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Abstract 

Gaurav Pant 

Hybrid Dynamic Modelling of Engine Emission on a Multi-Physics 

Simulation Platform 

A Framework Combining Dynamic and Statistical Modelling to Develop 

Surrogate Models of Systems of Internal combustion Engine for Emission 

Modelling 

Keywords: Engine Modelling, System identification, Internal combustion 

engine, Dynamic modelling, Neural-Network models, Local model networks, 

LOLIMOT, Emissions Modelling 

The data-driven models used for the design of powertrain controllers are 

typically based on the data obtained from steady-state experiments.  

However, they are only valid under stable conditions and do not provide any 

information on the dynamic behaviour of the system. In order to capture this 

behaviour, dynamic modelling techniques are intensively studied to generate 

alternative solutions for engine mapping and calibration problem, aiming to 

address the need to increase productivity (reduce development time) and to 

develop better models for the actual behaviour of the engine under real-world 

conditions.  

In this thesis, a dynamic modelling approach is presented undertaken for the 

prediction of NOx emissions for a 2.0 litre Diesel engine, based on a coupled 

pre-validated virtual Diesel engine model (GT- Suite ® 1-D air path model) 
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and in-cylinder combustion model (CMCL ® Stochastic Reactor Model Engine 

Suite). In the context of the considered Engine Simulation Framework, GT 

Suite + Stochastic Reactor Model (SRM), one fundamental problem is to 

establish a real time stochastic simulation capability. This problem can be 

addressed by replacing the slow combustion chemistry solver (SRM) with an 

appropriate NOx surrogate model. The approach taken in this research for the 

development of this surrogate model was based on a combination of design 

of dynamic experiments run on the virtual diesel engine model (GT- Suite), 

with a dynamic model fitted for the parameters required as input to the SRM, 

with a zonal design of experiments (DoEs), using Optimal Latin Hypercubes 

(OLH), run on the SRM model. A response surface model was fitted on the 

predicted NOx from the SRM OLH DoE data. This surrogate NOx model was 

then used to replace the computationally expensive SRM simulation, enabling 

real-time simulations of transient drive cycles to be executed. 

The performance of the approach was validated on a simulated NEDC drive 

cycle, against experimental data collected for the engine case study. The 

capability of methodology to capture the transient trends of the system shows 

promising results and will be used for the development of global surrogate 

prediction models for engine-out emissions.
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Chapter 1 Introduction 

1.1 Background 

 Internal combustion engines have improved over time and transformed from 

being mechanically controlled using flyweight mechanisms in the 1960s to 

having 35% electronification and electrification in 2012 (Grondin et al., 2004; 

Isermann, 2014). Modern engines have gone through technological 

developments such as variable valve timing, multiple injections, exhaust gas 

recirculation, and turbocharging. These changes were led by the increasing 

demands that engines are expected to meet not only to satisfy customer 

requirements but also to comply with the stringent legislation. These 

regulations are generally focused on fuel consumption and emissions, such 

as NOx, HC, CO. As these changes delivered improvement, they also 

contributed to increment the complexity of the system. The inclusion of 

emerging technology, more actuators and controls on the engine, increased 

the calibration requirements for the engine electronic control unit (ECU). This 

increment in the complexity of mapping and calibration of the internal 

combustion engine created the need in industry for new and improved 

methodologies to be able to model and understand the new and better engine. 

To overcome this calibration challenge with satisfactory expenditure of cost 

and time, strategies such as model-based calibration (MBC) or simulation-

based calibration (Singh et al., 2007; Röpke, 2009; Kruse et al., 2010) have 

been widely used as a way to empower calibration engineers to optimise all 
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the engine control parameters simultaneously. The model-based calibration 

process is illustrated in Figure 1.1. 

 

Figure 1.1: Steps of Model-Based Calibration (MBC) (Khan, 2011). 

In the MBC process, a substantial amount of time is spent on the engine 

testing, which could be considered as a starting step, of many operating points 

required to produce calibration maps (Gautier et al., 2008). To  align with the 

goal of the industry, to optimise trade-off between quality, cost, and time 

(Atkinson and Mott, 2005; Röpke et al., 2012; Ostrowski et al., 2017), virtual 

engine simulation frameworks have been proposed in the literature 

(Neumeister et al., 2007; Gautier et al., 2008; Di Gioia et al., 2012; Korsunovs, 

2017). The virtual engine framework replaces engine testing as the basis for 

mapping and calibration experiments. The incorporation of simulation concept 

in the engine development process has been illustrated in Figure 1.3, this 

figure depicts the possibility to reduce cost and time effort by inclusion of the 

simulation-based model at different stages of engine development, and the 
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quality aspect of the requirement could be satisfied by adopting high-fidelity 

models as a choice for system modelling task. 

Although this concept is not new, with the availability of new tools it might be 

possible to apply it to full engine simulation (air path + combustion process) to 

satisfy the industry needs. However, the primary challenge with the 

development of virtual simulation framework for the Internal combustion 

engines is associated with the amount of time required by computationally 

intensive high-fidelity models (2 or 3-dimensional Computational Fluid 

Dynamics models) to converge. Thus, making it impossible to run transient 

drive cycle simulations. 

 

Figure 1.2: Concept of simulation in engine development to reduce cost and 

save time (Gautier et al., 2008). 

A preferable strategy is to replace expensive simulation models with 

approximation models that are more efficient to run and are referred to as 
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metamodels or surrogate models. The metamodel or surrogate model is a 

“model of a model” (Kleijnen, 1987) and metamodeling (technique of 

developing metamodel) is based on response surface modelling techniques 

(Box et al., 1978) initially introduced to develop prediction models for 

expensive physical experimental responses (Simpson et al., 2001).  

Metamodeling techniques can be classified into parametric and non-

parametric models, where parametric models (such as polynomials (Myers et 

al., 1989)) are dependent on model structure (Khan, 2011) . On the other 

hand, non-parametric models such as radial basis function (Morton and Knott, 

2002), Neural Network (Hagan et al., 2006) and Kriging models (Sacks et al., 

1989), do not require  explicit model assumptions and use experimental data 

to define the functional relationship (Åström and Eykhoff, 1971). 

Metamodeling is frequently and increasingly used in various fields as an 

alternative to expensive simulation models (Jin et al., 2001). (Simpson et al., 

1998) have evaluated the performance of Kriging methods against the 

polynomials for a optimisation problem of aerospike nozzle design based on 

finite element analysis and CFD simulation codes. (Jin et al., 2001) have 

proposed a procedure to compare metamodels based on comparing various 

metamodeling techniques across different problems and concluded radial 

basis function (RBF) with Gaussian kernels performs the best, among the 

considered case studies. (Fang et al., 2005) compared RBF and polynomials 

for crashworthiness application and they found that both techniques perform 

equally well but RBF outperforms polynomial for smaller sampling sizes. 

(Seabrook et al., 2003) investigated different metamodeling techniques, RBF 
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neural networks (NN) and Kriging, for engine calibration experiments and they 

established that Kriging offered a robust solution in cases where results are 

affected by experimental noise. 

Metamodeling techniques have proven to be effective and efficient approach 

from both theoretical and practical perspective. They could provide a viable 

solution to overcome the challenge of prohibitive computational and time cost 

associated with high-fidelity simulation models and enable real-time (transient 

drive cycle) simulation of an engine during initial stages of product 

development. In alignment with this goal, (Korsunovs, 2017) proposed an 

integrated multi-physics simulation platform. 

1.2 Multi-Physics Engine Simulation 

This research was conducted as a part of the ongoing collaboration between 

the University of Bradford and industrial partner, Jaguar Land Rover, hereafter 

referred to as the Sponsor Company. The role of the University of Bradford 

was to investigate a Multi-Physics Engine Simulation (MPES) platform, to 

facilitate the development of high-fidelity engine modelling process at the 

product development stage, in relation to the capability for real-world 

prediction of engine emissions. The MPES platform combines two primary 

systems of the compression ignition engine: air path (labelled as 1 in Figure 

1.3) and combustion process model (marked as 2 Figure 1.3).  

There are detailed models of airpath available, which are based on design 

geometry (Unver et al., 2016) such as GT Power (Gamma Technologies Inc, 

2016) and Wave (Ricardo Plc). Although detailed models provide high fidelity 
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and are used during engine development phase (Wu et al., 2011), their 

computation time is slower than real time (Winterbone and Yoshitomi, 1990; 

Tietze, 2015). Similarly, detailed combustion models, such as three-

dimensional Computational Fluid Dynamics (CFD), can provide high fidelity 

results, but they require high computational effort both in terms of 

development and simulations.  On the other hand,  the dynamic data based 

models presented in literature for emission prediction (Burke et al., 2013; 

Sakushima et al., 2013; Sequenz, 2013; Cheng et al., 2017) which are 

extremely fast and robust, rely on engine data for their intensive training 

requirements and cannot be used during early engine development phase. 

 

Figure 1.3: Illustration of modern compression ignition engine with two main 

areas of interest labelled as, 1) air-path, 2) combustion (Ahmed, 2013). 

While detailed models of both air path and combustion process are available 

in the literature, there are only few which combine all of them to present a 
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complete engine simulation. The studies which do, such as (Unver et al., 

2016) and (Smallbone et al., 2011), either do not include complex physical 

phenomena of combustion process or do not address the transient capability. 

The MPES platform utilised here combines mean value model of detailed air 

path model capable of simulating in real time with the detailed model of the 

combustion process, developed using probability density function (PDF) 

based Stochastic reactor thermodynamic model (SRM). The combustion 

process model developed using combustion chemistry solver package, CMCL 

SRM (CMCL Innovations, 2016), provides good prediction capabilities with 

significantly less time for one cycle simulation (Etheridge et al., 2009; 

Smallbone and Coble, 2011; Parry et al., 2017), when compared to three-

dimensional CFD models. However, the SRM model is not fast enough to 

simulate in real time. To support real-time simulation capability based on 

MPES, Korsunovs  (2017) proposed developing a local surrogate model 

(using steady-state procedure) for SRM and replacing SRM with the look-up 

table for real-time simulation (transient drive cycle). 

1.3 Research Objectives 

This research aims to develop a framework for Hybrid Dynamic Modelling of 

engine emissions based on the MPES platform. The proposed framework 

develops surrogate models for two principal components of MPES, air path 

model and combustion process model, by coupling two distinct metamodeling 

approaches. The aim can be divided into two main aspects: 
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− Implementation of dynamic modelling techniques to develop a 

surrogate model for GT-Suite Diesel engine air path (MPES), aiming 

for high fidelity air path states models and fast estimation of mean 

values of air path inputs to combustion process model. 

− Applying design of experiments (DoE) strategies to assist in the 

development of a surrogate model of engine-out emissions (focusing 

on NOx), based on the SRM model (MPES). 

The experimental work to validate the research framework was carried on a 

2.0 litre Diesel engine, with the target of modelling nitrous oxide (NOx) 

emissions in real time. 

The specific research objectives defined for this thesis include: 

• To explore a strategy for implementing an efficient dynamic experiment in 

conjunction with non-linear dynamic models on the MPES platform, to 

obtain accurate and fast estimating surrogate models. 

• To demonstrate, for the first time, the application of a developed strategy 

for the Diesel engine case study. 

• To apply established design of experiments approach for the first time, in 

the context of proposed framework, to develop a surrogate model (model 

of a model) of engine-out emissions (NOx emissions) based on SRM 

combustion process model. 

• To integrate two metamodeling strategies, dynamic (for GT-Suite air path 

model) and statistical (for SRM combustion process model) and 
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demonstrate the application of the developed framework on the Diesel 

engine case study. 

• To compare the developed framework with the steady state approach. 

1.4 Research Contribution 

The main contributions of the research conducted for this thesis can be 

summarised as follow: 

• Evaluation and implementation of a novel modelling framework, hybrid 

dynamic modelling framework, which integrates dynamic modelling and 

a global exploration-based DoE. It was demonstrated that the proposed 

framework was both effective and efficient for developing engine 

emissions model with transient drive-cycle simulation capability. 

• Implementation of dynamic modelling techniques on virtual engine 

framework (MPES), to reduce the simulation time associated with 

running GT-Suite Diesel engine model to provide mean value estimates 

for inputs to the combustion process model and at the same time being 

able to accurately predict the transient behaviour of  the system. This 

includes, for the first time, design and implementation of a co-modelling 

strategy to select an appropriate signal and modelling technique 

combination for the system modelling task. 

• Contribution to the field of emission modelling, in particular to NOx 

emission modelling, with development of surrogate model (model of a 

model) of NOx emission capable of predicting transient drive cycle 
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behaviour during early stages of development. This includes, for the 

first time, exploring emission modelling by integrating combination of 

the dynamic modelling deployed on the real-time GT airpath model with 

the statistical models fitted on data collected by running global 

exploration based optimal Latin hypercube (OLH) DoE  test runs on the 

PDF-based stochastic reactor thermodynamic  models (known to have 

high prediction capability with fast response time). 

1.5 Thesis Outline 

The thesis commences by analysing the design of experiments (DoEs) 

approach for both steady state engine model-based calibration process and 

dynamic calibration in Chapter 2. This chapter is presented in two main 

categories: Design of Experiments and Design OF Dynamic Experiments. 

Chapter 3 reviews the existing methods for identification of dynamic systems, 

including broad discussion on the process of modelling dynamic systems and 

the sound evaluation of current modelling techniques used for generating 

dynamic models, such as Neural Networks, Local Order Linear Model Tree, 

and Volterra series.  

Chapter 4 presents the research methodology planned to accomplish the 

research objectives. This chapter also provides the details of the engine case 

study, and the commercial software packages used for this research. 

Chapter 5 presents a novel application of dynamic modelling approach 

implemented on Multi-Physics Engine Simulation (MPES) platform, to reduce 

the cost associated with testbed operation and to allow faster basic calibration 
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during the engine development phase while achieving the target accuracy.  

The developed strategy presents the method for selection of an efficient 

dynamic experiment and modelling technique based on statistical and trend 

analysis criterion. Thereafter, the developed strategy is applied for a Diesel 

engine case study, to fit the appropriate models to identify the dynamic air 

path model the engine responses of interest. 

Chapter 6 utilises the dynamic models generated in chapter 5 to provide inputs 

to the combustion model and describe the application of developed hybrid 

dynamic modelling to create surrogate combustion model capable of 

predicting engine emissions in real time. The developed approach is further 

validated by evaluating its performance on legislative transient drive cycle. 

After that, the performance of the developed framework is compared with the 

steady-state approach.  

Finally, Chapter 7 and 8 summarises the presented methods and the findings, 

discusses the conclusions, original research contributions, and provides an 

outlook for future work. 

An outlook of how to read this thesis is given in Figure 1.4. 
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Figure 1.4: Flow chart illustrating the presentation of the thesis.



 

13 

 

Chapter 2 Review of Design of Experiments 

In this chapter, a broad survey of literature is carried out on the existing design 

of experiments strategies with a focus on the dynamic design of experiments. 

This overview is presented in the following sections: 

− Section 2.1 describes the design of experiments for steady-state 

applications 

− Section 2.2 introduces the dynamic design of experiments and 

compares the commonly used excitation signals  

− Section 2.3 Summary 

2.1 Design of Experiment (DoE) Methods 

This section presents the traditional Design of Experiment (DoE) methods 

available in the literature. The primary purpose of DoE methods is to collect 

maximum possible information with least measurement effort (Kruse et al., 

2010). This is achieved by determining a set of minimum test points which are 

used to extract enough information to describe the behaviour of response over 

whole operating space (Gorissen et al., 2007). The application of DoE 

techniques has become a common practice in the automotive industry, 

regarding engine development, and have become an essential tool for 

engineers for little more than a decade (Khan, 2011). The application of DoE 

methods has allowed enhancement of the steady-state testing effectiveness 

(Röpke, 2009), as they enable modelling of engine response with enough 

fidelity and accuracy to support engine calibration process. 



 

14 

 

The adaptation of DoE approaches in the automotive industry was quite late, 

when compared with the fact that DoE was initially introduced in the 1920s for 

agricultural experiments by Sir Ronald A. Fischer (Yates, 1964). Since the 

introduction in the early 1920s, there have been many other subsequent DoE 

developments. The main reason behind the interest and popularity of DoE 

techniques in the automotive industry as stated in (Kianifar, 2014) are the 

development of response surface methodology by Box and Wilson (Box and 

Wilson, 1951), and further development of advanced statistical DoE 

techniques such as work of Taguchi (Charteris, 1992). 

There are numerous DoE approaches available in literature and the most 

commonly used methods in automotive industry for steady state engine 

mapping experiments include Optimal DoEs (e.g. D-Optimal and V-Optimal) 

and space-filling DoEs (McKay et al., 1979; Sacks et al., 1989; Cary, 2003; 

Seabrook et al., 2003; Grove et al., 2004). The existing DoE approaches in 

literature have been categorised in two main categories in (Kianifar, 2014) and 

are presented below: 

• Single level DoE strategies:  in this category of DoE methods all DoE 

test points are collected in a single attempt. These strategies can be further 

classified into three subcategories:  

− Classical designs 

− Optimal designs 

− Space-filling designs 
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• Sequential DoE strategies: they are also known as adaptive DoEs, 

and in this category, DoE test points are collected iteratively. Sequential DoE 

strategies can be further divided into two main categories: 

− Optimal sequential designs 

− Evolutionary sequential designs 

In the proceeding subsections of this section, a brief overview of these 

strategies will be presented. 

2.1.1 Single Level DoE Strategies: Classical Design of Experiments 

Classical designs are thoroughly investigated for simple regions, e.g. 

hypercube, and are generally chosen for responses which can be defined by 

low order polynomials (Kianifar, 2014). The focal point of these designs is the 

planning of experiments to minimise the influence of random errors present in 

physical experiments on the acceptance of the model hypothesis (Khan, 

2011).  

• Full Factorial Design:  These are one of the primary DoE methods 

and full factorial designs based on polynomial models were widely used for 

engine testing (Grove and Davis, 1992). In this design, all level-combinations 

of the variables are equally important (Montgomery et al., 2001). The number 

of required test points for this design depends on a number of variables (n) 

and levels (k); and is defined by a function (k)n (Guerrier and Cawsey, 2004). 

Some examples of full factorial DoE and variation in number of test points with 

number of variables are presented in Figure 2.1. 
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Figure 2.1: Examples of Full Factorial Design 

• Fractional Factorial Design:  These designs are a subset of full 

factorial design. These designs can reduce the number of tests required, given 

prior knowledge is available regarding the necessary combinations of 

variables and insignificance of higher order interactions (Montgomery et al., 

2001; Yin, 2012). Two of the broadly used fractional factorials design in 

automotive industry (Kianifar, 2014), are central composite designs (CCD) 

and Box-Behnken designs (BBD). (Dimopoulos et al., 1999) used the CCD 

design of experiments approach for optimising fuel consumption and 

emissions, leading to reduced number of test points in comparison with full-

factorial design (for certain cases- models with pilot injection). An illustration 

of both central composite designs and Box-Behnken designs is depicted in 

Figure 2.2. 
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Figure 2.2: An example of fractional designs for 3 Variables / 3 levels 

In summary, classical DoE methods perform extremely well for simple 

problems, i.e. a small number of variables and levels. However, they have 

some drawbacks: 

• For full factorial design as per relation stated in (Guerrier and Cawsey, 

2004), as the number of variables and variables levels increases, the number 

of design points for complete experimental domain increases exponentially 

(Forrester et al., 2008; Yin, 2012). 

• The fractional factorial design does provide the solution for the full 

factorial design drawback by neglecting the insignificant higher interactions 

but requires prior knowledge regarding response surface (Grove and Davis, 

1992; Yin, 2012). However, in engine mapping process availability of prior 

knowledge is limited. 

• Classical designs cannot be implemented for variables with 

asymmetric boundary limits (Guerrier and Cawsey, 2004). 
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Considering these drawbacks classical DoE methods might not be adequate 

for complicated design space, such as engine applications (Cary, 2003).  

2.1.2 Single Level DoE Strategies: Optimal Design of Experiments 

In most of the criterion for the optimal design of experiments, optimality of 

design is associated with the mathematical model of the process (Alvarez, 

2000; Kianifar, 2014). The implementation of optimal designs in the 

automotive industry can be found in (Steidten et al., 2005; Chang et al., 2007; 

Singh et al., 2007) and many other examples are available in the literature. 

In (Alvarez, 2000), the author defines the objective of optimal design is to 

select the best set of points from a larger set of candidate points to achieve 

an adequate level of response. The mathematical form of optimal criteria is 

expressed in (Kianifar, 2014) and (Yin, 2012) as: 

 Y = X ∗ B + e Equation 2.1 

Where Y is the vector of observation, e is a vector of errors, X is the matrix of 

design variable at DoE test points, and B is the vector of tuning parameters. 

B can be estimated using the least-squares method and is presented in (Yin, 

2012) as: 

 B = (XT ∗ X)−1XTY Equation 2.2 

In the equation above, (𝑋𝑇 ∗ 𝑋)−1  is defined by the inverse of the information 

matrix and is known as the variance matrix (Atkinson, 1996). There exist 

different optimal designs in literature and are obtained by optimising some 
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variable quantity of Equation 2.2.  An example of optimal DoE design is 

illustrated in Figure 2.3 and some of the commonly implemented optimal 

designs with their optimality criterion are summarised in Figure 2.4. 

 

Figure 2.3: D-Optimal design for 3 variables with 3 levels. 

Optimal 
Design 

Optimisation 
Criteria 

Statistical Meaning Advantages 

A-Optimal 
Maximising 

trace of the IM 

Minimising the 

average variance of 

the estimates of the 

regression coefficients 

(Marseille et al., 1994) chose 

A-optimum sampling pattern 

and obtained a 30% reduction 

in scan time for magnetic 

resonance imaging (MRI) 

D-Optimal 

Maximising the 

determinant of 

the IM 

Minimising the 

covariance of the 

parameter estimates 

(Chang et al., 2007) applied 

online D-optimal design for 

minimising emission deviation 

due to injectors. 

G-Optimal 

Minimising the 

maximum entry 

in the diagonal 

of hat matrix or 

𝑋(XT ∗ X)−1XT 

Minimising the 

maximum variance of 

the predicted values 

(Deese et al., 2017) 

implemented G-optimal 

design for optimisation of 

system and controller design 

of airborne wind turbine which 

lead to 99% reduction in the 

system design space. 

V-Optimal 

Minimising the 

average of 

diagonal entries 

of hat matrix 

Minimising the 

average prediction 

variance over the 

design points 

(Singh et al., 2007) used V-

Optimal design for 

optimisation of camshaft 

control and reported fuel 

consumptions improvement 

varying from 7.3 % to 2.5 % 

Figure 2.4: Optimal designs with their respective optimality criterion. 
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Optimal design method offers several advantages over classical design such 

as they require a smaller number of experimental runs(Atkinson, 1996), and 

the possibility to use an irregular shape (Yin, 2012) or constrained design 

space (Atkinson et al., 2007). However, they do have their disadvantages, and 

their efficiency can be affected for complex designs (Seabrook et al., 2003; 

Grove et al., 2004). Optimal designs require prior knowledge of both model 

type and number of test points, which can make them infeasible for problems 

where these are unknown. 

2.1.3 Single Level DoE Strategies: Space-Filling Design of Experiments 

Space-filling designs aim to uniformly distribute data points in the design 

space to be measured (Bates et al., 2003, 2004; Toropov et al., 2005; Yin, 

2012; Kianifar, 2014). Space-filling designs do not require prior knowledge of 

system behaviour (Bates et al., 2003; Toropov et al., 2005; Yin, 2012) and as 

of which they have been an attractive option for steady state engine mapping 

problems. 

There have been many variations of space filling design methods introduced 

in the literature such as Uniform design, Minimum Potential, and Latin 

Hypercube. However, among them, Latin Hypercube (LH) design introduced 

by (McKay et al., 1979) has been used quite frequently in steady state engine 

mapping area (Cary, 2003; Seabrook et al., 2003; Grove et al., 2004). One of 

the variations of the LH design method is Optimal Latin Hypercube (OLH), 

which is an alternative idea to improve LH design. The idea is based on using 

some optimality criteria for the generation of LH design (Khan, 2011), to 
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optimise the uniformity of distribution of a set of test points (Yin, 2012). There 

are several optimality criterion proposed in literature to generate an OLH 

design such as Manhattan (Ye et al., 2000; Van-Dam et al., 2007), Maximin 

(Johnson et al., 1990; Ye et al., 2000; Van-Dam et al., 2007; Joseph et al., 

2008), and Audze Eglais (Narayanan et al., 2007). 

Space-filling designs offer advantages over both classical and optimal designs 

such as they are more flexible (Kianifar, 2014), removing the infeasible test 

points does not degrade the entire design (Stinstra et al., 2003), and allows 

the use of advanced modelling techniques (Kianifar, 2014). Palmer (cited in 

(Simpson et al., 2001)) and Simpson (Simpson et al., 1998) recommended 

the use of these designs at early stages of modelling when prior knowledge 

of model type is not available. An example of space-filling Latin hypercube is 

depicted in Figure 2.5. 

 

Figure 2.5: An example of Space-filling strategy with 2 variable/ 20 points. 
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There are several other advantages which vary with the choice of design. 

Along with the advantages, there are also disadvantages associated with 

choices of design such as the major drawback of LH design either optimised 

or non-optimised is the incapability of accurately predicting the response 

outside the region where data is collected, resulting in high prediction error 

values at the boundaries of design space (Guerrier and Cawsey, 2004). 

2.1.4 Summary of Single level DoEs 

Single level DoE strategies allow collection of required data at one time in 

advance to response model fitting stage. However, this not always desired or 

the best course of action, especially when prior knowledge of system 

behaviour is unavailable (Hartmann and Nelles, 2013). Implementation of 

single-level DoE strategies for unknown system increases the risk of either 

over-sampling or under-sampling, which will either result in loss of time and 

efforts by a collection of unnecessary tests than required or inadequate model 

accuracy due to lack of enough information (Kianifar, 2014). 

These shortcomings of single-level DoEs were addressed by the development 

of adaptive DoEs (Lehmensiek et al., 2002) or sequential DoEs. The idea 

behind sequential DoE is an iterative augmentation of initial smaller DoE with 

additional test points until desired model quality is achieved (Crombecq et al., 

2009). In consideration, this approach could reduce the number of test points 

while still delivering adequate models and have been reviewed in the next 

section. 
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2.1.5 Sequential DoE Strategies: Optimal Sequential design 

In section 2.1, sequential DoE strategies were sub-categorised in two main 

categories, Optimal and Evolutionary sequential design. The first category 

optimal sequential design is presented here, and the other follows this section. 

In optimal sequential design, knowledge of model type and its parameters are 

known in advance (Kianifar, 2014). In this category, algorithms aim to locate 

an optimum by utilising properties of a known metamodel for allocation of 

design points close to an estimated optimum (Aute, 2009). An example of 

such is cited in (Kianifar, 2014) which states that D-optimal designs aim to 

minimise the covariance of the model parameters estimates. 

A few examples methods which adopt the use of estimation of optima includes 

Sequential Design for Optimisation (SDO) by Cox and John (Cox and John, 

1997), the method by  Sasena et al. (2000, 2002). 

As the allocation of sample points is based on prior knowledge of the response 

model and if the pre-selected model type is not suitable for the response, the 

DoE plan will not be efficient. Hence, improvement in model accuracy with 

additional iterations is not certain.  

