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ABSTRACT 
 

Forest fires are a major environmental problem in the Mediterranean region, where 

large areas are affected each summer. An assessment of the environmental impact of 

forest fires (in the short-term and in the long-term) requires the collection of accurate 

and detailed post-fire information related to fire type, fire severity, forest regeneration 

and vegetation recovery. Advanced tools in remote sensing provide a powerful tool 

for the study of this phenomenon. 

 

The importance of this work was often emphasized by the European Commission, 

which focused on the studying of forest fires and their effect on vegetation through 

the development of appropriate impact assessment and mitigation methods. 

 

The aim of this study was to assess the post-fire impact on vegetation in a 

Mediterranean environment by employing high quality satellite and field data and by 

using advanced data processing techniques. The work entailed the development of a 

whole system integrating very high spatial and spectral resolution remotely sensed 

data.   

 

For short-term impact assessment, an object-oriented model was developed using very 

high spatial resolution Ikonos imagery to map the type of fire, namely, canopy fire 

and surface fire. The results showed that object-oriented classification could be used 

to accurately distinguish and map areas of surface and crown fire spread (overall 

accuracy of 87%), especially that occurring in open Mediterranean forests. Also, the 

performance of object-based classification in mapping three levels of fire severity by 

employing high spatial resolution Ikonos imagery was evaluated, and accuracy of the 

obtained results was estimated to be 83%.  

 

As for long-term impact assessment, the mapping of post-fire forest regeneration 

(pine) and vegetation recovery (shrub) was performed by following three different 

approaches. First, the developed object-based classification of QuickBird (very high 

spatial resolution) allowed post-fire vegetation recovery and survival mapping of 

canopy within two different fire severity levels (86% of classification accuracy). The 

main effect of fire has been to create a more homogeneous landscape. Second, 
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statistical analysis of field hyperspectral data allowed a 97% reduction in data volume 

and recommended 14 best narrowbands to discriminate among pine trees (age and 

species) and 18 bands that best characterize the different shrub species. Then, 

hyperspectral Hyperion was employed for mapping post-fire forest regeneration and 

vegetation recovery. The overall classification accuracy was found to be 75.81% 

when mapping two different regenerated pine species and other species of vegetation 

recovery. Third, an object-oriented combined analysis of QuickBird and Hyperion 

was investigated for the same objective. An improvement in classification accuracy of 

8.06% was recorded when combining both Hyperion and QuickBird imageries than 

by using only the Hyperion image.  

 

Overall, it was observed that advanced tools in remote sensing provided the necessary 

means for gathering information about the burned areas, the regenerated forests and 

the recovered vegetations in a successful and a timely/cost effective manner. 
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CHAPTER 1: INTRODUCTION 

 

Forest fires are an integral part of many terrestrial ecosystems such as boreal forests, 

temperate forests, Mediterranean ecosystems, savannas and grasslands, among others 

(Pausas and Vallejo 1999). Fire in the forest can be a “good servant,” ridding forests 

of unwanted fuel, providing easier access to forest products, and clearing land for 

other uses. As researchers, managers, policy makers, and concerned citizens, there is a 

need to maximize the benefits of fire. On the other hand, fire in the forest can be a 

“bad master,” destroying valuable natural resources, adding carbon to the atmosphere, 

and killing or injuring humans and animals. Again, as researchers, managers, policy-

makers, and concerned citizens, there is a need to reduce these deleterious effects of 

fire (Landsberg 1994). Additionally, mapping post-fire effects allows forest managers 

to identify and target areas for intensive or special restoration thus avoiding long-term 

site degradation. 

 

The average annual number of forest fires throughout the Mediterranean basin was 

estimated to be close to 50,000 in the last decade, i.e. twice as many as during the 

1970s. The annual cumulated burned area in the Mediterranean countries could be 

estimated to be approximately 600,000 ha (Alexandrian 1995).  

 

Unlike other parts of the world, where a large percentage of fires are of natural origin 

(especially lightning), the Mediterranean basin is marked by a prevalence of human-

induced fires. Natural causes represent only a small percentage of all fires (from 1 to 5 

percent, depending on the country), probably because of the absence of climatic 

phenomena such as dry storms (Canackcioglu and Ozkazanc 1997). Another 

characteristic common to the entire Mediterranean basin is the high number of fires of 

unknown cause (Canakcioglu 1986). A point to note, however, is that some countries 

are characterized by a relatively low proportion of fires resulting from unknown 

causes (negligence or accidents), which is the case in Croatia (Alexandrian 1995), 

Greece (Anon 1995) and Portugal (Delattre 1993), where between 25 and 47 percent 

of fires fall into this category.  



_____________________________________________________________________________________Chapter 1 Introduction 

 2 

Fires in the Mediterranean ecosystems tend to be concentrated in summer when 

temperatures are high, and air humidity and fuel moisture are low. The fundamental 

cause of forest fires is linked to: 

• changes in traditional land uses, the consequence of which is higher fuel 

accumulation (García-Ruiz et al. 1996); and 

• global climatic warming which reduces fuel humidity and increases fire risk 

and fire spread (Pausas and Vallejo 1999). 

 

Detailed, current information concerning the location and extent of the burned areas, 

the state and success of forest regeneration, and ecosystem recovery is important for 

assessing economic losses and ecological effects, monitoring land use and land cover 

changes, and modelling atmospheric and climatic impacts of biomass burning 

(Caetano et al. 1994, Pereira et al. 1997, Gitas 1999). Moreover, accurate assessments 

aid in evaluating the effectiveness of measures taken to rehabilitate the fire damaged 

area (Jakubauskas et al. 1990). 

 

In order to estimate the ecological impact of fires on the Mediterranean ecosystems, 

effective analysis techniques need to be implemented. To date, the predominant 

problems preventing measurement of the impact of forest fires have been the major 

expense involved in conducting large scale forest investigations and the complex 

sampling problems associated with collecting relevant descriptive data (Gitas 1999). 

Given the extremely broad spatial expanse and often limited accessibility of the areas 

affected by fire, satellite remote sensing is an essential technology for gathering the 

required information. 

 
Remote sensing images not only provide extensive coverage of wide areas, but also 

provide comprehensive information about these areas. For almost 30 years, they have 

been used in many different types of studies covering numerous scientific areas. Due 

to the absence of precise techniques to map the boundaries of fires occurring in many 

areas, remote sensing has begun to be widely applied to fill this gap (Díaz-Delgado et 

al. 1998).  

 

Remote sensing from space is especially suitable for forest fire-related research. A 

significant number of researches were carried out in the last two decades (Chuvieco 
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and Congalton 1988b, Martín et al. 1994, Siljeström and Moreno 1995, Caetano et al., 

1995, San Miguel-Ayanz et al. 1998) investigating the use of space technology for 

post-fire assessment, mainly for burned area mapping. Using data from satellites 

orbiting the earth, it is possible to quickly obtain a general overview of the situation 

over large areas of terrain, monitor the emergency, identify risks, detect fires and, 

once the fire has been controlled, assess the damage by mapping the extent of the 

burned areas, the severity of fire and even post-fire vegetation regeneration.  

 

The wide area coverage and high frequency offered by satellite sensors, as well as 

their ability to provide information about non visible spectral regions, makes them a 

very valuable tool for the prevention, detection and mapping of wildland fires. Indeed, 

remotely sensed data can contribute to a better, cost effective, objective and time-

saving method to quantify the location, aerial extent and intensity of fire events 

(Chuvieco 1999). During the last decade, the range of applications has significantly 

increased, making satellite remote sensing a solid ally in many forest fire strategic 

plans (Chuvieco 1997). 

 

Although traditional remote sensing provides an advantageous methodological 

approach to identifying, mapping and monitoring burned areas compared with the 

more traditional techniques, it is not free of errors. Despite the advantages of remote 

sensing in post-fire assessment, several problems have been confronted in burned area 

and vegetation regeneration mapping using satellite data. Multispectral classification, 

one of the most common methods for mapping burned areas, is based on the spectral 

properties of different classes of interest and employs special algorithms designed to 

perform various types of spectral analysis. However, the use of these classifications 

has been repeatedly reported to create various types of confusion that can affect the 

accuracy of mapping, the most important of which can be summarized as follows: 

• Spectral overlapping between slightly burned areas and other non-vegetation 

categories, especially water bodies, urban areas and bare soil (Tanaka et al. 

1983, Huete et al. 1985,  Ponzoni et al. 1986, Parnot 1988, Lombrana 1995, 

Siljestrom and Moreno 1995, Silva 1996, Caetano et al. 1995). 

• Spectral overlapping between burned areas and shaded unburned areas 

(Caetano et al. 1994, Pereira et al.1997). 
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• Spectral overlapping between surface burned areas and unburned forest 

(Chuvieco and Congalton 1988b, Simpson 1990).  

• Spectral overlapping among different vegetation species after regeneration 

(Thenkabail et al. 2004b). 

 

Consequently, spectral based classification methods are difficult to apply when 

mapping burned areas, forest regeneration and vegetation recovery from satellite 

images.  

 
However, the development of new remote sensing instruments, both airborne and 

spaceborne, has provided an opportunity to study vegetation recovery after wildfire 

(Riano et al. 2002). The new generation of very high spatial resolution sensors, such 

as Ikonos and QuickBird, made it possible to detect small objects not captured by 

medium-high resolution sensors. Also, hyperspectral data with the typical high 

number of bands could be used to enable the differentiation of material due to their 

typical spectra.  

 

With the introduction of advanced remotely sensed data, it is imperative that new 

methods and techniques be developed to handle these high-dimensional data sets and 

to accurately extract the required information (Pouliot et al. 2002). In the classic 

image classification approach, the unit is a single pixel (called the pixel-based 

approach). This pixel-based approach utilises spectral information of the pixels to 

classify the image. Normally, the different physical properties of earth objects have 

different spectral information and can be specified by this pixel-based approach. 

However, the ability of this approach is limited when objects appear to be similar. 

 

Therefore, an alternative analysis approach could be the so-called object-oriented 

analysis. The concept here is that the information necessary to interpret an image is 

not represented in a single pixel, but in image objects. Object-based classification, 

which is based on fuzzy logic, allows the integration of a broad spectrum of different 

object features such as spectral, shape and texture (when using Very High Resolution) 

and contextual values, for image analysis. Synergizing all theses features is expected 

to address image analysis tasks that have not been possible until now. Moreover, it is 
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hypothesized that robust algorithms based on both spectral and contextual 

information can be further used for operational post-fire impact assessment. 

 

Advanced remote sensing data (recently introduced to the market) and advanced 

techniques for data processing such as object-oriented analysis are supposed to 

provide good basis for post-fire impact assessment. The aim of this study was to 

assess the post-fire impact on vegetation in the Mediterranean ecosystem of Thasos 

using advanced tools in remote sensing. The specific objectives were: 

1. to investigate the potential use of Very High Resolution (VHR) satellite 

imagery (Ikonos) in mapping the type and severity of fire;  

2. to map vegetation recovery by using VHR satellite imagery (QuickBird) and 

to examine the relationship between fire severity and vegetation recovery; 

3. to map forest regeneration and vegetation recovery by using hyperspectral 

remote sensing (field spectrometry and Hyperion); and 

4. to examine the combination of VHR and hyperspectral satellite imagery in 

forest regeneration and vegetation recovery mapping. 

 

The following part provides an overview of the main structure of the study with a 

short description of each chapter. 

 

In chapter 2, an overview on forest fires in the Mediterranean and post-fire impact 

assessment is given. Section one provides information about the Mediterranean-type 

ecosystems and the role of forest fires in them. Section 2.2 deals with post-fire impact 

assessment (in the short term and long term) using Remote Sensing and Geographical 

Information System. Section two represents advanced tools in post-fire impact 

assessment (hyperspectral imaging and object-oriented image analysis).  

 

Chapter 3 accounts for the environmental conditions in Thasos (the study area) and 

dataset description. Section one deals with different aspects of the study area, 

specifically with geography, geology, climate, landcover description, forest fires and 

post-fire impact assessment in the study area. Section two describes the collected 

dataset (e.g. satellite data, field survey data and other ancillary data). 
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Chapter 4 examines all performed steps related to satellite data pre-processing. 

Section one describes the radiometric correction applied to the satellite data. Section 

two describes the geometric correction applied to the images. Finally, section three 

describes the application of topographic correction to the images. In each of the 

sections the implementation of the procedure is shown and then the resulting images 

are discussed. 

 

Chapter 5 represents the research related to short-term impact assessment on 

vegetation. The first section covers the research related to fire type mapping. Section 

two covers the research related to fire severity mapping.    

 

Chapter 6 corresponds to the study related to long-term impact assessment on 

vegetation. In this chapter a Very High spatial Resolution imagery is employed for 

mapping vegetation recovery after fire. An object-based classification model is 

developed by using QuickBird imagery.   

 

Chapter 7 deals with hyperspectral remotely sensed data analysis for mapping forest 

regeneration and vegetation recovery. Field spectrometry information is employed 

within the first section in order to investigate the spectral properties of naturally 

regenerated vegetation after fire. Section two aims to map post-fire forest 

regeneration and vegetation recovery using Hyperion imagery by taking into 

consideration the previous analysis of the field spectrometry data. 

 

In chapter 8, the combination of Very High Resolution imagery with hyperspectral 

data is investigated. Both, Hyperion and QuickBird images are combined together 

using object-oriented analysis for forest regeneration and vegetation recovery 

mapping. 

 

Finally, chapter 9 presents the major findings of this research and the conclusions 

drawn. It also includes recommendations and discusses future prospects and needs 

regarding the topic of research. 
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CHAPTER 2: FOREST FIRES IN THE 

MEDITERRANEAN AND POST-FIRE IMPACT 

ASSESSMENT, AN OVERVIEW 

 

Chapter 1 introduced the subject of this work and stated its aim and its specific 

objectives. This chapter is divided into three main sections. Section 2.1 provides 

information about the Mediterranean-type ecosystems and the role of forest fires in 

them. Section 2.2 deals with post-fire impact assessment (in the short term and in the 

long term) using Remote Sensing and Geographical Information Systems. Section 2.3 

represents advanced tools (hyperspectral imaging and object-oriented image 

analysis) for post-fire impact assessment.  

 

2.1 MEDITERRANEAN-TYPE ECOSYSTEMS AND THE ROLE OF FOREST 

FIRES IN THEM  

2.1.1 The Mediterranean ecosystem and its characteristics 

The Mediterranean-type ecosystem is influenced by a Mediterranean climate (Leisz 

1982). Regions of Mediterranean-type climate occur roughly between 30° and 40° 

latitude around the Mediterranean Sea or on the west coasts of continents where there 

are cold ocean currents offshore. The Mediterranean Climate is unique in that the wet 

season coincides with the low sun or winter period, while summers are dry. Total 

annual precipitation ranges between 380 and 1020 mm per year. Temperatures are 

those of the subtropics moderated by maritime influence and fogs associated with the 

cold ocean currents. The result is a very limited, but predictable, growing season 

when there is both sufficient soil moisture and adequately warm temperatures. Many 

plants are adapted to withstand drought.  

 

Throughout the world, the Mediterranean biome is characterized by shrubs. In most 

regions these shrubs are evergreen and have small, leathery (sclerophyllous) leaves 

with thick cuticles. Sometimes the leaves are so reduced as to appear needle-like. 

Many typical members of the shrub flora are aromatic (for example, sage, rosemary, 

thyme, and oregano) and contain highly flammable oils. The dominant trees in the 
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Mediterranean zone are evergreen oaks and pines. Four species of pine are native to 

the true Mediterranean region; they are Pinus pinaster, Pinus pinea, Pinus halepensis 

and the closely related Pinus brutia (Gitas 1999). In general, Mediterranean-type 

areas are among the most diverse areas in the world, second to the tropics. 

 

The Mediterranean region has long been influenced by human activity, in particular 

the use of fire and the grazing of livestock. We know from classical Greek literature 

that the Mediterranean region was formerly forested with live oaks, pines, cedars, 

wild carob and wild olive.  

 

One important factor shaping Mediterranean ecosystems is fire. A large portion of 

Mediterranean plant species thrive in fire-prone areas such as forest lands, including 

many types of wooded forests and shrublands. High resilience and outstanding levels 

of taxonomic (richness in endemic species of restricted area) and ecological (on 

habitat and landscape scales) diversity characterize Mediterranean forest and shrub-

lands (Moreno et al. 1994). 

 

2.1.2 Mediterranean landscapes 

A prominent characteristic of vegetation communities and landscape structure in the 

Mediterranean basin is the high diversity and heterogeneity, in terms of the spatial 

distribution and arrangement of the abiotic, biotic, floristic and ecological 

components. In general, the Mediterranean landscape is composed of a “mixture of 

large, small, distinct and indistinct patches” (Forman and Godron 1986). 

 

This complex spatial nature of the Mediterranean landscapes raises a number of 

questions associated with the optimum scale of measurements that must be made to 

represent accurately, in the spatial domain, the phenomenon under study. On the other 

hand, the irregular terrain relief found across the Mediterranean basin, with high 

elevations and steep slopes, acts as another source of distortion in the quality of the 

spectral information provided by satellite sensors. For example, projects carried out in 

the mountainous areas with irregular relief reported difficulties in discriminating 

burned from unburned located in shadowed areas (Tanaka et al. 1983, Milne 1986, 

Chuvieco and Congalton 1988a). 
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The defragmented landscape pattern poses a problem for applied remote sensing, 

because the huge amount of interchanges in the landscape form and its complexity 

make the interpretation and processing of the satellite data difficult. Finally, it has 

been demonstrated that even small differences in geometric resolution have a 

significant impact on the estimated landscape parameters (Gluck and Rempel 1995). 

 

2.1.3 Forest fires in the Mediterranean and their ecological effects  

Fire is an integral part of many ecosystems, including those of the Mediterranean 

(Trabaud 1994). Mediterranean forest ecosystems are well known to be highly 

flammable. However, in recent decades the general trend in the number of fires and in 

the surface burned in European Mediterranean areas has increased spectacularly 

(Table 1 and Table 2). This increase can be attributed to: (a) land-use changes (rural 

depopulation results in increasing land abandonment and consequently, fuel 

accumulation); and (b) climatic warming (which is reducing fuel humidity and 

increasing fire risk and fire spread).  

 

Table 1 Burned area > 0.5 km2 in the year 2000 in some EU countries 

Country       Surface burned (ha) 
Portugal       107 063 
Spain       112 720 
France       15 078 
Italy       45 101 
Greece       106 735 
Total       386 697 

 

Table 2 Distribution of the burned area by land-cover classes 

Corine land-cover classes   Burned area (ha)  (%) of total burned area 
Artificial Surfaces   1160   0.3 
Agricultural Areas   76976   19.91 
Forests and Semi-natural Areas  289855   74.96 
Wetlands    612   0.16 
Unclassified Land   18094   4.68 
Total     386697   100 

 

With industrial development, Mediterranean countries, mainly European, have 

experienced: depopulation of rural areas, increases in agricultural mechanisation, 

decreases in grazing pressure and wood gathering, and increases in the urbanisation of 

rural areas (LeHouérou 1993). These changes in traditional land-use and lifestyles 
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have implied the abandonment of large areas of farm-land, which has led to the 

recovery of vegetation (García-Ruiz et al. 1996) and an increase in accumulated fuel 

(Rego 1992). In Southern Europe, human activity has dramatically increased fire 

frequency as a consequence of land abandonment and tourist pressure. As a 

consequence of these processes, landscapes are becoming homogeneous. In summary, 

land-use changes produced during the present century in southern Europe are parallel 

to the changes in the fire regime, from being few in number and affecting small areas, 

to becoming very numerous and affecting large extensions every year. This trend is 

not observed in the southern Mediterranean basin where traditional land-uses remain 

the major socio-economic system. 

 

Although the main reason for fire increase in the last decades is probably changes in 

land use, climatic factors should be considered as a contributing factor. Fires tend to 

be concentrated in summer when temperatures are high, and air humidity and fuel 

moisture are low. Predictions on climate warming (EPA 2001) in the Mediterranean 

basin indicate an increase in air temperature and a reduction in summer rainfall. These 

changes would lead to an increase in water stress conditions for plants, changes in 

fuel conditions and increases in fire risk, with the consequent increase in ignition 

probability and fire propagation. Analysis of past climate data already show some of 

these trends (Maheras 1988, Amanatidis et al. 1993, Piñol et al. 1998). These changes 

are correlated to an increase in the number of fires. The climate changes that are 

predicted to occur in the near future as a result of releasing greenhouse gases are 

likely to induce increased fire risk not only in the Mediterranean area, but also in 

other fire-prone regions of the world (Torn and Friend 1992). 

 

In view of all of the above, the last two-three decades have been marked in the annual 

number of fires, total surface burned and geographical distribution of areas affected 

by fire, in almost all Mediterranean countries. Due to the recent overwhelming 

number of fires, administrations have been forced to make huge investments in fire, 

preventing, fighting and resgtoration. 

 

The ecological effects of forest fires in the Mediterranean region are very diverse. 

This is not only because of the complexity of plant communities and the interface of 

grazing and cutting with burning, but also because of the different responses to the 
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type, duration and intensity of fire, the season in which it occurs and its frequency 

(LeHouerou 1987). As explained above, the climatic conditions and the recent 

changes in landscape structure the European Mediterranean countries have favoured a 

new fire regime, characterised by frequent, extensive and high intensity fires 

occurring in the summer and early autumn. 

 

The main effects of fire on soils are: loss of nutrients during burning and the increased 

risk of erosion after burning. The latter is in fact related to the regeneration traits of 

the previous vegetation and to environmental conditions (Pausas and Vallejo 1999). 

Large fires that produce a greater number of intensely burned patches can favour the 

colonization of invasive, fire tolerant species at the expense of rare/endemic species 

that are less tolerant to post-fire conditions. Thus biodiversity is also affected by fire. 

Mediterranean conifers, such as Pinus halepensis and Pinus brutia, do not resprout, 

but rely solely on proliferous seed germination from cones that burst open from the 

heat of fire (Dafis 1990). 

 

Recent research shows that these severe fires can be a driving force in landscape 

homogenization and that burned areas in which flammable shrublands expand can 

have higher probabilities of reburning than neighbouring unburned areas. The 

combination of landscape homogenization, the shortening of the fire return interval, 

the increase in reburning rates and the incidence of large fires constitute a new 

scenario for Mediterranean ecosystems in which biodiversity is threatened. Climate 

change predictions and repercussions of forest fires on erosion, water yield and 

desertification further add to these threats (Moreno et al. 1990). 

 

In the face of the adverse impacts of the recent fire regime, the European Commission 

(DG XII, Directorate General for Science, Research and Development) has 

recognized the need for a pan-European research effort. In 1990, the four-year 

environmental programme provided considerable funding for forest fire research. The 

Fourth Framework Programme paid special attention to the natural role of forest fires. 

The Fifth Framework Programme (FP) focused on the fight against wildfires through 

the development of impact assessment and mitigation methods. The European 

Commission proposal for the Framework Programme (2002-2006) rests the research 

on forest fires in close liaison with issues of global change. Within the framework of 
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FP7 a method is needed that allows rapid, standardized, and comparable assessment 

of the recent state of vegetation (i.e., plant biodiversity) after fire in several countries 

at the same time. In order to do so, post-fire impact assessment is required, and 

operational methods for post-fire impact assessment should be developed. Therefore, 

advanced remote sensing data and techniques should be investigated in order to 

provide good basis for this assessment. 

 

Finally, the assessment of the ecological effects of fires on biodiversity, soil 

degradation and on the cycling of carbon and nitrogen requires not only a detailed and 

accurate mapping of the burned areas but also an accurate mapping of the type and 

severity of fire and of post-fire forest regeneration and vegetation recovery. 

 

2.1.4 Introduction to post-fire impact assessment 

After a forest is damaged by fire, detailed and current information concerning the 

post-fire vegetation situation is needed to assess economic losses and ecological 

effects. Moreover, accurate assessments of burned location, fire severity and post-fire 

vegetation regeneration, aid in evaluating the effectiveness of measures taken to 

rehabilitate the fire damaged area, and allow forest managers to identify and target 

areas for intensive or special restoration (Gitas 1999), thus avoiding long-term site 

degradation (Pereira et al. 1977, Jakubauskas 1988, Jakubauskas et al. 1990). 

 

Most of the National Forest Services in Mediterranean Europe do not provide 

cartographic representation of the burned areas (Chuvieco et al. 1997). This lack of 

information results in a poor understanding of the spatial consequences of fires. 

Traditional methods of burned area mapping, though they can be used with small 

fires, are not applicable in the cases of large fires due to cost and time limitations 

(Gitas 1999). According to Chuvieco (1997), satellite remote sensing has supplied an 

alternative to conventional techniques that is especially suitable for monitoring burned 

areas. 

Given the extremely broad spatial expansion, over which a burned area mapping 

project may operate, and the often limited accessibility of the areas affected by fire, 

satellite remote sensing makes it possible for data about the Earth’s surface, even 
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about areas with limited accessibility to be acquired on a regular and permanent basis. 

According to Caetano et al. (1994), satellite remote sensing technology in post-fire 

assessment has the following potential: 

• the acquisition of data that present different spectral reflectance characteristics 

between burned and unburned vegetation (Tanaka et al. 1983), especially in the 

infrared part of the electromagnetic spectrum; 

• the effectiveness of the cost/benefit ratio compared to field measurements, 

especially in cases of large geographic extent (Lauer and Krumpe 1973); 

• the periodical acquisition of the required information (Lee et al. 1977) combined 

with the synoptic view and the minimal time required for data acquisition, and 

• the digital form of the data with all the accompanying advantages, such as speed 

and objectivity of data processing (Richards 1984). 
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2.2 POST-FIRE IMPACT ASSESSMENT USING REMOTE SENSING AND 

GEOGRAPHICAL INFORMATION SYSTEM 

Post-fire impact assessment requires precise information on extent, type and severity 

of fire (short-term impact assessment) as well as on forest regeneration and 

vegetation recovery (long-term impact assessment). On one hand, information 

concerning the location and extent of the fire are important to assess economic losses 

and ecological effects. Distinguishing and mapping areas of surface and crown fire 

spread has significant applications in the study of fire behaviour, fire suppression and 

fire effects. Moreover, mapping the severity of fire is necessary in order to locate 

areas in need of post-fire management for the study of fire impact, forest regeneration 

and vegetation recovery and for the validation of fire risk and fire behaviour models. 

On the other hand, monitoring post-fire forest regeneration (i.e., pine regeneration) 

and vegetation recovery (i.e., shrub recovery) is important to understand the need for 

future prescribed burns, to establish post-fire resource management, and to design re-

vegetation programs to reduce soil erosion (Keely 2000). 

Remote Sensing has proved to be efficient, accurate, objective and operational for 

burned area mapping (Mitri and Gitas 2004a). However, producing accurate maps of 

other characteristics of fire regimes, particularly fire type/severity as well as maps of 

forest regeneration and vegetation recovery, remains more of a challenge.  

Fire type/severity maps and forest regeneration and vegetation recovery maps are 

more dependent on robust field validation (White et al. 1996) than maps of fire 

presence/absence (Hudak and Brocket 2002). Computer-aided analysis of remote 

sensing data may discriminate distinct spectral classes within a burned area, which 

may indicate fire severity/type impact, the stage of re-vegetation, original cover type, 

or a combination of these three (Hitchcock and Hoffer 1974). Trends in reflectance 

are associated with cover type, fire type/severity (degree of carbonisation), forest 

regeneration and vegetation recovery (abundance, composition and condition), 

illumination, change due to slope and the incidence of rainfall, among others. 

Wavelengths in the visible spectrum are sensitive for changes in the plant physiology, 

and will appear brighter in fire-altered areas due to the reduced absorption by leaf 

chlorophylls. Near-infrared (NIR) wavelengths are diagnostic of leaf water stress, and 

will decrease in fire-damaged areas. Mid-infrared (MIR) wavelengths are sensitive to 
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alterations in ground exposure and soil colour and increase with fire severity. 

Wildfires create deep changes in the structure and functioning of natural ecosystems. 

The development of high spatial and spectral resolution remote sensing instruments, 

both airborne and spaceborne, has provided an opportunity to evaluate patterns of 

vegetation recovery after wildfire. Several remote sensing studies have addressed the 

recovery of the vegetation after fire.  

The aim of the following part is to review how remote sensing and Geographical 

Information Systems (GIS) can be employed in vegetation studies for short-term 

impact assessment (mapping the burned area, fire type and fire severity) and long-

term impact assessment (mapping forest regeneration and vegetation recovery). 

 

2.2.1 Short-term impact assessment 

Short-term impact assessment is mostly dealing with mapping direct post-fire effects 

on vegetation, namely burned area’s extent, fire type and fire severity. The work of 

this study is focused mainly on fire type and severity mapping knowing that burned 

area mapping was extensively investigated in previous researches (Mitri and Gitas 

2004a). 

Fire scientists and managers distinguish the following three general types of wildland 

fire: ground, surface, and crown, depending on the fuel stratum in which the fire 

burns. While, fire severity is a descriptive term that integrates the ecological changes 

at a site as a result of fire disturbance. Very few fire type studies and existence fire 

severity studies have mainly been carried out in the USA (Hitchcock and Hoffer 1974, 

Lachowski and Anderson 1979, Ryan and Noste 1985, Jakubauskas 1989, 

Jakubauskas et al. 1990, White et al. 1996, Medler and Yool 1997, Rignot et al. 1999, 

Turner et al. 1999, Key and Benson 1999a, 1999b, 2000, Bertolette and Spotskey 

2001, Brumby et al. 2001, Redmond et al. 2001, Rogan and Yool 2001), and only a 

few in the Mediterranean ecosystem (Chuvieco and Congalton 1988b, Rodriguez y 

Silva et al. 1997, Rishmawi and Gitas 2001, Rogan and Franklin 2001, Escuin et al. 

2002, Rogan et al. 2002). Other fire type/severity studies have been conducted in 

Australia (Benson and Briggs 1978, Smith and Woodgate 1985, Milne 1986), 

Indonesia (Ruecker and Siegert 2000, Siegert and Nakayama 2000) and Alaska (Hall 

et al. 1980, Kasischke et al. 1994, Michalek et al. 2000).  
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Landsat-Thematic Mapper (TM) and Multispectral Scanner (MSS) seemed to be the 

most generally used sensors in short-term impact assessment on vegetation, thanks to 

the high spatial, spectral and temporal resolution. Some studies (Ruecker and Siegert 

2000, Siegert and Nakayama 2000) have used radar imagery for fire impact 

assessment because of the sensor’s advantages under cloudy conditions.  

The following section gives an overview of image analysis techniques that have been 

used in researches dealing with short-term post-fire impact on vegetation (e.g. fire 

type and fire severity). Results of a specific method may change considerably when 

applied to other fires or other ecosystems. Moreover, classification accuracies may be 

affected by several factors such as: - (a) the constraint nature of ground surveys (i.e. 

the limited line of sight), - (b) the undersampling of fire severity classes, - (c) image 

registration errors, and - (d) the human agency. 

Vegetation indices have been widely applied in this kind of research. The simplest 

type of vegetation index is obtained by dividing the reflectance from the NIR band by 

the reflectance of the red visible band (Milne 1986, Jakubauskas et al. 1990). The 

Normalised Difference Vegetation Index (NDVI) is the most commonly used 

vegetation index. It is an indicator of vegetation abundance and may therefore be used 

in fire severity/impact mapping (Fox and Stuart 1994, Caetano et al. 1995, Rodriquez 

Y Silva et al. 1997, Rogan and Yool 2001, Escuin et al. 2002,). Other vegetation 

indices applied are the Soil Adjusted Vegetation Index (SAVI) (Rodriguez Y Silva et 

al. 1997, Rogan and Yool 2001), the Atmospherically Resistant Vegetation Index 

(ARVI) (Rodriquez Y Silva et al. 1997), Modified SAVI and TM7/4 ratio (Rogan and 

Yool 2001). A relatively new index is the Normalised Burn Ratio (NBR), a ratio 

similar to NDVI, but using the reflectance of TM band 7 instead of TM band 4 and 

sensitive for changes in soil and vegetation moisture. Results of the NBR are very 

promising for fire severity/impact research (Key and Benson 1999b, 2000, Bertolette 

and Spotskey 2001, Miller and Yool 2002). Often, the NBR is calculated for both pre-

fire an a post-fire satellite scene, then the two pre-/post-fire ratios are differenced and 

in turn provide a fire severity index that displays low to high fire severity of wildfires.  

Multitemporal Principal Component Transformations (PCTs) or multitemporal Kauth-

thomas transformation may produce suitable fire severity maps if both pre- and post-

burn images are available (Rogan and Yool 2001, Rogan et al. 2002). Kauth-Thomas 



____________________________Chapter 2 Forest Fires in the Mediterranean and Post-Fire Impact Assessment, An Overview 

 17 

or Tasseled Cap (KT) Transformation is a linear transformation that establishes three 

new axes in the spectral data of Landsat-TM. The first feature, brightness, is related to 

soil reflectance; the second feature, greenness, is strongly related to the amount of 

green vegetation present in the scene; and the third feature, wetness, is related to 

canopy and soil moisture. Especially KT wetness is sensitive to differences in 

moisture levels on the landscape and therefore suitable for fire severity mapping. A 

disadvantage of the KT transform is that its coefficient table differs per satellite, 

making comparison between satellites difficult. It is even doubtful whether the KT 

transform is appropriate for all satellites. Principal Component Analysis (PCA) aims 

to produce a new dataset, through a linear algebraic expression of the initial variables, 

in order to minimize the correlation and to associate the variance of the data with the 

new first components. Areas associated with permanent landscape features are 

highlighted in the higher order components, while areas of change are emphasized in 

the lower ones. PCA has proved to be useful for mapping direct post-fire effects, such 

as the extent of fire and fire severity. However, it considers all data as equally 

important, while the burned area usually comprises only a part of the scene. 

Classifications using PCA are therefore often outperformed by classifications that are 

able to extract the most relevant information such as Kauth-Thomas and Spectral 

Mixture Analysis (SMA) (Rogan et al. 2002). Furthermore, several variations on 

PCA, such as Bendix-DAS and Canonical Discriminant Analysis (CDA) (Rishmawi 

and Gitas 2001) have been used in mapping short-term post fire effects.  

SMA is a procedure that extracts sub-pixel information by assuming that the spectrum 

is a (linear) combination of the pure spectra of the materials located in the pixel area, 

weighted by their fractional abundance. SMA has mainly been used in high spectral 

resolution sensors, but above mentioned advantages in combination with its ability to 

solve the topographic problem by desegregating the shade component of the spectral 

signal make SMA also highly effective in burned area mapping and fire severity 

assessment (Caetano et al. 1995, Rishmawi and Gitas 2001, Rogan and Franklin 2001, 

Rogan et al. 2002). The problem is that results are highly dependent on the input 

endmembers, and the identification of adequate endmembers might prove difficult in 

some cases.  
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Supervised and unsupervised classifications are the two most common classification 

procedures when mapping short-term post fire effects. Unsupervised classifications of 

recently burned areas were applied by Hitchcock and Hoffer (1974), Milne (1986), 

Jakubauskas (1989), Jakubauskas et al. (1990), and Bertolette and Spotskey (2001). 

The main problem encountered was the confusion between shaded areas and severely 

burned areas. Unsupervised classification can also be used to determine the number of 

classes that can be distinguished (Benson and Briggs 1978). A disadvantage of 

unsupervised classification is that it considers the whole scene and does not 

emphasize on the burned area only. Supervised classification was used for fire 

severity mapping by Lachowski and Anderson (1979), Chuvieco and Congalton 

(1988b), Michalek et al. (2000), and Escuin et al. (2002). Often image 

transformations such as PCA and KT are performed prior to supervised classification 

(Rogan and Yool 2001, Rogan et al. 2002). Results may also be improved by 

including a vegetation index (e.g. NDVI) as an extra band to the image to be 

classified. The definition of training statistics appeared to be the main factor 

influencing the results.  

Another classification technique is density slicing: the converting of the full range of 

data into a series of intervals or slices, each of which expresses a range in the data. 

Often, density slicing is applied on a single band (Hall et al. 1980, Key and Benson 

1999b), or of a vegetation index (difference) image such as NDVI (Fox and Stuart 

1994) or of a ratio (Milne 1986).  

Imaging radar can provide high-resolution imagery of burned areas, independent of 

cloud cover, smoke and solar illumination. In addition, radar signals are sensitive to 

the vegetation volume, structure and moisture content, which provide information 

complementary to that provided by passive sensors operating at an optical 

wavelength. For example, optical sensors cannot penetrate healthy canopy cover and 

may therefore not detect surface burns in areas with a dense overstorey, while radar is 

capable of penetrating the canopy. Radar has been used for fire impact mapping in 

Indonesia (Ruecker and Siegert 2000, Siegert and Nakayama 2000), Montana USA 

(Rignot et al. 1999) and Alaska (Kasischke et al. 1994). The applicability of satellite 

Synthetic Aperture Radar (SAR) imagery for burned area mapping in Mediterranean 

regions has been demonstrated by Gimeno et al. (2002). Rainfall greatly influences 
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the backscatter signal, but it is still unclear in which way. Some authors advice to use 

imagery taken under dry conditions (Ruecker and Siegert 2000, Siegert and 

Nakayama 2000), while others suggest to use images taken under wet conditions 

(Gimeno et al. 2002). It seems that the relationship between the burned vegetation and 

radar backscatter strongly depends upon the ecosystem studied.  

High spatial resolution sensors such as Ikonos and Quickbird open a new field of 

research, with new possibilities such as the detection of smaller objects but also with 

new problems which need more basic investigations. The currently available very 

high resolution imagery has a low spectral depth compared to e.g. Landsat-TM, 

especially in the Mid-Infra-Red (MIR) range of the spectrum, causing confusion 

between burned areas and non vegetated areas. Typically, pixel-based classifications 

have difficulties dealing with the rich information content of very high resolution 

images, which show a very high level of detail and are very strong textured. They 

produce a characteristic, inconsistent salt-and pepper classification, and they are far 

from being capable of extracting objects of interest (Mansor et al. 2002). It seems that 

with the introduction of very high resolution sensors classic classification based on 

pixel-based approaches became limited and that an object-oriented approach is more 

appropriate. Mitri and Gitas (2004a) used an object-oriented approach on Landsat data 

to map large burned areas in both Spain and Greece reaching very good results.  

Remote sensing is very suitable for the detection of temporal (fire frequency) and/or 

spatial patterns (heterogeneity) of fire impact. Vazquez and Moreno (2001) mapped 

fires in the Province of Avila, Spain, over a period of 30 years and calculated fire-

regime parameters, such as fire rotation period, and their relation to topographic 

features or other characteristics of the terrain by means of a spatially explicit analysis. 

