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Abstract 18 

Natural and anthropogenic disturbances pose a significant threat to forest condition. Continuous, reliable and 19 

accurate forest monitoring systems are needed to provide early warning of potential declines in forest condition. 20 

To address that need, state-of-the-art simulations models were used to evaluate the utility of C-, L- and P-band 21 



synthetic aperture radar (SAR) sensors within an integrated Earth-Observation monitoring system for beech, oak 22 

and coniferous forests in Romania.  23 

The electromagnetic simulations showed differentiated sensitivity to vegetation water content, leaf area index, 24 

and forest disturbance depending on SAR wavelength and forest structure. C-band data was largely influenced 25 

by foliage volume and therefore may be useful for monitoring defoliation. Changes in water content modulated 26 

the C-band signal by less than 1 dB which may be insufficient for a meaningful retrieval of drought effects on 27 

forest. C-band sensitivity to significant clear-cuts was rather low (1.5 dB). More subtle effects such as selective 28 

logging or thinning may not be easily detected using C- or L-band data with the longer P-band needed for 29 

retrieving small intensity forest disturbances. Overall, the simulations emphasize that additional effort is needed 30 

to overcome current limitations arising from the use of a single frequency, acquisition time and geometry by 31 

tapping the advantages of dense time series, and by combining acquisitions from active and passive sensors. 32 

The simulation results may be applicable to forests outside of Romania since the forests types used in the study 33 

have similar morphological characteristics to forests elsewhere in Europe. 34 

Keywords: forest monitoring, synthetic aperture radar, microwave simulations, MIPERS4D 35 

1. Introduction 36 

Terrestrial ecosystems provide essential services to human societies (Daily, 1997). Forests are among the most 37 

biodiverse terrestrial ecosystems, provide habitat for a wide range of species, are a key element for carbon 38 

sequestration, are a major component of rural development, provide protective functions for soil, water and 39 

infrastructure, and contribute goods and services (Ojea et al., 2010). Sustainable forest management is needed 40 

for forests to continue providing such services (Obersteiner et al., 2010; Schaich and Milad, 2013). 41 

Environmental and anthropogenic disturbances pose  a threat to the function of forest ecosystems, leading to 42 

habitat degradation, increased risk of collapse, and loss of forest services (Michel and Seidling, 2014). Climate 43 

change will have further effects on terrestrial biomes, particularly forests (Saxe et al., 2001). Rising temperatures 44 

and falling annual precipitation in numerous regions has accelerated over the past decades affecting both local 45 

(Jenkins et al., 2000) and broad-scale ecosystem processes, including disturbance regimes (Dale et al., 2001). 46 



The importance of forest ecosystems is highlighted by the many regional and global programs aimed at 47 

evaluating, monitoring, and reporting on forest condition, such as  the International Co-operative Programme 48 

(ICP) on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests) operating under the 49 

United Nations (UN) Economic Commission for Europe (ECE) Convention on Long-range Transboundary Air 50 

Pollution (CLRTAP), the UN Collaborative Programme on Reducing Emissions from Deforestation and Forest 51 

Degradation (REDD), the International Long Term Ecological Research Network (ILTER), the Japan Aerospace 52 

Exploration Agency (JAXA) Kyoto & Carbon (KC) Initiative, the NASA`s Carbon Monitoring System (CMS), 53 

the European Space Agency  (ESA) Climate Change Initiative (CCI) as well as countless national programs 54 

focused on forest health monitoring and forest inventory. Such programs use an array of data sources including 55 

in situ measurements, sensor networks, and information acquired by aerial and satellite earth observation (EO) 56 

platforms. EO datasets may be acquired by a range of sensors. Active sensors (e.g., radar, lidar) emit energy and 57 

measure the returns reaching the sensor from targets on the ground.  Passive sensors (e.g. optic, thermal) detect 58 

radiation emitted from other source (e.g. sun, earth). Optical remote sensing is commonly used for monitoring 59 

forests due to intuitive interpretation, the wide range of spatial and temporal resolutions, and the long-time data 60 

series available from space-borne platforms. However, optical sensors have limitations in areas with frequent 61 

cloud cover (e.g. tropics) and low solar illumination angles (e.g. arctic) (Verbyla et al., 2008). In addition, 62 

optical sensors often fail to produce accurate results due to factors such as sensitivity to forest cover rather than 63 

structure and plant phenology (Tanase et al., 2011a). The use of active sensors may overcome such limitations 64 

given their independence of cloud cover and solar illumination, day and night acquisition opportunities and their 65 

ability to provide a direct measure of vegetation structure (Le Toan et al., 1992; Lewis and Henderson, 1999). 66 

Modern synthetic aperture radar (SAR) systems can measure both the backscatter coefficient, related to target 67 

scattering properties, and the scattering phase, related to the distance between the sensor and the target. In 68 

forestry applications the phase information is often used to derive forest height through interferometric (InSAR) 69 

processing (Askne et al., 2003; Garestier et al., 2008; Tanase et al., 2015a). 70 

In the last three decades, the use of EO-derived data expanded prodigiously encompassing most areas of forest 71 

information needs including forest disturbance (Mermoz and Le Toan, 2016; Solberg et al., 2013; Tanase et al., 72 



2015a), species and habitats (Laurin et al., 2016; Zhao et al., 2018), forest structure (García-Martín et al., 2008; 73 

Lange and Solberg, 2008; Lucas et al., 2010; Santoro et al., 2012; Solberg, 2010) and biomass (Karlson et al., 74 

2015; Mitchard et al., 2011b; Neumann et al., 2012; Sandberg et al., 2011; Tanase et al., 2014), carbon budgets 75 

(DeFries et al., 2007 ; Lohberger et al., 2017; McNicol et al., 2018; Mitchard, 2018; Poulter et al., 2015; Seidl et 76 

al., 2014), forest health (Rullan-Silva et al., 2013; Spruce et al., 2011) and forest regrowth (Tanase et al., 2011b), 77 

as well as impact assessment of biotic (e.g. pests) and abiotic (e.g. fire, wind) natural hazards (Nielsen et al., 78 