The optimal sequential design discussed here required knowledge of model 

type in advance and given that it might not be a possibility for many 

engineering problems, a sequential design which does not require prior 

knowledge such as model type, a number of sample points or system 

behaviour would be beneficial. An evolutionary sequential design, which is 

presented in next section, does not require such information and utilises the 
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information from previous iterations to guide the allocation of new test points 

(Crombecq et al., 2009). 

2.1.6 Sequential DoE Strategies: Evolutionary Sequential design 

Evolutionary sequential design or also referred as generic sequential design 

in [39], have a major advantage over optimal sequential design strategies 

when little knowledge is available regarding the model type or black box 

setting (Crombecq et al., 2009).  Evolutionary sequential designs can be 

further classified into two sub-categories, Exploration-based sequential 

design and exploitation-based sequential design. 

• Exploration-based sequential design:  These designs as described 

by (Provost et al., 1999; Kianifar, 2014), Gherke et al. (1999) (cited in 

(Crombecq et al., 2009)), aim to assign equal importance to all the regions of 

design space and populate these regions as evenly as possible during each 

iteration. The even distribution is achieved by defining a density measure, 

which assigns ranks to the region in a domain based on their sampling density.  

This method provides an advantage over single-level DoE strategies by 

ensuring neither too many nor too few samples are generated for same 

regions of design space, and this is attained by using feedback from previous 

test point location for generating new test points. These DoEs have the 

capability to generate evenly distributed points throughout the design space 

while not being tailored to any specific response model (Crombecq et al., 

2009; Kianifar, 2014). 
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•  Exploitation-based sequential designs: These DoE methods use an 

error measure from previous steps to guide the sampling process to the 

specific areas of design space. The definition of the specific or interesting area 

depends on the definition of the error measure, some examples of the 

interesting area are highly non-linear areas (Crombecq et al., 2009), areas 

with discontinuous system behaviour, or areas containing optima  (Kianifar, 

2014). The examples of exploitation-based sequence methods can be found 

in (Geest et al., 1999; Couckuyt et al., 2009), Glassner (1995) (cited 

in(Crombecq et al., 2009)). The major drawback of these designs is the 

tendency to over-focus on specific locations, which could result in under-

sampling of other areas of design space. 

2.1.7  Summary of Sequential DoEs 

As it has been described above, sequential DoE strategies provide certain 

advantages over single-level DoE strategies such as reduced number of 

sample points, in case of evolutionary sequential design methods generation 

of sample points in design space without prior knowledge of system 

behaviour. 

In regard to optimal sequential design methods, these methods can be highly 

efficient given the model it has been developed for is suitable for the system 

response behaviour. However, this might not be possible in every case as 

prior knowledge of system behaviour is not always available.  In contrast to 

optimal sequential designs, evolutionary sequential designs do not require 

prior knowledge of the system response behaviour and sampling points are 
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allocated based on information acquired from previous iterations either via 

density measure or error measure. 

The evolutionary sequential design methods were categorised into two 

methods exploration and exploitation-based design. In (Crombecq et al., 

2011), the trade-off between exploration and exploitation for the augmentation 

design of evolutionary sequential DoE methods has been suggested. The 

argument proposed in (Kianifar, 2014) states that if the exploration-based 

algorithm is used solely for augmentation design, the sampling points are 

allocated evenly through design space regardless of the nonlinearity present 

in the design space. On the other hand, exploitation-based algorithm focuses 

solely on the nonlinearity in one area while neglecting the other areas (where 

different nonlinearity could also be present) of the design space. This would 

result in inefficient DoE plan, so (Kianifar, 2014) and (Crombecq et al., 2009) 

stated that sequential experimental design should consider exploration to a 

certain degree. 

There has been extensive work carried out in the field of sequential DoEs such 

as hybrid sequential DoE by (Crombecq et al., 2009), OLH based sequential 

DoE by (Kianifar et al., 2013), and sequential methods using low-discrepancy 

strategy (Rafajłowicz and Schwabe, 2006; Lam, 2008). 

2.2 Design of Dynamic Experiments 

The design of experiment methods described in the preceding section have 

been widely recognised and been successfully implemented for steady state 

model-based calibration (Cary, 2003; Grove et al., 2004; Guerrier and 
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Cawsey, 2004; Lumsden et al., 2004; Schlosser et al., 2006; Brahma et al., 

2008; Khan, 2011; Kianifar, 2014). In these DoE methods, the test plan is 

designed for the design space in which input variables are varied over their 

expected range to estimate the system behaviour in a statistically sound way. 

However, the input variables in these methods are not time-dependent 

(Georgakis, 2013). Also, in (Brahma et al., 2009; Brahma and Chi, 2012a, 

2012b) researchers found that the practices of the steady-state process do 

not transfer to dynamic process. 

Design of Dynamic experiments or dynamic design of experiments (dynamic 

DoE) can be categorised into two sub-categories (Deflorian and Klöpper, 

2009): 

• Model-Based Approaches:  This category of dynamic experiments 

design requires prior knowledge of model structure (Deflorian and Zaglauer, 

2011). In these approaches, measurement effort is reduced, if statistical 

criterions such as D-optimal are used to define an optimal dynamic DoE plan 

(Deflorian and Zaglauer, 2011; Tietze, 2015).  Fedorov (1972) and Fedorov & 

Hackl (1997) have been cited in (Tietze, 2015) as a source which provided a 

detailed description of mathematical introductions for these approaches. 

• Model-Free Approaches: In model free DoE, prior knowledge of 

model structure is not necessary, the aim is to distribute the design points 

throughout the input space as uniformly as possible (Deflorian and Zaglauer, 

2011). This leads to space filing design, which provides even coverage of 

input space by maximising the minimal distance between design points 
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(Hametner et al., 2013; Tietze, 2015). In this thesis, these approaches have 

been implemented due to lack of prior knowledge. 

The main task of dynamic DoE is to define the dynamic boundaries in which 

system can be excited and to design appropriate excitation signals. In the 

dynamic modelling process, a sequence of time variant excitation signals is 

employed to generate a test design for modelling system behaviour 

(Sakushima et al., 2013). Excitation signals also known as dynamic 

experiments (Burke et al., 2013), influence the process to gather information 

regarding its behaviour (Nelles, 2001). Thus, the design of excitation signal is 

crucial in the process of dynamic system identification as it should effectively 

excite the dynamic behaviour of the system of interest (Fang and Shenton, 

2010; Deflorian and Zaglauer, 2011; Fang, 2012; Hametner et al., 2013; 

Sakushima et al., 2013). 

The steps involved in dynamic DoE can be summarised as follow and are 

discussed in detail in the proceeding sub-sections: 

• selection of model inputs 

• design of excitation signals 

2.2.1 Model Inputs 

The first stage in the development of dynamic DoE for the identification of 

dynamic systems is to determine the relevant model inputs which influence 

the system of interest (Nelles, 2001; Tietze, 2015). In mechanical processes, 

the influence of the different variables is clear and relevant inputs are chosen 

based on prior knowledge of the system (Nelles, 2001). However, in dynamic 
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processes even though the system inputs are known, they differ in their 

properties for identification (Tietze, 2015). An overview of automotive system 

inputs was presented in (Tietze, 2015) and is depicted in Figure 2.6. The 

automotive system in this figure is categorised into the dynamical system to 

be identified, the vehicle, the ECU and the environment. 

 

Figure 2.6: Categorised system inputs in an automotive system (Tietze, 

2015). 

In (Tietze, 2015), author categorised input signals into six categories based 

on the origin of the signals and properties for identification. These can be 
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broadly categorised into three sub-categories, ECU actuated inputs, External 

Inputs, and Environmental inputs.  

• ECU Actuated Inputs: As the name suggests, they are actuated by 

ECU and are suitable for identification of dynamic system. These signals can 

be identified in Figure 2.6 as control signal u1, u2 and u3. Also, the sub-signals 

such as an actuator, sensor, and true are also included in this category. 

However, their suitability for the identification of system differs and is 

presented in detail in (Tietze, 2015). 

• External Inputs: External signals are the signals which influence the 

dynamic system but cannot be actuated by ECU. In context to Figure 2.6, 

these signals are labelled u4, u4-true, u5 and u5-true. As these signals are the 

not directly actuated by ECU, they need to be actuated via external unit. The 

actuation can be costly, and thus the effect of the signal on a dynamic system 

should be analysed to decide whether to use it as real input or disturbance 

(Tietze, 2015). 

• Environmental Inputs:  These inputs, labelled as uamb in Figure 2.6, 

describe the environmental conditions such as ambient temperature, air 

pressure, and air humidity. In the real world, excitation of such inputs is 

extremely difficult and are treated as disturbances. 

There is another input, depicted as u6 in Figure 2.6 and cannot be classified 

in the above categories, as it is neither measured by ECU nor by an external 

unit. This should be treated as a disturbance unless it strongly affects the 
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system where it can be transformed into external inputs by installing an 

additional sensor. 

As stated previously, the selection of relevant inputs is the first stage in the 

process of identification of a dynamic system, and it also is a key step as it 

influences all the following stages of identification. The number of inputs 

should be kept to the minimum, as an increase in inputs number exponentially 

increases the measurement time of excitation signals (Tietze, 2015). Also, 

with the increasing number of inputs the insight into the influence of variables 

on system decreases (May et al., 2011). The relevant inputs for stationary 

problems can be identified using trial and error approach (Nelles, 2001; Tietze, 

2015). However, in the context of dynamic modelling a trial and error approach 

can be difficult to implement, as the number of inputs besides physical inputs 

further increase depending on the choice of dynamical modelling structure 

(Nelles, 2001; Tietze, 2015).  In dynamic modelling, this extension in input 

space beside physical input is due to the delayed inputs which are fed into the 

system. For example, if external dynamic approach is chosen for identification 

of system of nth order with input u (k) and output y(k), the input space, in this 

case, will be defined as u(k-1) ...u (k-n) and y(k-1) …y(k-n) (Nelles, 2001). 

Although there is only u(k) defined as an input, all the other delayed inputs 

and outputs follow. An example of the external dynamic structure is illustrated 

in Figure 2.7. 
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Figure 2.7: External Dynamic Approach (Nelles, 2001). 

In (Nelles, 2001) and (May et al., 2011), Input Variable Selection (IVS) 

strategies have been categorised into four different strategies and are 

presented below. 

a) Strategy I: Initial approach could be using all the inputs as relevant 

inputs; it can be practical if the number of relevant inputs is small. However, if 

the number is large, this approach will be infeasible as it will require a vast 

amount of data and longer training times, which will lead to an increase in 

measurement and identification cost. 

b) Strategy II: Another approach suggests trying all possible input 

combinations. Although this approach might lead to the best combination of 

input, it is practically infeasible as the number of combinations would increase 

with the increase in the number of relevant inputs. 

c) Strategy III: In this strategy, inputs are selected using tools such as 

Principal Component Analysis (PCA), Independent Component Analysis 

(ICA), or other similar techniques. This approach is also referred to as 



 

33 

 

unsupervised input selection or dimension reduction strategy. In this strategy, 

a large number of inputs is reduced by discarding non-relevant inputs with low 

computational demand (Nelles, 2001) and the mechanism of doing this is 

explained in (Nelles, 2001), and (May et al., 2011). In this strategy, criteria of 

relevance become quite important, as in PCA relevance of input is based on 

the distribution of input data which might lead to the removal of inputs which 

have a strong effect on system behaviour but lack in data distribution. Also, 

the combination of inputs and the relationship of the principal component with 

output is assumed to be linear (May et al., 2011). This will result in the failure 

to identify any non-linear relationships within the data. 

d) Strategy IV: This strategy is also known as supervised input selection 

(Nelles, 2001) or embedded strategy (May et al., 2011).  In this approach, the 

strategy for identifying inputs are incorporated into the learning algorithm for 

model identification. In this approach, the criteria for selection of the model 

input is based on improvement in model accuracy. In case of linear models, 

this can be achieved by using correlation analysis and for non-linear models, 

it can be accomplished by employing either evolutionary algorithms or model-

specific algorithms (Nelles, 2001; May et al., 2011).  There are many model 

specific algorithms such as Local Order Linear Model Tree (LOLIMOT) (Nelles 

et al., 1996) for neuro-fuzzy models, pruning or step-wise regression for 

Neural networks (May et al., 2011). This strategy is extremely powerful but 

computationally demanding. 

The next sub-section dictates the step after selection of relevant inputs, i.e. 

design of excitation signals. 
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2.2.2 Excitation Signals 

Once the relevant inputs have been selected, the target of dynamic DoE is to 

excite system to achieve maximum information with every measurement 

(Deflorian and Zaglauer, 2011). To do so, highly dynamic input excitation is 

required to cover the operating space with the data (Tietze, 2015). Common 

excitation signals for dynamic identifications are multi-valued PRBS (pseudo-

random binary sequence) (Isermann and Münchhof, 2011; Isermann, 2014), 

amplitude modulated PRBS (APRBS) (Nelles, 2001; Deflorian and Zaglauer, 

2011; Isermann and Münchhof, 2011; Isermann, 2014), and chirps (Baumann 

et al., 2008, 2009; Deflorian and Klöpper, 2009; Tietze, 2015). 

The design of the excitation signal plays a key role in the process of dynamic 

identification. To excite the dynamic system, regarding multiple-input systems, 

the excitation signals for relevant individual input must be uncorrelated 

(Gutjahr, 2012). This allows modelling approach to distinguish the effect of 

various input on the system behaviour. The correlation between the two 

signals can be computed using cross-correlation (Tietze, 2015). In addition to 

this, dynamic experiments should define the dynamic boundaries of the DoE 

for smooth signal transition and safe excitation. Dynamic boundaries refer to 

the permitted frequencies and amplitude of the input; these can be evaluated 

by analysing the excitation signal in the frequency domain (Burke et al., 2013; 

Tietze, 2015).  For this, the signal must be transformed using Discrete Fourier 

Transformation (Keesman, 2011; Pintelon and Schoukens, 2012), and this 

can be achieved by using algorithms such as Fast Fourier Transformation 

(Blahut, 2010; Keesman, 2011). 
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All of these criterion and some more (Tietze, 2015) can be used to design the 

suitable excitation signals. The excitation signals can be broadly categorised 

into three major categories, generic signals, optimised signals, and advanced 

dedicated signals. 

• Generic Signal: This category of signals is commonly used for 

identification of system with no prior knowledge. This kind of signal has a flat 

power band within the defined frequency boundaries (Ghosh, 2016). The 

examples of common excitation signal which fall in this category are PRBS, 

APRBS, Chirp, and white noise. 

• Optimised Signals: As the name suggests, these signals are 

generated through an optimisation process. The optimisation can be achieved 

by optimising many properties of a signal, but the popular choices include 

minimising crest factor (Tietze, 2015), and optimising input power of spectrum 

[86]. Phased optimised multi-sine signals and Discrete interval binary 

sequence belongs to this category of input signals. 

• Advanced Dedicated Signals: These signals are designed 

specifically for system behaviour, hence require insight of the system (Ghosh, 

2016). The design of an input signal varies from process to process, for 

example, an ill-conditioned system; inputs are designed with an emphasis on 

acquiring a balanced response. Another example is illustrated in (Pintelon and 

Schoukens, 2012), a mechanical system with acceleration where input 

excitation needs to be designed with controlled system properties like velocity 

and acceleration. The popular approaches for generation of these types of 
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signals, as listed in (Ghosh, 2016), are simultaneous minimisation of crest 

factor at input and output, and simultaneous minimisation of peak values at 

input and output. 

As mentioned earlier, generic signals do not require any prior knowledge of 

the system for the design of excitation signals and which has made them a 

common choice for identification of engine systems (Isermann and Muller, 

2001; Hafner and Isermann, 2003; Guhmann and Riedel, 2011; Burke et al., 

2013; Isermann, 2014). As prior knowledge of system behaviour is scarcely 

available, only the generic excitation signals commonly used for identification 

of engine systems will be discussed further. 

2.2.3 Comparison of Excitation Signals 

The last section briefly introduced the criterion which need to be considered 

to create suitable excitation signals for dynamic identification and some 

commonly used excitation signals. In this section, these signals, a pseudo-

random binary sequence (PRBS), amplitude modulated PRBS (APRBS), and 

chirps will be discussed. 

I. Pseudo Random Binary Sequence (PRBS) 

A common excitation signal and frequently applied is multi-valued PRBS 

(Nelles, 2001; Deflorian and Zaglauer, 2011; Fang, 2012). It is suitable for 

identification purposes, as it excites all frequencies uniformly by imitating 

white noise (Nelles, 2001). This signal can be generated using a set of shift-

register circuits, and the length of the signal is determined using the digit of 

the register (Ljung, 1997). The amplitude of the signal can be defined using 
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two predetermined levels (maximum and minimum) (Fang, 2012). An example 

of the PRBS signal is illustrated in Figure 2.8.  

 

Figure 2.8; A generic pseudo-random binary signal. 

The multi-valued PRBS was developed for linear system identification (Nelles, 

2001; Deflorian and Zaglauer, 2011), and hence only covers a limited number 

of amplitude levels. Since, this signal only alternates in between the minimum 

and maximum value this leads to poor coverage of input space (Nelles, 2001).  

This makes the signal not suitable for the nonlinear system identification as 

no information regarding the system behaviour is gathered other than at 

maximum and minimum points. A case study is presented in (Nelles, 2001), 

illustrating the drawbacks of this type of signals. 

II. Amplitude Modulated Pseudo Random Binary Signal (APRBS) 

The amplitude modulated PRBS is a periodic deterministic signal with 

properties like Gaussian white noise (Tan and Godfrey, 2002). APRBS has 

been often used in system identification regarding automotive industry 

applications, Hafner (2003) and Zimmerschied (2005) (cited in (Deflorian and 
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Zaglauer, 2011)), (Isermann and Muller, 2001; Hafner and Isermann, 2003; 

Deflorian and Klöpper, 2009). An example of APRBS signals is illustrated in 

Figure 2.9. APRBS cover a wide amplitude range which is essential for 

capturing the nonlinearities and this has been depicted in Figure 2.10 (Hafner 

and Isermann, 2003; Baumann et al., 2008; Deflorian and Zaglauer, 2011; 

Schmiechen et al., 2013).  In (Heinz and Nelles, 2017), it has been illustrated 

that APRBS shows the best data coverage and step transition between two 

amplitudes provides high dynamic excitation. Also, APRBS has a combination 

of both low-frequency component (piecewise constant) and a high-frequency 

component (step amplitude) which enhances its capability to cover both high 

and low-frequency areas of input space.  

 

Figure 2.9: An example of the amplitude modulated PRBS (APRBS) signal. 

APRBS signals can be defined as the composition of N design points, di, which 

vary in their maximum and minimum amplitude values and have a certain hold 

time, Th (Deflorian and Zaglauer, 2011). A pictorial illustration of this concept 

is present in Figure 2.11. 
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Figure 2.10: Data distribution of APRBS in pseudo input space (Heinz and 

Nelles, 2017). 

 

Figure 2.11: A conceptual view of APRBS Design in the time domain 

(Deflorian and Zaglauer, 2011). 

The major drawback of APRBS is in regards of the step excitation, which might 

lead to unsafe excitation, such as drastic step change from one design point 

to another (Deflorian and Zaglauer, 2011; Tietze, 2015). However, this 

drawback can be overcome by the careful selection of steps, such as discrete 
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steps with fixed step length (Fang, 2012). Another attribute of APRBS which 

might not be desirable in some application is, decrease in amplitude with 

increasing frequencies (Tietze, 2015). 

III. Chirp Signals 

In chirp signals, or also known as swept sine, the frequency either increasing 

(swept up) or decreasing (swept down) in one measurement period (Tietze, 

2015). These signals belong to the category of sinus signals and are slow-

varying dynamic signals with less significant step change (Baumann et al., 

2008). An example of a chirp signal is presented in Figure 2.12. Chirp signals 

can be defined as a sinusoidal signal with a time-variant frequency and can 

be represented as follow: 

 x(t) = A𝑠𝑖𝑛⁡(2πft2) Equation 2.3 

Where f is the frequency component and t being the period. 

 

Figure 2.12: Chirp Signal 

The advantage of chirp signals over APRBS is a uniform distribution of 

amplitude over the user selected frequency, and it has been illustrated in 

(Tietze, 2015). The disadvantage of the chirp signal is the scarce coverage of 
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the centre of the input space (Heinz and Nelles, 2017) and had been depicted 

in Figure 2.13. Another main disadvantage of chirp signals is that they require 

a long measurement time in order to cover the whole input space and this 

increases with the number of relevant inputs. 

 

Figure 2.13: Data distribution of chirp signal in pseudo input space (Heinz 

and Nelles, 2017). 

There are other signals available in the literature which have been discussed 

for identification purpose such as ramps (Nelles, 2001; Deflorian and 

Zaglauer, 2011; Heinz and Nelles, 2017), and multi sine (Tietze, 2015; Heinz 

and Nelles, 2017). 
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2.2.4 Summary of Dynamic DoE 

In the section, Dynamic design of experiments, a theoretical analysis of the 

input selection, design of excitation signals, and comparison of common 

excitation signal was presented. The advantages and disadvantages of the 

methods and approaches were presented. The APRBS signals provide good 

coverage of the input space but suffer the challenge of safe excitation, while 

chirp provides safe excitation environment but require longer measurement 

time. In Table 2.1, an overview of some of the applications of the excitation 

signal along with the respective modelling structure is presented.  

Table 2.1: Overview of excitation signals and their applications in literature. 

Excitation 
Signal 

Modelling  
Approach 

Application Reference 

Chirps Volterra series Engine Emissions (Burke et al., 2013) 

APRBS LOLIMOT NOx Emission (Isermann, 2014) 

Chirps Volterra Series 
Exhaust 

Temperatures 
(Baumann et al., 

2008) 

APRBS LOLIMOT NOx Emissions 
(Hafner and Isermann, 

2003) 

APRBS LOLIMOT NOx Emissions 
(Isermann and Muller, 

2001) 

Chirps 

Volterra series/ MLP/ 
Hammerstein-wiener 
Model/ RBF/ NARX 

Model 

Engine Emissions 
(Guhmann and Riedel, 

2011) 

Multi-sine/ 
Chirp/ 
Ramps 

Gaussian Process 
Regression 

Fuel Supply control 
system 

(Tietze, 2015) 

2.3 Summary 

In this chapter, Design of Experiments, a review of existing literature on both 

steady state and dynamic design of experiments were presented. The steady 

state DoEs are well established and provide an elegant solution for steady 

state engine mapping. The techniques such as single-level DoE and 
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sequential DoE strategies were described for steady state DoE. It was found 

that single level DoE strategies generate test plans with all points in one 

iteration. This might not be a desirable attribute, if no prior knowledge of 

system behaviour is available, as it might lead to under-sampling or over-

sampling. While sequential DoEs generates test plans in an iterative manner, 

where initial design can have a small number of points and additional points 

can be added with each iteration until desired model accuracy is achieved. 

It was found that the practices of steady-state processes do not transfer to 

dynamic processes, so the dynamic design of experiments was introduced. In 

Dynamic DoE, two approaches were introduced model-based or model-free 

DoEs. In the model-based DoE, prior knowledge of system response is 

required to guide the test plan to reach an optimum. However, prior knowledge 

is seldom available. Thus, a model-free approach would become more 

suitable. Model-free approaches are similar as space filling designs, which 

emphasises on the uniform distribution of test point over the input space. 

Additional aspects related to dynamic design such as selection of relevant 

inputs, the design of excitation signals, and comparison of commonly used 

excitation signals was also presented in this chapter. Overall it becomes clear 

that the dynamic DoE is not a straightforward step and will not lead to perfect 

system measurement, covering all dynamical system states. Also, due to the 

lack of prior knowledge regarding the system response, an optimal test plan 

cannot be implemented. Hence, this raises the need for a flexible modelling 

approach for handling specific system measurements. These modelling 

techniques and steps will be discussed in the next chapter.



 

44 

 

Chapter 3 Review of Identification methods for Dynamic Nonlinear 

system  

In the preceding chapter, techniques regarding the design of experiments 

were introduced. These techniques are employed to collect the observations 

data, and once the data is collected, the next step is to develop a mathematical 

model which describes the relationship in between inputs and outputs. 

In this chapter, first the concept of modelling is introduced, and a brief 

introduction to the physical modelling and their applications in engine 

development has been provided. Thereafter, the chapter focuses on the 

overview of modelling nonlinear dynamic systems and establishes the process 

involved in the identification of such models. The criterion for selection of an 

appropriate modelling technique are introduced, and modelling techniques are 

compared based on these criterions. This review is presented in the following 

sections: 

− Section 3.1:  Introduction 

− Section 3.2: Modelling of Dynamic Systems 

− Section 3.3: Nonlinear Dynamic Model Identification 

− Section 3.4: Summary 

3.1 Introduction 

Modelling has become essential in the automotive industry due to engine 

technologies being developed and implemented, such as electronic throttle/ 

active body control / electronic stability control/ Exhaust gas recirculation, to 
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improve the performance, fuel economy and drivability while meeting 

increasingly stringent emissions legislation. Although, all these sub-systems 

provide further flexibility to the engine but at the cost of increasing system 

complexity (Burke et al., 2013). This has resulted in the increased complexity 

of powertrain calibration with considerable time and cost implications. To 

overcome these challenges with the satisfactory expenditure of cost and time, 

strategies such as model-based calibration (MBC) have been introduced 

(Röpke, 2009; Kruse et al., 2010). 

In model-based calibration, mathematical models are derived either by the 

phenomenological way (physical / theoretical) or behavioural way 

(experimental) (Isermann, 2014). A pictorial presentation of a breakdown of 

theoretical and experimental modelling is presented in Figure 3.1.  A model 

described fully by the physical laws is termed white box, and in contrast, a 

model described based on experiments or data-driven model is termed black 

box model (Bekey, 1970; Isermann, 2014). In addition to these approaches, 

there exists an approach named grey box modelling (Bekey, 1970) which 

combines theoretical as well as experimental knowledge to model a system 

and more information can be found in (Guzzella and Amstutz, 1998; Nelles, 

2001). 

Theoretical models are a valuable tool used by researchers to understand the 

basic principles and underlying concepts of the engine. A detailed review of 

physical models can be found in literature in (Heywood, 1998; Chow and 

Wyszynski, 1999; Grondin et al., 2004; Pezouvanis, 2009) and many others. 

They have been successfully implemented for simulating engine systems and  



 

46 

 

 

Figure 3.1: Sub-categories of theoretical and experimental modelling 

(Isermann, 2014). 

concepts such as power prediction, fuel consumption, and prediction of 

emissions when combined with chemistry-based sub model (Heywood, 1998; 

Chow and Wyszynski, 1999). Furthermore, applications of physical models, 

such as thermodynamic models, fluid dynamic models can be found in 

(Roselló et al., 2002; Arsie et al., 2004; Jia et al., 2008; Schögl et al., 2009; 

Verhelst and Sheppard, 2009; Bernard et al., 2011; Fridriksson et al., 2011; 

Jajčević, 2011; Zheng and Caton, 2012; Aziz Hairuddin et al., 2016; Ngwaka 

et al., 2016). One-dimensional (1D) models are widely used at early stages of 

engine development because of their fast simulations speeds and robust 

prediction capabilities (Schögl et al., 2009; Jajčević, 2011). 
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Although physical modelling can provide high precision when implemented 

accurately, it has associated drawbacks such as high complexity and 

computational efforts. This makes this modelling  unsuitable for real-time 

applications (Nelles, 2001; Tietze, 2015). Also, automotive processes such as 

emission formation, turbocharger, are only partially known or require an 

unreasonable effort to be modelled physically (Nelles, 2001; Tietze, 2015). 

