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Abstract: The paper investigates the operation of a wideband universal exhaust gas oxygen (UEGO)
sensor in a diesel engine under elevated exhaust backpressure. Although UEGO sensors provide
the excess air ratio feedback signal primarily in spark ignition engines, they are also used in diesel
engines to facilitate low-emission combustion. The excess air signal is used as an input for the
fuel mass observer, as well as to run the engine in the low-emission regime and enable smokeless
acceleration. To ensure a short response time and individual cylinder control, the UEGO sensor can
be installed upstream of a turbocharger; however, this means that the exhaust gas pressure affects
the measured oxygen concentration. Therefore, this study determines the sensor’s sensitivity to the
exhaust pressure under typical conditions for lean burn low-emission diesel engines. Identification
experiments are carried out on a supercharged single-cylinder diesel engine with an exhaust system
mimicking the operation of the turbocharger. The apparent excess air measured with the UEGO
sensor is compared to that obtained in a detailed exhaust gas analysis. The comparison of reference
and apparent signals shows that the pressure compensation correlations used in gasoline engines do
not provide the correct values for diesel engine conditions. Therefore, based on the data analysis, a
new empirical formula is proposed, for which the suitability for lean burn diesel engines is verified.

Keywords: wideband oxygen sensor; exhaust backpressure; pressure compensation; diesel engine

1. Introduction

The development of a wideband universal exhaust gas oxygen (UEGO) sensor has extended the
conventional application of excess air ratio (λ) signal in engine performance and emission control.
The measurement principle is based on the diffusion of gasses between the so-called reference cell and
pump cell governed by the yttrium-stabilized zirconia (YSZ) O2

−-conductive membrane [1]. In general
terms, this diffusion rate and direction are sensitive to exhaust gas composition; hence, wideband
sensors—unlike their discrete-state predecessors—enable the measurement of λ in the whole applicable
range and with fast response.

Owing to their characteristics, combined with high rigidity and stability in corrosive environments,
UEGO sensors are now used as a standard control feature for spark ignition engines. In the stoichiometric
combustion concept, the main benefit of λ control comes through improved conversion for a three-way
catalytic converter [2]. At the same time, the other downstream sensor provides catalytic converter
diagnostic and regeneration functionalities [2]. In 2001, Delphi (Delphi Technologies Ltd., London, UK)
introduced a production-feasible, wide-range λ control system for gasoline direct injection engines that
was based on the wideband UEGO sensor technology [3]. This enabled strict NOX emission limits with
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reduced calibration burden under lean combustion conditions. Currently, wideband UEGO sensors
are also used in diesel engines to help reduce engine-out emissions. The λ signal is used as an input for
the fuel mass observer [2], as well as to run the engine in the low-emission area of the map and enable
smokeless acceleration. Furthermore, in lean-burn marine gas engines, the absolute λ signal can be
used for virtual knock estimation. This wide spectrum of UEGO sensor applications is complemented
by virtual λ-based fuel composition sensing for gasoline-ethanol [4] or diesel–FAME (fatty acid methyl
ester) [5] flex-fuel engines.

Putting the engine type aside, more recent λ measurement applications focus on individual
cylinder control [6,7]. In such applications, the market-available sensors pose some problems related
to feedback response delay. These problems can be overcome by the application of ion sensing at
individual cylinders [8]. This real-time λ determination method ensures sufficient accuracy (errors
typically do not exceed 3%) [9], while the use of the same hardware offers the additional advantage of
combustion timing determination [10]. For UEGO sensors, the relatively long feedback delay problem
is usually solved by various adaptive compensation algorithms incorporating Smith predictors [11,12]
or other feed-forward/feed-back systems [13]. Furthermore, individual cylinder λ control can be
realized with a single UEGO sensor located at the common exhaust runner, while signal delay is
dealt with by means of simplified gas transport and mixing models [14]. Finally, it should be noted
that completely virtual λ estimation techniques are explored, too [15,16]. These are usually based on
fast-running mean value air-path models, which makes them potentially suitable for relatively simple
engine layouts without exhaust gas recirculation (EGR), where pulsations dynamics can be neglected.

