1,294 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Vehicular Position Tracking Using LTE Signals

    Get PDF
    This paper proposes and validates, in the field, an approach for position tracking that is based on Long-Term Evolution (LTE) downlink signal measurements. A setup for real data live gathering is used to collect LTE signals while driving a car in the town of Rapperswil, Switzerland. The collected data are then processed to extract the received LTE cell-specific reference signals (CRSs), which are exploited for estimating pseudoranges. More precisely, the pseudoranges are evaluated by using the \u201cESPRIT and Kalman Filter for Time-of-Arrival Tracking\u201d (EKAT) algorithm and by taking advantage of signal combining in the time, frequency, spatial, and cell ID domains. Finally, the pseudoranges are corrected for base station's clock bias and drift, which are previously estimated, and are used in a positioning filter. The obtained results demonstrate the feasibility of a position tracking system based on the reception of LTE downlink signals

    SGD Frequency-Domain Space-Frequency Semiblind Multiuser Receiver with an Adaptive Optimal Mixing Parameter

    Get PDF
    A novel stochastic gradient descent frequency-domain (FD) space-frequency (SF) semiblind multiuser receiver with an adaptive optimal mixing parameter is proposed to improve performance of FD semiblind multiuser receivers with a fixed mixing parameters and reduces computational complexity of suboptimal FD semiblind multiuser receivers in SFBC downlink MIMO MC-CDMA systems where various numbers of users exist. The receiver exploits an adaptive mixing parameter to mix information ratio between the training-based mode and the blind-based mode. Analytical results prove that the optimal mixing parameter value relies on power and number of active loaded users existing in the system. Computer simulation results show that when the mixing parameter is adapted closely to the optimal mixing parameter value, the performance of the receiver outperforms existing FD SF adaptive step-size (AS) LMS semiblind based with a fixed mixing parameter and conventional FD SF AS-LMS training-based multiuser receivers in the MSE, SER and signal to interference plus noise ratio in both static and dynamic environments

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas

    MilliSonic: Pushing the Limits of Acoustic Motion Tracking

    Full text link
    Recent years have seen interest in device tracking and localization using acoustic signals. State-of-the-art acoustic motion tracking systems however do not achieve millimeter accuracy and require large separation between microphones and speakers, and as a result, do not meet the requirements for many VR/AR applications. Further, tracking multiple concurrent acoustic transmissions from VR devices today requires sacrificing accuracy or frame rate. We present MilliSonic, a novel system that pushes the limits of acoustic based motion tracking. Our core contribution is a novel localization algorithm that can provably achieve sub-millimeter 1D tracking accuracy in the presence of multipath, while using only a single beacon with a small 4-microphone array.Further, MilliSonic enables concurrent tracking of up to four smartphones without reducing frame rate or accuracy. Our evaluation shows that MilliSonic achieves 0.7mm median 1D accuracy and a 2.6mm median 3D accuracy for smartphones, which is 5x more accurate than state-of-the-art systems. MilliSonic enables two previously infeasible interaction applications: a) 3D tracking of VR headsets using the smartphone as a beacon and b) fine-grained 3D tracking for the Google Cardboard VR system using a small microphone array

    Observed time difference of arrival based position estimation for LTE systems: simulation framework and performance evaluation

    Get PDF
    Precise user equipment (UE) location is paramount for the reliable operation of location-based services provided by mobile network operators and other emerging applications. In this paper, the Long Term Evolution (LTE) network positioning performance based on mobile assist Observed Time Difference of Arrival (OTDoA) method is considered. The received signal time difference (RSTD) measurements are estimated by the UE using dedicated position reference signal (PRS) transmitted in the downlink frame where the reported time measurements are used by the network for location calculation. A simulation framework for the position estimation in LTE networks is presented where the LTE downlink communication link is implemented. The correlation-based method for the time of arrival measurement is used for the implementation of OTDoA. The simulation framework provides different configurations and adjustments for the system and network parameters for evaluating the performance of LTE positioning using OTDoA over multipath fading channels. Different simulation scenarios are conducted to identify the influence of various parameters of LTE system and positioning procedure setup on the positioning accuracy. Simulation results demonstrated that the positioning accuracy is highly affected by the channel fading condition where the accuracy of time of arrival measurements is deteriorated in severe fading environments; however, the positioning accuracy can be significantly improved by increasing the positioning sequences involved in the estimation process either in the frequency domain or in the time domain

    Observed time difference of arrival based position estimation for LTE systems: simulation framework and performance evaluation

    Get PDF
    Precise user equipment (UE) location is paramount for the reliable operation of location-based services provided by mobile network operators and other emerging applications. In this paper, the Long Term Evolution (LTE) network positioning performance based on mobile assist Observed Time Difference of Arrival (OTDoA) method is considered. The received signal time difference (RSTD) measurements are estimated by the UE using dedicated position reference signal (PRS) transmitted in the downlink frame where the reported time measurements are used by the network for location calculation. A simulation framework for the position estimation in LTE networks is presented where the LTE downlink communication link is implemented. The correlation-based method for the time of arrival measurement is used for the implementation of OTDoA. The simulation framework provides different configurations and adjustments for the system and network parameters for evaluating the performance of LTE positioning using OTDoA over multipath fading channels. Different simulation scenarios are conducted to identify the influence of various parameters of LTE system and positioning procedure setup on the positioning accuracy. Simulation results demonstrated that the positioning accuracy is highly affected by the channel fading condition where the accuracy of time of arrival measurements is deteriorated in severe fading environments; however, the positioning accuracy can be significantly improved by increasing the positioning sequences involved in the estimation process either in the frequency domain or in the time domain
    corecore