Due to the disadvantage of complex physical models and high computation 

cost, the trend in engine modelling has shifted from physical modelling to 

experimental modelling over the past years (Pezouvanis, 2009). 

An alternative to physical models is so-called experimental or data-driven 

models (black-box). Experimental models do not require any a-priori-

knowledge and can incorporate unknown non-linearities encoded in the 

sampled data. The complex physical models were unsuitable for controller 

design, thus simple experimentally (input-output data based) derived engine 

models were the first kind of models used for control purposes. The linear 

discrete engine model was first developed by Hazell and flower (Hazell and 

Flower, 1971a) based on sampled-data theory (Flower and Hazell, 1971; 

Hazell and Flower, 1971b). Thereafter, (Flower and Windett, 1976a, 1976b) 

incorporated PRBS techniques to identify dynamic characteristics of a large 

diesel engine. (Wellstead et al., 1978) employed a non-parametric 

identification technique (frequency response estimation) to characterise the 

diesel engine dynamics. There have been many further advancements in the 

field of data-based modelling since the development of linear experimental 
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models, such as development of nonlinear models like neural network, neuro-

fuzzy models and many others.  

Data-based models have the advantage of fast simulation speeds and can be 

applied in real-time applications, such as model-based calibration of ECU 

(Tietze et al., 2014). An overview of linear and non-linear experimental 

modelling for the reader's interest can be found in (Sjöberg et al., 1995; Ljung, 

1997, 2006; Nelles, 2001; Keesman, 2011), along with their applications. 

Furthermore, for the identification of engines using dynamic modelling is also 

presented in (Isermann and Münchhof, 2011) and (Isermann, 2014). 

Hereafter, the chapter will focus on data-based dynamic modelling 

techniques, which are later implemented in this thesis for modelling purposes. 

The most commonly used modelling techniques namely, Neural network and 

Local Linear-Fuzzy models will be analysed and compared. 

3.2 Modelling of Dynamic Systems 

Modelling and identification of nonlinear dynamic systems is a challenging 

task because nonlinear processes are unique in the sense that they do not 

share many properties. System Identification estimates mathematical models 

by statistic methods with the purpose of representing real dynamic systems. 

A model should be adapted in such a manner that it could represent the 

behaviour of a process as closely as possible. The model capability to do so 

is typically measured in terms of a function of the error between the process 

output and the model input, which is later utilised to adjust the model’s 

parameters. A general procedure and major steps involved to perform a 
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successful system identification loop are depicted in Figure 3.2. The first step 

related to data generation such as the selection of the input signal, the design 

of the excitation signal, was introduced in the previous chapter. In this chapter 

rest of the steps will be introduced with emphasis on identification dynamic 

modelling techniques namely, Neural network and Local Linear-Fuzzy models 

will be analysed and compared. 

 

Figure 3.2: The System Identification Loop (parenthesis above indicate steps 

that are necessary only when dealing with dynamic systems). 
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3.2.1 Model Architecture 

Nelles (2001), describes this step of identification to be one of the critical steps 

in the loop and provides criterion for the selection of appropriate model 

architecture. The choice of model architecture, such as polynomial, Neural 

Networks, and local linear neuro-fuzzy models, depends on the many factors 

and some of these are presented, in Table 3.1, below: 

Table 3.1: Criterion for the selection of model architecture. 

Criteria Explanation 

Defining the Problem 

This means the classification of the problem, is it 

either approximation of static system or 

identification of dynamic systems. 

Purpose of Model 

This is selected based on the intended use of the 

model. This could vary from one-step prediction, 

simulation, optimisation, fault detection etc. A 

representation of different purposes is depicted in 

Figure 3.3. 

Dimensionality 

The number of relevant inputs and outputs plays an 

important role in the selection of suitable model 

architecture. For example, the polynomial is not 

suitable for high dimensional problems due to their 

properties which causes a rapid increase in 

parameters with the increase in dimensionality. 

Data-sets 

Availability of amount and quality of data affects the 

choice of model architecture. 

Dynamical measurements generally lead to longer 

measurements, which is caused by associated high 

dimensionality of the input space (Tietze, 2015). 

Hence, the choice of model should be able to cope 

with the training needs linked with large datasets. 
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If the data is sparse and noisy, a global approach 

would be suitable as they average out disturbances 

(Nelles, 2001). 

Development, Training 

and Evaluation time 

Development time depends strongly on training 

time. Training and evaluation time share inverse 

relationship. Longer training times enables fast 

model evaluation while short training times imply 

require longer model evaluation times.  

Such as in the case of implementation for ECU of 

automotive systems chosen model should have fast 

evaluation time and require low resources. 

Requirements of memory 

Memory restriction is an important issue in the 

automotive industry (Nelles, 2001). Hence, the 

model with a smaller memory requirement will be 

preferred. (Tietze, 2015) 

Offline or Online learning 

All architectures are suitable for offline learning 

(Nelles, 2001). 

Online modelling is an interesting option and would 

require adaptive model architecture. 

Interpretation 

Model with interpretable parameters would be 

beneficial, as most black box models provide no 

physical meanings of the parameters.  

Incorporation of Prior 

Knowledge 

The possibility of incorporating physical knowledge 

into the model is beneficial, and the lack of this is a 

common drawback of black box models. Thus, a 

model with this capability should be considered 

during the selection stage. 

Noise Sensitivity 
Models need to consider the accurate noise level to 

avoid overfitting. 

Accuracy 

The ability to map nonlinear input-output 

relationships with high accuracy would also sway 

the choice of architecture. 
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Figure 3.3: Various representation of models based on their intended use 

(Nelles, 2001). 

The list mentioned above is certainly incomplete as there are many other 

factors which would influence the choice of model architecture such as 

customer requirement, availability of tools and software, and many more. 

There are further scenarios which should be considered on the basis of choice 

of dynamic representation and practical usage such as data distribution, 

extrapolation effect, local complexity etc. and can be found in details in 

(Nelles, 2001; Tietze, 2015). In the following section, the choice of dynamic 

representation is described. 
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3.2.2 Dynamic Representation 

The choice of dynamic representation depends on the purpose of the model. 

The chosen model architecture and the available prior knowledge about the 

process also influence the decision in this stage. For example, if it is to be 

used for one-step prediction, a NARX (Nonlinear autoregressive with 

exogenous input) or NARMAX (Nonlinear autoregressive Moving Average 

with exogenous input) representation could prove a good choice. 

Dynamic representation can be classified into two categories of internal and 

external dynamics. The internal dynamics strategy is based on the 

incorporation of dynamic elements into the model structure (Nelles et al., 

1996), while external dynamic approach separates the models into two parts: 

a nonlinear static approximator and external dynamic filter bank (Nelles, 

2001). The illustration of both strategies is depicted in Figure 3.4. An external 

dynamic approach is the most frequently applied strategy (Nelles et al., 1996; 

Schaffnit et al., 2000; Nelles, 2001; Tietze, 2015) and will be applied in this 

work. In the external dynamic approach, the static nonlinear approximator is 

represented with different model types such as neural network, LOLIMOT and 

an external dynamic filter models the dynamic behaviour by tapped delay 

lines. 

In terms of application, the external dynamic approach is divided into two 

cases: series-parallel model (equation error model) and parallel model (output 

error model) (Schaffnit et al., 2000). These cases are illustrated in Figure 3.5. 
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Figure 3.4: Dynamic representations: a) internal, b) external (Nelles, 2001). 

 

Figure 3.5: Series-parallel model (switch to ‘a’: one-step prediction) and 

parallel model (switch to ‘b’: simulation) (Belz et al., 2017). 

 

 

 

 

a) 

b) 
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3.2.3 Model Order 

The model order is typically determined by a combination of prior knowledge 

and trial and error (Nelles, 2001). However, an automatic order selection 

methodology has been recently proposed in (Belz et al., 2017). In the external 

dynamic approach, higher dynamic order of the model increases the 

dimensionality, and delayed inputs will lead to larger regression matrix and 

increased number of parameters (Nelles, 2001; Tietze, 2015). Hence, the 

consideration of the model order is quite an important task.  An example of 

the effect of different order on the model capability to predict is illustrated in 

(Nelles, 2001) and (Tietze, 2015) and is presented here in Figure 3.6. The 

upper plot of the figure shows a system modelled using polynomial models 

with a different degree of order and lower plot depicts the associated training 

and test error. 

 

Figure 3.6: Effect of different model order on model fitting (Tietze, 2015) 
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The model on the left side (16th order polynomial) can fit the training points 

with a small error but generalises poorly for the test data. This is a scenario of 

overfitting, where the model is overly complex and flexible. On the contrary, 

the model on the right (4th order polynomial) presents low complexity and 

unable to fit the training points, and this is called underfitting. The model in the 

middle (10th order polynomial) provides a good fit for both training and test 

data.  

This figure shed light on the concept commonly known as the bias/variance 

dilemma. An excessively complex model leads to a small bias but a high 

variance, as in the case of the 16th order model, and vice versa, as in the case 

of a 4th order model. The generic representation of bias/variance trade-off is 

presented in Figure 3.7.  

 

Figure 3.7: Bias/Variance Trade-off (Nelles, 2001). 
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3.2.4 Identification 

Identification can be carried out automatically if structure optimisation 

techniques are applied such as orthogonal least squares (OLS) for linear 

parameterised models or evolutionary algorithms (EAs) for nonlinear 

parameterised models. An alternative to these general approaches is model 

specific growing and/or pruning algorithms such as Local order linear model 

tree for local linear neuro-fuzzy model (Nelles et al., 2000), ASMOD (Additive 

Spline Modelling) for additive singleton neuro-fuzzy stems (Bossley et al., 

1997; Harris and Wu, 1997) or wide variety of algorithms available for 

multilayer perceptron networks  (Reed, 1993; Augasta and 

Kathirvalavakumar, 2013). 

The approach to the identification of static nonlinear approximators in external 

dynamic such as neural network, local linear neuro-fuzzy networks, Volterra 

series etc., are discussed and compared in section 3.3.  

3.2.5 Model Validation 

The main objective of model validation is to investigate how accurately a fitted 

model can predict the true behaviour of a response. There are different 

methods to validate the accuracy of the model: 

• Physical Behaviour:  The first option is to validate the response 

behaviour based on physical interactions of the input variables (Saunders, 

2004). This validation method requires prior knowledge about the response 

behaviour to ensure that the model is not overfitting. 
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• Internal Validation: Internal validation technique is based on 

investigating model’s statistical properties using different statistical methods, 

such as Root Mean Square Error (RMSE) (Röpke et al., 2012; Burke et al., 

2013; Hartmann et al., 2013), as given by Equation 3.1. RMSE is principally 

calculated by the discrepancy between the real value (𝑦) of the measured 

sample points (𝑛) and the corresponding prediction values (𝑦̂). 

 

RMSE =⁡√
1

n
⁡.∑ (yi − ŷi)

2
n

i=1
 Equation 3.1 

PRESS RMSE (Prediction Error Sum of Squares) (Klein et al., 2013) is also 

an internal validation criterion, which is useful for cross-validation technique 

for investigating overfitting (Grove et al., 2004; Guerrier and Cawsey, 2004). 

PRESS RMSE is calculated by fitting the statistical model to ‘⁡𝑛 -1’ of the 

measurements and predicting the response value for the remaining sample 

point. The difference between the actual and the predicted value of the 

remaining sample point is called prediction residual, and the sum of the 

squares of all the predicted residuals is PRESS (Howlett et al., 1999). 

• External Validation: This technique requires an additional set of 

measurements, for example, name it validation data to be used for validation 

of the model’s predictive performance (Cary, 2003). To clarify the notations 

and names, data used for fitting the model can be named training data and 

the one used for validation could be named validation data. Training data 
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(Model fitting data) has ‘n’ sample points, and validation data has a ‘v’ sample 

point. 

These measurements are not used for fitting the model rather is a fresh set of 

data.  Accordingly, the fitted response model to ‘n’ measurements is used to 

calculate the response values of the ‘v’ validation sample points. There are 

different external validation criterion such as Validation RMSE (Hartmann et 

al., 2013), given by Equation 3.2, and Relative Error (Rango et al., 2013), 

illustrated by Equation 3.3, that can be used to investigate a model’s accuracy. 

This validation criterion exploits the discrepancy between the predicted values 

and the measured values of the validation set. 

 

Validation⁡RMSE =⁡√
1

v
⁡.∑ (yi − ŷi)

2
v

i=1
 Equation 3.2 

 

Relative⁡Error⁡(%) =⁡√
∑ (yi − ŷi)

2v
i=1

∑ (yi)
2v

i=1

 Equation 3.3 

The use of external validation criteria allows to determine whether the fitted 

model (on training data set) can provide similar level of performance on new 

set of data (validation data set). In other words, the fitted model can generalise 

the relationship in the data without exhibiting overfitting or underfitting. The 

overfitting means that model is overcompensating by fitting all the data points 

(including random errors) rather than learning the underlying system. While 
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underfitting occurs when fitted model fails to learn the relation in the training 

data because of not being able to fit the training sample points. 

3.3 Nonlinear Dynamic Model Identification  

There is a vast number of data-based modelling techniques which can be 

applied to define the relationship between input and output, such as look-up 

tables, Hammerstein models, Wieners models, Volterra series, neural 

networks, and local model networks. These techniques have been widely 

implemented in the literature related to engine modelling such as Volterra 

series for prediction of emissions in (Guhmann and Riedel, 2011; Burke et al., 

2013), neural networks for modelling torque and lambda and fuel optimisation 

in (Fang et al., 2015), modelling of Diesel engine with neural networks in (He 

and Rutland, 2004), and NOx modelling using LOLIMOT algorithm in (Hafner 

et al., 2000) and (Isermann and Muller, 2001). Once the modelling structure 

is defined, the model fitting process is followed. The model fitting can be either 

offline or online, in this thesis offline based parameter optimisation algorithms 

are implemented. The model fitting process can be categorised into three 

main categories: 

➢ Parametric Models: parametric models are explicitly dependent on the 

underlying model structure, thus demanding prior knowledge regarding the 

response behaviour (Kianifar, 2014). These models can lead to large errors in 

approximation If order of the model does not agree with the order of the 

process (Åström and Eykhoff, 1971). For these models, the unknown model 

parameters for the pre-defined model type are estimated based on the 
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experimental measurements (i.e. test points). In the following section, 

polynomials (Myers et al., 1989; Morris and Mitchell, 1995) which are well-

known parametric models, are reviewed in detail. Polynomials have been 

commonly used as a modelling technique for engine model-based calibration 

(Hartmann et al., 2013; Rango et al., 2013). 

➢ Non-Parametric Models: non-parametric models do not require 

explicit model assumptions (Rango et al., 2013). Therefore, these models are 

an attractive modelling option for engineering cases when no prior knowledge 

regarding the suitable model type is available. Given that non-parametric 

models have recently gained attraction in engine model-based calibration 

(Hartmann et al., 2013; Rango et al., 2013), one of the mostly used non-

parametric modelling techniques in model-based calibration (Morton and 

Knott, 2002; Seabrook et al., 2005),Neural Networks (Hagan and Demuth, 

1999), is reviewed in this section. 

➢ Multi-Model Approach: this is an approach toward modelling and 

identification of complex non-linear systems that rely on problem 

decomposition strategy. In this approach, a global system model is 

constructed with the set of models integrated with different degree of validity. 

The multi-model framework has been applied in different context with different 

names such as Local Model Networks (Murray-Smith, 1994), Local Linear 

Neuro-Fuzzy Models (Nelles et al., 1996), and will be reviewed in this section. 
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3.3.1 Parametric Models: Polynomial Models 

Polynomial models are popular in modelling context due to their simple 

structure which makes them easy to understand (Hartmann et al., 2013) and 

parameters of polynomial models can be optimised easily and rapidly using 

least squares regression and explicit formula (Nelles, 2001; Burke et al., 2013; 

Tietze, 2015). A polynomial of a response behaviour (𝑦) based on the input 

parameters (X) by linear combination of a set of base functions (𝑓), can be 

expressed as (Myers et al., 1989; Morris and Mitchell, 1995; Nelles, 2001): 

 
y(x) = ⁡ f t. a = ⁡∑ ap. fp(X)

P

p=1
 Equation 3.4 

Where P indicates the number of base functions, and 𝑎 is the parameter 

vector. In (Nelles, 2001), for an m-dimensional polynomial of degree n, base 

function and number of parameters are defined as: 

 
P =

(n +m)!

n!m!
− 1 Equation 3.5 

 Number⁡of⁡Parameters = P + 1 Equation 3.6 

The nonlinear dynamic extension for the polynomial model is achieved by 

utilising polynomials for the approximation of nonlinear static approximator, in 

one step prediction model of external dynamic approach, and is referred as 
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Kolmogorov- Gabor polynomial (Nelles, 2001). The representation of both 

static and dynamic structure is illustrated in Figure 3.8. 

 

Figure 3.8: Illustration of static (3.8a) and dynamic (3.8b) polynomial model 

structure (Tietze, 2015). 

In light of Equation 3.5 and Equation 3.6, it becomes clear that the number of 

parameters and thus the model complexity increases dramatically with 

increasing input dimensionality and degree of the polynomial (Nelles, 2001; 

Khan, 2011; Tietze, 2015). This attribute of polynomial models makes them 

unsuitable for high dimensional problems. This can be resolved by applying 

polynomial models in combination with a structural selection technique like 

orthogonal least square. These subset selection techniques can automatically 

select the relevant terms from full polynomial leading to reduced model and 

thus increasing polynomials capability (Nelles, 2001). However, if the full 

polynomial has a large number of terms, this would result in structure selection 

being computationally demanding. Also, high degree polynomials suffer from 

oscillatory interpolation which could lead to incorrect dynamics representation 
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or instability depending on the direction of oscillation (Nelles, 2001). In spite 

of the disadvantages of the polynomial model, their simple structure, 

mathematical operations in terms of multiplications and summations, allows 

easy implementation as an ECU function (Tietze, 2015). 

3.3.2 Parametric Models: Volterra Series 

A practical extension to dynamic polynomial models is the parametric Volterra 

series (Nelles, 2001; Burke et al., 2013). In parametric Volterra series static 

model, one step prediction model of external dynamic approach is realised 

using linear feedback term and previous states of model inputs (Nelles, 2001; 

Burke et al., 2013). The generic form of Volterra series can be expressed as 

in Equation 3.7 (Nelles, 2001) and its structure can be illustrated as in Figure 

3.9. The structure is composed of nonlinear transformation of input quantities 

by polynomials with subsequent finite response filter (FIR). However, finite 

impulse responses tend to decay over time and to accurately represent a 

dynamic system with large time constant with FIR would lead to large number 

of parameters. Therefore, to cope with such system without accumulating 

large number of parameters, an infinite response filter (IIR) is used. 

 𝐲(𝐤) = 𝐟(𝐮(𝐤 − 𝟏),… , 𝐮(𝐤 −𝐦)) − 𝐚𝟏𝐲(𝐤 − 𝟏) −⋯

− 𝐚𝐦𝐲(𝐤 −𝐦) 

Equation 3.7 

The simplification of linear feedback and modelling nonlinearity only for the 

inputs leads to a reduced number of regressors and avoids the drawbacks of 
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oscillatory interpolation, which is present in dynamic polynomial models 

(Nelles, 2001).  

 

Figure 3.9: Schematic representation of the parametric Volterra series 

(Sakushima et al., 2013) 

However, they do suffer from their own disadvantage such as restriction of 

generality and incapability of describing a system with nonlinear dependence 

on output. The system whose nonlinear behaviour depends strongly on output 

can be represented by this choice of the model if the chosen model order is 

large (Nelles, 2001). However, as of the large model order, the number of 

parameters would increase which would lead to more complex regression 

process (Burke et al., 2013). 

The parametric Volterra series models have been often used for modelling 

nonlinear dynamic systems, and a detailed review of these models can be 

found in (Cheng et al., 2017). The properties which have made them popular 

for application in the automotive industry are linearity of parameters, flexibility, 

and easily proven stability criterion using linear system theory (Nelles, 2001; 

Röpke, 2014) . They have been successfully applied  for modelling NOx 
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emission in a Diesel engine by (Guhmann and Riedel, 2011; Burke et al., 

2013; Sakushima et al., 2013) and choice of the excitation signal in all these 

publications have been chirp for these type of models. 

3.3.3 Non-Parametric Models: Artificial Neural Network 

An artificial neural network (ANN) or more commonly known, neural network 

is a nonparametric computational model which is composed of mathematically 

formulated neurons (Isermann, 2014). The ANN represents a network formed 

by interconnecting simple processing units (He and Rutland, 2004; Tietze, 

2015) and these simple units are generally referred to as neurons. A basic 

representation of elements of a neuron is depicted in Figure 3.10, where 

weights determine the contribution of certain input towards the target and 

activation functions introduces the nonlinearity into the network. 

 

Figure 3.10: Representation of elements of neural computation (Turkson et 

al., 2016) 

The network contains three layers in general and is as follow: 
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• Input layer: This layer is responsible for transferring value to the next layer, 

i.e. a hidden layer, and does not perform any computation. 

•  Output layer:  The layer which produces the output. 

• Hidden Layer: this layer lies in between the ‘Input’ and ‘Output’ layers. 

These layers are arranged by neurons, and each layer may contain several 

numbers of neurons. Neurons only connect the adjacent layers, and 

signals propagate via neurons through these hidden layers. 

The ANN can be viewed as an input-output mapping which provides a 

response for a set of inputs based on information it acquired during the 

learning process (He and Rutland, 2004; Isermann, 2014). The procedure of 

learning and testing process is well described in (Nelles, 2001; He and 

Rutland, 2004). There have been successful applications of neural network in 

automotive field such as NOx emission prediction in (Guhmann and Riedel, 

2011), to predict engine system reliability by (Xu et al., 2003), modelling torque 

in biodiesel engine by (Cirak and Demirtas, 2014), modelling engine using 

speed, efficiency and exhaust gases by (Serikov, 2010), neural networks for 

modelling torque and lambda and fuel optimisation in (Fang et al., 2015), 

modelling of Diesel engine with neural networks in (He and Rutland, 2004), 

and many more. The wide implementation of ANN in the automotive industry 

is because they do not require specific knowledge of the process structure 

(Isermann, 2014) and provides a balanced approach to deal with the trade-off 

between model accuracy and run time (He and Rutland, 2004). 
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The neural networks can be broadly classified into two categories: 

feedforward and recurrent neural networks. The feedforward neural networks 

can be further classified into radial basis function (RBF) networks, single-layer 

and multi-layer perceptron networks. The detailed description of all these 

categories can be found in (Nelles, 2001; Isermann and Münchhof, 2011; 

Keesman, 2011; Isermann, 2014). The multi-layer perceptron (MLP) networks 

are widely known and popular choice of architecture for dynamic modelling 

applications (Nelles, 2001; He and Rutland, 2004; Tietze, 2015).The MLP 

networks have either one or more than one hidden layer, and a generic 

representation of the MLP network is depicted in Figure 3.11. 

The MLP networks are generally chosen for nonlinear dynamic modelling as 

they are well suited for the external dynamic approach. The reason being, 

MLP networks ability to find the main direction of nonlinearity in the system 

and thus overcome the curse of dimensionality (Nelles, 2001). Also, the 

number of parameters has a linear relationship with the number of inputs, 

given a fixed number of hidden neurons, which allows for a reduced number 

of parameters. Furthermore, they can easily handle uneven data distribution  

(Nelles, 2001) which is a by-product of the optimisation of hidden layer 

weights. However, MLP networks suffer from disadvantages such as high 

training effort, the existence of many poor local optima but these can be 

overcome by RBF networks (Nelles, 2001). But RBF networks when applied 

for dynamic systems suffer from poor extrapolation behaviour and also the 

accuracy is lower compared to MLP networks (Nelles, 2001). 
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Figure 3.11: Multi-layer perceptron feedforward network structure (Turkson 

et al., 2016). 

The ANN modelling approach is useful in a scenario when the underlying 

function of  a system is too complex to define or when it is too expensive to 

model it in a conventional way (He and Rutland, 2004).  They are a suitable 

model choice for a highly nonlinear or very large problem (Khan, 2011). 

Artificial neural networks due to their black box nature do not allow transparent 

interpretation of the parameters and an alternative to this, as per (Isermann, 

2014), is local linear models which will are discussed in the following section. 

3.3.4 Multi-Model Approach 

Multi-modelling approach is another technique for modelling and identification 

of complex nonlinear systems. In this method, operating space of the system 

is decomposed using local models, and these local models represent the 

dynamics of the system in their specific region of the global space (Johansen 

and Foss, 1997). The idea of multi-model approach has been developed in 

different fields with different names such as regime based models (Johansen, 
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1994), local model networks (Murray-Smith, 1994; Murray-Smith and Hunt, 

1995), Takagi-Sugeno fuzzy models(Takagi and Sugeno, 1985) ,local linear 

neuro-fuzzy models (Nelles et al., 2000)  The multi-model framework has 

found its way in developments and modelling of engine processes such as 

hardware in loop simulation of turbocharger in (Nelles et al., 1996) and 

(Schaffnit et al., 2000), optimisation of engine variables setting in (Hafner et 

al., 2000), NOx emission modelling in (Isermann, 2014), and model predictive 

control of air conditioning system using LOLIMOT for identification of neuro-

fuzzy models is presented in (Rehrl et al., 2014) and improvement of accuracy 

in real-world heating ventilation and air conditioning in (Belz et al., 2017). 

An illustration of a multi-model approach based on their partition strategy, 

validity computation (defines the transition between local models), and sub-

model structure is depicted in Figure 3.12. In this review incremental partition 

strategy, pre-validity components such as Gaussian and sigmoid function, and 

soft switching, which allows a smooth transition between models, are 

discussed. The other strategies for partition are presented in (Adeniran and 

Ferik, 2016) and validity computation such as hard switching. can be found in 

(Billings and Zhu, 1994) along with other literature mentioned in (Nelles, 

2001). 

The modelling architecture chosen in this thesis for multi-model approach is 

local linear neuro-fuzzy networks. This modelling approach allows modelling 

of the nonlinear dynamic process of a system on the basis of its input-output 

relationship and the structure of this approach also allows incorporation of 
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knowledge and prior information of the system (Murray-Smith and Hunt, 

1995). 

 

Figure 3.12: Classification of the multi-model approach adopted from 

(Adeniran and Ferik, 2016). 

3.3.5 Local Linear Neuro Fuzzy (LLNF) Models  

The local linear neuro-fuzzy models are also referred to as Takagi-Sugeno 

fuzzy models. The analysis of their interaction stating differences and 

similarities with T-S fuzzy models, LMN based on RBF networks and 

normalised RBF networks can be found in (Nelles, 2001) and has been 

mentioned in (Schaffnit et al., 2000). In Figure 3.13, an illustration of the 
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relationship between these models is presented, and the details regarding the 

conditions or restriction have been reviewed in (Nelles, 2001). 