Still, the robustness and low production costs put the UEGO sensors in the mainstream of on-board
λ sensing technologies. However, the aforementioned developments in λ-based control pose additional
challenges for sensor accuracy, especially when non-standard test conditions are concerned. The type of
fuel may affect oxygen sensor readings. The effect is straightforward for oxygenated fuels and enables
on-board FAME admixture estimation [5]. The Bosch (Robert Bosch GmbH, Stuttgart, Germany) R&D
group reported significant differences between the readings of their sensors for gasoline and ethanol [4].
On the other hand, Irimescu [17] used the above fuels and observed only minor differences solely
in highly lean or highly rich mixture conditions and elevated pressures. Finally, Grannell et al. [18]
explained the significant delta in the sensor readings for gasoline and ammonia (NH3) combustion by
attributing it to the oxidation of unburned NH3 on the sensor surface.

The above partially conflicting reports may result from the employment of different sensor
technologies or different thermodynamic conditions of measurements. On the hardware side, the
sensors usually differ in the reference pumping current definition that is either adjusted to ambient
air (e.g., LSU 4.2 sensor by Bosch) or selected arbitrarily (e.g., LSU 4.9 sensor by Bosch) [17]. As
far as test conditions are concerned, the diffusion-based operating principle makes sensors very
sensitive to the exhaust backpressure [17]. While this is typically not an issue for λ measurement in
conventional spark ignition or diesel engine applications, the cylinder-individual estimation methods
usually rely on upstream sensor mounting that is subjected to significant pressure fluctuations. These
may arise from cycle-to-cycle pulsations in the manifold or, on a longer-time basis, from (operating)
point-to-point differences in pre-turbine pressure. Some UEGO sensors available on the market
are already equipped with additional exhaust pressure measurement channels and corresponding
compensation algorithms [19,20]. However, the nature of these correlations is either not revealed or
revealed in a relatively simple form, without taking account of additional aspects such as signal delay
or compositional and thermal effects. Regarding the thermal sensitivity of sensor signal, this aspect is
important during engine start-up and fast transients. Some fundamental insight into the issue can be
found in the work by Harris and Collings [1].

Concluding the above literature review, it should be noted that although the technology has been
available on the market for some time, new developments in control put additional constraints on
the UEGO sensor signal quality. Consequently, most research in the field focuses on understanding
the cross-linking effects of various parameters under non-standard sensor application conditions.
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The present work fills the knowledge gap in this research by identifying the mechanisms of wideband
UEGO sensor signal compensation under heavily lean conditions, high overall fuel dilution rates
(heavy external EGR), and excessive exhaust backpressures. The new model is proposed that correlates
the ambient-level UEGO signal with exhaust backpressure to provide accurate lambda estimation
for a wide range of mixture strengths typical for contemporary lean-burn combustion engines. This
correlation is validated under steady-state conditions using the reference λ value calculated from
the carbon balance method. The new model surpasses the earlier-proposed UEGO signal pressure
compensations in terms of the range of applicability while providing satisfying accuracy across all
tested operating conditions. The work is considered instrumental for prospective cylinder-individual
λ control strategies.

2. Theoretical Background and Definitions

2.1. Combustible Mixture and Exhaust Gas Composition

All available engine fuels, fossil and renewable alike, are primarily composed of hydrogen and
carbon. Alcohols, ethers, and carboxylic acids additionally contain large amounts of oxygen. Other
components, such as inert nitrogen or sulfur, occur in automotive fuels in low concentrations.

Combustible mixture composition in a reciprocating engine cylinder is defined by two main
parameters: λ and EGR ratio. The λ is defined as the ratio of the actual air–fuel ratio to the stoichiometric
air requirement. The EGR ratio is the fraction of recirculated exhaust gas in the in-cylinder charge.
It should be noted that, typically, EGR does not affect the λ value because, due to the elemental
composition, it is the same for combustible mixture and exhaust gas. Hence, the balance between the
main reactants and combustion products on a molar basis can be described by the following equation:

CmHnOp + λ(m + 0.25n− 0.5p)(O2 + 3.76N2)→

→ mCO2 + 0.5nH2O + (λ− 1)(m + 0.25n− 0.5p)O2 + 3.76λ(m + 0.25n− 0.5p)N2
(1)

where m, n, and p denote the numbers of atoms in the generalized fuel molecule CmHnOp. It should
be noted that exhaust toxic gaseous compounds are not considered in Equation (1); however their
concentrations in diesel engines are low and cumulatively do not exceed 1% on a molar basis [21].

