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Knowledge of neck muscle activation strategies prior to1

sporting impacts is crucial for investigating mechanisms of2

severe spinal injuries. However, measurement of muscle ac-3

tivations during impacts is experimentally challenging and4

computational estimations are not often guided by exper-5

imental measurements. We investigated neck muscle acti-6

vations prior to impacts with the use of electromyography7

(EMG)-assisted neuromusculoskeletal models. Kinematics8

and EMG recordings from four major neck muscles of a9

rugby player were experimentally measured during rugby10

activities. A subject-specific musculoskeletal model was cre-11

ated with muscle parameters informed from MRI measure-12

ments. The model was used in the Calibrated EMG-Informed13

Neuromusculoskeletal Modelling toolbox and three neural14

solutions were compared: i) static optimisation (SO), ii)15

EMG-assisted (EMGa) and iii) MRI-informed EMG-assisted16

(EMGaMRI). EMGaMRI and EMGa significantly (p¡0.01)17
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outperformed SO when tracking cervical spine net joint mo- 1

ments from inverse dynamics in flexion/extension (RMSE = 2

0.95, 1.14 and 2.32 Nm) but not in lateral bending (RMSE 3

= 1.07, 2.07 and 0.84 Nm). EMG-assisted solutions gen- 4

erated physiological muscle activation patterns and main- 5

tained experimental co-contractions significantly (p¡0.01) 6

outperforming SO, which was characterised by saturation 7

and non-physiological “on-off” patterns. This study showed 8

for the first time that physiological neck muscle activations 9

and cervical spine net joint moments can be estimated with- 10

out assumed a priori objective criteria prior to impacts. Fu- 11

ture studies could use this technique to provide detailed ini- 12

tial loading conditions for theoretical simulations of neck in- 13

jury during impacts. 14

1 Introduction 15

The human cervical spine is a highly complex neuro- 16

musculoskeletal system that is susceptible to injuries under 17

various loading conditions. Severe cervical spine injuries are 18

commonly caused during sporting (e.g. contact sport) [1, 2], 19



automotive (e.g. car roll-overs) [2–4] and occupational [2]1

(e.g. falls) accidents that involve impacts. Accidents that2

lead to neurological impairment at the level of the cervical3

spine are relatively rare, 40 to 80 per million annually world-4

wide [2], but are associated with large socioeconomic bur-5

dens [5]. Direct lifetime costs can rise to 2.3 million US$6

for individuals injured at the age of 25 in the USA [2]. As7

highlighted in injury prevention models [6, 7], biomechani-8

cal investigations are lacking but essential to inform the un-9

derstanding of the underlying injury mechanisms during dy-10

namic neck loading, and develop effective injury prevention11

strategies.12

The importance of neck muscle activation strategies, and13

the resulting muscle forces, during the analysis of cervical14

spine injury mechanisms has been described by both experi-15

mental [8, 9] and computational [10, 11] studies. Neck mus-16

cles not only mobilise the head and cervical spine, but also17

alter intervertebral joint loading [12]. Experimental in vitro18

studies have underlined the importance of replicating neck19

muscle forces as these can alter load transmission across in-20

tervertebral joints [9] and the failure load [13] of the cervi-21

cal spine. Similarly, the inclusion of muscle forces in nu-22

merical simulations of the neck affects both intervertebral23

loading [11] and the resulting kinematics [14, 15] caused by24

impacts. These studies provide a strong rationale for con-25

sidering muscles contribution when investigating neck injury26

mechanisms. However, due to experimental and ethical limi-27

tations, little is known about how neck muscles are activated28

in vivo before impacts. This lack of knowledge has led to29

computational studies applying arbitrary muscle activations30

or forces during simulations or defining a priori objective cri-31

teria to estimate muscle forces through optimisation strate-32

gies [10, 11, 15] [16]. This is an important consideration33

as understanding how muscles are activated prior to impacts34

is critical to fully inform future neck injury mechanism re-35

search and to design preventative measures.36

Electromyography (EMG) is therefore an important37

method to inform numerical simulations and generate more38

plausible muscle activations that do not fully rely on mathe-39

matical a priori criteria. For this reason, surface EMGs have40

been successfully integrated in simulations of gait [17–19],41

and upper limb movements [16] to provide realistic estima-42

tion of net joint moments and contact forces. However, this43

approach becomes much more challenging when applied to44

trunk and neck segments due to the architecture and anatom-45

ical overlap of spinal muscles. Fine-wire electromyography46

provides a potential solution to avoid cross-talk and reach47

deep spinal muscles, and it has been used to investigate static48

and quasi-static neck movement tasks [12,20]. However, the49

invasive nature of this measurement technique has so far lim-50

ited investigations of dynamic movements (e.g. collisions) to51

highly controlled conditions [21,22]. Furthermore the use of52

fine-wire EMGs on the neck region during dynamic sporting53

events is even more limiting due to ethical and experimental54

constraints (i.e. invasiveness and interference with task per-55

formance). Therefore, a combination of experimentally vi-56

able and computationally valid methods is currently the only57

practical strategy to better estimate neck muscle activations58

and resulting net joint moments during dynamic events. 1

In neuromusculoskeletal modelling, EMG-assisted 2

methods combine experimental EMG signals with optimi- 3

sation procedures to generate muscle activation patterns that 4

track both experimental muscle EMG signals and joint mo- 5

ments [23–25]. In previous studies these methods have been 6

applied successfully to the hip [18], knee [19] and shoul- 7

der [16] as well as to single intervertebral joint levels (e.g. 8

C4-C5 or L5-Sacrum) of the spine region during static and 9

functional tasks [23, 26–29]. However, the use of EMG- 10

assisted methods to generate intervertebral joint equilibrium 11

across the entire cervical spine (Skull-C1 to C6-C7) during 12

dynamic tasks, representative of contact sports associated 13

with traumatic neck injuries, have not been investigated. Im- 14

portantly, EMG-assisted methods, to a certain extent, can cir- 15

cumvent the challenge of defining appropriate a priori objec- 16

tive criteria for optimisations adopted by the neuromuscular 17

system during impact events, and assist in the identification 18

of physiologically plausible muscle activation strategies. 19

Musculoskeletal model estimates of muscle activations 20

and internal loads have been shown to improve with model 21

personalisation [30] whilst other studies have seen no effect 22

[17]. Subject-specific anatomical measurements from mag- 23

netic resonance imaging (MRI) can be used to inform region 24

specific scaling [17], individual muscle maximal force pro- 25

duction estimates [31] and three-dimensional muscle paths 26

in models [32]. The importance of subject-specific informa- 27

tion can be valuable in sporting populations where anatomy 28

is significantly different from the average population. 29

The aims of this study were twofold. The first aim was 30

to create a calibrated EMG-assisted neuromusculoskeletal 31

model with MRI-informed neck musculoskeletal anatomy. 32

This model would permit the estimation of physiologically 33

plausible neck muscle activations and moments across all 34

intervertebral joints of the cervical spine in rugby impacts. 35

The second aim was to assess the effect of different levels 36

of model personalisation (i.e., muscle maximum isometric 37

force and muscle activation patterns) on the model’s abil- 38

ity to generate physiologically plausible results, quantified 39

as the accuracy in reproducing inverse dynamic net joint 40

moments and neck muscle activations. It was hypothesised 41

that increasing model personalisation by using EMG-assisted 42

neural solutions and MRI derived muscle strengths would 43

generate simulated activations that successfully replicated 44

the experimental EMG and net joint moment data, better than 45

neural solutions guided by a priori objective function or only 46

EMG-assisted methods. 47

2 Materials and Methods 48

A case study comprising multiple trials on a single 49

rugby athlete was used. A neuromusculoskeletal modelling 50

pipeline was created wherein the ability of the model to re- 51

produce inverse dynamic joint moments and muscle activa- 52

tion patterns was tested. Two neuromuscular solution modal- 53