 

Figure 3.13: Relationship between LLNF models and other architectures 

The local linear modelling approach is based on divide and conquer strategy, 

i.e. a complex modelling problem is divided into several smaller and simpler 

sub-models, such as linear models, which can be identified simply and almost 

independently (Nelles, 2001). A mathematical representation of dynamic 

LLNF models, pursuing the external dynamic approach introduced in section 

3.2.2, for p number of inputs and m order is obtained by using Equation 3.8 

and Equation 3.9 and is presented in Equation 3.10. A representation of Local 

linear modelling approach with external dynamics is depicted in Figure 3.14.  

The most important factor for the success of such a modelling approach is the 

partition strategy for the original complex problem. Therefore, the properties 
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of local linear neuro-fuzzy models crucially depend on the applied construction 

algorithm that implements a certain division strategy. The application of such 

partition strategy can be found in (Fischer et al., 1998; Schaffnit et al., 2000; 

Nelles, 2006; Hartmann et al., 2013) and are discussed later in this section. 

 𝐱 = 𝛗(𝐤),⁡⁡⁡⁡⁡⁡𝐳 = ⁡𝛗(𝐤) Equation 3.8 

Where 𝑥 is called rule consequents, 𝑧 is rule premise and 𝜑(𝑘) being the 

vector containing regressors. The regressors are given as: 

 ⁡𝛗(𝐤) = [𝐮𝟏(𝐤 − 𝟏)…⁡𝐮𝟏(𝐤

−𝐦)…𝐮𝐩(𝐤 − 𝟏)…𝐮𝐩(𝐤 −𝐦)⁡𝐲(𝐤

−𝐦)…𝐲(𝐤 −𝐦)]𝐓⁡ 

Equation 3.9 

Incorporating information from Equation 3.8 and Equation 3.9, the dynamic 

local linear neuro-fuzzy models can be represented as: 

 
⁡𝐲̂(𝐤) =∑ {𝐛𝐢𝟏𝐮(𝐤 − 𝟏)+. . +

𝐌

𝐢=𝟏
𝐛𝐢𝐦𝐮(𝐤 −𝐦)

− 𝐚𝐢𝟏𝐲̂(𝐤 − 𝟏)−. . . 𝐚𝐢𝐦𝐲̂(𝐤 −𝐦) + 𝛇𝐢}𝜱𝐢⁡(𝐳) 

Equation 3.10 

Where 𝑏𝑖𝑗 and 𝑎𝑖𝑗 represent the numerator and denominator coefficients and 

𝜁𝑖 is the offset of the ith local linear model. 
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Figure 3.14: Local linear models with an external dynamic approach (Nelles, 

2001) 

In general case, the rule premise and consequent are well represented by 

Equation 3.8, but in the case of the multivariable system of high dynamic order 

the dimensionality of regressor space, 𝜑(𝑘), can be quite high. Therefore, for 

dynamic model based on external dynamic approach require algorithms which 

can deal with the high dimensionality and are presented hereafter. 

The two well-known algorithms for identification of local linear models are 

LOLIMOT (Local linear model tree) and HILOMOT (Hierarchical local model 

tree). These algorithms are based on incremental partitioning strategy, axis 

orthogonal and axis oblique partitioning, mentioned in Figure 3.12. 

1) Dynamic Modelling using LOLIMOT and HILOMOT algorithm: 

LOLIMOT, as mentioned earlier, stands for Local Linear Model Tree and is a 

multi-model approach which utilises incremental partitioning strategy of axis 

orthogonal nature. LOLIMOT was presented  in (Nelles et al., 1996) and have 
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been adopted ever since for modelling in many research studies, (Hafner et 

al., 2000; Nelles et al., 2000; Schaffnit et al., 2000; Pedram et al., 2008; Rehrl 

et al., 2014). It is an iterative modelling technique, for each iteration a new 

local linear model (LLM) is added (Nelles, 2001). These local models (LMs) 

are associated with the partition of the operating space, where they are valid, 

which is determined by the tree construction algorithm utilising axis orthogonal 

splits (Sequenz, 2013). The partitioning strategy is illustrated in Figure 3.15a). 

The LMs generated are of linear or affine types (if an offset is applied), and 

they are weighted to overall model output by means of normalised Gaussian 

weighting function (Tietze, 2015). Thus, allowing a smooth transition from one 

LM to another (Sequenz, 2013). The global output of LOLIMOT model is then 

calculated by weighted summation of LMs output multiplied by the weighting 

function (Nelles et al., 1996), this is depicted in Figure 3.15b). 

 

Figure 3.15: a) Tree construction algorithm and its partitioning strategy and 

b) model structure of LOLIMOT illustrating the contribution of LLM towards 

the global model output 
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The parameter estimation of LOLIMOT local models can be achieved either 

simultaneously or separately by using global or local estimation approach 

respectively. The choice of either global or local depends on the problem 

under consideration and detailed description for both approaches is provided 

in (Nelles, 2001). In summary, a global estimation approach is an efficient 

approach in terms of performance, while the local estimation approach 

increases flexibility and allow fast computation. A detailed comparison of the 

two approaches is discussed in (Nelles, 2001). 

The advantage of LOLIMOT models is efficient and fast parameter estimation 

as a local model structure is polynomial (Tietze, 2015), thus leading to fast 

training speed.  Also, the implementation of the heuristic approach which is 

generally automated provides high usability for these models. The axes-

orthogonal split of the input space provides excellent interpretability (Nelles, 

2001). Furthermore, LOLIMOT models, for dynamic application, allow 

distinction between rule premise and rule consequent inputs, i.e. distinction of 

the inputs to be part of the model or to be part of validity function, which leads 

to reduced number of regressors (Nelles, 2001). Thus, the number of effective 

parameters can be reduced, which counteracts the curse of dimensionality. 

However, in case of high dimensional problem where a reduction in premise 

input space cannot be exploited, the LOLIMOT models become inefficient due 

to sub-optimal decomposition of input space by axis orthogonal partition 

(Nelles, 2001; Hartmann et al., 2013). The axis orthogonal partitioning 

decomposition strategy of LOLIMOT models also leads to a large number of 
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LLMs, when compared to other axis-orthogonal  approaches like ANFIS 

(Nelles, 2001)(Tietze, 2015). 

The major restriction of axes orthogonal split in LOLIMOT models could be 

overcome by an extension to axes-oblique partitioning (Nelles, 2006). The 

algorithm which allowed such incorporation is called HILOMOT and stands for 

Hierarchical Local Model Tree. The axes-oblique partitioning algorithm 

introduced by Nelles (Nelles, 2006) and is partly  adopted from work of Ernst 

in (Ernst, 1998), which is based on the contribution of hinge functions by 

(Breiman, 1993) and smooth hinge functions by (Pucar and Millnert, 1995). 

The partitioning strategy and hierarchical structure of HILOMOT are illustrated 

in Figure 3.16. 

 

Figure 3.16: Axes oblique split partitioning and general model structure of 

HILOMOT(Hartmann and Nelles, 2013). 

HILOMOT models like LOLIMOT models are based on incremental tree 

approach, and LLMs are generally polynomial in structure. Thus, leading to 
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fast parameter estimation. The property which sets them apart from LOLIMOT 

is the use of sigmoid validity functions rather than Gaussian. The sigmoid 

functions allow an arbitrary axes-oblique orientation of splits (Hartmann and 

Nelles, 2013). In contrast to the axes-orthogonal strategy of LOLIMOT, axes-

oblique allows higher flexibility and are well suited for high-dimensional 

problems (Nelles, 2006). However, higher flexibility offered by sigmoid 

functions comes at the price of nonlinear optimisation of validity function 

parameters (Klein et al., 2013). Thus, leading to a computationally expensive 

approach. Further details on HILOMOT model and axes oblique partitioning 

can be found in (Hartmann and Nelles, 2009b, 2009a; Hartmann et al., 2013). 

A review of applications of multi-model approach is presented in Table 3.2. 

Table 3.2: Review of applications of multi model approach 

Application 
Partition/parameter 

estimation/ validity function 
Reference 

Modelling of 
turbocharged gas 

engine power plant 

axis-orthogonal/total least square/ 
Gaussian 

(Jakubek et al., 
2008) 

Optimise the engine’s 
exhaust emission 

axis-orthogonal/least square/ 
Gaussian 

(Castric et al., 2009) 

Process optimisation 
axis-orthogonal/least square/ 

Gaussian 
(Hartmann et al., 

2009) 

NOx emission 
prediction 

axis-orthogonal/least square/ 
Gaussian 

(Sequenz and 
Isermann, 2011) 

Modelling gasoline 
engine emission 

axis-orthogonal/least square/ 
Gaussian 

(Martínez-Morales et 
al., 2013) 

Vehicle fuel 
consumption 

prediction 

axis-orthogonal/least square/ 
Gaussian 

(Mohammad Reza 
Rafimanzelat and 
Seyed Hossein 

Iranmanesh, 2012) 

Reduction of 
measurement time for 

calibration of the 
combustion engine 

axis-oblique/weighted least square/ 
Sigmoid 

(Klein et al., 2013) 

Model based 
ultrasonic imaging 

axis-oblique/weighted least square/ 
Sigmoid 

(Hartmann et al., 
2011) 
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3.4 Summary 

The system identification loop for dynamic modelling and its steps are 

presented and discussed. A list of criterions for selection of model architecture 

is presented, followed by the model structures. The model structures, 

polynomials, Volterra series, Neural Networks, LOLIMOT, and HILOMOT 

were introduced and analysed in the light of the criterion mentioned 

previously. The advantages and disadvantages of modelling techniques have 

been discussed along with their applications in this chapter. 

Polynomial models have been a popular choice as their structure is easy to 

understand, but they suffer from the so-called curse of dimensionality. The 

curse of dimensionality here refers to the increase in modelling effort due to 

increased number of inputs. This becomes important regarding the high 

dimensional problem, as the number of regressors grows with the number of 

input dimension leading to increasing computational efforts. Although they 

have a disadvantage for high dimensional mapping, their simple structure 

allows easy ECU implantation. 

Volterra series model which is an extension of dynamic polynomial models 

overcome certain disadvantages of polynomial models such as oscillatory 

interpolation. They have reduced number of regressor due to their structure 

which only includes linear feedback. However, due to this structure, they 

struggle to map the system whose nonlinearity strongly depends on output. 

However, their advantages of linearity of parameters, flexibility, and easily 
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proven stability criterion using the linear system have made them a popular 

choice of model for automotive systems. 

Non-parametric models are introduced with a focus on multi-layer perceptron 

networks, as they are suitable for modelling nonlinear dynamic system using 

external dynamic approach. MLP networks have the advantage of a small 

number of parameters and can handle uneven data distribution which is 

common in an external dynamic approach. But they suffer from high training 

effort and the existence of many poor local optima. However, neural networks 

are useful for highly nonlinear problems, in the scenario when the underlying 

function of a system is too complex to define, or when it is too expensive to 

model it in a conventional way. 

An alternative to non-parametric models, the multi-model approach is 

introduced, which if prior knowledge is available functions as a grey-box model 

and in the absence of such knowledge functions as black-box models. In this 

framework, the operating space of the system is decomposed using local 

models, and these local models represent the dynamics of the system in their 

specific region of the global space. Two most common decomposition 

strategy, axes-orthogonal and axes-oblique are presented along with their 

algorithms LOLIMOT and HILOMOT. The axes-orthogonal splits lead to very 

fast training time but can be challenging for a high dimensional problem if prior 

knowledge is not available to reduce the regressor input space. An alternative 

to this axes-oblique partitioning strategy is introduced, which can robustly 

model high dimensional problem but becomes computationally expensive and 

thus, leading to longer training time. 
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The comparison of parametric models, non-parametric models, and multi-

model approach is presented in a tabular form below. The properties of the 

models chosen here are based on the criterion for the selection of model 

architecture introduced in this chapter. The table is dominantly adopted from 

the description and review in (Nelles, 2001, 2006; Hartmann et al., 2013; 

Tietze, 2015). The table aids in comparing the model types for identification 

purpose, for example, if the model is to be selected based on training speed, 

LOLIMOT models are very fast, HILOMOT and Polynomials are fast, but MLP 

models require longer time compared to the others. Thereafter, other model 

selection criterion could be compared to make an informed decision about the 

model type to be selected. This table along with the review of different 

modelling techniques enabled the selection of the modelling approach suitable 

for the surrogate modelling of virtual air path system. The influence of this 

review on adaptation of identification method is discussed in the following 

chapter and the selected methods along with the justification of choice is 

presented in 4.4.1.2. 
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Table 3.3: Summary of modelling techniques (++/-- = property very 

favourable/ undesirable) 

Properties Polynomial MLP LOLIMOT HILOMOT 

Interpolation behaviour - + 0 + 

Extrapolation behaviour -- 0 ++ + 

Local changing dynamics -- - ++ ++ 

Accuracy 0 ++ + ++ 

Smoothness - ++ + + 

Noise sensitivity + ++ ++ + 

Parameter estimation ++ -- ++ + 

Structure optimisation 0 - ++ ++ 

Online adaptation - -- ++ ++ 

Training Speed + -- ++ + 

Evaluation Speed 0 + + 0 

High Dimensional mapping - ++ 0/+ +/++ 

Interpretation 0 -- ++ + 

Incorporation of prior 

knowledge 
- -- ++ + 

Incorporation of constraints - -- ++ + 

Usability 0 - ++ ++ 

Memory requirement ++ + 0 + 

Effort for ECU 

implementation 
++ + + 0 

Iterative modelling -- -- ++ ++ 

Noise variations -- -- + + 

Large data sets ++ 0 + 0 
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Chapter 4  Research Methodology  

The main aim of this research is to develop a framework for Hybrid Dynamic 

Modelling of engine emissions based on MPES platform and evaluate the 

performance of dynamic modelling techniques, for the system modelling task, 

based on the Multi-Physics Engine Simulation Platform (MPES) platform. 

Underpinned by the critical review of the related work and literature presented 

in Chapter 2 and Chapter 3, this chapter defines the research methodology 

for the work presented in this thesis. The chapter is organised as follows: 

− Outline the Diesel engine case study. 

− Describe the Multi-Physics Engine Simulation Platform. 

− Describe the research methodology for hybrid dynamic modelling of 

engine emissions based on the MPES Platform. 

− List of toolboxes and software packages used to conduct the research. 

− Provide the implementation plan for the research methodology. 

4.1 Diesel Engine Case Study 

The engine case study for this research was a 2.0 litre Diesel engine and the 

basic information regarding this engine is tabulated in Table 4.1.  Engine test 

data was available from the Sponsor Company, collected from hot steady 

state testing, based on experiments conducted at a set of 29 pre-defined 

engine speed-load reference points. The operational domain covered by these 

test points is presented in Figure 4.1. 
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Table 4.1: Diesel Engine Basic Information. 

Parameter Value 

Bore 83 mm 

Stroke 92.35 mm 

Connecting Rod Length 140 mm 

Compression Ratio 15.5 

Emissions Standard Euro 6c 

Peak Power 130 kW @ 4000 RPM 

Peak Torque 430 Nm @ 1750 – 2500 RPM 

 

Figure 4.1: Steady State Calibration Reference Points. 

In addition to this, New European Drive Cycle (NEDC) data measured on a 

transient engine dynamometer test facility was also available. The operational 

domain, in respect of speed and load, covered by the NEDC drive cycle is 

illustrated in Figure 4.2. 

 

Figure 4.2: NEDC drive cycle operational domain. 
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As the study is carried for hot operation, therefore, engine speeds below 1000 

rpm and torque below 20 Nm were not considered. The region of interest in 

drive cycle data of the Diesel engine is depicted by the dashed line in Figure 

4.3, and the operating range is listed in Table 4.2.  

 

Figure 4.3: NEDC drive cycle region of interest. 

Table 4.2: Operational limits of drive cycle data. 

Operational Inputs Units Range 

Speed  rpm 1000-2250 

Torque  Nm 20-220 

 

4.2 Multi-Physics Engine Simulation (MPES) Platform 

The MPES Multi-Physics Engine Simulation Platform was originally developed 

by Korsunovs (2017) at the University of Bradford in collaboration with the 

Sponsor Company. The motivation behind this platform arises from the lack 

of complete virtual engine modelling systems, which are both efficient and cost 

effective to be used at early stages of engine development. The complete 
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engine modelling system in here refers to combined air path and combustion 

process.  

There are many examples available in the literature regarding air path system 

modelling such as geometry based detailed models (Wu et al., 2011; Ahmed, 

2013), and mean value models (Skogtjarn, 2002; Jung, 2003; Wahlström and 

Eriksson, 2011) . For engine combustion model, generally, detailed modelling 

is adopted due to the complex dynamics resulting from the interaction of 

chemical processes, thermodynamics and fluid dynamics. The review of these 

models has been presented in (Themi, 2016; Unver et al., 2016; Korsunovs, 

2017). 

The detailed models of air path system, generally one dimensional (1D) 

models, provide an accurate description for engine development phase (Wu 

et al., 2011), but are slower than real time (Winterbone and Yoshitomi, 1990; 

Tietze, 2015). To obtain real-time capable mode, they are used in reduced 

form (Unver et al., 2016), which leads to a limitation in prediction capability. 

The detailed engine combustion model such as three-dimensional 

computational fluid dynamics can provide high fidelity results, but they require 

high computational effort in terms of development and simulations. The 

alternative to this, reduced One-dimensional fluid dynamics model, have the 

capability to run faster but have limited prediction capability. Furthermore, 

there are data-driven models (Burke et al., 2013; Sakushima et al., 2013; 

Sequenz, 2013; Cheng et al., 2017) which are extremely fast and robust, but 
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these are not suitable during development phase due to their dependency on 

the engine testbed data. 

To address these challenges, based on the MPES platform, a steady-state 

based strategy was proposed (Korsunovs, 2017) to develop a surrogate 

model for the SRM to enable real-time simulation of engine emissions. The 

framework developed is illustrated in Figure 4.4. 

 

Figure 4.4: Multi-Physics Engine Simulation (MPES) Platform- Steady State 

approach (Korsunovs, 2017). 

The principle of the approach behind the framework is to replace engine 

testing as the basis for mapping and calibration experiments (illustrated as a 

Model-Based Calibration (MBC) approach at the top of the diagram in Figure 

4.4 with a virtual engine simulation framework as a multi-physics simulation 

platform – MPES, coupling airpath simulation modelling (based on GT) with 



 

88 

 

combustion chemistry solver (SRM). The engine mapping and calibration 

strategy based on the MPES platform is in principle similar to the MBC 

strategy of running steady-state experiments on a physical engine. In order to 

support real-time simulation capability based on the MPES platform, 

Korsunovs (2017) proposed the development of a local (in relation to the 

engine speed-load point tested in the steady-state procedure) surrogate 

model for the slower SRM solver, and the use of lookup tables for emissions 

(NOx in particular) replacing SRM in the real-time simulation. 

The key modelling elements of the MPES framework are described in more 

detail in the following sections. 

4.2.1 Air Path System Model 

The air path system, illustrated as GT-Suite block in Figure 4.4, is modelled 

as 1D (one-dimensional) fluid dynamics model using GT-Suite commercial 

software package (developed by Gamma Technologies). This model accounts 

for the processes which occur outside the engine cylinder, such as turbo-

compressor assembly, inlet and exhaust valves, air flow through the air path. 

The GT-Suite engine model represents the virtual air path system and is 

responsible for providing inputs to the combustion model. The GT-Suite 

engine model can run real-time, depending on the complexity of the model, 

while being able to meet the accuracy demand. The virtual air path model was 

calibrated against physical engine data collected at the test points illustrated 

in Figure 4.1. 
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4.2.2 SRM Combustion Process Modelling 

The combustion process was modelled using the CMCL SRM environment, 

which describes the complex phenomena occurring inside the cylinder. The 

model types which are generally used to represent the combustion process 

such as empirical, three-dimensional CFD, one dimensional CFD either do not 

capture the detailed phenomena or are computationally expensive or does not 

provide accurate prediction. To address this, the combustion system was 

modelled using the Probability Density Function (PDF) based stochastic 

thermodynamic model (Zero-dimensional). The model was developed using a 

commercial software package, Kinetics and SRM Engine Suite designed by 

Computational Modelling Cambridge Ltd. (CMCL), and hereafter will be 

referred to as SRM. The SRM model, virtual combustion system, can provide 

reasonably fast computation using the reduced chemistry mechanism, with a 

computation time of 2-3 minutes per cycle, while still preserving good 

prediction capabilities (Coble et al., 2011). 

Although being relatively faster compared to the expensive three-dimensional 

computational fluid dynamics model, the SRM model does not have the 

capability to run real time. Therefore, to support real-time drive cycle engine 

simulation a surrogate model for SRM is developed. The initial approach for 

surrogate model development was based on planning and running DoE 

experiments with data collected from the SRM engine model at set engine 

speed-load points, covering the engine operation domain (domain illustrated 

in Figure 4.1). 
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Before the surrogate model could be generated, the SRM model (virtual 

combustion system) needed to be calibrated and validated. The model 

calibration goal was to derive settings for the SRM parameters, such that a 

good correlation can be obtained with the engine testbed measurements and 

SRM model outputs. One set of values for the whole domain was chosen 

instead of a different set of values at each set point (steady state speed-load 

points), as it would reduce the cost and complexity associated with the engine 

model building process. To proceed with the calibration task, a detailed 

sensitivity analysis of the SRM model outputs, engine emissions (NOx) 

prediction and in-cylinder condition, in relation to both external and internal 

SRM parameters was carried out (Korsunovs, Campean, Pant, Garcia-Afonso 

and Tunc, 2019). 

The external parameters derived from the engine data can be categorised into 

two main categories: constant and speed-load specific parameters. Constant 

parameters, such as engine geometry/fuel/atmosphere, only need to be 

defined once for a specific engine, speed-load specific parameters need to be 

defined for every reference/set point. The external parameters, both constant 

and speed-load specific, are listed in Table 4.3. 

The internal SRM parameters are associated with thermodynamic sub-

models, such as turbulence model, injection model, evaporation model, and 

heat transfer model, and are listed in Table 4.4.  
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Table 4.3: SRM Model External Input Parameters selected for sensitivity 

analysis (Korsunovs et al., 2019). 

Engine Geometry 

[constant for every engine] 

Simplified cylinder geometry, 

including: 

Bore and stroke; Length of the 

connecting rod; Compression ratio; 

Wrist pin offset; Crevice dimensions 

Intake Mixture Static 

[Constant for every engine/location] 

− Air chemical composition 

− EGR composition settings 

Intake Mixture Dynamics 

[Speed-load point specific] 

− Intake mixture temperature at IVC 

− Intake mixture pressure at IVC 

− EGR mass fraction 

Fuel System Static 

[Constant for every engine and fuel] 

− Fuel chemical composition 

− Injector nozzle diameter and 

number 

− Fuel properties (density, 

vaporisation enthalpy, surface 

tension, viscosity at 30°c, 

temperature) 

Fuel System Dynamics 

[Speed-load point specific] 

− Injection pressure 

− Injection rate profile 

In-cylinder Wall Temperatures 

[Speed-load point specific] 

− Piston, cylinder head, cylinder 

liner wall temperatures 
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Table 4.4: SRM Model Internal Input Parameters selected for sensitivity 

analysis (Korsunovs et al., 2019). 

Internal 
Parameters 

Symbol 
Thermodynamic 

Sub-Model 
Intended Purpose 

Evaporation 
Constant 

(λ) - Lambda 
Fuel Evaporation 

Model 
Controls evaporation rate 
of fuel 

Injection 
Alpha 

α Injection model 
quantifies the charge 
stratification extent 

End of 
Injection Lag 

- - 

account for the 
turbulence induced by the 
combustion by adjusting 
the amount of crankshaft-
angle degrees 

Woschni 
Constant 

C1 
Heat Transfer 

Model 

adjusts the effect of the 
mean piston speed on the 
heat transfer 

Turbulence 
Parameter 

(during 
injection) 

𝐶𝜑(𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛) Turbulence Model 

adjusts the intensity of 
turbulence in the 
thermodynamic model 
during injection events 

Turbulence 
Parameter 

Cφ Turbulence Model 

adjusts the intensity of 
turbulence in the 
thermodynamic model 
through the rest of the 
cycle. 

In a sensitivity analysis carried out in (Korsunovs et al., 2019), it was found 

that the inlet pressure, inlet temperature, and EGR mass fraction have a 

significant effect on the NOx prediction while the other external parameters did 

not have any effect or not significant enough. 

In the case of SRM internal parameters, evaporation constant (λ) and 

turbulence parameter during injection (Cφ(injection)) had a significant effect on 

NOx prediction. While the other internal parameters either had a small effect 
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or negligible effect. The set of global parameters achieved from the 

optimisation are tabulated in Table 4.5. 

Table 4.5: Global optimum solution for Internal SRM parameters 

(Korsunovs et al., 2019). 

Internal SRM Parameter 
Global Setting for SRM 

Internal Parameters 
(Optimal Solution) 

Evaporation Constant 0.207 

Injection Alpha 60 

End of Injection Lag 1.357 

Woschni Constant 8.786 

Turbulence Parameter (during injection) 6.095 

Turbulence Parameter 3.024 

 
The SRM combustion model generated using these set of parameters, 

presented a good correlation between simulated and experimental (measured 

on the test bench for steady-state test points) in-cylinder pressure traces and 

these are illustrated in Figure 4.5. For apparent heat release rate (aHRR) 

profiles, it was observed that trends in profiles are predicted well across 

low/medium load but at high load during main injection aHRR rises slightly 

asynchronously with the experimental data. Also, at some speed-load points 

(2000 & 2500 RPM-high load), it was observed that model does not perform 

very well in relation to the pilot injection; as seen in Figure 4.5, where the SRM 

model struggles to identify the  aHRR from the pilot injection. In other words, 

the pilot injection does not ignite as quickly as it is required which effects 

combustion speed and leads to delay in combustion (in comparison to 

experimental). However, general trends were captured accurately and results 

aligned well with the experimental data (Korsunovs et al., 2019).  
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Figure 4.5: In-cylinder conditions correlation for SRM combustion model 

(Korsunovs, Pant et al., 2019). 

4.3 Proposed Methodology: MPES Hybrid Dynamic Modelling Approach 

The acknowledged means of addressing the challenge of test bench costs, as 

outsourcing a test bed can cost > £2000 per day (Lacey, 2012; Siemens, 

2012; Mohile, 2017), during the engine development is the increased use of 

model-based methodologies (Röpke et al., 2012; Fang et al., 2016) and the 

virtual engine simulation platform (MPES) proposed by Korsunovs (2017) 
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aligns well with this goal of the automotive industry. It is based on the well-

established steady state approach which is widely used across the automotive 

industry and yields satisfactory results (Korsunovs, Pant et al., 2019). 

However, due to multiple engine operating modes (steady-state and transient) 

and challenges imposed by legislation, such as transient emission regulations/ 

fuel economy reduction/ optimising driveability for load changes, interest in 

techniques for modelling dynamic behaviour has risen. This trend was 

observed in Chapter 3, where literature review revealed the increasing efforts 

placed on investigation of dynamic calibration methodologies (Nelles, 2001; 

Knaak et al., 2007; Röpke et al., 2012; Sequenz, 2013) and application of 

dynamic experiments and modelling techniques for system modelling task 

(Baumann et al., 2008, 2009; Hametner and Nebel, 2012; Burke et al., 2013; 

Fang et al., 2016; Cheng et al., 2017; Heinz and Nelles, 2017). The reason 

for these developments was underpinned by the possible advantages of these 

techniques such as faster data capture as no settling time is required; 

improved model fidelity by capturing dynamic behaviour; inherent 

interpolation, and also the fact that point-based calibration process would be 

expensive to represent the transient behaviour, as data need to be captured 

at an increased number of reference point for each of the multiple control 

parameters. 