Also, Diaz-Delgado and Pons (2001) have applied a semiautomatic methodology for 

fire scars mapping from a time series of Landsat MSS images over the forest and 

shrubby surface of Catalonia (1975-1993). Detected fire scars were incorporated into 

a Geographic Information System in order to characterize the fire regime of the study 

area. Fire size distribution and the number of spot fires originated from each fire as 

well as the maximum distance reached from the main fire are analyzed. Results are a 

map series of fire history during 21 years as well as a map of the fire recurrence level. 

The analysis of landscape change using remotely sensed imagery and landscape 
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pattern metrics is useful to fire sensitivity studies and fire hazard build-up. Several 

studies (Moreira et al. 2001, Lloret et al. 2002, Romero-Calcerrada and Perry 2004) 

suggested that systematic changes have occurred since last decades in landscape 

composition and structure in Mediterranean areas, and that the landscape changes are 

likely to result in changes in fire risk and fire regime.  

2.2.2 Long-term impact assessment 

Wildfires create deep changes in the structure and functioning of natural ecosystems. 

Monitoring and assessing the impact of post-fire effects (forest regeneration and 

vegetation recovery) in the long term is important to understand the need for future 

prescribed burns, to establish postfire resource management, and to design 

revegetation programs to reduce soil erosion (Keely 2000). Since satellite sensors are 

able to cover wide areas at a high frequency and are also able to provide information 

about non-visible spectral regions, they represent a very valuable tool for monitoring 

of forest regeneration and vegetation recovery after fire. The development of high 

spatial and spectral resolution remote sensing instruments, both airborne and 

spaceborne, has provided an opportunity to evaluate patterns of forest regeneration 

and vegetation recovery after wildfire. Several remote sensing studies have addressed 

the regeneration and recovery of the vegetation after fire. The remote sensing of post-

fire recovery is usually based on the proportion of the green vegetation component in 

the signal. In general, the NDVI has been widely used, although some studies have 

investigated the application of SMA. Landsat MSS and TM imagery have been most 

widely used because they can provide time series since 1975, but the application of 

SAR imagery showed very promising results in post-fire regeneration and recovery 

mapping.  

The NDVI has been found to be highly correlated with crown closure, leaf area index, 

and other vegetation parameters. Change in canopy cover or vegetation biomass can 

be detected by analysing NDVI values from separate dates (Hayes and Sader 2001).  

The NDVI of multitemporal Landsat (TM and MSS) imagery is the most widely used 

tool to assess the process of recovery after fire (Jakubauskas et al. 1990, Fiorella and 

Ripple 1993, White et al. 1996, Viedma et al. 1997, Kushla and Ripple 1998, Ricotta 

et al. 1998, Salvador et al. 1998, Diaz-Delgado et al. 1999, Belda and Meliá 2000, 
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Chen et al. 2001, Diaz-Delgado and Pons 2001, García-Haro et al. 2001, Metzler and 

Sader 2002). Furthermore, the NDVI has been used for AVIRIS (Riaño et al. 2002), 

AVHRR (Caetano et al. 1995) and SPOT XS and VEGETATION (Henry and Hope 

1998, Fraser and Li 2002) imagery. Other indices that have been tested include the 

normalized difference between Landsat Thematic Mapper bands TM4 and TM5 

(Marchetti et al. 1995), the Structural Index (TM4/TM5) (Fiorella and Ripple 1993, 

Kushla and Ripple 1998), the Soil Adjusted Vegetation Index (Henry and Hope 

1998), and the Tasseled Cap transformation (Fiorella and Ripple 1993, Kushla and 

Ripple 1998). Riaño et al. (2002) compared two indices, Regeneration index (RI) and 

Normalized Regeneration Index (NRI), both based on the measure of the vigour of 

vegetation (green vegetation) for a burned plot (VIfire) and the measure for an 

unburned control plot (VIcontrol). 

Marchetti et al. (1995) analyzed vegetation recovery by visual assessment. Other 

authors have assessed not only changes in vegetation indices after the fire (Fiorella 

and Ripple 1993), but differences in the indices before and after the fire (White et al. 

1996, Viedma et al. 1997, Kushla and Ripple 1998). Kushla and Ripple (1998) also 

considered the quotient and the normalized difference in the vegetation index before 

and after fire. Spatial analysis has been used to understand the recovery after a fire. 

Hostert et al. (2003) used coupling spectral unmixing and trend analysis for 

monitoring of long-term vegetation dynamics. Ricotta et al. (1998) used a fractal 

algorithm (textural analysis of NDVI) to assess recovery in terms of changes in 

landscape stability. Viedma et al. (1997) used a geostatistical approach and analyzed 

the semivariogram of TM5 within the burned site to measure changes in homogeneity. 

Transformed Divergence Analysis of Landsat TM radiance data revealed that forests 

of varying age and following diVerent regeneration pathways were best discriminated 

using mid infrared (1.55–1.74 mm) wavelengths (Lucas et al. 2002). Short-Wave 

Infrared (SWIR) reflectance measured by Landsat TM has been found to be sensitive 

to burned area and biomass. Fraser and Li (2002) found that of all the channels, SWIR 

was most strongly related to age, and the Short-Wave Vegetation Index (SWVI), 

where SWIR is substituted for the red, was most closely related to burn regeneration 

age. Several authors have used the sensitivity of the SWIR/MIR channel for biomass 

and soil cover, for example, by substituting the SWIR for the red in the NDVI, 

resulting in a SWVI (Fraser and Li 2002), or a Normalised Difference Moisture Index 
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(NDMI) (Metzler and Sader 2002). Hall et al. (1980) used single-channel density 

slices of band 7 of Landsat MSS to report the first-year recovery of vegetation.  

The study of forest regeneration and vegetation recovery after fire using 

multitemporal analysis requires atmospheric normalization of the image data, a step 

that has been included in the image analysis by almost every author. Viedma et al. 

(1997) also applied a topographic normalization. However, these corrections may still 

be insufficient in accounting for measurement and environmental effects that are 

external to the changes due to the wildfire. Henry and Hope (1998) even questioned 

whether remote sensing can be used to study ecosystem recovery after fire. Many 

authors have described a wide range of noise factors that reduce the detection of 

regeneration patterns, including radiometric calibration uncertainty, errors in the 

atmospheric correction, topographic effects and shifts in the phenological state of the 

vegetation between data acquisitions due to interannual or seasonal climate 

differences. Diaz-Delgado et al. (1998) used control sites located in the same images, 

but not affected by fire to solve this problem. Their criteria for the control sites 

include similar environmental conditions and vegetation, ideally located adjacent or 

close to the burned sites. They used the following Regeneration Index (RI) to correct 

for external influences:  RINDVI = NDVIfire / NDVIcontrol   

SAR can image volumes of vegetation, and therefore is able to map parameters 

related to forest biomass, namely, stem volume, total growing stock, or above ground 

net primary productivity. Rignot et al. (1999) found that the recovery process of 

burned areas was only visible in HV bands. Wagner et al. (2002) used a combination 

of Earth Remote Sensing Satellite (ERS) tandem data and Japanese Earth Resources 

Satellite (JERS) backscatter to map growing stock volumes. Luckman et al. (1997) 

studied the relationship between radar backscatter and the biomass density of a 

regenerating tropical forest and they found that backscatter at L-band showed greater 

variation with vegetation type than at C-band. The relationship between biomass 

density and C-band backscatter did not appear to be very useful, while L-band (either 

HH or HV) could be suitable for monitoring biomass density in regenerating tropical 

forests. In general, it seems that the relationship between SAR backscatter and post-

fire recovery greatly depends on the specific ecosystem and wavelength.  
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The temporal evolution of vegetation recovery interpreted from remote sensing data 

has been validated with aerial photography and field studies (Kushla and Ripple 

1998), in which the values of different indices produced from the images were 

correlated to increased vegetation cover due to regeneration. Field measurements may 

be focused on the monitoring of seedling germination, survival and growth (height) in 

a plot (Tsitsoni 1997, De Luís et al. 2001, Bailey and Covington 2002, Kennard et al. 

2002), or may be along a transect on which samples are taken of plant cover (Caturla 

et al. 2000), tree cover (Ne’eman et al. 1999), tree characteristics (Ne’eman et al. 

1999, Gould et al. 2002) or the floristic composition and cover per species (Pausas et 

al. 1999, Wahren et al. 2001). Shaw et al. (1998) also correlated hyperspectral field 

measurements to increased vegetation cover. Other authors have searched for a 

relationship between the remotely sensed indices and the time elapsed since the fire to 

estimate the period of recovery, principally by using a logarithmic regression model 

(Fiorella and Ripple 1993, Viedma et al. 1997, Diaz-Delgado et al. 1998). If the time 

since the wildfire is known from other sources, the remotely sensed estimation of 

vegetation recovery can be validated. Availability of Global Positioning System 

(GPS) to map fire scars has increased knowledge of locations of specific wildfires. 

The most widely used high spatial resolution sensor to study the regeneration after 

fire has been Landsat TM. Some studies have used SPOT-XS (Henry and Hope 1998) 

and SPOT-multispectral (French et al. 1996). Hyperspectral sensors have not been 

extensively used for this purpose; however, for example, Shaw et al. (1998) studied 

regeneration in Scots pines with a high-resolution field spectroradiometer and Ustin 

and Xiao (2001) studied forest communities in central Alaska using NASA’s 

Advanced Visible/Infrared Imaging Spectrometer (AVIRIS). More recently, Riano et 

al. (2002) assessed the usefulness of hyperspectral AVIRIS to characterize the 

regeneration process. Hyperspectral sensors have been demonstrated to be useful in 

change detection and have been shown to detect temporal changes in vegetation 

(Elvidge and Portigal 1990, Gamon et al. 1995, Ustin et al. 1998). Most remote 

sensing fire recovery studies have been conducted in environments with 

Mediterranean climates (Jakubauskas et al. 1990, Marchetti et al. 1995, Viedma et al. 

1997, Diaz-Delgado et al. 1998, Henry and Hope 1998, Ricotta et al. 1998).  

Finally, maps of post-fire forest regeneration and vegetation recovery, in combination 

with GIS databases, may be used to show the relationship between post-fire recovery 
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and spatial and temporal patterns in the environment (topography, weather, 

management), may indicate areas in need of protective measures, and may be used to 

monitor fire-induced land use changes. For example, by applying a GIS technique 

together with ancillary data, the relationship between post-fire forest regeneration and 

vegetation recovery and topographic factors can be investigated. Another application 

of remote sensing is the production of input for post-fire forest regeneration and 

vegetation recovery modelling, which may predict recovery in a specific area. For 

example, Amiro et al. (2003) used Leaf Area Index (LAI) and landcover type maps 

produced by means of AVHRR satellite measurements as inputs for an ecosystem 

process model in order to estimate net primary productivity. Franklin et al. (2001) 

simulated the effects of different fire regimes on plant functional groups in Southern 

California using the LANDIS (LANdscape Disturbance and Succession) model. 



____________________________Chapter 2 Forest Fires in the Mediterranean and Post-Fire Impact Assessment, An Overview 

 25 

2.3 ADVANCED TOOLS FOR POST-FIRE IMPACT ASSESSMENT 

2.3.1 Hyperspectral imaging 

A significant step forward in the world of earth observation was made with the 

development of hyperspectral imaging. Imaging spectrometers measure reflected solar 

radiance from the earth in many narrow spectral bands. As a result, imaging 

spectrometry enables a better identification of objects at the earth surface and a better 

quantification of the object properties than can be achieved by traditional earth 

observation sensors such as Landsat TM and SPOT. Imaging spectrometers acquire 

images in a large number (typically over 40), narrow (typically 0.01 to 0.02 µm in 

width), contiguous (adjacent and not overlapping) spectral bands to enable the 

extraction of reflectance spectra at a pixel scale that can be directly compared with 

similar spectra measured either in the field or in a laboratory (Van der Meer and De 

Jong 2001). 

The objective of hyperspectral imaging is to measure quantitavely the components of 

the Earth System from calibrated spectra acquired as images for scientific research 

and applications (Vane and Goetz 1988). The evolution of spaceborne remote sensing 

has led to the introduction of advanced hyperspectral instruments. Recently, the 

National Aeronautics and Space Administration (NASA) launched the Earth 

Observing 1 (EO-1), the world’s first satellite that carries a hyperspectral sensor, 

Hyperion (Pearlman et al. 2001, Ungar et al. 2003). It is the first spaceborne 

hyperspectral instrument to acquire both visible near-infrared [(VNIR) 400–1000 nm] 

and shortwave infrared [(SWIR) 900–2500 nm] spectra.  

2.3.1.1 Basic concept behind hyperspectral imaging 

When light interacts with a substance, light of certain wavelength is preferentially 

absorbed while at other wavelengths is transmitted in the substance. Reflectance, 

defined as the ratio of the intensity of light reflected from a sample to the intensity of 

the light incident on it, is measured by reflection spectrophotometers which are 

composed of a light source and a prism to separate light into different wavelengths. 

This light beam interacts with the sample and the intensity of reflected light at various 

wavelengths is measured by a detector relative to a reference standard of known 
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reflectance. Thus a continuous reflectance spectrum of the sample is obtained in the 

wavelength region measured.  

Reflectance spectra have been used for many years to obtain compositional 

information of the Earth surface. Similarly, it has been shown that spectral reflectance 

in visible and near-infrared offers a rapid and inexpensive technique for determining 

the mineralogy of samples and obtaining information on chemical composition. 

Electronic transition and charge transfer processes (e.g., changes in energy states of 

electrons bound to atoms or molecules) associated with transition metal ions such as 

Fe, Ti, Cr, etc., determine largely the position of diagnostic absorption features in the 

visible and near-infrared wavelength region of the spectra of minerals (Burns 1970, 

Adams 1974). In addition, vibrational processes in H2O and OH- (e.g. small 

displacements of the atoms about their resting positions) produce fundamental 

overtone absorptions (Hunt 1977). Electronic transitions produce broad absorption 

features that require higher energy levels than do vibrational processes, and therefore 

take place at shorter wavelengths (Goetz 1991). The position, shape, depth, and width 

of these absorption features are controlled by the particular crystal structure in which 

the absorbing species is contained and by the chemical structure of the mineral. Thus, 

variables characterizing absorption features can be directly related to the mineralogy 

of the sample.  

2.3.1.2 Hyperspectral imaging: basic analytical techniques 

Until recently, the main limitation of remote sensing was that surface information 

lacked of details due to the broad bandwidth of available sensors. Work on high-

spectral resolution radiometry has shown that earth surface mineralogy can be 

identified using spectral information from sensor data (Goetz 1991). Conventional 

sensors (e.g. Landsat MSS and TM, and SPOT) acquire information in a few separate 

spectral bands of various widths (typically in the order of 0.1-0.2 µm), thus smoothing 

to a large extent the reflectance characteristics of the surface (Goetz and Rowan 

1981). Most terrestrial materials are characterized by spectral absorption features 

typically 0.02-0.04 µm in width (Hunt 1980). High-spectral resolution remotely 

sensed images are acquired to produce reflectance or radiance spectra for each pixel in 

the scene.  
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The spectral pre-processing: imaging spectrometers take indirect measurements of 

physical parameters in the sense that the digitized signal recorded is directly 

proportional to the incoming photon energy but not measured in any physically 

meaningful unit. The relation between the raw digitized signal and a physical 

meaningful parameter is established after radiometric correction yielding spectral 

radiance measured as the photon flux power per unit solid angle per wavelength 

interval. During radiometric calibration the radiometric response function is derived 

from the relation between the signal, caused on the detectors by the bombardment of 

photoelectrons, and the incoming radiance. This function translates raw radiance into 

spectral radiance. The radiometric response function corrected for the spectral 

response and geometric response as well for the temporal response gives the at –

sensor spectral radiance. Most instruments measure physical parameters indirectly by 

generating and recording a signal, i.e., a Digital Number (DN), which is related to this 

physical parameter, i.e., radiance. The empirical relationship between the raw signal 

and the desired physical parameter is done through instrument calibration. 

 

Atmospheric correction: raw calibrated imaging spectrometer data have the general 

appearance of the solar irradiance curve, with radiance decreasing towards longer 

wavelengths, and exhibit several absorption bands due to scattering and absorption by 

gasses in the atmosphere. The major atmospheric water vapour bands (H2O) are 

centred approximately at 0.94 µm, 1.14 µm, 1.38 µm and 1.88 µm, the oxygen (O2) 

band at 0.76 µm, and carbon dioxide (CO2) bands near 2.01 µm and 2.08 µm. 

Additionally, other gasses including ozone (O3), carbon monoxide (CO), nitrous oxide 

(N2O), and methane (CH4), produce noticeable absorption features in the 0.4-2.5 µm 

wavelength region. The effect of atmospheric calibration algorithms is to re-scale the 

raw radiance data provided by imaging spectrometers to reflectance by correcting for 

atmospheric influence thus shifting all spectra to nearly the same albedo. The result is 

a data set in which each pixel can be represented by a reflectance spectrum which can 

be directly compared to reflectance spectra of rocks and minerals acquired either in 

the field or in the laboratory.  

 

Analytical processing techniques: selection of spectral endmembers for spectral 

unmixing (McCord 1979) or other types of analysis is crucial to understanding 

imaging spectrometer data. The set of end-members should describe all spectral 



____________________________Chapter 2 Forest Fires in the Mediterranean and Post-Fire Impact Assessment, An Overview 

 28 

variability for all pixels, produce unique results, and be of significance to the 

underlying science objectives. Selection of end-members can be achieved in two 

ways: 

1. selecting end-members from a spectral (field or laboratory) library, and 

2. deriving end-members from the purest pixels in the image. 

 

The second method has the advantage that selected end-members were collected 

under similar atmospheric conditions. The end-members resulting through the first 

option are generally denoted as “known” end-members while the second option 

results in ‘derived’ endmembers. Identification of the purest pixels in the scene is 

done through compression of the data using PCA following a method developed by 

Smith and Woodgate (1985). A very useful tool for interactive endmember selection 

is the 3D visualiser in the software ENVI. 

 

Deriving image end-members starts by determining the number of end-members 

needed to optimally characterize the image data using the Minimum Noise Fraction 

(MNF) transformation (Green et al. 1988). The MNF transformation is a two-step 

principal component transformation where during the first step using the noise 

covariance matrix the noise is decorrelated to have unit variance and no band-to-band 

correlation. The second principal component transformation results in a data set where 

components are ranked in terms of noise equivalent radiance.  

 

Next, the location of the end-member pixels need to be determined from the image 

data. Here the Pixel Purity Index (Boardman et al. 1995) based on the approach 

developed by Smith and Woodgate (1985) is applied to the MNF transformed data. 

This approach regards spectra as points in an n-dimensional space (n being the 

number of bands). Van der Meer and De Jong (2000) point out the importance of 

proper endmember selection as input to unmixing to avoid singularity and 

orthogonality problems with matrix inversion of linear systems. 

2.3.1.3 Hyperspectral imaging of vegetation 

Reflectance studies of vegetation (Gates et al. 1965) generally restrict to the green 

leaf part of the plants giving little attention to the non-green dry vegetation 
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components. Reflectance properties of vegetation in the visible part of the spectrum 

are dominated by the absorption properties of photosynthetic pigments of which 

chlorophyll, having absorptions at 0.66 and 0.68 µm for chlorophyll a and b 

respectively, is the most important.  

Changes in the chlorophyll concentration produce spectral shifts of the absorption 

edge near 0.7 µm: the red edge. This red edge shifts toward the blue part of the 

spectrum with loss of chlorophyll. The mid-infrared and short-wave infrared part of 

the vegetation spectrum is dominated by water and organic compounds of which 

cellulose, lignin, starch and protein (Elvidge 1990). Absorption features due to bound 

and unbound water occur near 1.4 and 1.9 µm and at 0.97, 1.20 and 1.77 µm. 

Cellulose has absorptions at 1.22, 1.48, 1.93, 2.28, 2.34, and 2.48 µm while lignin has 

absorption features at 1.45, 1.68, 1.93, 2.05-2.14, 2.27, 2.33, 2.38, and 2.50 µm 

(Elvidge 1990). Starch has absorption features at 0.99, 1.22, 1.45, 1.56, 1.70, 1.77, 

1.93, 2.10, 1.32, and 2.48 (Elvidge 1990). The most abundant protein in leaves is a 

nitrogen bearing compound having absorption features at 1.50, 1.68, 1.74, 1.84, 2.05, 

2.17, 2.29, 2.47 µm (Elvidge 1990). Dry plant materials lack the chlorophyll 

absorptions and intense water absorptions that are characteristic for green leaves and 

thus lack the intense absorption wing produced by high blue and Ultra Violet (UV) 

absorptions. Dry plant materials have diagnostic lingo-cellulose absorption features at 

2.09 and in the 2.30 µm region (Elvidge 1990). 

 

In vegetation, much variation in spectral properties results from the viewing 

geometry. Viewing geometry includes the angle of incidence, angle of reflection, and 

the phase angle: the angle between the incident light and observer (the angle of 

reflection). These affect the intensity of light received. These effects are marginal for 

minerals, more pronounced for rocks and soils and of much importance in studying 

vegetation (Gates et al. 1965, Wessman et al. 1988, Elvidge 1990). 

 

Remote sensing is increasingly used for measurement required for accurate 

determinations of the landscape and the state of forest land. With the deployment of 

early broadband sensors there was a lot of enthusiasm as data, which was previously 

not feasible to obtain, was now regularly available for large areas of the earth. 

However, new technologies have shown that while data obtained from broadband 



____________________________Chapter 2 Forest Fires in the Mediterranean and Post-Fire Impact Assessment, An Overview 

 30 

sensors have been useful in many respects, they also have their limitations. Because 

of their limited number of channels and wide bandwidths, a lot of the data about plant 

reflectance is lost due to averaging. In remote sensing, the radiation values recorded 

by the sensor, after atmospheric correction, are a function (f) of the location (x), time 

(t), wavelength (λ) and viewing geometry (θ) of the ground element, i.e. R = f(x, t,  λ, 

θ). Most natural objects have characteristics features in the spectral signature that 

distinguishes them from others and many of these characteristic features occur in very 

narrow wavelength regions. Hence to ‘sense’ these narrow features the use of narrow 

band sensors is required. Broadband sensors average the reflectance over a wide range 

and so the narrow spectral features are lost or masked by other stronger features 

surrounding them. Thus broadband sensors, such as Landsat TM, cannot resolve 

narrow diagnostic features as their spectral bandwidths are 100-200nm wide and they 

are also not contiguous. For this reason hyperspectral remote sensing is a strong 

alternative for significant advancement in the understanding of the earth and its 

environment. 

 

Data from imaging spectrometers have been found to yield higher quality information 

about vegetation health and cover than those obtained from broadband sensors 

(Collins et al. 1983, Curran et al. 1992, Penuelas et al. 1993, Carter 1994, Kraft et al. 

1996). However, as with any new technology, it takes times to develop new methods 

and algorithms to fully utilize the large information content of the hundreds of 

channels on imaging spectrometers. The following paragraphs look at a number of 

issues relating to the use of hyperspectral remote sensing in vegetation studies. The 

discussion will concentrate on the fundamental factors affecting vegetation 

reflectance, reflectance characteristics of vegetation in different wavelength regions 

(visible, shortwave-infrared, near-infrared and mid-infrared), and the vegetation 

reflectance curve. 

 

Leaf optical properties 

 

Incoming solar radiation is the primary source of energy for the numerous biological 

processes taking place in plants. The interactions between solar radiation and plants 

can be divided into three broad categories: thermal effects, photosynthetic effects, and 

photomorphogenic effects of radiation.  
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Reflectance (400-700 nm): The visible region of the vegetation reflectance spectrum 

is characterized by low reflectance and transmittance due to strong absorptions by 

foliar pigments. For instance, chlorophyll pigments absorb violet-blue and red light 

for photosynthesis. Green light is not absorbed for photosynthesis, hence most plants 

appear green. The reflectance spectrum of green vegetation shows absorption peaks 

around 420, 490 and 660 nm. Most of these are caused by strong absorptions of 

chlorophyll.  

 

The reflectance red-edge (690-720 nm): The red-edge, first described by Collins 

(1978), is a characteristic feature of the spectral response of vegetation and perhaps is 

the most studied feature in the spectral curve. It is characterized by the low red 

chlorophyll reflectance to the high reflectance around 800 nm (often called the red-

edge shoulder) associated with leaf internal structure and water content. Since the red-

edge itself is a fairly wide feature of approximately 30 nm, it is often desirable to 

quantify it with a single value so that this value can be compared with that of other 

species. Eventually, the red-edge inflection point is used. This is the point of 

maximum slope on the red infrared curve. For an accurate determination of the red-

edge inflection point, a large number of spectral measurements in very narrow bands 

are required so the derivative spectra give a fairly accurate position of the inflection 

point. 

 

The near-infrared region (700-1300 nm): Plants generally have a high reflectance 

and transmittance in the near-infrared region. In contrast to light in the visible 

wavelengths, the energy levels of near-infrared light are not great enough for 

photochemical reactions and so are not absorbed by chloroplasts and other pigments. 

Pigments do not contribute to near-infrared reflectance properties of leaves (Billings 

and Morris 1951). The actual proportion absorbed, scattered or reflected will vary 

between species and depends on the internal structure of the leaves. Gates et al. 

(1965) and Sinclair et al. (1971) have reported that internal leaf structure is the 

dominant factor controlling the spectral response of plants in the near-infrared. The 

near-infrared spectra of leaves also change during development, growth. In vegetation 

canopies, near-infrared reflectance is much higher than that for single leaves. As most 

of the radiation at near-infrared wavelengths pass through single leaves, the multiple 

leaf layers of a canopy have an additive effect on reflectance (Belward 1991). Part of 



____________________________Chapter 2 Forest Fires in the Mediterranean and Post-Fire Impact Assessment, An Overview 

 32 

the radiation transmitted by the first leaf layer is reflected back by subsequent layers 

(Hoffer 1978). It should be noted that after a certain number of leaf layers, addition of 

extra layers does not increase near-infrared reflectance. This point is referred to as the 

near-infrared infinite reflectance (Belward 1991).  

 

The mid-infrared region (1300-2500 nm): The mid-infrared domain is characterized 

by strong water absorptions and minor absorption features of other foliar biochemical 

contents. The reflectance in this region is much lower than in the NIR. The main 

water absorption bands are centred at 2660, 2730 and 6270 nm, and overtones are 

observed at 1200, 1450, 1940 and 2500 nm. As the water absorptions in the mid-

infrared are fairly strong, they have a carry-over effect such that the regions between 

major water absorption bands are also affected. Therefore increased water contents of 

leaves will not only decrease reflectance in the water absorption bands, but they will 

also cause a decrease in reflectance in other regions as well. Unlike pigments, where 

absorptions are caused by electron transitions, water absorptions are caused by 

transitions in the vibrational and rotational states of the water molecules (Belward 

1991). Leaf biochemicals which absorb in the mid-infrared region include lignin, 

cellulose, starch, proteins and nitrogen. The absorptions of these chemicals are not 

very strong and so are generally masked by water absorptions in fresh leaves. They 

are much more clearly distinguishable in dry leaf spectra. 

 

Vegetation reflectance curve: Leaf optical properties are influenced by the 

concentration of chlorophyll and other biochemicals, water content, and leaf structure 

(Fourty et al. 1996). These leaf characteristics are all very variable and therefore also 

the reflectance of vegetation is a result of a very complex changing process within the 

leaves, the canopy and the stand. Physical consideration suggests that the most useful 

three broad spectral intervals for plant discrimination purposes are those associated 

with chlorophyll, water, and a third region where both chlorophyll and water are 

transparent (Gausman et al. 1970). Specifically, intervals centred around 680, 850, 

1650, and 2200 nm wavelength appear to be most useful to discriminate among 

different kinds of leaves (Gausman et al. 1970). The first interval is in the visible 

region, and the others correspond to peaks of the atmospheric windows. During the 

plant growth the NIR reflectance of a given species is almost constant (genetic 
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determinism); the most important changes appear during maturation (Verdebout et al. 

1994). 

2.3.1.4 Field spectrometry 

Field spectrometry is the quantitative measurement of radiance, irradiance, reflectance 

or transmission in the field (Elvidge 1990). Portable, battery powered 

spectroradiometers are typically used to make these measurements.  

 

There are many reasons why it is desirable to perform spectral measurement in the 

field, not all related to remote sensing. Field spectra of ground targets that are 

homogeneous at the scale of the imaging sensor and collected using ambient solar 

illumination can be used to convert radiance images to reflectance. Often, field 

spectra of target materials are collected to allow for more precise image analysis and 

interpretation (Van der Meer and De Jong 2001). Additionally, various techniques are 

employed to efficiently use the best hyperspectral signatures to perform supervised 

classification. This classification is based on the differences in the hyperspectral 

curves. 

 

Field spectroscopy is also used as a tool to perform feasibility studies to understand if 

and how a process or material of interest can be detected using remote sensing. Aside 

from remote sensing, field spectrometers are used to make direct material 

identifications in the field rather than collecting samples for later laboratory analysis. 

Applications such as aircraft and satellite sensor calibration, development of remote 

sensing data exploitation methods, remote sensing feasibility studies, and geologic 

mapping greatly benefit from the use of field spectrometry (Van der Meer and De 

Jong 2001). 

 

2.3.2 Object-oriented image analysis, concept and methods 

With the introduction of Very High Resolution (VHR) images (i.e. Ikonos and 

QuickBird satellite imageries) and Hyperspectral imagery (i.e. Hyperion), new 

approaches such as object-oriented image analysis, have been developed to overcome 

the limitations of the traditional techniques in satellite imagery processing. The scope 

of this part is to review the basics of object-oriented image analysis, the general 
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aspects of image interpretation and to provide an overview of segmentation and 

classification methods, with a particular focus on fuzzy classification. 

2.3.2.1 The concept 

Object-oriented image analysis has been developed to overcome the limitations and 

weaknesses of traditional image processing methods for feature extraction from high 

resolution images. In spite of years of research into pixel-based image processing 

techniques such systems are often unable to recognize characteristics that are obvious 

to human visual inspection. Pixel-based image classification uses the spectral 

information represented by the digital numbers in one or more spectral bands, and 

attempts to classify each pixel based mainly on this spectral information. However, 

important semantic information necessary to interpret an image is not represented in 

single pixels but in meaningful image objects and their mutual relations (Mitri and 

Gitas 2004a). The basic difference, especially when compared with pixel-based 

procedures is that image object analysis does not classify single pixels but rather 

image objects that have been extracted in a previous image segmentation step (Baatz 

1999).  

 

A characteristic of object-oriented image analysis is the multitude of additional 

information which can be derived based on image objects: tone, shape, texture, area, 

context, and information from other object layers. Using this information, 

classification leads to better semantic differentiation and to more accurate and specific 

results. In a conceptual perspective, the available features can be distinguished as 

follows: 

• intrinsic features: the object’s physical properties, which are determined by the 

imaging situation, basically sensor and illumination. Such features describe 

colour, texture and form of the objects; 

• topological features: features, which describe the geometric relationships 

between the objects or the whole scene, such as being left, right or at a certain 

distance to a certain object or being in a certain area within the image; and 

• context features: these describe the semantic relationship of objects to one 

another. 
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2.3.2.2 Basic aspects in image interpretation 

The scale is a very important aspect of image understanding in remote sensing. It 

determines the occurrence or non occurrence of a certain object class and it 

determines what the objects look like at a certain level of scale.  

 

Another important aspect in understanding the content of an image is information 

about context. There are two types of contextual information: 1) global context, 

which describes the situation of the image (basically time, sensor and location) and 2) 

local context, which describes the relationships of objects to one another within a 

certain area of the image, usually neighbourhood relationships. To make the objects 

aware of their spatial context, it is necessary to link them. By linking the objects, a 

network of image objects is created. When taking scale into account, different sized 

image segmentations represent different scale levels (Mitri and Gitas 2004a). Linking 

the different sized image objects hierarchically represents their (semantic) scale 

relationships, as mentioned before. By linking the image objects, they are able to 

communicate and to “tell each other” their mutual relations. Each object “knows” its 

neighbours, its sub- and its super-objects. From a classification point of view now, the 

objects non-intrinsic properties, such as neighbourhood relationships or being a sub or 

super-object, are describable. 

 

Segmentation is the subdivision of an image into separated regions. For many years, 

procedures for image segmentation have been a main research focus in the area of 

image analysis. Many different approaches have been adopted. However, few of them 

lead to qualitatively convincing results that are robust and are applicable operationally 

(Hofmann 1998).  

 

In an object-oriented approach, image objects resulting from a segmentation 

procedure are intended to be rather image object primitives, serving as information 

carriers and building blocks for further classification or other segmentation processes 

(Baatz 1999). In this sense, the best segmentation result is the one that provides 

optimal information for further processing. 
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Multiresolution segmentation (Baatz and Schape 2000) allows the largely knowledge-

free extraction of homogeneous image object primitives in any chosen resolution, 

taking into consideration local contrasts. It can generally be applied to a very large 

range of data types; it works on an arbitrary number of channels simultaneously.  

2.3.2.3 Classification 

Usually classification means the assignment of a number of objects into a certain class 

according to the class description. Thereby, class description is performed by 

describing typical properties or conditions pertaining to the desired classes. The 

objects then become assigned (classified) according to whether they fulfil or not these 

properties/conditions. In terms of data base language, one can say that the feature 

space is segmented into distinct regions which lead to a many-to-one relationship 

between the objects and the classes (Baatz and Schape 1999).  

 

As a result of a classification, each object belongs to one definite class or to no class. 

Classic classifiers (i.e. maximum-likelihood, minimum-distance or parallelepiped) 

thereby assign a membership of 1 or 0 to the objects, expressing whether an object 

belongs to a certain class or not. These classifiers are usually also called hard 

classifiers since they express the objects’ membership to a class only in a binary 

manner. In contrast, soft classifiers (mainly fuzzy-systems and/or Bayes-classifiers) 

use a degree of membership/a probability to express an object’s assignment to a class. 

 

The membership value usually lies between 1.0 and 0.0, whereas 1.0 expresses a full 

membership/probability (a complete assignment) to a class and 0.0 expresses an 

absolutely non-membership (improbability). Thereby, the degree of membership 

(probability) depends on the degree to which the objects fulfil the class describing 

properties/conditions. A main advantage of these soft methods lies in their ability to 

express uncertainties about the classes’ descriptions. It makes it also possible to 

express each object’s membership to more than just one class but with different 

degrees of membership probabilities. 

 

With respect to image understanding, these soft classification results are more able to 

express human uncertain knowledge about the world, and thus lead to classification 
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results that are closer to human language, thinking and mind. In other words: soft 

classifiers are more honest than their hard counterparts. However, many applications 

using land use or land cover information are unable to handle soft classification 

results. Thus, soft classification results must be hardened, which can lead to shammed 

classification truths and accuracies. 

 

Classification methods can basically be separated into supervised and unsupervised 

methods. As unsupervised methods are almost user independent, supervised methods 

have to be trained by the user – usually either by taking samples or by describing the 

class properties. Therefore, the class describing information must be as accurate, 

representative and complete as possible. Hence, a class description can just be a 

general estimation of the desired class’ properties. Estimating the properties also 

means assuming a more or less known uncertainty about the class description. 

Formulating these uncertainties can only be achieved using soft classifiers.  

 

There are advantages and disadvantages to both unsupervised and supervised 

classification methods. Unsupervised methods are noticeably faster than supervised, 

but since they are simply a special kind of sorting algorithms, their results have to be 

interpreted by the user – which can be tough in some cases and lead to numerous 

repetitions of the classification with slightly adjusted parameters. Another advantage 

of unsupervised classifiers is their ability to analyze the objects’ statistics completely 

and systematically. Thus, the results of an unsupervised classification can give useful 

indications for detectable classes, but formulating uncertainty is only possible in 

general with regard to the classification parameters, not to the classes and their 

properties themselves.  

 

In contrast, supervised classification methods can be more labour intensive since the 

user has to describe the classes’ properties either explicitly or by taking samples as 

typical representatives. Their advantages are firstly their usually higher quality and a 

priori counting and naming of the classes, and secondly the possibility to formulate 

explicit class related uncertainty. In cases of misclassifications, the latter point in 

particular eases the investigation into the potential reasons. Also, the class 

descriptions themselves are easier to understand since they should be a result of 

human reasoning and thus be easier to investigate. 
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Finally, object-oriented image analysis can be based on a fuzzy system of 

classification. Ones of the most powerful soft classifiers are classifiers based on fuzzy 

systems (Civanlar and Trussel 1986, Benz 1999). Fuzzy logic is a mathematical 

approach to quantifying uncertain statements. The basic idea is to replace the two 

strictly logical statements 'yes' and 'no' by the continuous range of [0...1], where 0 

means 'exactly no' and 1 means 'exactly yes'. All values between 0 and 1 represent a 

more or less certain state of 'yes' and 'no'. Thus, fuzzy logic is able to emulate human 

thinking and to take into account even linguistic rules. Fuzzy classification systems 

are well suited to handling most vagueness in remote sensing information extraction. 

Parameter and model uncertainties are considered using fuzzy sets defined by 

membership functions. Instead of the binary “true” and “false”, the multi-valued 

fuzzy logic allows transitions between “true” and “false. Additionally, there are more 

or less strict realizations of the logic operations “AND” or “OR”. 

 

The output of the fuzzy classification system is a fuzzy classification, where the 

membership degree to each land cover or land use is given for each object. This 

enables a detailed performance analysis and gives an insight in the class mixture for 

each image object. This is a major advantage of the soft classification. The maximum 

membership degree determines the final classification to build the interface to crisp 

systems. 
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2.4 CHAPTER SUMMARY 

In summary: 

• The Mediterranean climate is unique in that the wet season coincides with the 

low sun or winter period. Summers are dry with high temperatures, while in 

winters rainfall is high and the temperature is relatively mild. Fire, either natural 

or man-induced, has been one important factor in shaping Mediterranean 

ecosystems. 

• Post-fire impact assessment requires precise information on extent, type and 

severity of fire (short-term impact assessment) as well as on forest 

regeneration and vegetation recovery (long-term impact assessment).  

• On the other hand, monitoring post-fire forest regeneration (e.g. pine 

regeneration) and vegetation recovery (e.g. shrub recovery) is important to 

understand the need for future prescribed burns, to establish post-fire resource 

management, and to design re-vegetation programs to reduce soil erosion. 