ities were assessed: static optimisation and EMG-assisted 54

methods. Additionally, the level of personalisation of the 55

model and its performance was assessed by incorporating 56



MRI derived muscle maximal isometric force into the model1

when using the EMG-assisted methods.2

2.1 Participant3

One professional academy-level front-row rugby player4

(male, 22 years, 1.82 m, 113.7 kg) participated in this study.5

Ethical approval was obtained from the Research Ethics Ap-6

proval Committee for Health of the University of Bath and7

the participant provided written informed consent prior to8

data collection.9

2.1.1 Medical Imaging10

The participant underwent isotropic T1-weighted mag-11

netic resonance imaging (MRI) (Skyra, SIEMENS, Ger-12

many) scans of the neck and upper shoulders (occiput to13

T1 level) with a slice thickness of 1 mm (RT = 7 ms; ET14

= 2.5 ms). Sequences were taken with the participant in15

neutral, maximal flexion and maximal extension supine pos-16

tures. Musculoskeletal structures (skull to C7 vertebrae and17

muscles) were semi-automatically segmented (Mimics v22,18

Materialise, Belgium) to scale the musculoskeletal model19

used in the study. Thirteen bilateral muscle pairs (Figure S1 –20

Supplementary Material) that were clearly identifiable in the21

MRI images were segmented by a single operator guided by22

musculoskeletal atlases [33,34]. Segmented muscle volumes23

and 3D centroid paths were then derived from the identified24

muscles using inbuilt algorithms within Mimics v22. Max-25

imal muscle isometric forces (i.e. muscle strengths) were26

calculated from the segmented muscle volumes based on the27

relationship proposed by O’Brien et al (2010) [31] (Equation28

1):29

F iso
max = σ

V m

lm
0

(1)

Where sigma is the muscle’s specific tension set to 0.5530

MPa [31], Vm is the segmented muscle volume (m3) and l0m is31

the muscle’s optimal fibre length (m) from the scaled model32

[35] subsequently discussed. Further details are presented in33

the Supplementary Material.34

2.1.2 Experimental Methods35

To test the performance of the proposed neuromus-36

culoskeletal method in dynamic impact events the partici-37

pant performed laboratory-based machine rugby scrummag-38

ing [36, 37] and tackling [38] trials on the same day as the39

MRI scans. Neck functional movement in the three cardi-40

nal planes of motion (i.e. flexion/extension, left/right lat-41

eral bending and left/right axial rotation) against no resis-42

tance were also performed. Three successful trials were col-43

lected for each dynamic condition (i.e. scrummaging, front44

and side-on tackling) as a best compromise between repre-45

sentativeness, exposure to multiple impacts and reducing the46

effects of fatigue. Full body kinematics [35] (Oqus, Qual-47

ysis, Sweden) and bilateral EMG (Trigno, Delsys, USA) of48

the sternocleidomastoid and upper trapezius muscles [35,38] 1

were collected at 250 Hz and 2500 Hz, respectively. The 2

EMG sensors were placed on the muscles belly as explained 3

in the SENIAM (http://www.seniam.org) guidelines. Max- 4

imum voluntary isometric contractions (MVIC) were also 5

performed following established methods [39] with the par- 6

ticipant in a neutral neck posture performing maximal flex- 7

ion, extension and lateral neck bending exercises. Due to 8

the large hypertrophy of rugby athletes’ neck musculature, 9

radiographically observed by Brauge et al. (2015) [40] and 10

also in this study, only the two major bilateral flexors (stern- 11

ocleidomastoids) and extensors (trapezius) could be reliably 12

measured with surface electromyography without crosstalk 13

from other superficial muscles. Additionally, the dynamic 14

nature of the experimental rugby activities involves direct 15

forceful contact with participant’s neck area making the use 16

of intra-muscular electrodes considerably challenging and 17

ethically unadvisable due to the risk for the participant. Ex- 18

perimental marker trajectories were low-pass filtered with a 19

fourth-order zero-lag Butterworth filter at 6 Hz in Matlab 20

R2017a (The Mathworks Inc., Natick MA, USA). The EMG 21

signals were band-pass filtered (10-250 Hz; maintaining 97% 22

of signal power), full wave rectified, low-pass filtered at 6 23

Hz [41] with the same filter, then amplitude normalised to 24

the maximum recorded value identified in the MVIC or dy- 25

namic trials prior to impact to create EMG linear envelopes. 26

2.1.3 Musculoskeletal Modelling 27

The population specific Rugby Model [35] was updated 28

and used as the baseline model for this study. The hyoid 29

muscle group was added to the Rugby Model to improve its 30

physiological fidelity [42] increasing the number of muscle- 31

tendon units (MTU) that actuated the cervical spine to 96 32

(64 extensors and 32 flexors). The neck region (C1-C7) of 33

the musculoskeletal model was scaled in each dimension 34

(height, width and depth) in OpenSim 3.3 [43] based on 35

anatomical measurements of the participant’s cervical ver- 36

tebrae from the segmented MRI images. MTU attachment 37

sites were not changed with respect to Vasavada et al. (1998) 38

[44], due to difficulties in identifying muscle attachment lo- 39

cations in the MRI. The remaining model segments were lin- 40

early scaled based on anatomical motion capture markers. 41

Six parametric muscle wrapping surfaces (Figure 1) were 42

also defined in the musculoskeletal model to better repli- 43

cate MTU lines of action in the cervical spine: i) a cylin- 44

der anterior to the lower cervical spine registered to the C6 45

vertebra [45]; ii) a sphere originating and registered to the 46

C2 vertebra; iii) two bilateral cylinders at the posterior of 47

the upper cervical spine also registered to the C2 vertebra; 48

iv) lastly two bilateral tori at the lower cervical spine regis- 49

tered to the C7 vertebra. All wrapping surfaces were con- 50

strained to move with their registered bodies. The choice of 51

parameters and position used to define the model’s wrapping 52

surfaces were informed by Vasavada et al. (2008) [46] and 53

measurements taken from the segmented MRI images of the 54

rugby player participant. Further details on the wrapping sur- 55

face definition and registration to their respective MTUs are 56



Fig. 1: Representation of the three main steps to update the
OpenSim Rugby Model’s muscles paths: A) high resolution
(1 mm isotropic) MRI scans of a rugby forward player’s neck
and upper-shoulder region were segmented yielding muscle
and bone geometries together with muscle volume and cen-
treline information; B) musculoskeletal geometries (α) and
muscle centroid paths (β) were imported into Matlab and
parametric surfaces (γ) were estimated based on [46]; C) pa-
rameters were used for the generation of wrapping surfaces
in the OpenSim model (here only the muscles constrained by
the defined wrapping surfaces are presented in the model and
the scapulae removed for better visualisation of muscles)

given in the Supplementary Material. The Rugby Model and1

simulation outputs are available from the SimTK repository2

(https://simtk.org/projects/csibath).3

Functional movement and dynamic rugby trials (5004

ms preceding the time of impact) were analysed via three5

inverse modelling processes: i) inverse kinematics, ii) in-6

verse dynamics and iii) muscle analyses using the Open-7

Sim 3.3 Matlab API. These processes respectively calcu-8

lated i) joint kinematics, ii) net joint moments (hence called9

inverse dynamic joint moments) as well as iii) MTU kine-10

matics (length and velocity) and moment arms. As is com-11

mon during inverse analyses of spine musculoskeletal mod-12

els [29, 35, 42, 44, 47] intervertebral joint angles were driven 1

by coordinate coupler constraints [48]. These constraints 2

partitioned the experimentally measured angle of the head 3

relative to the trunk to the internal coordinates [44] of the cer- 4

vical spine (i.e. intervertebral joint angles). The constraints 5

were only used during inverse kinematics to obtain interver- 6

tebral joint angles. The coordinate coupler constraints were 7

not applied during OpenSim inverse dynamics (ID) and mus- 8

cle analysis (MA) as they interfere with the estimation of 9

ID joint moments and MTU kinematics in OpenSim. In or- 10

der to complete ID and MA in OpenSim the musculuskele- 11

tal model’s coordinate values were prescribed to those com- 12

puted in the previous IK step. No reserve actuators were 13

included in the model which allowed for the intervertebral 14

joints to be purely actuated by the model’s MTUs. 15

2.1.4 Neuromuscular modelling 16

The estimation of the model’s 96 muscle activation pat- 17

terns was solved using the Calibrated EMG-Informed Neu- 18

romusculoskeletal Modelling (CEINMS) OpenSim Toolbox 19

[24,25] that minimised the following cost function (Equation 20

2): 21

F = αEM +βE
∑e2 + γEe (2)