Furthermore, the current legislative drive cycles have become stricter, for an 

example while NEDC drive cycle has 2 phases of urban and non-urban driving 

(Isermann, 2014), WLTP (Worldwide Harmonised Light Vehicle Test 

Procedure) has four more dynamic phases and has longer cycle time (ACEA, 
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2017). Also, Real Driving Emissions (RDE) test has added to the complexity, 

and future amendments will be more rigorous (ACEA, 2017). Therefore, to 

incorporate the transient behaviour into virtual engine simulation framework 

and still being able to meet the industrial requirement (quality, cost, and time) 

a hybrid dynamic modelling approach for modelling engine emissions based 

on MPES is proposed and is illustrated in Figure 4.6. 

 

Figure 4.6: Hybrid dynamic modelling approach based on MPES platform. 

The fundamental difference between this approach and the steady-state 

based procedure described in Figure 4.4 is that the aim here is to develop a 

global meta-model for engine out emissions from the mapping and calibration 

experiments. The rationale for this is that the global metamodel could have 

better capability for accurate transient modelling for real-time drive-cycle 

simulation experiments compared to the look-up table derived from steady-
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state experiments suggested in Figure 4.4. A research challenge is to design 

an efficient experimentation strategy to enable the development of a global 

metamodel at a cost comparable with the steady state experiments performed 

to develop the SRM surrogate model. To this end, a hybrid meta-modelling 

strategy is proposed, which couples two fundamentally different types of 

metamodeling strategies for the 2 structural parts of the MPES framework: 

− A dynamic modelling / identification technique is deployed to develop a 

surrogate for the GT-Suite dynamic airpath simulation model of the 

Diesel engine; 

− A global exploration DoE experiment, based on space-filling OLH 

DoEs, to develop a surrogate model for emissions – focussing on NOx 

engine-out emissions, based on the SRM model. 

The integrated combination of the dynamic experimental modelling deployed 

to the real-time GT airpath model with the global OLH DoE experiment 

deployed on the SRM individual cycle emissions solver justifies the hybrid 

nature of the proposed approach. The surrogate model for the dynamic GT 

airpath model is needed to provide a fast mean value estimate for the inputs 

required for the SRM model (listed in Table 4.3). This delivers a considerable 

time saving, as otherwise, the GT model would have to be run for a 

considerable amount of time (equivalent to reaching stable steady state 

operation) to deliver a robust input for the global SRM experiments.  

The following sections discuss the method employed for the proposed hybrid 

meta-modelling strategy. 
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4.4 Research Methodology 

The hybrid dynamic modelling approach, illustrated in Figure 4.6, can be 

separated into two main stages and each stage represent the tasks 

undertaken for the successful development of the approach. The two stages 

are as follow: 

1) Development of Diesel engine dynamic air path model (labelled as 1 in 

Figure 4.6) 

2) Development of surrogate SRM combustion process model (labelled as 

2 in Figure 4.6) 

4.4.1 Development of Diesel Engine Dynamic Airpath Model 

 Simulation Experimental Setup 

The task of developing the dynamic air path model was approached by 

partitioning of the operational domain of the drive cycle data, illustrated in 

Figure 4.3, into smaller sections, zones, based on engine speed. Each zone 

covered the interval in between steady-state test points (Figure 4.1), i.e. 1000-

1250/1250-1500 rpm etc. However, to allow smooth interpolation and gradual 

transition in between the global models identified at each zone, an overlap 

between the zones (soft partitioning) was introduced (Johansen and Foss, 

1997, 1998). The segmentation of the drive cycle data is illustrated in Figure 

4.7. The rationale for this is that the by decomposing modelling problem into 

zones, compliance to constraints for dynamic experiments can be taken into 

account more easily (Hametner and Nebel, 2012) and global models at zones 

could have better accuracy relative to global models generated on a wide 
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range, as experiments can be planned to suit the needs of a particular zone 

(Johansen and Foss, 1997). 

 

Figure 4.7: Operational domain partition of the drive cycle based on engine 

speed. 

The benefits of segmenting the operating domain to acquire global-zone 

models, i.e. global models are identified for a zone rather than the entire 

operating range, are as follow: 

• Global-Zone modelling allows consideration of different local noise level or 

sensitivities in the different operating regime. 

• For global modelling, in general, the focus is to reduce the prediction error 

globally, the model focus would be on those regions of the input space 

where prediction error is large while other regions are neglected. However, 

global-zone modelling would overcome this drawback as training data is 

generated with a focus on the zone operating range. 



 

100 

 

• This approach can also allow incorporation of inputs which are only active 

in the certain operating region. However, in this study, this is not applicable 

as the same number of input parameters are considered across all zones. 

• The design of dynamic experiments procedure becomes less complicated 

when compared to global modelling, as only local interactions are 

considered. 

For the purpose of this study, zone 3 (illustrated in Figure 4.7) was selected. 

The reasons for specifically choosing zone 3 are as follows: 

• An accurate injector model (Jaguar Land Rover, 2017) for the case study 

was available. The information regarding injection characteristics from this 

model was communicated by the sponsor company in the form of injection 

profiles. The injection profiles for speed and load points, covering the 

range of 1500-1750 rpm (engine speed) and 0-200 Nm (torque), were 

available. 

• Additionally, it can be observed from Figure 4.7, that there is a good 

distribution of both low and high loads across the operating range of this 

zone. This would be beneficial to represent the effectiveness of the Hybrid 

dynamic modelling framework, even though the implementation of the 

framework is carried out in a smaller region. The operating range of the 

selected zone is tabulated in Table 4.6. 

Although the modelling task for framework was carried out on a narrow range 

of available drive cycle data, it can be scaled to the entire operating range or 
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can be applied to any other drive cycle; given an accurate injector model and 

drive cycle data is available. 

Table 4.6: Operating range of case study for dynamic modelling. 

Operational Inputs Units Range 

Speed  rpm 1500-1750 

Torque  Nm 20-160.6 

 

 Design of Dynamic Experiments and Model Architecture 

selection 

The literature review showed, section 2.2, that there are two ways to generate 

dynamic experiments; model-based approach and model-free approach. The 

model-based approach is implemented If the model structure is known a priori, 

and optimal criterion such as D-optimal can be used to generated dynamic 

experiments. The use of optimality criteria reduces the measurement effort for 

signal design and has been attempted in (Deflorian and Zaglauer, 2011; Fang, 

2012). However, in this study, the knowledge of model structure is not known 

beforehand, and thus, the model-free approach is utilised. 

In regard to the model-free approach, there are three common dynamic signal 

designs found in literature and have been introduced in section 2.2.2 , PRBS, 

APRBS, and chirp. All the excitation signal designs introduced, i.e. PRBS, 

APRBS, and chirp, were generated and their performance was compared for 

the selected case study. The rationale for this is that in literature, the signal 

design is generally pre-selected for the modelling application (Guhmann and 

Riedel, 2011; Burke et al., 2013; Sakushima et al., 2013) but the effect of the 
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different signal design on different modelling techniques is not reviewed. While 

in literature there are studies which review the effect of different signal 

designs, (Röpke et al., 2012; Tietze, 2015) but either the sample size of signal 

designs was not same to arrive at the conclusive result, or it was implemented 

on a pre-selected modelling technique. 

Accordingly, the research objective of implementing an efficient dynamic 

experiment is to develop a strategy which takes into consideration 

effectiveness of the different dynamic signal designs (excitation signals) on 

the non-linear dynamic modelling techniques, for development of surrogate 

air path model. Therefore, all three excitation signals were chosen to be 

implemented during the development of dynamic air path model. 

The model structures implemented for the development of dynamic air path 

are Neural Networks and Local linear neuro-fuzzy models. These model 

structures were introduced in chapter 3, section 3.3.3 and section 3.3.5 

respectively. The model selection was based on the current goal of the 

industry is to optimise the trade-off between quality, timing, and costs 

(Atkinson and Mott, 2005; Röpke et al., 2012; Ostrowski et al., 2017). To 

accomplish this goal and objectives planned for the case study engine 

modelling techniques with the benefit of speedy evaluation, high accuracy and 

suitable for real-time applications are needed. As per the review of literature 

in section 0 and review of the application of modelling techniques in Table 3.2, 

there are three most common model types available (Röpke et al., 2012): 

Neural Networks, Volterra series, and Local Linear Neuro Fuzzy models. 

Volterra series models have been successfully implemented for automotive 
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applications (Guhmann and Riedel, 2011; Burke et al., 2013; Sakushima et 

al., 2013). However, the challenge associated with the Volterra series model 

is that the number of parameters for Volterra kernel functions representations 

is very large (Cheng et al., 2017). In other words, they have large numbers of 

terms as a degree of polynomials which results in a higher dynamic order of 

the model. And for the selected dynamic representation (see section 3.2.2), 

external dynamic approach, the higher dynamic order increases the 

dimensionality and number of delayed inputs, which leads to larger regression 

matrix and increased number of parameters (refer to section 3.2.3). Thus, 

making the regression process more complex (Burke et al., 2013). Therefore, 

Neural Networks and Local Linear Neuro Fuzzy models were selected which 

do not share the disadvantage associated with Volterra series models and 

have advantages of high accuracy, fast evaluation time, data smoothing ability 

and high dimensional mapping, refer Table 3.3. 

For LLNF modelling, LOLIMOT algorithm was used to identify the dynamic air 

path model due to its advantages of smooth interpolation, fast parameter 

estimation, and fast training times. The identification of LLNF could as well be 

based on HILOMOT algorithm, as it provides a robust estimation of the 

system. However, it is not selected here due to being computationally 

expensive when compared to LOLIMOT, owing to nonlinear optimisation of 

validity function parameters (Klein et al., 2013).  The LMN toolbox (Hartmann 

et al., 2012) was used for developing LOLIMOT models, and it is a script 

based toolbox which integrates LOLIMOT model objects to the MATLAB 
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library and allows modelling task to be carried out in the MATLAB software 

environment. 

For Neural Networks, Nonlinear Autoregressive with External (Exogenous) 

Input (NARX) type of model structure was used. The reason for this is that this 

model structure is capable of accommodating the dynamics associated with 

the system by feeding the past values of the network output into the input layer 

of the network (Hagan and Demuth, 1999; Deng et al., 2013). The Neural 

Network toolbox in MATLAB has a graphical user interface which allows 

implementation of NARX model structure for time series prediction or it can 

also be done through a script-based approach which allows incorporation of 

more information for modelling task. 

 Dynamic Air Path Modelling Process 

Before deploying the dynamic modelling techniques, the dynamic signals were 

implemented on GT-Suite engine model. A pre-calibrated GT-Suite engine 

model for the case study engine was available from the sponsor company. 

This was a Fast Running Model (FRM), i.e. capable of running real time, and 

was developed based on the one-dimensional fluid dynamics model. The GT-

engine model includes physical models to represent the inlet, exhaust, 

compressor-turbocharger assembly, cylinders etc. These components of the 

engine are linked together by connection lines, which mirrors the flow path of 

the engine. The layout of the GT-Suite engine model for the case study engine 

is illustrated in Figure 4.8.  
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Figure 4.8: GT-Suite Diesel engine model for case study engine. 

The simulation of the GT-engine model is controlled through a harness 

developed by sponsor company in MATLAB/SIMULINK software 

environment. The harness provides the model with quantities such as desired 

low/high-pressure EGR valve position (for EGR system), desired VGT 

Position (for boost control), desired fuel flow, desired engine speed etc., 

through series of engine maps and controller. The SIMULINK harness only 

needs the desired engine speed and torque to generate these inputs for GT-

engine model. An overview of the harness and ECU is illustrated in Figure 4.9 

and Figure 4.10 respectively. 
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Figure 4.9:Overview of SIMULINK harness. 

 

Figure 4.10: Engine control unit in SIMULINK harness to provide input 

variables to GT-Suite engine model. 

The process of identification of dynamic air path for the virtual Diesel engine 

using the selected model architecture, Local Linear Neuro-Fuzzy Models and 

Neural Networks, is illustrated in Figure 4.11 and Figure 4.12 respectively. 

The models developed for the identification of dynamic air path system of the 

virtual Diesel engine were compared based on their statistical performance 

and trend analysis. The statistical criteria chosen to compare the results is 

Root Mean Square Error (refer to section 3.2.5). 
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Step 1: Define Model Inputs and Outputs 

Step 2: Start with the Initial Model 

Construct the validity function, if no initial input space partitioning available set 

number of Local Linear models (LLM), M = 1 with validity function 𝜙1(𝑢) = 1 . 

Estimate a global linear model 𝑦 = ⁡𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛,. 

Step 3: Find Worst LLM 

For i = 1,…,M  % LLM 

a) Estimate Local Loss Function 

𝐼𝑖 =⁡∑ 𝑒2(𝑗)𝜙𝑖(𝑢(𝑗))
𝑁
𝑗=1   

b) Find the worst performing local model, i.e. max⁡(𝐼𝑖), and denote ′𝑘′ as the 

index of this worst LLM. 

Step 4: Further refine worst LLM ′𝒌′ 

a) Cut the hyper-rectangle into two halves, division in all dimension are tried 

(dim = 1,…,p). 

b) Estimate local linear models for each half. 

c) Calculate the approximation error (output error) for the model with this cut. 

d) Determine which division, in p alternatives dimensions, has led to the 

smallest approximation error and select that division. 

Step 5: Implement Best Division 

Perform the division selected in step 3. Place a weighting function within each 

centre of both hyper-rectangles. Set standard deviations of both weighting 

functions proportional to the extension of the hyper-rectangle in each 

dimension. Apply the corresponding estimated local linear models (from 3b). 

The number of LLM is incremented  𝑴 → 𝑴+ 𝟏 

Step 6: Test for Convergence 

Convergence:  If the termination criterion is met then stop, else go to step 2. 

Repeat until termination criterion are met. 

Figure 4.11: Pseudocode for Local Linear Neuro Fuzzy Modelling technique. 
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Step 1: Define Input and Target 

 u = 1: n; % input data for all inputs dimension 

t = 1:m; % output data, response to be modelled 

Step 2: Define Network 

number of hidden layers 

input and feedback delays 

Training Algorithm 

Number of Epochs 

Step 3: Training  

Loop 1: 

for i = 1: k % k-number of neurons 

Randomly Initialise weight vectors and thresholds. 

Loop 2: 

for j = 1: p % number of training iterations 

Initialise network training and train network for 1 iteration 

Calculate approximation error = network output – target 

MSE =
1

N
∑ (yi − ŷi)

2N
i=1   

Error goal achieved, then stop and update the model with calculated 

weights. If not, proceed to next iteration 𝒋 → 𝒋 + 𝟏 

If termination criterion not met after p iterations proceed to loop 1. 

End of loop 2 

If termination criterion not met after p iterations in loop 2, proceed to next 

iteration in loop 1, 𝒌 → 𝒌 + 𝟏. 

End of loop 1 

Step 4: Test for Convergence  

If the network does not converge after completion of loop 1 and loop 2, redefine the 

network in step 2. Repeat until termination criterion met. 

 If termination criterion met after 𝒌 → 𝒌 + 𝟏, stop and update the model. 

Figure 4.12: Pseudocode for Neural Network Modelling technique. 
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4.4.2 Development of Diesel Engine Surrogate Combustion Model 

 Modelling Methodology 

Development of a surrogate model for the combustion process, the second 

stage of the proposed hybrid dynamic modelling approach, is based on the 

virtual SRM combustion process model developed for the MPES platform 

(described in section 4.2.2). 

The speed/load specific SRM external parameters, Table 4.3, are provided by 

the dynamic air path model. To develop a surrogate model global DoEs are 

planned and run on virtual combustion model, and response surface model is 

fitted to the collected data. Space-filling OLH DoEs are chosen for the 

modelling because the virtual combustion system cannot run real time, thus 

running dynamic experiments would not be possible. 

Although steady-state measurements and statistical model structures are 

employed, they can represent relevant dynamics, given the model inputs are 

measured dynamically (Sequenz, 2013). As the air path states inputs are 

provided from the dynamic air path model, the dynamics in engine emission 

formation will be introduced by the dynamics of the air path.  

 Design of Experiment and Model Fitting 

The aim of the design of experiment is to acquire maximum possible 

information with the least measurement effort. In the case of the combustion 

model, it is to map the NOx behaviour for the pilot case study, Figure 4.7, with 

the least possible DoE measurement points.  
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Given the simulation of SRM combustion process model requires 2-3 minutes 

per cycle (not capable to run in real time), the approach used in this thesis for 

the design of experiments is an exploration based sequential DoE framework 

proposed in (Kianifar et al., 2013). By deploying this framework, the cost 

associated with the development of surrogate model could be minimised due 

to its property of terminating introduction of additional test points, once the 

target accuracy is achieved for the response surface model. Thus, an 

approximation model can be developed with least possible number of points. 

The DoE framework utilised is a Model Building - Model Validation (MB-MV) 

DoE strategy based on optimal space filling DoEs. The space filling design 

used is OLH DoEs for both MB and MV experiments. The reason for using 

OLH design lies in its unique property to cover the entire range of each design 

variable (Kianifar, 2014). The iterative procedure of this approach is illustrated 

in Figure 4.13. 

This strategy designs both MB and MV DoEs as OLH DoEs, but also ensures 

that the same space-filling criterion applies for the overall DoE sequence 

(including all MB and MV test points), i.e. MB+ MV. This is valid through the 

iterative sequence. This can be explained by using Figure 4.13, for example 

at start an initial model building experiment (MB1 OLH DoE) of 40 points is 

planned, followed by a model validation experiment (MV1 OLH DoE) of 10 

points. Then a response model is fitted to the MB OLH DoE (40 points), and 

the quality of the model is evaluated, using certain information criterion, 

against the MV OLH DoE (10 points). If the model quality is satisfactory, there 

is no need for further iteration, but if not then the second iteration of DoE is 
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planned. In the second iteration, a new model validation experiment is 

generated (MV2), and the model building experiments are the combination of 

previous model building and model validation experiments (MB1+MV1). 

 

Figure 4.13: MB-MV strategy process description (Kianifar et al., 2013). 

The response surface model for combustion model was generated using the 

Model-Based Calibration Toolbox (MBC) (The Mathworks Inc., 2018). In this 

research, MBC toolbox was mainly employed as it allows to fit range of 

statistical models, such as the Gaussian Process model, radial basis function, 

and hybrid radial basis function to response of interest. These models are 

available in the toolbox, and due to the fast fitting approximation, multiple 

models can be fitted before making the decision of the satisfactory model. In 

addition to this, MBC toolbox provides the functionality of validating the fitted 

approximation models by employing several statistical metrics such as RMSE, 

PRESS. The models developed using MBC interface, were compared on their 

performance by employing a combination of statistical metrics , introduced in 
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section 3.2.5, such as Root Mean Squared Error (RMSE), Prediction Error 

Sum of Squares (PRESS), and Validation RMSE, to make the informed 

decision. Furthermore, the toolbox allows to add boundary constraints to the 

approximation models such that feasible regions of engine operation can be 

defined, and it also provides an opportunity to study behaviour of fitted 

responses over parameters range. 

 Combustion System Surrogate Modelling Process 

The process involved in modelling of the surrogate model is described in Table 

4.7. 

Table 4.7: Modelling Process for Surrogate Combustion Model (Zonal). 

1. Generate a MB-MV OLH DoE for the input parameters if 

dynamic air path model 

Generate an initial DoE for parameters as Speed, load, mass air 

flow. 

2. Process DoE Through Dynamic Air Path Model 

The dynamic air path model provides the external input required 

for the combustion model 

3. Simulate Combustion Model 

Run combustion model to acquire the engine out emission 

response for both model-building and model-validation DoE. 

4. Fit a Response Surface Model 

Fit range of statistical model to the response captured for model 

building DoE. 

Validate the model performance using model validation DoE 

Compare the performance of different models using RMSE, 

PRESS, and Validation RMSE. 

5. Model Accuracy Not Achieved 

Proceed with the second iteration of MB-MV OLH DoE, and 

repeat steps 1-4, until a satisfactory model is acquired. 

6. Model Accuracy Achieved 

If the satisfactory model is achieved, stop here. 
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4.5 Evaluation of  Hybrid Dynamic Modelling Approach 

The final stage in this study was to evaluate hybrid dynamic modelling 

approach performance and the sensitivity of the model to operating 

parameters, in terms of effectiveness and efficiency. This was carried out by 

evaluating the performance of hybrid dynamic modelling approach on the 

transient drive cycle case study (Zone 3), presented in Figure 4.7. 

 

Figure 4.14: Illustration of both steady state and hybrid dynamic modelling 

approach. 

The illustration of the comparison scheme is depicted in Figure 4.14, where 

on the top of the diagram presents the steady state approach proposed by 

Korsunovs (2017) which replaces slower SRM model with look-up tables 

(generated from local surrogate models in relation to the engine speed-load 
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point tested in the steady-state procedure) for real-time simulation. And the 

bottom of the illustration presents the hybrid dynamic modelling approach 

which replaces the slow SRM model with global metamodels. 

The performance of the proposed approach will be evaluated in terms of the 

predictive capability of emissions observed in the drive cycle. The 

performance will be compared, both with statistical diagnostics and 

engineering analysis. The comparison in between steady-state approach and 

hybrid dynamic modelling approach is not intended to establish which 

approach performs better but is included for comparison in prediction 

capability with respect to development time. 

Indeed, this section examines only one zone of the drive cycle data and is 

inadequate for comparing the model performance of two approaches (steady 

state and hybrid dynamic modelling), which should be executed by 

comparison with experimental data covering a wide range of engine operating 

conditions. This section adopts a single zone in drive cycle data, as a 

representative of the possible advantages hybrid dynamic modelling approach 

could provide regarding the prediction capability and reduction in time for 

surrogate model development.  
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4.6 Software Package and Toolbox 

Table 4.8: List of software packages and toolboxes utilised during the 

development process. 

Software/Toolbox Developer Version Application 

GT- Engine Suite 

(GT-Suite) 

Gamma 

Technologies 
v 2016 

• Virtual air path Model 

• Data Collection 

Stochastic Reactor 

Model (SRM) Engine 

Suite 

Computational 

Modelling 

Cambridge Ltd. 

v 8.11.2 
•  Virtual combustion 

model 

MATLAB / Simulink 
The MathWorks, 

Inc. 

vR2018a 

(9.4) 

• Model Simulations  

• Data Processing 

• Script Designs 

• Design of Dynamic 

Experiments 

Neural Network (NN) 

Toolbox 

The MathWorks, 

Inc. 
v 11.1 

Neural Network 

Modelling 

• Training 

• Validation 

• Statistical Analysis 

Local Model Network 

(LMN) Toolbox 

(Hartmann et al., 

2012) 
v 1.5.2 

Local Linear Neuro Fuzzy 

Modelling 

• Training 

• Validation 

• Parameter Estimation 

• Creates Global Models 

(LMN) from local models 

Sequential DoE and 

Multidisciplinary 

Optimisation 

(DoMdo)Toolbox for 

Engine Experiments  

University of 

Bradford (Kianifar 

et al., 2013) 

NA 
• MB-MV sequential 

Design of Experiments 

Model-Based 

Calibration (MBC) 

Toolbox 

The MathWorks, 

Inc. 
v 5.4 

• Fitting approximation 

models 

• Defining boundary 

constraints 

• Validating approximation 

models based on 

statistical metrics. 

• Engineering analysis 

based on available 

visualisation tools. 
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4.7 Implementation Plan 

The implementation of the methodology described in this chapter has been 

summarised in Figure 4.15 and provides an overview of its application. 

 

Figure 4.15: Research implementation plan. 

 

 

 

Chapter 5 

Chapter 6 

Chapter 6 
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Chapter 5 Development of Diesel Engine Dynamic Air Path Model 

This chapter presents the implementation of the methodology presented in 

section 4.4.1 of Chapter 4, in conjunction with the Diesel engine case study. 

The dynamic air path model is developed to enhance system modelling task 

during the engine development phase and to capture transient behaviour in 

the drive cycles. The research was carried, as per the hybrid dynamic 

modelling framework depicted in Figure 4.6, in the following steps: 

− Design of dynamic experiments, generating commonly used excitation 

signal (PRBS, APRBS, and Chirp), described in section 2.2.2. 

− Implementation of nonlinear dynamic modelling techniques (Neural 

Network and Local Linear Neuro-Fuzzy Models) for developing dynamic 

air path model based on virtual Diesel engine air path system (MPES). 

− Validation of the developed dynamic models. 

− Discussion of the results based on statistical criterion and engineering 

analysis. 

5.1 Model Inputs and Outputs 

5.1.1 Model Inputs 

Three key control variables were selected for the identification of the dynamic 

air path; engine speed, engine load and Mass Air Flow (MAF). The desired 

engine speed and load are the quantities required to simulate the GT-suite 

engine model through Simulink harness, illustrated in Figure 4.9 of section 
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4.4.1.3. The MAF was selected as an input variable because it controls the 

EGR valve position in a closed loop, which regulates the amount of exhaust 

gas entering the engine cylinder. 

The excitation range of the engine speed and engine load was defined by the 

operational limit of the case study tabulated in Table 4.6, presented in section 

4.4.1. For MAF, the limit was set to be ± 10% of MAF set position (provided 

by control maps illustrated in Figure 4.10) to account for the variation in 

between transient and steady-state modes of operation (Burke et al., 2013). 

In addition to excitation range, excitation frequency range was defined based 

on the frequency analysis of the NEDC drive cycle data. For frequency 

analysis, the measured data was transformed using Discrete Fourier 

Transformation (Keesman, 2011; Pintelon and Schoukens, 2012), and this 

was achieved by using Fast Fourier Transformation algorithm (Blahut, 2010; 

Keesman, 2011). The algorithm was implemented using the functionality 

provided in the MATLAB programming environment and the code for this can 

be found in Appendix A.1. 

The results of the FFT (Fast Fourier Transformation) algorithm for input 

signals, speed, load, and MAF, are presented as a power spectrum in Figure 

5.1. From frequency analysis upper bound of frequency range was 

determined, for example in case of torque the upper limit of frequency range 

was selected to be 0.1Hz (highlighted by the solid line in Figure 5.1). The 

reason being that when the frequency was higher than 0.1Hz, the 

power/magnitude became very low, and it is reasonable to assume that these 

high-frequency components are harmonics/ noise associated with the system, 
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thus, can be neglected with little effect on the system. The choice of upper 

limit of  frequency is consistent with the one found in literature  (Hametner and 

Nebel, 2012; Burke et al., 2013) where either 0.1 Hz or 10 seconds is used to 

define the limits. The source of these components with low power could be 

noise from instruments or engine vibration. 

 

Figure 5.1: Fast Fourier Transformation of NEDC drive cycle data for model 

inputs. 