2014; Senf et al., 2017; Tanase et al., 2018; Tanase et al., 2015b). Most studies focused on local to regional 79 

levels but information on a limited range of parameters is available over wider areas from a range of projects 80 

(Baccini et al., 2008; Hansen et al., 2013; Hansen et al., 2003; Lefsky, 2010; Saatchi et al., 2011; Shimada et al., 81 

2014; Simard et al., 2011; Tanase et al., 2015b). Nevertheless, products generated at continental to global scales 82 

are of limited use for national forest policies and management decisions due to diverse factors: i) low temporal 83 

frequency (e.g., one off, multi-annual), ii) generally low (100-1000m) spatial resolutions and forest 84 

heterogeneity, iii) unknown errors at national levels, iv) compromises in the retrieval algorithms which need to 85 

account for a wide range of conditions  (e.g., boreal to tropical) and, v) the lack of calibration data over large 86 

tracts of forests (i.e.  in situ data for algorithm development is sourced from relatively few countries). Indeed, 87 

some studies have shown large differences between global products specified accuracy and in situ samples at 88 

national to regional scales (Michelakis et al., 2014; Mitchard et al., 2011a; Rodríguez-Veiga et al., 2016; Tropek 89 

et al., 2018) with locally developed products providing significant increases of forest parameters estimation 90 

accuracy (Michelakis et al., 2014; Rodríguez-Veiga et al., 2016). Furthermore, locally developed products are 91 

needed when the forest parameters of interest are not available from globally-derived datasets or have inadequate 92 

temporal sampling or spatial resolution.  93 

Romanian forests are under pressure due to a changing climate (increased aridity), natural disturbances (e.g., 94 

windthrows, insect outbreaks, fire) and anthropogenic factors related to management practices and clearing 95 

activities which affect ecosystem processes and biodiversity (Anfodillo et al., 2008; Gazol et al., 2015; Popa, 96 

2008; Scheller and Mladenoff, 2005; Schimel et al., 2000). Indeed, monitoring activities based on remote 97 

sensing data suggest that high rates of forest disturbance in Romania were related to socio-economic changes 98 



(Knorn et al., 2012). Furthermore, increasing natural disturbances caused by climatic variations create additional 99 

strains on forest ecosystems. Therefore, a continuous, reliable, and accurate national forest monitoring system is 100 

needed to provide early warning on forest condition by tracking natural and anthropogenic disturbances. Such 101 

monitoring systems may rely on information provided by field-based monitoring networks, in situ 102 

measurements, active and passive EO datasets, or by a hybrid approach. Past active (i.e. SAR) missions provided 103 

data with low temporal resolution which hindered the development of efficient forest monitoring algorithms. In 104 

addition, the utility of past sensors was limited by the available polarizations, steep viewing geometries and data 105 

access restrictions. With the launch of Sentinel-1 satellite constellation and the Advanced Land Observing 106 

Satellite Phased Array type L-band Synthetic Aperture Radar 2 (ALOS PALSAR-2) such limitations have been 107 

largely reduced. Sentinel-1, with high temporal resolution (images every three days) and improved sensor 108 

characteristics (e.g., dual polarization, increased spatial resolution and incidence angle, precise orbital 109 

information) presents new opportunities for the integration of SAR dataset into operational forest monitoring. 110 

Several variables may be relevant for forest monitoring for management, policy enforcement or national 111 

reporting purposes. However, only few such variables may be readily retrieved using EO data given the 112 

complexity of the interaction between land surface properties and the satellite’s sensors. Our aim in this study 113 

was to assess, through state-of-the-art simulation models, the ability of SAR sensors to  monitor the condition of 114 

Romanian forests. We hypothesised that currently available SAR sensors would be sensitive to changes in forest 115 

structural parameters and that such sensitivity could be used for improving operational forest monitoring 116 

systems. Specifically, our objectives were to i) describe the experimental setup and the field datasets used to 117 

constrain the SAR simulations and ii) asses the influence of changes in vegetation water content (VWC), leaf 118 

area index (LAI) and disturbance scenarios (e.g., defoliation, thinning, selective logging) on the C-, L-, and P-119 

band SAR signal and thus the opportunity of monitoring forest condition and anthropogenic influences.  120 

2. Material and methods  121 

2.1 Study area 122 

To evaluate the influence of forest vegetation properties on radar scattering, 24 one-hectare permanent sampling 123 

areas (PSA) were established within the EO-ROFORMON project in the meridional Carpathian range (Fig. 1A). 124 



The meridional Carpathian range includes some of the highest mountain peaks as well as four of the six 125 

ecoregions present within the Romanian national territory (Olson et al., 2001). The PSAs fall within the forest 126 

districts of Mihesti, Musetesti, and Vidraru and include the four main forest types (oaks, beech, coniferous, and 127 

mixed) in Romania (Fig. 1B). The EO-ROFORMON permanent sampling network was established to monitor 128 

fast changing (e.g. defoliation, vegetation water content) as well as slow changing (e.g. height, dimeter at breast 129 

height) forest parameters. 130 

The Experimental Forest District (EFD) Mihaesti was one of the first places in Romania where experimental 131 

research programs were introduced (1892). The area is characterized by steep slopes and strong land 132 

fragmentation. The slopes are predominantly oriented towards south. Depending on altitude, the mean annual 133 

temperature is 8 to 10° C with mean annual precipitation around 760 mm. Precipitation is fairly distributed 134 

seasonally, with 100 to 150 mm being recorded during winters and autumns and around 200 mm being recorded 135 

during spring and summers. Maximum rainfall is recorded in June and minimum in February. The dominant 136 

winds blow from the west but windthrows are rare, with significant events being recorded only in 1961 and 137 

