2,619 research outputs found

    Excess Air Ratio Management in a Diesel Engine with Exhaust Backpressure Compensation

    Get PDF
    The paper investigates the operation of a wideband universal exhaust gas oxygen (UEGO) sensor in a diesel engine under elevated exhaust backpressure. Although UEGO sensors provide the excess air ratio feedback signal primarily in spark ignition engines, they are also used in diesel engines to facilitate low-emission combustion. The excess air signal is used as an input for the fuel mass observer, as well as to run the engine in the low-emission regime and enable smokeless acceleration. To ensure a short response time and individual cylinder control, the UEGO sensor can be installed upstream of a turbocharger; however, this means that the exhaust gas pressure affects the measured oxygen concentration. Therefore, this study determines the sensor’s sensitivity to the exhaust pressure under typical conditions for lean burn low-emission diesel engines. Identification experiments are carried out on a supercharged single-cylinder diesel engine with an exhaust system mimicking the operation of the turbocharger. The apparent excess air measured with the UEGO sensor is compared to that obtained in a detailed exhaust gas analysis. The comparison of reference and apparent signals shows that the pressure compensation correlations used in gasoline engines do not provide the correct values for diesel engine conditions. Therefore, based on the data analysis, a new empirical formula is proposed, for which the suitability for lean burn diesel engines is verified.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    Low-Pressure EGR in Spark-Ignition Engines: Combustion Effects, System Optimization, Transients & Estimation Algorithms

    Get PDF
    Low-displacement turbocharged spark-ignition engines have become the dominant choice of auto makers in the effort to meet the increasingly stringent emission regulations and fuel efficiency targets. Low-Pressure cooled Exhaust Gas Recirculation introduces important efficiency benefits and complements the shortcomings of highly boosted engines. The main drawback of these configurations is the long air-path which may cause over-dilution limitations during transient operation. The pulsating exhaust environment and the low available pressure differential to drive the recirculation impose additional challenges with respect to feed-forward EGR estimation accuracy. For these reasons, these systems are currently implemented through calibration with less-than-optimum EGR dilution in order to ensure stable operation under all conditions. However, this technique introduces efficiency penalties. Aiming to exploit the full potential of this technology, the goal is to address these challenges and allow operation with near-optimum EGR dilution. This study is focused on three major areas regarding the implementation of Low-Pressure EGR systems: Combustion effects, benefits and constraints System optimization and transient operation Estimation and adaptation Results from system optimization show that fuel efficiency benefits range from 2% – 3% over drive cycles through pumping and heat loss reduction, and up to 16% or more at higher loads through knock mitigation and fuel enrichment elimination. Soot emissions are also significantly reduced with cooled EGR. Regarding the transient challenges, a methodology that correlates experimental data with simulation results is developed to identify over-dilution limitations related to the engine’s dilution tolerance. Different strategies are proposed to mitigate these issues, including a Neural Network-actuated VVT that controls the internal residual and increases the over-dilution tolerance by 3% of absolute EGR. Physics-based estimation algorithms are also developed, including an exhaust pressure/temperature model which is validated through real-time transient experiments and eliminates the need for exhaust sensors. Furthermore, the installation of an intake oxygen sensor is investigated and an adaptation algorithm based on an Extended Kalman Filter is created. This algorithm delivers short-term and long-term corrections to feed-forward EGR models achieving a final estimation error of less than 1%. The combination of the proposed methodologies, strategies and algorithms allows the implementation of near-optimum EGR dilution and translates to fuel efficiency benefits ranging from 1% at low-load up to 10% at high-load operation over the current state-of-the-art

    Auto-ignition Modeling in a Spark Ignition Internal Combustion Engine Fueled with Gaseous Fuels with Variable Methane Number

    Get PDF
    A semi-empirical model for determining Knock Occurrence Crank Angle (KOCA) in a Cooperative Fuel Research (CFR) engine was developed. The model is based on the Integral Model approach and experimental data collected in a factorial 23 with axial and central runs experiment. Mixtures of CH4/H2 were employed as fuel. The model was accurate enough to predict KOCA with a maximum and minimum error of just 3.6 and 0.9 degrees respectively. To study the auto-ignition chemistry and its relationship with the knock resistance of gaseous fuels, the Methane Number of CO/CO2/H2 mixtures were measured. A correlation for estimating Methane Number as a function of fuel compositions was proposed. The proposed correlation is a good tool for estimating the Methane Number of fuels with high concentration of carbon dioxide, carbon monoxide and hydrogen. A comprehensive evaluation of the accuracy of a detailed chemical kinetics mechanism for predicting KOCA in a CFR engine was carried out. The spark ignition engine model of Chemkin Pro® software coupled with Gri-Mech. 3.0 chemical kinetics mechanism was used to model auto-ignition A set of equations for calculating residual gas fraction (x_r), inlet valve close gas temperature (T_IVC) and residual gas temperature?(T?_r) were proposed. Moreover, a technique for estimating combustion parameters from the indicator diagram was developed. Results reveal that accuracy of the mechanism used for estimating KOCA decreases as compression ratio decreases. This result is consistent with the lack of accuracy of the mechanism for predicting ignition delay time of gaseous fuel at low temperature