2.2. Measurement Principles and Calculation Procedures for UEGO Sensor

The UEGO sensor determines the value of λ via the indirect measurement of oxygen concentration
in the exhaust gas. The measurement principle is based on the Nernst equation, which relates the
reduction potential of an electrochemical reaction in a cell (E) to the standard potential of the electrode
(E0), gas temperature in the cell, and activities of the chemical species undergoing reduction and
oxidation (ared and aox, respectively) [22]:

E = E0 +
RT
zF

ln
(

aox

ared

)
. (2)

In Equation (2), R and F denote the universal gas constant and the Faraday constant, respectively,
and z is the number of electrons transferred in the cell reaction. It should be noted that the activities
ared and aox are always determined with respect to the standard state (1 mol/L for solutes, 1atm for
gases), similarly to the reaction equilibrium constants. Therefore, the activities can be narrowed down
to respective species concentrations. For practical applications, the concentrations can be further
determined via partial pressures of individual species using Dalton’s law—Equation (3). Considering
that the ion carrier is oxygen, the voltage of the λ transducer can be expressed as:

V = tion
RT
4F

ln

 pO2 air

pO2 exh

, (3)
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where tion is the ionic transference number, and pO2 air, pO2 exh denote the partial pressures of oxygen
in air and exhaust, accordingly.

To enable wideband operation, the UEGO sensor considered in this study has three measurement
chambers that are shown in Figure 1 and referred to as (1) a sensor cell, (2) a pump cell, and (5) a
reference air channel.

Figure 1. Schematic diagram of a wideband universal exhaust gas oxygen (UEGO) sensor: (1) sensor
cell; (2) pump cell; (3) diffusion barrier; (4) heater; (5) reference air.

The sensor cell is in contact with exhaust gases on one side and is flushed by air on the other.
The voltage produced by the sensor’s Nernst cell is compared to the set value of 0.45 V, which
corresponds to the stoichiometric mixture. Any deviation from this value switches the pump current
that controls the activity of the oxygen pump. Oxygen from the exhaust gas is pumped outside or
inside, so that the voltage in the measuring chamber is maintained constant at 0.45 V, which provides
the stoichiometric exhaust in the measuring cell. The pumping current (Ip) required to sustain this state
is directly measured. It correlates nearly linearly with the λ value of the fuel–air mixture. The response
of the complete lambda measurement system is shown in Figure 2, including the relation of the
pumping current to λ and the associated O2 mole fraction. By calibrating the pump current to the
oxygen concentration resulting from Equation (1), the characteristics of the measurement system can
be linearized, as shown in a subplot in Figure 2.

Figure 2. Characteristics of a wide-band UEGO sensor. Theoretical O2 mole fraction calculated using
Equation (1). Real O2 mole fraction from technical report [23]. Pump current from ETAS (ETAS GmbH,
Stuttgart, Germany) LA4 lambda meter manual [24].

It should be noted that the real O2 mole fraction in the exhaust gas (red dashed line in Figure 2)
differs from the theoretical one determined from Equation (1) (blue dashed line in Figure 2) due to an
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incomplete utilization of oxygen. In such case, a small amount of oxygen remains even under rich
mixture. The difference is mainly manifested in the rich mixture range (λ < 1), where the emissions of
unburned hydrocarbons (HC) and carbon monoxide (CO) influencing the molar balance in Equation
(1) become excessive. In the range of lean mixtures, which is the case for diesel engines, the difference
between real and theoretical oxygen concentrations is small. Additionally, the combustion efficiency
in diesel engines is much higher than in spark ignition engines, thus resulting in lower CO and
HC emissions.

