35 research outputs found

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Proceedings of the 6th International Workshop of the EARSeL Special Interest Group on Forest Fires Advances in Remote Sensing and GIS Applications in Forest Fire Management Towards an Operational Use of Remote Sensing in Forest Fire Management

    Get PDF
    During the last two decades, interest in forest fire research has grown steadily, as more and more local and global impacts of burning are being identified. The definition of fire regimes as well as the identification of factors explaining spatial and temporal variations in these fire characteristics are recently hot fields of research. Changes in these fire regimes have important social and ecological implications. Whether these changes are mainly caused by land use or climate warming, greater efforts are demanded to manage forest fires at different temporal and spatial scales. The European Association of Remote Sensing Laboratories (EARSeL)’s Special Interest Group (SIG) on Forest Fires was created in 1995, following the initiative of several researchers studying Mediterranean fires in Europe. It has promoted five technical meetings and several specialised publications since then, and represents one of the most active groups within the EARSeL. The SIG has tried to foster interaction among scientists and managers who are interested in using remote sensing data and techniques to improve the traditional methods of fire risk estimation and the assessment of fire effect. The aim of the 6th international workshop is to analyze the operational use of remote sensing in forest fire management, bringing together scientists and fire managers to promote the development of methods that may better serve the operational community. This idea clearly links with international programmes of a similar scope, such as the Global Monitoring for Environment and Security (GMES) and the Global Observation of Forest Cover/Land Dynamics (GOFC-GOLD) who, together with the Joint Research Center of the European Union sponsor this event. Finally, I would like to thank the local organisers for the considerable lengths they have gone to in order to put this material together, and take care of all the details that the organization of this event requires.JRC.H.3-Global environement monitorin

    Chapter Solid Biomass from Forest Trees to Energy: A Review

    Get PDF
    Among the different terrestrial ecosystems, forests are the most important biomass carbon producers and the ones that store the most standing biomass carbon. Consequently, they are also the major source of biomass for energy. Forest biomass has been used as a fuel from early times, and from the late twentieth century onward, there has been a renewed interest in its use to produce heat and electricity. The interest in forest biomass as an energy source relates to some of its features, such as relative abundance and uniformity worldwide and neutrality of CO2 emissions. Nonetheless, its use is not free of risks, mostly related with the sustainability of the forest systems and their productions. This study reviews the state of the art of the forest sources of biomass for energy, their assessment, their properties as a fuel, as well as the conversion technologies used in the most common energy applications

    Solid Biomass from Forest Trees to Energy: A Review

    Get PDF
    Among the different terrestrial ecosystems, forests are the most important biomass carbon producers and the ones that store the most standing biomass carbon. Consequently, they are also the major source of biomass for energy. Forest biomass has been used as a fuel from early times, and from the late twentieth century onward, there has been a renewed interest in its use to produce heat and electricity. The interest in forest biomass as an energy source relates to some of its features, such as relative abundance and uniformity worldwide and neutrality of CO2 emissions. Nonetheless, its use is not free of risks, mostly related with the sustainability of the forest systems and their productions. This study reviews the state of the art of the forest sources of biomass for energy, their assessment, their properties as a fuel, as well as the conversion technologies used in the most common energy applications

    An investigation in the use of advanced remote sensing and geographic information system techniques for post-fire impact assessment on vegetation.