2006. Soil types and subtypes are strongly depend on geomorphology, position on slope, slope orientation and 138 

forest type. Being relatively uniform within the EFD, the climatic and geological conditions have weak influence 139 

on soil diversity. The forest districts Musetesti and Vidraru are characterized by steep slopes oriented 140 

predominantly towards west and south-west, and respectively south and south-west.  The mean annual 141 

temperature varies between 3.7°C and 6.1°C with mean annual precipitation between 860 and 1050 mm. The 142 

maximum rainfall is recorded in June and minimum in February. 143 



 144 
Fig. 1 Study area and the location of field sampling sites. 145 

2.2 Field datasets  146 

The in situ measurements, used to constrain the radar scattering simulations, were available from the EO-147 

ROFORMON project. Field data collection aimed to characterise slow (e.g. species composition, tree height, 148 

forest volume) and fast (e.g., vegetation water content, leaf area index) changes in forest parameters which may 149 

result in large variations in radar scattering properties.  150 

The PSAs, six for each forest type, were established within the forest district Mihaesti (oak and beech) and 151 

Musetesti/Vidraru (conifers and mixed forests). For each forest type, two PSAs constituted the reference (no 152 

silvicultural interventions) while four PSAs represented managed forests (i.e. two replicates for thinning and two 153 

for selective logging). The managed PSAs were selected in forest stands where interventions were planned 154 

between 2017 and 2019. The PSAs were clustered to facilitate access and minimize transport time. The reference 155 

PSAs were installed within the same forest stands as for the corresponding managed PSA thus minimizing 156 

differences (e.g., slope, orientation, species composition) between managed and reference samples. The PSAs 157 

were located close to access roads to reduce travel time but at least 50 m from the end of a forest stand. In each 158 

PSA, three clustered 500 m2 permanent sub-plots (PSP) were used for monitoring fast-changing forest 159 

parameters (i.e., LAI, foliage and trunk water content) on a monthly basis from April to October. Support 160 

measurements were also carried out to characterize environmental variables (e.g. volumetric soil moisture, 161 

temperature, and humidity) at the time of field sampling. Information related to species specific traits was  162 



Table 1 List of parameters sampled at the continuous monitoring sites 163 
Forest structure/inventory Vegetation water content Species traits Other  

Diameter at breast height  

Tree/crown height (selected PSAs) 

Crown projection (selected PSAs) 

Understory (selected PSAs) 

Leaf area index 

Foliage water content 

Trunk water content 

Leaf 

width/length 

weight (dry/wet) 

insertion angle 

radius 

Primary / secondary branches 

length /diameter 

weight (dry/wet) 

insertion angle 

Soil moisture 

Temperature 

Humidity 

Tree growth 

 

collected (Table1) while ancillary sensors (i.e., soil moisture probes, girth bands, temperature and humidity 164 

sensors) were installed in the eight reference PSAs to avoid sensor damage by the planned silvicultural works. 165 

For eight PSAs, the slow changing forest parameters were recorded using computer assisted (i.e., FieldMap©) 166 

forest inventory methods (Hédl et al., 2009). For the remaining 16 PSAs the FieldMap© system was used at PSP 167 

level while classic inventory methods based on calipers and hypsometers were used to measure all the remaining 168 

trees. Through its integrated software/hardware solution, the FieldMap system records the precise XYZ 169 

coordinates for each tree together with, canopy height, crown projection, the position of coarse woody debris, 170 

and other attributes of interest such as understory and regeneration pockets (Fig. 1C). For increased productivity, 171 

tree heights were recorded with an ultrasonic Vertex hypsometer. 172 

The fast-changing forest parameters were monitored through destructive sampling (foliage), terrestrial laser 173 

scanning (LAI) and contact sensors (trunk moisture, forest growth). Foliage sampling included the collection of 174 

leaves (or needles) from the upper part of the canopy in two representative trees for each tree species. Each 175 

sample was weighed in the field (fresh weight) using a portable balance and transported to the laboratory for dry 176 

weight measurement after being placed into an oven at 75⁰C for 48 hours. Before drying, the foliage of each 177 

sample was spread on cardboard and a vertical photograph was taken using a fixed tripod and focal length. The 178 

photographs were used to determine the total leaf area for each sample (needed to compute water content per 179 

unit area) as well as species traits (e.g. mean and distribution of leaf/needle surface, perimeters, length, and 180 

diameter). After determining the dry weight, the samples collected at each PSP were combined (by tree species), 181 

grinded, and chemical analyses were carried out to determine the C and N content at each sampling date. Based 182 

on the wet and dry weight, the vegetation water content and the equivalent water thickness (EWT) were 183 

computed (eq.1 and eq. 2). 184 



𝑉𝑊𝐶 =  
𝐹𝑟𝑒𝑠ℎ𝑊𝑒𝑖𝑔ℎ𝑡−𝐷𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡

𝐷𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡
(𝑘𝑔 𝑘𝑔−1)   (1) 185 

𝐸𝑊𝑇 =  
𝐹𝑟𝑒𝑠ℎ𝑊𝑒𝑖𝑔ℎ𝑡−𝐷𝑟𝑦𝑊𝑒𝑖𝑔ℎ𝑡

𝐴𝑟𝑒𝑎
 (𝑘𝑔 𝑚−2)  (2)  186 

Temporal variations in canopy structure were determined using leaf area index (LAI) as a proxy. The LAI, 187 

computed at the center of each PSP, was based on digital canopy photography (Alivernini et al., 2018) by taking 188 

advantage of the photographs recorded by the digital camera incorporated into the TLS. The resulting panoramic 189 

images were re-projected and decomposed in six facets to analyze them as a ratio of large (inter-canopy) and 190 

small (intra-canopy) gaps. This allowed for corrections to be applied regarding leaf clumping and solar radiation 191 

extinction (Wang et al., 2007). 192 

2.3 SAR signal simulation 193 

The data collected at PSPs level were used to constrain the Multistatic Polarimetric Interferometric 194 