The above considerations are valid for ambient pressure conditions denoted here as p0. It should
be observed that at a given mole fraction, the partial oxygen pressure is proportional to the gas pressure;
thus, the UEGO sensor should respond to the pressure change similarly to the λ change. The effect of
exhaust backpressure on the pump current can be described using the following empirical formulation
from the Bosch LSU 4.2 Technical Customer Information [25]:

IP_app = IP

(
p0

) pexh

k + pexh
·
k + p0

p0
, (4)

where pexh denotes the exhaust pressure and IP(p0) is the pump current at ambient conditions. The k
factor for lean mixtures was experimentally determined as 47 kPa. Taking another model from [17] and
performing some manipulations, it is possible to directly estimate the apparent value of λ, as expressed
by Equation (5):

λapp =
λ
(
p0

)
1 + m·∆p

[
1− λ

(
p0

)] , (5)

where ∆p = pexh − p0. The constant m was experimentally determined to be 6.25·10−3 kPa−1. It
should be noted that both above-mentioned correlations were validated only for nearly stoichiometric
conditions (1 ≤ λ ≤ 1.2), which is relevant for homogeneous gasoline engine operation. In the case of
diesel engines, the behavior of the sensor would be significantly different at high excess air conditions.
The present research fills this knowledge gap, and the validity of Equations (4) and (5) is critically
assessed in the Discussion section.

3. Methods

3.1. Test Stand

The experiments were performed using a single-cylinder research engine type 5402 CRDI by
AVL (AVL List GmbH, Graz, Austria). To enable the simulation of engine operation under normal
service conditions, the engine was coupled with the AC dynamometer with advanced automatic
control. The use of the single-cylinder engine provided high exhaust pulsations that occur when the
cylinder-individual λ control is applied.

Detailed specifications of the test engine are given in Table 1.

Table 1. Research engine specifications.

Type AVL 5402

Configuration Four-stroke, single-cylinder
Bore 85 mm

Stroke 90 mm
Displacement 510.5 cm3

Compression ratio 17:1
No. of valves 4

Combustion type Direct injection
Max. fuel pressure 180 MPa

Injection system Common Rail CP4.1
Engine management AVL-RPEMS, ETK7-Bosch
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For the purpose of this study, it suffices to mention that the test platform had a compression
ignition-based combustion system with a toroidal in-piston combustion chamber coupled with a
seven-hole electromagnetic injector representing the state-of-the-art light-duty automotive diesel engine.

Injection parameters were managed by a fully opened engine control unit, ETAS INCA. During
the experiments, the engine was operated as both naturally aspirated and supercharged in order to
enable a high range of excess air at variable exhaust EGR rates. The cooled external EGR delivery rate
was controlled via a proportional valve. A mechanical roots compressor driven by an electric motor
was used to ensure flexible control of boost pressure. For achieving high EGR rates at boost conditions,
an exhaust backpressure valve was installed downstream of the exhaust plenum. All components of
the air-path system used in the experiments are shown in Figure 3.

Figure 3. Schematic diagram of the engine test stand: (1) engine; (2) fuel injector; (3) UEGO sensor,
(4) exhaust plenum; (5) exhaust backpressure valve; (6) exhaust muffler; (7) Fourier Transform Infrared
(FTIR) analyzer; (8) heated filter; (9) soot meter; (10) LA4 lambda meter; (11) high pressure fuel pump;
(12) fuel tank; (13) fuel consumption meter; (14) fuel conditioner; (15) intake air control valve; (16) intake
air plenum chamber; (17) intake gas analyzer; (18) intake cooling valve; (19) heat exchanger; (20) air
coolant electric heater; (21) air coolant pump; (22) air filter; (23) bypass valve; (24) air-flow meter;
(25) bypass air cooler; (26) air cooler fan; (27) roots compressor; (28) oil separator; (29) intake air heat
exchanger; (30) intake plenum; (31) intake plenum/exhaust gas recirculation(EGR) mixing chamber;
(32) EGR control valve; (33) EGR cooler.

The wideband UEGO sensor used for providing the apparent λ signal (λapp) was a Bosch LSU 4.2
connected to the ETAS (ETAS GmbH, Stuttgart, Germany) LA4 lambda meter. The sensor was installed
in a straight exhaust runner, approximately 200 mm away from the exhaust valves. The reference λ

value was determined with the use of the AVL (AVL List GmbH, Graz, Austria) SESAM FTIR (Fourier
Transform Infrared) multi-component gas analytical system. Additionally, the Pierburg–Hermann
(Hermann Electronic, Fürth, Germany) HGA400 gas analyzer was used to measure the intake CO2

concentration and thus to provide estimation of the EGR rate.
The engine test stand was equipped with all other measurement devices required for completion

of the planned tests. Among others, the measurement system consisted of an intake air thermal mass
flow meter, a precision fuel balance with thermal conditioning, and a set of pressure and temperature
transducers for measuring intake and exhaust thermodynamic conditions. The intake air temperature
as well as the cooling agent and lube oil temperatures were controlled via separate thermal management
systems. Further details of the experimental apparatus are provided in Appendix A.
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3.2. Experimental Procedure