Where EM was the sum of the squared differences be- 22

tween the estimated and inverse dynamic net joint moments 23

from the inverse dynamics (sagittal and frontal plane mo- 24

ments of the C0-C1 through to C6-C7 joints), E∑e2 was the 25

sum of the squared synthesised activations for all MTUs, 26

and Ee was the sum of the differences between the adjusted 27

model activations and experimental activations. Factors α, 28

βand γwere non-negative weightings for each term of the 29

cost function. Activation dynamics were characterised by 30

a critically damped linear second-order differential system 31

[24, 41]. It was assumed that the MTU tendons of the model 32

were stiff due to their short length and function in the neck. 33

Three neural solution methodologies were assessed in their 34

ability to track inverse dynamic neck net joint moments and 35

EMG activation signals of the experimental trials (Figure 36

2). The features leading to increasing personalisation of the 37

model are summarised in Table 1: 38

1. Static optimisation (SO): an uncalibrated model was 39

used through a static optimisation algorithm to estimate 40

muscle activation patterns by minimising both the net 41

joint moments errors and the sum of activations squared; 42

2. EMG-assisted (EMGa): a calibrated model was used 43

along with an EMG-assisted approach to estimate mus- 44

cle activation patterns; 45

3. MRI-informed EMG-assisted (EMGaMRI): EMG- 46

assisted approach was used to estimate muscle 47

activation patterns and included MRI derived Fmax
iso

48

values within the calibration; 49



Table 1: Summary of features used in each of the three neuromusculoskeletal modelling approaches. The 4indicates inclu-
sion whilst the 7exclusion of the feature in the specific approach.

Neuromusculoskeletal model features SO EMGa EMGaMRI

MRI informed neck scaling 4 4 4

MRI informed neck muscle wrapping 4 4 4

Calibration 7 4 4

EMG constrained MTU activation estimation 7 4 4

MRI informed neck muscle strengths Fmax
iso 7 7 4

Fig. 2: Schematic overview of computational pipeline used in the study. The scaled musculoskeletal model was used in the
analysis of calibration and execution trials with Inverse Kinematic (IK), Inverse Dynamic (ID) and Muscle Analysis (MA)
in OpenSim 3.3. The outputs of these analyses (IK: model coordinate kinematics; ID: model coordinate moments; MA:
model MTU length, velocity and moment arms) were then used in the CEINMS framework for all Static Optimisation (SO)
and EMG-assisted (EMGa and EMGaMRI) neural solutions. For both the EMG-assisted solutions the model underwent the
same calibration procedures with the exception of the EMGaMRI that derived muscle maximal isometric forces from the
segmentation of muscles identifiable in the MRI. Calibration was completed on a set of dynamic and functional trials that
was distinct from the execution trials (tackling and scrummaging) that were analysed with the three neural solutions

2.1.5 Calibration1

Calibration in CEINMS was completed through an2

EMG-driven procedure, where experimental muscle activa-3

tions (i.e. EMG linear envelopes) were prescribed to the4

model’s MTUs that generate moments about the cervical5

joints for a set of calibration trials [24]. Musculotendon6

and activation dynamic parameters [24, 41] were optimised7

within chosen physiological bounds (Table 2) by minimis-8

ing the sum of squared differences normalised to trial vari-9

ance between the predicted and the experimentally measured 1

joint moments for all analysed degrees of freedom (DoF) 2

across the calibration trials [24]. Calibrated musculotendon 3

parameters included tendon slack length (lst ), optimal fibre 4

length (l0m), a strength coefficient to scale the Fmax
iso of the 5

MTU whilst activation dynamics parameters were two recur- 6

sive coefficients (C1 and C2) and a non-linear shape factor 7

(A) [24, 41]. 8



Table 2: Neuromuscular parameters optimised in CEINMS
calibration stage. For detailed explanation on these muscu-
lotendon and activation dynamics parameters refer to Lloyd
and Besier [41] and Pizzolato et al. [24]

. * Indicates the range was relative to the model’s initial
parameter value

Parameter Range

C1 [-0.95 0.05]

C2 [-0.95 0.05]

Shape Factor (A) (-3 0)

