101 research outputs found

    Adaptive noise cancellation using multichannel lattice structure.

    Get PDF
    This thesis presents a multichannel adaptive noise cancellation technique (MCLS) for cancelling the noise over nonlinear transmission channel. The technique applies to the situation in which the reference signal and noisy primary signal are collected simultaneously. The coefficients of the multichannel multiple regression transversal filter are modified adaptively according to the backward prediction error vector generated from the multichannel adaptive lattice predictor. This multichannel adaptive noise cancellation procedure involves the NLMS adaptive algorithm. The performance of the new technique using different types of transmission channels, different types of reference inputs and different types of noise-free primary inputs are examined analytically. The new approach is experimentally shown to have better noise cancellation performance than the existing single-channel adaptive lattice noise cancellation algorithm (SCLS) over nonlinear transmission channel case, especially in low input SNR situation.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .X54. Source: Masters Abstracts International, Volume: 43-01, page: 0288. Adviser: H. K. Kwan. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Tree-Structured Nonlinear Adaptive Signal Processing

    Get PDF
    In communication systems, nonlinear adaptive filtering has become increasingly popular in a variety of applications such as channel equalization, echo cancellation and speech coding. However, existing nonlinear adaptive filters such as polynomial (truncated Volterra series) filters and multilayer perceptrons suffer from a number of problems. First, although high Order polynomials can approximate complex nonlinearities, they also train very slowly. Second, there is no systematic and efficient way to select their structure. As for multilayer perceptrons, they have a very complicated structure and train extremely slowly Motivated by the success of classification and regression trees on difficult nonlinear and nonparametfic problems, we propose the idea of a tree-structured piecewise linear adaptive filter. In the proposed method each node in a tree is associated with a linear filter restricted to a polygonal domain, and this is done in such a way that each pruned subtree is associated with a piecewise linear filter. A training sequence is used to adaptively update the filter coefficients and domains at each node, and to select the best pruned subtree and the corresponding piecewise linear filter. The tree structured approach offers several advantages. First, it makes use of standard linear adaptive filtering techniques at each node to find the corresponding Conditional linear filter. Second, it allows for efficient selection of the subtree and the corresponding piecewise linear filter of appropriate complexity. Overall, the approach is computationally efficient and conceptually simple. The tree-structured piecewise linear adaptive filter bears some similarity to classification and regression trees. But it is actually quite different from a classification and regression tree. Here the terminal nodes are not just assigned a region and a class label or a regression value, but rather represent: a linear filter with restricted domain, It is also different in that classification and regression trees are determined in a batch mode offline, whereas the tree-structured adaptive filter is determined recursively in real-time. We first develop the specific structure of a tree-structured piecewise linear adaptive filter and derive a stochastic gradient-based training algorithm. We then carry out a rigorous convergence analysis of the proposed training algorithm for the tree-structured filter. Here we show the mean-square convergence of the adaptively trained tree-structured piecewise linear filter to the optimal tree-structured piecewise linear filter. Same new techniques are developed for analyzing stochastic gradient algorithms with fixed gains and (nonstandard) dependent data. Finally, numerical experiments are performed to show the computational and performance advantages of the tree-structured piecewise linear filter over linear and polynomial filters for equalization of high frequency channels with severe intersymbol interference, echo cancellation in telephone networks and predictive coding of speech signals

    Perceptual techniques in audio quality assessment

    Get PDF

    Collaborative adaptive filtering for machine learning

    No full text
    Quantitative performance criteria for the analysis of machine learning architectures and algorithms have long been established. However, qualitative performance criteria, which identify fundamental signal properties and ensure any processing preserves the desired properties, are still emerging. In many cases, whilst offline statistical tests exist such as assessment of nonlinearity or stochasticity, online tests which not only characterise but also track changes in the nature of the signal are lacking. To that end, by employing recent developments in signal characterisation, criteria are derived for the assessment of the changes in the nature of the processed signal. Through the fusion of the outputs of adaptive filters a single collaborative hybrid filter is produced. By tracking the dynamics of the mixing parameter of this filter, rather than the actual filter performance, a clear indication as to the current nature of the signal is given. Implementations of the proposed method show that it is possible to quantify the degree of nonlinearity within both real- and complex-valued data. This is then extended (in the real domain) from dealing with nonlinearity in general, to a more specific example, namely sparsity. Extensions of adaptive filters from the real to the complex domain are non-trivial and the differences between the statistics in the real and complex domains need to be taken into account. In terms of signal characteristics, nonlinearity can be both split- and fully-complex and complex-valued data can be considered circular or noncircular. Furthermore, by combining the information obtained from hybrid filters of different natures it is possible to use this method to gain a more complete understanding of the nature of the nonlinearity within a signal. This also paves the way for building multidimensional feature spaces and their application in data/information fusion. To produce online tests for sparsity, adaptive filters for sparse environments are investigated and a unifying framework for the derivation of proportionate normalised least mean square (PNLMS) algorithms is presented. This is then extended to derive variants with an adaptive step-size. In order to create an online test for noncircularity, a study of widely linear autoregressive modelling is presented, from which a proof of the convergence of the test for noncircularity can be given. Applications of this method are illustrated on examples such as biomedical signals, speech and wind data

    Identification and control of deposition processes

    Get PDF
    The electrochemical deposition process is defined as the production of a coating on a surface from an aqueous solution composed of several substances. Electrochemical deposition processes are characterized by strong nonlinearity, large complexity and disturbances. Therefore, improving production quality requires the identification of a reasonably accurate model which should be found from data in a reasonable amount of time and with a reasonable computational effort. This identification makes it possible to predict the behavior of unmeasured signals and design a control algorithm to meet the demands of consumers. This thesis addresses the identification and control of the deposition processes. A model for an electrochemical cell that takes into account both electrode interfaces and the activity of ions participating in the deposition process is developed and a method for taking into account uncompensated resistance is proposed. Identifiability of two models, the conventional model and the developed model, is investigated under step and sweep form of applied voltage. It is proven that conventional electrochemical cell model can be identified uniquely using a series of step voltage experiments or in a single linear sweep voltammetry experiment on the basis of the measurements of cell current. The Zakai filtering and pathwise filtering methods are applied to a nonlinear in the parameters electrochemical cell model to estimate the electrode kinetics and mass-transfer parameters of the copper electrodeposition process. In the case of known parameters the feedforward controllers that force the concentration at the boundary to follow the desired reference concentration are designed for the deposition processes. The adaptive boundary concentration control problem for the electrochemical cell with simultaneous parameter identification is solved using the Zakai filtering method. Using such a control, depletion in industrial applications, such as copper deposition baths, can be avoided. An identification method for identifying kinetic parameters and a time-varying mixed potential process of the nonlinear electroless nickel plating model is proposed. The method converts the original nonlinear time-varying identification problem into a time-invariant quadratic optimization problem solvable by conventional least squares

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies
    corecore