• Fire scientists and managers distinguish the following three general types of 

wildland fire: ground, surface, and crown, depending on the fuel stratum in 

which the fire burns. While, fire severity is a descriptive term that integrates the 

ecological changes at a site as a result of fire disturbance. 

• Remote sensing is a powerful tool for post-fire impact assessment in the short 

tem and in the long term. 

• A wide variety of methodologies, ranging from vegetation indices (mainly 

NDVI and NBR), image enhancement techniques (PCA and KT) and supervised 

and unsupervised classification, and SMA, can be applied in post-fire impact 

assessment. Post-fire recovery monitoring studies are considerably conservative, 

as they generally use the NDVI index.  

• In the short and long term post-fire impact assessment, the use of Landsat-TM 

and MSS is dominant, due to its many advantages in terms of costs, temporal 

and spatial resolution and long life span. SAR imagery has been used in several 

studies with very promising results, especially in monitoring vegetation volumes 

after fire.  

• Advanced remote sensing tools have been recently introduced. The potential use 

of these tools in pot-fire impact assessment is to be investigated. 
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• Hyperspectral imaging enables a better identification of objects at the earth 

surface and a better quantification of the object properties than can be achieved 

by traditional earth observation sensors.  

• Very High Resolution imagery provides an advantageous methodological 

approach to identifying, mapping and monitoring post-fire effects as compared 

to traditional satellite images.  

• With the introduction of Very High Resolution images (e.g. Ikonos and 

QuickBird satellite imageries) and Hyperspectral imagery, new approaches such 

as object-oriented image analysis have been developed to overcome the 

limitations of the traditional techniques in satellite imagery processing. 

• The basic difference between image object analysis and pixel-based procedures 

is that image object analysis does not classify single pixels but rather image 

objects that have been extracted in a prior image segmentation step.  

• Object-oriented image analysis can be based on fuzzy system, which is a 

mathematical approach to quantifying uncertain statements. The basic idea is to 

replace the two strictly logical statements 'yes' and 'no' by the continuous range 

of [0...1], where 0 means 'exactly no' and 1 means 'exactly yes'. All values 

between 0 and 1 represent a more or less certain state of 'yes' and 'no'. 
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CHAPTER 3: ENVIRONMENTAL CONDITIONS IN 

THASOS AND DATASET DESCRIPTION 

 

The most important ecological characteristics of the Mediterranean and the main 

reasons for post-fire impact assessment and monitoring were presented in chapter 2. 

Also, it was shown how remote sensing has made enormous progress in recent years 

in terms of fire related researches. Finally, information on the different techniques 

used for post-fire impact assessment was provided, and the concept behind object-

oriented image analysis was reviewed. The first section of Chapter 3 will describe the 

environmental conditions of the study area, while section two will provide all 

information about the datasets that have been collected and employed in this study. 

 

3.1 STUDY AREA 

Information on the geography, geology and geomorphology, climate, landcover, and 

forest fires are given in the following sub sections. 

 

3.1.1 Geography 

Thasos is Greece's most northerly island; it is mountainous, roughly circular, and of 

great natural beauty. Situated close to the mainland, its nearest point is 10 km from 

the mouth of the Nestos, thus facing the boundary between the Macedonia and Thrace 

regions. Its surface area is 399 sq. km, while its perimeter is approximately 102 Km; 

almost circular in shape, it has a length from North to South of 24 km and a width of 

19 km, extending from 24o30’ to 24o48’ East and 40o33’ to 40o49’ North (Figure 1). 

The mountain sides are covered with forests, in which pines, planes and walnut trees 

predominate; timber in Thasos has always been in great demand for ship building.  

The northeast part of the island is the most fertile and the greenest part of the island. It 

is partly ringed by spectacular mountainous limestone palisades, of which the two 

notable high points are Profitis Ilias, located at 1107 m and Ypsario located at 1203 

m, approximately in the centre of the island. The mean elevation is approximately 305 

m, while the slopes range from 0 to 80 degrees. On the lower slopes of the mountains 

is found rich woodland, with pines, oaks, walnuts and sweet-chestnut trees. Thasos 
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was the most wooded of the Aegean islands and, despite recent extensive forest fires, 

much woodland remains, particularly above Skala Potamias (Gitas 2000). 

Figure 1 From left to right: map of Greece, location and satellite image of Thasos 

 

3.1.2 Geology and geomorphology 

More than 60% of Thasos, especially the highland areas, is composed of metamorphic 

gneiss. The marble ridge of Mt. Yspari rises out of the surrounding uplands to a 

height of 1003 m. The island's crystalline base is overlaid by limestones and marbles, 

and the island is an important source of the latter, with 25 quarries, some of which 

date back to Roman times, producing 55,000 cubic meters for export each year.  

 

To the east of the island, there is a series of metamorphosed rocks, primarily 

composed of dolomites, which constitute approximately 25% of the island’s total 

area. 10% of the island, around the coastline, particularly in the areas of soft slopes, is 

composed of quaternary deposits of clay, sand and gravel. 

 

Soil depth and geology play an important role in determining the characteristics of the 

hydrology system as well as the characteristics of the vegetation habitats. Almost 50% 

of the island’s surface is covered with shallow soils (5-10cm) due to steep slopes, 

grazing and repeated forest fires (Gitas 1999). While the remaining surface is covered 

with deep soils (35%) and bare soil (15%) (Nakos 1995). 

 

The mountainous island can be divided into three geomorphologic areas. The first 

includes the coast and occupies little space; the second hilly area is extended almost 
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parallel to the first and is also relatively small. The third area consists of massif rock 

and occupies most of the island. 

 

3.1.3 Climate 

The Climate of Thasos is mild. It is cool in the summer and moderate in winter. The 

average annual temperature is 17.2 oC and the average summer temperature (July) is 

23.4 oC. The mean annual precipitation is 783.48 mm, of which approximately 65% 

falls in the period between September and April. In general, there are no strong winds 

affecting the island. Strong North-Northeastern winds blow every summer over the 

island especially in August.   

 

The dry/hot season starts in May and lasts up to mid September, with August being 

the driest and July the warmest month of the year. The subclass of the Mediterranean 

bioclimate of Thasos, using the Emberger (1971) method, was found to be cool and 

sub-humid (Gitas 1999).  

 

The meteorological station of Thasos is situated at sea level, in the main city of 

Limenas, and pertinent data have been recorded by the National Meteorological 

Service (EMY) of Greece. The ombrothermic climatic diagram for the period 1961 – 

1993 (Figure 2) shows a typical Mediterranean climate, with a relatively high mean 

yearly precipitation (742.3 mm) and a xerothermic period that starts in May and lasts 

through to September.  
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Figure 2 Ombrothermic climatic diagram of Thasos for the period 1961 to 1993 

 

According to the formula of Emberger (Emberger 1971), the Mediterranean-type 

climate of the island can be further classified to the cold and subhumid variant. It 

should be noted that the meteorological conditions after the 1985 wildfire have been 

quite arid. In every one of the eight hydrological years (Oct-Sep) from 1985-86 

through to 1992-93, the total yearly precipitation fluctuated between 288.9 mm and 

733.6 mm (i.e. for eight consecutive years rainfall has been below the 1961-93 

average), while the 1985-93 average is only 440.4 mm (slightly less than 60% of the 

30-year-long average value) (Spanos 1996). 

 

3.1.4 Landcover description 

Before the two fires of 1985 and 1989, forest and forested lands covered 47.5% of the 

island (Gitas 1999); making forests the dominant landcover type at the time. 

Regarding the composition of land uses, 25% of the area of the island was subject to 

variable agricultural uses, 50% was occupied by forests, 11% by grasslands and only 

5% could be characterized as urban land. It is important to note that, in spite of its 

relevant small size, the island presents 12 endemic plant species. Different kinds of 

vegetation cover, such as phrygana, maquis and forest, exist in Thasos (Figure 3). The 

next paragraphs will discuss the different landcover categories according to their 

characteristics and their location on the island. 
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Phrygana the most characteristic habitat of the Mediterranean region is garigue, a 

lowland vegetation community of dry soils, composed largely of spiny or aromatic 

dwarf shrubs. In Greece, these communities are known as phrygana and there are 

several variants, depending upon grazing pressure, the incidence of fires, exposure, 

soils and geology. The only good example on Thasos can be found to the east of the 

island. By mid summer, drought and trampling reduce the coastal slope of this 

phrygana to dusty bare ground (Karteris et al. 1992).  

 

Adjacent to this low coastal phrygana, freed from trampling and probably less prone 

to drought, the second type of scrub community can be seen. “Cistus garigue” is 

frequent around much of the island's lowland zone and is especially common in the 

northern half as an understory in the conifer woods and old olive groves. Pink cistus 

Cistus creticus is the most abundant species but sage-leaved cistus C. salvifolius is 

also widespread. Other species of this community include prickly juniper Juniperus 

oxycedrus, Phoenician juniper Juniperus phoenicea, mock privet Phillyrea latifolia 

and Kermes oak Quercus coccifera. The southern phrygana has extensive areas with 

the tree heath Erica manipuliflora as a dominant species and Spanish broom Spartium 

junceum is also common. 

 

The third form of phrygana can be regarded as an intermediate stage in the 

development to maquis. This is a taller scrub community in which Kermes oak 

Quercus coccifera is usually common and species such as Christ thorn Paliurus 

mastic tree Pistacia lenticulus, Judas tree Cercis and chaste tree Vitex agnus-castus 

frequently occur. This vegetation type is found on abandoned terraces, neglected olive 

groves and undisturbed forest clearings but is quite localised and patchy in 

distribution.  

 

Maquis represents a tall shrub community that presumably represents a phase in 

succession to secondary deciduous woodland. Pockets of maquis, composed of a 

variety of species, depending on the degree of shade, soil moisture and geology, occur 

in many places around the island but some of the most extensive examples can be 

found in the valley between Prinos and Megalo Kazavitis (where cornelian cherry 

Cornus mas is a conspicuous component) and on the floodplain below Maries 

(dominated by oriental plane Platanus orientalis). Cistus garigue and maquis are 
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common habitats on Thasos; they are widely distributed around the island and the 

former is currently extending its range as it colonizes lowland slopes cleared of 

conifers in the recent devastating summer fires (Karteris et al. 1992) 

 

Before the forest fire of 1984, one of three large fires that took place between 1984 

and 1989, forest area covered 47.5% of the island (Gitas 1999). In addition to the 

phrygana, maquis and forest areas, other existing landcover types included bare land, 

fields, orchards and human settlements. The human settlements comprised some 38 

settlements, with the chief town, Thasos on the north coast. After the fires of 1984 and 

1985, forests covered 37.95% of the island (Makedos 1987). Today, as a result of 

fires, illegal logging, intensive grazing and bad management, the remaining forest has 

a spatial extent of about 2000 ha in the Northern and Eastern parts of the island. 

 

Pinus brutia was the dominant species of the forests at elevations ranging from sea 

level up to 800 m, while Pinus nigra was the dominant species of the forests found in 

the mountainous areas of the island (sub-alpine zone). It is worth noting that Pinus 

brutia is well adapted to the Mediterranean climate and can withstand prolonged 

droughts and the absence of summer rainfall (Gitas 1999). Pinus brutia is an obligate 

reseeder and a typical east Mediterranean tree species. A wildfire usually kills the 

entire pine tree population and therefore, the regeneration of the species, and also of 

the forest, is totally dependent upon the recruitment of a postfire cohort of seedlings. 

A certain fraction of pine seeds can survive the fire, protected by the scales of the 

closed, serotinous cones; moreover, as a result of heat, these cones open and disperse 

the enclosed seeds shortly after fire. Pine seed germination and seedling emergence 

takes place almost exclusively during the first postfire wet season. 

 

The natural, postfire regeneration of Pinus brutia forests has been studied in two 

40¯ 60-year-old forests on Thasos Island that were burned in the summers of 1985 and 

1989 (Spanos 1996). Within the latter burned area (5700 ha), forty experimental sites 

of various aspects and site index values were established and successively monitored 

for 5 years, at 6-month intervals. Pine seedling emergence took place late in spring 

(due to a long drought in that particular year), but exclusively during the first postfire 

year. By the end of the recruitment period (May 1990), mean pine seedling density 

was considerably high (2¯ 6 seedlings.m¯
2), while a significant drop in the first 
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summer was observed. Thereafter, a relatively smooth decline was noted and the 

density was almost stabilized to about 0.6¯ 2 seedlings.m¯
2 after 5 years. Annual height 

growth showed a yearly increment of 17 cm in the year-long postfire period of study. 

Starting at an age of 4¯ 6 years, an increasing fraction of the sapling population 

became reproductive so that 9 years later a considerable portion (5¯ 15 %) had already 

produced cones with fully germinable seeds (Spanos 1996). 

 

 

 

 

 

 

 

 

 

Exposed limestone pavement                Lowland scrub 

on the summit ridge west of Profitis Ilias 

 

 

 

 

        

 

 

 

Landscape of forest, scrub and   Lowland conifers above Maries 

pavement between Profitis Ilias and Touba                                                        

Figure 3 Landcover types in Thasos                 

                         

3.1.5 History of forest fires 

Almost 50% of the total incidents of forest fires on Thasos are caused by lightning, 

although these fires do not cause any great damage (Makedos 1987).  However, fires 

in Thasos are not caused only by lightning but also by human induced activity.  

 

According to the records of the National Forest Service, Forest Station of Thasos, the 

biggest forest fires in this century occurred in 1928 (1,500 ha), 1938 (1,700 ha), 1945 
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(700 ha), 1984 (1,669), 1985 (10, 405 ha), 1989 (8,401 ha) and 2000 (187 ha). 

However, in the period between 1980 and 1990, there was an overwhelming increase 

in the number of fires and surface area burned.  Indeed, the largest fires in the last 

century occurred in this period and resulted in the loss of about 20,000 ha of Pinus 

brutia and Pinus nigra forests, leaving in behind an affected area that constituted 

more than half the size of the island (Figure 4). More detailed information about the 

type of fire and the landcover types destroyed in the fires of 1985, 1989 and 2000 - 

the examined years in this study – are given in the following paragraph (Gitas 1999).  

 

The fire of 1985 started in the afternoon of August 15th on a day of very low relative 

humidity (45%), very high temperature (33°C) and strong NE winds (7 BF).  The 

source of ignition was not identified (Forest station of Thasos).  It was mainly a crown 

fire that destroyed 6300 ha of Pinus brutia forest and 350 ha of Pinus nigra.  The fire 

also destroyed 3300 ha of maquis, 420 ha of phrygana, and 1500 ha of agricultural 

land.  

 

The fire of 1989 started on the 16th August at night (22:30 hrs) due to arson (Forest 

station of Thasos 1989). At the time, relative humidity was 68%, the temperature was 

28°C and there were strong NE winds (6 BF).  It was mainly a crown fire that 

destroyed 4600 ha of Pinus brutia forest and 1000 ha of Pinus nigra forest.  The fire 

also destroyed 2200 ha of maquis, 500 ha of phrygana and 1200 ha of olive groves.  

In addition, 23 houses were burned. 

 

On 13th July 2000, a fire started due to unknown reasons. Conditions at the onset of 

fire were: humidity 65%, temperature 38°C and strong winds (4,1-7 BF). It was a 

mixed fire (crown and surface) that destroyed an area of 1.95 Km2, covered by Pinus 

brutia (Forest Station of Thasos). 
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Figure 4 Multitemporal burned areas on the Mediterranean island of Thasos 

 

The climatic and soil conditions of Thasos are quite favourable to the establishment 

and growth of P. brutia stands but during the last decades, the fire interval has 

gradually decreased (Spanos et al. 2000) for most Mediterranean forests of Greece. 

Moreover, a large part of these forests have reached a critical stage due to both 

intensive grazing by goats and poor management. The wildfires of 1984, 1985, 1989 

and 2000 have destroyed more than 80 % of the total forest area of Thasos of different 

landcover types (Gitas 1999). Pine seedlings and saplings up to about 20-years old 

and 2 m in height are scattered throughout the area.  

 

3.1.6 Post-fire impact assessment 

In this research, post-fire impact assessment was focused on 1) short term post-fire 

effect (fire type and fire severity) and 2) long-term post-fire effect (forest regeneration 

and vegetation recovery). It should be noted that forest regeneration comprises mainly 

pine forest regeneration, while vegetation recovery comprises shrub (maquis and 

phrygana) recovery after fire. 
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Based on all the geographic characteristics of Thasos, it can be concluded that the 

island represents an ideal site for post-fire impact assessment (Gitas 2003). It can 

provide the researcher with the opportunity to investigate ways of improving existing 

methods employed not only in burned area mapping and fire type/severity mapping 

but also in forest regeneration and vegetation recovery mapping for the following 

reasons: 

• the geomorphology of the island guarantees the existence of the shadowed areas 

that occur as a result of the irregular terrain found particularly in mountainous 

areas;  

• the large extents of the 1985 and the 1989 fires guarantee the existence of 

different surface exposures of the burned area and of the regenerated areas; and 

• the landcover types in the study are typical of other Mediterranean ecosystems 

and are representative of most of the landcover types affected by fires in the 

Mediterranean countries, as well as in Greece. Therefore, successful efforts can 

make burned are mapping in this study more operational in a number of areas 

across the Mediterranean region. 
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3.2 DATASET DESCRIPTION 

Satellite images of different spectral and spatial resolution were collected (section 

3.2.1). Also, data were collected from several field surveys carried out in the study 

area in addition to other ancillary data (section 3.2.2).  

 

3.2.1 Satellite data collection 

Two Landsat TM images (Miller and Yool 2002) showing burns that occurred in 1985 

and 1989 were obtained for this study (Figure 5). The acquisition dates (few weeks 

after each fire) of the images were the 24th September 1985 and the 19th September 

1989. The 1985 image (Table 3) was acquired to map the 1985 burn scar, while the 

1989 image was acquired to map the 1989 burn scar.  

 

Table 3 Landsat-TM characteristics (source: USGS) 

 
 

Spectral 
range 
(microns) 

Visible 
bands 

Near 
Infrared 
Bands 

Mid 
Infrared 
(microns) 

Thermal 
Infrared 
(microns) 

Spatial 
resolution 
at nadir 

Swath 
width 
(km) 

Number 
of bands 

Landsat 
TM 

0.45-1.75  
 

3 1 2 
(2.8-2.35) 

1  
(10.4- 2.5) 

30 m 185  7 

 
 

 

 

 

 

 

 

 

Figure 5 Landsat-TM images showing burned areas from 1985 (left) and 1989 (right) 

 

A post-fire Ikonos (Figure 6) image was acquired on 14th July 2000, one day after the 

fire. The image of Ikonos (Van der Sande et al. 2003) included band 1 (0.445-0.516 

micrometers), band 2 (0.506-0.595 micrometers), band 3 (0.632-0.698 micrometers) 

and band 4 (0.757-0.853 micrometers). Other image characteristics are shown in 

Table 4. 
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Table 4 Ikonos characteristics (source: Space Imaging) 

 Spectral 
range 
(microns) 

Visible 
bands 

Near 
Infrared 
Bands 

Short Wave 
Infrared 

Spatial 
resolution 

Swath 
Width (km) 

Number 
of bands 

Ikonos 
multispectral 

0.45 - 0.90  3 1 0 4 m 11 4 

 

 

 

 

 

 

 

 

 

Figure 6 Ikonos image showing the burned area of 2000 

 

A single multispectral QuickBird (Figure 7) image was obtained (Table 5). The 

multispectral Quickbird (Wang et al. 2004) image acquired on October 28th of 2004 

included a blue band (450 to 520 nm), a green band (520 to 600 nm) a red band (630 

to 690 nm) and a Near-IR band (760 to 900 nm).  

 

Table 5 QuickBird characteristics (source: DigitalGlobe) 

 Spectral 
range 
(microns) 

Visible 
bands 

Near 
Infrared 
Bands 

Short Wave 
Infrared 

Spatial 
resolution at 
nadir 

Swath 
width 
(Km) 

Number 
of bands 

QuickBird 
multispectral 

0.45-0.9  3 1 0 2.44 m 16.5  4 

Figure 7 QuickBird image of 2000 
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On the 1st of August 2003 a Hyperion image (level 1 radiometric product) was 

acquired for the area of Thasos covering a part of the island from south to north 

(Figure 8). The Hyperion (Thenkabail et al. 2004b) image has 220 unique spectral 

channels (Table 6) collected with a complete spectrum covering from 357 - 2576 nm. 

Only 198 bands are calibrated. Because of an overlap between the VNIR and SWIR 

focal planes, there are only 196 unique channels. Calibrated channels are 8-57 for the 

VNIR, and 77-224 for the SWIR. The bands that are not calibrated are set to zero in 

those channels. 

 

Table 6 Hyperion characteristics (source: NASA EO-1 briefing materials) 

 Spectral 
range 

Visible 
bands 

Near 
Infrared 
Bands 

Short 
Wave 
Infrared 

Spatial 
resolutio
n at nadir 

Swath 
width 

Spectral 
coverage 

Number 
of 
bands 

EO-1/ 
Hyperion 

0.4-2.5 
microns 

35 35 172 30 m 7.5 
km 

continuous 220 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Hyperion image of Thasos 

 

3.2.2 Field and other data collection 

Field data were collected during an extensive field survey carried out in the study 

area. The survey started shortly after the fire event in summer 2000. Moreover, the 

study area was repeatedly visited every summer season in the following five years for 

monitoring post-fire effects. The field survey focused on visual assessment of fire 

type and severity (39 plots), observation of unburned neighbouring plots, the 

collection of GPS points and documentation of fire type and severity by means of 
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field digital photography. In addition, adapted version of the FIREMON landscape 

assessment method was employed (Appendix 1), and consequently the Composite 

Burn Index (CBI) was calculated for 36 plots in total to be used for classification 

accuracy assessment. The fire severity measured was defined here as a scaled index 

gauging the magnitude of ecological change caused by fire (Key and Benson 2002).  

 

The data was made suitable for very high spatial resolution applications and adapted 

to remote sensing and GIS technologies. Therefore, the methodology of the CBI 

required a relatively large plot (10x10 m) and allocated independent severity ratings 

for individual strata and synoptic scores for the entire plot area. Ratings considered 

criteria such as colour, percentage of fuel consumed, regeneration from pre-fire 

vegetation and blackening or scorching of trees. Additional measurements, such as 

vegetation cover, percentage of healthy trees and vegetation type, were taken. 

Additionally, the effects of fire on individual trees were determined by counting the 

number of trees alive, dead, resprouting, consumed/down, broken and cut stump. The 

landscape sampling design was hierarchical and multi-layered. Each strata of a 

vegetative community was evaluated independently by several criteria and given a 

rating. There were three composite levels (lettered) and five strata (numbered) (Table 

7). CBI scoring is completed for each stratum and averaged to the total composite 

level.  

 

Table 7 Three composite levels (A-C) including the five strata level (1-4) 

1. Herbs, Low shrubs and Small Trees 
B. Understory 

2. Tall Shrubs and Sapling Trees 
3. Intermediate Trees (pole-sized trees, subcanopy) 

A. Total 
plot 

C. Overstory 
4. Big Trees (mature, dominant/co-dominant, upper canopy) 

 
The total plot CBI comprised all five strata, when all strata were present. When plots 

did not contain all strata, the missing strata were simply not counted. Ratings could be 

reported separately by strata, or in their composite forms. Scores were decimal values 

between 0.0 and 3.0, spanning the possible range of severity from unburned to highest 

burn effect. Scores could be combined (averaged) to yield aggregate CBI ratings for 

the understory, the overstory, and the total plot. That was done by adding up scores 

within each hierarchical level, and dividing by the number of rated factors (Figure 9). 
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Figure 9 shows figures from the study area for three different examples of CBI ratings 

(Key et al. 2002). 

CBI Ratings:  

Understory - 1.125 
Overstory - 0.7 
Total Plot – 0.88 

 

Light char and moderate consumption of 
downed fuels. Regenerated herbs and grass 
dominate understory. Shrubs show 
mortality. Canopy not scorched or 
blackened, and tree charring remains < 1.5 
m.      

CBI Ratings:  

Understory - 1.625 
Overstory - 2.5 
Total Plot – 1.916 

 

Deep char and small fuels mostly 
consumed. Some pre-fire herbs and shrubs 
persist. Most tree crowns blackened or 
largely scorched, a few green crowns 
remain. 

CBI Ratings:  

Understory – 1.75 
Overstory - 2.66 
Total Plot – 2.14 

 

Major portions of large downed fuels 
consumed. Large amounts of exposed 
mineral soil. Overstory consumed including 
all branching in crowns. 

 

Figure 9 CBI ratings (examples of low, medium, and high burn severity in the study area) 

 

In the summer periods of 2002, 2003 and 2004, field spectral measurements (Figure 

10) of different shrub species as well as of regenerating P. brutia and P. nigra at 

different ages were obtained (Appendix 2). Measurements were taken for regenerating 

trees at different ages. According to Spanos et al. (2000) the annual height growth of 

P. brutia showed linear regression kinetics throughout the 5 (and conceivably 9) year-

long post-fire period, with a yearly increment of 17 cm. As for P. nigra, the tree is 

moderately fast growing (30-70 cm/year).  
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Measurements were taken from P. brutia and P. nigra trees of two groups of ages. 

The first group represents trees younger than 10 years old and the second group 

represents trees older of 10 years old and older. A FieldSpec Pro VNIR spectrometer 

(350-1050 nm range; 3nm spectral resolution; 1.4 nm spectral sampling interval) was 

employed. A 10º foreoptic was used, and the spectrometer was mounted on a stand of 

0.75 m above the target giving a 16.628 cm radius of FOV. At least five 

measurements were recorded for each age and normalized against a calibrated white 

reference panel. To reduce the effects of low sun angle, showdown and longer 

atmospheric pathlengths, scans were recorded within two hours either side of the solar 

noon and sky conditions were clear for all sampling times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Field spectral measurements 

 

Also, in the summers of 2003 and 2004 all burned areas were surveyed for locating 

homogeneous vegetated areas (Figure 11) after fires. Sixty six plots (Figure 12) of 

minimum 30x30 m large and of homogenously regenerated forest and recovered 

vegetation were located within the fire affected areas and covered by the Hyperion 

image. 
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Figure 11 Areas of homogeneously regenerated forest and recovered vegetation 

 

 
Figure 12 Numbered field plots overlaid over the Hyperion image 
 

The other datasets used in this study were: 

� A fire perimeter map of the three fires, published by the Greek Forest Service;  

� A 1:50000 Topographic map of Thasos; 

� A Digital Elevation Model (DEM) of Thasos, with 10 m pixels size. The 

elevation grid was generated from a 1:5000 contour map (Gitas 1999). 
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3.3 CHAPTER SUMMARY 

In summary: 

• The climate of Thasos is Mediterranean mild. It is cool in the summer and 

moderate in the winter. The average annual temperature is 17.2 oC and the mean 

annual precipitation is 783.48 mm. 

• In addition to the phrygana, maquis and forest areas, other landcover types that 

exist include bare land, fields, orchards and human settlements. 

• The largest fires on Thasos Island occurred between 1980 and 1990 and resulted 

in the loss of about 20,000 ha of Pinus brutia and Pinus nigra forests, leaving 

behind an affected area that constituted more than half the size of Thasos. 

• Based on all the geographic characteristics of Thasos, such as the complex relief 

types, the diversity of landcover areas and the large extents of the fires, it can be 

concluded that the island represents an ideal site for operational burned area 

mapping. 

• Image data such as Landsat-TM images, Ikonos, QuickBird and Hyperion were 

collected and field data such as fire type and severity, areas of homogenously 

regenerated forest and recovered vegetation, and spectro-radiometer 

measurements were employed. 
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CHAPTER 4: SATELLITE DATA PRE-PROCESSING 

 

In Chapter 3 the environmental conditions on the island of Thasos were outlined and 

the datasets employed were presented. The different satellite data such as Landsat-

TM images, Ikonos, QuickBird and Hyperion were collected and field data related 

fire severity, homogenous regenerated areas and spectro-radiometer measurements 

were recorded. This chapter deals with the pre-processing of all collected satellite 

data, a preparatory phase which, in principle, improves data quality to provide the 

basis for later analyses. After representing the concept behind satellite data pre-

processing, each of the chapter sections describes one of the main three image pre-

processing steps, namely, radiometric correction, geometric correction and finally 

topographic correction. 

 

4.1 THE CONCEPT 

In this chapter, the main three image pre-processing steps undertaken were: 

• radiometric and atmospheric correction, so that the influence of the atmosphere 

degradation is removed; 

• geometric correction, to bring the remotely sensed data into registration with a 

map in order to make the images and the auxiliary data geographically 

comparable; and 

• topographic correction, to reduce the effect of relief present on the imagery of 

rugged terrains areas so that image classification accuracy can be improved. 

 

The decision to use atmospheric correction for the Landsat TM and Ikonos images 

was based on the evidence that burned area discrimination is more accurate when 

applied to atmospherically corrected satellite images (Mitri and Gitas 2004a). 

Hyperion image was atmospherically corrected due to the fact that the spectral values 

were related to ground reflectance. In the case of QuickBird, the work was done on a 

single-date image data, and the spectral values were not related to ground reflectance. 

Therefore, the atmospheric correction was not necessary in this case. 
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Landsat TM 1989 Landsat TM 1985 

Atmospheric 

correction 

Geometric 

correction 

Topographic 

normalization 

DEM Planimetric 
map 

DE-relief 
(DEM) 

Corrected LANDSAT 
1985 

Corrected LANDSAT 
1989 

ATCOR 2 
(ground reflectance 

data) 

Erdas  

Ikonos 2000 

Darkest pixel 
substraction 

QuickBird 2004 

Corrected Ikonos 

RPC file 

Ortho-

rectification 

Corrected QuickBird 

Hyperion 
2003 

FLAASH 
(ground 

reflectance data) 

Corrected Hyperion 

The topographic correction of the high spatial resolution imageries of Ikonos and 

QuickBird was avoided due to the absence of a similar or higher spatial resolution 

Digital Elevation Model (DEM). Also, the Hyperion image was not topographically 

corrected in order not to alter the spectral reflectance of the data. 

 

The flowchart of the satellite data pre-processing is described in Figure 13.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Flowchart of the images pre-processing 
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4.2 RADIOMETRIC CORRECTION 

The main purpose of applying radiometric correction is to reduce the influence of 

errors or inconsistencies in image brightness values that may limit one's ability to 

interpret or quantitatively process and analyze digital remotely sensed images.  

 

Radiometric pre-processing influences the brightness values of an image to correct for 

sensor illuminations or to adjust the values to compensate for atmospheric 

degradation. Any sensor that observes the earth’s surface using visible or near-visible 

radiation will record a mixture of two kinds of brightness. One brightness is due to the 

reflectance from the earth’s surface - the brightness that is of interest for remote 

sensing. But the sensor also observes the brightness of the atmosphere itself - the 

effect of scattering. Therefore, one objective of atmospheric correction is to identify 

and separate these two components so the main analysis can focus on examination of 

the correct surface brightness (Campbell 1996). 

 

4.2.1 Background 

All electromagnetic radiation must travel through the Earth's atmosphere and along 

the way several things can alter the radiation in some way, either by redirection or a 

change in energy level.  The further away a sensor is from its target, the larger the 

atmospheric effects are upon the radiation.  

 

Scattering is the redirection of electromagnetic (EM) energy by particles suspended 

in the atmosphere.  It is dependant upon the number of particles present in the 

atmosphere, the size of the particles, the wavelength of incoming radiation and the 

depth of atmosphere that the radiation must travel through. 

   

Particles that are small relative to the wavelength of incoming radiation create 

Rayleigh scattering. Rayleigh scattering is wave length dependent, favouring short 

wavelengths, and is responsible for the sky appearing blue. Mie scattering is produced 

by particles having a diameter approximately equal to the wavelength of the incoming 

radiation.  Mie scattering is typically created by dust, smoke, haze and water droplets 

in the lower atmosphere. The scattering produced by very large particles relative to 
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the incoming radiation is nonselective.  As the name implies, nonselective scattering 

is not wavelength dependent and scatters all wavelengths equally.   

 

Absorption occurs when atmospheric particles do not allow EM radiation to be fully 

transmitted.  The amount of energy absorbed is dependent upon the absorber and the 

wavelength of incoming radiation.  Energy that is absorbed is then re-emitted at 

longer wavelengths.  There are three gasses in the atmosphere that are responsible for 

most of the absorption in the earth's atmosphere, namely, ozone (O3), carbon dioxide 

(CO2) and water vapour (H2O).  .   

Refraction is the deflection of EM radiation as it passes from one medium with one 

refractive index to a medium with a different refractive index. In the Earth's 

atmosphere, temperature, composition and humidity all affect the density which in 

turn affects the refractive index 

Digital sensors record the intensity of Electromagnetic Radiation (ER) from each spot 

viewed on the Earth’s surface as a Digital Number (DN) for each spectral band. The 

exact range of DN that a sensor utilizes depends on its radiometric resolution.   

 

4.2.2 Implementation 

The task of earth observing sensors is the mapping of surface properties. However, 

the surface information is masked, since the signal recorded by spaceborne optical 

sensors consists of several components and their magnitudes depend on atmospheric 

conditions. In addition, topographic effects strongly influence the recorded signal. 

The objective of an atmospheric correction is the elimination of atmospheric and 

illumination effects to retrieve physical parameters of the earth's surface, e.g. surface 

reflectance, emissivity and temperature.  

This information can be used for monitoring, change detection, surface-vegetation 

atmosphere transfer (SVAT) modelling, and surface energy balance investigations for 

climatic modelling and upscaling. Therefore, atmospheric correction is an essential 

part of pre-processing and a prerequisite for the derivation of certain value adding 

products.  
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The Spatially-Adaptive Fast Atmospheric Correction Algorithm (ATCOR2), 

developed by Richter (1990) and compiled using the MODTRAN-2 and the 

SENSAT-5 codes, was used in this study for atmospherically correcting the Landsat-

TM imaging. The model calculates a ground reflectance image in each spectral band: 

the first step assumes an isotropic (Lambert) reflectance law neglecting the 

neighbourhood of each pixel. The second step accounts for the influence of the 

neighbouring background (adjacency effect). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Schematic sketch of radiation components for a flat terrain (solar region) 

 

The at-sensor radiance is split into three components (Figure 14): 

 

Component 1: path radiance: radiation scattered by the atmosphere  

Component 2: reflected radiation from the viewed pixel (Edir+Edif)  

Component 3: radiation reflected by the neighbourhood and scattered into the view 

direction (adjacency effect). 

 

From the three components mentioned above, only component 2 contains information 

from the viewed pixel. DN is the digital number recorded in a certain spectral 

channel, and C0, C1 are the offset and gain of the radiometric calibration relating the 
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DN to the at-sensor radiance L = C0 + C1*DN. The atmospheric correction process 

removes the signal components 1 and 3 from the total at-sensor radiance L, so 

radiance component 2 remains. This information is converted into a surface 

reflectance value. Here, the input variables are the day of data acquisition and the 

solar zenith angle. The former is used to calculate the Earth/Sun distance in 

astronomical units. The radiance into reflectance conversion eliminates the in between 

scene variability due to the differences in earth/sun distance and sun zenith angle. 

 

From a catalogue of functions stored in lookup tables, the selection of the appropriate 

atmospheric correction model is required for the removal of atmospheric effects. The 

user should normally work in a way to specify all the needed input information. An 

iterative process is used to determine the aerosol types as well as a best approximation 

of image visibility. 

 

ENVI’s (The Environment for Visualizing Images, software version 3.6) atmospheric 

correction module, called FLAASH (Fast Line-of-sight Atmospheric Analysis of 

Spectral Hypercubes) for retrieving spectral reflectance from hyperspectral radiance 

images was employed to atmospherically correct the Hyperion image. The FLAASH 

module incorporates the MODTRAN41 radiation transfer code (Berk et al. 1989, 

Berk et al. 1998, Adler-Golden et al. 1999, Matthew et al. 2000). 

 
4.2.3 Parameters used and resulting images 

The Landsat-TM scenes were processed with the spatially-adaptive correction 

algorithm of ATCOR2. It was found that the atmospheric correction function for the 

1985 image was for a mildatitude summer atmosphere, maritime aerosol, at a 

visibility of 25 km. For the 1989 image, it was a humid atmosphere, rural aerosol, at a 

visibility of 25 km.  

 

Figure 15 shows the result of the atmospheric correction for the six different bands of 

the image. The left figure represents the spectral profile of the Landsat-TM 1985 

before the atmospheric correction. The right figure represents the spectral profile from 

the same image after atmospheric correction. 
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A broadening of the four histograms is evident. This is due to dependence of 

atmospheric correction on the type of surface which tends to increase the contrast 

between low and high reflective surfaces. Also noticeable is a general reduction in 

reflectance values. This is normal since the contribution of atmospheric Raleigh and 

aerosol is higher than the ozone absorption, and correction of the atmospheric effects 

tends to decrease the reflectance values at that wavelength. By contrast, the 

reflectance values found in channels 4, 5 and 7 (band 6) increase after correction as a 

result of the weak component of Raleigh and aerosol scattering and the high water 

vapour absorption. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 Spectral profile of the Landsat-TM 1985 before and after atmospheric correction  

 

The lack of field radiometry data at the time of image acquisitions did not allow a 

qualitative determination of the accuracy of the radiometric correction method. 

However, the effectiveness of the method in reducing the in between-scene 

illumination was quantitatively studied by regressing the surface-reflectance-corrected 

spectra of pseudo-invariant targets between the two images of 1985 and 1989 for all 

bands. Table 8 represents the regression coefficients and goodness of fit values 

resulting from the regression of the 1985 Landsat image to the 1989 Landsat image. 

The table shows that the regression coefficients were significantly different from 1 

which indicates that the pseudo-invariant targets have the almost the same reflectance 

values across the two images. Therefore, it can be concluded that the in between-

scene illumination variation was greatly reduced. The goodness of fit values for the 

regression models indicate if the resulting surface-reflectance-corrected spectra have 
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residual artefacts due to the imperfect radiative transfer models and the imperfect 

knowledge of the detailed spectral response of the sun (Mather 1999, Clarck et al. 

1999). 

Table 8 Regression coefficients and goodness of fit values (Landsat 1985-1989) 

TM Bands   Regression Coefficient    r^2  
B1    1.043      0.995 
B2    0.913      0.998 
B3    0.924      0.995 
B4    0.931      0.991 
B5    0.922      0.995 
B7    0.906      0.996 
    

As for Hyperion, in the raw image water vapour absorption features were located at 

approximately 721 nm, 823 nm, 940 nm, 1124 nm and 1366 nm. Also a common CO2 

signature that consists of two absorption features was observed near 2000 nm. Figure 

16 shows common atmospheric absorption features in the radiance spectrum of a road 

pixel of the Hyperion scene. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 Common atmospheric absorption features of the Hyperion scene 

 
The total number of output bands after atmospheric correction using FLAASH was 

198, since out of the original 242, only 8-57 and 77-224 are calibrated and were kept. 