The engine was fueled with commercial (EN 590 standard) diesel fuel. To avoid the impact of
variable exhaust runner dynamic pressure changes on λ readings, the experiments were conducted at a
constant rotational speed of the engine (2000 rev/min), but at variable fueling, boost pressures, and
EGR rates. The exact parameter sweeps are not discussed in detail here because their sole purpose
was to provide the exhaust gas with the required air excess and pressure. Therefore, it suffices to
mention that the applied engine settings replicated a wide range of real engine operating envelopes
extrapolated toward ultra-lean operation and heavy EGR conditions. Figure 4 shows the relations
between gas exchange control parameters.

Figure 4. Explored intake gas conditions relevant to UEGO signal quality: (a) EGR sweeps at constant
pressure and pressure sweep at non-EGR; (b) intake pressure and EGR relations at constant amounts of
in-cylinder air.

At a fueling rate of approximately 15 mg/cycle, the presented range of intake air mass provided the
λ span ranging from 1.95 to 3.5. With maximum attainable boost pressure of 1.6 bar, further enleanment
of the mixture was achieved by reducing the fueling rate. The complete experimental matrix included
variations of mass of fuel injected from 6 to 16 mg, providing a brake mean effective pressure range
from 0 to 0.5 MPa. Under all operating conditions, the exhaust backpressure was maintained at a level
reflecting the turbocharger coupling.

Additionally, it is worth noting that under all tested conditions, the engine injection control
parameters were adjusted to avoid excessive exhaust emissions, as they could affect λ readings (refer
to Sections 2.1 and 2.2. For details). To this end, fuel was injected using the split injection technique,
which provides the best soot (particulates)/NOX trade-off (constant main fuel injection at 8 Crank angle
degrees before the top dead center; 1.4 mg pilot fuel value with pilot injection timing optimized). At
neither of the operating points, the NOX or particulate matter emissions did exceed 4.5 or 0.3 g/kWh,
respectively. At the same time, CO and HC emissions were constrained below 2 and 1 g/kWh, limiting
the EGR/λ exploration space to values below 40% and above 1.4, respectively. Further data analysis
relied on comparing the λ value measured directly using the UEGO sensor and dedicated signal
conditioner (LA4) with the λ calculated by the carbon balance equation with FTIR readings as inputs.
The AVL SESAM FTIR enables the simultaneous measurement of the content of specific hydrocarbons,
nitrogen oxides, and other chemical exhaust gases compounds. The exhaust gases were transferred
from the engine to the FTIR analyzer through a heated line. The response time of the analyzer was a
single second. The time-averaged value of the 30 s measurement period was taken as a single reading
result. The reference value calculation procedure is discussed in detail below.
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3.3. Reference λ Determination

The reference λ value (λref), considered as the real value, was calculated using the carbon balance
in Equation (6) for wet exhaust analysis [26] in the following way

λref =

(
mfuel

mair

)
stoi

Mair

Mfuel

(
1 + xHC − 0.5xCO + 0.5xH2O

xHC + xCO + xCO2

− 0.5y
)
. (6)

The results of exhaust composition from the FTIR multi-compound analytical system served as an
input for this equation. The x with respective subscript denotes the concentration of total HCs, CO,
CO2, and H2O in the exhaust at a given operating point. Mair is the average molecular mass of air,
Mfuel is the molecular mass of the fuel, while (mfuel/mair) stoi is the stoichiometric fuel–air ratio, i.e.,
the theoretical air demand. The molecular ratio of hydrogen to carbon (y) for the diesel fuel used in the
present research was 1.875.

It should be noted that the method does not rely on the O2 concentration. More importantly,
since the λ obtained via Equation (6) is directly composition-based, it is insensitive to changes in
the measurement conditions (pressure, temperature, EGR, etc.). Hence, the method discussed here
provides a reliable reference value for validating measurement results from the UEGO sensor.