The lower bound of the frequency should have been zero to cover steady state 

operation but to remain with dynamic experiments they were defined an order 

of magnitude lower than upper frequencies. Additionally, the lower 

frequencies were selected to give the minimum correlation between the input 

variables (Burke et al., 2013). The findings of the analysis for the frequency 

range, along with the excitation range have been summarised in Table 5.1. 



 

120 

 

Table 5.1: Input parameters for dynamic air path model along with their 

symbols and units. 

Input 
Parameter 

Excitation Method Symbol 
Excitation 

Range 
Frequency 

Range 

Engine 
Speed 

Direct control through 
Simulink harness for 

1D model 
N 

1500-1750 
rpm 

0.003-0.1Hz 

Engine Load 

Control through the 
transformation of 

torque setpoint to fuel 
injection quantity via 

maps 

Tq 
20-160.6 

Nm 
0.001-0.1 Hz 

Mass Air 
Flow 

Control through mass 
air flow set point using 
multiplier function in 

ECU. This is because 
EGR is in closed loop 
control depending on 

the MAF demand. 

MAF ±10% 
0.001-
0.06Hz 

5.1.2 Model Outputs 

The three main quantities were recorded as outputs, and they are presented 

in Table 5.2. The reason to select these quantities, as discussed in Chapter 

4, because they are the inputs to the SRM combustion model which are 

provided by the air path system. 

Table 5.2: Model Outputs of the dynamic air path model. 

Response Symbol 

Inlet Pressure/ Boost Pressure P(inl) 

Inlet Temperature T(inl) 

Exhaust Gas Recirculation EGR_mf 
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5.2 Development of Dynamic Air Path Model 

Once the model inputs and outputs have been selected, the next step is to 

develop a dynamic air path model based on MPES platform, and this process 

can be divided into two steps:  

• Design of Dynamic Experiments 

• Identification of dynamic air path model 

For dynamic experiments, there are three main types of excitation signals 

listed in the literature, i.e. PRBS, APRBS, and Chirp. In section 2.2, these 

signals have been discussed in depth, and their applications have been 

summarised in Table 2.1. From Table 2.1, it can be observed that either the 

excitation signals are preselected for the identifications purpose (Guhmann 

and Riedel, 2011; Burke et al., 2013) or the modelling technique is selected in 

advance to analyse the effect of different excitation signals on identification 

process (Röpke et al., 2012; Tietze, 2015). However, the studies which 

explore the effect of different excitation signals on different modelling 

techniques- assisting the selection procedure of appropriate excitation signal 

and modelling technique combination for the identification system of interest- 

are somewhat limited (Isermann, 2014). 

To address this issue, a strategy has been devised in this study which assists 

in the selection of an appropriate combination of dynamic signal and modelling 

technique.  The developed strategy is illustrated in Figure 5.2 and Figure 5.3, 

where Figure 5.2 demonstrates the overview of the process involved in the 
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selection of dynamic signal and modelling technique and Figure 5.3 depicts 

the training procedure based on MPES platform for dynamic air path model. 

 

Figure 5.2: Illustration of the selection of the excitation signal for different 

model architecture. 

In Figure 5.2, the dynamic models of Diesel engine air path are developed 

using a combination of LLNF and NN models with three excitations signals 

and their performance is validated on three separate validation signals. The 

process of development is illustrated in Figure 5.3, where excitations signals 

are fed to virtual Diesel engine air path of MPES platform, and the system 

responses of interest are captured. The inputs signals along with the outputs 

are used for training the dynamic models. 
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Figure 5.3: Training process during the development of the dynamic air path 

model. 

5.3 Design of Dynamic Experiments 

The input excitation signals (PRBS/ APRBS/ Chirp) illustrated in Figure 5.2, 

were generated using the specification presented in Table 5.1. These signals 

were implemented on the GT-Suite engine model and two chosen modelling 

technique, LLNF and Neural Networks, were used to develop the model for 

responses of interest (Table 5.2). The performance of the developed model 

was compared for both training and separate validation dataset by using 

RMSE criteria (refer Equation 3.1). 

As a model trained by one type of excitation signal would not be able to 

simulate the other excitation signal with same capability (Tietze, 2015), 

therefore, to analyse and compare the performance of a combination of signal 
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and modelling technique three validation datasets were generated. The 

validation signals, like training signals, were generated for the three selected 

signal designs. Thereafter, the signal and modelling technique combination 

which performs comparatively better on both training and validation signals 

would be selected to identify dynamic air path. 

Both training and validation signals are generated using the System 

Identification (SYSID) toolbox in MATLAB software environment.  

5.3.1 Pseudo Random Binary Signals (PRBS) 

The bandwidth or excitation frequency for the PRBS signal is not defined in 

Hz but by the clock period. The clock period here refers to the time for which 

signal stays constant before it can change, and it is represented by an inverse 

of the excitation frequency (MATLAB, 2006). This is generally referred to as 

hold time, and this is chosen in consideration of expected system dynamics, 

illustrated in Figure 5.1 and tabulated in Table 5.1. 

The script for designing the PRBS signal is presented in Appendix A.2, and 

the developed training and validation signal is illustrated in Figure 5.4 and 

Figure 5.5 respectively. 
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Figure 5.4:PRBS training input signals. 

 

Figure 5.5: PRBS validation input signals. 
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5.3.2 Amplitude Modulated Pseudo Random Binary Signals (APRBS) 

In APRBS signals, like the PRBS signal described above, the frequency 

content is expressed in terms of the clock period. The main difference 

between PRBS and APRBS is that unlike PRBS signals which have only two 

levels(min-max), APRBS are multi-level signals. 

 The MATLAB based scripts for APRBS signals is presented in Appendix A.3, 

and the generated signal for training and validation is illustrated in Figure 5.7 

and Figure 5.8 respectively. 

The signals are designed individually for each input. However, this will result 

in some operating points that are not achievable in practice because of 

limitations either in terms of mechanical integrity of the engine or because of 

operation in unstable conditions. To account for this, the engine torque signal 

has been continuously scaled as a function of engine speed, and the scaling 

scheme is illustrated in Figure 5.6. This becomes highly relevant at higher 

engine speed, as the engine can achieve higher torque level at higher engine 

speed. 

In Figure 5.7, the scaled engine torque is depicted as a solid line and dashed 

line represents signal before scaling. The MAF did not require scaling as it 

has been implemented as a percentage factor of the set position in the virtual 

Diesel engine airpath (GT-Suite) and the scaling is already an inherent part of 

the engine strategy. 
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Figure 5.6: Torque scaling as a function of speed. 

 

Figure 5.7: APRBS training input signals (dash: original signal & solid: 

scaled signal). 
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Figure 5.8: APRBS validation input signals. 

5.3.3 Chirp Input Signal 

The script for generating chirp excitation signal is presented in Appendix A.4, 

and the signal developed for training and validation is depicted in Figure 5.9 

and Figure 5.10 respectively. 

The scaling of torque signal was carried out in a similar fashion as APRBS 

signal, illustrated in Figure 5.6. The scaled torque is represented by the solid 

line in Figure 5.9 and in the same figure dotted line represents the signal 

before scaling. 
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Figure 5.9: Chirp training input Signals: (dotted: original signal & solid: 

scaled signal). 

 

Figure 5.10: Chirp validation input signals. 
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5.4 Identification of dynamic air path model 

Following the proposed framework in Figure 4.6 of section 4.3, the artificial 

signals generated for the desired inputs (Table 5.1) and were implemented on 

the virtual Diesel engine air path (GT-Suite Diesel engine model) to generate 

responses of interest listed in Table 5.2. Thereafter, inputs and outputs were 

used to create a dynamic air path model by using selected model 

architectures.  

The responses were modelled as multiple inputs and single output (MISO) 

system, using Neural Network and Local Linear Neuro Fuzzy modelling.  

The scripts developed using MATLAB software environment in conjunction 

with LMN Toolbox (Hartmann et al., 2012) for LLNF model using LOLIMOT 

algorithm is presented in Appendix A.5 and the scripts for Neural Network 

model developed using MATLAB Neural Network Toolbox is illustrated in 

Appendix A.6. A pictorial representation of script run is depicted in Figure 5.11. 

A step by step description of the training set-up and training procedure for 

both LLNF-LOLIMOT model and NN model is depicted in the form of the flow 

chart in Figure 5.12 and Figure 5.13 respectively. 
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Figure 5.11: An illustration of running script developed for LOLIMOT and 

Neural Network models. 
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Figure 5.12: Training Process for Local Linear Neuro Fuzzy modelling using 

LOLIMOT algorithm. 
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Figure 5.13: Neural Network training process flowchart. 
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5.5 Dynamic Air Path Model Performance Evaluation 

The models developed using the signal designs from section 5.3 and the 

scripts for modelling techniques (LLNF and NN) in A.5 and A.6, as per the 

strategy presented in section 5.2, are evaluated in this section. The developed 

models are evaluated based on the following: 

a) Statistical Performance: statistical diagnostic is used to compare the 

model performance on the training data and validation data. This is carried out 

as follow: 

• Comparing approximation error, using RMSE (refer Equation 

3.1), on both training and validation dataset.  

• Secondly, by comparing the computational time, the number of 

effective parameters and number of local models generated to model 

the system response. 

b) Engineering Analysis: analysis of the identified model behaviour by 

comparing it with the expected system of interest response behaviour, to 

ensure models are not over or under-fitted. 

5.5.1 Analysis of EGR Mass Fraction Response Models 

The performance evaluation of dynamic EGR response model based on 

statistical diagnostic and trend analysis is presented in this section. 
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5.5.2 Local Linear Neuro Fuzzy- LOLIMOT Air Path Response Model 

The design parameter and termination criterion used to develop LOLIMOT 

model for EGR mass fraction are listed in Table 5.3 and Table 5.4. The inputs 

and outputs were delayed in order to create a dynamical structure and were 

chosen by trial and error method. The selected delays represent a third order 

dynamic system. The same set of parameters and termination criterion was 

used, for all three types of signal design. 

Table 5.3: Design parameters for initial network setting. 

Design Parameter Specification 

Input Delays 

𝑢1(𝑘 − 1), 𝑢1(𝑘 − 2), 𝑢2(𝑘 − 1), 𝑢2(𝑘

− 2), 𝑢2(𝑘 − 3),

𝑢3(𝑘 − 1), 𝑢3(𝑘 − 2), 𝑢3(𝑘

− 3)⁡⁡ 

Output Delays 𝑦(𝑘 − 1), 𝑦(𝑘 − 2) 

Training Algorithm LOLIMOT 

Validity Function Type Gaussian 

K step prediction 
Set to infinity, as model generated for 

simulation purpose 

 

Table 5.4: Termination criterion to evaluate model performance after each 

iteration. 

Termination Criteria Specification 

Number of Local Model Networks (LMN) 50 

Minimal Error 0 (default setting) 

Minimum Performance Improvement 1.0e-03 
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A. Statistical Performance 

The developed models are compared based on their performance on training 

and validation using the RMSE information criteria, refer to Equation 3.1. It 

can be observed in the Figure 5.14, that every model performs better on the 

type of the validation signal for which it was trained, for example, APRBS 

LOLIMOT model performs comparatively better for validation signal of APRBS 

type than for the other two. 

 

Figure 5.14:RMSE for EGR mass fraction LOLIMOT Model response during 

training and validation for all signal designs. 

The PRBS LOLIMOT model (LOLIMOT model trained on PRBS type signal), 

in Figure 5.14, provides good performance on training data but the 

approximation error for the validation dataset increases significantly 

compared to the training error, indicating overfitting.. Therefore, the PRBS 

LOLIMOT model is ruled out as a suitable signal-model combination. 
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The APRBS and Chirp based LOLIMOT models provide better performance 

when compared to the PRBS based model. It can be noticed in Figure 5.14, 

that the APRBS and Chirp LOLIMOT model have a similar level of 

performance for  both training  and validation dataset. This observation can 

be strengthened by comparing the values of RMSE for these two models in 

Table 5.5. In comparison to Chirp based model, APRBS LOLIMOT model 

performs slightly better. 

Table 5.5: Training and Validation RMSE for EGR mass fraction LOLIMOT 

models. 

Excitation 
Signal 

Training 
RMSE 

Validation RMSE (Validation Signal 
Performance) 

PRBS APRBS Chirp 

PRBS 0.0145 0.0331 0.0674 0.0637 

APRBS 0.0096 0.0254 0.014 0.0255 

Chirp 0.0097 0.0286 0.0246 0.0166 

Further evaluation of the models based on the number of parameters and 

training time is presented in Figure 5.15 and Figure 5.16 respectively. The 

number of parameters associated with APRBS model is less than Chirp based 

model. Thus, reducing the effort for parameter estimation. Also, it requires a 

reduced number of models, 21 local models rather than 26 for the chirp-based 

model, to provide a similar level of performance as a chirp-based model. 
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Figure 5.15: Number of parameters for identified EGR LOLIMOT models 

 

Figure 5.16: Training time associated with the EGR models. 

In terms of training time, APRBS based model needs more time to identify the 

EGR response model than the chirp-based model. However, they are still 

capable of identifying EGR response model faster than real time, 1.7x times 

faster. Noteworthy, training time does not include the time spent on 
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determining the design parameters, they are determined prior to initialising the 

training process. 

B. Engineering Analysis 

The results for the training of EGR LOLIMOT models are presented in Figure 

5.17, and the solid line in the figure represents the measured EGR mass 

fraction response (from virtual Diesel engine air path in MPES platform), and 

the dotted line represents the output of the trained LOLIMOT models. 

 

Figure 5.17: LOLIMOT models training performance. 

It can be observed, from Figure 5.17 and Table 5.5, that  the LOLIMOT models 

trained with APRBS and chirp signal provide an accurate  prediction (error < 

0.01 RMSE or 1% EGR_mf) of the measured response during the training 



 

140 

 

process and LOLIMOT model trained with PRBS signal also provide good 

prediction (error <0.02 RMSE or 2% EGR_mf). However, during the validation 

phase, the PRBS model tends to perform poorly (>0.05 RMSE or 5% 

EGR_mf) when compared to the other two models. As can be seen in Figure 

5.18, the LOLIMOT model based on PRBS signal is either over or under 

predicting the absolute values of the measured response (validation data 

captured from virtual Diesel engine air path). In case of chirp validation signal, 

the PRBS model cannot capture the system dynamics and is exhibiting signs 

of overfitting. For APRBS validation signal, the PRBS model captures the 

trend in general but with large prediction error. 

 

Figure 5.18: Performance of PRBS based LOLIMOT Model on three different 

validation signals. 
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The validation results for LOLIMOT model trained with APRBS signal are 

illustrated in Figure 5.19. The model performs quite well across all three 

validation signals. For the PRBS validation signal, the model follows the trend 

in the measured data (from GT-Suite) with some discrepancy in the absolute 

values.  

Although this model is trained on the step-like signal, it predicts the trends in 

chirp validation signal (sinusoidal nature) reasonably-well (< 0.03 RMSE or 

3% EGR_mf). The regions, labelled as 1, where APRBS model is deficient for 

chirp validation signal is highlighted using the solid circle. In these regions, 

trends in system dynamics are captured, but the model lacks in estimating the 

absolute values. 

 

Figure 5.19: Performance of APRBS based LOLIMOT Model on three 

different validation signals. 



 

142 

 

The performance of LOLIMOT model based on the chirp signal over the 

validation signals is depicted in Figure 5.20. The chirp model can capture the 

system dynamics smoothly, owing to the nature of their training signal which 

allows slow and smooth amplitude change. However, because of the same 

effect, it struggles to capture the frequent step changes in the PRBS (labelled 

as 1 and 2) and APRBS validation signals (labelled as 1). The chirp model 

extrapolates in these regions and predicts negative EGR mass fraction, which 

is not possible during engine operation. But for chirp validation signal, as 

observed in Table 5.5 as well, the model performs extremely well. 

 

Figure 5.20: Performance of Chirp based LOLIMOT Model on three different 

validation signals. 
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On the basis of the statistical and engineering analysis, APRBS signal was 

selected as a most suitable signal for the LOLIMOT models. Arguably, chirp 

performance is similar to the APRBS signal, but they require more local 

models leading to a large number of parameters, and their performance on 

step-like validation signal was sub-optimal. This is because sinusoidal 

excitation signals lack steady state excitation phases (Röpke et al., 2012). 

This disadvantage can be overcome by addition steady state excitation 

sequence to the chirp signal but would mean longer signal length and 

increased measurement cost. 

5.5.3 Neural Network Air Path Response Model 

The parameters define for the training of the Neural Network (NN) models, 

and the termination criterion are listed in Table 5.6 and Table 5.7 respectively. 

These parameters were used for training neural networks for all three signal 

designs. 

Table 5.6: Design Parameters define during neural network training. 

Design Parameter Specification 

Input Delays 

[𝑢1(𝑘 − 1), 𝑢1(𝑘 − 2), 𝑢2(𝑘 − 1), 𝑢2(𝑘

− 2), 𝑢2(𝑘 − 3),

𝑢3(𝑘 − 1), 𝑢3(𝑘 − 2), 𝑢3(𝑘

− 3)] 

Output Delays [𝑦(𝑘 − 1), 𝑦(𝑘 − 2)] 

Training Algorithm Bayesian regularization - ‘trainbr’ 

Activation Function Hyperbolic Tangent sigmoid – ‘tansig’ 

Hidden Layer 1 
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Table 5.7: Termination criterion of neural network training 

Termination Criteria Specification 

Number of Neurons 50 

Maximum Number of Epochs 100 

Performance Goal 7.76e-04 

Maximum Validation Failures  6 

A. Statistical Diagnostics 

The performance of neural networks models, developed as per the 

specification in Table 5.6 and Table 5.7, is depicted in Figure 5.21.  In this 

figure, models are compared based on their performance on training and 

validation using the RMSE information criteria, refer to Equation 3.1. The 

PRBS based neural network models are clearly showing signs of overfitting 

for the APRBS and chirp validation signals. 

The APRBS and Chirp based NN models provide better performance when 

compared to the PRBS based model. The chirp based NN model, as depicted 

in Figure 5.21, perform slightly better in comparison to APRBS based model. 

The RMSE error values for Figure 5.21 are listed in Table 5.8 . From the table, 

it can be observed that the number of neurons required to build the network 

using a chirp signal is smaller in comparison to APRBS based model. 
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Figure 5.21: RMSE for EGR mass fraction neural network model response 

during training and validation for all signal designs. 

Table 5.8: Training and Validation RMSE for EGR mass fraction neural 

network models. 

Excitation 
Signal 

Number 
of 

Neurons Training 
RMSE 

Validation RMSE (Validation Signal 
Performance) 

PRBS APRBS Chirp 

PRBS 8 0.0151 0.0298 0.1205 0.0954 

APRBS 28 0.009 0.0281 0.0150 0.0353 

Chirp 23 0.009 0.028 0.0210 0.0150 

Additional supporting evidence for the model performance was evaluated 

based on the model training time, presented in Figure 5.22. The Chirp based 

model, compared to APRBS based model, require shorter training time. 

However, the chirp-based model has a higher number of epochs than APRBS 
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models. The epochs here refer to the number of time whole dataset is fed to 

the network to optimise network learning. 

 

Figure 5.22: Training time associated with the neural network models. 

B. Engineering Analysis 

To further analyse models’ performance and to ensure that they are not 

overfitted or underfitted, the output of the trained neural network models based 

on different signal designs are compared with the measured response (from 

virtual diesel engine air path) for these signals. This comparison is presented 

in Figure 5.23, and it can be observed that APRBS and Chirp based NN model 

performs quite well and can capture the trends in the data smoothly. However, 

the PRBS based model has some overshoots, highlighted in the figure, and 

can be observed across the whole model response. These overshoots or 

spikes are not present in the measured response, indicating that the 

developed PRBS model would not be a suitable choice to represent system 

dynamics accurately. 
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Figure 5.23: Neural Network models training performance. 

As expected, based on the statistical analysis, the PRBS based model 

performs poorly for the new set of data. This becomes significant in the case 

of chirp validation signal, where the model clearly shows a sign of overfitting.  

While the performance error for APRBS type validation signal is observed to 

be worst in the Figure 5.21 and Table 5.8, it seems the model can still predict 

trends but not across the whole domain and not with reasonable accuracy. 
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Figure 5.24: Performance of PRBS based NN Model on three different 

validation signals. 

The validation results for NN model based on APRBS signal are illustrated in 

Figure 5.25. The model performs reasonably well across all three validation 

signals. For the PRBS validation signal, the model accurately predicts the 

trend in the data with some discrepancy in the absolute values. This can be 

observed over the entire PRBS validation signal response, and one of the 

areas exhibiting this is highlighted as ‘1,’ under PRBS validation signal 

response of APRBS NN model. 
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Although this model is trained on the step-like signal, it predicts the trends in 

chirp validation signal reasonably well. The regions where APRBS model is 

deficient for chirp validation signal is highlighted as ‘1’. In these regions, trends 

in system dynamics are captured, but the model lacks in estimating the 

absolute values. 

 

Figure 5.25: Performance of APRBS based NN Model on three different 

validation signals. 
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The performance of the NN model based on the chirp signal over the validation 

signals is depicted in Figure 5.26. The model predicts the response with low 

prediction error, but it struggles with the frequent step changes in the PRBS 

and APRBS validation signals, presented in the figure as an enclosed region 

(labelled 1), and this can be observed across the whole validation dataset. 

This behaviour of chirp based NN model is more prominent for PRBS type 

validation signal than for APRBS validation signal. This is because PRBS 

signal is a 2-level signal with a change in amplitude from minimum to 

maximum. But for chirp validation signal, the model performs extremely well. 

 

Figure 5.26: Performance of Chirp based NN Model on three different 

validation signals. 
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On the basis of the statistical analysis of performance, the chirp signal-based 

NN model provides better overall performance, and they require shorter 

training time and provide reasonable accuracy in trends. Therefore, chirp 

signal was selected as a most suitable signal for the neural network models. 

Arguably, APRBS based model performance is similar to the chirp based, but 

they require longer training time and large of number of neurons to identify the 

EGR response model. 

5.6 Selection of Signal Model Combination  

In this section previously selected signal model combination, the APRBS 

based LOLIMOT models and chirp based neural network model, are 

compared with each other. The best performing combination between the two 

is selected for modelling the remaining model outputs, inlet pressure and inlet 

temperature. The recorded statistical performance data, from Table 5.5 and 

Table 5.8, for the two combinations, is compared and is depicted in Figure 

5.27. 

 

Figure 5.27: Performance of selected LOLIMOT and NN model. 
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From Figure 5.27, it can be observed that APRBS-LOLIMOT model performs 

slightly better than the chirp-NN model. Also, APRBS-LOLIMOT model is 

slightly faster in regards to training time, refer to Figure 5.16 and Figure 5.22. 

The major difference between these two models lies in the trend analysis. The 

APRBS-LOLIMOT model predicts the trends in all three type of validation 

signals with good accuracy, refer to Figure 5.25. On the other hand, chirp-NN 

model struggles to capture the step changes, refer to Figure 5.26. Therefore, 

APRBS-LOLIMOT model is selected as the suitable signal-model combination 

and is use hereafter for developing dynamic air path model based on MPES 

platform. Although LOLIMOT type model is selected on the basis of statistical 

and engineering analysis, the neural network is an equally viable option. 

Residual analysis on the selected model, APRBS-LOLIMOT, was carried out 

to identify that model prediction does not have any bias or trends associated 

which would violate the constant variance assumption. The residuals are the 

difference between measured and predicted system response and residual 

analysis for the selected model is illustrated with the help of three plots in 

Figure 5.28. The residuals vs time plot (top) confirms the degree of 

randomisation, as there is no negative serial correlation or other discernible 

trends present in the error terms. Also, observation of residuals vs fitted value 

plot (bottom-left) shows residuals are randomly scattered, which indicates that 

model is correct on average, across the fitted values. Furthermore, normal 

probability plot (bottom-right) suggest that the distribution of the residuals is 

approximately linear, this indicates that residuals follow the normal distribution 
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curve. Based on the three plots presented, the constant variance assumption 

for the selected model across the observations is a valid assumption. 

 

Figure 5.28: Residual plot of selected model (APRBS LOLIMOT). 

5.7 Summary 

The development of the strategy for dynamic air path model of the hybrid 

dynamic modelling framework was presented and implemented in this 

chapter. The process of modelling developing dynamic air path was described 

in detail along with the selection of excitation signal and modelling 

architecture. The modelling behaviour associated with different input 

excitation signal has been illustrated, and their capability has been analysed. 

The model selection is done by evaluating training and validation RMSE of the 

models and by comparing response surface predicted by the model with the 

response surface of the system (from the simulation models). Based on these 
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two criterions, the best performing input signal design and modelling 

architecture is selected. Thereafter, residual analysis of the selected signal 

and model combination is carried out to ensure the model can capture the 

system behaviour without any bias. Finally, the selected model is used for 

development of dynamic air path. 

In co-modelling strategy, it was observed that the model trained on a specific 

signal performs better on validation signal of same type. This is underpinned 

by signal properties, such as chirp signals, which are slow varying dynamic 

signals with less significant step changes, not being able to predict the step 

changes associated with the APRBS signals. Additionally, the chirp signals 

have sparse coverage in the centre which is not the case for APRBS type 

signals. However, the continuous nature (slow varying dynamic) of the chirp 

signals make them less problematic with regards to safe engine operation 

rather than step disturbances, particularly in case when developing global 

experiments for whole engine operating envelope. On the other hand, APRBS 

type of signals cover a broader frequency range (both high and low frequency 

components) and cover a wide range of amplitude providing best data 

coverage. If APRBS is implemented in a similar fashion as in this work, global-

zone modelling approach, which allows safe engine operation by designing 

dynamic experiments with less harsh step changes due to local limits and 

easier compliance of constraints, make APRBS signal types a superior choice 

of identification purpose. However, if global modelling for entire engine 

operating envelope is considered, the harsh nature of step changes of these 

type of signals are not suitable to all engine systems.
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Chapter 6  Development of Surrogate Model for SRM Combustion 

Process Model  

This chapter presents the second stage of the hybrid dynamic modelling 

framework, development of surrogate combustion model, in conjunction with 

Diesel engine case study. The proposed framework, in section 4.3, combines 

the dynamic modelling air path strategy (described in the previous chapter) 

with the statistical modelling of NOx emission, to predict transient emissions 

in real time. The investigation into surrogate modelling of the combustion 

process to predict NOx was carried out with the following steps: 

− Planning DoE test runs using sequential space filling OLH DoEs. 

−  Fitting statistical models to the DoE test runs to develop surrogate NOx 

model. 

− Validation of the surrogate NOx model. 

− Discussion of the results based on statistical and engineering analysis. 

− Evaluation of the hybrid dynamic modelling approach on the transient 

drive cycle. 

6.1 System and Model Parameters 

6.1.1 Model Inputs 

The model inputs considered for the combustion modelling are the inputs 

listed in Table 4.3 of Chapter 4. In this thesis, the engine out emission which 

is being modelled is nitrous oxides (NOx). The model inputs can be classified 
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into three types depending on the system their point of origin and are as 

follows: 

• Operation Point Inputs: these inputs are directed from the engine 

operational domain. These inputs include engine speed and engine load 

(Torque), they represent the demand or driver request. 

• Intake Dynamics: these inputs are directed from the air path model 

and in this study from the dynamic air path model. In other words, the outputs 

of the dynamic air path model, listed in Table 5.2. 