Electromagnetic model for Remote Sensing – MIPERS4D (Villard, 2009) simulations assessing the extent to 195 

which fast changing parameters (e.g. MC, LAI) influence radar scattering properties. MIPERS4D considers the 196 

key interactions (propagation and scattering phase) of individual dielectric elements (modelled as ellipsoids and 197 

cylinders) with the incoming microwaves by using a distorted Born approximation and an approximate solution 198 

of Maxwell’s equations of the scattered medium. MIPERS4D simulated observable and measurable remote 199 

sensing SAR datasets based on realistic scenes of natural vegetation parametrized using the detailed in situ 200 

datasets acquired at four PSAs. The MIPERS4D model describes spatial heterogeneities by using homogeneous 201 

strata that can be overlaid vertically and arranged horizontally. Each layer is characterized by its extinction 202 

coefficient and different statistical options can be used to generate strata depending on the suitable probability 203 

distribution function (pdf).  Therefore, the geometrical dimensions and orientation of scatterers may follow 204 

specific rules or can be driven by tree growth models. Ground contributions are modeled based on slope angles, 205 

roughness and local soil permittivity, and deterministic (caused by the travelling wave path) and random 206 

(reproduce the speckle effect) phase components (Villard et al., 2016). As inputs, MIPERS4D used a precise 207 

digital terrain model (DTM) obtained from interpolating (triangular irregular network) the z coordinates of each 208 

FieldMap measured tree. Based on tree location, diameter at breast height (DBH), and height MIPERS4D 209 



generated PSA mockups characterized by near-real vegetation volume fraction when considering the use of 210 

species-specific tapering factors (as derived from the in situ data), allometric equations, tree species traits (i.e., 211 

leave/needles dimeter, length) and canopy volume (LAI). One should notice that in an inverse framework 212 

MIPERS4D may be used to derive numerical invertible functions (NIFs) for retrieving the forest variables (FVs) 213 

of interest. 214 

MIPERS4D was also used to simulate the effect of vegetation removal on the SAR signal for forest stands (i.e., 215 

oak, beech, mixed forests) under different disturbance scenarios (defoliation, wind throws) and forest 216 

management objectives (thinning, selective logging). The aim to assess the opportunity offered by SAR time-217 

series for monitoring forest condition and change due to anthropogenic factors. Thus, an important part of the 218 

experiment was assessing the interactions caused by simultaneous changes in canopy foliage, vegetation water 219 

content and forest logging. Given the current availability of spaceborne SAR data at L- and C-bands, and from 220 

soon to be launched ESA`s at P-band Biomass mission, a specific focus has been placed on these frequencies. 221 

Considering previous knowledge, three core parameters have been identified as having an important role in 222 

scattering temporal behavior, namely vegetation water content, leaf area index, and Forest Disturbance (FD). 223 

Indeed, these parameters concentrate several interests in forest monitoring and may impact significantly on the 224 

backscatter. In addition to the sensitivity analysis regarding these parameters the study took advantage of the 225 

simulation capabilities of MIPERS4D to isolate the various components to the total signal (section 3.4). 226 

3. Results  227 

3.1 Forest structure and seasonal variability   228 

The above ground volume (AGV) varied from 200 m3 in young oak stands to over 1000 m3 in old growth mixed 229 

(beech and Norway spruce) forests with average tree height ranging between 12 and 29 m and average dbh 230 

between 10 and 59 cm (Table 2). Notice that, for each forest type, low dbh and h values in Table 2 correspond to 231 

young stands (n=3) where thinning works are carried out while high values correspond to old growth stands 232 

where logging for timber is carried out. The opposite is true for the number of trees. The mean leaf/needle 233 

length, and width remained fairly constant through the vegetation season (Appendix A) with C and N 234 

concentrations being particularly stable through the year and between PSAs. The wood water content varied by 235 



10-25%, depending on species, with low values observed towards the end of the vegetation season. A clear 236 

temporal pattern was not observed for canopy water content (i.e., EWT). EWT varied temporally (vegetation 237 

season) and spatially (PSA level)) as it depended not only on species traits but also on specific site conditions 238 

which are modulated by slope, orientation, substrate, and rainfall patterns.  239 

LAI values were rather stable through the vegetation season for coniferous (Norway spruce) species while for 240 

deciduous species (oak and beech) decreasing LAI values were observed towards the end of the vegetation 241 

season (Appendix A). One should notice that, early (March - April) and late (October - November) periods were 242 

problematic to sample due to the presence of snow cover and freezing temperatures, respectively. The bulk of 243 

foliage was largely formed in May (i.e., first sampling days) while foliage shedding was incomplete in October 244 

(the last sampling days).  245 

3.4. SAR signal simulations 246 

Based on forest structural information (number of trees, species, dbh classes, tapering factor, height, leaf/needle 247 

dimensions, DTM) mockups for four PSAs (beech, oak, and mixed forests) were generated and used for the 248 

MIPERS4D simulations (Fig. 2). Notice that since field data from coniferous forest were not ready until  249 

late in 2018 simulations for coniferous forest were not possible. However, results for mixed forests (beech and 250 

Norway spruce) provide some indications on SAR signal sensitivity for such forest types. 251 

Table 2 Mean forest structural characteristics observed at the EO-ROFORMON sampling sites 252 
 253 

 254 

 255 

 256 

Main species No. of trees for 

young and old stands 

Mean DBH 

range (cm) 

Mean H 

range (m) 