4. Results

As highlighted in the introduction and elaborated on in the background section, the UEGO sensor
readings depend on the pressure in the measurement environment. Figure 5 confirms this thesis by
comparing the λ signal from the Bosch LSU 4.2 UEGO sensor (λapp) with the λ results obtained via
FTIR measurements and Equation (6) (λref) at a variable exhaust-to-ambient-pressure ratio.

Figure 5. Comparison of λapp and λref for non-EGR conditions, constant fueling rate of 15 mg/cycle.

At the 101 kPa exhaust pressure, the λ values obtained with the Bosch sensor and FTIR analyzer
agree. At constant fueling, the FTIR results representing the real value are linear to the exhaust pressure
because the exhaust pressure followed the intake pressure, which nearly linearly translates to cylinder
volumetric efficiency. Due to the UEGO sensor measurement principle, an increase in the exhaust
pressure results in the overestimation of λapp. At a given oxygen mole fraction, the partial pressure
is proportional to the exhaust pressure, thus changing the difference in oxygen concentrations on
opposite sides of the membrane. It should be noted that reference air is under ambient pressure.
In turn, this force increased pump operation to equalize the above concentrations (voltages). As the
pump current is converted to lambda, the effect of pressure is nearly quadratic, as shown in Figure 5.
As a result, for the highest tested pressure ratio of 1.64, the lambda sensor overestimated the actual
lambda value by over 37% (λapp = 4.81 vs. λref= 3.49). Note the measurement points presented in
Figure 5 are time-averaged values (sampled at 1 Hz over 60 s acquisition window) from individual
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steady-state operating points. For the discussed no-EGR conditions, the instantaneous readings of both
the Bosch LSU 4.2 UEGO sensor (λapp) and the exhaust pressure probe were very stable pertaining to
the high fidelity of thermal management used in our single cylinder research engine. The standard
deviations of λapp and pexh/p0 did not exceed 0.1 and 0.02 respectively, for all points presented on the
red curve. The diameter of the red circles in Figure 5 gives a good estimate of maximum uncertainty
here. The standard deviations of λref were not available because the instantaneous compositions in
Equation (6) were not recorded.

Figure 6 shows the cumulative results of different EGR range sand fueling rates grouped by
color-coding into four exhaust pressure ranges.

Figure 6. λapp vs. λref for different exhaust pressures. The graph inside presents the directional
coefficient of linear fit, where error bars denote standard deviations of the residual component.

It can be noted that for the exhaust pressure at ambient pressure, there is a good agreement
between the results obtained with the UEGO sensor and the reference carbon balance method. For the
individual exhaust pressure, the correlation between the two signals is linear. It should be noted that
the dispersion of the measurement points around the line of regression increases with increasing λ.
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This directly results from the decreasing sensitivity of the sensor (see Figure 2 for reference), rather than
from the EGR itself. No EGR dependence is observed between the results, and the overall dispersion
around the respective exhaust pressure fits is the combined effect of measurement accuracy and other
factors such as sampling temperature.

In addition to the above, it should be noted that the exhaust pressure itself was controlled by the
system with an accuracy of ±2 kPa. According to the dependencies established in the present study,
this translates to roughly 1.23% of the possible error caused solely by a point-to-point deviation in the
exhaust pressure.

The pressure ratio is of prime significance. Since λapp changes linearly with λref for individual
pressure ratios, the directional coefficient of this line changes with the pressure ratio itself. This
dependence is plotted in the upper left corner of Figure 6. One can note that the relation here is
logarithmic and can be explicitly formulated as shown in Equation (7):

λapp − 1
λref − 1

= 1.08· ln
(

pexh

p0

)
+ 1. (7)

Adopting the nomenclature of the previous UEGO sensor models discussed in Section 3.3,
Equation (7) can be used to model the output of the sensor (λapp) at different exhaust backpressure
values. Assuming that the value of λref is always equal to λ(p0), one gets

λapp =
[
λ
(
p0

)
− 1

][
k· ln

(
pexh

p0

)
+ 1

]
+ 1 (8)

where k = 1.08. However, it should be stressed that the above equation is only valid for lean mixtures.

5. Discussion and Outlook

This section benchmarks the wideband lambda sensor model proposed in Equation (8) against
other correlations available in the literature. Model 1 refers to the correlation by Irimescu [17] expressed
directly through Equation (5). Model 2 refers to the approach by Bosch [25], where the sensor
characteristics from Figure 2 were used to convert the pump current expressed by Equation (4) to the
λapp values. Figure 7 presents the results of this benchmark.