    Characterization and Control of Multi-Cylinder Partially Premixed Combustion

    Get PDF
    In the last decade diesel combustion has developed in a new direction. Research has been carried out trying to prolong the ignition delay and enhance fuel/air premixing to avoid diffusion combustion as well as lowering the combustion temperature through use of EGR. One of these new combustion concepts is Partially Premixed Combustion (PPC). PPC is aimed to provide combustion with low smoke and NOx without sacrificing fuel consumption. This thesis presents the development of a multi-cylinder PPC concept. It reaches from the basic characterization of this new combustion strategy to the demands on hardware, control and fuels for a realizable PPC solution. In summary it contains a thorough PPC characterization where the results suggest that high EGR, early injection PPC strategies are to prefer over late injection approaches or smokeless rich diesel combustion. Further, a strong connection between mixing period, defined as the period between end of injection and start of combustion, and PPC has been ascertained. Based on this knowledge a combustion controller with feedback control of mixing period was derived. The operating range of multi-cylinder diesel PPC was then evaluated. The study showed that the PPC load range was limited covering only 25% of the operating region for conventional combustion. In order to reach higher loads for PPC the EGR system was rebuilt to a low pressure system. This system improves EGR/air mixing and cooling and enables high EGR and boost pressure simultaneously. Additionally, gasoline fuels were introduced to extend the ignition delay and mitigate soot formation. An extensive fuel comparison was carried out to find the most suitable fuel for PPC operation. With the improved set-up the operating range was reevaluated. By combining the use of a low pressure EGR system and standard gasoline the operating region of PPC has been extended to cover 50% of the engine nominal operating region. The final part of this thesis is dedicated to a novel method of cylinder individual efficiency estimation based on the cylinder pressure trace. With this method, control strategies aiming directly at fuel consumption optimization can be developed. An extremum seeking control algorithm was applied. The results show that the controller manages to find the maximum brake torque region both with and without external excitation. Finally, the estimation error in accumulated fuel consumption from the experiments is around 1% which shows the potential of using the absolute value of the efficiency estimation in other control concepts

    Review of air fuel ratio prediction and control methods

    Get PDF
    Air pollution is one of main challenging issues nowadays that researchers have been trying to address.The emissions of vehicle engine exhausts are responsible for 50 percent of air pollution. Different types of emissions emit from vehicles including carbon monoxide, hydrocarbons, NOX, and so on. There is a tendency to develop strategies of engine control which work in a fast way. Accomplishing this task will result in a decrease in emissions which coupled with the fuel composition can bring about the best performance of the vehicle engine.Controlling the Air-Fuel Ratio (AFR) is necessary, because the AFR has an enormous impact on the effectiveness of the fuel and reduction of emissions.This paper is aimed at reviewing the recent studies on the prediction and control of the AFR, as a bulk of research works with different approaches, was conducted in this area.These approaches include both classical and modern methods, namely Artificial Neural Networks (ANN), Fuzzy Logic, and Neuro-Fuzzy Systems are described in this paper.The strength and the weakness of individual approaches will be discussed at length

    Model-based pre-ignition diagnostics in a race car application

    Get PDF
    Since 2014, Formula 1 engines have been turbocharged spark-ignited engines. In this scenario, the maximum engine power available in full-load conditions can be achieved only by optimizing combustion phasing within the cycle, i.e., by advancing the center of combustion until the limit established by the occurrence of abnormal combustion. High in-cylinder pressure peaks and the possible occurrence of knocking combustion significantly increase the heat transfer to the walls and might generate hot spots inside the combustion chamber. This work presents a methodology suitable to properly diagnose and control the occurrence of pre-ignition events that emanate from hot spots. The methodology is based on a control-oriented model of the ignition delay, which is compared to the actual ignition delay calculated from the real-time processing of the in-cylinder pressure trace. When the measured ignition delay becomes significantly smaller than that modeled, it means that ignition has been activated by a hot spot instead of the spark plug. In this case, the presented approach, implemented in the electronic control unit (ECU) that manages the whole hybrid power unit, detects a pre-ignition event and corrects the injection pattern to avoid the occurrence of further abnormal combustion

    Flame chemiluminescence and OH LIF imaging in a hydrogen-fuelled spark-ignition engine

    Get PDF
    Research into novel internal combustion engines requires consideration of the diversity in future fuels in an attempt to reduce drastically CO2 emissions from vehicles and promote energy sustainability. Hydrogen has been proposed as a possible fuel for future internal combustion engines. Hydrogen’s wide flammability range allows higher engine efficiency with much leaner operation than conventional fuels, for both reduced toxic emissions and no CO2 gases. This paper presents results from an optical study of combustion in a spark-ignition research engine running with direct injection and port injection of hydrogen. Crank-angle resolved flame chemiluminescence images were acquired and post-processed for a series of consecutive cycles in order to calculate in-cylinder rates of flame growth. Laser induced fluorescence of OH was also applied on an in-cylinder plane below the spark plug to record detailed features of the flame front for a series of engine cycles. The tests were performed at various air-to-fuel ratios, typically in a range of φ = 0.50–0.83 at 1000 RPM with 0.5 bar intake pressure. The engine was also run with gasoline in direct-injection and port-injection modes to compare with the operation on hydrogen. The observed combustion characteristics were analysed with respect to laminar and turbulent burning velocities, as well as flame stretch. An attempt was also made to review relevant hydrogen work from the limited literature on the subject and make comparisons were appropriate
    corecore