Output data were scaled to 10000 (10000=100% reflectance). Using the Bad Band 

Selection tool in Erdas 51 bad (no data) and noisy bands (due to water absorption in 

the atmosphere), were eliminated. These layers were: 50-55; 71-74; 94-107; 139-160; 
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194-198. That means the bands that were laminated were: 57; 77-81; 97-100; 120-

133; 165-186 and 220-224. The final output image was composed of 147 bands. Final 

data were scaled from 0 to 1. Figure 17 shows a spectral profile of a road pixel in the 

atmospherically corrected Hyperion scene. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17 Atmospherically corrected Hyperion  

 
The atmospheric correction of the Ikonos image involved the Darkest Pixel method. 

From an operational point of view, the Darkest Pixel method, which derives its input 

parameters from the image itself, and is relatively easy to implement, is to be 

preferred over more sophisticated techniques that require the acquisition of 

atmospheric or meteorological data (Hadjimitsis et al. 2004). Based on the above, 

atmospheric correction in this subtracted the minimum value of each spectral channel 

from each pixel’s brightness in that channel (Figure 18). 

 

 

 

 

 

 

 

 

 

 

Figure 18 Spectral profiles from the atmospherically corrected Ikonos image 
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4.3 GEOMETRIC CORRECTION 

Raw digital images usually have such significant geometric distortions that they 

cannot be used as maps, nor be compared with maps or to each other. These 

distortions are due to the Earth, the satellite, the orbit and the image projection. The 

contribution of the Earth comes from its rotation, oblateness, and curvature. The 

satellite causes image distortion by its variation in velocity, attitude, and altitude. The 

projection of the earth's spherical surface on a flat image and the scan skew of the 

sensor are also responsible for significant geometric errors (Lillesand and Kiefer 

1994, Nguyen and Ho 1988).  

 

The purpose of geometric correction is to compensate for the distortions introduced 

by these factors so that the image will have the properties of a map. When the image 

achieves the geometric integrity of a map meaningful image-to-image comparisons 

can be made, as well as comparisons among images acquired at different times and by 

different sources. Also in applications which require precise geographical positioning 

of ground characteristics, such as cartographic mapping or analysis of certain features 

in specific locations; these images must be geometrically corrected in order to 

perform image-to-map registration (Nguyen and Ho 1988). The most widely used 

projection system in remote sensing is Universal Transverse Mercator (UTM). This 

involves projecting the earth’s surface on cylinders touching the earth along its 

meridians. This projection is well suited for Landsat imagery except in the Polar 

Regions where there is considerable distortion (Nguyen and Ho 1988).  

 

Using the ERDAS "geometric correction" option “LANDSAT”, images can be 

geometrically corrected and registered. A number of clearly visible small ground 

features, well-distributed across the original map sheet, must be located on the image. 

These control points are often road and/or stream intersections. Each control point is 

located on the displayed image and the equivalent UTM coordinates are keyed in. 

Three (3) different types of geometric correction (data resampling) techniques are 

available as follows: Nearest Neighbour, Bilinear Interpolation and Cubic 

Convolution. The nearest neighbour resampling technique is often used because it 

offers the advantage of computational simplicity and does not alter the original input 

pixel values (Lillesand and Kiefer 1994).  
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4.3.1 Background 

Four basic processes must be performed to geometrically rectify or ortho-rectify an 

image into a map coordinate system (Jensen 1996):  

• Identification of Ground Control Points (GCPs) in the original imagery and on 

the reference map; 

• mathematical modelling of the geometric distortion by fitting the GCPs into a 

polynomial equation using least-square criteria; 

• relocation of every pixel in the original input image (x’, y’) to its proper position 

in the rectified output image (x, y); 

• extraction of the brightness value for every pixel from its (x’, y’) location in the 

original image and its relocation to the appropriate (x, y) coordinate location in 

the rectified output image (image resampling). 

 

The intent for geometric correction of imagery is to compensate for the distortions 

introduced by a variety of factors so that corrected imagery will have the geometric 

integrity of a planimetric map. A transformation equation allows the reference 

coordinates for any data file location to be precisely estimated and to be transformed 

from one coordinate space to another. The statistical technique of least squares 

regression was used to determine the coefficients for the coordinate transformation 

equations. For each point, a predicted image location is determined and the difference 

between the predicted image location and known image location is used in the 

calculation of a Root Mean Square error (RMSerror). The RMSerror (equation 4.1) is 

generally reported in units of image pixels; the smaller the RMSerror, the more accurate 

the rectification.  According to Luque (2000), the standard range of accepted error is 0 

≥ RMSerror ≤ 0.6. 

 

( ) ( )22
knownprecknownprec yyxxRMS −+−=      (Equation 4.1) 

  

The RMS error gives an indication of how “well” the polynomial equation represents 

the functional relationship between the image and map coordinates. 
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Three main resampling methods can be used to relocate the brightness values from 

their original location into the rectified image. The nearest-neighbour is a method that 

uses the input cell value closest to the output cell as the assigned value to the output 

cell; bilinear interpolation calculates the output cell value by calculating the weighted 

average of the four closest input cells (a 2x2 array) based on distance; and cubic 

convolution Calculates the output cell value by calculating the weighted average of 

the closest 16 input cells (a 4x4 array) based on distance.  The nearest-neighbour was 

the resampling method used in this study. The nearest-neighbour method does not 

alter the pixel brightness values during resampling (Robinove 1982), whereas the 

other two methods use averages to compute the output brightness values, often 

removing valuable spectral information.  

 

The nearest neighbour approach uses the value of the closest input pixel for the output 

pixel value. To determine the nearest neighbour, the algorithm uses the inverse of the 

transformation matrix to calculate the image file coordinates of the desired geographic 

coordinate. The pixel value occupying the closest image file coordinate to the 

estimated coordinate will be used for the output pixel value in the georeferenced 

image. 

 

Advantages of the nearest-neighbour approach: 

• output values are the original input values. Other methods of resampling tend to 

average surrounding values. This may be an important consideration when 

discriminating between vegetation types or locating boundaries; 

• since original data are retained, this method is recommended before 

classification; 

• easy to compute and therefore fastest to use.  

 

Disadvantages of the nearest-neighbour approach: 

• produces a choppy, "stair-stepped" effect. The image has a rough appearance 

relative to the original unrectified data; 

• data values may be lost, while other values may be duplicated. This loss of data 

may result in breaks in linear features such as roads, streams, and boundaries. 
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4.3.2 Implementation and resulting images 

The LANDSAT model was used to geometrically correct the two Landsat TM 

images. The LANDSAT model allows ortho-rectification of Landsat data, such as TM 

and MSS, which have multiple perspective centres. 

Ortho-rectification is a more advanced and more rigorous method of rectifying 

imagery. Ortho-rectification is a form of rectification that corrects geometric errors 

inherent with photography caused by relief displacement, lens distortion, and the like. 

In the ortho-rectification process, relief displacement was corrected with the use of a 

DEM by including Z values (elevation form the DEM), Sensor attitude/orientation 

was corrected by taking into account the exterior orientation (position and 

orientation), and internal sensor errors were corrected by looking at the internal 

geometry of the sensor.  

A 10-metre grid size Digital Terrain Model (DTM) and a 1:50,000 planimetric map 

were used in the process.  The geometric correction proceeded by identifying GCPs in 

the Landsat images and on the planimetric map.  

 

Accurate ground control points, locations that were found both on the image and in 

the map, were essential for an accurate rectification. From the ground control points, 

the rectified coordinates for all other points in the image are extrapolated. The more 

dispersed the GCPs are, the more reliable, the rectification will be .The coastline and 

some road intersections provided excellent locations for the selection of GCPs. 

 

Approximately 30 GCPs were selected spaced as widely as possible across the study 

areas for each image and using features that are readily identifiable and not likely to 

move, e.g., road intersections.  The GCP coordinates were recorded from the map and 

from the image and then used in the least squares regression analysis to determine the 

coordinate transformation equations.  

 

Once a large number of ground control points have been determined, it is a common 

practice to remove points with high RMS errors and to adjust the points to improve 

the overall RMS error, taking into consideration that many effects, such as 
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topography, would introduce complexity in the actual functional relationship that 

cannot be modelled with a low-order polynomial equation. 

 

The technique that was used in this study for the interpolation was the nearest-

neighbour; the value of the image pixel whose centre ends up nearest that of the 

output grid was placed in the output grid. 

 

The two images were then reprojected using a continuous polynomial approximation 

into the Greek EGSA projection system, a process by which the geometry of the 

image areas was made planimetric by referencing to a standard map projection.  It 

was necessary to re-project the images in order to render them geographically 

comparable with the other datasets used in this study. 

 

The statistical technique of least squares regression was used to determine the 

coefficients for the coordinate transformation equations. The total RMSerror associated 

with the GCPs used for orthorectifying the 1985 and the 1989 Landsat images were 

equal to 0.31 and 0.37, respectively. These solutions with low RMS were likely to be 

good fits of the two datasets.  

 

A good fit of the orthorectified Landsat TM image (1985) and the topographic map is 

shown in Figure 19. 
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Figure 19 The 1:50 000 map and the ortho-rectified 1985 Landsat image overlaid 

 

The QuickBird image was ortho-rectified using the Rational Polynomial Coefficients 

(RPC) file provided with the image. The resulted image showed a perfect fit with the 

topographic map as well as with the ortho-photos of the area. 

 

The Hyperion image was geometrically corrected employing the orthorectified 

QuickBird image. Ten image to image Ground Control Points (GCPs) were 

interactively selected on both Hyperion and ortho-rectified QuickBird image covering 

the same area. The Hyperion image was then reprojected using a continuous 

polynomial approximation into the EGSA projection system (Greek grid). The 

statistical technique of least squares regression was used to determine the coefficients 

for the coordinate transformation equations. The total RMSerror associated with the 

GCPs used for geo-referencing the images was equal to 0.46. The low RMSerror 

obtained using the simple polynomial rectification technique can be attributed to the 

good distribution of the GCPs over the two images. At an altitude of 600 m, the red 
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crosshair in the two images (Figure 20) has the same geographic coordinates. The left 

figure is the geometrically corrected Hyperion and right figure is the ortho-rectified 

QuickBird. The crosshair was centred over a square of bare ground. 

 

 

 

 

 

 

 

 

 

 

Figure 20 Accuracy evaluation of the geometric correction of Hyperion 

 

The Ikonos image was geometrically corrected and projected to the Greek grid. A set 

of 20 Ground Control Points (GCPs), which were evenly distributed over the image, 

was used in the procedure, and the nearest neighbour interpolation method was 

employed to resample the image. An overall Root Mean Square error (RMSerror) of 

0.24 was obtained using the simple polynomial rectification technique. The fact that 

the RMSerror was low could be attributed to the absence of high relief in the terrain. 

 



_______________________________________________________________________Chapter 4 Satellite Data Pre-Processing 

 75 

4.4 TOPOGRAPHIC NORMALIZATION 

Topography does not only affect the geometric properties of an image but will also 

have an impact on the illumination and the reflection of the scanned area. This effect 

is caused by the local variations of view and illumination angles due to mountainous 

terrain. Therefore, identical land-cover might be represented by totally different 

intensity values depending on its orientation and on the position of the sun at the time 

of data acquisition. 

 

Neglecting the atmospheric influence and the adjacency effects, we can state that in 

the visible and near-infrared bands the direct sun radiation is the only illuminating 

factor. However, most objects, including forest, have non-lambertian reflectance 

characteristics and the effects of topography on scene radiance cannot be neglected in 

rugged terrain. The next section will focus on the correction of slope-aspect effects.  

 

4.4.1 Background 

An ideal slope-aspect correction removes all topographically induced illumination 

variation so that two objects having the same reflectance properties show the same 

digital number despite their different orientation to the sun's position. Visibly, the 

result is that the three-dimensional relief impression of a scene gets lost and the image 

looks flat.  

 

In order to achieve this result, several radiometric correction procedures have been 

developed. Besides empirical approaches, such as image rationing, which do not take 

into account the physical behaviour of scene elements, early correction methods were 

based on the lambertian assumption, i.e. the satellite images are normalized according 

to the cosine of the effective illumination angle (Smith et al. 1980). However, most 

objects on the earth's surface show non-lambertian reflectance characteristics (Meyer 

et al. 1993). Therefore, the cosine correction had to be extended by introducing 

parameters, which simulate the non-lambertian behaviour of the surface (Civco 1989, 

Colby 1991). The estimation of these parameters is generally based on a linear 

regression between the radiometrically distorted bands and a shaded terrain model. A 

comparison between four correction methods, including the non-parametric cosine 
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correction, confirms a significant improvement in classification results when applying 

the parametric models (Meyer et al. 1993). 

 

Cosine Correction: The cosine correction is a statistic-empirical method. Such 

approaches are based on a significant correlation between a dependent and one or 

several independent variables. The quality of such correction depends on the degree 

of explanation of the regression function. The cosine correction is often applied in flat 

terrain to equalize illumination differences due to different sun positions in 

multitemporal data sets. It is a strictly trigonometric approach based on physical law 

assuming a Lambertian reflection characteristic of objects and overlooking the 

presence of an atmosphere.  

 

)cos(
)cos(

i
sz

LL TH =        (Equation 4.2) 

 

LH   =  radiance observed for horizontal surface;  

LT  = radiance observed over sloped terrain;  

sz   =  sun's zenith angle;  

i   =  sun's incidence angle in relation to the normal on a pixel.  

 

The cosine correction only models the direct part of irradiance. As weakly illuminated 

regions receive a considerable amount of diffuse irradiance, these areas show a 

disproportional brightening effect when corrected (the smaller the cos(i), the stronger 

the overcorrection).  

 

C-Correction: bringing the original data into the form: 

LT = m cos(i) + b       (Equation 4.3) 

 

We can introduce a parameter c which is the quotient of b and m of the regression 

line. The parameter c is built in the cosine law as an additive term:  
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With 
m

b
c =          (Equation 4.5) 

 

c   =  correction parameter;  

m   =  inclination of regression line;  

b   =  intercept of regression line;  

LH  =   radiance observed for horizontal surface;  

LT  =  radiance observed over sloped terrain;  

sz  =   sun's zenith angle;  

i   =   sun's incidence angle in relation to the normal on a pixel;  

 

The effect of c is similar to that of the Minnaert constant. It increases the denominator 

and weakens the overcorrection of faintly illuminated pixels.  

 

Many models have been proposed to remove the effect of relief present on imagery of 

rugged terrain areas (Gitas 1999). These include classical band rationing (Holben and 

Justice 1981), Lambertian illumination modelling (Colby 1991), and non-Lambertian 

illumination modelling (Baker et al. 1991). Vegetation and soil cover classes on 

steeper slopes have been found to be overcorrected using the Lambertian model 

(Costa-Posada 1997). Overall, of the non-Lambertian models, the Minnaert model is 

currently the most promising (Costa-Posada and Devreux 1995). 

 

A principle developed by Minnaert (1941) and a method outlined by Smith et al. 

(1980) proposed an equation that allows favouring certain directions of scattering 

over others, unlike the perfectly diffuse reflector assumed by the Lambertian 

correction. The equation is as follows: 

 

Ls = Ln (cos(i)kcos(e)k-1)      (Equation 4.6)  
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Where: 

Ls is the scattered radiance. 

i is the angle of incident e. 

e is the angle of exitance: the angle between a perpendicular to the surface and  

 the sensor. 

Ln is the normalized radiance: the theoretical radiance with the sun and the sensor  

 at nadir (i=0, e=0). 

K  is the Minnaert or k constant, it varies between 0 and 1 (when k is 1 the  

 Minnaert model becomes Lambertian). 

 

The normalized radiance can be derived from equation 4.6 as 

 

1)cos()cos( −
=

k

S

ei

L
Ln           (Equation 4.7)  

 

The method used to calculate the value K is as follows: logarithmically linearising 

equation 4.6:  

 

log[Ls cos(e)] = log[Ln] + K log[cos(i) cos(e)]    (Equation 4.8) 

 

4.4.2 Applying the DE_RELIEF algorithm 

The De-relief algorithm corrects radiometrically preprocessed remote sensed data for 

the topographic effect using the Minnaert model (equation 4.6) with a single k 

coefficient for every different band of the image. Using it for each band separately 

makes it possible to correct each band with a different k coefficient (Gitas 1999). The 

method calculates the normalised reflectance for each pixel by first calculating the 

cosine incidence (cos(i)) and after that the cosine exitance (cos (e)). 

 

Cos(i) = sin (Se)*Cos(S) + cos(Se)*sin(S)*cos(A-Sa)  (Equation 4.9) 
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Where: 

Se is the solar elevation 

Sa is the solar azimuth 

S is the slope 

A is the aspect 

 

Pixel slope and aspect can be derived from a digital elevation model (DEM), while 

solar elevation and solar azimuth can be obtained from the image file metadata. This 

first step results in an image that resamples the surface illumination conditions at the 

same acquisition time of the satellite image. Then, the calculation of the normalized 

reflectance for each pixel is applied on each band individually because k values 

change with wavelength. From equation 4.7, and since the satellite view angle is close 

to nadir (cos(e)≈cos(S)), the normalised radiance can be expressed as: 

 

k

k

i

e
LsLn

)cos(

)cos( 1−

=        (Equation 4.8) 

 

Where: 

cos (i) represents the result of the first step of the model 

Ls represents the result of the atmospheric correction applied on the image 

K represents the result of a regression of equation C with all of the data of the  

 image 

 

4.4.3 Implementation 

The De-Relief programme was used in order to topographically normalize the two 

Landsat images of 1985 and 1989. The procedure followed for the correction of the 

1985 image is described in this section. The other Landsat image of 1989 was 

corrected in an identical way. Table 9 shows the sun elevation and sun azimuth of the 

Tow landsat TM images of 1985 and 1989. 
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Table 9 Sun elevation and sun azimuth for the two Landsat TM images of 1985 and 1989  

    1985     1989 
Solar elevation  42.4      44 
Solar Azimuth   142.4     140 
 

The first step was to calculate the cosine intercept. Slope and aspect images were 

derived from the DEM of Thasos, while sun elevation and sun azimuth were obtained 

from the metadata file.  

 

After the cosine incidence had been calculated, it was used in the second step of the 

model, together with the slope raster map, the atmospherically corrected single TM 

bands, and the k constant. The k value was used for each band individually, and the 

best value which produced the best result was chosen empirically.  

 

Once the K values were determined using linear regression analysis, the Minnaert 

correction method was applied to the two Landsat TM images. The results of the 

analysis are shown in Tables 10 and 11. 

 

4.4.4 Resulting images  

The final result of the topographic normalization was the topographically corrected 

Landsat TM 1985 and Landsat TM 1989 images. It was not possible to evaluate the 

effectiveness of the topographic correction quantitatively; however, topographic 

normalization greatly reduced the illumination variation across the scene. This was 

visually evaluated.  

 

The Near Infra Red (NIR) band (band 4 in Landsat-TM) is severely affected by the 

topographic effect (Kawata et al. 1988). A comparison between the band 4 of the 

original image and the topographically normalized band 4 showed a reduction of the 

topographic effect. In Figure 21 the left image represents a subset of the original 1985 

Landsat TM (band 4) showing the effects of topography on scene radiance resulted 

from rugged terrain. The right image represents a subset of the topographically 

corrected Landsat TM (band 4) showing how the topographic effect was suppressed in 

shaded areas after applying the topographic correction.  
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Table 10 Empirically derived K per band for the 1985 Landsat scene 

TM  bands     k 
Band 1      0.7 
Band 2      0.65 
Band 3      0.6 
Band 4      0.55 
Band 5      0.5 
Band 7      0.45 
 

Table 11 Empirically derived K per band for the 1989 Landsat scene 

TM bands     k 
Band 1      0.65 
Band 2      0.7 
Band 3      0.6 
Band 4      0.5 
Band 5      0.55 
Band 7      0.6 
 
  
 

 

 

 Topographic correction 

 

 

 

 

Figure 21 Image subset of topographic correction 

 

 

 

 

 

 

 

 

 

 



_______________________________________________________________________Chapter 4 Satellite Data Pre-Processing 

 82 

4.5 CHAPTER SUMMARY 

In summary: 

• The satellite images are largely contaminated by the effects of atmospheric 

particles through absorption and scattering of the radiation from the earth 

surface. The objective of the atmospheric correction was to retrieve the surface 

reflectance (that characterizes the surface properties) from remotely sensed 

imagery by removing the atmospheric effects. 

• In the case of the Landsat TM images, the Spatially-Adaptive Fast Atmospheric 

Correction Algorithm (ATCOR2) was employed. The model calculated a 

ground reflectance image in each spectral band. 

• FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) for 

retrieving spectral reflectance from hyperspectral radiance images was 

employed to atmospherically correct the Hyperion image. 

• The accuracy of the radiometric correction method applied to the images was 

not quantitatively determined.  This is due to the lack of field radiometry work 

at the time of image acquisition. 

• The effectiveness of the method applied to the Landsat TM images in reducing 

the in between-scene illumination was quantitatively studied. The atmospheric 

correction for the Landsat images was very effective in reducing the in between-

scene illumination variation. 

• The satellite images were geometrically corrected and reprojected (Greek EGSA 

projection system).  

• A correction of the images for topographic corrections (using DE-relief 

algorithm) was applied to the Landsat TM images. The topographic correction 

of the high spatial resolution imageries of Ikonos and QuickBird was avoided 

due to the absence of a similar or higher spatial resolution Digital Elevation 

Model (DEM). Also, the Hyperion image was not topographically corrected in 

order not to alter the spectral reflectance of the data. 

• The topographic correction appeared to be an improved means of eliminating or, 

at least, greatly reducing illumination variation induced by topography, as 

similar surfaces on opposite sides of the ridges appeared to have similar 

brightness values.  
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CHAPTER 5: MAPPING THE TYPE AND SEVERITY OF 

FIRE USING IKONOS IMAGERY 

 

Chapter four presented the different pre-processing steps of the satellite data used in 

this work and described the undertaken atmospherically, geometrically and 

topographically corrections of the images. In this chapter, a classification approach 

for fire type and severity mapping using object-oriented image analysis and 

employing the pre-processed Ikonos image will be developed. The area under 

investigation was burned in 2000 as describe in chapter 3. Section one will deal with 

the first main objective of the study, which is fire type mapping. Section two will deal 

with the second main objective, which is fire severity mapping.  

  

Traditional methods of recording fire type and fire severity included field work or 

observations from an airborne platform and then mapping (manually) resource 

damage into predetermined classes. As fire sizes increase, and time becomes a 

constraining factor, traditional methods become costly and labour-intensive to the 

point where accurate mapping of severity classifications is precluded (Bertolette and 

Spotskey 2001).  

 

Although remotely sensed data have been shown to provide accurate post-fire 

information shortly after the fire event (Smith and Woodgate 1985, Milne 1986, 

Chuvieco and Congalton 1988b, Jakubauskas et al. 1990, White et al. 1996, Patterson 

and Yool 1998, Beaty and Taylor 2001, Escuin et al. 2002, Pollet and Omi 2002), the 

accurate mapping of the type and severity of fire seems to be in its early stages. 

 

Previous studies for detecting fire severity from remotely sensed data concentrated on 

analyzing post-fire AVHRR, MODIS, SPOT, AVIRIS, ASTER, among others 

(Chuvieco and Martin 1994, Barbosa et al. 1999, Van Wagtendonk et al. 2004, Roy et 

al. 2005), Landsat Multispectral Scanner (MSS) and Thematic Mapper (Hunt and 

Rock 1989, White et al. 1996, Patterson and Yool 1998, Key and Benson 2000, 2002, 

Key et al. 2002, Diaz-Delgado et al. 2003), Enhanced Thematic Mapper Plus (Rogan 

and Franklin 2001, Brumby et al. 2002) and ERS-2 SAR images (Siegert and Ruecker 

2000). However, burned areas were not always discernable from unburned 
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background and acceptable results were not obtainable in the case of insufficient 

radiometric and spatial resolutions. Fire severity mapping presented a series of 

problems, caused by spectral confusion between vegetation affected by surface fire 

and unburned vegetation, between moderately burned vegetation and sparse 

vegetation, and between burned shaded and unburned shaded vegetation (Rogan and 

Franklin 2001). 

 

Therefore, new types of satellite data such as Ikonos imagery, whose high spatial 

resolution is comparable with that of an aerial photo, are opening up a new frontier in 

remote sensing (Tanaka and Sugimura 2001). The new generation of very high spatial 

resolution sensors, such as Ikonos, made it possible to detect small objects not 

captured by medium-high resolution sensors. Therefore, these high spatial resolution 

sensors could overcome some of the problems encountered mainly when using 

Landsat-TM imagery in fire severity mapping. One major application in which very 

high resolution images are expected to bring new insight is in the provision of post-

fire related information (Gitas and Rishmawi 2003, Van Wagtendonk et al. 2004).  

 

Very high spatial resolution imagery of high quality provided by new satellite sensors 

is characterized by high user interpretability, rich information content, sharpness, 

accuracy, high image clarity and integrity. Pixel-based classification is aggravated by 

the rich information of this imagery (De Wit and Clevers 2004). Therefore, object-

based classification, which deals with objects (group of pixels), represents an 

advanced tool for classifying high spatial resolution imagery. 

 

The two main objectives of this chapter are: 

1. To map the type of fire using object-based classification of Ikonos imagery. 

2. To map the severity of fire using object-based classification of the same 

Ikonos imagery. 
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5.1 FIRE TYPE MAPPING  

The type of fire, the main focus of the first section in this chapter, is related to 

environmental conditions such as topography, wind, fuel type, and condition of the 

fuel. Fire scientists and managers distinguish the following three general types of 

wildland fire: ground, surface, and crown, depending on the fuel stratum in which the 

fire burns (Scott and Reinhardt 2001). More specifically: 

• A ground fire is one that burns in ground fuels such as duff, organic soils, roots, 

and rotten buried logs. 

• A surface fire is one that burns in the surface fuel layer, which lies immediately 

above the ground fuels but below the canopy or aerial fuels. 

• A crown fire is one that burns in elevated canopy fuels. 

 

Distinguishing and mapping areas of surface and crown fire spread has significant 

applications in the study of fire behaviour, fire suppression and fire effects (Albini 

and Stocks 1986, Stephens 1998, Rogan and Yool 2001, Scott and Reinhardt 2001, 

Graham 2003). 

 

The aim of this study was to develop an object-based classification model to map the 

type of fire using very high spatial resolution imagery. The specific objectives were: 

• to distinguish between surface burn and canopy burn using a post-fire Ikonos 

image; and 

• to assess the accuracy of the classification results by employing field survey 

data. 

 

The development of the object-oriented model involved two steps: segmentation and 

classification using the software ecognition (Benz et al. 2004, Gitas et al. 2004, Mitri 

and Gitas 2004a, 2004b). Image objects were extracted from the image in the 

segmentation procedure prior to classification. The methodology is detailed below.  
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5.1.1 Segmentation 

The segmentation used was a bottom-up region-merging technique starting with one-

pixel objects. In numerous subsequent steps, smaller image objects were merged into 

bigger ones. The procedure simulates an even and simultaneous growth of segments 

over a scene in each step. The algorithm guarantees a regular spatial distribution of 

treated image objects. The underlying patented algorithm is essentially a heuristic 

optimization procedure that minimizes the average heterogeneity of image objects for 

a given resolution over the whole scene. Heterogeneity itself is based not only on the 

standard deviation of image objects, but also on their shape. Weighting between 

spectral and shape heterogeneity enables adjustment of the segmentation results to the 

considered application.  

 

Segmentation parameters were determined empirically in order to produce highly 

homogeneous objects in specific resolutions and for specific purposes. A series of 

segmentations was generated by adjusting the parameters of scale, band weights, 

colour, and shape. As burned areas appeared to be more visible in Ikonos bands 3 and 

4 than in bands 1 and 2, a weight number of ‘2’ was assigned to bands 3 and 4, and a 

weight number of ‘1’ was assigned to bands 1 and 2. The sum of all chosen weights 

for image layers was normalised to 1. Additionally, segmentations based on higher 

colour weights (80%) and lower shape weights (20%) appeared to better match the 

ground features of the image.  

 

Next, a three-level graded scale (15, 60, and 150) of segmentation (Figure 22), 

namely small objects (level 1), middlesized objects (level 2), and large objects (level 

3), was created.  

 

The scale parameter used in the segmentation is an abstract term which determines the 

maximum allowed heterogeneity for the resulting image objects. In heterogeneous 

data, the resulting objects for a given scale parameter are smaller than in more 

homogeneous data. By increasing the scale value, the size of image objects is 

increased. Super-objects at levels 3 and 2 would provide information about the 

classification of the sub-objects at level 1. 
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Large objects 

Middle-sized objects 

Small objects 

 

 

 

 

 

 

 

 

 

Figure 22 Different levels of image segmentation 

 

5.1.2 Classification 

Classification was based on fuzzy logic and consisted of a combination of several 

conditions (Figure 23) that had to be fulfilled for an object to be assigned to a class. 

The fuzzy sets were defined by membership functions that identify those values of a 

feature that are regarded as typical, less typical, or not typical of a class, i.e. they have 

a high, low, or zero membership, respectively, of the fuzzy set.  

 

Classifications were carried out at the three segmentation levels. The classes were: 

• Level 1: ‘surface burn’, ‘canopy burn’, ‘healthy vegetation’, and ‘other’; 

• Level 2: ‘water’, ‘bare soil’, and ‘other’; and 

• Level 3: ‘healthy vegetation’, ‘heavily burned’, and ‘slightly burned’. 
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Slightly burned 
super- objects: 
Higher NDVI 
Higher band ratio 4 

 

Surface burn sub-object conditions: 

• Existence of slightly burned super-objects 
• High relative border to healthy vegetation if it exists 
• Non-existence of bare and water super-objects 

Heavily burned 
super- objects: 
Lower NDVI 
Lower band ratio 4 

Canopy burn sub-object conditions: 

• Existence of heavily burned super-objects 
• Low relative border to healthy vegetation 
• Non-existence of bare and water super-objects 

 

 

Figure 23 Fire type class descriptions (middle: Ikonos subsets in false colour) 

 

Features based on object spectral information as well as object contextual 

information, such as neighbourhood and relation to super-objects and to sub-objects, 

were used in the classification. The features based on object spectral information 

were: the Normalized Difference Vegetation Index (NDVI)-like index (digital 

numbers have been used instead of reflectances or radiances) and the band ratio of 

near infra-red (NIR). The object NDVI was calculated from the NDVI values of all n 

pixels forming an image object, whereas the object band ratio of NIR corresponded to 

the NIR mean value of an image object divided by the sum of all spectral layer mean 

values. 

 

Membership functions were adapted for each chosen classification feature. They 

offered a transparent relationship between feature values and the degree of 

membership to a class. Figure 24 shows membership functions of heavily burned 

super-objects for the features ‘NDVI’ (upper left), ‘band ratio 4’ (upper right), and of 

canopy burn sub-objects for the features ‘existence of’ (lower left) and ‘high relative 

border to’ (lower right). 

 



______________________________________________Chapter 5 Mapping the Type and Severity of Fire Using Ikonos Imagery 

 89 

 

 

 

 

 

 

 

 

 

 

Figure 24 Membership functions  

 

5.1.3 Results and discussion 

The classification at level 1 resulted in the production of a fire type map of the study 

area. Figure 25 shows a ground mapped fire perimeter (white line) and the final 

classification results of the Ikonos image (burned canopy in dark grey and burned 

surface in light grey). An area of 80 ha, representing 43% of the total burned area, 

was classified as canopy burn, whereas an area of 106 ha, representing 57% of the 

total burned area, was classified as surface burn.  

 

 

 

 

 

 

 

 

 

 

Figure 25 Ground mapped fire perimeter (white line) and final classification results  
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The results of the classification were compared to the data collected during the field 

survey. The comparison resulted in the production of a classification error matrix 

(Table 12).The overall accuracy of the classification was 0.87, whereas the total 

Kappa Index of Agreement was 0.74. The examination of the error matrix revealed a 

slight confusion between the surface burn and the healthy vegetation classes.  

 

This confusion is related to the presence of dense healthy vegetation on the image, 

which completely covers areas of surface burn. This confusion could be attributed to 

the inability of the optical sensor to penetrate dense canopy to detect fire-affected 

areas.  

 

Table 12 Fire type mapping contingency matrix 

 reference data 

Classified data canopy burn surface burn total commission error 

canopy burn 13 0 13 0 
surface burn 3 21 24 0.125 
unclassified (non-burned) 0 2 2 - 
Total 16 23 39 - 
Producers accuracy 0.8125 0.913043   
Users accuracy 1 0.875   
KIA per Class 0.71875 0.773913   

 

Close examination of the map produced revealed the spatial distribution of the two 

classes of burn to be highly homogeneous. Also, the border line between surface burn 

and canopy burn appeared to be very irregular as a result of fire transition from 

surface burn to canopy burn, and vice versa. In addition, the road network seemed to 

control the extent of the surface fire, but not the canopy fire. 

 

The resulting map of the total burned area (surface burn plus canopy burn) was 

compared with the fire perimeter map generated by the Forest Service using 

traditional survey methods. The vectorised fire perimeter from the classified image 

was overlaid onto the official fire perimeter. The area measured by the Greek Forest 

Service was 187 ha, whereas that of the classification result was 186 ha, i.e. a 

difference of only 1 ha. The common area between the fire perimeter from the 

classification and that of the Forest Service was 87%. The boundary derived from the 

classification was rather more detailed than that derived by the Forest Service. 
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5.2 FIRE SEVERITY MAPPING 

Tis section investigates the subject of fire severity mapping. In recent decades, the 

number of fires and total surface burns in the European Mediterranean region has 

increased spectacularly (Pausas and Vallejo 1999), incurring significant impacts on 

vegetation (De Luís et al. 2001). The magnitude of these impacts, measured as fire 

severity, is related directly to the level of damage done to vegetation, leaf litter and 

soil (Rogan and Franklin 2001). Fire severity maps are therefore required to locate 

areas in need of post-fire management where fire impact, timber recovery and the 

validation of fire risk and fire behaviour models can be examined (Caetano et al. 

1995).  

 

Although fire severity is a very general concept, it is often defined in less general 

terms, namely fire impact, which is described as the immediate evident effect of fire 

on the ecosystem in terms of biophysical alteration (e.g. crown scorch, soil exposure, 

depth of burn, fuel consumption) (Kafka et al. 2001). According to White et al. 

(1996), fire severity is a descriptive term that integrates the physical, chemical and 

biological changes to a site as a result of fire.  

 

The aim of this study was to develop an object-oriented (Wicks et al. 2002, Gitas et 

al. 2004, Mitri and Gitas 2004a, 2004b) model for mapping fire severity in the 

Mediterranean using very high spatial resolution data of Ikonos. The specific 

objectives were: 

• to differentiate among three levels of fire severity, namely, slightly, moderately 

and heavily burned; and 

• to assess the accuracy of the classification results by employing field data. 

 

The approach applied for fire type mapping is represented in the following sub-

sections. The pre-processed image was firstly segmented and then classified using the 

same software eCognition. Each step followed in the analysis is presented in the 

flowchart (Figure 26). The numbers in the starbursts represent the steps followed. 

Image objects were generated at different scales. The whole image object 

classification was based on fuzzy logic. The following sections describe the different 

followed steps.  
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Figure 26 Flowchart of the methodology for fire severity mapping 

 

5.2.1 Segmentation 

Multiresolution segmentation was firstly applied to the image. The strategy behind 

image segmentation was to create three different levels of image objects at different 

scales. Since it is possible to produce image objects in different resolutions, an object-

oriented image analysis can contain a hierarchical network with different object levels 

of different resolutions. This structure represents image information on different 

scales simultaneously. Thus, different object levels can be analyzed in relation to each 

other.  

 

Image objects can be classified by extracting information from classified sub-objects 

or super-objects (Figure 27). For instance, in a burned area, the possibility of partially 

burned canopies being classified as slightly or moderately burned is much greater than 

if they were located in unburned vegetation.  

 

The segmentation used in this study was also a bottom up region-merging technique 

starting with one-pixel objects. The three levels of segmentation, (level 1, level 2 and 
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Pixel levelPixel level

level 3), were generated using increasing scales of 15, 60 and 150, respectively 

(Figure 27). Individual canopies were found to be best delineated using scale 15. In 

order to improve the delineation of some specific features such as individual canopies, 

the shape heterogeneity for image segmentation was considered only at level 1. At 

level 2, a scale of 60 was useful for extracting large homogeneous image objects of 

water. Finally, scale 150 was found to be useful for representing broad forested areas.  

 

 

 

 

 

 

 

 

 

 

Figure 27 Hierarchical network of image objects 

 

Image layers can be assessed differently depending on their importance or suitability 

for the segmentation result. The higher the weight assigned to a layer, the greater the 

amount of information will be used during the segmentation process. Segmentation 

was achieved by assigning more weights to the NIR band. Several studies have 

indicated that NIR is the best spectral region for burned area detection and mapping 

(Lopez and Caselles 1991, Pereira and Setzer 1993, Caetano et al. 1994, Chuvieco 

and Congalton 1988b, Koutsias and Karteris 1998, Sifakis et al. 2004). This indeed is 

the case, since only few other landcover types tend to be darker than burned areas in 

the NIR part of the spectrum.  

 

Figure 28 shows how multiresolution segmentation at levels 2 and 3, for instance, 

worked on the Ikonos image. At level 2, image regions of different texture were 

separated, even when they were of a similar spectral mean value (e.g., shadows and 

burns). The results of image segmentation at level 3 showed larger homogeneous 

image objects (e.g. burns) and smaller heterogeneous image objects (e.g. group of 
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canopies). Statistics based on both spectral values and contextual values were 

extracted from the objects at different levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 Image subsets show segmentation results at levels 2 and 3 

 

5.2.2 Classification 

An individual representative plot of each severity and landcover case was selected 

independently in order to develop the classification rules. Sample image objects were 

defined in relation to these representative plots. The Ikonos image was classified into 

fire severity classes by training and building up a knowledge base for the 

classification of image objects. The frame of knowledge base for the analysis and 

classification of image objects was the so-called class hierarchy, which contained all 

classes of a classification scheme.  