• Intake Fuel Dynamics: the usage of common rail systems enables the 

variation of rail pressure and a splitting of the injection in the pilot, main and 

post injections. However, the settling of rail pressure has dynamics associated 

with it, but it is relatively fast (Sequenz, 2013), and is disregarded in this study. 

To account for the injection characteristics of the system, injection profiles 

were provided by the sponsor company, and these profiles were utilised for 

the combustion process model. 

6.1.2 Model Outputs 

The pre-validated SRM combustion model provides engine-out emissions as 

a response to the inputs described above. While the SRM combustion model 

provides results for all the engine out emissions, such as CO, HC, soot, NOx 

etc., this work focuses only on the modelling of NOx. This is because the 

current SRM model is single zone thermodynamic model and prediction of 

other emissions was problematic (Korsunovs, 2017). And to further improve 
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prediction capability for other emissions, a multi-zone model is required, 

therefore, in this study efforts are directed toward modelling of NOx emissions. 

6.2 Development of Surrogate Model 

The modelling process involved in the development of surrogate combustion 

model, as described in section 4.4.2 of Chapter 4 is illustrated in Figure 6.1 

and summarised in the following few steps: 

• Design of Experiment: first step in the modelling process is to generate 

the design of experiments which would provide information required to 

develop surrogate models. The DoE test runs carried out on the dynamic 

air path model to generate inputs for the combustion model. 

• Data Collection: run CMCL SRM with operational, air path and fuel 

system inputs and collect the NOx as output. 

•  Fit Surrogate Model: utilising inputs and outputs of the CMCL SRM 

combustion model, fit a set of statistical models and select the best 

performing model. 

 

Figure 6.1: Process of developing surrogate NOx model. 
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The procedure of the development of surrogate combustion model is 

illustrated in Figure 6.2. The figure depicts the procedure followed and 

presents the division of the process into stages. 

 

Figure 6.2: The offline DoE and modelling strategy proposed for the 

metamodeling of combustion model. 
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6.2.1 Design of Experiments 

 The method used to generate sequential designs has been described in detail 

in section 4.4.2.2 of Chapter 4. The OLH based sequential DoE framework is 

a Model Building - Model Validation (MB-MV) DoE strategy based on optimal 

space filling DoEs. 

In the first step, an MB OLH DoE with 50 points was generated for model 

inputs (operational and air path system) listed in 6.1.1, (MB). A MV OLH DoE 

with 20 points was planned as the first model validation design (MV1). The 

representation of the MB-MV points generated in the first iteration is depicted 

in Figure 6.3. The figure shows a two-dimensional representation for three-

dimensional design space, engine speed, engine load (Torque), and MAF. 

The distribution of all variable in the design space is illustrated in Figure 6.4. 

 

Figure 6.3: MB-MV sequence: a) MB, OLH of 50 points, b) plus points 

showing the position of validation points (MV1), OLH of 20 points, among 

MB points. 
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Figure 6.4: MB-MV sequence: design space for all three model inputs. 

The quality of DoE generated using MB-MV DoE strategy was evaluated 

based on the following two criterions: 

• Space-filling property: The space filling properties of the merged MB-

MV1 DoE, is illustrated in Figure 6.5, in terms of the Euclidean distance for 

each of the test points. It can be observed through this figure that the 

generated test points (for both MB and MV1) are not located too close to each 

other, thus maintaining space filling property in the design space. 

• Orthogonality: correlation (r) between the parameters was calculated 

using Pearson’s correlation coefficient (Tietze, 2015), presented in Equation 

6.1, which is  given as covariance of the two parameters (𝑋𝑖
𝑘⁡&⁡𝑋𝑖

𝑗) divided by 

the product of their standard deviations. 
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 Equation 6.1 

The value of coefficient r = 1 or -1, represent strong positive or negative 

correlation respectively. To satisfy orthogonality criteria, the value of the 

correlation coefficient must be zero. It was observed that the correlation 

between variables for MB-MV1 was negligible, i.e. −0.05 ≤ 𝑟 ≤ 0.05, thus, 

design is quasi orthogonal. The values of correlation coefficient observed for 

the parameters are listed in Table 6.1. 

Table 6.1: Correlation coefficient for design variables in MV1 iteration 

MB-MV Iteration Speed-Torque Speed-MAF Torque-MAF 

MV1 0.01 0.04 -0.03 

 

Figure 6.5: Euclidean minimum distance for all MB-MV test points (70 

points). 
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In the process of surrogate NOx modelling, the MB-MV DoE strategy was 

applied in six iterations. A two-dimensional representation of design space for 

these iterations is depicted in Figure 6.7. The DoE design quality was again 

evaluated after the six iterations. The space filling property for the DoE was 

maintained after 6 iterations, and this can be observed in Figure 6.6, where 

none of the generated test points (for both MB and MV) is too close to each 

other. 

 

Figure 6.6: Euclidean distance for all MB-MV test points (170 points). 

The yielded correlation value between the design variable is presented in 

Table 6.2,  where the correlation coefficient for all the design parameters lies 

within the range of −0.04 ≤ 𝑟 ≤ 0.04, thus correlation is negligible. Therefore, 

the final design is quasi-orthogonal. 

Table 6.2: Correlation coefficient value for all design parameter at MV6 

iteration. 

MB-MV 

Iteration 
Speed-Torque Speed-MAF Torque-MAF 

MV1 -0.016 0.037 0.028 
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Figure 6.7: MB-MV sequence: 6 iterations generated during the surrogate 

modelling process of combustion model; plus (+) points show the position of 

validation points (MV) among the circle (o) MB points. 
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6.2.2 Analysis of Surrogate Dynamic Air Path Model 

Before collecting data for NOx emission by running SRM combustion model, 

the planned DoE runs were carried out on the dynamic air path model 

(developed using APRBS-Lolimot signal model combination in section 5.4). 

The SRM inputs captured by the dynamic air path model are illustrated, along 

with the response from the GT-Suite Diesel engine model, in Figure 6.8. It can 

be observed that the model predicts the trends in air path dynamics quite 

accurately. 

 

Figure 6.8: Prediction of planned MB-MV DoE by GT-Suite engine model 

and dynamic air path model. 

The R-squared value illustrated in Figure 6.8, indicates that the dynamic 

model of air path states input account for more than 95% of variance 
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associated with the response of the system. The fitted line plot above 

illustrates that the model (dynamic model trained on dynamic signals) 

accurately (>96% fit for all three air path states input) describes the response 

for steady state points. In addition to the R-squared value, the statistical 

analysis of the prediction using validation RMSE (refer Equation 3.2) and 

relative error (refer Equation 3.3) is listed in Table 6.3. From the table it can 

be observed that the dynamic models predict accurately for EGR_mf (<0.01 

RMSE/1% EGR_mf or ~2% relative error), Inlet pressure (<1% relative error) 

and temperature (<1% relative error). This analysis illustrates that accuracy of 

the dynamic models developed earlier is not compromised for the different 

type of design of experiment approach, i.e. global OLH DoE (steady-state 

tests). 

Table 6.3: Evaluation of performance of surrogate air path model on the 

DoE for SRM input parameter 

Model Val_RMSE % Relative Error 

EGR 0.0084 2.1 

Inlet Pressure 0.0026 0.20 

Inlet Temperature 0.4146 0.12 

Noteworthy, it takes GT-Suite Diesel engine model about two and a half hours 

to generate inputs for the SRM combustion process model on the planned 

DoE of six iterations. While dynamic air path model was able to do the same 

task in under 1 minute, that is approximately 210x faster when compared to 

GT-Suite engine model. This reflects on the benefit of the hybrid dynamic 

modelling framework which incorporates a dynamic model for system 

modelling task, allowing quick modelling and fast data capture. The exact 
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simulation time for both GT Suite engine model and surrogate model is listed 

in Table 6.4. 

Table 6.4: Simulation time to run steady state DoE 

Model Simulation Time (sec) 

GT-Suite Diesel Engine Model 8490 

Surrogate Air Path Model (LOLIMOT-APRBS) 40 

As depicted in Figure 6.1, the response from the dynamic air path model, 

operational inputs and the injection profiles are implemented on combustion 

process model to generate NOx emission response. The surrogate modelling 

task for the captured NOx response is discussed in the following section. 

6.2.3 NOx Model Selection 

In this stage of development response surface models are fitted to the NOx 

emission using MATLAB MBC toolbox. For every new iteration of DoE test 

plan, i.e. from MV1 to MV6, a new response model was fitted to the update 

system response. The response model fitting process included the following 

steps: 

 Fit candidate models 

MATLAB MBC toolbox offers a range of statistical models for response 

surface modelling. Several combinations of response models, Polynomials, 

RBF with different kernels, Gaussian Process Models with different kernels, 

were fitted to the NOx emissions response. The advantages of the selected 

candidate models are as follow: 
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• Polynomials:  their advantage lies in their simple structure which makes 

them easy to interpret and low tendency towards overfitting (Khan, 2011). 

This makes these models quite common choice and popular in many 

modelling contexts (Kianifar, 2014). However, given that initial model 

building DoE only consists of 50 points, they might not be efficient (Kianifar, 

2014). 

• Radial Basis Function: these models types were selected due to their 

capability of fast and robust modelling (Nelles, 2001).  Also, they have 

superior interpolation behaviour and are capable of providing good 

generalisation, even for noisy or missing data (Hagan et al., 1995). 

• Gaussian Process Model:  this model type can fit high accuracy global 

approximation models even with less data (Khan, 2011), thus, making them 

an ideal candidate for the fitting models to sequential DoE design. 

The quality of fit of the candidate models was evaluated using RMSE (see 

Equation 3.1), and PRESS RMSE ( refer section 3.2.5) and any outliers were 

removed, and the model fit was updated. 

 Model Evaluation and Selection 

The model selection criteria employed was minimising PRESS, and during 

initial iteration, when a small number of test points are available, preference 

was given to fits with the small number of effective parameters. 

The model evaluation was carried out in three phases, and these are as follow: 
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a) Residual Analysis 

this includes analysis of patterns of residuals for model building. Residuals 

represent the difference observed in the predicted values (by response 

surface model) and measured values (from the SRM combustion model). 

Presence of a discernible trend would indicate the inappropriate model for the 

data, while random appearance would stipulate an appropriate model choice. 

b) Statistical Performance 

statistical diagnostic is used to compare the response surface model 

performance on the measured data and to evaluate any improvement in the 

response surface model with the additional test plan. This is carried out by 

implementing two performance matrices: 

• Internal model validation: based on investigating the model’s 

statistical properties using PRESS RMSE for MB data set, see section 

3.2.5. 

• External model validation: this validation step investigates the 

discrepancy between the predicted and the measured values on a  new 

set of data, the validation set (MV), using information criteria Validation 

RMSE (see Equation 3.2) and Relative Error (see Equation 3.3). 

c) Engineering Analysis 

Trend analysis was carried out by comparing the fitted model behaviour with 

the combustion process model response behaviour, to ensure models are 

not over-fitted or under-fitted. 
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6.3 NOx Surrogate Model 

The process described in the preceding sections for surrogate modelling of 

NOx is implemented using the MATLAB MBC model browser toolbox. 

6.3.1 Fit Candidate Models 

The candidate models with various kernel functions were fitted to the first 

iteration of model building DoE with 50 test points. The comparison of 

prediction capability (PRESS RMSE) and the number of parameters required 

by each model are illustrated in Figure 6.9 and Figure 6.10 respectively. 

 

Figure 6.9: Comparison of fitted response surface candidate models based 

on their prediction capability (PRESS RMSE) at MV1 iteration. 
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Figure 6.10: Comparison of fitted response surface models based on the 

number of parameters required for modelling at MV1 iteration. 

It can be observed from Figure 6.9, as presumed in section 6.2.3, that 

polynomials models are not efficient candidate model and have large 

approximation error associated with them. In respect to the number of 

parameters, the linear polynomial model has the lowest number of modelling 

parameters associated with them, but their prediction error is the highest 

amongst all the other response models. This could be an indicator of under 

fitted model. Some of the RBF, such as RBF with Gaussian kernel, exhibit 

good prediction capability but they require a large number of modelling 

parameters (approximately 1/3rd of test points), thus are not a suitable choice. 

The Gaussian Process Model (GPM) with different basis function and kernels, 

provide both good prediction capability and have a reasonable number of 

effective parameters. Amongst the GPM models, GPM with squared 

exponential basis function slightly performs better than the rest, both in terms 
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of approximation error and number of effective parameters. Therefore, this 

model was selected for further improvement with additional iterations of MB-

MV DoE sequence. 

6.3.2 NOx Surrogate Model: Modelling Stage 

Once the model was selected, it was improved further to meet the target 

accuracy through the iterations of sequential DoE plans presented in Figure 

6.7. The evaluation of the selected model over these iterations is presented in 

this section. 

A. Residual Analysis 

The illustration of residual plots for NOx model at stage 1, MB-MV1, is 

presented in Figure 6.11. The residual plot is generated using the difference 

between the measured system response and model-predicted response. In 

the figure below, residuals are plotted against the observation number, time 

order in which data was observed. The residuals of a model, approximately, 

are expected to have the random appearance and no discernible pattern. 

During the initial observation of the trends in the figure, residuals display either 

funnelling in and fanning out patterns which are indicators of decrease and 

increase in error variance. This would lead to a violation of the constant 

variance assumption (Gonzalez, 2016).  
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Figure 6.11: Residual plot of GPM squared exponential response surface 

model for NOx response after the first sequence (MB-MV1). 

However, Figure 6.12, the normal probability plot suggests that the distribution 

of residuals is approximately linear. This would mean that the residuals follow 

the normal distribution curve (bell curve) and the assumption of constant 

variance is valid for the fitted models. Also, Figure 6.13 depicts that there is 

no negative serial correlation or other trends present in the error terms. Thus, 

constant variance assumption across the observation is a valid assumption. 

 

Figure 6.12: Normal probability plot of residuals for GPM NOx surrogate 

model after the first sequence (MB-MV1). 
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Figure 6.13: Residual plot for GPM NOx surrogate model in MBC toolbox 

displaying no negative serial correlation after the first sequence (MB-MV1). 

B. Statistical Performance 

This section presents the evaluation of the response surface model as per the 

information criterion, PRESS RMSE and Validation RMSE. In Figure 6.14, the 

PRESS RMSE and the Validation RMSE of the response surface model at 

every stage have been depicted. It can be observed that the PRESS RMSE 

and Validation RMSE are decreasing with a subsequent iteration of MB-MV 

sequential DoE.  This indicates that the quality of the response model is 

improving with every new iteration of the sequential process. The reason for 

this improvement comes from the fact that there are more infill or test points 

available for the response models to accurately capture the trends in the 

modelling data.  
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Figure 6.14: PRESS RMSE and Validation RMSE for GPM NOx surrogate 

model during six different stages/iteration of MB-MV. 

In addition to the model improvement observed through the decrease in 

PRESS RMSE and Validation RMSE, a similar trend was observed for model 

prediction relative error. The relative error, illustrated in Figure 6.15, is the ratio 

of validation RMSE to mean response and is expressed as a percentage. The 

observation of the reduction in the PRESS RMSE, validation RMSE, and 

relative error (Equation 3.3) with subsequent iterations of DoE represents that 

response surface is enhanced with every additional stage. The acceptable 

engineering target for NOx emission modelling lies in between one to ten 

percent. It can be observed in Figure 6.15, this target was reached at stage 6 

(MV-6) with a relative error of 9.4%, and thus, the process was terminated. 

However, subsequent iterations can be carried, if further improvement is 

required. 
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Figure 6.15: NOx prediction relative error for all six stages of MB-MV 

sequential process. 

The identified response surface model at stage 6 was based on a mapping 

DoE of 150 MB and 20 MV test points. This is significantly less than normal 

stationary mapping DoEs, which typically use 120-150 (steady state speed 

and load test points) test points (Yin, 2012). However, the number of points 

varies and would depend on the number of variables in DoE, and these test 

points are for a combination of one operational variable, not an entire zone 

(for example one engine speed and load point).  The rule of thumb in the 

industry is minimum of ten points per variable (three variables in this study). If 

the constant speed of 1500 rpm is considered with 5 different load points 

would lead to a minimum of 150 points, while with the methodology presented 

here; surrogate NOx model was identified for the entire range of the diesel 

engine case study (1500-1750 rpm) with 150 MB test points. Additionally, 

combining MB-MV approach provides an advantage of administering target 

accuracy with each subsequent stage, while for normal mapping DoEs there 
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is no assurance that target accuracy will be achieved with the pre-determined 

number of test points. 

C. Engineering Analysis 

The illustration of NOx emission response surfaces through stage 1 (MV-1), 

and stage 6 (MV-6) is presented in Figure 6.16 and Figure 6.17 respectively. 

These figures depict the changes in the response surface, shape and trend, 

of NOx emission through the iterative process of sequential design of 

experiments. With the increase in the number of test points, the prediction 

accuracy of the model improves throughout the design space. The major 

improvement in between MV-1 and MV-6 response surface can be observed 

at the extremities of the design space. In Figure 6.16, the design space of 

stage 1 is deficient at low load region at both low and high engine speed. With 

the increment in infill points, it can be observed the corners of the design 

space has extended to cover the low loads, and the prediction accuracy has 

also improved. 

The next step is to analyse if the trends captured by the response surface 

model compares with the expected trends based on engineering analysis and 

knowledge available about the system.  This last stage in model selection is 

to check if the trends captured by the response surface model are true 

characteristics of the system response and not the result of over-fitting or 

extrapolation among the collected data. 
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Figure 6.16: GPM NOx surrogate response surface model at MV1 stage. 

 

Figure 6.17: GPM NOx surrogate model response surface model at MV6 

stage. 
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In Figure 6.17 for MV-6 stage, there is a clear trend that the concentration of 

NOx in the engine out emission increases as the load increases. The engine 

load in this study refers to torque as a set point, which is used to control the 

injection quantity. Torque being an output of the combustion process does not 

have a direct effect on the NOx emissions, rather it is an indicator of the 

change which would be observed in the quantities entering the combustion 

chamber. The phenomenon observed could be explained with three main 

factors: 

1) The increase in torque is a result of vigorous combustion. To achieve 

this inlet pressure is increased which causes an increase in the density of 

air, allowing more air to enter the cylinder, and leading to vigorous 

combustion. This results in increase in the in-cylinder pressures and 

temperatures, which causes the increase in NOx. 

2) Secondly, high load demand would result in a higher inlet temperature 

which raises the overall combustion temperature and thus the explainable 

rise in NOx. However, the effect on NOx from the higher inlet temperature 

is not as high when compared with an increase in inlet pressure. This is 

because the increase in inlet temperature decreases the density of air. 

Hence, less vigorous combustion and lower amount of air mass trapped in 

the cylinder. 

3) Lastly, higher load demand leads to less amount of exhaust gas 

recirculated by EGR. This is because the purpose of EGR is to reduce NOx 

by recirculating exhaust gas into the cylinder which results in lower 
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combustion temperature and reduction in the amount of oxygen available 

in the cylinder. Hence, leading to less vigorous combustion and lower NOx. 

Therefore, a reduction in the amount of EGR to meet the high load demand 

results in an increase in NOx emission. As the sole purpose of EGR is to 

reduce the NOx formation, it has the most significant contribution to the 

increase in NOx concentration with the increase in load. 

The results of statistical diagnostics for the NOx emission response surface 

model for the selected model, GPM squared exponential, during all the 

iterations of DoE are summarised in Table 6.5. The first column in the table 

represents the stages of the sequential process in terms of model validation 

(MV) iterations. The ‘MB Test Points’ column indicates the number of feasible 

test points used to fit the high-fidelity response models after removing the 

outliers. 

Table 6.5: Summary of Gaussian process models fitted to NOx emissions. 

Stage Model Type 
MB Test 

Points 
RMSE PRESS 

Relative 

Error (%) 

MV1 GPM 50 8.48 10.064 15.57 

MV2 GPM 68 8.25 9.42 14.23 

MV3 GPM 88 8.12 9.32 14.10 

MV4 GPM 100 7.47 8.67 14.04 

MV5 GPM 118 7.47 8.37 12.75 

MV6 GPM 125 6.09 6.86 9.64 
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6.4 Evaluation of the Hybrid Dynamic Modelling Framework on Transient 

Drive Cycle 

The surrogate model of NOx developed above was validated on the available 

transient drive cycle data, illustrated in Figure 4.2  in section 4.1. The regions 

of the drive cycle which are within the boundaries of the operation domain of 

the diesel engine case study (zone 3) were selected and are presented in 

Figure 6.18. The selected regions are continuous in time, as extracting points 

which are not continuous points would lead to distortion of drive cycle and the 

prediction on such points by NOx model would not be comparable. In total 9 

regions were identified, illustrated in Figure 6.19,  and these are used to 

evaluate the performance of NOx surrogate model. 

 

Figure 6.18: Selection of continuous sections in transient drive cycle within 

the operational limit. The circled point shows drive cycle data, and the 

diamond represents the points in the extracted regions. 
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Figure 6.19: Selected regions of the continuous point in NEDC drive cycle 

within the operational boundaries of zone 3. 

The process of evaluating surrogate NOx model based on hybrid dynamic 

modelling approach and the steady-state based approach was illustrated in 

Figure 4.14 and described in section 4.5 of Chapter 4.  From the figure above, 

region 9 was selected to present the model performance, as this region had 

the longest length of the continuous sequence, with 29 data points. The NOx 

surrogate model performance was compared with the measured drive cycle 

NOx and steady-state based combustion process surrogate model. A series 

of pictorial representation to evaluate the model performance has been 

presented in Figure 6.20, Figure 6.21,Figure 6.22 and Figure 6.23. The 

evaluation is presented in two section engineering analysis and statistical 

analysis. 
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6.4.1 Engineering Analysis 

In Figure 6.20, NOx emission prediction for both proposed approach, hybrid 

dynamic modelling, and steady-state approach have been presented. The 

prediction of these two modelling approaches is compared against the NOx 

emission for drive cycle, measured at the test bench (Figure 4.3). The 

horizontal axis displays the time stamp of the region 9 in the drive cycle data. 

It can be observed that the first three values in the steady-state approach 

surrogate model are inconsistent with the overall response of this model. It 

can be considered as an anomaly of the model and is discounted in Figure 

6.21 to be able to analyse the trends in the prediction for both surrogate 

models. 

 

Figure 6.20: NOx emission model performance at region 9 of the NEDC 

drive cycle. 

From Figure 6.21, it can be observed that both steady state and hybrid 

dynamic modelling approach predicts the trends, associated with the drive 

cycle NOx emission, reasonably well. The additional advantage of proposed 
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approach, hybrid dynamic modelling framework, is the required measurement 

time of only about 40 seconds to generate the inputs for the SRM combustion 

model to develop surrogate model of zone 3. For both steady state approach 

and hybrid dynamic modelling approach, the surrogate model struggles to 

meet the absolute values of NOx emission (when compared to drive cycle 

NOx emission absolute values), and the effect of this is evaluated in the 

section. 

 

Figure 6.21: NOx emission model performance at region 9 of the NEDC 

drive cycle (focused view). 

6.4.2 Statistical Performance 

The criterion used for evaluation of modelling approach against drive cycle 

data are RMSE (refer Equation 3.1) and relative error (refer Equation 3.3). 

Table 6.6 shows the evaluation results for both steady state and hybrid 

dynamic modelling approach. For steady-state based modelling approach, it 

can be observed from this table that both RMSE and relative error term is 

extremely high, but this does not provide any conclusive evidence that the 
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model does not perform well, as the region in which evaluation is carried out 

is quite narrow. Since, the surrogate model developed (look-up table derived 

from steady-state experiments) for steady state approach, interpolates to 

cover the entire operating domain (based on 29 steady state points), it might 

be extrapolating in this specific region. Also, it can be observed that if the first 

three points (considered to be abnormal behaviour) are removed, then the 

model performance improves significantly (compared to when the 3 points are 

included). 

Table 6.6: Evaluation results for both steady state and hybrid dynamic 

modelling approach. 

Modelling Approach RMSE (ppmv) 
% Relative 

Error 

Hybrid Dynamic Modelling Approach 13.9428 20.93 

Steady-State Based Approach 175.578 263.52 

Steady-State Based Approach 
(without first 3 points)   

51.0676 76.65 

For Hybrid dynamic modelling approach, both the RMSE and relative error is 

approximately two times the one observed during surrogate modelling, 

illustrated in Figure 6.14 and Figure 6.15 respectively. This increase in error 

can be linked to two main factors: 

a) As GT suite engine model is a representation of the actual system, it 

would have an error associated with it. This error is propagated to dynamic 

models, as the dynamic air path model is developed based on GT-Suite 
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Diesel engine model. The dynamic air path model provides inputs for 

combustion model and would explain the discrepancy in between 

measured and modelled response. 

b) Secondly, there will be difference in between the prediction of 

emissions from SRM combustion model (MPES platform) and 

measurements on the test bench, and this error will be introduced into the 

surrogate NOx model. This would also affect the model capability to 

measure the absolute values accurately. 

Although the absolute values of NOx emissions of measured and modelled 

response are different, it would depend on the development stage if it is 

acceptable or not.  Since, the range of  operational domain and number of test 

points ( specifically for steady state, as in dynamic modelling it is a continuous 

signal) covered by steady state and hybrid dynamic modelling is different, and 

it is not advisable to compare the numbers, presented in Table 6.6, directly. 

A contour plot for the proposed approach is depicted in Figure 6.22, which 

depicts the percentage error difference between measured (drive cycle data) 

and simulated (hybrid dynamic modelling surrogate model) NOx emission. 

The average percentage error for the difference in NOx emission was in the 

range of around 19 %. For steady-state approach, the same plot is presented 

in Figure 6.23. The average percentage error associated with the steady-state 

approach (without the first three points) was found to be 76.65 %. 
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Figure 6.22: NOx error between measured (drive cycle) and surrogate NOx 

emission model (Hybrid dynamic modelling approach) at region 9. 

 

Figure 6.23: NOx error between measured (drive cycle) and surrogate NOx 

emission model (steady state modelling approach: look-up table) at region 9, 

without first 3 points. 
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Although the RMSE error associated with the model prediction of NOx on 

NEDC drive cycle is high but is still within the reasonable range, and along 

with its capability to capture the trends accurately makes it an efficient model. 

 The prediction of all nine extracted regions of the drive cycle is illustrated in 

Figure 6.24. It can be observed from this figure, that the steady-state based 

approach surrogate NOx model always overestimates the NOx emission at 

first few values and then at a later stage it starts to follow the trends associated 

with measured data quite well. This could be the just the oscillatory behaviour 

of the model (given sudden start) and might be corrected by adding a pseudo-

steady state point at the start of measurement to reduce the oscillations in the 

model. In the case of the proposed approach, the model predicts the trend in 

the data quite accurately. 

The statistical performance of all the nine regions is presented in Table 6.7, 

from which it can be observed that average relative error over the nine 

extracted regions of Zone 3 (illustrated in Figure 4.7) is approximately 11.9%. 

Although in Region 1, 3, and 9, the error observed is higher, but across all the 

regions average error is within reasonable limits. Based on the analysis 

carried out in between hybrid dynamic modelling and steady state approach, 

the proposed approach provides significant improvement both in terms of 

capturing trends and accuracy. Although the data on which comparison is 

carried out is small, the hybrid dynamic modelling framework exhibit enormous 

potential for simulating drive cycles in real time while providing reasonable 

accuracy.  
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Table 6.7: Statistical performance of both surrogate models (hybrid 

dynamic modelling and steady-state approach) across all the 9 regions. 