According to the results, the two previous UEGO models proposed for turbocharged spark
ignition engines, i.e., Model 1 and Model 2, fail under large excess air conditions that are typical of the
diesel engine operation regime. On the other hand, the new model shows a good agreement with the
experimental findings in a wide range of λ values between 2 and 7. The maximum relative error did
not exceed 7%.

It is worth emphasizing that reliable validation results for Model 1, covering the λ range from 1 to
1.2, were presented in Irimescu [17]. However, due to the diesel combustion regime restrictions, this
region was beyond the scope of the present study. Still, the model proposed in this work makes it
possible to capture the low lambda range with good accuracy, as shown by the inner graph plotted in
Figure 7. The deviation from Model 1 in this range did not exceed 0.8%. On the other hand, compared
to the experimental findings of this study, the error of Model 1 at λ = 2 was 3.5%, 9.5%, and 20% for
the exhaust-to-ambient-pressure ratios of 1.2, 1.4, and 1.6., respectively. Ultimately, the higher the
backpressure, the higher the λ estimation error becomes for Model 1 and Model 2 alike. However, this
is not the case with the new model, where the probability distribution is relatively independent of
the backpressure.

Finally, it should be noted that the Model 2 predictions appear to fit the results better than those
obtained with Model 1 at a larger range of lambda values. Nevertheless, it must be observed that the
lambda results obtained with Model 2 are drastically underestimated for the range of its intended
usage. For λ between 1.2 and 1.4, the discrepancy between the predictions of Model 1 (carefully
validated results are available) and Model 2 amounts to 11%. It should be observed that Model 2 is
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typically used for UEGO sensor calibration; however, its validation results have not been revealed.
The present work suggests that the suitability of Model 2 is questionable, even for typical spark ignition
engine applications.

Figure 7. Comparison of λapp calculated using available models (Model 1—Equation (5) [17], Model
2—Equation (4) [25]) and the model elaborated in this study with experimental verification data.

The new model derived in this work is instrumental for cylinder-individual lambda control
strategies enabling the next generation of lean-burn engines. The potential application ranges from
incremental improvement of conventional diesel combustion (to improve cold-start strategies with
smokeless combustion) to advanced low-temperature combustion concepts such as HCCI or RCCI. In
the latter case, the λ management issue is of prime importance for achieving controllable combustion
with superior efficiency and emission trade-off [27,28].

The following steps form our research agenda in this direction: (1) in the short term, the new
sensor model will be used to develop a real-time-capable correction routine and to test it in transient
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engine operation together with a response delay correction routine; (2) in the long term, the advantage
of individual cylinder-based λ control will be demonstrated using the advanced low-temperature
combustion platform developed by the authors in [29].

6. Conclusions

The results of the present study lead to the following conclusions:

• The exhaust pressure has a pronounced effect on the UEGO sensor output. With the exhaust
pressure increased to 160 kPa, the overestimation of λ by the UEGO sensor may be as high as 37%;

• At the same time, the exhaust pressure has a more significant influence on the sensor output
than all other factors combined, including exhaust thermal conditions, EGR, and cumulative
measurement accuracy;

• The previous linear models for wideband UEGO sensor response to backpressure proposed for
spark ignition engine applications fail drastically for diesel-like excess air ratios. Whenλ ≈ 2, the
error can be as high as 20% and may increase to over 65% for λ higher than 3;

• The proposed new model has a minimum accuracy of 7% across the wide spectrum of λ values
(from 1.4 to 7) and EGR (0–40%), as investigated in this study;

• The comparison with an accurately validated spark ignition-capable model (Model 1) has shown
that the proposed model yields a satisfactory accuracy of 0.8% at 1 ≤ λ ≤ 1.2.