 

The largest number of classes was created at level 1 due to the presence of highly 

homogeneous segments resulting from an optimal separation and representation of 

image regions. The medium average size of objects at level 2 showed better 
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representation of water objects, which was mainly due to the size of objects. At level 

3, the bigger sized objects would allow a better discrimination between moderately 

burned and heavily burned. Classifications were carried out at the three segmentation 

levels (Figure 29). The classes were: 

• level 1: healthy vegetation, water, bare, shadow in burned, slightly burned and 

burned (with its two subclasses heavily burned and moderately burned), and 

others; 

• level 2: water, bare, healthy vegetation and others; and 

• level 3: healthy vegetation and burned area (with the subclasses slightly burned, 

moderately burned and heavily burned).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 A schematic draw of the class hierarchy  

 

The features selected for the classification are briefly discussed below. Class 

descriptions are performed using a fuzzy approach defined by membership functions 

that identify those values of a feature that are regarded as typical, less typical, or not 

typical of a class. For the construction of a meaningful knowledge base, it was of 

utmost importance to know which features are suited to the separation of target 

classes and how to specify these features.  
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A careful examination of the object features values helped in defining the object 

features that would be used in the classification. A representation of object statistics is 

shown in Figure 30 (the reflectance was scaled by 1000 – left figure: bands 3 and 4 

object mean values, and right figure: NDVI object mean values - LV: Lowly 

vegetated and HV: highly vegetated). 

 

 

Figure 30 Example of object statistical analysis 

 

The statistical analysis performed on the pre-defined sample objects, provided all the 

information necessary to achieve high quality classifications by comparing and 

analyzing single or all image objects in terms of features for classification. Thus, it 

was possible to evaluate whether image objects would be classified correctly or not 

before performing the actual classification. Figure 31 shows the object features that 

were used in the class descriptions.  
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Figure 31 Schematic overview of the features used in the classification 

 

Features based on object spectral information as well as object contextual 

information, such as neighbourhood and relation to super-objects and to sub-objects, 

were used in the classification. The features based on object spectral information 

were: the ‘mean band 3’, the ‘NDVI’, the ‘mean difference to neighbours’ and the 

‘band ratio of NIR’.  

 

The mean digital number of band 3 was calculated from the layer values of all n 

pixels forming an image object. The object NDVI was calculated from the NDVI 

values of all n pixels forming an image object. As for the feature ‘mean difference to 

neighbours’, the layer mean difference for each neighbouring object was computed 

and weighted with regard to the length of the border between the objects or the area 

covered by the neighbour objects. The object ‘band ratio of NIR’ corresponded to the 

Near Infra-Red (NIR) mean value of an image object divided by the sum of all 

spectral layer mean values. The mathematical equations for the previously discussed 

features are presented in Table 13. 
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Table 13 Equations of the mostly used features 

Feature Equation Description 

Band mean value 

∑
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The ratio of layer L is the layer L 

mean value of an image object 

divided by the sum of all spectral 

layer mean values 

 

Following, the classification process is described and strategies for classification are 

given. In the classification process, level 2 was the first to be classified. Water was 

classified using the ratio of NIR and the mean of band 3 because of their low values in 

comparison to other landcover classes. The second classification was applied to level 

3. The NDVI was used to discriminate between burned and healthy vegetation and to 

distinguish between moderately burned and heavily burned. In a procedure called 

classification-based fusion, objects classified as moderately burned and heavily 

burned at level 3 were merged into image objects representing an entire burned area 

by creating a new level of classification. At this new level, potential slightly burned 

objects were identified, taking into account the presence of healthy vegetation objects 

and their neighbouring burned objects. 

 

At level 1, it was crucial to identify the canopy shadows and to allocate them to the 

right class for better classification accuracy. Mainly contextual features were used at 

this level to extract information from the super-objects and the neighbouring objects. 

At this level water objects were classified based on existence of water super-objects at 
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level 2. Single trees in open stands cast a shadow on forest understory, resulting in a 

mosaic of shaded and illuminated pixels. The spectral signature of the shaded pixels is 

very close to that of surface burned areas. The feature ‘mean difference to neighbours 

in NIR’ proved to be effective in identifying shaded objects. The shaded objects were 

assigned to the appropriate classes of fire severity using classification-based fusion at 

level 1, taking into consideration the extracted information from the super-objects, as 

well as from the objects at the same level. Table 14 presents most of the spectral and 

contextual features that were used for each class at the three levels.  

 

Table 14 The features used in each class 

Class Spectral features Contextual features 

Healthy vegetation (1) - Existence of healthy vegetation (3) super-
objects 

Water (1) - Existence of water (2) super-objects 
Bare (1) - Existence of bare (2) super-objects 
Shadow in burned (1) Mean difference to 

neighbours 
Existence of burned area (3) super-objects 

Burned (1) - Existence of burned area (3) super-objects 
Slightly burned (1) - Relative border to shadow in burned (1); 

existence of slightly burned (3) super-
objects 

Moderately burned (1) - Existence of moderately burned (3), ‘Not’ 
slightly burned (1); Relative border to 
healthy vegetation (1). 

Heavily burned (1) - Existence of heavily burned (3) super-
objects 

Water (2) Band ratio of NIR - 
Healthy vegetation (2) NDVI - 
Bare (2) Mean band 3 - 
Others (2) - ‘ Not’ water 
Healthy vegetation (3) NDVI Existence of healthy vegetation (2) sub-

objects 
Burned area (3) NDVI Relative border to healthy vegetation (3) 
Slightly burned (3) NDVI Existence of healthy vegetation (2) sub-

objects; Relative border to healthy 
vegetation (3) 

Moderately burned (3) NDVI - 

Heavily burned (3) NDVI - 

 

Membership functions were adapted for each chosen feature. They offered a 

transparent relationship between feature values and the degree of membership to a 

class (Figure 32). The membership function is basically defined by its left and right 

border values in combination with the function slope. The way a feature value is 

translated into a membership value is defined by the function slope. The represented 

function slope starts at 0, which mean ‘exactly no’ (no assignment) and rises to 1, 
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which means ‘exactly yes’ (full assignment). All values between 0 and 1 represent a 

more or less certain status of ‘yes’ and ‘no’. Thereby, the degree of 

membership/probability depends on the degree to which the objects fulfil the class-

describing properties/conditions. A major advantage of this fuzzy method lies in its 

ability to express uncertainties about the classes’ descriptions.  

 

For successful classification a deliberate choice of membership function was crucial. 

The selection of these membership functions and the setup of thresholds were based 

on an expert knowledge. The better the knowledge about the real system is modelled 

by the membership functions, the better the final classification result. Also, it was 

possible to create advanced fuzzy rules by combining membership functions and by 

using basic operators such as “and” and “or”. The most crucial membership functions 

of the classification and their thresholds were presented in Figure 32. 
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Figure 32 Membership functions of classes (x: feature value, and y: membership value) 

 

The final results of the classification showed the three different classes of fire 

severity: slightly burned, moderately burned and heavily burned (Figure 33). In 
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Figure 33 (*image subset, **classification-based fusion), the results are shown for an 

image subset at different the different levels of segmentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33 Segmentation levels and classification results  

 

5.2.3 Results and discussion 

An area of 0.89 km2, representing 42% of the total burned area, was classified as 

heavily burned, while an area of 0.72 km2, representing 35% of the total burned area, 

was classified as moderately burned. Fire affected areas with low fire severity 

accounted for only 0.47 km2, representing a remaining area of 23%.  

 

According to the map produced from the classification (Figure 34), severely affected 

areas appeared to form large continuous regions while slightly and moderately 

affected areas created a mosaic. All three types of severity appeared in various aspects 

and slopes. 
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Figure 34 Left: the points used for accuracy assessment, right: the classification result 

 

In order to assess the accuracy of the classification, field-collected data (as described 

before) from 36 widely dispersed plots were employed; Key and Benson (2002) 

suggest that burned areas smaller than 4 km2 may be covered by as few as 20 to 40 

plots. The threshold level of fire severity for each plot was adjusted, taking into 

consideration the factors that might directly influence surface reflectance (Key et al. 

2002). Subsequently, three classes of fire severity were distinguished: 

• Heavily burned (CBI >1.7: the crowns of most, if not all, trees were burned). 

• Moderately burned (1 < CBI <= 1.7: extensive burning of the understory, but no 

burning of at least the larger trees).  

• Slightly burned (CBI <= 1: the predominant vegetation comprised burned 

shrubs). 

 

Another step was the selection of some image objects as sample objects. These 

sample objects were geographically matched (location and spatial extent) with the 

field collected plots. The polygon sampling units were initially conceptualized as 

previously segmented homogeneous objects and identified on Earth from the high 

spatial resolution imagery of Ikonos and the GPS points. Polygons sampling units 

were irregular in shape and differed in size (approximately 100 m2). In all cases, each 

of these polygons sampling units covered only one image object and was compared to 

the corresponded classified object (Table 15). 
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The overall classification accuracy was found to be 0.83, while the Kappa Index of 

Agreement (KIA) was 0.74. A closer examination of the accuracies of the individual 

classes revealed that the class ‘heavily burned’ was the most accurately identified, 

followed by the class ‘moderately burned’ and ‘slightly burned’ consecutively.  

 

Table 15 Fire severity confusion matrix 

User Class \ Sample Slightly burned  Moderately burned  Heavily burned  Sum 
Slightly burned   5 3 0 8 
Moderately burned   2 11 1 14 
Heavily burned  0 0 14 14 
Sum  7 14 15 - 
Producer’s accuracy 0.625 0.785 1 - 
User’s accuracy 0.714 0.785 0.933 - 
KIA per class 0.632 0.649 0.89 - 
Overall accuracy  0.833 - - - 
KIA  0.741 - - - 

 
A closer look at the accuracy assessment results indicated that the misclassified 

objects were partially located within areas of dense canopy. This could be attributed 

to the inability of the optical sensors to penetrate dense canopy to detect fire affected 

areas, while the confusion between the ‘slightly burned’ and ‘moderately burned’ 

classes can be attributed to: 

• the shadowing from tree crowns; and 

• the relatively poor spectral information of Ikonos and the way this information 

is related to the fire severity classes resulted from the CBI scoring system. 

 

The main limitation faced in this study was the impossibility of discriminating forest 

understory by the use passive optical remote sensing system. The discrimination of 

forest understory might probably be done with airborne LIDAR (Baltsavias 1999), 

which is able to penetrate the forest canopy and record accurate information of the 

ground fuel condition after fire. 

 

Finally, the ability of the object-based classification to combine spectral with 

contextual information seemed to be the main advantage of the method not only for 

mapping fire severity, but also for deriving other information of particular interest to 

forest scientists and managers (such as object area, neighbouring and texture among 

others).  
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5.3 CHAPTER SUMMARY 

In summary: 

• An object-oriented model was developed using very high spatial resolution 

Ikonos imagery to map fire type on the Mediterranean island of Thasos.  

• The main conclusion drawn is that object-oriented classification can be used to 

accurately distinguish and map areas of surface and crown fire spread (overall 

accuracy of 87% and Kappa Index of Agreement 0.74), especially that occurring 

in open Mediterranean forests.  

• Classification accuracy was mainly affected by the density of the canopy. This 

could be attributed to the inability of the optical sensors to penetrate dense 

canopy to detect fire affected areas.  

• The ability of the object-based classification to combine spectral with contextual 

information seemed to be the main advantage of the method not only when 

mapping fire type, but also when mapping the total burned area. Another 

advantage is its ability to derive other information of particular interest to forest 

scientists and managers. 

• The performance of object-based classification in the mapping of fire severity 

by employing high spatial resolution Ikonos imagery was also evaluated. 

• The general conclusion drawn was that object-based classification resulted in 

mapping 3 classes of fire severity. When assessed with field collected data the 

overall classification accuracy was estimated to be 83% while the KIA was 0.74.  

• Classification accuracy percentages were consistently higher in the case of 

heavily burned areas. 

• The shadowing from tree crowns, the poor spectral resolution of Ikonos together 

with the inability of the sensor to penetrate dense canopy were identified as 

being the main sources of classification confusion.  

• A combination of the Ikonos imagery with other types of data such as RADAR 

and LIDAR, which are able to penetrate the forest canopy, might be worth 

investigating in the future. 
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CHAPTER 6: MAPPING VEGETATION RECOVERY 

USING QUICKBIRD IMAGERY 

 

Chapter five presented an approach for fire type and severity mapping using object-

oriented image analysis and employing the pre-processed Ikonos image. While this 

approach proved to be efficient, accurate, and objective for mapping direct and short 

term post-fire effects, producing accurate maps of long-term post-fire effects (i.e. 

forest regeneration and vegetation recovery), remains more of a challenge. This 

chapter will mainly investigate the possibility of mapping post-fire vegetation recover. 

Also, it is intended to understand better the interactions between vegetation recovery 

and fire severity. The methodology is presented in section one. Section two will 

discuss the results and the last section will summarize the chapter. 

 

The occurrence of fire may be result of vegetation community structure and 

composition (White 1979). Until the 1960s, fire was seen as a disaster to be prevented 

if possible (Kornas 1958, Molinier 1968). Leopold et al. (1963) reported the negative 

aspects of fire suppression in ecosystems: excessive fuel build-up, homogeneous age 

structure and loss of diversity. Nowadays fire is considered a natural force in most 

plant communities and should be allowed to play a greater role where possible (Perry 

1994). In Mediterranean ecosystems, fire is considered an important influence on the 

vegetation structure (Avrelo et al. 2001). Fire effects on plant and soil mainly vary 

according to fire severity (White et al. 1996, Perez and Moreno 1998).  

 

Fire produces immediate effects on aerial vegetation, which become evident by total 

plant death or by partial destruction. High canopy trees may escape ground fires 

because the vertical discontinuity of fuel prevents fire reaching the canopies. Fire also 

has important and immediate effects on soil. Moreover, topography, aspect or slopes 

in the burned area have a considerable effect (Diaz-Delgado et al. 1998) either on 

plant recovery or plant damage.  

 

After fire, autosuccession leads to recovery of preburn communities (Naveh 1975, 

Trabaud 1994). Unfortunately, interactions between fire severity and plant 
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regeneration, as well as those between topoclimatic and vegetation factors, are poorly 

known, especially at the scale of a whole, large fire. 

 

Remote sensing imagery represents a potential tool for mapping direct post-fire 

effects (Caetano et al. 1994, White et al. 1996, Mitri and Gitas 2004a) and monitoring 

post-fire vegetation recovery (Diaz-Delgado and Pons 2001). This study try to 

investigate the possibility to map vegetation recovery after fire and to understand 

better the long term effects of fire severity on plant recovery after four years from the 

date of fire.  

 

High severity of fire may cause irreversible plant damage, thus limiting plant 

regrowth. High plant damage would imply less ability for vegetation to recover. The 

use of remote sensing imagery can bring some insights into the overall relationship 

between fire severity and vegetation recovery at a larger scale (i.e. for large fires). 

Moreover, advances in this subject can aid the definition of new post-fire 

management criteria in burned areas under different fire severity levels. 

 

The aim of this work is to map vegetation recovery after fire using object-based 

classification of QuickBird imagery. The specific objectives are: 

• to distinguish between unburned forest and unburned shrub vegetation; 

• to investigate the overall relationship between fire severity from one side and 

vegetation recovery from the other side; and  

• to assess the accuracy of the produced results using field collected data. 

 

Forest regeneration (mainly pine regeneration) was not observed in the field after the 

fire of 2000, except in very restricted areas. This could be attributed to the 

topographic and climatic conditions of the site. Therefore, any effort to map forest 

regeneration after in the area affected by the fire of 2000 was excluded. It should be 

noted that post-fire vegetation recovery are not only correlated with the severity of 

fire but also with other important factors such as topography, geology and climate.  
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6.1 METHODOLOGY 

In the area that was burned in 2000, a fire severity map was previously (Chapter 5) 

built using a recent Ikonos image. In this study, only two classes of fire severity, 

namely, highly severe and moderately-slightly severe fire were generalized from the 

previous severity results. It should be noted that the map was manually improved 

taking into consideration the confusion errors and the burned area map produced by 

the Greek forest service. It is supposed to understand better the relationship severity-

regeneration/recovery with less number of severity classes. Figure 35 represents the 

fire severity thematic layer (dark polygons represent severe fires and bright polygons 

represent slightly-moderately severe fires). 

 

First, the Quickbird image was segmented and second, an object based classification 

was applied.  

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Fire severity thematic layer over QuickBird 

 

6.1.1 Segmentation 

Three different levels of image segmentation were created: level 1, level 2 and level 3. 

The segmentation parameters at level 1 employed an abstract scale of 10, shape factor 

of 0.1, and compactness-smoothness 0.5 (Figure 36). 
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Figure 36 Subset of image in pixels (left) and segmented subset at level 1 (right) 

 

Level 2 was created after classifying level 1 by a procedure called classification based 

fusion. This procedure produced new objects by merging objects from classes of same 

structure group into new objects (Figure 37). 

 

 

 

 

 

 

 

 

 

 

Figure 37 Image objects at level 2 

 

At level 3 the image was segmented by employing only the thematic layer, which is 

the edited severity map. The reason to do that was to produce objects that fit with the 

polygons of fire severity at a large scale (Figure 38). The scale used for the 

segmentation of this level was 200. 
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Figure 38 Segmented image at level 3 

 

6.1.2 Classification 

First, the segmented image at level 3 was classified. At this level classification was 

based completely on attribute data from the thematic layer. Three classes were 

created: slight-moderate fire, severe fire and other. Figure 39 shows the classification 

results at level 3 (severe fire in dark grey, and slight-moderate fire in light grey). 

 

 

 

 

 

 

 

 

 

 

 

Figure 39 Classification results al level 3 

 

Then, the segmented image at level 1 was classified. At this level, the first step was to 

distinguish between land and water. This was done by using a membership function of 

the feature NDVI for the class ‘land’ (Figure 40). The results map had two classes 

namely, land and water (Figure 41). 
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Figure 40 Membership function for class the class ‘land’ 

 

 

 

 

 

 

 

 

 

 

Figure 41 Classification results at level 1: ‘land’ (dark grey) and ‘water’ (bright grey) 

 

The second step was to locate shaded areas and green vegetation. The ratio of band 1 

showing high contrasts for these two categories was used for this classification 

(Figure 42).  The ratio of band 1 is the band mean value of an image object divided by 

the sum of all spectral band mean values. The membership function of this feature for 

the class ‘shadow’ is shown in figure 43. 
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Figure 42 Image of ratio band 1 (bright colour shows shaded areas) 

 

 

 

 

 

 

 

 

Figure 43 Membership function for the class ‘shadow’ 

 

Green vegetation represented by a class called ‘green’ was described by a 

membership function of NDVI (Figure 44). The results showed a map of three land 

classes, namely, ‘shadow’, ‘green vegetation’ and ‘other’ (Figure 45). 

 

 

 

 

 

 

 

 

Figure 44 Membership function for the class ‘green’ 
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Figure 45 Classification of shadow (yellow) green vegetation (green) and other (grey) 

 

The next step was intended to define different sub-classes for the parent classes of 

‘green’, ‘shadow’, and ‘other’.  

 

The parent class green was subdivided into two sub-classes: ‘green (canopy)’ and 

‘green (shrubs and small tree)’. In the set of conditions for an object to be classified as 

‘green (canopy)’ was: 

 

If (existence of not burned super-objects) or (existence of ‘slight-moderate fire 

severity’ super-objects) and (relative border to ‘shadow’ neighbour objects is low) 

then objects are classified as ‘green (canopy)’. 

 

The feature relative border is the ratio of the border of an object shared with 

neighbouring objects assigned to a defined class to the total border length. The feature 

relative border to ‘shadow’ neighbour objects was used for the class ‘green (canopy)’ 

(Figure 46). The class ‘shadow’ is resulted from projected shades of individual 

canopies or group of canopies. 
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Figure 46 Membership function for the class ‘green (canopy)’ 

 

The rest of the objects that are also sub-classes of the parent class ‘green’ and were 

not satisfied by the previous conditions were classified as ‘green (shrubs and small 

trees)’. The class ‘shadow’ was subdivided into the following 4 sub-classes: 

1. Shadow (bare) 

2. Shadow (canopy) 

3. Shadow (shrubs and small trees) 

4. Shadow (other) 

 

‘Shadow (bare)’ represents all the bare ground area that is located on a dark slope. 

‘Shadow (canopy)’ spots areas where canopy shades are projected on the ground. 

‘Shadow (shrubs and small trees)’ represents the small shaded areas caused by this 

kind of vegetation type. The class ‘shadow (bare)’ was described by the feature ratio 

of band 3 (Figure 47). 

 

 

 

 

 

 

Figure 47 Membership function for the class ‘shadow (bare)’ 

 

‘Shadow (canopy)’ was described by a contextual feature called relative border to 

‘green (canopy)’ neighbour objects (Figure 48). The class shadow (shrubs and small 

trees) was defined by the membership function of relative border to green (shrubs and 

small trees) neighbour objects (Figure 49). 

 



_________________________________________________Chapter 6 Mapping Vegetation Recovery Using QuickBird Imagery 

 115 

 

 

 

 

 

 

Figure 48 Membership function for the class ‘shadow (canopy)’ 

 

 

 

 

 

 

 

Figure 49 Membership function for the class ‘shadow (shrubs and small trees)’ 

 

The class ‘shadow (other)’ describes the rest of the objects, which did not satisfy any 

of the previous conditions. 

 

Finally, the parent class ‘other’ was subdivided into two sub-classes: ‘other (bare)’ 

and ‘other (sparse vegetation)’. The class ‘other (bare)’ was described by a 

membership function of Mean band 3 (Figure 50), and the class ‘bare (sparse 

vegetation)’ described the rest of the objects that did not satisfy the conditions of the 

class ‘other (bare)’. Figure 51 shows the classification results at level 1. 

 

 

 

 

 

 

 

Figure 50 Membership function for the class ‘other (bare)’ 
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Figure 51 Classification results at level 1 

 

A procedure called classification based segmentation was then applied to level 1 by 

merging classified objects according to defined structure groups and by creating a 

new level of these merged objects called level 2. The three defined structure groups 

were:  

• structure group 1: ‘green (canopy)’ and ‘shadow (canopy)’;  

• structure group 2: ‘green (shrub and small trees)’ and ‘other (sparse 

vegetation)’;  

• structure group 3: ‘shadow (other)’. 

 

It should be noted that objects belonging to the same structure group and 

neighbouring each others were merged into one object. Seven classes were created at 

level 2, these classes are the following: 

1. Green canopy 

2. Green canopy (slight-moderate fire) 

3. Shrub 

4. Shrub regeneration (slight moderate fire) 

5. Shrub regeneration (severe fire) 

6. Bare 

7. water 
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‘Green canopy’ represents mainly Pinus brutia trees untouched by fire. ‘Green 

canopy (slight-moderate fire)’ represents mainly Pinus brutia trees that were affected 

by slight moderate fire. ‘Shrub’ represents unburned shrub cover. ‘Shrub regeneration 

(slight-moderate fire)’ represents shrub regenerated in areas affected by slight-

moderate fire. Finally, ‘shrub regeneration (severe fire)’ represents shrub regenerated 

in areas affected by severe fire. 

 

The class of ‘green canopy’ had the following set of conditions: 

 

If (not existence of ‘slight-moderate fire’ super-objects) and [(existence of ‘green 

(canopy)’ sub-objects) or (existence of ‘shadow (canopy)’ sub-objects) or (existence 

of ‘shadow (other)’ sub-objects and relative border to ‘green (canopy)’ neighbour 

objects is higher than 0.6) or (existence of ‘green (shrubs and small trees)’ sub-

objects and relative border to ‘green (canopy)’ neighbour objects is higher than 0.6)] 

then objects are classified as ‘green canopy’. 

 

The class of ‘green canopy (slight-moderate fire)’ had the following set of conditions: 

 

If (existence of ‘slight moderate fire’ super-objects) and [(existence of ‘green 

(canopy)’ sub-objects or (existence of ‘shadow (canopy)’ sub-objects) or (existence of 

‘green (shrubs and small trees)’ sub-objects and relative border to ‘green canopy 

(slight-moderate fire)’ neighbour objects is higher than 0.6) or (existence of ‘shadow 

(other)’ sub-objects and relative border to ‘green canopy (slight moderate fire)’ 

neighbour objects is higher than 0.6)] then objects are classified as ‘green canopy 

(slight-moderate fire)’. 

 

The class of ‘shrub regeneration (severe fire)’ had the following set of conditions: 

 

If (existence of ‘severe fire’ super-objects) and [(existence of ‘green (shrubs and 

small trees)’ sub-objects or existence of ‘other (sparse vegetation)’ sub-objects or 

existence of’ shadow (other)’ sub-objects or existence of’ shadow (shrubs and small 

trees)’ sub-objects)] then objects are classified as ‘shrub regeneration (severe fire)’. 
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The class of ‘shrub regeneration (slight-moderate fire)’ had the following set of 

conditions: 

 

If (existence of ‘slight-moderate fire’ super objects) and [(existence of ‘shadow 

(other)’ sub-objects and relative border to ‘green canopy (slight-moderate fire)’ 

neighbour objects is less than 0.6) or (existence of ‘green (shrubs and small trees)’ 

sub-objects) or (existence of ‘other (sparse vegetation)’ sub-objects) or (existence of 

‘shadow (shrubs and small trees)’ sub-objects)] then objects are classified as ‘shrub 

regeneration (slight-moderate fire)’. 

 

The class ‘bare’ had the following set of conditions: 

 

If (existence of ‘other (bare)’ sub-objects) or (existence of ‘shadow (bare)’ sub-

objects) then objects are classified as ‘bare’. 

 

Finally if none of these conditions is satisfied then objects are classified as ‘shrub’. 

The membership function existence of ‘water’ sub-objects was used to describe the 

class ‘water’ at level 2. The final classification results are shown in Figure 52. 

 

 

 

 

 

 

 

 

 

 

 

Figure 52 Final classification results at level 2 
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6.2 RESULTS AND DISCUSSION 

Statistics were extracted from the produced map of vegetation recovery (Table 16). 

By referring to Table 16, it was observed that the class A (shrub regeneration after 

severe fire) has the largest number of image objects comprising 42% of the total 

recovered vegetation within the burned area. Class B (shrub regeneration after slight-

moderate fire) represents 17% and class C (green canopy within slight-moderate fire) 

represents 41 % of the total regenerated area (Figure 53). After a more careful 

investigation of the results (Figure 54), it was observed a close neighbouring of ‘green 

canopy (slight-moderate fire)’ to ‘shrub regeneration (slight-moderate fire)’, and a 

distant neighbouring to ‘shrub regeneration (severe fire)’. This can be attributed to the 

absence of severe fire in areas where green canopy is still alive. 

 

It should be noted that after approximately five years, 87% of the severe fire area was 

regenerated by shrub vegetation and almost complete absence of brutia regeneration 

that could be detected by the remotely sensed data. Also, a total vegetation cover of 

88% was mapped within the area that was slightly-moderately burned. 

 

By visually comparing the produced results to the data collected from the field, it was 

found that fires of slight-moderate severity produced a highly selective mortality, 

depending on the species and size of each individual. While fire of high severity, has 

killed all individuals, independently of species or size. In this fire, mortality of P. 

brutia was very high, especially in areas affected by severe fire. The percentage of 

dead pine individuals was over 90%. Forest regeneration of pine trees was rarely 

observable in the field and thus could not be mapped by satellite imagery. 

 

The shrub understory in the study area is floristically rich, comprising various 

evergreen sclerophylls (maquis) species (e.g. Quercus coccifera, Pistacia terebinthus, 

P. lentiscus, Arbutus unedo) as well as phryganic subshrubs (e.g. E. manipuliflora, 

Cistus creticus). Most shrub vegetation was also burned in all types of fire severity 

considered. Nevertheless, due to their sprouting ability many of them resprouted and 

were able to recover after fire.  
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Variability observed in post-fire recovery response can be partially explained by fire 

severity and by the dominant species or land cover. Main differences among the most 

abundant land covers (P. brutia and shrub vegetation) indicated a capacity of an 

immediate recovery response for the shrub vegetation due to resprouting ability, and 

very low regeneration capacity of areas dominated by P. brutia. 

 

The fire was a driving force in landscape homogenization. The fire producing 

severely burned patches favoured the colonization of invasive, fire tolerant shrub 

species sometimes at the expense of rare/endemic species less tolerant to post-fire 

conditions. The landscape homogenization constituted a new scenario for the study 

area ecosystem in which biodiversity is threatened.  

 

Table 16 Classification statistics 

Class                                            
Number of 
objects 

Sum 
area 
(km2) 

Mean 
relative 
border to 
A 

Mean   
relative 
border to 
B 

Mean   
relative 
border to 
C 

A = shrub regeneration (severe fire)                 1218 0.77 0.85 0.01 0.02 
B = shrub regeneration (slight-moderate fire)       742 0.30 0.04 0.07 0.72 
C = green canopy (slight-moderate fire)              335 0.75 0.02 0.3 0.62 
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Figure 53 Objects-area ratios 

 



_________________________________________________Chapter 6 Mapping Vegetation Recovery Using QuickBird Imagery 

 121 

0%

20%

40%

60%

80%

100%

Mean rel.

border to A

Mean rel.

border to B

Mean rel.

border to C

Relative border of classes

C

B

A

 

Figure 54 Relative border of classes 

 

The final map was compared to 52 plots surveyed in the field in order to assess the 

accuracy of the results. An error matrix was produced (Table 17) and accuracy totals 

were extracted (Table 18).  

 

The overall object-based classification accuracy of the total of classification was 

estimated to be 86% and the overall Kappa statistics was 0.83. Producer’s and user’s 

accuracy showed that vegetation recovery was mapped with higher accuracies in areas 

of severe fire and with lower accuracies in areas of slight-moderate fire. Some 

confusion was reported between ‘green canopy (slight-moderate fire)’ and ‘shrub 

regeneration (slight-moderate fire)’ due to the low spectral information of the 

QuickBird image. Because of the absence of green canopy in areas of severe fire, the 

class ‘shrub regeneration’ was mapped with high accuracy. It should be noted that the 

use of thematic layer of fire severity helped in locating potential areas of vegetation 

regeneration therefore high accuracies of vegetation regeneration mapping were 

recorded. 

 

An important issue to be discussed is that the high spatial resolution imagery helped 

in identifying even small spots of vegetation recovery. However the low spectral 

confusion of the image did not make it always possible to distinguish in high accuracy 

between green canopy and shrub regeneration. Therefore high spectral resolution 
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imagery is needed to improve the results when mapping forest regeneration and 

vegetation recovery. 

 

Table 17 Error Matrix 

User class \ Sample Bare green 
canopy 

green canopy 
(slight-
moderate 
fire) 

shrub shrub 
regenerati
on (severe 
fire) 

shrub 
regeneration 
(slight-
moderate fire) 

water total 

Bare 
 

4 0 0 0 0 0 0 4 

green canopy 
 

0 4 0 0 0 0 0 4 

green canopy (slight-
moderate fire) 

0 0 14 0 2 1 0 17 

Shrub 
 

0 1 0 3 0 0 0 4 

shrub regeneration 
(severe fire) 

0 0 1 0 12 0 0 13 

shrub regeneration 
(slight-moderate fire) 

0 0 2 0 0 4 0 6 

Water 
 

0 0 0 0 0 0 4 4 

Total 
 

4 5 17 3 14 5 4 52 

 

Table 18 Accuracy statistics 

User class \ Sample bare green 
canopy 

green canopy 
(slight-
moderate fire) 

shrub shrub 
regeneration 
(severe fire) 

shrub regeneration 
(slight-moderate fire) 

Water 

Producer 1 0.8 0.8235 1 0.8571 0.8 1 
User 1 1 0.8235 0.75 0.923 0.6667 1 
Hellden 1 0.8889 0.8235 0.857 0.8889 0.7273 1 
Short 1 0.8 0.7 0.75 0.8 0.5714 1 
KIA per class 1 0.7833 0.7378 1 0.8095 0.7739 1 
Overall Accuracy 0.8654 
KIA 0.8298 
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6.3 CHAPTER SUMMARY 

In summary: 

• Unburned forest was successfully distinguished from unburned shrub as a first 

step before vegetation recovery mapping. 

• Pine forest regeneration was almost absent, while forest survival was 

successively distinguished from vegetation recovery. 

• Variability observed in post-fire vegetation recovery response can be explained 

by fire severity and by the dominant species or land cover. Within vegetation 

recovery, shrub vegetation showed immediate recovery capacity after fire due to 

resprouting ability, while forest regeneration had very low recovery capacity.  

• In this fire, mortality of P. brutia was very high. The percentage of dead 

individuals was over 90%, and most shrub vegetation was also burned in all 

types of the considered fire severity classes.  

• The fire was a driving force in landscape homogenization. The fire producing 

severely burned patches favoured the colonization of invasive, fire tolerant 

species sometimes at the expense of rare/endemic species less tolerant to post-

fire conditions.  

• When comparing the final forest regeneration map to field data, it was found 

that the overall classification accuracy was estimated to be 86% and the overall 

Kappa statistics was 0.83. Few classification confusions were observed between 

survived forest and recovered vegetation. 

• High spectral resolution imagery is needed to improve the results when mapping 

vegetation recovery especially for distinguishing among different species. 
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CHAPTER 7: MAPPING FOREST REGENERATION 

AND VEGETATION RECOVERY BY EMPLOYING 

HYPERSPECTRAL REMOTE SENSING    

 

The potential use of very high spatial resolution imagery for mapping the type and 

the severity of fire and vegetation recovery was previously investigated. However, 

these high spatial resolution image data containing limited spectral information lead 

often to classification errors between similar vegetation classes. It was found that 

high spectral resolution imagery is needed to improve the results when mapping 

forest regeneration and vegetation recovery especially when distinguishing among 

different species. As a result, hyperspectral imagery with the typical high number of 

bands could be used due to their narrowband spectra. Besides, there is an increasing 

use of handheld spectroradiometer data for “ground truthing” of hyperspectral 

imagery, as well as conducting pilot studies where hyperspectral data may eventually 

be used. In section one, field spectrometry measurements were employed to 

investigate the spectral properties of naturally regenerated vegetation after fire. 

Section two will aim to map post-fire forest regeneration and vegetation recovery 

using Hyperion hyperspectral imagery. 

 

Forest regeneration and vegetation recovery are the key measures to ensure forest 

sustainability. Monitoring post-fire forest regeneration and vegetation recovery is 

important to understand the need for future prescribed burns, to establish post-fire 

forest management, to design re-vegetation programs to reduce soil erosion and land 

degradation, and finally to monitor biodiversity (Di Castri and Mooney 1973, Le 

Houerou 1987, Naveh 1991, Keely 2000, Twele 2004).  

 

The development of new hyperspectral remote sensing instruments, both airborne and 

spaceborne, has provided an opportunity to study vegetation recovery after wildfire 

(Riano et al. 2002). Moreover, handheld spectroradiometers have been frequently 

used to collect “ground truth” information (Shaw et al. 1998, Schmidt et al. 2004). 

 

Monitoring post-fire forest regeneration and vegetation recovery can greatly benefit 

from the use of remote sensing therefore the use of spectral data for species 
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discrimination. The direct remote sensing of individual organisms or species 

assemblages requires not only detailed spatial information but also spectral 

information of regenerating species after fire. Spectral analysis done by Twele and 

Barbosa (2003) revealed that vegetation regeneration is related to gradual spectral 

changes over time with different vegetation communities following different spectral 

pathways. Until present, little research has been done on spectral response related to 

early stand development (Nilson and Peterson 1994, Pouliot et al. 2002).  

 

A number of recent studies have indicated the advantages of using discrete 

narrowband data from specific portions of the spectrum, rather than broadband data, 

to obtain the most sensitive quantitative or qualitative information on vegetation 

characteristics (Elvidge and Chen 1995, Carter 1998, Blackburn and Steele 1999, 

Thenkabail et al. 2000, Thenkabail et al. 2004a, 2004b). Hyperspectral data for 

vegetation studies proved to be a progress in detecting plant stress (Carter 1994, 

1998), measuring chlorophyll content of plants (Blackburn and Steele 1999), 

identifying small differences in percent green vegetation cover (McGwire et al. 1999), 

and extracting biochemical variables such as nitrogen and lignin (Curran 1994). Also, 

hyperspectral data represent an important input for discriminating land cover types 

(Janetos and Justice 2000), analyzing crop moisture variations (Penuelas et al. 1993, 

1995), and leaf pigment concentrations (Blackburn and Steele 1999), modelling 

quantitative biophysical and yield characteristics of agricultural crops (Thenkabail 

2003), improving detection changes in sparse vegetation (Elvidge et al. 1993, Lyon et 

al. 1998), and assessing absolute water content in plant leaves (Bauer et al. 1981). 

 

In the next section, field hyperspectral measurements were employed to investigate 

the spectral properties of naturally regenerated vegetation after fire.  The section after 

will aim to map post-fire forest regeneration and vegetation recovery using Hyperion 

hyperspectral imagery taking into account the findings of the first section. The area 

under investigation has a part that was burned in the fire of 1984, 1985 and another 

part that was burned in the fire of 1989. The major forest species present are P. brutia 

and P. nigra. In addition to the forests, other types of Mediterranean shrub vegetation 

are also present (Gitas 1999, Spanos et al. 2000). 
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7.1 ANALYSIS OF FIELD SPECTROMETRY DATA 

Field spectrometry measurements were employed to investigate the spectral 

properties of naturally regenerating pine (brutia and nigra) and recovering shrub 

(different species) on the Mediterranean island of Thasos. Because of the great 

spectral variability for vegetation, if only very few well-placed wavebands could 

account for most of the spectral variability in forested landscapes then recording in 

less wavebands becomes more desirable. 

 

In the summer periods of 2002, 2003 and 2004, spectral measurements of 

regenerating P. brutia and P. nigra were obtained. Measurements were taken for 

regenerating trees at different ages. According to Spanos et al. (2000) the annual 

height growth of P. brutia showed linear regression kinetics throughout the 5 (and 

conceivably 9) year-long post-fire period, with a yearly increment of 17 cm. As for P. 

nigra, the tree is moderately fast growing (30-70 cm/year). Data were collected from 

P. brutia of 10 years and above (this group was called mature brutia) and from 

younger trees of the same specie. Also, measurements were taken from P. nigra trees 

of 10 years and above (the so called group of mature nigra) and from younger trees of 

the same specie.  

 

A FieldSpec Pro VNIR spectrometer (350-1050 nm range; 3 nm spectral resolution; 

1.4 nm spectral sampling interval) was employed. A 10º foreoptic was used, and the 

spectrometer was mounted on a stand of 0.75 m above the target giving a 16.628 cm 

radius of FOV. At least five measurements were recorded systematically for each 

target and normalized against a calibrated white reference panel. Over a fifty 

hyperspectral data samples were gathered for the two pine species (mature and young) 

and for the shrub species Quercus coccifera, Erica manipuliflora, Laurus nobilis, 

Arbutus unedo and Cistus incanus and fern. 