Tendon Slack Length (lst ) [0.8 1.2]*

Optimal Fibre Length (l0m) [0.8 1.2]*

Strength Coefficient [0.6 2.6]*

2.1.6 Calibration Stages1

To overcome the high level of redundancy present in2

the model’s neck region, the model underwent two cali-3

brations (intermediate and final) in a three-stage process in4

CEINMS (Figure 3). This allowed for an intermediate5

stage where unknown MTU activations could be estimated6

using the four available EMG linear envelopes. Two func-7

tional movement trials (flexion/extension and left/right lat-8

eral bending), one scrummaging and one tackling trial were9

selected for the calibration process. This combination of10

movements was considered to mobilise the model through11

a sufficient range of motion. Only the 14 DoF’s correspond-12

ing to flexion/extension and left/right lateral bending of the13

intervertebral neck joints were considered when minimising14

the error between inverse dynamic and estimated net joint15

moments. The three stages of the calibration process (Figure16

3) for the EMGa and EMGaMRI were:17

1. Stage 1 calibrated neuromuscular parameters (Table 2)18

of the model resulting in an intermediate calibrated19

model. Initially the 96 MTUs of the uncalibrated mus-20

culoskeletal model were separated into functional quad-21

rants (right/left flexion, right/left extension) (Figure 4).22

Each of the four filtered EMG signals (right/left stern-23

ocleidomastoid, right/left upper trapezius) was mapped24

to all the MTUs of its respective functional quadrant25

(Table S1). The MTUs were prescribed to follow the26

mapped EMG signal which assumed MTUs of each27

functional quadrant were activated identically to the ex-28

perimental activation signals. For the EMGa solution,29

the strength coefficient of all MTUs ranged between30

the minimum (60%) and maximum (260%) differences31

identified between the MRI derived and baseline model32

Fmax
iso values (Supplementary material). Whereas for the33

EMGaMRI solution, the Fmax
iso of the 44 MTUs that con-34

stituted the 26 segmented muscles (Table S1) were de-35

fined to the MRI derived values. The strength coeffi-36

cients of these 44 MTUs were set equal to 1 and not 1

varied during the calibration process. The strength coef- 2

ficients of the remaining MTUs could range between 60 3

and 260%. 4

2. Stage 2 estimated the 86 unknown muscle activations 5

of the calibration trials using the intermediate calibrated 6

model. For each trial the MTUs were again separated 7

into functional quadrants and mapped with their respec- 8

tive experimental EMG signals as in Stage 1. How- 9

ever, this differed to Stage 1 by only constraining ac- 10

tivation signals to the flexion (n=6) and extension (n=4) 11

MTUs corresponding to measured muscle EMGs (Ta- 12

ble S1). The remaining 86 unknown MTU activations 13

were estimated by adjusting their mapped EMG signal 14

through the CEINMS optimisation that matched inverse 15

dynamic joint moments and minimised deviation from 16

experimental (input) EMG signals. 17

3. Stage 3 calibrated the intermediate model’s parameters 18

by mapping and constraining each MTU with activation 19

signals. In Stage 3 input activation signals of all model 20

MTUs were mapped from either measured activations, 21

again constrained to the ten corresponding MTUs (as in 22

Stage 1), or individual estimated activations (from Stage 23

2), constrained to the remaining 86 MTUs in the EMG- 24

driven calibration. 25

2.2 Data Analysis 26

Experimental trials (distinct from the calibration trials) 27

were analysed with the SO method by setting the CEINMS 28

weighting factors of Equation 2 to α=1, β=1 and γ=0. 29

This equally weighed the tracking of estimated interverte- 30

bral joint moments (α=1) and the minimisation of the activa- 31

tions squared term (β=1) whilst neglecting the estimation of 32

muscle activations from experimental EMG measurements 33

(γ=0). For EMGa and EMGaMRI methods, the activations 34

squared term was neglected (β=0) and the measured activa- 35

tions tracking term engaged (γ>0). For these EMG-assisted 36

methods, the simulated muscle activations were either con- 37

strained (N=10) to or adjusted (N=86) whilst tracking their 38

respective experimental EMG linear envelopes (Table 4) in 39

order to minimise errors between inverse dynamic and sim- 40

ulated intervertebral joint moments. Constraining beta (β=0) 41

is acceptable in such cases as the simulated activations are 42

actually following an experimental constraint (i.e. EMG 43

linear envelopes) nonetheless.The αand γfactor values were 44

therefore optimised to balance the error between the minimi- 45

sation of tracking inverse dynamic joint moments and EMG 46

linear envelopes [25], and then slightly adjusted to increase 47

weighting on moment tracking (α=50 and γ=50). To evalu- 48

ate the performance and the level of physiological agreement 49

of the three neural solutions (SO, EMGa and EMGaMRI), 50

inverse dynamic and simulated net joint moments and mus- 51

cle activations of each trial were compared using the average 52

root mean squared error (RMSE) (Equation 3) and coeffi- 53

cient of determination (R2) (Equation 4) across the 500 ms 54

analysis period. Net joint moments RMSE were normalised 55

(NRMSE) to the range of their respective inverse dynamic 56



Fig. 3: Flowchart showing the inputs and resulting outputs
for the three stage calibration process used for the EMGa and
EMGaMRI solutions. For both EMGa and EMGaMRI the
calibration procedure was the same apart from EMGaMRI
where in Stage 1 FmaxMRI

iso of the model’s MTUs (n=44) were
updated from segmented muscles volumes (n=26). Detailed
information regarding the mapping of experimental activa-
tions to MTUs can by sound in Table S2 of the supplemen-
tary material

joint moment as the magnitude of moments increased from1

C0-C1 to C6-C7 (Equation 5).2

RMSE =

√
∑

N
i=1(x

exp
i − xest

i )2

N
(3)

R2 = 1− ∑
N
i=1(x

exp
i − xest

i )2

∑
N
i=1 xexp

i (xexpi − ∑
N
i=1 xexp

i
N )2

(4)

NRMSE =
RMSE

xexp
max − xexp

min
x100% (5)

Fig. 4: Representation of how the 96 muscles of the model
were separated into functional quadrants of left flexion (16
muscles), right flexion (16 muscles), left extension (32 mus-
cles) and right extension (32 muscles). The separation of
the muscles into functional quadrants allowed for the pre-
scription of the experimental EMG signals (right/left stern-
ocleidomastoid, right/left upper trapezius) to the respective
functional muscle groups in the EMG-assisted methods

Where xi
exp and xi

est are the experimental and estimated 1

values of the variable under analysis (net joint moment or 2

muscle activation) at the ith time sample of the total N=125 3

samples (500 ms at 250 Hz). For the normalisation of net 4

joint moment RMSE the xmax
exp and xmax

est are the maximum 5

and minimum values of the respective net joint moment un- 6

der analysis. A one-way analysis of variance (ANOVA) and 7

Tukey-Kramer post-hoc test was performed in Matlab to de- 8

termine statistically significant differences between the three 9

neural solutions. Significance was set at an alpha value of 10

0.05. Co-contraction indices [49] of estimated activations 11

were calculated and compared to experimental EMG signals 12

for flexion-extension (Equation 6) and lateral bending (Equa- 13

tion 6). For flexion-extension the activations of the model’s 14

flexors (Af) and extensors (Ae) were separately grouped and 15

averaged then compared to the average flexor (sternoclei- 16

domastoids) and extensor (upper trapezius muscles) EMG. 17

Similarly for lateral bending left (ALlb) and right (ARlb) lat- 18

eral bending activation averages were calculated and com- 19

pared respectively to the left (sternocleidomastoid and upper 20

trapezius) and right (sternocleidomastoid and upper trapez- 21

ius) EMG signals: 22

CCIFE =

{
1− A f

Ae
, A f < Ae

Ae
A f

−1, Ae 6 A f

CCILB =

{
1− ALlb

ARib
, ALlb < ARrb

ARib
ALlb

−1, ARrb 6 ALlb
(6)



These ratios provide the relative amount of muscle co-1

contraction for flexion-extension and lateral bending across2

the whole cervical spine. A value near 0 represents higher3

levels of co-contraction, near 1 is higher extension or right4

lateral bending and near -1 higher flexion or left lateral bend-5

ing activations.6

3 Results7

The average net joint moment RMSE across all trials8

and joint levels showed that EMGaMRI (RMSE = 0.95 ±9

0.74 Nm; R2 = 0.95 ± 0.12) neuromuscular solutions tracked10

experimental flexion/extension net joint moments more ac-11

curately than SO (RMSE = 2.32 ± 1.82 Nm; R2 = 0.87 ±12

0.22) and EMGa (RMSE = 1.14 ± 1.04 Nm; R2 = 0.84 ±13

0.29) (Figure 5). Both RMSE and NRMSE of EMGaMRI14

and EMGa were significantly (p≤0.01) lower than SO whilst15

R2 only showed significant differences between the two16

EMG-assisted solutions (Table 3). In lateral bending SO17

(RMSE = 0.84 ± 0.59 Nm; R2 = 0.89 ± 0.17) had lower18

RMSE than EMGaMRI (RMSE = 1.07 ± 0.89 Nm; R2 =19

0.90 ± 0.12) with EMGa showing the largest errors (RMSE20

= 2.07 ± 1.37 Nm; R2 = 0.67 ± 0.35) (Figure 6). For lat-21

eral bending EMGa RMSE and R2 results were significantly22

(p<0.01) less accurate than SO whilst EMGaMRI showed23

no significant difference from SO. Both RMSE and NRMSE24

and R2 values showed net joint moments in the upper cer-25

vical spine region (C0-C1 through to C3-C4 level) were not26

tracked as well as the lower cervical spine (C4-C5 through27

to C6-C7) for all methods (Supplementary material).28

Tracking of experimental activations for the ten MTUs29

corresponding to the four measured muscles was signifi-30

cantly (p¡0.01) better with EMGa (RMSE = 0.04 ± 0.02; R2
31

= 0.89 ± 0.08) and EMGaMRI (RMSE = 0.03 ± 0.02; R2 =32

0.92 ± 0.06) than SO (RMSE = 0.36 ± 0.22; R2 = 0.14 ±33

0.20) (Figure 7). The activations of the remaining 86 MTUs34

maintained a similar pattern to the initial prescribed signals35

(Figure 8). In contrast SO was not able to reproduce the ex-36

perimental signal patterns across MTUs with low R2 average37

values (Figure 7).38

There were clear differences in the MTU recruitment39

patterns between the SO and the two EMG-assisted solutions40

(Figure 8). The SO solution created high frequency transi-41

tions in activation levels with distinguishable “on-off” phases42

and frequent saturation. The estimates from the two EMG-43

assisted solutions showed muscle activations followed the44

pattern of experimental EMG input signals with individual45

muscle groups (e.g. multifidus, erector spinae) varying the46

signal for their constituent MTUs. This resulted in a closer47

approximation of experimental co-contractions nearer to the48

time of impact in both flexion-extension and lateral bending.49

4 Discussion50

In this study we showed that physiologically plausible51

net joint moments of the cervical spine and neck muscle52

activations during dynamic neck motions can be predicted53

by personalised EMG-assisted neuromusculoskeletal mod-54

Fig. 5: FLEXION - EXTENSION - RMSE (left) and R2

(right) from the neuromusculoskeletal model with differ-
ent neural solutions tracking inverse dynamics (ID) flex-
ion/extension net joint moments across different joints and
trials. The RMSE and R2 values are the average across the
500 ms analysis period for each trial and joint level. These
are shown in Cumming plots that present above the individ-
ual (solid marker), mean (gap between the vertical error bars)
and standard deviation (vertical error bars) performance for
SO (blue), EMGa (orange) and EMGaMRI (green) solutions.
A total number of N = 56 data points corresponds to each
of the seven (7) joint levels for each of the eight (8) trials.
Below the mean difference and data distribution about the
mean of the two EMG-assisted neural solutions (EMGa and
EMGaMRI) from the SO solution is presented. Statistically
significant difference of each EMG-assisted solution from
the SO solution is shown by a single asterisk whilst signifi-
cance between the two EMG-assisted solutions is indicated
by a double asterisk