Author Contributions: Conceptualization, J.H. and M.M.; methodology, P.K.; validation, M.S.G. and A.R.; formal
analysis, J.H.; investigation, P.K., M.S.G. and A.R.; data curation, J.H.; writing—original draft preparation, P.K.;
writing—review and editing, M.M.; visualization, J.H. and P.K.; supervision, M.M.; project administration, J.H.;
funding acquisition, J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research and the APC were financed in the framework of the project: Lublin University of
Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education,
contract no. 030/RID/2018/19.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

List of acronyms
CO carbon oxide
CRDI common rail direct injection
EGR exhaust gas recirculation
FAME fatty acid methyl ester
FTIR Fourier transform infrared
HC hydrocarbons
HCCI homogenous charge compression ignition
NOx nitrous oxides
NH3 ammonia
RCCI reactivity-controlled compression ignition
UEGO universal exhaust gas oxygen sensor
YSZ yttrium-stabilized zirconia
List of symbols
aox species undergoing oxidation (1 mol/L) for solutes, (1 atm) for gases
ared species undergoing reduction (1 mol/L) for solutes, (1 atm) for gases
E potential of an electrochemical reaction in a cell (V)
E0 standard potential of electrode (V)
F Faraday constant (C/mol)
IP_app pump current under exhaust overpressure (A)
IP(p0) pump current at ambient conditions (A)
k experimentally determined factor for lean mixtures (-)
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p0 ambient pressure (MPa)
pexh exhaust pressure (MPa)
pO2 air partial pressure of oxygen in air (MPa)
pO2 exh partial pressure of oxygen in exhaust (MPa)
R universal gas constant (J/mol × K)
T temperature (K)
tion ionic transference number (-)
V voltage of the λ transducer (V)
Greek letters
λ excess air ratio (-)
λapp apparent lambda value under exhaust overpressure (-)

Appendix A

This appendix aims to provide more insight into the layout of the sensors used in the present research.
The appendix complements the discussion of the engine air-path in the main body of the text (Section 3.1 and
Figure 3). The complete AVL 5402 CRDI engine research setup is shown in Figure A1. Elements of the intake air
preparation system are shown in Figure A2. In the intake path, the filtered air goes through a flow meter; then, it
is compressed by a mechanical charger. A parallel-mounted (passive) charge air cooler lowers the temperature
of the air from the supercharger to approximately 20 ◦C. If necessary, the air can further be heated in the series
mounted heater. This device, visible on the right-hand edge of Figure A2a, is feed-forward controlled and is
ultimately responsible for keeping the set charge temperature, independently of the engine operating point and
ambient conditions. The charge air pressure is also closed-loop controlled via the electric motor driving the intake
air charger. The accuracy of both actively controlled variables is ±0.1 ◦C and ±2 kPa respectively for intake air
temperature and pressure.

Figure A1. Overall view of the 5402 AVL engine test stand.

Figure A2. The intake air preparation system; (a) airflow meter, supercharger and the charge air cooler;
(b) pulsation-reducing intake plenum.



Sensors 2020, 20, 6701 14 of 16

The intake air is further homogenously mixed with recirculated exhaust gasses in the EGR mixing chamber
mounted approximately 120 mm from the intake port. The EGR circuit has a separate thermal management
system with a controllable EGR cooler. The EGR mixer (see Figure A3b) is preceded by a larger intake plenum
(Figure A2b) that reduces pressure pulsations generated by the compressor.

Figure A3. The intake and exhaust engine runners; (a) exhaust runner with UEGO sensor, exhaust
pressure sensor, and EGR runner system; (b) EGR mixing chamber with sensors and temperature
conditioning system (on the right).

The UEGO sensor, being the object of the present research, is mounted in a straight runner approximately
200 mm (see Figure A3b) from the exhaust port. This ensures that the flow is stabilized and uniform at the sensor
location while. The distance from the exhaust port is at the same time sufficiently small to ensure that the UEGO
sensor always reaches its operating temperature (>100 ◦C), for all possible engine operating points. Similarly
to the intake side, an Exhaust plenum is installed to reduce the gas pressure pulsations in the exhaust system.
An in-series mounted, adjustable valve simulates the restriction generated in the areal engine by the turbine
element. The level of the exhaust backpressure is closed-loop controlled (±2 kPa) with the valve opening position.
Controlling of the compressor and the exhaust backpressure valve separately enables the simulation of a wide
range of the turbocharger’s operating conditions. Both on the exhaust and the intake side, the temperatures and
pressures are measured at multiple locations. The entire engine air-path conditioning system, including all other
elements presented in Figure 3, yet not explicitly mentioned in this appendix, allows for precise control of tall flow
streams and their thermal conditions. This functionality enabled the present research.
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