 

To reduce the effects of low sun angle, showdown and longer atmospheric 

pathlengths, scans were recorded within two hours either side of the solar noon and 

sky conditions were clear for all sampling times.  
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The reflectance spectra in the database were averaged within the same category (age 

and specie), and then they were resampled by selecting every three values from 0.35 

to 1.1 µm and averaging them to one value to reduce the volume of data for analysis 

and to reduce noises. All values below 0.4 µm and above 0.9 µm were removed due to 

the large noises.  Previous studies (Thenkabail et al. 2000, Broge and Leblanc 2000, 

Thenkabail et al. 2002) have shown that wavebands in immediate neighbourhood of 

one another provide similar information, hence becoming redundant. Also, the first 

spaceborne hyperspectral sensor, Hyperion, onboard Earth Observing-1 (EO-1) 

carries a 10-nm wide wavebands in 400- 2500 nm. Given these facts, the data were 

then aggregated into 60 narrowbands, each of 10.0 nm wide wavebands. The 

wavebands centres begin at 428 nm and progressively centred at every additional 10-

nm such as at 438 nm, 448 nm, and so on until 988 nm. The filtered spectra were used 

to build a spectral library with Envi (version 4.1).  

 

7.1.1 Pine spectral characteristics  

In this study, field spectral measurements were performed on two kinds of pine trees 

namely, Pinus brutia and Pinus nigra. The east Mediterranean pine (P. brutia) is a 

tree of great ecological and economic importance for the eastern Mediterranean 

region (Nahal 1983, Nahal 1984) and a significant forest tree species of the 

northeastern coast and several Aegean Sea islands of Greece. It grows prolifically in 

well lit conditions and is adapted to infertile soils and dry climates (Panetsos 1981). 

The geographical range of P. brutia extends from the Greek Aegean islands through 

Turkey to Lebanon and northern Iraq (Critchfield 1966). P. nigra (generally called 

Black Pine in Europe), is a variable species of pine, occurring across southern Europe 

from Spain to the Crimea, and also in Asia Minor, Cyprus, and locally in the Atlas 

Mountains of northwest Africa. It is found at elevations ranging from sea level to 2 

000 m, most commonly from 250-1 600 m (Panetsos 1981). 

 

The aim of this work was to investigate the hyperspectral characteristics of post-fire 

pine regeneration. The specific objectives are: 

1. to locate the wavebands that best characterize the pine of the two different 

species; and 
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2. to locate the wavebands that best characterize young and mature pine of the two 

specific species. 

7.1.1.1 Methodology 

There is no single best approach in hyperspectral analysis to determine the optimal 

number of bands that provide the best estimates of forest or vegetation characteristics. 

Past research has incorporated reflectance from individual narrowbands (Mariotti et 

al. 1996), various ratio indices (Aoki et al., 1981, Carter 1994, Lichtenthaler et al. 

1996, Lyon et al. 1998), derivatives of reflectance spectra (Curran et al. 1991, Elvidge 

and Chen 1995), or combinations of these (Thenkabail et al. 2000, 2002), and linear 

mixture modelling approach (McGwire et al. 1999, Mass 2000).  

 

In this study, the optimal wavebands that best characterize P. brutia and P. nigra were 

determined based on a comprehensive analysis of all samples taken from young and 

mature trees of both species using Principal Component Analysis (PCA), correlation 

analysis and Stepwise Discriminant Analysis (SDA). All statistical analyses were 

performed using the software SPSS.  

 

Principal Component Analysis (PCA) deals with all the variability in a set of 

variables. PCA helps in determining 1) wavebands that have greatest influence in 

PC1, PC2 and so on, and 2) percent variability explained in each PCA. The analysis 

was applied on the full set of dataset. The results (Table 19) showed that the first three 

principal components (PCs) explained 96% of the variability in the various pine trees. 

Thereby, in order to explain the 96% of the variability, the 60 wavebands were 

reduced to three PC wavebands (PC1–PC3), thus reducing data volume by 

approximately 96%.  

 

Table 19 Total Variance explained 

Component Initial Eigenvalues 
 Total % of Variance Cumulative % 
1 42.870 71.450 71.450 
2 11.539 19.231 90.681 
3 3.728 6.214 96.895 
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The scree plot (Figure 55) was useful to determine the optimal number of 

components. The eigenvalue of each component in the initial solution was plotted. 

The components on the steep slope were to be extracted, while the components on the 

shallow slope contribute little to the solution. The last big drop occurred between the 

second and the third components, so using the first three components was a good 

choice.  

 

 

 

 

 

 

 

 

 

 

Figure 55 Scree plot of the PCA  

 

The new PC wavebands were computed using factor loadings (or eigenvectors) of 

each of the 60 wavebands and multiplying the factor loadings with their respective 

waveband reflectivity. The wavebands that provided the highest factor loadings were 

listed for the Principal Component PC 1, PC 2 and PC 3 (Table 20). The importance 

of the waveband was judged by its factor loadings. The PC1 had centred wavebands 

between 784 nm and 967 nm. This implied that these wavebands had the highest 

factor loadings from all of the 60 wavebands in the entire spectral range of 428-988 

nm with 72% of variability.  

 

It was observed that the Near Infra-Red (NIR) bands dominated the PC1, with the 

blue bands dominating the PC2 (19% of variability). The bands between green and 

red dominated PC3, explaining an additional 6% of the variability. All these results 

indicated the overall importance of visible and NIR wavebands. 
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Table 20 Rotated Component Matrix for pines 

 PC1 PC2 PC3 

479.311 - 0.981 - 

591.037 - - 0.9 

794.641 0.943 - - 

865.941 0.955 - - 

907.288 0.966 - - 

957.730 0.948 - - 
Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser Normalization. 

 

Correlation analysis measures how variables or rank orders are related. Pearson's 

correlation coefficients, with their significance levels, were computed (Table 21). A 

very high correlation (R2) between any two wavebands indicates similar or redundant 

information. The areas of lowest correlation between wavebands indicate that the two 

bands contained unique information about the targetplant. 

 

Table 21 Wavelengths (nm) correlation for pines 

428.441 
479.311 
591.037 
672.346 
702.917 
957.738 
967.828 

Wavebands with the least 
redundancy. 
R2‹ 0.08 
 

 

Stepwise Discriminant Analysis (SDA) was used to discriminate or separate pine 

trees of different ages and species using Wilk’s lambda. At each step, if a band in the 

model failed to meet the criterion (f test), the worst variable was removed. Otherwise, 

the band that contributed most to the discriminatory power of the model was entered. 

When all variables in the model met the criteria and the remaining variables were 

excluded, the stepwise selection process was stopped. The values of Wilk’s lambda 

were indicative of separability or discriminatory power of spectral bands (i.e., the less 

the value of Wilk’s lambda, the greater spectral differentiation between the species 

types). The most frequently occurring wavebands that achieved the optimal Wilk’s 

lambda values for trees were centred at: 458.961, 621.506, 733.489, 957.738, and 

988.048 nm. 
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7.1.1.2 Results and discussion 

Careful data analysis of PCA, variable correlations, and SDA showed 14 optimal 

bands (in 400–900 nm spectral range) that best characterize and classify pine trees of 

different age and specie (Table 22). 

 

Table 22 Reflectance values in the 14 selected wavebands for pines 

 brutia 

young 

brutia 

mature 

nigra 

young 

nigra 

mature 

428.441 0.016174 0.042095 0.02912 0.016538 
458.961 0.022023 0.034823 0.027416 0.025831 
479.311 0.023438 0.039809 0.029977 0.025766 
591.037 0.086857 0.073467 0.0575  0.059613 
621.506 0.059996 0.069342 0.051279 0.050325 
672.346 0.033676 0.062163 0.035335 0.035084 
702.917 0.140824 0.13207 0.106823 0.118864 
733.489 0.3111 0.2676 0.273509 0.316694 
794.641 0.362848 0.325583 0.336054 0.390634 
865.941 0.372931 0.345643 0.348922 0.40488 
907.288 0.373412 0.343685 0.355518 0.40371 
957.738 0.356778 0.30468 0.326634 0.346761 
967.828 0.349454 0.352995 0.302467 0.352498 
988.048 0.348882 0.335748 0.312276 0.340473 

 

A significance (sig.) analysis of the optimal bands from the pine results was 

performed using paired-samples t test (Table 23). A study of this type consisted of 

two measurements taken on different pine species or different age. If the change of 

specie or age had no effect, the average difference between the measurements is equal 

to 0 and the null hypothesis holds. On the other hand, if the change of specie or age 

did have an effect (intended or unintended), the average difference is not 0 and the 

null hypothesis is rejected. The Paired-samples t test procedure is used to test the 

hypothesis of no difference between two variables. Since the significance value for 

change was less than 0.05, it was concluded that the difference in reflectance is not 

due to chance variation, and can be attributed to the difference in age and species.  

 

Table 23 Significance (2-tailed) analysis 

 T Sig. (2-tailed) 

young - mature (brutia) -4.987 0.001 
young (brutia) – young (nigra) 3.700 0.003 
mature (brutia) - mature (nigra) -4.134 0.001 
young - mature (nigra) -3.153 0.008 
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The 14 wavebands previously listed for pine trees have a high level of relevance in 

providing various pine regeneration and specie characteristics (Figure 56).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56 Signatures of the selected wavebands for pines 
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higher reflectance due to the low absorption of violet-blue and red light by the 

chlorophyll pigments. The reflectance spectrum of P. brutia showed absorption peaks 

around 458 and 672 nm. Most of these are caused by strong absorptions of 

chlorophyll. In the NIR region, higher reflectances were recorded for young P. brutia 
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trees. On the other side, P. nigra, young trees could be distinguished easily from 

mature trees in the NIR region with lower NIR values for the younger trees. 

 

Based on what has been observed above, the wavebands centred at 591, 794 and 865 

nm are recommended for discrimination between the two young pine species, while 

wavebands centred at 672 and 907 nm are recommended for discrimination between 

the two mature pines species. Moreover, wavebands centred at 672 and 957 nm are 

best selected to discriminate between young and mature brutia and wavebands centred 

at 865 and 907 nm are best selected to discriminate between young and mature nigra. 

 

7.1.2 Shrub spectral characteristics 

Field observations showed that several Mediterranean shrub species were present on 

the burned site after fires. Hyperspectral measurements of Quercus coccifera, Erica 

manipuliflora, Laurus nobilis, Arbutus unedo and Cistus incanus and fern were taken.  

 

Hyperspectral data offer a wide range of possibilities as they provide a set of spectral 

information that can be very useful for discriminating shrub species within a given 

area. This is indeed possible as certain plant species show a typical spectral signature 

(as previously demonstrated with the pine species). Therefore, it is necessary to know 

which bands best suit the discrimination of the species under study, something that 

depends upon species specific biochemical characteristics related to foliar chemistry 

(Martin et al. 1998).  

 

The main aim of this work is to determine hyperspectral wavebands (0.4-1.1 µm) that 

best characterize the main shrub species present after fire in the study area. 

7.1.2.1 Methodology 

Like before, the optimal wavebands that best describe the spectral characteristics of 

some shrub species were determined based on a comprehensive analysis using PCA, 

correlation analysis and SDA.  

 

The PCA was applied to the pre-processed spectral measurements of the different 

measured shrub species. The results (Table 24) showed that the two Principal 
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Components (PCs) explained 97% of the variability among the different species. The 

new PC wavebands were computed using factor loadings (or eigen vectors) of each of 

the 60 wavebands and multiplying the factor loadings with their respective waveband 

reflectivity (Table 25). It was observed that Near Infra-Red (NIR) dominated PC1 

while blue and green wavebands dominated PC2. 

 

Table 24 Total variance explained 

Component Initial Eigenvalues 
 Total % of Variance Cumulative % 
1 39.320 65.533 65.533 
2 18.925 31.541 97.074 

 

Table 25 Rotated Component Matrix 

 PC1 PC2 
479.311 - 0.997 
509.82 - 0.988 
651.995 - 0.996 
784.43 0.996 - 
835.421 0.994 - 
926.999 0.992 - 
957.738 0.990 - 

Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser Normalization. 

 

In the correlation analysis, Pearson's correlation coefficients, with their significance 

levels, were computed (Table 26). A very high correlation (R2) between any two 

wavebands indicates similar or redundant information. The areas of lowest correlation 

between wavebands indicate that the two bands contained unique information about 

the species. 

 

Table 26 Wavelengths correlation   

458.961 
489.488 
672.346 
723.305 

753.863 
774.236 
865.941 
957.738 

Wavebands with the least redundancy. 
R2‹ 0.08 
 

 

In a Stepwise Discriminant Analysis, the discriminatory power of hyperspectral data 

was assessed for the different shrub species under examination employing SDA. The 
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most frequently occurring wavebands that achieved the optimal Wilk’s lambda values 

were centred at: 428.441, 601.194, 937.568, and 977.918 nm. 

7.1.2.2 Results and discussion 

Careful data analysis of PCA and variable correlations and SDA established 18 

optimal bands that best characterized the different species (Table 27). These 18 bands 

are supposed to have a high level of relevance in providing various specie 

characteristics.  

 

Table 27 Optimal wavebands 

 C. incanus Q. coccifera E. manipuliflora fern L. nobilis A. unedo 

428.441 0.016995 0.027629 0.025258 0.032373 0.014981 0.008406 
458.961 0.042907 0.033484 0.025787 0.032012 0.018089 0.011619 
479.311 0.054571 0.035324 0.024762 0.034948 0.018219 0.015429 
489.488 0.054405 0.036551 0.025235 0.033387 0.018813 0.013523 
509.82 0.064392 0.042437 0.030529 0.047068 0.024709 0.023039 
601.194 0.111431 0.090045 0.043902 0.087626 0.052195 0.042528 
651.995 0.099298 0.065289 0.037 0.056983 0.025829 0.029474 
672.346 0.093 0.061175 0.033667 0.045167 0.019802 0.024336 
723.305 0.329879 0.219925 0.170266 0.462583 0.298144 0.251198 
753.863 0.40181 0.323718 0.229333 0.600262 0.477079 0.375524 
774.236 0.413643 0.349881 0.240333 0.619807 0.496242 0.393657 
784.43 0.419753 0.357596 0.244646 0.623387 0.498751 0.397828 
835.421 0.437267 0.388444 0.263514 0.645348 0.506995 0.41981 
865.941 0.453157 0.40251 0.27298 0.655027 0.513906 0.437912 
926.999 0.448092 0.411603 0.283287 0.660352 0.511442 0.444959 
937.568 0.51516 0.403241 0.321977 0.636977 0.513042 0.426008 
957.738 0.426693 0.402598 0.323436 0.609944 0.493537 0.411374 
977.918 0.459588 0.405885 0.278934 0.626415 0.483412 0.364666 

 

Significance analysis of the selected wavebands was investigated using paired-

samples t test. The Paired-samples t test procedure was used to test the hypothesis of 

no difference between two variables.  

 

The sig. (2-tailed) column (Table 28) displays the probability of obtaining a t statistic 

whose absolute value is equal to or greater than the obtained t statistic. Since the 

significance value for change for some pairs is less than 0.05, it was concluded that 

the difference in reflectance was not due to chance variation, and could be attributed 

to the difference species. However for some pairs (2 out of 15) the significance value 

was greater than 0.1 showed that the change of specie did not significantly change 

reflectance. 
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Table 28 Significance (2-tailed) analysis 

 T Sig. (2-tailed) 

C. incanus – Q. coccifera 5.656 0.000 
C. incanus – E. manipuliflora 6.497 0.000 
C. incanus – Fern -3.643 0.002 
C. incanus – L. nobilis -0.592 0.562 
C. incanus – A. unedo 6.060 0.000 
Q. coccifera – E. manipuliflora 5.716 0.000 
Q. coccifera – Fern -4.480 0.000 
Q. coccifera – L. nobilis -2.974 0.009 
Q. coccifera – A. unedo -0.234 0.818 
E. manipuliflora – Fern -4.920 0.000 
E. manipuliflora – L. nobilis -4.207 0.001 
E. manipuliflora – A. unedo -3.790 0.001 
Fern – L. nobilis 6.107 0.000 
Fern – A. unedo 5.623 0.000 
L. nobilis – A. unedo 4.623 0.000 

 

The actual proportion absorbed, scattered or reflected varied significantly among most 

of the species depending mainly on the internal structure of the leaves. The NIR 

region was crucial for characterizing most of the species. The two pairs, C. incanus - 

L. nobilis and Q. coccifera – A. unedo showed very close spectral signatures in their 

selected bands. However in the visible range C. incanus showed much higher 

reflectance than that of L. nobilis and Q. coccifera showed also higher reflectance in 

comparison to A. unedo. The NIR spectra were highly influenced by the different leaf 

structures of the species. In this sense, the NIR reflectance of species such as fern was 

much higher than that of E. manipuliflora. While in the visible range the two species 

showed very similar reflectance values. Finally, it was observed that the best 

recommended wavebands for species discrimination with the least confusion were 

centred at 448, 682, 723 and 977 nm (Figure 57). 

 

 

 

 

 

 

 

 

 

Figure 57 Signatures of the selected wavebands for shrub species 
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7.2 MAPPING FOREST REGENERATION AND VEGETATION RECOVERY 

USING HYPERION 

The aim of this study was to map post-fire forest regeneration and vegetation recovery 

using hyperspectral Hyperion. The specific objectives were: 

• to distinguish between unburned and regenerated or recovered vegetation; 

• to distinguish between forest regeneration and vegetation recovery; 

• to distinguish between the two dominant forest species, namely Pinus brutia 

and Pinus nigra ; 

• to distinguish between mature and young pine of same specie; and 

• to assess the accuracy of the results using field data. 

 
On the 1st of August 2003 a Hyperion image (level 1 radiometric product) of the study 

area was acquired (chapter 3). The volume of data collected from Hyperion is about 

75 times greater than that for an equivalent area from six non-thermal Landsat ETM+ 

bands. It is imperative that new methods and techniques such as object-oriented 

analysis be developed to handle these high-dimensional data sets. At the same time, it 

will be important to identify and drop redundant bands. This will require determining 

the most sensitive wavebands for a given application. Optimizing the Hyperion image 

will help reduce the volume and dimensionality of the data sets, and keep few selected 

bands that capture most of the pertinent information (Prasad et al. 2004).  

 

Sixty two plots of minimum 30x30 m large and of homogenously regenerated forest 

and recovered vegetation were surveyed in the field (Chapter 3). These plots will be 

used for accuracy assessment of the classification results.  

 

The Hyperion image was atmospherically and geometrically corrected (Chapter 4). 

The final output of the image contained 147 bands as shown in Table 29. After image 

corrections different tasks of Hyperion image transformations were performed. These 

specific tasks were addressed: 

1. to produce uncorrelated output bands using PCA; and 

2. to reduce data dimensionality using MNF. 
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Table 29 Final output of the Hyperion image (wavelength in nm) 

Band Nb. Wavelength Band Nb. Wavelength Band Nb. Wavelength Band Nb. Wavelength 

8 428.441 45 804.841 111 1241.08 162 1753.46 

9 438.611 46 815.047 112 1251.2 163 1763.62 

10 448.791 47 825.235 113 1261.3199 164 1773.79 

11 458.961 48 835.421 114 1271.4399 187 2007.38 

12 469.141 49 845.591 115 1281.5601 188 2017.5 

13 479.311 50 855.771 116 1291.6 189 2027.61 

14 489.488 51 865.941 117 1301.75 190 2037.64 

15 499.651 52 876.120 118 1311.75 191 2047.77 

16 509.82 53 886.290 119 1321.84 192 2057.9099 

17 519.974 54 896.470 134 1472.29 193 2068.05 

18 530.135 55 906.640 135 1482.3 194 2078.2 

19 540.283 56 916.819 136 1492.3 195 2088.3501 

20 550.439 82 947.658 137 1502.3 196 2098.51 

21 560.584 83 957.738 138 1512.29 197 2108.6699 

22 570.738 84 967.828 139 1522.2 198 2118.8401 

23 580.892 85 977.918 140 1532.2 199 2129 

24 591.037 86 988.048 141 1542.21 200 2139.0701 

25 601.194 87 998.048 142 1552.225 201 2149.23 

26 611.343 88 1008.15 143 1562.23 202 2159.3999 

27 621.506 89 1018.25 144 1572.25 203 2169.5701 

28 631.662 90 1028.36 145 1582.25 204 2179.74 

29 641.831 91 1038.48 146 1592.28 205 2189.8999 

30 651.995 92 1048.60 147 1602.3101 206 2200.0601 

31 662.172 93 1058.73 148 1612.35 207 2210.22 

32 672.346 94 1068.86 149 1622.29 208 2220.3601 

33 682.535 95 1079 150 1632.33 209 2230.51 

34 692.720 96 1089.14 151 1642.39 210 2240.5601 

35 702.917 101 1139.76 152 1652.45 211 2250.6899 

36 713.107 102 1149.91 153 1662.52 212 2260.8201 

37 723.305 103 1160.05 154 1672.6 213 2270.95 

38 733.489 104 1170.2 155 1682.6899 214 2281.0601 

39 743.679 105 1180.35 156 1692.79 215 2291.1699 

40 753.863 106 1190.5 157 1692.89 216 2301.27 

41 764.039 107 1200.64 158 1713.01 217 2311.3701 

42 774.236 108 1210.6801 159 1723.03 218 2321.47 

43 784.43 109 1220.8199 160 1733.16 219 2331.5701 

44 794.641 110 1230.9399 161 1743.3 - - 
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Values of image endmember were compared to field spectra data in order to evaluate 

whether there is a significant difference between the two variables. The previous 

statistical analysis resulted in recommending at least 23 best narrowbands in total 

(from 60 hyperspectral bands), in the range of 0.4 to 0.99 µm to discriminate among 

pine trees (age and species) and other shrub species. The most frequently occurring 

waveband centres were: 428.441, 458. 961, 479.311, 489.488, 509.820, 591.037, 

601.194, 621.506, 651.995, 672.346, 702.917, 723.305, 733.489, 753.863, 774.236, 

784.430, 794.641, 835.421, 865.941, 957.738, 967.828, 977.918 and 988.048 nm. 

Reflectance values at these wavebands were employed. The Paired-samples t test 

procedure was used to test the hypothesis of no difference between two variables for 

P. brutia and P. nigra regeneration. The paired sample correlation for P. brutia 

regeneration was 0.859 with a Sig. (2-tailed) value of 0.437 and a t value of 0.815. As 

for P. nigra regeneration the correlation was 0.892 with a Sig. value of 0.08 and a t 

value of 1.946. Those observations showed the possibility that difference in 

reflectance between field spectra and image endmembers was due to chance variation, 

and can’t be attributed to the source of data collection (Figure 58).  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 58 Compared spectral profiles of image endmembers and field spectra 
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7.2.1 Image transformations 

A couple of image transformation techniques were used in order to reduce the large 

number of bands into more meaningful and noiseless bands. 

 

PCA was used to produce uncorrelated output bands, to segregate noise components, 

and to reduce the dimensionality of data sets. Because hyperspectral data bands are 

often highly correlated, the Principal Component (PC) Transformation is used to 

produce uncorrelated output bands. This is done by finding a new set of orthogonal 

axes that have their origin at the data mean and that are rotated so the data variance is 

maximized. PC bands are linear combinations of the original spectral bands and are 

uncorrelated (Richards 1999). Only 10 PC bands were output of the analysis. The first 

PC band contained the largest percentage of data variance and the second PC band 

contains the second largest data variance, and so on. The last PC bands appeared 

noisy because they contained very little variance, much of which was due to noise in 

the original spectral data. Principal Component bands produced more colourful 

composite images than spectral colour composite images because the data is 

uncorrelated (Figure 59). 

 

 

 

 

 

 

 

 

 

Figure 59 PC bands 1, 2 and 3 respectively 

 

The Minimum Noise Fraction (MNF) transformation was used to determine the 

inherent dimensionality of image data, to segregate noise in the data, and to reduce the 

computational requirements for subsequent processing (Boardman and Kruse 1994). 

The MNF transformation (Green et al. 1988) is essentially two cascaded Principal 

Component transformations. The first transformation, based on an estimated noise 
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covariance matrix, decorrelated and rescaled the noise in the data. This first step 

resulted in transformed data in which the noise has unit variance and no band-to-band 

correlations. The second step was a standard Principal Components transformation of 

the noise-whitened data. For the purposes of further spectral processing, the inherent 

dimensionality of the data was determined by examination of the final eigenvalues 

and the associated images. The inherent dimensionality of the data was determined by 

the eigenvalues and MNF image. The MNF data space was divided into two parts: 

one part associated with large eigenvalues and coherent eigenimages, and a 

complementary part with near-unity eigenvalues and noise-dominated images (Figure 

60). Using only the coherent portions by thresholding the MNF bands separates the 

noise from the data, thus reducing the amount of data to be analysed and improving 

spectral processing results (Green et al. 1988, Harsanyi and Chang 1994, Boardman et 

al. 1995). Finally only 17 eigenbands were selected. 

 

 

 

 

 

 

 

 

Figure 60 Spatial coherence threshold 

 

In order to facilitate the analysis of such big amount of data, the work was performed 

on image subsets of the area under investigation. The same procedure of object-

oriented image analysis will be applied on each of the image subset separately 

avoiding processing errors due to the big amount of data.  
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7.2.2 Methodology 

The different layers bands were selected to be imported to an object-oriented analysis. 

These layers were the following: 

• Hyperion reflectance bands (147 layers)  

• PCA layers (only the first three PC bands) 

• MNF layers (only the ten first MNF bands) 

 

The methodology comprised three consecutive steps. Step 1 and 2 were performed as 

a preliminary procedure in order to select a number of training sites by taking field 

survey information into account. The whole analysis was based on object-based 

classification. The flowchart of the followed methodology is presented below (Figure 

61). 

 

 

 

 

 

 

 

Figure 61 Flowchart of methodology 
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At each of the previously presented steps, the same classification scheme was applied. 

Two main classes were distinguished: ‘vegetation’ and ‘no vegetation’ and five sub-

classes for vegetation were identified:  

1. brutia mature 

2. brutia regeneration 

3. nigra mature 

4. nigra regeneration 

5. other (shrubs and trees) 

 

Classification of the two main classes was based on membership functions while the 

classification of the sub-classes was based on applying standard nearest neighbour to 

the classes.  

7.2.2.1 Preliminary steps 

Preliminary step 1: the first three PCA layers were imported considered for 

segmentation and then for classification. The PCA image was segmented using an 

abstract scale of 0.3. The resulted objects were close in size to the image pixels. After 

segmentation the previously discussed classification scheme was applied. Statistics of 

object for a specific feature were compared between each other (Figure 62). A careful 

observation of the object statistics allowed selecting the features and thresholds for 

classification. 

 

 

 

 

 

 

 

 

 

Figure 62 Feature comparison between ‘vegetation’ (black) and ‘no vegetation’ (blue) 
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The class ‘vegetation’ was classified using a membership function of mean PCA 2 

(Figure 63).  

 

 

 

 

 

 

 

Figure 63 Membership function for the class ‘vegetation’ 

 

The subclasses of ‘vegetation’ were classified by applying a standard nearest 

neighbour classification and employing training sites.  

 

Preliminary step 2: all MNF layers were imported for segmentation. An abstract 

scale of 1 was used for image segmentation. Also object statistics were observed 

before selecting the features for classification and setting up the thresholds. Figure 64 

shows a feature comparison between ‘vegetation’ (in black) and ‘no vegetation’ (in 

blue) for the first five MNF bands. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64 Feature comparison between ‘vegetation’ (black) and ‘no vegetation’ (blue) 
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The class ‘vegetation’ was classified using membership function of mean band 5 

(Figure 65).  

 

 

 

 

 

 

 

Figure 65 Membership function for the class ‘vegetation’ 

 

As in the previous step, the subclasses of ‘vegetation’ were classified by applying a 

standard nearest neighbour classification and employing samples. 

 

Results of the preliminary steps and discussion: the classification of the PCA and 

MNF bands was not an aim in itself. The main purpose behind these two preliminary 

classifications was to locate common training image objects that can be used later in 

the classification of the Hyperion reflectance image. Some of the objects that were 

similarly classified in the two output images were compared to some of the collected 

field data. Matching samples (around three per each classification category) were 

selected as training image objects for the next classification in step 3. Figure 66 show 

subsets of the classified PCA and MNF bands. The corresponding subsets show P. 

brutia regeneration in darkest grey (lower) mapped from PCA and MNF bands (upper 

-left to right). 

 

 

  

 

 

 

 

 

 

Figure 66 Subsets of the preliminary classification results 
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From the visual inspection of the preliminary results it was found that the quality of a 

final classification result could be affected negatively due to the following two 

reasons: 

1. The low spatial resolution of the image makes it not possible to identify 

accurately the pixels of mixed vegetation types. 

2. The topographic effects, canopy shadows, and illumination conditions 

(spectral overlap). 

 

Also, it was observed from an operational point of view, that the speed performance 

of data processing was quite acceptable when using PCA and MNF bands, while the 

use of a full Hyperion image (147 bands) is expected to slow remarkably the 

processing performance of the data, giving a possibility of internal algorithm errors to 

be generated. 

 

Based on what has been mentioned above, it was important to find a solution that 

could satisfy the need of a high quality classification and that could be at the same 

time operational. The basic strategy was focused on reducing complexity. Image 

analysis typically implies dealing with complex dependencies. To make this 

complexity accessible and transparent, it was important to reduce complexity 

wherever it is possible, specifically in the context of the image to be analysed and in 

the creation of the classifications schemes and the class descriptions.  

 

Therefore it was found useful to work on two different subsets of the image, namely 

Area of Interest 1 (AOI1) and AOI2. It should be noted that the aim of the study is to 

map vegetation regeneration after fire. Consequently, the two subsets were carefully 

selected in order to have the most representative vegetation regeneration covers.  

 

The study is developed on an operational basis. However, in another type of 

application, unburned mature brutia and nigra forests can be identified and masked 

out easily by using fire perimeters (produced by the forest services or from accurate 

burned area maps) in addition to a Digital Elevation Model, knowing that P. nigra 

forests are grown only above a certain level of altitude.  
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7.2.2.2 Object-based classification of the Hyperion image 

The step 3 consisted of Hyperion image segmentation and classification. All 147 

bands of the Hyperion image were imported for use in object-oriented image analysis.  

 

Image segmentation: the purpose behind image segmentation is to produce highly 

homogenous objects. Image layers were assessed differently depending on their 

importance and suitability for the segmentation result. The higher the weight is 

assigned to a layer the more of its information will be used during the segmentation 

process. Hyperion image layers that do not contain the information intended for 

representation by the image objects should be given little or no weight (Table 30). 

When segmenting the Hyperion reflectance image, all bands recommended in chapter 

7 for vegetation discrimination were weighted with a highest value (three), while the 

ones that were not recommended were weighted with a lowest value (one). Finally, 

the bands above 1000 nm were all weighted with an average value of two due to the 

absence of field hyperspectral analysis in that range. 

 

Table 30 Band weight assignments  

Band numbers Wavelength (nm) Weight Band numbers Wavelength (nm) Weight 

8 428.441 3 40 753.863 3 

11 458.961 3 42 774.236 3 

13 479.311 3 43 784.430 3 

14 489.488 3 44 794.641 3 

16 509.820 3 48 835.421 3 

24 591.037 3 51 865.941 3 

25 601.194 3 83 957.738 3 

27 621.506 3 84 967.828 3 

30 651.995 3 85 977.918 3 

32 672.346 3 86 988.048 3 

35 702.917 3 Other bands <1000 nm 1 

37 723.305 3 All bands  >1000 nm 2 

38 733.489 3 - - - 

 

The scale 0.1 was chosen to keep as much as possible the spectral characteristics of 

every individual object in the image (Figure 67).  
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Figure 67 Image subset showing image objects created after segmentation 

 

Image classification: after segmentation the image was made ready for classification. 

The previously described classification scheme (two classes and five subclasses of the 

class vegetation) are applied here. Each class of the classification scheme formulated 

in here contains a class description. Each class description consists of a set of fuzzy 

expressions allowing the evaluation of specific features and their logical operation. 

The output of the system is twofold: a fuzzy classification with detailed information 

of class mixture and reliability of class assignment, and a final crisp classification 

where each object is assigned to exactly one class (or none, if no assignment was 

possible). A fuzzy rule can have one single condition or can consist of a combination 

of several conditions which have to be fulfilled for an object to be assigned to a class. 

The conditions are defined by expressions, which are inserted into the class 

descriptions. Expressions of classification features were membership functions in the 

parent class ‘vegetation’ and nearest neighbour in the subclasses.  

 

The feature used for the classification of the parent class ‘vegetation’ was NDVI. The 

NDVI was calculated from band 86 (998.048 nm) and band 32 (672.346 nm). These 

bands represented two of the previously recommended wavelengths for vegetation 

discrimination. It was essential to compare the lowest density of vegetation cover 

measured in the field to the correspondent image object in order to set up an NDVI 

threshold for the class ‘vegetation’. After the comparison, a threshold of 0.4 was set 

up (Figure 68). 
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Figure 68 Membership function of NDVI for the class ‘vegetation’  

 

The nearest neighbour classifier was employed for the classification of the sub-

classes. The nearest neighbour classifies image objects in a given feature space and 

with given samples for the classes of concern. The principle is simple: first, typical 

representative samples for each class are needed. As the analysis is based on an object 

oriented approach to image analysis, specific image objects are addressed to be the 

samples. After a representative set of sample objects has been declared for each class, 

the algorithm searches for the closest sample object in the feature space for each 

image object.  

 

7.2.3 Results and discussion 

Evaluation of the quality of a classification result is of high importance in remote 

sensing since it gives evidence of how well the generated or used classifier is capable 

of extracting the desired objects from the image. Commonly, for a first evaluation, 

simple visual inspection was used to evaluate the plausibility of the classification 

results. However, this is just a subjective method and thus difficult to quantify or be 

expressed in comparable values. The AOI1 image subset (Figure 69) showed large 

homogeneous areas of brutia mature forest. Patches of brutia regeneration and other 

regenerated vegetation are mainly observed within the burned areas. Most probably, 

the small spots of brutia regeneration surrounded by mature forest represent some 

misclassified objects or real young brutia trees. As for AOI2 a highly textured mosaic 

of vegetation regeneration makes difficult to visually interpret the results, therefore 

advanced analysis of the results will be required.  
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Figure 69 Final classification results on image subsets (left: AOI1, and right: AOI2) 

 

When using fuzzy classification methods, objects can belong to several classes but 

with different degrees of membership, which is the case when class descriptions 

overlap. Thus, to evaluate the reliability or stability of classes it is necessary to survey 

the different degrees of membership of the classified objects. Objects whose feature 

values are within these overlapping ranges can be seen as ambiguous objects, since 

they fulfil the criteria of more than one class. Although fuzzy concepts make it 

possible to describe these ambiguities, the main aim of each classification should be 

to define classes as unambiguously as possible. It should be noted that obtaining 

ambiguous objects does not mean that the objects are misclassified; it rather means 

that there is no class to which these objects belong to explicitly. Hence, regarding the 

objects’ statistics of the degrees of membership to the classes helps to evaluate the 

quality of the classes. In other words: the less ambiguous the objects, the more usable 

the classification results. Likewise, the more distinctly the classes differentiate the 

objects, the more clearly they express the image’s content.  

 

To quantify a class’s quality regarding the statistics of its objects’ degrees of 

membership is an appropriate method: the more objects having a membership degree 

of 1 to just this class, the better the class is, and vice versa. In addition, the statistics 

and some parameters such as minimum, maximum, standard deviation and mean of 

the several degrees of membership can give more evidence.  
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The best classification result (Table 31 and Table 32) is a statistical output for the best 

classification result evaluated per class. Due to the fuzzy classification concept, an 

image object has memberships to more than one class. The classification with the 

highest assignment value is taken as the best classification result. Basic statistical 

operations are performed on the best classification result of the image objects 

assigned to a class (number of image objects, mean, standard deviation, minimum 

value and maximum value). 

 

Tables 31 can be interpreted as follows: at least one object fulfils the class description 

completely for the class ‘other vegetation’ and almost completely for the brutia 

classes, but there are some which do not. There is also at least one object per class 

which meets the class criteria poorly. But in general the objects in the brutia classes 

have a membership degree of µ = 0.81 ± 0.14 for ‘brutia mature’ and 0.71 ± 0.14 for 

‘brutia regeneration’. This can be interpreted as “most objects of the class meet the 

class’s criteria sufficiently.”  

 

While in Table 32 at least one object fulfils the class description completely for all the 

classes, but there are some as well which do not. There is also at least one object per 

class which meets the class criteria poorly. But in general the objects in all classes 

have acceptable StdDev in relation to the membership degrees. This can be 

interpreted as “most objects of the class meet the class’s criteria sufficiently.”  

 

Table 31 Best classification results from AOI1 

Class Objects Mean StdDev Minimum Maximum 
No vegetation 177 0.99 0.05 0.56 1 
Brutia mature 198 0.81 0.14 0.5 0.99 
Brutia regeneration 756 0.71 0.14 0.5 0.98 
Other vegetation 559 0.7 0.16 0.5 1 

 

Table 32 Best classification results from AOI2 

Class Objects Mean StdDev Minimum Maximum 
No vegetation 1395 0.95 0.11 0.506972 1 
Brutia regeneration 4137 0.76 0.11 0.500225 1 
Nigra mature 5859 0.81 0.14 0.500457 1 
Nigra regeneration 9846 0.76 0.13 0.500095 1 
Other vegetation 6807 0.77 0.17 0.5 1 
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A comparison between the best and second best µ-values gives more evidence about 

the capability to separate the objects unambiguously. A simple operator which 

expresses the relativity between two values is their difference. The higher the µ’s 

difference, the more unambiguously an object belongs to its class.  

 

Classification stability (Tables 33 and 34) is the difference between the best and the 

second best class assignment, calculated as a percentage. It was possible to explore 

the differences in degrees of membership between the best and the second best class 

assignments of each object, which can provide evidence about the ambiguity of an 

object’s classification. The statistical output displays basic statistical operations such 

as, number of image objects, mean, standard deviation, minimum value and maximum 

value.  

 

As it is already known, an image object has a membership degree to more than one 

class. With the classification stability statistics, it is possible to explore the differences 

in degrees of membership between the best and the second best class assignments of 

each object, which can give evidence about the ambiguity of an object’s classification. 