els. Rugby impact activities (i.e. tackling and scrummaging) 1

were chosen as a case study and a combination of experi- 2

mental and modelling approaches were adopted to provide 3

physiological and reliable estimation of neck muscle activa- 4

tion patterns during impact events. A musculoskeletal model 5

of a rugby forward player was created and its ability to gener- 6

ate required neck joint moments was assessed through three 7

neural solutions with increasing levels of subject-specificity. 8

For the first time, we demonstrated that an MRI-informed 9

EMG-assisted solution can generate neck muscle activations 10

that closely match experimental activations, and replicate the 11

required mechanical demands (i.e. net joint moments) of an 12

impact event across the entire cervical spine. 13

The pure optimisation method (SO) accurately tracked 14

net joint moments, but poorly replicated physiological mus- 15

cle activation patterns from the experimental trials (Figures 16

5-8). Poor replication of physiologic muscle activation pat- 17

terns by SO is likely caused by the large muscle redundancy 18

in the neck and that SO formulations are usually not con- 19

strained to experimental EMG measurements but only to a 20

priori objective criteria. In fact, the assumption of a priori 21



Table 3: Statistical significance of the difference between the three neural solutions for flexion/extension, lateral bending
and muscle activations. Each of the three metrics of root mean squared error (RMSE) normalised root mean squared error
(NRMSE) and coefficient of determination (R2) was tested for significance. Statistical significance was determined by a
one-way ANOVA and a Tukey-Kramer post-hoc test. Significant differences were set at an alpha level of 0.05

p-values Flexion / Extension Lateral Bending Activations

Model RMSE NRMSE R2 RMSE NRMSE R2 RMSE R2

SO - EMGa 0.0002 0.0100 0.7019 0.0001 0.0000 0.0001 0.0001 0.0001

SO - EMGaMRI 0.0001 0.0001 0.1469 0.4524 0.9118 0.9768 0.0001 0.0001

EMGa - EMGaMRI 0.2195 0.2895 0.0205 0.0001 0.0001 0.0001 0.9735 0.4621

Fig. 6: LATERAL BENDING - RMSE (left) and R2 (right)
from the neuromusculoskeletal model with different neural
solutions tracking inverse dynamics (ID) lateral bending net
joint moments across different joints and trials. The RMSE
and R2 values are the average across the 500 ms analysis pe-
riod for each trial and joint level. These are shown in Cum-
ming plots that present above the individual (solid marker),
mean (gap between the vertical error bars) and standard devi-
ation (vertical error bars) performance for SO (blue), EMGa
(orange) and EMGaMRI (green) solutions. A total num-
ber of N = 56 data points corresponds to each of the seven
(7) joint levels for each of the eight (8) trials. Below the
mean difference and data distribution about the mean of the
two EMG-assisted neural solutions (EMGa and EMGaMRI)
from the SO solution is presented. Statistically significant
difference of each EMG-assisted solution from the SO solu-
tion is shown by a single asterisk whilst significance between
the two EMG-assisted solutions is indicated by a double as-
terisk

criteria in objective functions used to guide the estimation of1

neck muscle activations may not be an accurate approach,2

due to our current lack of understanding of neck muscle3

recruitment in preparation for sporting and other impacts.4

Fig. 7: MUSCLE ACTIVATIONS - RMSE (left) and R2

(right) of neck different neural solutions when tracking ex-
perimental EMG signals (right trapezius, left trapezius, right
sternocleidomastoid, left sternocleidomastoid) across differ-
ent trials. The RMSE and R2 values are the average across
the 500 ms analysis period for each trial. These are shown
in Cumming plots that present above the individual (solid
marker), mean (gap between the vertical error bars) and
standard deviation (vertical error bars) performance for SO
(blue), EMGa (orange) and EMGaMRI (green) solutions. A
total number of N = 80 data points corresponds to each of
the ten (10) corresponding MTUs for each of the eight (8)
trials. Below the mean difference and data distribution about
the mean of the two EMG-assisted neural solutions (EMGa
and EMGaMRI) from the SO solution is presented. Statis-
tically significant difference of each EMG-assisted solution
from the SO solution is shown by a single asterisk

Mortensen et al. (2018) [15] illustrated that metabolic and 1

mechanical static optimisation objective functions produced 2

different neck kinematics under the effect of gravity. The 3

objective criteria used in that study maximised either joint 4

stiffness or joint moment generation capacity which resulted 5

in the smallest neck angle displacement. Although this may 6



Fig. 8: Left: mean of 5 tackling trials’ co-contraction index (CCIFE and CCILB) of the four experimental EMG signals (solid
black) and estimated for SO (top - blue), EMGa (middle – orange) and EMGaMRI (bottom – green) for the 500 ms before
impact. Subplots show the muscle group activations used to calculate the estimated CCI values during an individual tackling
trial (flexors and extensors CCIFE; left and right lateral flexors for CCILB). The 86 MTUs that had no measured experimental
EMG and were either synthesised (SO) or adjusted (EMGa and EMGaMRI) from their input signal (mapped from the left
and right sternocleidomastoid and upper trapezius muscles EMG) are shown in grey, the 10 for which experimental EMG
was measured (constrained to the left and right sternocleidomastoid and upper trapezius muscles) in solid black and average
activations for each muscle group are plotted as dashed lines for each solution. Centre: snapshots of the musculoskeletal
model at the point of impact (depicted right) with MTUs coloured to matched the level of estimated activations for each
neural solution (red – high; blue – low). Right: still of the experimental set-up with the participant simulating a tackle during
EMG and kinematic measurements