Mean AGV 

range (m3) 

beech (n=6) 1309 / 425 12.9-24.5 17.6-26.3 383.7-622.1 

oaks (n=6) 2853 / 559 10.0-58.8 12.6-28.6 202.5-652.4 

mixed (n=6) 1658 / 679 16.7-29.0 18.3-21.7 571.6-766.4 

coniferous (n=6) 1583 / 624  16.6-31.2 15.6-22.5 260.4-783.0 



 257 
Fig. 2 Stand mockups used for MIPERS4D simulations for young oak (Qu-Y, upper left), young beech (Fa-Y, 258 
upper right), old beech (Fa-O, lower left) and old mixed (Mix-O, lower right) forests. The red-green-blue colors 259 
represent three DBH classes (i.e., < 7.5 cm, 7.5-37.5 cm and >37.5 cm) 260 

3.4.1 Backscattering components 261 

MIPERS4D made possible the extraction of various contributions which compose the total signal as measured 262 

from real sensors. Such capability is essential to better understand the underlying physics which govern the 263 

relation between radar backscatter and forest parameters of interest. For example, contributions due to branches 264 

and leaves (needles) may be clearly distinguished for each of the four PSA tested (Fig. 3, left panel). The balance 265 

between branch and leaves contributions varies according to forest structure with contributions from branches 266 

being mostly lower than ones from leaves, but higher than ones from needles. Such effects are more pronounced 267 

for the co-polarized (VV) channel. Notice that contributions from trunks and the ground (through direct or 268 

coupling mechanism) have not been displayed for C-band given too small values (below -25 dB for the trunks 269 

and their -40 dB from the ground). The weak contributions from leaves at P- and L- bands, makes a similar 270 

representation less meaningful for these frequencies. However, simulation of the interferometric phase center 271 

heights is of interest at such increased wavelengths (Fig. 3, right panel). Considering an interferometric 272 

ambiguity height of 50 m and a radar elevation angle of 35°, the resulting phase center for each PSA can be seen 273 

in Fig. 3 (right panel). As expected, phase centers increase from P to C-band and are close to the forest top 274 

canopy height for higher frequency C-band. Interestingly the non-linear behavior between the differences at P-, 275 

L- and C-bands with PSA which is determined by a different effective attenuation as a function of forest 276 

structure. 277 



 278 

Fig. 3 Left panel: C-band VV (blue) and VH (green) backscattering coefficients with their respective 279 
decomposition between contributions from leaves or needles (cross-circle symbols) and branches. Right panel: 280 
Normalized interferometric phase center at P, L and C bands and for each of the forest test plot. Filled symbols 281 
represent the total backscatter contributions. The crossed-circles and the triangles represent leaves/needles and 282 
branches respectively (left panel only). Qu stands for sessile oak, Fa for beech and Mix for mixed coniferous and 283 
beech forests. Y stands for young and O stands for old growth forests. 284 
 285 

3.4.2 Sensitivity to changes in vegetation water content 286 

High contrast between the dielectric permittivity of water and that of dry vegetation matter suggests that 287 

temporal variations of water content may results in strong impacts on the complex permittivity of the scatterers 288 

(dielectric cylinders and ellipsoids) with the magnitude of change being comparable to that of a change of 289 

geometric dimensions (considering the effective wavelength) as detailed in Villard et al.  (2016). However, 290 

changes in VWC also impact the extinction coefficient through the vegetation layers, with the total backscatter 291 

resulting from the opposite effects between increases of reflectivity at the scatter level and of attenuation at the 292 

bulk level. Electro-magnetic models are therefore relevant when assessing this combined effect, although the 293 

difficulty is in parametrizing  VWC within the vegetation canopy. To that end, dielectric models have been 294 

derived considering previous research (McDonald et al., 2002) and recent experimental data during AfriScat and 295 

TowerScat campaigns (Hamadi et al., 2017). For the simulation scenarios, the reference considers a vertical 296 

gradient of VWC from 20 to 35% along the trunk, 35 to 45% for the branches and 50 to 60% for the 297 

leaves. A Gaussian distribution is considered with an error model (1-sigma) of 15%, which is further propagated 298 

into the MIPERS4D model using a Monte-Carlo like process. According to this parameterization, backscattering 299 

coefficients varied as a function of VWC and the increasing wavelength from C- to P- bands (Fig. 4). As 300 



expected, C-band was less sensitive to VWC varying by less than 1dB between the different forest types and 301 

structures. The highest variation was observed for the P-band (about 7 dB) with beech stands varying by about 4 302 

dB depending on age (young to old growth beech). At C-band, it is also worth noticing that the spread due to 303 

VWC is comparable to the spread from the considered forest types. 304 

 305 
Fig. 4 Cross-polarized backscatter at C-, L- and P-band simulated for each PSA, with error bars indicating the 306 
possible dispersion (1-sigma) related to the VWC distributions detailed in the text. Qu stands for sessile oak, Fa 307 
for beech and Mix for mixed coniferous and beech forests. Y stands for young and O stands for old growth 308 
forests. 309 

3.4.3 Sensitivity to changes in foliage  310 

Foliage (estimated through  LAI)  is an important parameter which variations are closely linked to the 311 

environmental conditions as it is mostly driven by seasonal effects in the temperate eco-regions. Considering in 312 

situ LAI measurements from TLS data (PSP level), the LAI values have been extrapolated to PSA level with 313 

specific care on clumping factors and specificities due to the various forest species. The extrapolated LAI were 314 

used to parametrize the volume fraction of leaves, considering their mean geometrical dimensions derived from 315 

in situ measurements and completed with literature results (for leaf thickness). To assess a wider LAI variability 316 

which could be expected from longer experimental surveys, the values have been extrapolated from 0 to 5 317 

m²/m². The backscatter sensitivity analysis showed that C-band backscatter had the highest sensitivity to LAI 318 

(Fig. 5). However, one should also notice the significant decrease at L-band for the high range of LAI values, as 319 

well as the slight decreasing trend observed for the P-band. Further, a saddle shape was observed at C-band (both 320 



VV and VH polarizations) reflecting the antagonist effects between the increasing reflectivity and attenuation. 321 

At C-band, similar saddle shapes were observed for all species, for both young and old forests (Fig. 6). 322 