Objects with 1.0 difference value are extremely non ambiguous and objects with a 0.0 

difference value are absolutely ambiguous.  

 

The statistical output displays, in terms of class, the basic statistical operations 

performed on the differences between the best and second best degrees of 

membership. In table 33 there isn’t any object which belongs to another class with the 

same degree of membership as to any specific class (minimum is different from 0.00). 

There is no object of the brutia classes which does not belong to another class at the 

same time. If this was the case like for the class ‘other vegetation’, a maximum of 1.0 

would occur. Based on the mean and StdDev values it can be concluded that all 

classes can be very acceptably separated among each others (mean = 0.07 ± 0.06 for 

‘brutia mature’ and mean = 0.06 ± 0.05 for ‘brutia regeneration’). In table 34, there is 

at least one object which belongs to another class with the same degree of 

membership as to any vegetation class (minimum = 0.00). There is no object of any of 

the pine classes which does not belong to another class at the same time. In general 

the objects of all classes can be acceptably separated among each others. 
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Table 33 Classification stability from AOI1 

Class Objects Mean StdDev Minimum Maximum 
No vegetation 177 0.98 0.1 0.125995 1 
Brutia mature 198 0.07 0.06 0.000204 0.44 
Brutia regeneration 756 0.06 0.05 0.000125 0.31 
Other vegetation 559 0.4 0.32 0.00003 1 

 

Table 34 Classification stability AOI2 

Class Objects Mean StdDev Minimum Maximum 
No vegetation 1395 0.91 0.22 0.01 1 
Brutia regeneration 4137 0.26 0.19 0 0.71 
Nigra mature 5859 0.4 0.24 0 0.91 
Nigra regeneration 9846 0.4 0.23 0 0.81 
Other vegetation 6807 0.55 0.34 0 1 

 

Regarding the class descriptions, obviously and normally their membership functions, 

specifically those related to the spectral features do overlap in the value ranges. To 

solve the problem the membership functions must be adjusted to avoid overlapping 

value ranges (not possible to achieve with such a large number of bands).  

 

The above examples showed one basic advantage of fuzzy classification methods: due 

to handling with degrees of membership instead of binary membership values, it is 

possible to evaluate the classifier’s capability to extract the desired object classes 

from an image. Additionally, it is possible to detect unstable and unreliable classes. 

Nevertheless, it is necessary to compare the obtained classification results with 

references from the real world.  

 

An accuracy measure, derived on the basis of a comparison of the classification in 

question with field reference data, was applied. These reference data were obtained by 

on-site ground measurements (Chapter 3), and are considered reliable and true, which 

is why sometimes the term “ground truth” is used. The term “reference classification” 

was used here to emphasize that it was essentially also a classification, the reliability 

of which must be assured and cannot be taken for granted. In order to assess the 

accuracy of the classification, field-collected data from 62 widely dispersed plots 

were employed. A so-called error matrix (Table 35) was derived by counting how 

many of the objects classified as class i in the classification are of class k in the 

reference classification.  
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The overall classification accuracy was found to be 75.81% (Table 36), while overall 

Kappa Index of Agreement (KIA) was 0.689 (Table 37). A closer examination of the 

tables revealed that the classes of mature pine forests were the most accurately 

identified. This is due to the fact that each of the mature pine species was classified in 

a different image subset. The classes of pine regeneration were mainly confused with 

the class ‘other vegetations’. This confusion can be explained by absence of large 

homogenously regenerated pine trees. A solution to resolve this problem could be 

provided by combining the Hyperion image to high spatial resolution imagery such as 

QuickBird. Still, the accuracy assessment of classification showed very promising 

results in mapping two different regenerated pine species and other vegetation 

regeneration after fire. An application that was not possible with other low spectral 

resolution images. 

 

Table 35 Error Matrix  

Reflectance Reference data 
Classified Data P. brutia 

mature 
P. brutia 
regeneration 

P. nigra 
mature 

P. nigra 
regeneration 

Other 
vegetations 

Row 
total 

P. brutia mature 4 1 0 0 0 5 
P. brutia regeneration 0 9 0 1 2 12 
P. nigra mature 0 1 15 0 0 16 
P. nigra regeneration 0 0 1 8 5 14 
Other vegetations 0 4 0 0 11 15 
Column total 4 15 16 9 18 62 

 

Table 36 Accuracy totals 

Class name (Reflectance) Reference 
totals 

Classified 
totals 

Number 
correct 

Producers 
accuracy 

Users 
accuracy 

P. brutia mature 4 5 4 100 % 80 % 
P. brutia regeneration 15 12 9 60 % 75 % 
P. nigra mature 16 16 15 93.75 % 93.75 % 
P. nigra regeneration 9 14 8 88.89 % 57.14 % 
Other vegetations 18 15 11 61.11 % 73.33 % 
Totals 62 62 47 - - 
Overall Classification Accuracy 75.81 % 

 

Table 37 Kappa Statistics 

Class Name (Reflectance) Kappa 
P. brutia mature 0.7862 
P. brutia regeneration 0.6702 
P. nigra mature 0.9158 
P. nigra regeneration 0.4987 
Other vegetations 0.6242 
Overall Kappa Statistics 0.6892 
 



_____________Chapter 7 Mapping Forest Regeneration and Vegetation Recovery by Employing Hyperspectral Remote Sensing 

 155 

7.3 CHAPTER SUMMARY 

In summary: 

• The hyperspectral wavebands (0.4-1.1 µm) that best characterize pine 

vegetation were determined. Statistical analysis allowed a 97% reduction in 

data volume was feasible when 60 of hyperspectral wavebands were reduced 

to the first three principal components.  

• The study resulted in recommending 14 best narrowbands (from 60 

hyperspectral bands), in the range of 0.4 to 1.1 µm to discriminate among pine 

trees (age and species). The most frequently occurring waveband centres were: 

428.441, 458.961, 479.311, 591.037, 621.506, 672.346, 702.917, 733.489, 

794.641, 865.941, 907.288, 957.738, 967.828, and 988.048 nm. A sig. (2-

tailed) analysis showed significant difference in reflectance due to change in 

pine age and species.  

• Another study resulted in recommending 18 bands that best characterize the 

different shrub species. The most frequently occurring waveband centres were: 

428.441, 458.961, 479.311, 489.488, 509.82, 601.194, 651.995, 672.346, 

723.305, 753.863, 774.236, 784.43, 835.421, 865.941, 926.999, 937.568, 

957.738, and 977.918 nm. The sig. (2-tailed) analysis showed a significant 

difference in reflectance due to change in species except between C. incanus 

and L. nobilis and between Q. coccifera and A. unedo.  

• A couple of image transformation techniques, namely PCA and MNF were 

applied to the Hyperion image in order to reduce the large number of bands 

into more meaningful and noiseless bands. 

• Only 10 PC bands were output of the analysis. The first PC band contained the 

largest percentage of data variance and the second PC band contains the 

second largest data variance, and so on. Principal Component bands produced 

more colourful composite images than spectral colour composite images 

because the data was made uncorrelated. 

• The MNF transformation was used to determine the inherent dimensionality of 

image data, to segregate noise in the data, and to reduce the computational 

requirements for subsequent processing. Finally, only 17 eigenbands were 

selected. 
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• The classifications of the noise free images in addition to the use of field 

surveyed plots made possible locating the most representative training objects 

for the final classification of the Hyperion image.  

• The interpretation of the classification results showed that the low spatial 

resolution of the image did not make it possible to identify accurately the 

pixels of mixed vegetation types. Also a spectral overlap was observed 

between different vegetation types because of topographic effects, canopy 

shadows, and illumination conditions. 

• All 147 bands of the Hyperion image were imported for use in object-oriented 

image analysis. Previously selected training image objects were employed for 

standard nearest neighbour classification of the Hyperion reflectance image. 

• Statistical evaluation of the classification results was twofold analysis. The 

first one was based on internal fuzzy analysis and the second one was based on 

external reference data. The fuzzy analysis showed that most objects of the 

different classes met the class’s criteria sufficiently. Also it was concluded that 

almost all classes could be very acceptably separated among each others. 

• Because of one basic advantage of the applied fuzzy classification method, it 

was possible to evaluate the classifier’s capability to extract the desired object 

classes from an image. Additionally, it was possible to detect unstable, 

unreliable classes.  

• By producing an error matrix, the overall classification accuracy was found to 

be 75.81%, while overall Kappa Index of Agreement (KIA) was 0.689. The 

accuracy showed very promising results in mapping two different regenerated 

pine species and other vegetation regeneration after fire.  

• The classes of mature pine forests were the most accurately identified. Some 

confusion between the classes of pine regeneration and the class ‘other 

vegetations’ were recorded. This confusion can be explained by absence of 

large homogenously regenerated pine trees.  

• A solution to resolve some problems observed in this classification could be 

provided in another kind of application combining the Hyperion image to high 

spatial resolution imagery such as QuickBird. 
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CHAPTER 8: MAPPING FOREST REGENERATION 

AND VEGETATION RECOVERY BY COMBINING 

VERY HIGH RESOLUTION AND HYPERSPECTRAL 

IMAGERY 

 

Chapter 7 demonstrated how hyperspectral data with the typical high number of 

narrow bands could be used to spectrally characterize pine and shrub vegetation. 

Also, the use of hyperspectral imagery for vegetation regeneration mapping was 

demonstrated. Some classification confusions were recorded, and attributed to the 

low spatial resolution of the Hyperion image. In this chapter, a potential solution is 

presented by combining the Hyperion image to a high spatial resolution imagery of 

QuickBird. Hyperspectral data with the typical high number of bands could be used to 

provide the missing information in high spatial resolution imagery and vice versa.  

 

Given that older generation sensors have many known limitations with respect to their 

suitability for studying complex biophysical characteristics (De Jong et al. 2000, 

Steininger 2000, Sampson et al. 2001, Salas et al. 2002), the need to benefit from new 

generation of high spatial and spectral resolution sensors is of critical importance. 

Accurate quantification of vegetation regeneration could be essential for biodiversity 

assessment, land cover characterization and biomass modelling (Blackburn and 

Milton 1995).High spectral resolution facilitates the identification of features while 

high spatial resolution permits accurate location of features (Gross and Scott 1998). 

Additionally, advanced multispectral sensors also allow significantly improved signal 

to noise ratios (Levesque and King 2003).  

 

Many applications of remote sensing require high spatial resolution data for a correct 

determination of small objects. High spatial resolution imagery can be used before, 

during, and after a fire to measure fuel potential, access, progress, extent, as well as 

damage and financial loss. High spatial resolution multispectral data such as 

QuickBird (60 centimetres in panchromatic and 2.4 m in multispectral) can identify 

not only individual tree crowns, but often the type of tree, biomass, condition and age 

class (Wang et al. 2004). However, high spatial resolution image data contain often 



___________Chapter 8 Mapping Forest Regeneration and Vegetation Recovery by Combining VHR and Hyperspectral Imagery 

 158 

limited spectral information. This poor spectral information leads often to 

classification errors between visible similar classes. Additional information is needed 

to separate these classes (Greiwe and Ehler 2005). 

 

Hyperspectral data with the typical high number of bands could be used to provide 

this information (Okin et al. 2001) and allow a differentiation of material due to their 

typical spectra (Elvidge and Chen 1995). A number of recent studies have indicated 

the advantages of using discrete narrowband data from specific portions of the 

spectrum, rather than broadband data, to obtain the most sensitive quantitative or 

qualitative information on vegetation characteristics (i.e., Elvidge and Chen 1995, 

Carter 1998, Blackburn 1999, Thenkabail et al. 2000, Eckert and Kneubuhler 2004). 

Hyperspectral remote sensing has improved the feasibility of unambiguously 

identifying numerous vegetation absorption features, related to liquid water, 

chlorophyll, cellulose, and lignin contents (Smith et al. 1990, Gao and Goetz 1994). 

In the previous chapters it was shown how this is potentially useful in the analysis of 

vegetation characteristics and to what extent the Hyperion (Ungar et al. 2003) 

hyperspectral imagery (30-m resolution, 10-nm bands covering the spectrum from 

400–2500 nm) could be useful in vegetation regeneration mapping. 

 

None of these previously mentioned studies investigated the combination of both 

Hyperion and QuickBird for mapping post-fire forest regeneration, specifically in the 

Mediterranean. In the context of remotely sensed data, fusion is often performed by 

combining high spatial with high spectral resolution imagery on different levels (Pohl 

and Genderen 1998, Zhukov et al. 1999). Accurate mapping of post fire forest 

regeneration require high spatial and spectral resolution data for a correct 

determination of small re-vegetated areas and for a good discrimination among 

different vegetation type and species (Green et al. 1998, Shaw et al. 1998, Mumby et 

al. 1999).  

 

Consequently, object-oriented image analysis (Baatz and Shape 2000, Benz et al. 

2004, Mitri and Gitas 2004a) is supposed to be most convenient not only for dealing 

with high spatial resolution imagery but also for combining and classifying multi-

resolution imageries.  
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The aim of this study is to map post-fire forest vegetation on the island of Thasos by 

combining EO-1 Hyperion and QuickBird in an object-oriented analysis. The specific 

objectives are: 

• to classify the Quickbird image using inputs from Hyperion and Landsat; and 

• to assess the accuracy of the results using field data. 

 

The same area that was studied in the previous chapter was considered in this study. 

The multispectral QuickBird image and the Hyperion image were employed. Two 

geometrically corrected Landsat-TM images acquired few days after the fire of 1985 

and 1989 respectively were collected in order to be used in the object-oriented image 

analysis for specifically mapping burned and non burned areas. 
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8.1 METHODOLOGY 

Different layers were selected to be imported to an object-oriented analysis. The same 

previously selected subsets were used. The imported layers were the following: 

• Four multispectral QuickBird bands 

• Hyperion reflectance bands (147 layers)  

• PCA layers(only the first three PC bands) 

• MNF layers (only the ten first MNF bands) 

• Post fire Landsat TM images from 1985 and 1989 

 

The flowchart of the methodology is represented in Figure 70 (the application of 

chapter 8 is highlited in red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70 Flowchart of the methodology 
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8.1.1 Segmentation 

The best segmentation result is the one that provides optimal information for further 

processing. In this study, the strategy before classifying the QuickBird image was to 

create a three-level graded scale of segmentation (Mao and Jain 1992, Hofmann et al. 

1998). Thus, small objects at level 1 (regarded as sub-objects) and larger objects 

(regarded as super-objects) at level 3 would provide information for the final level of 

classification, which is the middle level (level 2).  

 

After segmentation, all image objects were automatically linked to a network in which 

each image object knows its neighbours, thus affording important contextual 

information for later analysis. Subsequently, repetition of segmentation with different 

scale parameters creates a hierarchical network of image objects. Each middle-sized 

image object ‘knows’ its super-object and its sub-objects.  

 

Level 2 was the first to be segmented with a scale of 10 taking into consideration the 

shape factor. This level was firstly segmented in order not to affect the segmentation 

results when employing the thematic layers. Then, level 1 was created with a scale 9 

taking into consideration both the QuickBird image and the thematic layers. Finally, 

level 3 was created with a scale of 100 employing only the first four bands of 

Landsat-TM images. The output results showed large segments that fit well the 

burned areas. 

 

8.1.2 Classification 

After segmentation the different levels were classified. Level 1 was the first to be 

classified. A classification scheme was adopted (Figure 71). The following main 

classes were created: ‘vegetation’, ‘shadows’ (canopy and topographic shadows) and 

‘other’ (bare ground urban expansion, etc.). Furthermore, the following sub-classes 

were added to the main class ‘vegetation’: ‘brutia mature pure’, ‘brutia mature dense 

cover’, ‘brutia regeneration pure’, ‘brutia regeneration dense cover’, ‘nigra mature 

pure’, ‘nigra mature dense cover’, ‘nigra regeneration pure’, ‘nigra regeneration dense 

cover’, and ‘other vegetation’. In this sense ‘pure’ means that there is a minimal 
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mixing with other type of vegetation, while ‘dense cover’ means the vegetation might 

be mixed with other vegetation types or species.  

 

 

 

Figure 71 Classification scheme 

 

Membership functions (Civanlar and Trussel 1986) were used to describe all the 

classes. Objects at level 1 were the first to be classified. The class ‘shadows’ describes 

the dark objects that represent mainly the canopy shadows and the shaded slopes. 

Membership function used in the description of this class was ratio of NIR from the 

QuickBird image (Figure 72). 
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Brutia mature pure 

Brutia mature dense cover 

Brutia regeneration pure 

Brutia regeneration dense cover 

Other vegetation 

Nigra mature dense cover 

Nigra regeneration pure 

Nigra regeneration dense cover 

Nigra mature pure 
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Figure 72 Ratio of NIR for the class ‘shadows’ 

The class vegetation was classified employing a membership function of NDVI 

(Figure 73). 

 

 

 

 

Figure 73 Membership function for the class ‘vegetation’ 

As for the subclasses a set of conditions was used in the description of each class. The 

sub-class ‘brutia mature pure’ had the following set of conditions: 

If (thematic reflectance and thematic PCA and thematic MNF = brutia mature) then 

objects are classified as ‘brutia mature pure’. 

The sub-class ‘brutia mature dense cover’ had the following set of conditions: 

If (thematic reflectance and thematic PCA = brutia mature) or (thematic reflectance 

and thematic MNF = brutia mature) or (thematic PCA and thematic MNF = brutia 

mature) and (relative border to brutia mature is 0.01 or higher) then objects are 

classified as ‘brutia mature dense cover’. 

The sub-class ‘brutia regeneration dense cover’ had the following set of conditions: 



___________Chapter 8 Mapping Forest Regeneration and Vegetation Recovery by Combining VHR and Hyperspectral Imagery 

 164 

If (thematic reflectance and thematic PCA = ‘brutia regeneration’) or (thematic 

reflectance and thematic MNF = ‘brutia regeneration’) or (thematic PCA and 

thematic MNF = ‘brutia regeneration’) and (relative border to ‘brutia mature’ is 

0.005 or higher) then objects are classified as ‘brutia regeneration dense cover’. 

The sub-class ‘brutia regeneration pure’ had the following set of conditions: 

If (thematic reflectance and thematic PCA and thematic MNF = brutia regeneration 

pure) then objects are classified as ‘brutia regeneration pure’. 

Objects were classified as ‘other vegetation’ if none of the previous conditions was 

satisfied. 

After classification, ‘brutia regeneration pure’ and ‘brutia regeneration dense cover’ 

were grouped under one class called ‘brutia regeneration all’. Also, ‘brutia mature 

pure’ and ‘brutia mature dense cover’ were grouped under one class call ‘brutia 

mature all’. 

 

Level three was then classified. At this level two classes were created, ‘burned’ and 

‘not burned’. Not burned objected were classified using the band ratio of NIR from 

the Landsat-TM image (Figure 74).  

 

 

 

 

 

Figure 74 Membership function for the class ‘not burned’ 

Finally, classification at level 2 was performed and a final output of classification was 

produced. At this level, four classes were created for the AOI1: ‘brutia mature’, 

‘brutia regeneration’, ‘other vegetations’ and ‘others’. 
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The class ‘brutia mature’ had the following set of conditions: 

If (existence of ‘not burned’ super-objects and existence of ‘shadows’ sub-objects) or 

(existence of ‘brutia mature all’ sub-objects and existence of ‘not burned’ super-

objects) or (existence of ‘not burned’ super-objects and existence of ‘other 

vegetation’ sub-objects and relative border to ‘brutia mature’ neighbour objects is 

0.005 or higher) or (existence of ‘not burned’ super-objects and existence of ‘brutia 

regeneration all’ sub-objects) then objects are classified as ‘brutia mature’. 

The class ‘brutia regeneration’ had the following set of conditions: 

If (existence of ‘brutia regeneration all’ sub-objects and existence of ‘burned’ super-

objects) or (existence of ‘burned’ super-objects and existence of ‘other vegetations’ 

sub-objects and relative border to ‘brutia regeneration’ neighbour objects is 0.45 or 

higher) then classify as ‘brutia regeneration’. 

The class ‘other vegetations’ had the following set of conditions: 

If (existence of ‘other vegetations’ sub-objects) or (existence of ‘brutia mature all’ 

sub-objects and existence of ‘burned’ super-objects) then classify as ‘other 

vegetation’. 

Finally, objects were classified as ‘others’ when none of the previous conditions was 

satisfied. The final classification results are represented in Figure 75. 

 

 

 

 

 

Figure 75 Final classification results at level 2 for AOI1 
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As for AOI2, the same previously applied procedure of object-oriented image analysis 

was performed by applying the classification scheme as shown in Figure 71.  

As before, three main created and classified at level 1: ‘vegetation’, ‘shadows’ and 

‘no vegetation’. Seven sub-classes were defined in the main class vegetation: ‘brutia 

regeneration pure’, ‘brutia regeneration dense cover’, ‘nigra mature pure’, ‘nigra 

mature dense cover’, ‘nigra regeneration pure’, ‘nigra regeneration dense cover’, and 

‘other vegetations’. The same classification descriptions were used in the common 

classes. Also, membership functions were used to describe the new classes. Objects 

that were not attributed to any of these two classes were classified as ‘others’. 

The sub-class ‘nigra mature pure’ had the following set of conditions: 

If (thematic reflectance and thematic PCA and thematic MNF = ‘nigra pure’) then 

objects are classified as ‘nigra mature pure’. 

The sub-class ‘nigra mature dense cover’ had the following set of conditions: 

If (thematic reflectance and thematic PCA = ‘nigra mature’) or (thematic reflectance 

and thematic MNF = ‘nigra mature’) or (thematic PCA and thematic MNF = ‘nigra 

mature’) then objects are classified as ‘nigra mature dense cover’. 

The sub-class ‘nigra regeneration pure’ had the following set of conditions: 

If (thematic reflectance and thematic PCA and thematic MNF = ‘nigra regeneration’) 

then objects are classified as ‘nigra regeneration pure’. 

The sub-class ‘nigra regeneration dense cover’ had the following set of conditions:  

If (thematic reflectance and thematic PCA = ‘nigra regeneration’) or (thematic 

reflectance and thematic MNF = ‘nigra regeneration’) or (thematic PCA and 

thematic MNF = ‘nigra regeneration’) then objects are classified as ‘nigra 

regeneration dense cover’. 

The classes ‘brutia regeneration pure’ and ‘brutia regeneration dense cover’ were 

grouped into one class called ‘brutia regeneration all’. The classes of ‘nigra mature 

pure’ and ‘nigra mature dense cover’ were grouped into another class called ‘brutia 
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mature all’. Also, ‘nigra regeneration pure’ and ‘nigra regeneration dense cover’ were 

grouped into a class called ‘nigra regeneration all’. 

 

Like in the previous subset, the two classes at level 3, namely ‘burned’ and ‘not 

burned’ were created. The classification employed the two Landsat-TM images and 

objects were classified using the band ratio of NIR.  

 

At the final level of classification (level 2), four new classes were created in addition 

to the ‘brutia regeneration’ class. These classes were: ‘nigra mature’, ‘nigra 

regeneration’, ‘other vegetations’ and ‘others’.  

 

‘Nigra mature’ had the following set of conditions: 

If (existence of ‘not burned’ super-objects and existence of ‘shadows’ sub-objects and 

relative border to ‘nigra mature’ is 0.005 or higher) or (existence of ‘nigra mature 

all’ sub-objects and existence of ‘not burned’ super-objects) or (existence of ‘not 

burned’ super-objects and existence of ‘other vegetations’ sub-objects and relative 

border to ‘nigra mature’ neighbour objects is 0.35 or higher) then objects are 

classified as ‘nigra mature’. 

‘Nigra regeneration’ had the following set of conditions: 

If (existence of ‘burned’ super-objects and existence of ‘other vegetations’ sub-objects 

and relative border to ‘nigra regeneration’ neighbour objects is 0.45 or higher) or 

(existence of ‘burned’ super-objects and existence of ‘nigra regeneration all’ sub-

objects) then objects are classified as ‘nigra regeneration’. 
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‘Other vegetations’ had the following conditions: 

If (existence of ‘burned’ super-objects and existence of ‘nigra mature all’ sub-objects) 

or (existence of ‘nigra regeneration all’ sub-objects and existence of ‘not burned’ 

super-objects) or (existence of ‘brutia regeneration all’ sub-objects and existence of 

‘not burned’ super-objects) or (existence of ‘other vegetations’ sub-objects) then 

objects are classified as ‘other vegetations’. 

Finally, objects were classified as ‘others’ when none of the previous conditions was 

satisfied. The final output of the classification is presented in Figure 76. 

 

 

 

 

 

Figure 76 Final classification results at level 2 for AOI2 
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8.2 RESULTS AND DISCUSSION 

By using an object-oriented approach for classifying very high spatial resolution 

imagery it was possible to create objects at a tree scale and attribute to these objects 

hyperspectral information from the thematic layers. To increase the accuracy of the 

results an object must satisfy a set of conditions based on both hyperspectral and high 

spatial resolution imagery. Moreover, in order to avoid confusions between certain 

type of vegetation and regenerated vegetation, two post-fire Landsat-TM images were 

employed. The use of these images helped in mapping burned areas, therefore 

restricting areas of possible pine regeneration. 

 

In order to assess the accuracy of the results, the final maps were compared to 62 

plots observed in field surveys. An error matrix was produced (Table 38) and 

accuracy totals were extracted (Table 39). Kappa statistics are shown in Table 40. The 

overall object-based classification accuracy of the total of classification was estimated 

to be 83.87% and the overall Kappa statistics was 0.79.  

 

After a careful look at the results it was found that object-based classification 

performed with high accuracies on mature pine forests. Confusions between brutia 

and nigra regeneration were minimal. The main classification confusions were 

observed between ‘brutia regeneration’ and ‘other vegetations’ on one side and 

between ‘nigra regeneration’ and ‘other vegetations’ on the other side. This can be 

mainly attributed to areas with a very low density of pine regeneration.  
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Table 38 Error Matrix  

 Reference data 
Classified Data P. brutia 

mature 
P. brutia 
regeneration 

P. nigra 
mature 

P. nigra 
regeneration 

Other 
vegetations 

Row 
total 

P. brutia mature 4 0 0 0 0 4 
P. brutia regeneration 0 13 0 1 3 17 
P. nigra mature 0 0 16 1 1 18 
P. nigra regeneration 0 0 0 7 2 9 
Other vegetations 0 2 0 0 12 14 
Column total 4 15 16 9 18 62 

 

Table 39 Accuracy totals 

Class name Reference 
totals 

Classified 
totals 

Number 
correct 

Producers 
accuracy 

Users 
accuracy 

P. brutia mature 4 4 4 100 % 100 % 
P. brutia regeneration 15 17 13 86.67 % 76.47 % 
P. nigra mature 16 18 16 100 % 88.89 % 
P. nigra regeneration 9 9 7 77.78 % 77.78 % 
Other vegetations 18 14 12 66.67 % 85.71 % 
Totals 62 62 52 - - 
Overall Classification Accuracy 83.87 % 

 

Table 40 Kappa Statistics 

Class Name  Kappa 
P. brutia mature 1 
P. brutia regeneration 0.6896 
P. nigra mature 0.8502 
P. nigra regeneration 0.7400 
Other vegetations 0.7987 
Overall Kappa Statistics 0.7900 
 

The overall classification accuracy was found to be 75.81% when using only the 

Hyperion image. An improvement of 8.06% was recorded when combining both 

Hyperion and QuickBird (83.87 % of overall accuracy). A closer examination of the 

accuracy assessment tables showed that mapping brutia regeneration was notably 

improved while there was not a major improvement in mapping nigra regeneration. 

This can be explained by the very low cover density of nigra regeneration which is 

often mixed with other species of vegetation.  
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8.3 CHAPTER SUMMARY 

In summary: 
• The aim of this study was to map post-fire forest vegetation in the 

Mediterranean by combining EO-1 Hyperion and QuickBird in an object-

oriented analysis. The presented approach used the benefits of combining high 

spatial with high spectral resolution remote sensing data.  

• The object-based classification of QuickBird allowed extracting information 

not only from the image itself but also from other images such as Hyperion 

and Landsat-TM.  

• Level 2 was the first to be segmented with a tree-scale of 10 taking into 

consideration the shape factor. Then, level 1 was created with a scale 9 taking 

into consideration both the QuickBird image and the thematic layers. Finally, 

level 3 was created with a scale of 100 employing Landsat-TM images.  

• A classification scheme was developed and applied to the first image subset, 

namely AOI1 and then slightly modified and applied to the second image 

subset AOI2. 

• Class description often consisted of combinations of conditions connected by 

operators like “and,” “or” and “not.” This gave flexibility to the classification 

process in terms of taking advantages from most useful information.  

• When comparing the final forest regeneration map to plots surveyed in the 

field it was found that the overall classification accuracy was estimated to be 

83.87% and the overall Kappa statistics was 0.79. Few classification 

confusions were observed in pine regeneration areas of very low density. 

• An improvement of 8.06% was recorded when combining both Hyperion and 

QuickBird than by using only the Hyperion image. A closer examination of 

the accuracy assessment tables showed that mapping brutia regeneration was 

notably improved while there was not a major improvement in mapping nigra 

regeneration.  

• Finally, this investigation of using multiresolution and multispectral imageries 

for mapping forest regeneration and vegetation recovery proved the 

importance of employing object-oriented analysis for better classification 

performance and results. 
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CHAPTER 9: GENERAL CONCLUSIONS AND 

RECOMMENDATIONS 

 

9.1 GENERAL CONCLUSIONS 

It has been emphasized throughout this work that detailed and current post-fire 

information concerning the extent of the burned areas, the type and severity of fire as 

well as forest regeneration and vegetation recovery, is important to understand the 

effects of forest fires in the short term and in the long term. Advanced tools in remote 

sensing provide the necessary means for gathering information about the burned 

areas, the regenerated forests and the recovered vegetations in a timely/cost effective 

manner. 

 

The aim of this study was to assess the post-fire impact on vegetation in the 

Mediterranean ecosystem of Thasos using advanced tools in remote sensing. It was 

found that Ikonos imagery can be used to successfully map fire type and severity. 

Also, the combined use of QuickBird and Hyperion images can be used to map forest 

regeneration and vegetation recovery with a high degree of accuracy. Besides, the 

powerful method for object-oriented image analysis significantly extended the range 

of image analysis applications and turned the remotely sensing data into more 

accurately classified geographic post-fire information.  The specific objectives of this 

work were: 

1. to investigate the potential use of Very High Resolution (VHR) satellite 

imagery (Ikonos) in mapping the type and severity of fire;  

2. to map vegetation recovery by using VHR satellite imagery (QuickBird) and 

to examine the relationship between fire severity and vegetation recovery; 

3. to map forest regeneration and vegetation recovery by using hyperspectral 

remote sensing (field spectrometry and Hyperion); and 

4. to examine the combination of VHR and hyperspectral imagery in forest 

regeneration and vegetation recovery mapping. 

 

In relation to the above specific objectives of this work, the major findings and 

conclusions can be summarised as follows: 
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Objective 1: to investigate the potential use of Very High Resolution (VHR) satellite 

imagery (Ikonos) in mapping the type and severity of fire. 

 

The main conclusion drawn from this task is that object-oriented classification 

employing Very High Spatial resolution imagery can be used to accurately distinguish 

and map areas of surface and crown fire spread (overall accuracy of 87% and Kappa 

Index of Agreement 0.74), especially that occurring in open Mediterranean forests. 

Classification accuracy was mainly affected by the density of the canopy. This could 

be attributed to the inability of the optical sensors to penetrate dense canopy to detect 

fire affected areas.  

 

In a more advanced step, object-based classification resulted in mapping successfully 

the three classes of fire severity. When compared to field collected data the overall 

classification accuracy was estimated to be 83% while the KIA was 0.74. 

Classification accuracy percentages were consistently higher in the case of heavily 

burned areas. The shadowing from tree crowns, the poor spectral resolution of Ikonos 

together with the inability of the sensor to penetrate dense canopy were identified as 

being the main sources of confusion.  

 

Objective 2: to map vegetation recovery by using VHR satellite imagery (QuickBird) 

and to examine the relationship between fire severity and vegetation recovery. 

 

The classification of high spatial resolution image using object-oriented analysis 

successfully allowed vegetation survival mapping of canopy and shrub recovery 

within two different fire severity levels.  

 

When comparing the produced map to plots surveyed in the field it was found that the 

overall classification accuracy was estimated to be 86% and the overall Kappa 

statistics was 0.83. Few classification confusions between forest and vegetation 

recovery (in areas of slight-moderate severity of fire) were observed. 

 

A careful investigation of the results showed that mortality of P. brutia was very high 

within areas affected by high severity fire. Post-fire shrub vegetation dominated most 
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of the areas due to their sprouting and recovering ability. Seedling regeneration of P. 

brutia was almost absent.  

 

Also, it was observed that fire was a driving force in landscape homogenization. The 

fires producing severely burned patches favoured the colonization of invasive, fire 

tolerant species at the expense of rare/endemic species less tolerant to post-fire 

conditions.  

 

Objective 3: to map forest regeneration and vegetation recovery by using 

hyperspectral remote sensing (field spectrometry and Hyperion). 

 

It was possible to extract the best wavebands for discriminating between pine age and 

species and among different post-fire shrub vegetation.  

 

On one side, the study resulted in recommending 14 best narrowbands (from 60 

hyperspectral bands), in the range of 0.4 to 1.1 µm. to discriminate among pine trees 

(age and species). The most frequently occurring waveband centres were: 428.441, 

458.961, 479.311, 591.037, 621.506, 672.346, 702.917, 733.489, 794.641, 865.941, 

907.288, 957.738, 967.828, and 988.048 nm.  

 

On the other side, the study resulted in recommending 18 bands that best characterize 

the different shrub species. The most frequently occurring waveband centres were: 

428.441, 458.961, 479.311, 489.488, 509.82, 601.194, 651.995, 672.346, 723.305, 

753.863, 774.236, 784.43, 835.421, 865.941, 926.999, 937.568, 957.738, and 977.918 

nm. 

 

The sig. (2-tailed) analysis showed a significant difference in reflectance due to 

change in most pine and shrub species and in ages for pine trees.  

 

Furthermore, the classification process of the Hyperion image successfully mapped 

two different forest species (P. brutia and P. nigra) and their regeneration. Also the 

different shrub species recovered after fire, were successfully mapped. The fuzzy 

analysis of the results showed that most objects of the different classes met the class’s 

criteria sufficiently. The overall classification accuracy was found to be 75.81%, 
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while overall Kappa Index of Agreement (KIA) was 0.689. The accuracy showed very 

promising results in mapping two different regenerated pine species and other 

vegetation recovery after fire.  

 

The classes of mature pine forests were the most accurately identified. Classification 

confusion between pine regeneration and the class ‘other vegetations’, was recorded 

in some places. This confusion was explained by absence of large homogenously 

regenerated pine trees.  

 

Objective 4: to examine the combination of VHR and hyperspectral satellite imagery 

in forest regeneration and vegetation recovery mapping. 

 

The combination of QuickBird and Hyperion resulted in the successful mapping of 

forest regeneration and vegetation recovery. 

 

It was found that the overall classification accuracy was estimated to be 83.87% and 

the overall Kappa statistics was 0.79. Few classification confusions were observed in 

pine regeneration areas of very low density. 

 

An improvement of 8.06% was recorded when combining both Hyperion and 

QuickBird than by using only the Hyperion image. A closer examination of the 

accuracy assessment tables showed that mapping brutia regeneration was notably 

improved while there was not a major improvement in mapping nigra regeneration.  

 

Finally, this investigation of using data coming from different sources to map forest 

regeneration after fire proved the importance of using object-oriented analysis for 

better classification performance and results. 
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9.2 RECOMMENDATIONS AND FUTURE INVESTIGATIONS  

Further research with respect to this work might follow two main directions.  The first 

would be within the context of testing the transferability of the developed approach 

for post-fire impact assessment and the second in investigating the potential use of 

new sensing systems mainly active systems to avoid the encountered problems that 

were faced in this work. 

 

In relation to the first direction, the existing constraints on automated data 

interpretation are so profound that an efficient integration of remote sensing and GIS 

is still a matter for research and development. The automated allocation and 

extraction of real world geographic objects from high resolution remotely sensed data 

is the central challenge for both the remote sensing and the GIS communities within 

the next few years. In this situation, object-oriented approach as applied in this work 

by integrating remote sensing and GIS into one analysis prospect is opening new 

paths and perspectives not only in post-fire impact assessment but also in much other 

kind of applications.  

 

Te methodology developed in this research study led to the implementation of an 

integrated approach for post-fire impact assessment. Thasos Island is a representative 

Mediterranean ecosystem; this developed methodology is worth being investigated in 

other countries of the Mediterranean basin to support forest management, subject to 

the availability of reliable databases and the necessary expertise. In this work, an 

integrated approach was developed using up-to-date sensors to assess the impact of 

fire on the Mediterranean vegetation of Thasos. Efforts might be made to develop 

ecosystem-specific algorithms for post-fire impact assessment on vegetation. Such 

algorithms could be developed and validated by the organizing of a network of study 

cases.  

 

In relation to the second direction, it should be known that remote sensing technology 

is advancing at a rapid rate. There are currently active sensors and satellites in 

operation that have the potential to provide more detailed and accurate information 

about vegetation than that provided by passive Ikonos, QuickBird and Hyperion 

instruments, in particular, the LIDAR instruments. As mentioned before, one of the 
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main limitations of passive optical remote sensing system is the impossibility of 

discriminating forest understory. The discrimination of various shrub fuel types might 

probably be done with airborne LIDAR, since it has provided a height accuracy of up 

to 5-15 cm. The LIDAR is worthy of closer observation in combination with the 

previously mentioned sensors due to its ability to penetrate the forest canopy and 

senses the ground complexity. 
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APPENDIX 1: Measuring fire severity in the field 

A.1 DEVELOPED FIELD PROTOCOL FOR QUANTITATIVE 
VEGETATION DAMAGE ASSESSMENT (After Key and Benson 1999) 

  
 Examiners: _____________               Field date   (mmddyyy):__________  
 Site name: ______________     Registration code: ______________  
 Plot ID: _______________                  Project code: ______________                      
 

 
BURN SEVERITY SCALE 

No Effect Low Moderate High 
Strata Rating 
Factors 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Factors 
Scores 

1. HERBS, LOW SHRUBS AND SMALL TREES 

%Foliage Altered 
(blk-brn) 

Unchanged -- 30% -- 80% 95% 100%+branch 
loss 

 

%Living/Resprout 
(freq)  

≥ 100% -- 90% -- 50% ≤20% None  

Colonizers Unchanged -- Low -- Moderate High-Low Low to None  
Spp. Comp. – Rel. 
Abund. 