    Get PDF
    2006/2007Gli incendi boschivi rappresentano uno dei maggiori problemi ambientali nella regione Mediterranea con vaste superfici colpite ogni estate. Una stima dell’impatto ambientale degli incendi (a breve e a lungo termine) richiede la raccolta di informazioni accurate post-incendio relative al tipo di incendio, all’intensità, alla rigenerazione forestale ed al ripristino della vegetazione. L’utilizzo di tecniche avanzate di telerilevamento può fornire un valido strumento per lo studio di questi fenomeni. L’importanza di queste ricerche è stata più volte sottolineata dalla Commissione Europea che si è concentrata sullo studio degli incendi boschivi ed il loro effetto sulla vegetazione attraverso lo sviluppo di adeguati metodi di stima dell’impatto e di mitigazione. Scopo di questo lavoro è la stima dell’impatto post-incendio sulla vegetazione in ambiente Mediterraneo per mezzo di immagini satellitari ad alta risoluzione, di rilievi a terra e mediante tecniche avanzate di analisi dei dati. Il lavoro ha riguardato lo sviluppo di un sistema per l’integrazione di dati telerilevati ad altissima risoluzione spaziale e spettrale. Per la stima dell’impatto a breve termine, un modello di classificazione ad oggetti è stato sviluppato utilizzando immagini Ikonos ad altissima risoluzione spaziale per cartografare il tipo di incendio, differenziando l’incendio radente dall’incendio di chioma. I risultati mostrano che la classificazione ad oggetti potrebbe essere utilizzata per distinguere con elevata accuratezza (87% di accuratezza complessiva) le due tipologie di incendio, in particolare nei boschi Mediterranei aperti. È stata inoltre valutata la capacità della classificazione ad oggetti di distinguere e cartografare tre livelli di intensità del fuoco utilizzando le immagini Ikonos e l’accuratezza del risultato è stimata all’ 83%. Per la stima dell’impatto a lungo termine, la mappatura della rigenerazione post-incendio (pino) e la ripresa della vegetazione arbustiva sono state valutate mediante tre approcci: 1) la classificazione ad oggetti di immagini ad altissima risoluzione QuickBird che ha permesso di mappare la ripresa della vegetazione e l’impatto sulla copertura a seguito dell’incendio distinguendo due livelli di intensità dell’incendio (accuratezza della classificazione 86%). 2) l’analisi statistica di dati iperspettrali rilevati in campo che ha permesso una riduzione del 97% del volume di dati e la selezione delle migliori 14 bande per discriminare l’età e le specie di pino e le 18 migliori bande per la caratterizzazione delle specie arbustive. Successivamente, i dati iperspettrali Hyperion sono stati utlizzati per mappare la rigenerazione forestale e la ripresa della vegetazione. L’accuratezza complessiva della classificazione è stata del 75.1% considerando due diverse specie di pino ed altre specie vegetali. 3) una classificazione ad oggetti che ha combinato l’analisi dei dati QuickBird ed Hyperion. Si è registrato un aumento dell’accuratezza della classificazione pari all’8.06% rispetto all’utilizzo dei soli dati Hyperion. Complessivamente, si osserva che strumenti avanzati di telerilevamento consentono di raccogliere le informazioni relative alle aree incendiate, la rigenerazione forestale e la ripresa della vegetazione in modo accurato e vantaggioso in termini di costi e tempi.Forest fires are a major environmental problem in the Mediterranean region, where large areas are affected each summer. An assessment of the environmental impact of forest fires (in the short-term and in the long-term) requires the collection of accurate and detailed post-fire information related to fire type, fire severity, forest regeneration and vegetation recovery. Advanced tools in remote sensing provide a powerful tool for the study of this phenomenon. The importance of this work was often emphasized by the European Commission, which focused on the studying of forest fires and their effect on vegetation through the development of appropriate impact assessment and mitigation methods. The aim of this study was to assess the post-fire impact on vegetation in a Mediterranean environment by employing high quality satellite and field data and by using advanced data processing techniques. The work entailed the development of a whole system integrating very high spatial and spectral resolution remotely sensed data. For short-term impact assessment, an object-oriented model was developed using very high spatial resolution Ikonos imagery to map the type of fire, namely, canopy fire and surface fire. The results showed that object-oriented classification could be used to accurately distinguish and map areas of surface and crown fire spread (overall accuracy of 87%), especially that occurring in open Mediterranean forests. Also, the performance of object-based classification in mapping three levels of fire severity by employing high spatial resolution Ikonos imagery was evaluated, and accuracy of the obtained results was estimated to be 83%. As for long-term impact assessment, the mapping of post-fire forest regeneration (pine) and vegetation recovery (shrub) was performed by following three different approaches. First, the developed object-based classification of QuickBird (very high spatial resolution) allowed post-fire vegetation recovery and survival mapping of canopy within two different fire severity levels (86% of classification accuracy). The main effect of fire has been to create a more homogeneous landscape. Second, statistical analysis of field hyperspectral data allowed a 97% reduction in data volume and recommended 14 best narrowbands to discriminate among pine trees (age and species) and 18 bands that best characterize the different shrub species. Then, hyperspectral Hyperion was employed for mapping post-fire forest regeneration and vegetation recovery. The overall classification accuracy was found to be 75.81% when mapping two different regenerated pine species and other species of vegetation recovery. Third, an object-oriented combined analysis of QuickBird and Hyperion was investigated for the same objective. An improvement in classification accuracy of 8.06% was recorded when combining both Hyperion and QuickBird imageries than by using only the Hyperion image. Overall, it was observed that advanced tools in remote sensing provided the necessary means for gathering information about the burned areas, the regenerated forests and the recovered vegetations in a successful and a timely/cost effective manner.XX Ciclo197

    Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests

    Get PDF
    Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and accurate forest monitoring systems are needed to provide earlywarning of potential declines in forest condition. To address that need, state-of-the-art simulationsmodelswere used to evaluate the utility of C-, L- and P-band synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak and coniferous forests in Romania. The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated the C-band signal by b1 dBwhichmay be insufficient for a meaningful retrieval of drought effects on forest. Cband sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. The simulation results may be applicable to forests outside of Romania since the forests types used in the study have similar morphological characteristics to forests elsewhere in Europe.Romanian National Agency for Scientific Research and Innovation Authorit

    The global tree carrying capacity (keynote)

    Full text link
    editorial reviewe

    Global forest management certification: future development potential

    Get PDF
    corecore