The C-band sensitivity to LAI in the decreasing region (i.e. high LAI values) is lower for the VV polarization. 323 

Therefore, the ratio between VV and VH polarization is meaningful as it provides for a more straightforward 324 

relation with LAI than the standard backscattering coefficients which showed a quasi-monotonic trend rather 325 

than the saddle shape. Analyzing Figs 5 and 6, one may notice that the inversion point in the case of young 326 

beech forest is reached earlier than for older beech forest due to a lower effective attenuation caused by a more 327 

open forest structure for older forest. 328 

 329 
Fig. 5: VH backscattering coefficients at P- (green), L- (light green) and C-band (blue), as function of increasing 330 
LAI values for PSA SF10T (old beech forest) 331 

 332 
Fig. 6 C-band backscattering coefficients VV (blue) end VH (green) as function of LAI for old (Fa-O, left panel) 333 
and young (Fa-Y, right panel) beech forest. The ratio between VV and VH is indicated on the right axis. 334 
3.4.4 Sensitivity to forest disturbance 335 

Given the unprecedented time series of Sentinel-1 data (with revisit time up to 6 days), the impact of forest 336 

disturbances on C-band backscatter is of interest and raises questions regarding the many configurations that 337 

could be simulated. As a generic example (see left panel in Fig. 7), the case of a clear-cut in the middle of a 338 

homogeneous mature deciduous forest (25m mean height as per the descriptive parameters of PSA SF10T) was 339 



considered. The disturbed area was varied from 0 (reference) to a quarter hectare. The backscattering coefficient 340 

could be fairly estimated from experimental images considering the typical ground pixel spacing of Sentinel-1 341 

(about 20m) and the need of spatial averaging to filter speckle effects. As expected, the lowest backscatter 342 

coefficient was observed over the shadowing region (with value far below ypical values NESZ of around -30 343 

dB) while backscatter reinforcement (up to 3 dB at VV polarization and for a maximum soil moisture of 0.4 344 

vol/vol) was observed at the front edge of the clearing. Considering these combined effects (shadowing and 345 

reinforcement), the average VV backscattering coefficient over 1 ha was not necessarily impacted by partial 346 

clear-cuts (Fig. 7, right panel). The change was less ambiguous for the VH polarization since the double bounce 347 

contribution, which mainly drives the reinforcement at the front -edge, is less important when compared to VV 348 

polarization.  349 

 350 
Fig. 7: Left image illustrates a 2D top view of a 50x50m disturbance (in black) within the1 ha forest plot (white 351 
delineation) located within a four-hectare stand (full simulated area). The impacts of several sizes of clear-cuts 352 
on the VV and VH backscattering coefficients are shown on the right, in which standard deviations (shown as 353 
error bars at 1 sigma) are due to variations in soil moisture, vegetation water content and leaf area index. 354 

 355 

3.4.4 Sensitivity to combined changes due to VWC, LAI and logging  356 

Based on the generic case detailed in above (3.4.3), additional effects of changes in VWC and LAI were 357 

considered on top of forest disturbance in stands affected by clear-cuts and selective logging. Considering the 358 

strong impact of topography and local geometry on backscatter (shadowing and layover effects) a titled or hilly 359 

ground below the forest may significantly bias the contrast between the ground contribution from deforested or 360 



intact areas. Therefore, for generalization, a generic forest (based on SF10T PSA data) over a flat terrain was 361 

hereafter considered. The backscatter change was computed as the averaged backscatter change for the 1 ha area. 362 

One should notice that for such scenarios, edge effects caused by inhomogeneities due to clear-cuts and the slant 363 

range radar geometry are spread on a wide zone, hence the need to simulate a much larger scene (4 ha) (as 364 

evident in Fig. 7). Since such simulations focus mainly on radar backscatter variations due to forest disturbance, 365 

the backscatter change in magnitude is here defined as the difference between the simulated perturbation minus 366 

the undisturbed one with the same LAI and VWC conditions, but repeated for all combinations of VWC and LAI 367 

at the origin of the displayed error bars. 368 

C-band simulations for each polarization (VV and VH) were shown in Fig. 7 (right panel).  For both 369 

polarizations, change was limited to 1.5 dB with much larger uncertainties on VV backscatter as soil moisture 370 

may obscure changes due to clear-cuts. For VH polarization, the change is less ambiguous. One should notice 371 

that upper bounds for LAI or VWC give the largest changes (lower values of backscatter due to higher 372 

attenuation). However, it is also important to notice that such changes in magnitude are about the same order (or 373 

less) when compared to those resulting from VWC or LAI variations. Considering the same scenario and 374 

metrics, the backscatter changes at L- and P-band have been simulated (Fig. 8 left panel). The results show 375 

stronger changes at P-band, while changes at L-band are still rather limited in comparison to those caused by 376 

variations due to VWC. As for the C-band (recalled in the same Figure), the apparent small backscatter loss is 377 

the result of opened areas creating an edge facing the radar which results in a strong backscatter enhancement 378 

(mainly due to coupling terms with the ground) that compensates the scattering volume loss. 379 

Last, selective logging was simulated by extracting up to 10 individual trees with the biggest DBH (Fig. 8 right 380 

panel). While C-band was  largely insensitive to this type of forest disturbance, the backscatter loss at P-  381 



 382 
Fig. 8 Backscatter loss at C-, L-, and P-band for VH polarization as a function of clear-cut extent (left) and 383 
number of trees extracted (right). Error bars accounting for LAI and VWC uncertainties at 1-sigma. 384 

band was significant. The uncertainties indicated by the error bars were mainly due to VWC changes (the LAI 385 

had a very small impact) which impact significantly the sensitivity to AGV. It is also important to notice that 386 

backscatter was derived from the difference with the non-disturbed case but with the same variation of VWC or 387 

LAI. Thus, these results can be compared to the specific sensitivity analysis detailed in the previous sections. 388 