be favourable to minimise neck motion, it may not be an op-1

timal method in situations where adequate neck mobility is2

required to safely position the head in preparation for impact,3

such as the preparatory phase of rugby tackling (Figure 8).4

In our study, the use of EMG-assisted solutions successfully5

tracked inverse dynamic net joint moments whilst concur-6

rently providing physiological estimates of unknown muscle7

activations. The ability of the EMG-assisted solutions to re-8

produce two experimental variables (i.e. net joint moments9

and muscle activations) and reach physiologically acceptable10

solutions across the cervical spine with no assumption of a11

priori objectives (metabolic or mechanical) supports the va-12

lidity of the presented methods during dynamic neck mo-13

tions. Our study extends these EMG-assisted methods to the14

entire cervical spine as the results are in line with previous15

studies investigating the upper [16] and lower [17, 18] limbs16

as well as a single joint level of the lumbar spine [29].17

The additional incorporation of MRI derived neck mus-18

cle strengths in the EMGaMRI solution further improved the19

tracking of inverse dynamic net joint moments especially in20

the upper cervical spine compared to the EMGa solution (see 1

Appendix). The upper cervical spine region of the model is 2

likely to have performed better due to the increased force 3

generating capacity of the muscles after they were informed 4

by the MRI measurements. The inherent limitation of accu- 5

rately modelling the morphology of the spinal musculature in 6

musculoskeletal models. Assigning accurate muscle strength 7

values for the set of 44 MTUs in EMGaMRI illustrates the 8

importance of future detailed models describing the com- 9

plexity of the neck region. The incorporation of personalised 10

musculoskeletal information with EMG-assisted neural so- 11

lutions was shown to improve tracking of net moments and 12

experimental activations in the lower limbs of children [17]. 13

This may suggest that in populations where musculoskeletal 14

characteristics (e.g. strength and anatomy) are significantly 15

different than the average populations, such as rugby ath- 16

letes [40] and children [17], personalised models used for 17

investigations can improve the accuracy internal joint load 18

estimation [19]. 19

This is the first time that neuro-musculoskeletal mod- 20



els have been able to concurrently match inverse dynamic1

moment equilibrium across all cervical spine joints (C0-C12

to C6-C7) for dynamic neck motions whilst correctly esti-3

mating physiological neck muscle activations. This is a sub-4

stantial advancement over previous studies that solved for5

moments across a single cervical joint level [26, 27, 29, 50].6

Solving moment equilibrium across all cervical spine lev-7

els is important as many major spinal muscles are multi-8

articulate (span multiple joint levels), and apply loads to mul-9

tiple cervical joint levels. This approach has also been sup-10

ported in the lumbar region [51]. Characterisation of the en-11

tire cervical spine’s internal loading caused by muscle forces12

is paramount in injury mechanism analysis during dynamic13

events (e.g. inertial loading or direct impacts) [11,13]. Mus-14

cle forces significantly influence the preloading of interver-15

tebral joints and the propagation of external impact forces16

down the spinal levels which have already been highlighted17

in the literature [10, 11, 52]. Future studies that include18

fine-wire EMG measurements of deep neck muscles with19

volunteer automotive roll-over simulations [12, 53] would20

be complemented by our neuro-musculoskeletal modelling21

technique. With the addition of this modelling technique, a22

more complete understanding of pre-impact neck dynamics23

can be obtained compared to the mostly kinematics based24

previous investigations. Complete dynamic pre-impact anal-25

ysis can provide detailed initial loading conditions for the-26

oretical simulations of neck injury during impacts. Such27

simulations could then be used to inform injury prevention28

strategies such as policy and equipment design changes for29

sporting and automotive accidents to minimise catastrophic30

neck injuries.31

Muscle co-contraction is an important neural strategy32

used to stabilise spinal joints [20, 27]. We found that the33

SO did not track the experimental co-contraction indices,34

whereas the EMG-assisted solutions preserved neck muscle35

co-contraction by replicating experimental co-contraction in-36

dices. This is an important factor for the analysis of spinal37

injury mechanism as muscle forces highly influence net38

joint loading [11]. Previous studies have shown that EMG-39

assisted models replicate muscle co-contractions when as-40

sessed against experimental measures [16, 18, 51]. Models41

that correctly reproduce muscle co-contractions have been42

shown to produce more physiologically valid estimates of43

muscle forces and resulting joint loads [54]. Future stud-44

ies that estimate mechanical co-contraction indices (i.e. nor-45

malised to muscles’ moment generating capacity or moment46

arm) instead of muscle activation alone, could also provide47

better understanding of muscle action across spinal joints.48

Our findings support the use of EMG-assisted approaches as49

a starting point to estimate neck muscle function during dy-50

namic tasks of the head and neck until viable experimental51

methods are identified or computational estimations using a52

priori cost functions are verified further.53

The following limitations of this study should be con-54

sidered. Firstly, our musculoskeletal model of the cervical55

spine is still a simplification of the anatomical complexity of56

the physical system. The addition of wrapping surfaces, up-57

dated muscle strengths and region-specific scaling of the cer-58

vical vertebrae based on the participant’s MRI measurements 1

aimed to address this issue. Future research should focus on 2

defining dynamic muscle path constraints to better represent 3

human neck anatomy in musculoskeletal models. Updated 4

wrapping surfaces in the musculoskeletal model aim to pro- 5

vide physiological muscle forces in neck positions that do 6

not approach extreme ranges of motion. Such ranges of mo- 7

tion are expected during these sporting tasks and before in- 8

jury occurs however, future studies investigating functional 9

neck motions and post injury kinematics should aim to im- 10

prove on such dynamic muscle path constraints. The avail- 11

ability of four measured activation signals as inputs for the 12

EMG-assisted analyses, when 96 MTUs were included in 13

the model, required a number of assumptions that may over- 14

simplify the contribution of individual muscles, especially in 15

deep areas. The positive results provided in Moroney et al. 16

(1988) [55], that also grouped neck muscles, along with our 17

findings, suggest that such a grouping method is a viable ini- 18

tial approach given the limitations associated with applied 19

studies of the neck during impacts. Additionally, McGill et 20

al. (1996) [56] have shown that surface EMGs could rep- 21

resent deeper muscle activations within 15% degree of er- 22

ror in the lumbar spine. In our study the muscle activations 23

that were not measured experimentally could be modulated 24

in order to generate the required forces. Similar approaches 25

have been used previously [27, 50, 56] which we deemed as 26

a reasonable approach based on these assumptions. The sin- 27

gle subject EMG-assisted analysis provided subject and task 28

specific muscle activation estimates that matched inverse dy- 29

namic moments and EMG measures during representative 30

rugby scrummaging and tackles. The estimated activations 31

are not intended to provide a definite characterisation of the 32

recruitment pattern the nervous system adopts during these 33

rugby tasks, but gives an indication of what can be expected 34

based on available experimental data. However, this consid- 35

eration has not been seen as a major limitation in previous 36

research estimating spinal muscle function [50, 57]. Future 37

studies should aim to improve EMG-assisted estimations of 38

neck muscle activations by including mechanical objective 39

criteria, such as load protection mechanisms [57], based on 40

observations from experimental studies. 41

In conclusion, this study shows for the first time that 42

both inverse dynamic net joint moments across the entire 43

cervical spine and neck muscle activation patterns during 44

dynamic tasks can be concurrently reproduced using MRI- 45

informed EMG-assisted models. The ability of the EMG- 46

assisted models to reproduce net joint moments with MTU 47

activations that i) track experimental EMG measurements, 48

ii) do not saturate, iii) do not display high frequency activa- 49

tion and deactivation phases, iv) closely follow experimental 50

co-contraction ratios and v) are estimated with no a priori ob- 51

jective function, is a key step forward to investigate cervical 52

spine injury mechanisms during impact events. The results 53

presented here are not intended to provide a definitive answer 54

on how the neck neuromuscular system functions during dy- 55

namic tasks as further investigation is needed for these sce- 56

narios. They do, however, illustrate that the presented meth- 57

ods better estimate the neuromuscular state of the entire neck 58



prior to impacts based solely on experimental data (kinet-1

ics and muscle activations) compared to previous numerical2

methods.3
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Fig. 9: Changes in model MTU maximal isometric force val-
ues (Fmax

iso ) informed from segmented muscle volumes. Grey
bars represent individual MTU Fmax

iso values and black bars
estimated values from MRI information. Multiple MTU un-
der brackets are sub regions of an individual anatomical mus-
cle (e.g. trap acr and trap cleid are both constituents of the
trapezius). Naming of MTUs consistent with OpenSim mod-
els