Unchanged -- Little 
change 

-- Moderate 
change 

-- High change  

1. Sum of scores  =                        N Rated =                                 Mean =    

2. TALL SHRUBS, SAPLING TREES 

%Foliage Altered 
(blk-brn) 

0% -- 20% -- 70% 80% 100%+branch 
loss 

 

%Green (volume 
unalter) 

100% -- 80% -- 30% 5% None  

%Living/Resprout 
(freq) 

≥ 100% -- 90% -- 30% 15% <1%  

Spp. Comp. – Rel. 
Abund. 

Unchanged -- Little 
change 

-- Moderate 
change 

-- High change  

2. Sum of scores  =                        N Rated =                                 Mean =    

3. INTERMEDIATE TREES (SUBCANOPY, POLE SIZED TREES) 

%Green 
Unaltered  

100% -- 80% -- 40% <10% None  

%Black (Torch) None -- 5-20% -- 60% > 85% 100% + 
branch loss 

 

%Brown 
(Scorch/Girdle) 

None -- 5-20% -- 40-80% <40 or 
>80% 

None due to 
torch 

 

%Canopy 
Mortality 

None -- 15% -- 60% 80% 100%  

Char Height None -- 1.5m -- 2.8m -- >5m  
3. Sum of scores  =                       N Rated =                Mean =    %Girdled=  %Felled= %Tree mortality =  
4. BIG TREES (UPPER CANOPY, DOMINANT TREES) 

%Green 
Unaltered  

100% -- 95% -- 50% <10% None  

%Black (Torch) None -- 5-10% -- 50% > 80% 100% + 
branch loss 

 

%Brown 
(Scorch/Girdle) 

None -- 5-10% -- 30-70% <30 or 
>70% 

None due to 
torch 

 

%Canopy 
Mortality 

None -- 10% -- 50% 70% 100%  

Char Height None -- 1.8m -- 4m -- >7m  
4. Sum of scores  =                      N Rated =                Mean =    %Girdled=  %Felled= %Tree mortality =  
Notes/Comments: CBI = Sum of scores/N Rated: Sum of scores N Rated CBI 

Understory (1+2)    
Overstory (3+4)    

 

Total Plot (1+2+3+4)    

Coordinates (X,Y):  Coordinates (X,Y) Differential: 
Elevation (m):  Elevation (m) Differential: 
Slope (%):  Slope (DEM): 
Aspect (field):  Aspect (DEM): 
Sample size:  Name and date of fire:  
Vegetation cover (%):  Percentage burned (%): Vegetation type:  
Presence of healthy trees (y/n): Tree cover (%):  
Plot photo IDs: Dominant vegetation species after fire: 
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A.2 PROTOCOL DESCRIPTION AND INSTRUCTIONS 

 

The protocol is mainly addressed to assess fire damage on vegetation, specifically to 

assess fire severity qualitatively and quantitatively (Refer to chapter 3). Following, 

strata definitions are given: 

 

Herbs, Low Shrubs and Small Trees - All grasses and forbs, plus shrubs and small 

trees less than 1 meter (3 ft) tall. Herbs are plants that die back to ground level each 

year. Shrubs retain persistent aboveground woody stems, from which subsequent 

years growth develops. Small trees, including tree seedlings, are like shrubs, but 

typically have only one central stalk, and eventually grow to heights far exceeding 

this one-meter size class. 

 

Tall Shrub and Sapling Trees - Shrubs and small trees generally greater than 1 

meter (3 ft) and less than 5 meters (15 ft) tall. If saplings or shrubs are between 5 

meters (15 ft) and 8 meters (25 ft) tall, decide which stratum the life form fits best. 

They could be scored with intermediate trees, but only if they are distinctly tree-like 

and meet the characteristics of other intermediate trees. 

 

Intermediate Trees (pole-sized trees, subcanopy) - Trees occupying space between 

the tall shrub/sapling layer and the uppermost canopy; generally 10 to 25 cm (4 to 10 

in.) diameter, and 8 to 20 meters (25 to 65 ft) tall. If trees of this size are the 

uppermost canopy, then consider them as intermediate trees while not counting a big 

tree stratum. This stratum may itself be of stratified heights, with crown tops 

extending into the upper canopy. Still consider, however, that they are intermediate 

trees, if they receive little direct sunlight from above. Actual size of the intermediate 

trees is relative to height of upper canopy and may vary from community to 

community. 

 

Big Trees (mature trees, dominant and co-dominant trees, upper canopy) – 

Dominant and co-dominant trees that are larger than intermediate trees. They occupy 

the uppermost canopy, and usually receive direct sunlight from above. These tree 
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crowns form the general or average level of the upper canopy, while some individuals 

may extend above that. 

 

Understory - The region comprised of herbs/low shrubs/small trees, and tall 

shrubs/saplings.  

 

Overstory - The region above the understory, consisting of intermediate and big 

trees. 

 

Total Plot, or Overall - All strata of the plot combined. 

 

A.2.1 Strata rating factors: 

 

A.2.1.1Herbs, low shrubs and trees less than 3 ft (1m) rating factors 

 

As with substrates, field personnel must determine initially whether herb, low shrub, 

and/or small tree rating factors are sufficiently represented on a plot to justify scoring 

them. The stratum should have been sufficiently present to indicate severity after fire. 

In general, suspected pre-fire coverage of less than about 5 percent of the plot, or 

limited distribution throughout might not be enough and may lead you not to count at 

least some of the factors. Such cases may occur under dense conifer canopies where 

the pre-fire understory consisted solely of needle-cast litter and duff, or in other cases, 

where vegetation was sparse and exposed soil was relatively high.  

 

Percent Foliage Altered - Percent of pre-fire woody-species cover that was impacted 

by fire as estimated by change in cover from green to brown or black. This only 

concerns the pre-fire low shrubs and small trees, not grasses and herbs. It includes 

girdle, scorch, and torch of needles, leaves, and stems. Resprouting from the base of 

shrubs or trees is not considered in this estimate of altered foliage, only the pre-fire 

foliage is. In other words, the entire blackened crown of a low shrub counts as pre-fire 

foliage altered, even though it may be resprouting. The amount of resprouting does 

not lessen the percent of pre-fire foliage altered. At high levels of severity, 

consumption of outer fine branching on low shrubs and small trees has occurred. 
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Frequency Percent Living - Percent of pre-fire vegetation that is still alive after fire. 

This is a measure of survivorship based on numbers of individuals and not necessarily 

on change in cover. Include unburned as well as burned, resprouting perennial herbs, 

low shrubs, and small trees plotwide. Resprouting plants are ones that burned but 

survive from living roots and stems. Include all green vegetation as well as burned 

plants that have not had enough time to resprout but remain viable. Burned plants may 

need to be examined for viable cambium or succulent buds near growth points. Dead 

stems will be brittle when bent; living ones will be supple. Do not include new 

colonizers or other plants newly germinating from seed. Make sure to take in the 

whole plot in the average score, including unburned areas. 

 

New Colonizers - Potential dominance within 2 to 3 years post-fire of plants newly 

generating from seed (native or exotic) averaged over the plot. The basis for this 

rating is the proliferation of such species due to fire, that is, above and beyond what 

might be expected had fire not occurred. Relative frequency of colonizers compared 

to established plants may be more recognizable at first, with relative cover increasing 

over time. This includes herbs such as like fireweed, thistle and pokeweed, as well as 

new tree or shrub seedlings. It also includes increased dominance of nonvascular 

plants that proliferate after fire in some areas, such as fungi, bryophytes, lycopodium, 

and small fine-leaved moss. New colonizers also include aspen suckers that generate 

from former trees as well as similar tree to shrub responses from other species. 

Suckers are defined as stem growth originating from underground roots or rhizomes, 

as opposed to originating from branches or central trunks.  

 

Species Composition and/or Relative Abundance - Change in species composition, 

and/or relative abundance of species anticipated within 2 to 3 years post-fire. This is a 

community-based assessment that gauges the ecological resemblance of the post-fire 

community compared to the community that existed before fire. It represents 

alterations in dominance among species (biomass or cover) as well as potential 

change in the species present, such as absence of pre-fire species and/or presence of 

new post-fire species. Consider the distribution of abundance or dominance among 

the species present after fire, compared to before fire. Such factors qualitatively 

determine the similarity or dissimilarity of the site from before to after fire. Increases 
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or decreases in certain species abundance and dominance, or changes in the species 

present after fire, raise the score for this rating factor.  

 

A.2.1.2 Tall shrub and trees 3 to 16 ft (1 to 5 m) rating factors 

 

Percent Foliage Altered - Percent of pre-fire foliage for tall shrubs and trees 3 to 16 

ft (1 to 3 m) that was impacted by fire as estimated by change in crown volume from 

green to brown or black. This includes girdle, scorch, and torch of needles, leaves, 

and stems. The entire blackened top-killed crown of a tall shrub counts as pre-fire 

foliage altered, even though there may be a portion that is resprouting. The volume of 

the resprouting is ignored; it does not lessen the amount of pre-fire foliage altered. At 

high levels of severity, consumption of outer fine branching on shrubs and trees is 

evident. In fall burns and leaf-off conditions, base the score on effects to remaining 

boles and branches, the degree of outer branch consumption, and whether or not fire 

top-killed plants. 

 

Frequency Percent Living - Percent of pre-fire tall shrubs and trees (3 to 16 ft) that 

are still alive after fire. This is a measure of survivorship based on numbers of 

individuals, not on change in cover or crown volume. Include unburned area as well 

as burned but resprouting tall shrubs and trees 3 to 16 ft (1 to 5 m) tall plotwide. 

Resprouting plants are ones that burned and survive from living roots and stems. 

Include all green plants, plus burned plants that have not had enough time to resprout 

but remain viable. Burned plants may need to be examined for viable cambium or 

succulent buds near growth points. Dead stems will be brittle when bent; living ones 

will be supple. Do not include new colonizers, such as aspen suckers or other plants 

newly germinating from seed. Account for potential mortality that could occur up to 2 

years post-fire (for example, conifer saplings that are 70 percent brown will likely die 

in 2 years), and make sure to average plotwide, including unburned areas. 

 

Percent Change in Cover - Overall decrease in cover of shrubs and trees between 3 

and 16 ft (1 and 5 m) tall, relative to the area occupied by those plants before fire. 

Count resprouting from plants that burned, plus the unburned plants, as cover that 

mitigates against or lessens the amount of decrease in cover. Do not include new 

colonizers or other plants newly germinating from seeds, including suckers that 



_________________________________________________________________Appendix 1 Measuring Fire Severity in the Field 

 203 

represent tree-to-shrub responses. Suckers from aspen and other species are counted 

as new colonizers that generate from underground roots or rhizomes, as opposed to 

coming from branches or central trunks. Make sure to average plotwide, including 

unburned areas. Account for potential mortality that could occur up to 2 years post 

fire. For example, conifer saplings that are 70 percent brown will likely die in 2 years. 

 

Species Composition and/or Relative Abundance - Change in species composition, 

and/or relative abundance of species anticipated within 2 to 3 years post-fire. Include 

pre-fire tall shrubs and trees 3 to 16 ft (1 to 5 m) tall as well as big and intermediate 

trees resprouting from the base. 

 

A.2.1.3 Intermediate and big tree rating factors (combined) 

 

Generally for conifer forests, the sum of the first three factors - Percent Unaltered, 

Percent Black, and Percent Brown - will be 100 percent. That may not be the case, 

however, in some deciduous forests or southeastern pine forests, where crowns may 

have been blackened or torched but not killed and subsequently resprout. In such 

cases, continue to score the unaltered, black and brown factors as they appear on the 

site, even though they may add up to more than 100 percent. The balance of the three 

factors should still maintain appropriate overall ratings for severity in the overstory.  

 

Percent Unaltered (Green) - Percent of pre-fire crown foliage volume (living or 

dead) unaltered by fire, relative to estimated pre-fire crown volume of the plot. 

Include resprouting from burned crowns, but not from tree bases, as unaltered/green. 

 

Percent Black (torch) - Percent black is pre-fire crown foliage (living or dead) that 

actually caught fire, stems and leaves included, relative to estimated pre-fire crown 

volume plotwide; may or may not be viable crown foliage after fire. At high severity, 

consumption of fine branching is evident. Do not consider resprouting from black 

branches as lessening the percent black. In many cases, deciduous trees will not torch 

especially when leaves are off; yet high flame lengths from the ground may blacken 

virtually the entire tree. Due to the aerial intensity of such fire and its similarity to 

crown fire, this type of burn is also included in the percent black rating. 
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Percent Brown (scorch) - Percent of tree canopy affected by scorch or killed by 

girdling, in relation to the estimated pre-fire crown volume over the whole plot. This 

is foliage killed by proximal heating without direct flame contact (such as brown 

foliage that did not actually catch fire). It includes scorching effects at the time of fire 

as well as delayed mortality, often from heat impacts around tree boles and roots. 

Suspected insect and disease effects also may be included, if that is manifested in the 

crowns relatively soon after fire (within about 2 years). This avoids a need to separate 

burn impacts from similar-appearing and related foliage conditions caused by fire-

induced pathogens. Include crowns obviously impacted by these effects, even though 

brown foliage may have fallen to the ground. Include deciduous trees burned in leaf-

off condition that are not resprouting from crowns. In those cases, look for dead 

crowns or portions of crowns that do not contain any black but may show severe 

charring around lower trunks or at ground level. 

 

Percent Canopy Mortality - Of trees killed by fire or expected to die within 2 years, 

this should represent the proportion of crown volume now contributed by fire-killed 

trees (the proportion of once living crown volume that is now dead). Consider in 

relation to crown volume still contributed by surviving trees. Only count trees that are 

completely dead, not the fire-killed portions of crowns that may still exist on living 

trees. One can count completely top-killed crowns on trees that show shrubby basal 

resprout. The factor is viewed as the proportion of a plot’s total once-living canopy 

now lost because of recently dead trees. Suspected insect and disease effects also may 

be included, if that has contributed to killing whole trees relatively soon after fire 

(within about 2 years). This avoids a need to separate burn impacts from similar 

appearing and related foliage conditions caused by fire-induced insects or disease. 

 

Char Height - The average height of char on tree trunks resulting from ground 

flames. This is the mean height on individual trees averaged over all trees in the plot. 

The mean height on a given tree is determined as halfway between upper char height 

and lower char height. Trees on slopes typically have char running up higher on the 

up-slope side, and wind-driven flames usually result in char running up higher on the 

leeward side of trees. Include unburned trees (char height = 0) and burned trees only 

where demarcation of ground char height is discernable. This rating does not include 

the black on upper boles resulting from crown fire. Trees that do not clearly show 
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where ground flames ended and crown fire began are not included in the score. Thus, 

char height may not be applicable where crown fire predominates.  

 

Percent Girdled (at root or lower bole) - Percent of trees effectively killed by heat 

through the lower bark, affecting the cambium around the circumference of lower 

boles or buttress roots. Girdling may or may not actually char through the bark and 

into the wood. It is often indicated a year or more after fire by sheets of bark loosely 

attached or sloughing off the lower bole. Include trees either dead or likely to die 

within 1 to 2 years. Do not include trees killed by crown fire or other scorching to 

crown. 

 

Percent Felled (downed) - Percent of trees, whether dead or alive, that were standing 

before fire but now are lying on the ground. Such trees usually result from wind throw 

after fire. They typically exhibit fresh upturned 

 

 

A.3 REFERENCES 

 

Key, C. and Benson, N. (1999), Measuring and remote sensing of burn severity. In 

Joint Fire Science Conference and Workshop, Ryan, C. (Ed.), Moscow, pp. 284.  

 

Key, C. and Benson, N. (2002), Measuring and Remote sensing of burn severity. In 

J.L. Coffelt and R.K. Livingston, U.S. Geological Survey Wildland Fire Workshop, 

Los Alamos, NM October 31-November 3, 2000. USGS Open-File Report 02-11. pp. 

55. 

 

Key, C., Benson, N., Sorbel, B., Zhu, Z., Ohlen, D., Howard, S. and Clement, B. 

(2002), National Park Service-U.S. Geological Survey National Burn Severity 

Mapping Project, USGS EROS Data Center. 

 

Key, C.H. and Benson, N.C. (2004), FIREMON Landscape Assessment (LA): 

Sampling and Analysis methods, NPS-USGS, USA. 

 
 



_________________________________________________________________Appendix 1 Measuring Fire Severity in the Field 

 206 

 

A.4 DATA COLLECTED: GENERAL INFORMATION 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 
Nb. 

GPS1 
(East) 

GPS1 
(North) 

Elevation 
(m) 

Slope  
(%) Aspect 

Dominant 
vegetation 

Canopy 
(%) 

Substratum 
(%) 

1 565145 4509496 70 40 S coccifera 0 90 

2 565406 4509314 77 40 S brutia, coccifera 40 10 

3 565614 4509569 82 30 NE coccifera 0 90 

4 565569 4509873 76 25 NE coccifera 0 80 

5 565516 4509951 85 25 NE coccifera 0 80 

6 565228 4510047 110 40 NW brutia,  cistus i. 15 80 

7 565168 4510004 60 40 N-NE l. nobilis 0 40 

8 565062 4510107 70 50 N-NE l. nobilis, cistus i. 0 80 

9 564887 4510294 80 15 W brutia, coccifera 90 60 

10 564659 4510116 60 45 NE brutia, fern 10 20 

11 564485 4510321 30 30 E brutia, fern 70 80 

12 564324 4510519 25 40 E brutia, cistus i. 0 60 

13 564754 4510491 23 20 W brutia, l. nobilis 20 80 

14 564829 4509335 115 45 SW brutia, coccifera 15 35 

15 564912 4509452 100 30 E coccifera 0 80 

16 564910 4509454 130 45 E brutia 40 30 

17 564954 4509696 140 30 SE coccifera 0 30 

18 564147 4509759 218 20 S cistus, rosmarie 0 90 

19 565022 4509866 200 40 N brutia, nobilis 20 60 

20 564957 4509915 173 30 N-NW brutia 40 20 

21 564871 4509890 180 30 N nobilis, brutia 5 80 

22 564672 4509934 183 55 N nobilis, brutia 0 50 

23 564568 4509936 183 50 N brutia 20 15 

24 564489 4509974 192 60 N coccifera 0 10 

25 564236 4510085 209 35 N brutia 35 10 

26 564146 4510093 223 30 N-NE brutia, fern 80 5 

27 563916 4510107 232 55 N-NE brutia 95 5 

28 564019 4510074 237 55 N brutia 95 5 

29 564182 4510058 216 35 N-NE brutia 95 2 

30 564394 4509772 298 501 N fern 0 20 

31 564209 4509831 319 40 N-E coccifera 0 15 

32 564229 4509842 286 25 NE brutia 50 20 

33 564168 4509754 330 45 S brutia 30 5 

34 564093 4509768 330 30 S brutia 0 5 

35 564366 4509404 136 45 SE brutia, coccifera 2 95 

36 564559 4509415 118 40 SE brutia 30 50 
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A.5 COLLECTED DATA: RATED SCORES 

 

1. Herbs, low shrubs and small trees < 1m 

Plot 

Nb. 

% 

Foliage 

altered 

% 

Living/Resprout Colonizers 

Spp.Comp.-

Rel. Abund. 

B. sum  of 

scores N Rated Mean 

1 3 2 2 0 7 4 1.75 

2 3 2 2 0 7 4 1.75 

3 3 2 2 0 7 4 1.75 

4 3 3 2 0 8 4 2 

5 3 1.5 1 0 5.5 4 1.375 

6 3 1 1.5 0 5.5 4 1.375 

7 3 2 1 0 6 4 1.5 

8 3 2 1.5 0 6.5 4 1.625 

9 3 1 0.5 0 4.5 4 1.125 

10 3 1 1 0 5 4 1.25 

11 0.5 0 0 0 0.5 4 0.125 

12 3 3 2 0 8 4 2 

13 3 1 0.5 0 4.5 4 1.125 

14 1 1 1 0 3 4 0.75 

15 3 2 2 0 7 4 1.75 

16 - - - - - - - 

17 3 2.5 1.5 0 7 4 1.75 

18 3 2 2 0 7 4 1.75 

19 2.5 1.5 1 0 5 4 1.25 

20 3 1.5 1 0 5.5 4 1.375 

21 3 1 2.5 0 6.5 4 1.625 

22 3 2 0.7 0 5.7 4 1.425 

23 3 1.5 1 0 5.5 4 1.375 

24 3 2.5 1 0 6.5 4 1.625 

25 - - - - - - - 

26 - - - - - - - 

27 - - - - - - - 

28 - - - -  - - 

29 - - - - - - - 

30 3 2.5 1.5 0 7 4 1.75 

31 - - - - - - - 

32 3 2.5 0.5 0 6 4 1.5 

33 3 2.5 1 0 6.5 4 1.625 

34 2.7 1.5 1 0 5.2 4 1.3 

35 3 2 1 0 6 4 1.5 

36 1.2 1 1 0 3.2 4 0.8 
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2. Tall shrubs, sapling trees (between 1 and 5 m) 
Plot 
Nb. 

% Foliage 

altered 

Green (volume  

unalt.) 

Living/Respro

ut 

Spp. Comp.-

Rel.Abund. 

C. sum of 

scorres N Rated Mean 

1 3 3 2 0 8 4 2 

2 - - - - - - - 

3 3 3 2 0 8 4 2 

4 - - - - - - - 

5 3 3 3 0 9 4 2.25 

6 3 3 2.5 0 8.5 4 2.125 

7 - - - - - - - 

8 - - - - - - - 

9 - - - - - - - 

10 - - - - - - - 

11 - - - - - - - 

12 - - - - - - - 

13 3 2.2 1 0 6.2 4 1.55 

14 - - - - - - - 

15 3 3 2.5 0 8.5 4 2.125 

16 - - - - - - - 

17 - - - - - - - 

18 - - - - - - - 

19 - - - - - - - 

20 - - - - - - - 

21 - - - - - - - 

22 3 3 2.5 0 8.5 4 2.125 

23 - - - - - - - 

24 - - - - - - - 

25 - - - - - - - 

26 - - - - - - - 

27 - - - - - - - 

28 - - - - - - - 

29 - - - - - - - 

30 - - - - - - - 

31 - - - - - - - 

32 - - - - - - - 

33 - - - - - - - 

34 - - - - - - - 

35 3 3 2.5 0 8.5 4 2.125 

36 - - - - - - - 
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3. Intermediate Trees  (subcanopy) (10-25 cm, 5-20 m) 
Plot 

Nb. 

% Green 

(unaltered 

% Black 

(Torch) 

% Brown 

(Scorch/Girdle) 

% canopy 

Mortality 

Char 

height 

D. sum of 

scores 

N 

Rated Mean 

1 - - - - - - -  

2 1.5 2 1 1.7 1 7.2 5 1.44 

3 - - - - - - - - 

4 - - - - - - - - 

5 3 2 1 3 2 11 5 2.2 

6 2 2 1  1 6 4 1.5 

7 3 - - - 2 5 2 2.5 

8 3 - - - 3 6 2 3 

9 - - - - - - - - 

10 0.2 0.1 0.1 0 0.1 0.5 5 0.1 

11 - - - - - - - - 

12 - - - - - - - - 

13 2.5 2 1.5 1.5 2 9.5 5 1.9 

14 - - - - - - - - 

15 - - - - - - - - 

16 1.5 1 1  1 4.5 4 1.12 

17 3 - - - 1.9 4.9 2 2.45 

18 - - - - - - - - 

19 - - - - - - - - 

20 2.5 2 1.5  0.5 6.5 4 1.62 

21 - - - - - - - - 

22 - - - - - - - - 

23 - - - - - - - - 

24 3 - - - 2 5 2 2.5 

25 - - - - - - - - 

26 0.2 0.3 0.2  0.1 0.8 4 0.2 

27 0.5 1 1  0.5 3 4 0.75 

28 1 1 1  0.5 3.5 4 0.87 

29 - - - - - - - - 

30 - - - - - - - - 

31 1 1 1  1 4 4 1 

32 1.2 1 1  0.5 3.7 4 0.92 

33 - - - - - - - - 

34 - - - - - - - - 

35 2.2 2 1.5 - 0.5 6.2 4 1.55 

36 - - - - - - - - 
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4. Big Trees (.25cm) 
Plot 

Nb. 

% Green 

(unaltered 

% Black 

(Torch) 

% Brown 

(Scorch/Girdle) 

% canopy 

Mortality 

Char 

height 

E. sum of 

scores N Rated Mean 

1 - - - - - - - - 

2 2.3 2.2 1.5 1.3 1.4 8.7 5 1.74 

3 - - - - - - - - 

4 - - - - - - - - 

5 - - - - - - - - 

6 - - - - - - - - 

7 - - - - - - - - 

8 - - - - - - - - 

9 1.5 1 0.5 0 0.5 3.5 5 0.7 

10 - - - - - - - - 

11 - - - - - - - - 

12 - - - - - - - - 

13 - - - - - - - - 

14 1 1 1 - 1.2 4.2 4 1.05 

15 - - - - - - - - 

16 2.5 2 1.5 - 1 7 4 1.75 

17 - - - - - - - - 

18 3 - - - 1.5 4.5 2 2.25 

19 2.5 1.5 1 - 1.2 6.2 4 1.55 

20 2 1.7 2 - 0.8 6.5 4 1.625 

21 2.5 2 2 - 1.8 8.3 4 2.075 

22 3 - - - 2 5 2 2.5 

23 2 2 1 - 0.7 5.7 4 1.425 

24 - - - - - - - - 

25 1 1.5 1.2 - 0.5 4.2 4 1.05 

26 1.5 1 1 - 0.5 4 4 1 

27 2 2.2 2 - 1 7.2 4 1.8 

28 1.5 1 1 - 0.5 4 4 1 

29 1.9 1.5 1.2 - 1.2 5.8 4 1.45 

30 3 2.5  - 2.5 8 3 2.66 

31 1.5 1.5 1 - 3 7 4 1.75 

32 1.5 1.5 2 - 1.5 6.5 4 1.625 

33 2.5 2.5 1.5 - 2 8.5 4 2.125 

34 3 2 1 - 2.5 8.5 4 2.125 

35 - - - - - - - - 

36 1.7 1.3 1 - 0.7 4.7 4 1.175 
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FINAL SCORES 
 

 Understory (1+2) Canopy/Overstory (3+4) Total plot (1+2+3+4) 

Plot 

Nb. 

Sum of 

Scores 

N 

Rated 

CBI 

(Sum of 

Scores/N 

Rated) 

Sum of 

Scores 

N 

Rated 

CBI 

(Sum of 

Scores/N 

Rated) 

Sum of 

Scores 

N 

Rated 

CBI 

(Sum of 

Scores/N 

Rated) 

Severity 

class 

1 15 8 1.875 - - - 15 8 1.875 3 

2 7 4 1.75 15.9 10 1.59 22.9 14 1.635714 2 

3 15 8 1.875 - - - 15 8 1.875 3 

4 8 4 2 - - - 8 4 2 3 

5 14.5 8 1.8125 11 5 2.2 25.5 13 1.961538 3 

6 14 8 1.75 6 4 1.5 20 12 1.666667 2 

7 6 4 1.5 5 2 2.5 11 6 1.833333 3 

8 6.5 4 1.625 6 2 3 12.5 6 2.083333 3 

9 4.5 4 1.125 3.5 5 0.7 8 9 0.888889 1 

10 5 4 1.25 0.5 5 0.1 5.5 9 0.611111 1 

11 0.5 4 0.125 - - - 0.5 4 0.125 1 

12 8 4 2 - - - 8 4 2 3 

13 10.7 8 1.3375 9.5 5 1.9 20.2 13 1.553846 2 

14 3 4 0.75 4.2 4 1.05 7.2 8 0.9 1 

15 15.5 8 1.9375 - - - 15.5 8 1.9375 3 

16 - - - 11.5 8 1.4375 11.5 8 1.4375 2 

17 7 4 1.75 4.9 2 2.45 11.9 6 1.983333 3 

18 7 4 1.75 4.5 2 2.25 11.5 6 1.916667 3 

19 5 4 1.25 6.2 4 1.55 11.2 8 1.4 2 

20 5.5 4 1.375 13 8 1.625 18.5 12 1.541667 2 

21 6.5 4 1.625 8.3 4 2.075 14.8 8 1.85 3 

22 14.2 8 1.775 5 2 2.5 19.2 10 1.92 3 

23 5.5 4 1.375 5.7 4 1.425 11.2 8 1.4 2 

24 6.5 4 1.625 5 2 2.5 11.5 6 1.916667 3 

25 - - - 4.2 4 1.05 4.2 4 1.05 2 

26 - - - 4.8 8 0.6 4.8 8 0.6 1 

27 - - - 10.2 8 1.275 10.2 8 1.275 2 

28 - - - 7.5 8 0.9375 7.5 8 0.9375 1 

29 - - - 5.8 4 1.45 5.8 4 1.45 2 

30 7 4 1.75 8 3 2.666667 15 7 2.142857 3 

31 - - - 11 8 1.375 11 8 1.375 2 

32 6 4 1.5 10.2 8 1.275 16.2 12 1.35 2 

33 6.5 4 1.625 8.5 4 2.125 15 8 1.875 3 

34 5.2 4 1.3 8.5 4 2.125 13.7 8 1.7125 2 

35 14.5 8 1.8125 6.2 4 1.55 20.7 12 1.725 2 

36 3.2 4 0.8 4.7 4 1.175 7.9 8 0.9875 1 
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APPENDIX 2: Collection of hyperspectral data in the field 

Averaged and filtered field spectrometry of pine trees: 

 
Wavelengths (nm) brutia-young brutia-mature nigra-young nigra-mature 

428.441 0.016174 0.042095 0.016538 0.02912 

438.611 0.019023 0.029266 0.020618 0.022907 

448.791 0.020741 0.034577 0.020366 0.027256 

458.961 0.022023 0.034823 0.025831 0.027416 

469.141 0.023045 0.039137 0.026595 0.026216 

479.311 0.023438 0.039809 0.025766 0.029977 

489.488 0.025149 0.040725 0.027092 0.03332 

499.651 0.028931 0.040256 0.027696 0.034747 

509.82 0.038772 0.048765 0.034314 0.037961 

519.974 0.062636 0.063555 0.052099 0.054599 

530.135 0.079609 0.074187 0.065221 0.064079 

540.283 0.090652 0.080652 0.075444 0.069819 

550.439 0.09532 0.084965 0.078196 0.074634 

560.584 0.094191 0.08587 0.077525 0.072889 

570.738 0.093293 0.078974 0.068454 0.065647 

580.892 0.0938 0.075423 0.062287 0.060179 

591.037 0.086857 0.073467 0.059613 0.0575 

601.194 0.090769 0.074451 0.057899 0.055362 

611.343 0.080653 0.071279 0.054325 0.053336 

621.506 0.059996 0.069342 0.050325 0.051279 

631.662 0.05795 0.074944 0.051826 0.051102 

641.831 0.059996 0.068854 0.048746 0.047933 

651.995 0.047726 0.066096 0.042151 0.043412 

662.172 0.040838 0.064171 0.038998 0.039903 

672.346 0.033676 0.062163 0.035084 0.035335 

682.535 0.03647 0.064568 0.036069 0.037401 

692.72 0.064029 0.081143 0.054968 0.053978 

702.917 0.140824 0.13207 0.118864 0.106823 

713.107 0.198518 0.175004 0.177806 0.155867 

723.305 0.271555 0.234556 0.263375 0.228208 

733.489 0.3111 0.2676 0.316694 0.273509 

743.679 0.338431 0.290311 0.350571 0.300478 

753.863 0.351354 0.307286 0.372304 0.319048 

764.039 0.354108 0.316036 0.38123 0.325742 
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774.236 0.359461 0.317986 0.386602 0.33099 

784.43 0.361249 0.322167 0.390209 0.332441 

794.641 0.362848 0.325583 0.390634 0.336054 

804.841 0.365182 0.329919 0.396131 0.340728 

815.047 0.365231 0.330536 0.395927 0.340234 

825.235 0.367453 0.33679 0.399595 0.340905 

835.421 0.368535 0.33591 0.39956 0.344171 

845.591 0.370276 0.341793 0.401903 0.345307 

855.771 0.371688 0.342221 0.403492 0.347878 

865.941 0.372931 0.345643 0.40488 0.348922 

876.12 0.374117 0.35212 0.407354 0.353352 

886.29 0.374739 0.350652 0.403137 0.356585 

896.47 0.373344 0.356946 0.406068 0.349101 

906.64 0.373122 0.344228 0.403959 0.354839 

916.819 0.373654 0.351866 0.406215 0.355367 

926.999 0.36928 0.352462 0.391431 0.35613 

897.198 0.372803 0.355859 0.398833 0.351 

907.288 0.373412 0.343685 0.40371 0.355518 

917.388 0.37354 0.352283 0.404339 0.355188 

927.478 0.369733 0.345944 0.395875 0.340681 

937.568 0.367258 0.349682 0.359823 0.339559 

947.658 0.36486 0.34441 0.346143 0.354952 

957.738 0.356778 0.30468 0.346761 0.326634 

967.828 0.349454 0.352995 0.352498 0.302467 

977.918 0.346392 0.320688 0.352991 0.321426 

988.048 0.348882 0.335748 0.340473 0.312276 

 
Averaged and filtered field spectrometry of shrub species: 

 
wavelengths C. incanus Q. coccifera E. manipuliflora fern L. nobilis A. unedo 

428.441 0.016995 0.027629 0.025258 0.032373 0.014981 0.008406 

438.611 0.042669 0.030464 0.017897 0.031425 0.016523 0.012951 

448.791 0.046846 0.031953 0.020692 0.031025 0.017411 0.012795 

458.961 0.042907 0.033484 0.025787 0.032012 0.018089 0.011619 

469.141 0.049343 0.034449 0.022019 0.031887 0.017966 0.016461 

479.311 0.054571 0.035324 0.024762 0.034948 0.018219 0.015429 

489.488 0.054405 0.036551 0.025235 0.033387 0.018813 0.013523 

499.651 0.062863 0.038715 0.024995 0.038838 0.020941 0.015817 

509.82 0.064392 0.042437 0.030529 0.047068 0.024709 0.023039 
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519.974 0.090372 0.052265 0.037269 0.072622 0.038897 0.03223 

530.135 0.105492 0.060241 0.046118 0.098963 0.052203 0.045118 

540.283 0.119601 0.067083 0.048652 0.117634 0.063363 0.050623 

550.439 0.126731 0.07069 0.052199 0.126465 0.067947 0.053129 

560.584 0.125556 0.072869 0.055926 0.125592 0.066537 0.054259 

570.738 0.119033 0.079601 0.047981 0.109278 0.059905 0.046262 

580.892 0.114203 0.08586 0.048 0.09687 0.0572 0.044154 

591.037 0.112363 0.082855 0.045244 0.093911 0.052007 0.042667 

601.194 0.111431 0.090045 0.043902 0.087626 0.052195 0.042528 

611.343 0.109 0.084529 0.043225 0.081338 0.045607 0.039221 

621.506 0.105315 0.066605 0.04037 0.075027 0.034573 0.036018 

631.662 0.106436 0.063335 0.04071 0.074675 0.033836 0.038769 

641.831 0.106158 0.072007 0.038783 0.068296 0.032084 0.033275 

651.995 0.099298 0.065289 0.037 0.056983 0.025829 0.029474 

662.172 0.097737 0.064173 0.03586 0.052298 0.022736 0.026613 

672.346 0.093 0.061175 0.033667 0.045167 0.019802 0.024336 

682.535 0.100067 0.062618 0.036266 0.050969 0.021325 0.025669 

692.72 0.125149 0.076288 0.046605 0.079353 0.035155 0.04314 

702.917 0.202875 0.121917 0.087831 0.201671 0.106356 0.096891 

713.107 0.259128 0.16173 0.123022 0.316882 0.181418 0.157449 

723.305 0.329879 0.219925 0.170266 0.462583 0.298144 0.251198 

733.489 0.365382 0.262619 0.197542 0.5332 0.378074 0.307107 

743.679 0.38643 0.29554 0.216342 0.573785 0.436323 0.347982 

753.863 0.40181 0.323718 0.229333 0.600262 0.477079 0.375524 

764.039 0.413941 0.340236 0.239797 0.609856 0.486791 0.390118 

774.236 0.413643 0.349881 0.240333 0.619807 0.496242 0.393657 

784.43 0.419753 0.357596 0.244646 0.623387 0.498751 0.397828 

794.641 0.422499 0.364311 0.250055 0.627359 0.500067 0.402496 

804.841 0.428594 0.372743 0.253594 0.632634 0.502258 0.407602 

815.047 0.430469 0.374972 0.252979 0.639333 0.502072 0.406375 

825.235 0.435533 0.383164 0.26041 0.64159 0.505011 0.415352 

835.421 0.437267 0.388444 0.263514 0.645348 0.506995 0.41981 

845.591 0.445255 0.393559 0.258844 0.648833 0.509472 0.423387 

855.771 0.44837 0.399194 0.267956 0.654541 0.51207 0.428405 

865.941 0.453157 0.40251 0.27298 0.655027 0.513906 0.437912 

876.12 0.45138 0.406475 0.269038 0.661218 0.515086 0.434714 

886.29 0.454866 0.409207 0.281533 0.659831 0.515669 0.429224 

896.47 0.458 0.409266 0.286667 0.658256 0.513811 0.44055 

906.64 0.455549 0.410299 0.290272 0.663278 0.513302 0.432018 
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916.819 0.459461 0.411287 0.28406 0.658103 0.513199 0.435064 

926.999 0.448092 0.411603 0.283287 0.660352 0.511442 0.444959 

897.198 0.456057 0.408825 0.286667 0.655486 0.514093 0.443204 

907.288 0.457314 0.41024 0.290815 0.660834 0.513321 0.434055 

917.388 0.46232 0.411482 0.287277 0.656673 0.512656 0.436493 

927.478 0.464545 0.412067 0.274543 0.666962 0.511444 0.431446 

937.568 0.51516 0.403241 0.321977 0.636977 0.513042 0.426008 

947.658 0.437229 0.408082 0.283018 0.618922 0.506402 0.36257 

957.738 0.426693 0.402598 0.323436 0.609944 0.493537 0.411374 

967.828 0.452693 0.403248 0.269152 0.637864 0.482575 0.364662 

977.918 0.459588 0.405885 0.278934 0.626415 0.483412 0.364666 

988.048 0.41086 0.411814 0.313556 0.64181 0.484722 0.354864 
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Spectral signatures of the spectrally targeted vegetation (400-1000 nm): 
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