Comparison shows that the maximum backscatter loss at L-band (for 10 extracted trees) might be misinterpreted 389 

with changes due to VWC variations. Such misinterpretation is however unlikely at P-band. 390 

4. Discussion 391 

Although forest monitoring from remote sensing data is scarce for Romanian forests, several studies have 392 

assessed the change in forest cover over the past decade (Griffiths et al., 2012; Knorn et al., 2012; Potapov et al., 393 

2015). Such studies used optic imagery to estimate forest cover loss (defined as complete or nearly complete tree 394 

removal) and gain (areas where tree canopy cover reached a certain threshold by the end of the study period). 395 

Results from these studies suggest substantial changes in forest cover during the post-socialist period with timber 396 

harvesting being the main cause of forest loss followed by insect outbreaks and forest conversion (Potapov et al., 397 

2015). Approximately 4.5% of Romanian forests were affected by at least one significant disturbance event 398 

(complete or nearly complete tree removal) over the past two decades. Non-state ownership regimes (i.e. private 399 

owners vs. public property) and species composition of restituted forests were two important factors determining 400 

disturbance and raised concerns regarding timber overexploitation in many areas (Griffiths et al., 2012). Such 401 

trends lead to an increasing loss of forest habitat, as well as more isolated and fragmented protected areas (Knorn 402 



et al., 2012). Therefore, a systematic forest monitoring system that differentiates between natural disturbances 403 

and logging activities is needed. Such a system may take advantage of the temporal dimension of changes in the 404 

remote sensing signal acquired by both passive (i.e. optical) and active (i.e. radar) sensors. 405 

The ability to monitor forest changes from space depends on the sensitivity of the radiometric response to 406 

vegetation phenology and development stages. Increasing vegetation cover is readily detected by optical sensors 407 

up to the point of complete canopy cover. Past this point, changes in reflectance values largely relate to 408 

variations in other factors such as canopy water content, defoliation/discoloration. Tracking changes past canopy 409 

closure may be, however, achieved by integrating information from optical (i.e., cover related) and radar 410 

(volume related) sensors within a multi-temporal framework. To simulate, model, and validate EO-derived forest 411 

structural parameters in situ information is needed to drive and restrict the models to working within a valid 412 

range of conditions. Such ranges may be obtained by systematic measurements of parameters influencing the 413 

variability in the observed electromagnetic spectrum. Given the intensive labor and associated costs such 414 

measurements are only feasible over relatively small areas (hectares) and short time periods (years). The EO-415 

ROFOMON project has established a permanent sampling network by responding to several key requirements: i) 416 

inclusion of the main Romanian forest types, ii) replicates for both young and old growth forests, iii) field 417 

monitoring of both fast and slow changing parameters with the highest influence on the EO data of interest  and 418 

iv) in situ replicates for each forest type, age class, and silvicultural works.. 419 

The in situ monitoring activities showed that the selected PSAs were largely representative of the forest 420 

conditions in Romania. However, the beech PSAs represented a less diverse structure when compared to the 421 

Romanian national forest inventory (NFI) network for which beech dbh, height and AGV range between 6-422 

91cm, 3-46 m and respectively 3-1450 m3. For the remaining species, the ranges were largely similar. However, 423 

one should notice that the NFI is carried out over much smaller plots (500 m2) which results in higher variability 424 

as small areas of very young or very old trees may influence mean values. Leaf and needle morphological 425 

characteristics were comparable with values recorded for the same species elsewhere. For European beech the 426 

observed mean and standard deviation for leaf area and length were slightly higher when compared with 427 

measurements observed at a range of sites (22.8 ±4.05 and respectively 6.59 ±7.2)  in central Europe (Stojnić et 428 



al., 2016) while mean leaf width was largely the same (4.8 ±5.15) suggesting representativity of our in situ 429 

measurements, and thus of SAR simulation results, for a wider area. Similarly, the morphological characteristics 430 

observed for the sessile oak and Norway spruce were comparable with those encountered in other forests 431 

(Bruschi et al., 2003; Niinemets, 1997) as was the chemical composition (C and N) of needles (Niinemets, 1997) 432 

and beech and oak leaves (Bussotti et al., 2005; Petritan et al., 2010; Steffen et al., 2007). EWT values for oak 433 

and beech samples were also similar to those recorded elsewhere in Europe (Hill et al., 2011). 434 

The LAI values observed for the sampled forests fall within the statistical distribution compiled for ttemperate 435 

deciduous broadleaf and needleleaf forests (Asner et al., 2003). For broadleaf deciduous forests, the mean and 436 

standard deviation observed for  oak (3.9 ±0.6) and beech (4.6 ±1.0) were close to the mean global value for 437 

broadleaf deciduous forests (5.1 ±1.6). However, for coniferous stands the mean observed LAI value (12.7±4.4) 438 

was much larger when compared to the global mean for the temperate zone (5.5±3.4), being close to the upper 439 

limit (i.e., 15.0). The similarity of the observed value with those observed over many sites at global level (184 440 

for deciduous broadleaf and 199 for evergreen needleleaf forest) provide some assurance on the adequacy of the 441 

DCP method used to compute the LAI values despite the lack of in situ measurements needed for a more 442 

rigorous accuracy estimation. 443 

The electromagnetic simulations performed in this study enabled quantification of the strong difference in 444 

sensitivity to vegetation water content, leaf area index, and forest disturbance between P, L and C-bands for 445 

several forest types.  At C-band, the contribution from leaves to the backscatter coefficient was higher for all 446 

stands when compared to the contribution from branches.  Cross polarized backscatter at C-band was not 447 

influenced by stand structure or species. Conversely L- and P-band cross-polarized backscatter varied 448 

significantly with stand age suggesting the need for longer wavelengths when detecting changes in forests. 449 