Appendix1

Estimation of maximal isometric force and definition2

of musculoskeletal model wrapping surfaces from MRI3

measurements4

Estimated Fmax
iso derived from the segmented neck mus-5

cle volumes ranged between 60 and 260% of the population6

specific model values [35] with an average increase of 50%7

(Figure 9) . Only rectus capitis posterior minor and obliquus8

capitis inferior MRI derived values of Fmax
iso were reduced in9

relative to the baseline model. The MRI derived estimates10

of muscle Fmax
iso were separated into their constituent MTU11

Fmax
iso values relative to the baseline model and updated in the12

EMGaMRI model. Some sub-regions of the neck muscula-13

ture, which are defined in the musculoskeletal model as indi-14

vidual muscle-tendon units (MTUs), were not clearly iden-15

tifiable from the MRI scans, subsequently their Fmax
iso was16

scaled proportionally to the total Fmax
iso of the original model’s17

MTUs that comprised a whole muscle (Figure 9). Left and18

right muscle strength was assumed equal in the model thus19

the average of the MRI derived Fmax
iso values were prescribed20

to the MTUs.21

The parametric wrapping surfaces included in the up-22

dated Rugby Model [35] were defined by measurements23

taken from segmented MRI imaging of muscle and bone24

structures whilst guided by methods detailed by Vasavada25

et al. (2008). Initially the raw DICOM image stacks were26

segmented in Mimics (v22, Materialise, Belgium) providing27

musculoskeletal geometries (from occiput to base of C7) of28

the front row rugby player in a neutral supine posture. Vol-29

ume and centroid path measurements were obtained from the30

segmented muscles. These data along with the segmented31

vertebral and skull geometries were then imported into Mat-32

lab R2017a (The Mathworks Inc., Natick MA, USA) were33

the parameters that would define the OpenSim wrapping sur- 1

faces could be estimated based on the techniques outlined by 2

Anita N. Vasavada, et al. [46]. 3

The following procedures were followed to include the 4

wrapping surfaces were included in the model: 5

1. As stated in the main text of the study a single cylinder 6

was defined at the centre of the C6 vertebrae [45]. Other 7

than the identification of the C6 centre of mass the defi- 8

nition of this parametric cylinder was the same as in Kuo 9

et al. (2019) [45]. 10

2. A sphere was created with its origin located at the cen- 11

tre of mass of the C2 vertebrae. Its radius was defined 12

by averaging the shortest distances between the sphere’s 13

origin and centroid paths of the left and right sternoclei- 14

domastoid muscles’ [46]. 15

3. Two cylinders were defined one the left and one on the 16

right posterolateral aspects of the upper vertebral col- 17

umn. Initially the linear path of the of the left and right 18

semispinalis capitis muscles were recreated on the seg- 19

mented geometries in Matlab by virtually palpating the 20

muscles’ insertion on occiput then registering the origin 21

of the muscles to those points from the scaled OpenSim 22

model. This was initially completed because the tho- 23

racic region was not visible in the scans and thus could 24

not be virtually palpated in the segmented geometries. 25

After this the nearest semispinalis capitis centroid point 26

to the C2 centre of mass was identified. A perpendic- 27

ular vector from this location to the linear muscle path 28

vector was then calculated that return the radius (mag- 29

nitude of vector), centre (location on linear muscle path 30

vector) and orientation (long axis normal to the plane 31

defined by the radius and linear muscle path vectors) of 32

the parametric cylinder. The same was completed on 33

both sides and the mean values were used in the final 34

model to reduce the effect of measurement errors. 35

4. Two tori were defined one on the left and one on the right 36

posterolateral aspects of the lower cervical spine. Their 37

origins were defined from the trapezius muscle centroid 38

paths. A point of inflection was visually identified and 39

registered to the C7 centre of mass. This was the point 40

where the centroid path progressed from a mostly paral- 41

lel path with respect to the transverse plane to a perpen- 42

dicular path. The tori’s axes of revolution were aligned 43

with the location of the acromion. The same was com- 44

pleted on both sides and the mean values were used in 45

the final model to reduce the effect of measurement er- 46

rors. 47

The estimated parameters from these procedures were 48

then used to define the parametric wrapping surfaces in 49

OpenSim. Once the wrapping surfaces were defined the 50

model was prescribed maximal ranges of motion about single 51

axis and motions combining multiple axes to assess if mus- 52

cle paths were stable. This was not the case for all surfaces. 53

Manual adjustments in OpenSim were made to the radii and 54

distances of the wrapping surfaces to maintain muscle path 55

stability. During these manual adjustments care was taken to 56

maintain the original orientations and level of the surfaces in 57



the model.1

Mapping of experimental activations to model muscle2

tendon units in CEINMS3

As detailed in the main body of the study muscle acti-4

vations were either constrained or adjusted from measured5

EMG linear envelopes depending on their function and if ex-6

perimental measurements existed (Table 4). This mapping7

was applied in the CEINMS analysis of execution trials (Fig-8

ure 12) and in Stage 2 of the calibration process (Figure 13).9

During Stage 1 and 3 of the calibration process all activations10

were constrained to their mapped input signals.11



Table 4: The 96 muscletendon units (MTUs) used in the model with indication to which functional quadrant they were
assigned to, experimental activation signal they received as initial input, if the mapped activation signal was constrained
(n=10) or adjusted (n=86) during the solution, if wrapping surfaces constrained the MTUs paths and the 44 MTUs’ Fmax

iso

were scaled from MRI measurements

Model Muscles Functional quadrant Mapped activation input Designation Wrapping surface MRI scaled Fmax
iso

cleid mast Right flexion Right Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE
cleid occ Right flexion Right Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE

stern mast Right flexion Right Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE
long cap sklc4 Right flexion Right Sternocleidomastoid Adjusted N/A TRUE
long col c1c5 Right flexion Right Sternocleidomastoid Adjusted N/A TRUE
long col c1thx Right flexion Right Sternocleidomastoid Adjusted N/A TRUE
long col c5thx Right flexion Right Sternocleidomastoid Adjusted N/A TRUE
scalenus ant Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
sterno hyoid Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
omo hyoid Right flexion Right Sternocleidomastoid Adjusted N/A FALSE

sternothyroid Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
digastric post Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
digastric ant Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
geniohyoid Right flexion Right Sternocleidomastoid Adjusted N/A FALSE

mylohyoid post Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
mylohyoid ant Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
stylohyoid lat Right flexion Right Sternocleidomastoid Adjusted N/A FALSE

stylohyoid med Right flexion Right Sternocleidomastoid Adjusted N/A FALSE
cleid mast l Left flexion Left Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE
cleid occ l Left flexion Left Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE

stern mast l Left flexion Left Sternocleidomastoid Constrained Anterior cylinder, Sphere TRUE
long cap sklc4 l Left flexion Left Sternocleidomastoid Adjusted N/A TRUE
long col c1c5 l Left flexion Left Sternocleidomastoid Adjusted N/A TRUE
long col c1thx l Left flexion Left Sternocleidomastoid Adjusted N/A TRUE
long col c5thx l Left flexion Left Sternocleidomastoid Adjusted N/A TRUE
scalenus ant l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
sterno hyoid l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
omo hyoid l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE

sternothyroid l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
digastric post l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
digastric ant l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
geniohyoid l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE

mylohyoid post l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
mylohyoid ant l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
stylohyoid lat l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE

stylohyoid med l Left flexion Left Sternocleidomastoid Adjusted N/A FALSE
trap acr Right extension Right Upper Trapezius Constrained Right torus TRUE
trap cl Right extension Right Upper Trapezius Constrained Right torus TRUE

deepmult-C4/5-C2 Right extension Right Upper Trapezius Adjusted N/A TRUE
deepmult-C5/6-C3 Right extension Right Upper Trapezius Adjusted N/A TRUE
deepmult-C6/7-C4 Right extension Right Upper Trapezius Adjusted N/A TRUE
deepmult-T1-C5 Right extension Right Upper Trapezius Adjusted N/A FALSE
deepmult-T1-C6 Right extension Right Upper Trapezius Adjusted N/A FALSE
deepmult-T2-C7 Right extension Right Upper Trapezius Adjusted N/A FALSE

iliocost cerv c5rib Right extension Right Upper Trapezius Adjusted N/A FALSE
longissi cap sklc6 Right extension Right Upper Trapezius Adjusted N/A FALSE
longissi cerv c4thx Right extension Right Upper Trapezius Adjusted N/A FALSE

obl cap inf Right extension Right Upper Trapezius Adjusted N/A TRUE
obl cap sup Right extension Right Upper Trapezius Adjusted N/A TRUE

rectcap post maj Right extension Right Upper Trapezius Adjusted N/A TRUE
rectcap post min Right extension Right Upper Trapezius Adjusted N/A TRUE



scalenus med Right extension Right Upper Trapezius Adjusted N/A FALSE
scalenus post Right extension Right Upper Trapezius Adjusted N/A FALSE

semi cerv c3thx Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-C4/5-C2 Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-C5/6-C2 Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-C6/7-C2 Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-T1-C4 Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-T1-C5 Right extension Right Upper Trapezius Adjusted N/A FALSE
supmult-T2-C6 Right extension Right Upper Trapezius Adjusted N/A FALSE
semi cap sklc5 Right extension Right Upper Trapezius Adjusted Right posterior cylinder TRUE
semi cap sklthx Right extension Right Upper Trapezius Adjusted Right posterior cylinder TRUE
splen cap sklc6 Right extension Right Upper Trapezius Adjusted Right posterior cylinder TRUE
splen cap sklthx Right extension Right Upper Trapezius Adjusted N/A TRUE
splen cerv c3thx Right extension Right Upper Trapezius Adjusted N/A TRUE

levator scap Right extension Right Upper Trapezius Adjusted N/A TRUE
trap acr l Left extension Left Upper Trapezius Constrained Left torus TRUE
trap cl l Left extension Left Upper Trapezius Constrained Left torus TRUE

deepmult-C4/5-C2 l Left extension Left Upper Trapezius Adjusted N/A TRUE
deepmult-C5/6-C3 l Left extension Left Upper Trapezius Adjusted N/A TRUE
deepmult-C6/7-C4 l Left extension Left Upper Trapezius Adjusted N/A TRUE
deepmult-T1-C5 l Left extension Left Upper Trapezius Adjusted N/A FALSE
deepmult-T1-C6 l Left extension Left Upper Trapezius Adjusted N/A FALSE
deepmult-T2-C7 l Left extension Left Upper Trapezius Adjusted N/A FALSE

