

RWRB Right wrist marker B At the little finger side of a bar attached symmetrically with a wristband on the posterior of the 
right wrist, as close to the wrist joint centre as possible 

RFIN Right finger Just below the middle knuckle on the right hand 
Left lower limb markers 

LTHI Left thigh Over the lower lateral 1/3 surface of the left thigh 
LKNE Left knee On the flexion-extension axis of the left knee 
LTIB Left tibia Over the lower 1/3 surface of the left shank 
LANK Left ankle On the lateral malleolus along an imaginary line that passes through the transmalleolar axis 
LHEE Left heel On the calcaneous at the same height above the plantar surface of the foot as the toe marker 

LTOE Left toe Over the second metatarsal head, on the mid-foot side of the equinus break between fore-foot 
and mid-foot 

Right lower limb markers 
RTHI Right thigh Over the upper lateral 1/3 surface of the right thigh 
RKNE Right knee On the flexion-extension axis of the right knee. 
RTIB Right tibia Over the upper 1/3 surface of the right shank 
RANK Right ankle On the lateral malleolus along an imaginary line that passes through the transmalleolar axis 
RHEE Right heel On the calcaneous at the same height above the plantar surface of the foot as the toe marker 

RTOE Right toe Over the second metatarsal head, on the mid-foot side of the equinus break between fore-foot 
and mid-foot 
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Appendix p PiG kinetic hierarchy 
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Fs = input ('Select signal frequency -> ');      % Signal 
x = input ('Select signal vector -> ');      % Signal 
    t = length (x); 
    [Pxx,F] = periodogram(x,[],t,Fs); 
    plot(F,10*log10(Pxx)) 
  
% Plot signal in frequency domain 
y = fft(x); 
f = (0:length(y)-1)*100/length(y); 
plot(f,abs(y)) 
xlabel('Frequency (Hz)') 
ylabel ('PSD Magnitude') 
  
% Cummulative power spectrum 
CP = cumsum(Pxx);       % Create cummulative power spectral 
NormCP = CP/CP(end);      % Normalise 
figure; plot (F,NormCP) 
title('Cummulative Power spectral density') 
xlabel('Frequency (Hz)') 
ylabel ('Normalised cummulative sum PSD') 
xlim([0,20]) 
grid minor 
  
% find 99% of cummulative frequency cut-off 
f99 = find (NormCP > 0.99); 
idx = min(f99); 
[cutoff] = F(idx) 
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Appendix q MATLAB code to determine optimal cut-off frequency 
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Figure a = anteroposterior displacement, figure b = mediolateral displacement, figure c = vertical 

displacement, figure d = anteroposterior GRF, figure e = mediolateral GRF, figure f = vertical GRF 

 

  

a b c 

d e f 

Appendix r Effect of a 4th order Zero Lag Low-pass Butterworth filter with cut-off frequency 10 Hz on the 
marker trajectories of a marker placed on the 10th spinous process of the lumbar vertebrae and GRF data 
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%% Conduct SPM analysis 
spm       = spm1d.stats.ttest2(Young, Old); 
spmi      = spm.inference(0.05, 'two_tailed',true, 'interp', true); 
disp(spmi) 
  
% Plot SPM results 
close all 
spmi.plot(); 
spmi.plot_threshold_label(); 
spmi.plot_p_values(); 
spmi.clusters{1,1} % For descriptive information about clusters  
  

Appendix s Statistical Parametric Mapping MATLAB code 
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Appendix t Ethics Full Application 
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(2020) ‘Age-Related Degeneration of the Lumbar Paravertebral Muscles: Systematic Review and 
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