Nevertheless, the C-band data was sensitive to foliage volume with increased attenuation being observed for LAI 450 

values above three (Fig 5). Due to increased contributions from leaves (Fig 3), C-band may provide 451 

opportunities to monitor changes due to defoliation for forests with moderate LAI values particularly when using 452 

the ratio between co- and cross-polarized channels as also demonstrated elsewhere (Salberg et al., 2009). 453 

Changes in water content modulated the C-band signal by less than 1 dB (Fig. 4) which may be insufficient for 454 



monitoring drought effects on forest condition. However, since severe drought is often associated with foliage 455 

loss forest condition monitoring using C-band is still possible, particularly when using the co- to cross-456 

polarization ratio which provides for a more straightforward relationship with changes in canopy structure. One 457 

should notice that current and future L- and P-band SAR missions provide less frequent acquisitions when 458 

compared to the Sentinel-1 mission (3 days when both ascending and descending passes are used) and 459 

therebefore, their utility is severely limited within a such a monitoring context. 460 

The analysis has also shown that the effects of significant perturbations (e.g. clear-cuts) may be masked by 461 

layover effects, due to an insufficient spatial resolution with respect to forest height which governs the combined 462 

effects of shadowing and backscatter reinforcement at the front edge of the clearing (Fig. 7). Although 463 

surprising, these results highlight the importance of vegetation surrounding disturbed forest patches. Structure 464 

and height have an important impact on C-band detection capability and are a determinant of the disturbance 465 

itself. One should notice that simulations were made for single images (as opposed to time series) acquired at 466 

35° elevation angle, the Sentinel-1 acquisition scenario. Stepper or more grazing local incidence angle would 467 

significantly change the results. Simulations also suggested that more subtle effects such as selective logging or 468 

thinning may not be easily detected using C- or L-band from single or temporally sparse acquisitions. The longer 469 

P-band wavelength was better suited for retrieving small intensity forest disturbances (Fig. 8). P-band SAR data 470 

from the future BIOMASS mission may provide the information needed to monitor low intensity forest 471 

disturbances although the reduced lifespan (five years), biannual revisit, relatively low spatial resolution (60m) 472 

and radio frequency interferences may prevent its utility under a time-critical operational scenario. Therefore, 473 

additional research effort is needed to overcome the limitations exposed for  C-band. For example, research into 474 

more advanced techniques exploiting the dense time series available from Sentinel-1 mission as well as 475 

combining acquisition from both ascending and descending passes. Although such efforts are underway 476 

(Belenguer-Plomer et al., 2018; Bouvet et al., 2018; Reiche et al., 2018) specific algorithms adapted to 477 

Romanian forests may be needed as steep topography, small areas affected and low intensity degradation (e.g. 478 

selective logging) imply significant challenges not encountered in regions characterized by flat terrain and 479 

degradation-deforestation processes over much larger forest patches. 480 



5. Conclusions  481 

This study analyzed the potential of using the C-, L- and P-band SAR detests to monitor and retrieve the forest 482 

characteristics of interest (e.g., condition, disturbance) for an operational Romanian forest monitoring system 483 

that integrates in situ with and Earth-Observation datasets. According to the local forest monitoring needs, the 484 

requirements for such a system are i) high spatial resolution (<50 m) to resolve forest heterogeneity caused by 485 

the generally steep orography and divergent management practices, ii) high temporal resolution to allow near-486 

real-time monitoring of frequent changes (e.g. canopy defoliation), deforestation and forest degradation and iii) 487 

reliable estimation for specific indicators on a frequent basis. Only few SAR satellite missions fulfill such 488 

conditions, ESA`s Sentinel and to a lesser extent JAXA`s PALSAR (due to the relatively low revisit time and 489 

access restrictions).  490 

SAR utility for forest monitoring activities were studied through the Multistatic Polarimetric Interferometric 491 

Electromagnetic model for Remote Sensing (MIPERS4D) simulation model. MIPERS4D simulations were 492 

parameterized with information collected over 2017-2018 vegetation seasons within representative stands from 493 

the main forest species in Romania. The simulations were focused on the sensitivity of SAR to changes in three 494 

core parameters, namely vegetation water content, leaf area index and forest disturbance that may significantly 495 

impact radar scattering from forested areas. C-band simulations were of particular interest since operational 496 

monitoring systems need access to systematic satellite data collected with consistent acquisition modes over long 497 

periods.  498 

The results confirmed quantitatively the differentiated sensitivity, to the three core parameters, as a function of 499 

SAR wavelength and forest structure with the least sensitive wavelength being the C-band. L- and P-band varied 500 

significantly with stand age particularly for the cross-polarized backscatter. However, C-band backscatter 501 

coefficient was sensitive to foliage volume, due to the increased attenuation, indicating potential for monitoring 502 

changes at canopy level (e.g. defoliation). C-band sensitivity to clear-cuts can be easily masked by the combined 503 

effect of shadowing and backscatter reinforcement at the front edge of the clearing, which demonstrate the 504 

importance of spatial resolution and filtering. Simulations also suggested that subtle effects (e.g. selective 505 



logging, thinning) may not be easily detected using C- or L-band data when temporally sparse acquisitions are 506 

available. Conversely, P-band was better suited for retrieving small intensity forest disturbance.  507 

This study exposed the strengths and shortcomings of currently available spaceborne SAR wavelengths in the 508 

context of forest monitoring activities and highlighted the need for developing novel processing and modeling 509 

techniques based on dense time-series from satellite multi-frequency radar constellations. Combining 510 

multifrequency SAR data at P, L and C-band may constitute a key advancement towards the development of 511 

retrieval methods to characterize forest changes at regional or country levels. Passive (e.g. optical) sensors may 512 

provide the additional information needed to monitor and characterize forest changes within an operational 513 

context that responds to the Romanian commitments under the Ministerial Conference on the Protection of 514 

Forest in Europe, the Kyoto Protocol and the Convention on Biological Diversity. 515 
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