iliocost cerv c5rib l Left extension Left Upper Trapezius Adjusted N/A FALSE
longissi cap sklc6 l Left extension Left Upper Trapezius Adjusted N/A FALSE
longissi cerv c4thx l Left extension Left Upper Trapezius Adjusted N/A FALSE

obl cap inf l Left extension Left Upper Trapezius Adjusted N/A TRUE
obl cap sup l Left extension Left Upper Trapezius Adjusted N/A TRUE

rectcap post maj l Left extension Left Upper Trapezius Adjusted N/A TRUE
rectcap post min l Left extension Left Upper Trapezius Adjusted N/A TRUE

scalenus med l Left extension Left Upper Trapezius Adjusted N/A FALSE
scalenus post l Left extension Left Upper Trapezius Adjusted N/A FALSE

semi cerv c3thx l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-C4/5-C2 l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-C5/6-C2 l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-C6/7-C2 l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-T1-C4 l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-T1-C5 l Left extension Left Upper Trapezius Adjusted N/A FALSE
supmult-T2-C6 l Left extension Left Upper Trapezius Adjusted N/A FALSE
semi cap sklc5 l Left extension Left Upper Trapezius Adjusted Left posterior cylinder TRUE
semi cap sklthx l Left extension Left Upper Trapezius Adjusted Left posterior cylinder TRUE
splen cap sklc6 l Left extension Left Upper Trapezius Adjusted Left posterior cylinder TRUE
splen cap sklthx l Left extension Left Upper Trapezius Adjusted N/A TRUE
splen cerv c3thx l Left extension Left Upper Trapezius Adjusted N/A TRUE

levator scap l Left extension Left Upper Trapezius Adjusted N/A TRUE



Fig. 10: Pooled normalised RMSE from the neuromuscu-
loskeletal model with different neural solutions tracking in-
verse dynamics (ID) flexion/extension net joint moments
across all joints and trials. The RMSE values are the aver-
age across the 500 ms analysis period for each trial and joint
level. These are shown in Cumming plots that present above
the individual (solid marker), mean (gap between the ver-
tical error bars) and standard deviation (vertical error bars)
performance for SO (blue), EMGa (orange) and EMGaMRI
(green) solutions. A total number of N = 56 data points
corresponds to each of the seven (7) joint levels for each
of the eight (8) trials. Below the mean difference and data
distribution about the mean of the two EMG-assisted neural
solutions (EMGa and EMGaMRI) from the SO solution is
presented. Statistically significant difference of each EMG-
assisted solution from the SO solution is shown by a single
asterisk whilst significance between the two EMG-assisted
solutions is indicated by a double asterisk

Normalised RMSE (NRMSE) of cervical spine net joint1

moment tracking across all joint levels and trials2

Normalised RMSE (NRMSE) of cervical spine joint3

moments (C0-C1 to C6-C7) across individual joints and4

pooled from all joints are presented.5

Additional information regarding the use of CEINMS in6

this study7

1. Re: Cost function’s beta term and EMG tracking8

The CEINMS solver minimises the error between the9

Inverse Dynamics (ID) estimated moments and the mo-10

ments resulting from the simulated muscle forces. Mus-11

Fig. 11: Pooled normalised RMSE from the neuromuscu-
loskeletal model with different neural solutions tracking in-
verse dynamics (ID) lateral bending net joint moments across
all joints and trials. The RMSE values are the average across
the 500 ms analysis period for each trial and joint level.
These are shown in Cumming plots that present above the
individual (solid marker), mean (gap between the vertical
error bars) and standard deviation (vertical error bars) per-
formance for SO (blue), EMGa (orange) and EMGaMRI
(green) solutions. A total number of N = 56 data points
corresponds to each of the seven (7) joint levels for each
of the eight (8) trials. Below the mean difference and data
distribution about the mean of the two EMG-assisted neural
solutions (EMGa and EMGaMRI) from the SO solution is
presented. Statistically significant difference of each EMG-
assisted solution from the SO solution is shown by a single
asterisk whilst significance between the two EMG-assisted
solutions is indicated by a double asterisk

cle forces are simulated through the optimiser by con- 1

straining the 10 model MTUs to follow the experimental 2

activations with the other 86 constrained to minimise the 3

variability from their respective input signal (i.e. EMG 4

signal from each functional quadrant). Thus the remain- 5

ing 86 signals are not completely “free” to vary, but 6

are provided an initial estimate (i.e. experimental EMG) 7

and are then modulated to minimise variance from that 8

signal and also generate the required force and subse- 9

quent joint torque to match the ID moments. The reason 10

the beta term was set to zero was to test the hypothe- 11



Fig. 12: Normalised RMSE (top) and R2 (bottom) from the neuromusculoskeletal model with different neural solutions
tracking inverse dynamics (ID) flexion/extension joint moments across different joints and trials. The RMSE and R2 values
are the average across the 500 ms analysis period for each trial. These are shown in violin plots that present individual
(solid marker), mean (white marker) and density (coloured area shape) trial performance for SO (blue), EMGa (orange) and
EMGaMRI (green) solutions. RMSE of each estimated joint moment is normalised to the range of the experimental joint
moment (ID) of the respective joint and trial

sis that two sets of measurable data ID joint moments1

and EMG signals could be generated by a neuromus-2

culoskeletal model without a priori cost function terms3

which was achieved. This approach should ensure the4

uniqueness of the solution, as the CEINMS solver uses 1

a gradient descend ipopt algorithm (and not simulated 2

annealing), and the problem is convex, being the sum of 3

three quadratic functions. 4



Fig. 13: Normalised RMSE (top) and R2 (bottom) from the neuromusculoskeletal model with different neural solutions
tracking inverse dynamics (ID) lateral bending joint moments across different joints and trials. The RMSE and R2 values
are the average across the 500 ms analysis period for each trial. These are shown in violin plots that present individual
(solid marker), mean (white marker) and density (coloured area shape) trial performance for SO (blue), EMGa (orange) and
EMGaMRI (green) solutions. RMSE of each estimated joint moment is normalised to the range of the experimental joint
moment (ID) of the respective joint and trial

2. Re: High frequency transitions and saturations of neu-1

ral solution patterns and co-contraction indexes with SO2

This is not observed often in previous CEINMS stud-3

ies as SO works fairly well in gait, however, these is- 1

sues were experienced at the shoulder [58], where con- 2

tact forces were very variable. Also, those peaks usually 3



disappeared after calibrating the model. The SO was not1

run with a calibrated model in this study, as it would go2

beyond the scope of this paper.3

SO was reported having more variables co-contractions4

indices in the past [18], showing that static optimisa-5

tions favours solutions with minimal co-contractions.6

This stems from how SO is defined (i.e. minimisation7

of activation square), a criterion only based on exter-8

nal joint moment tracking. Additional criteria could be9

added to SO to alter the level of co-contractions, but10

they need to account for the surrounding environment11

and visual-vestibular system (e.g., preparation to an im-12

pact would increase neck stiffness) to result in physi-13

ologically plausible results. Conversely, EMG signals14

already encode all the information from the individual’s15

central and peripheral nervous system, therefore auto-16

matically accounting for all these factors. Hence EMG-17

informed simulations directly inform the neuromuscu-18

loskeletal model with aspects of this sensory informa-19

tion as in-vivo EMG signals are used as input.20

3. Re: Differences between OpenSim Static Optimisation21

(SO) and the CEINMS SO solution22

OpenSim uses SO modelling of ID moment as a con-23

straint, it invokes reserve actuators to match ID joint mo-24

ments if the musculoskeletal model is not able to do so.25

Previously, we have shown that OpenSim SO without re-26

serve actuators and CEINMS EMGa produce the same27

size errors in ID moments tracking [60–62]. Second, the28

musculotendon model in OpenSim uses a rigid tendon29

and has no serial elastic muscle component. Therefore,30

CEINMS has none of these issues and we believe it is a31

much fairer comparison of SO, EMGa and EMGaMRI32

methods, which only tests differences in neural solutions33

using a consistent computational framework.34