Region 

Hybrid Dynamic Modelling Steady-State Approach 

RMSE %Relative Error RMSE %Relative Error 

Region 1 13.09 18.01 97.41 133.99 

Region 2 1.35 2.30 145.23 247.12 

Region 3 13.8 20.35 121.84 179.70 

Region 4 3.07 5.66 236.88 437.59 

Region 5 9.74 14.99 122.96 189.16 

Region 6 5.20 7.05 271.35 367.49 

Region 7 4.09 5.87 181.19 260.33 

Region 8 8.56 11.480 207.03 277.76 

Region 9 13.94 20.93 175.58 263.52 

Average 8.09 11.85 173.27 261.85 
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Figure 6.24: Response of NOx model over the 9 regions selected in NEDC 

drive cycle. 
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6.5 Summary 

The main aim of this chapter was to develop a surrogate model of the 

combustion model capable of predicting NOx emission in real time and with 

high fidelity during transients. This was achieved by implementing the 

modelling framework presented in this thesis which combines dynamic 

modelling of air path and statistical modelling of combustion model to predict 

NOx emissions during transients. 

The development process of surrogate combustion model presented above 

was a cyclic process, it starts with the development of the first iteration of DoE, 

followed by mapping of system response, and thereafter by fitting response 

surface model to system response recorded by evaluating DoE test plan on 

the system of interest. These steps were repeated in the loop with every new 

iteration of DoE until the desired model accuracy was achieved for the system 

response. 

The approach used for the design of experiment was the MB-MV framework, 

which initialises with the model building DoE of OLH nature and an additional 

model validation test point of OLH type. The test plan was then iteratively 

augmented by subsequent model validation point until the desired accuracy 

was achieved. As the DoE test plan was updated with each iteration, mapping 

of the system behaviour and modelling of the system response was updated 

at each new iteration. 

The mapping stage was carried out evaluating the DoE test plan on the 

dynamic air path model, which provided inputs to the combustion model. The 
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air path states inputs generated by dynamic air path models, operational 

inputs extracted from the DoE, and the fuel system characteristics provided in 

the form of injection profile were implemented on the combustion model, and 

the system response (NOx) was recorded. This was followed by fitting the 

response surface model, utilising the MATLAB MBC toolbox, to the NOx 

values at each new iteration. The best response model, which could 

accurately represent the system response, was selected from a series of 

candidate models based on the analysis of trends and statistical performance. 

The main innovative feature of the approach selected for the development of 

the combustion model is derived from the combination of dynamic air path 

model with statistical modelling by MB-MV framework. The dynamic air path 

model provided the necessary dynamics required for capturing the transients 

in the system response while reducing the time associated with running GT-

Suite engine model to provide inputs to the SRM combustion model. Also, 

statistical modelling of the combustion process by utilising MB-MV framework 

for DoE test plan significantly reduced both testing and computational effort. 

This effect is enhanced in the case of Multi-Physics simulation platform, where 

the available combustion model is not real time.
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Chapter 7 Discussion 

7.1 Development of Hybrid Dynamic Modelling Framework on MPES 

Platform 

This research introduced a novel framework to develop a global meta-model 

for engine out emissions based on a multi-physics engine simulation platform. 

The rationale for this is that the global metamodel could have better capability 

for accurate transient modelling for real-time drive-cycle simulation 

experiments compared to steady-state experiments discussed in Figure 4.5. 

The proposed Hybrid Dynamic Framework couples two fundamentally 

different types of metamodeling strategies for the 2 structural parts of the 

MPES, refer to section 4.2, framework: 

- A dynamic modelling / identification technique is deployed to develop a 

surrogate for the GT-Suite dynamic airpath simulation model of the Diesel 

engine. 

- A global exploration DoE experiment, based on space-filling OLH 

DoEs, to develop a surrogate model for emissions – focussing on NOx engine-

out emissions, based on the SRM model. 

7.1.1 Hybrid Dynamic Modelling Framework: Development of Dynamic 

Airpath Model 

In the development process of the proposed framework, the first stage was 

the development of the Diesel engine dynamic airpath model. Accordingly, the 

objective was to develop a surrogate model which would provide fast mean 
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value estimate for the inputs required for the SRM model (listed in Table 4.3) 

and would be able to do without loss in accuracy. 

The methodology, described in section 4.4 of Chapter 4, adopted to 

accomplish this objective can be summarised as follow: 

• Develop and implement a strategy to select a combination of dynamic 

experiment and modelling technique, suited to represent the system of 

interest (section 4.4.1.2). 

• Deploy the selected dynamic experiment and modelling technique to 

develop surrogate model of GT-Suite Diesel engine air path (section 

4.4.1.3). 

Some of the benefits of employing dynamic modelling techniques for the 

surrogate model of GT-Suite dynamic airpath model are: 

• Reduced amount of measurements need as no settling time is required 

(Röpke et al., 2012; Fang et al., 2016). 

• Capability to reduce simulation time as system response is faster than 

real time, once trained (Nelles, 2001; Atkinson and Mott, 2005). 

• Improvement in model fidelity by incorporating dynamic behaviour of 

the system (Brahma et al., 2009; Fang et al., 2016) 

A strategy was needed to make an informed choice about which dynamic 

experiment or modelling technique should be deployed for the surrogate 

modelling purpose. As there are many possible dynamic modelling techniques 
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and designs of dynamic experiments available in the literature, but either the 

dynamic experiment is selected beforehand or the modelling technique. There 

have been efforts made in the literature to compare different types of dynamic 

experiments (Baumann et al., 2008; Röpke et al., 2012; Tietze, 2015; Belz et 

al., 2017), but in these studies the modelling technique was pre-selected.  

There has also been an attempt on designing optimal signal designs rather 

than using set excitation signal, (Fang and Shenton, 2010; Deflorian and 

Zaglauer, 2011), but this requires prior knowledge regarding the model 

structure. 

Therefore, a strategy was devised to support the selection of an appropriate 

dynamic experiment and modelling technique combination without having 

prior knowledge regarding the system. The dynamic experiments which were 

considered in this research were PRBS, APRBS, and sinusoidal (chirp) 

excitation signals, and for the dynamic modelling techniques, Local Linear 

Neuro Fuzzy models (Nelles, 2001) and Neural Network (Hagan et al., 1995) 

models were selected. 

As described in section 4.4.1.2 and implemented in Chapter 5, the proposed 

strategy compares the signal and model combination on the basis of statistical 

performance and engineering analysis. For the development of surrogate air 

path model, it was found, Figure 5.27 and Table 5.5, that combination of 

APRBS excitation signal and Local Linear Neuro-Fuzzy (with LOLIMOT 

algorithm) models perform better than other combinations . This finding was 

also supported from the literature review, Table 2.1, where LOLIMOT models 

are generally combined with APRBS signals for identification. Although 
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APRBS-LOLIMOT combination was selected, chirp-Neural Network 

combination performed equally well and is a viable option (Guhmann and 

Riedel, 2011). 

The main concern with incorporating dynamic models is the design of dynamic 

experiments, as care needs to be taken not to violate the operating limits of 

the system. For this purpose, sinusoidal (for example, chirp) signals have 

become popular as they allow smooth and slow dynamics when compared to 

step-like signals (Baumann et al., 2009; Guhmann and Riedel, 2011; Burke et 

al., 2013; Sakushima et al., 2013). However, step like-signals allow excitation 

of both low and high-frequency component and provide even coverage of the 

operating space (including extremities). With this in mind, the modelling task 

was approached by partitioning the input space into smaller sections, Figure 

4.7, which would allow compliance to constraints for dynamic experiments 

more easily (Hametner and Nebel, 2012). Thereafter, modelling task was 

based on developing a surrogate model of a GT-Suite simulation model which 

differs from the approach in the literature. In this work system is represented 

based on model of a simulation model while in the research quoted above 

model of a physical system is developed based on the dynamic experiments 

carried out on the physical system (experimentally measured data). The 

approach investigated and developed in this work, enables development of 

virtual engine simulation platform capable of predicting transient drive cycle 

during preliminary stages of engine development. The strategy investigated 

also enhances the real time performance of the simulation model by reducing 
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simulation time required to estimate the mean-value response of the inputs for 

the combustion process model. 

The effectiveness of the strategy and the selected signal model combination 

was carried out in section 6.2.2. It has been shown in Figure 6.8 and Table 

6.3, that the selected model predicts the response (for SRM external input 

parameters) of GT suite engine model quite accurately with associated error 

as low as 2.1% for EGR, 0.20% for inlet pressure and 0.12% for inlet 

temperature. In addition to this, it was also established that the assumption 

made initially in section 1.3, that dynamic model would provide fast mean 

value estimate for the inputs required for the SRM combustion model, is 

justified. This was based on the results presented in Table 6.4, where time to 

run a planned design of experiment on GT-Suite Diesel engine model and 

surrogate dynamic air path model was compared. From this table, it was 

observed that GT-Suite Diesel engine would need about 2.5 hours to generate 

inputs for the SRM combustion process model while the dynamic surrogate 

model did the same under one minute (40 seconds). Thus, by incorporating 

dynamic models to develop the surrogate model of air path model real time 

performance has been enhanced and this provides about 210x reduction in 

simulation time. This delivers a considerable time saving, as otherwise, the 

GT engine model would have to be run for a considerable amount of time 

(equivalent to reaching stable steady state operation) to deliver a robust input 

for the global SRM experiments. This was consistent with the findings in 

literature where incorporation of dynamic models has provided considerable 
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reduction in measurement or simulation time (Nelles, 2001; Atkinson and Mott, 

2005; Röpke et al., 2012). 

7.1.2 Hybrid Dynamic Modelling Framework: Development of Surrogate 

Model for Emissions 

The next stage in framework development process was surrogate modelling 

of SRM combustion process model, procedure presented in section 4.4.2 of 

Chapter 4.  The objective here was to develop a surrogate model of SRM 

combustion model capable of accurately predicting transient behaviour of the 

system. This objective was partitioned into the following tasks: 

• Plan and implement global exploration Design of experiments using 

space filling OLH DoEs and evaluate design based on space-filling 

criteria and orthogonality (refer section 6.2.1).  

•  Fitting statistical models to the DoE test runs to develop a global meta-

model for engine-out emissions, surrogate NOx model (refer section 

6.3.2). 

• Evaluate the performance of the surrogate model, developed by 

implementing the proposed approach, on the drive cycle data (refer to 

section 6.4). 

The PDF Stochastic Reactor Model (CMCL Innovations, 2016) was chosen to 

develop the virtual combustion system, on the basis that it can provide 

reasonably fast computation using the reduced chemistry mechanism, with a 

computation time of 2-3 minutes per cycle, while still preserving good 
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prediction capabilities (Coble et al., 2011). Although being relatively faster 

compared to the expensive three-dimensional computational fluid dynamics 

model, the SRM model does not have the capability to run real time. 

Therefore, to support real-time drive cycle engine simulation a surrogate 

model for SRM is developed. 

To develop the NOx surrogate model, DoEs were planned using exploration 

based sequential DoE experiment (based on space-filling OLH design of 

experiment) propose by Kianifar et al. (2013). The advantage of using this 

framework (MB-MV) was: 

• It requires no prior knowledge in advance (such as the number of test 

points required for modelling). 

• Based on Figure 6.5 and Figure 6.6, it can be concluded that it provides 

good space filling property over all the iterations. 

• Based on Table 6.1and Table 6.2, it can be established the choice of 

framework for planning DoE has good orthogonality property (i.e. quasi-

orthogonal). 

• The iterative process of this framework, allowed to actively monitor the 

accuracy of the surrogate model being developed, as illustrated in Figure 

6.14. 

Furthermore, it was shown that by integrating dynamic air path model with 

MB-MV framework, that the target model accuracy for the diesel engine case 

study was achieved by fewer test points when compared to common practice 
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in the industry (steady state set points), illustrated in Figure 6.15 and listed in 

Table 6.5. 

Thereafter, the  developed surrogate model was co-simulated with GT-Suite 

engine model, as illustrated in Figure 4.14, to evaluate its performance on the 

drive cycle data (Figure 6.19). Considering the results observed in the Figure 

6.21 and Figure 6.24, it can be concluded that the surrogate NOx model 

developed using hybrid dynamic modelling framework can correctly predict 

the transient trends/ behaviour observed in the drive cycle data (for the case 

study, zone 3). While the trends were captured quite well, the accuracy of the 

model is variable across the space. It was observed in Table 6.6, that the 

developed surrogate model had a worse relative error (in region 9) of 

approximately 20%. This could be because the MPES platform it was 

developed on would also have a modelling error term associated with it, and 

this would be propagated through the developed surrogate models.  However, 

the average error across all the nine regions was observed to be only 11.9%, 

refer to Table 6.7. In literature, it was found that there are studies (Guhmann 

and Riedel, 2011; Röpke et al., 2012; Burke et al., 2013), which have been 

able to estimate NOx emission using dynamic modelling techniques in a range 

of 5 % -10%. However, in these studies the models were fitted to the test 

bench data or virtual engine calibration was developed using dynamic 

modelling techniques based on test bench data. Given that the NOx 

predictions in this work are based on an engine model, with uncertainty about 

some important parameters (like the injection profiles, actual EGR etc.), and 
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that the objective of the work is to provide prediction capability for early engine 

development stage, the accuracy of predictions can be considered adequate. 

Also, the actual measurements (test bench data) used to compare the results 

against are limited, therefore, the standard of accuracy is not same as those 

in the literature. However, from Table 6.7, it can be concluded that the 

proposed approach provides quite a significant improvement over the steady-

state based approach, the surrogate NOx emission model developed using 

hybrid dynamic modelling approach has an average error of only 11.9% 

compared to 261.85% error form the model based on steady state approach. 

The prediction error could be further improved with detailed model for air path 

rather than fast response model, but that would come at the cost of increased 

computational cost and lack of ability to run real-time.  

The main innovative feature of the approach selected for the development of 

the surrogate combustion model is derived from the combination of dynamic 

air path model with space -filling OLH DoEs (MB-MV framework). The 

dynamic air path model provided the necessary dynamics required for 

capturing the transients in the system response (illustrated in Figure 6.21) 

while reducing the time associated with running GT-Suite engine model to 

provide inputs to the SRM combustion model. Also, statistical modelling of the 

combustion process by utilising MB-MV framework for DoE test plan 

significantly reduced both testing and computational effort. This effect is 

enhanced in the case of Multi-Physics simulation platform, where the available 

combustion model cannot run in real time.
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Chapter 8  Conclusion and Recommendations 

The main aim of the thesis was to evaluate the Hybrid Dynamic Modelling 

framework to enable global metamodel of engine emissions and validate it 

through a case study. The development of framework was based on Multi-

Physics Engine Simulation Platform, which replaces the engine testing as the 

basis for mapping and calibration experiments with virtual engine simulation 

framework - coupling airpath simulation modelling (GT-Suite) with combustion 

chemistry solver (SRM). 

Accordingly, the specific research objective was to explore a co-modelling 

strategy for implementing an efficient dynamic experiment in conjunction with 

dynamic modelling technique to develop a surrogate model of the GT-Suite 

Diesel engine model, and then, to develop a metamodel for emissions 

(focusing on NOx) based on the data collected by applying established DoE 

approach on SRM combustion process model. Furthermore, to integrate two 

metamodeling strategies (dynamic and statistical) for two main components 

of MPES platform (GT-Suite + SRM) and to evaluate this hybrid dynamic 

framework on a diesel engine case study. 

The developed framework was studied in context of the 2.0 litre Diesel engine 

case study. The main objective of the case study was to measure the 

capability of the proposed framework for accurate transient modelling of real-

time drive cycle emissions. The data for hot steady state test and drive cycle 

was available from the sponsor company. 



 

202 

 

The dynamic models, LOLIMOT models, have been successfully 

implemented, in Chapter 5, on the GT-Suite engine model to develop 

surrogate model of the air path. They provided a considerable reduction in 

simulation time to estimate inputs to the SRM combustion process model. 

Thereafter, surrogate model for NOx emissions was also developed in 

conjunction with dynamic models and has capability to capture the transient 

behaviour of real-world drive cycle. The prediction capability of surrogate NOx 

model was evaluated on a drive cycle data, illustrated in Figure 6.19, and it 

was observed (from Table 6.7) that associated RMSE error for NOx emissions 

is of 8.09 ppmv (parts per million by volume) which translates to 11.9% relative 

error (ratio of RMSE to mean of measured NOx). The acceptable error in 

modelling of NOx emission is from 1% to 10%, however, the 11.9% relative 

error of surrogate model is acceptable in this work. The reason being it is 

derived from a metamodel (model of a simulation model) developed without 

any measurements from a physical system, so it will have an additional error 

introduced due to discrepancy in between simulation models and actual 

system. 

8.1 Conclusion 

The main conclusion based on the research presented in this work can be 

summarised as follow: 

• It was demonstrated that the co-modelling strategy developed for 

implementing an efficient dynamic experiment and modelling technique 

enables selection of a combination of experiment and modelling 
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technique which is best suited to the system of interest. This addresses 

the gap in the literature, where either the modelling technique or 

dynamic experiment is selected beforehand and would allow to select 

an experiment and modelling technique based on the effect of such 

choice combination on modelling of the system. 

• During the evaluation of co-modelling strategy, it was observed that the 

model trained on a specific excitation signal performs better on 

validation signal of same type. This is underpinned by signal properties, 

such as chirp signals, which are slow varying dynamic signals with less 

significant step changes, not being able to predict the step changes 

associated with the APRBS signals. 

• It was also observed that the purpose of modelling, i.e. global or zonal 

modelling, would also affect the selection of excitation signal, for an 

example chirps will be more suited for global modelling due to their 

continuous nature allowing safe operation. While in zone or region-

based modelling, where the step changes are less harsh due to local 

limits, APRBS will be a superior choice as they cover a broader 

frequency range (both high and low frequency components) and 

amplitude range providing best data coverage. 

•  Considering the results attained from applying co-modelling strategy 

for generating surrogate models of air path states (EGR-mf, inlet 

pressure and inlet temperature), it was observed that the proposed 

strategy performs robustly and also enhances the real time 
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performance by estimating inputs for SRM combustion process model 

210 times faster than it would have taken for GT-Suite Diesel engine 

model to run to reach stable steady state operation. 

• The use of nonlinear dynamic models enabled the development of 

global metamodel of emission at a comparable cost to steady-state 

experiments performed to develop the SRM surrogate model by 

providing fast mean value estimate for the inputs required for SRM 

combustion process model. 

• With the incorporation of global exploration DoEs, the number of 

measurements required to capture the transient behaviour of the 

system was considerably reduced when compared to steady-state 

point-based approach. The surrogate NOx model was fitted using 150 

model building test points and validated on additional 20 test points. 

• Integration of the dynamic surrogate models for GT-Suite Diesel engine 

model and statistical models (developed based on data collected using 

global exploration Doe approach) for SRM combustion process model 

can enhance the modelling of engine emissions, through delivering 

high quality models fulfilling the target model accuracy with faster 

simulation time and reduced number of measurements. As illustrated 

for the Diesel engine case study (refer to Figure 6.24 and Table 6.7), 

the NOx surrogate model (developed based on a simulation model) 

fitted using 150 test points was able to follow the trends observed in 

the transient drive and was able to do so with associate RMSE of 8.09 
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ppmv (parts per million by volume) which translates to 11.9% relative 

error (ratio of RMSE to mean of measured NOx). 

8.2 Further Work 

The methodologies presented in this research, Chapter 4, provides answers 

to some of the questions in the literature  but it also opens a new line of inquiry 

and future research opportunities. The hybrid dynamic modelling framework 

presented here can be further developed in the following aspects: 

Development of hybrid dynamic approach for full operating region of 

engines 

The methodology presented here has been implemented on one zone of the 

operating space (refer to section 4.4) and expansion of the methodology to 

full operating region can be approached as illustrated in Figure 8.1. The global 

model is composed of series of local (global-zone) models and weighting 

functions that are selected according to the current operating point (lies in 

which operating zone) such that it can accurately represent the system on 

entire engine envelope based on zonal models. The rationale being that 

multiple local models may define system non-linearity more accurately than a 

global model, as they account for local noise level or sensitivities and can have 

different active inputs in different local regions. 
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Figure 8.1: A schematic of hybrid dynamic approach for whole engine 

operating region. 

The research objective for developing global model composed of local models 

can be defined as: 

• To explore a strategy which would minimise the approximation error of 

the model by selecting appropriate local model and weighting function 

for the current operating point. 

• To implement and evaluate the performance of the developed global 

models on the current legislative transient drive cycles such a WLTP. 

• The approach developed here, also offers the possibility to be 

incorporated into engine calibration, since it allows fast data capture 

and reduced measurement effort, thus, the less experimental effort 

required (compared to traditional point-based calibration). 

• To consider implementation of hybrid dynamic approach to the gasoline 

engine. 
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Design of dynamic Experiments 

Further work is needed in design of dynamic experiments to address the issue 

such as optimal length of excitation signal to identify the underlying dynamics 

in the system of interest to accurately represent the system response. 

• To evaluate optimal dynamic experiment methodology in order to 

create realistic excitation sequences based on expected / multiple drive 

cycles. This may enhance the identification process, as by emulating 

the characteristics (for an example acceleration, braking, constant) of 

the drive cycles and compressing them into a sequence will allow to 

train the models on the realistic scenarios. This could provide 

pragmatic representation of a model performance on the legislative 

drive cycles. 

• To further develop the co-modelling strategy by incorporating the length 

of the identification signal as an additional factor. 

• To further develop dynamic models by incorporating improved methods 

of order determination. 
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Appendices 

A.1 Fast Fourier Transformation 

clc 
clearvars 
filename = uigetfile; 
load(filename) 
Fs = 100; %Sampling Frequency 
L = length(filename); % Number of Samples 
 
% Assigning label to the data coloumns 
Label = {'Torque'; 'Speed'; 'MAF'; 'EGR'; 'Temperature';... 
    'Pressure'; 'InjCtl'}; 
 
for i = 2:8 
    Y = fft(Data11(:,i)-mean(Data11(:,i))); 
    P2 = abs(Y/L); 
    P1 = P2(1:L/2+1); 
    P1(2:end-1) = 2*P1(2:end-1); 
    f = Fs*(0:(L/2))/L; 
 
    figure 
    plot(f,P1) 
    title(Label(i-1)) 
    xlabel('f (Hz)') 
    ylabel('|P1(f)|') 
end                                                                                 
%                                                                                   
% Same as above, repreated for second data set                                    
filename = uigetfile; 
load(filename) 
L = length(filename); 
 
Labe2 = {'Torque-2'; 'Speed-2'; 'MAF-2'; 'EGR-2'; 'Temperature-2';... 
    'Pressure-2'; 'InjCtl-2'}; 
 
 
for i = 2:8 
    Y = fft(Data12(:,i)-mean(Data12(:,i))); 
    P2 = abs(Y/L); 
    P1 = P2(1:L/2+1); 
    P1(2:end-1) = 2*P1(2:end-1); 
    f = Fs*(0:(L/2))/L; 
 
    figure 
    plot(f,P1) 
    title(Labe2(i-1)) 
    xlabel('f (Hz)') 
    ylabel('|P1(f)|') 
end 
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A.2 Excitation Signal Design: Pseudo Random Binary Sequence 

clear all 
close all 
clc 
 
%%Speed 
 
sd = randi(1e3); 
seq = ltePRBS(sd,60); 
 
time1 = 0:10:length(seq)*10-10; 
 
time = 0:1/100:60000/100-1/100; 
speed = zeros(size(time)); 
for i = 1:length(time) 
    speed(i) = seq(find(time1<=time(i),1,'last')); 
end 
speed = (speed*250)+1500; 
 
figure 
plot(time,speed) 
 
%%Torque 
 
sd = randi(1e3); 
seq = ltePRBS(sd,60); 
 
time1 = 0:10:length(seq)*10-10; 
 
time = 0:1/100:60000/100-1/100; 
torque = zeros(size(time)); 
for i = 1:length(time) 
   torque(i) = seq(find(time1<=time(i),1,'last')); 
end 
torque = (torque*(180.6-2*20))+20; 
 
figure 
plot(time,torque) 
 
%%MAF 
 
sd = randi(1e3); 
seq = ltePRBS(sd,60); 
 
time1 = 0:10:length(seq)*10-10; 
 
time = 0:1/100:60000/100-1/100; 
MAF = zeros(size(time)); 
for i = 1:length(time) 
   MAF(i) = seq(find(time1<=time(i),1,'last')); 
end 
MAF = (MAF*20)-10;                                                                                               
figure 
plot(time,MAF) 
 
%%Preparing data for simulation 
Cycle_dataPRBS = [time', speed', torque', MAF'];) 
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A.3 Excitation Signal Design: Amplitude Modulated Pseudo Random 

Binary Sequence (APRBS) 

clear all 
close all 
clc 
 
%%Speed 
 
Range = [1,2]; 
Band = [1/25 1/1000]; % Excitation Frequency 
speed = idinput([15000,1,4],'prbs',Band,Range); %Generating random dataset 
 
% Locating the step changes 
in1 = find(diff(speed)>0); 
in2 = [0; find(diff(speed)<0); length(speed)]; 
 
% Scaling Signal to the required amplitude 
for i = 1:length(in1) 
    amp = rand; 
    speed(in2(i)+1:in1(i)) = amp*speed(in2(i)+1:in1(i)); 
 
    amp = rand; 
    speed(in1(i)+1:in2(i+1)) = amp*speed(in1(i)+1:in2(i+1)); 
end 
 
speed = (speed-min(speed)); 
speed = (speed*250)/max(speed)+1500; 
 
time = 0:1/100:length(speed)/100-1/100; 
 
figure 
plot(time,speed) 
 
%%Torque 
 
Range = [1,2]; 
Band = [1/25 1/1000]; %Excitation Frequency 
torque = idinput([15000,1,4],'prbs',Band,Range); 
 
% Locating the step changes 
in1 = find(diff(torque)>0); 
in2 = [0; find(diff(torque)<0); length(torque)]; 
 
% Scaling Signal to the required amplitude 
for i = 1:length(in1) 
    amp = rand; 
    torque(in2(i)+1:in1(i)) = amp*torque(in2(i)+1:in1(i)); 
 
    amp = rand; 
    torque(in1(i)+1:in2(i+1)) = amp*torque(in1(i)+1:in2(i+1)); 
end 
 
torque = (torque-min(torque)); 
torque = (torque*(180.6-2*20))/max(torque)+20; 
 
figure 
plot(time,torque) 
 
%%MAF 
 
Range = [1,2]; 
Band = [1/25 1/1600]; %Excitation Frequency 
MAF = idinput([24000,1,4],'prbs',Band,Range); 
 
MAF = MAF(1:length(time)); 
 
% Locating the step changes 
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in1 = find(diff(MAF)>0); 
in2 = [0; find(diff(MAF)<0); length(MAF)]; 
 
% Scaling Signal to the required amplitude 
for i = 1:length(in1) 
    amp = rand; 
    MAF(in2(i)+1:in1(i)) = amp*MAF(in2(i)+1:in1(i)); 
 
    amp = rand; 
    MAF(in1(i)+1:in2(i+1)) = amp*MAF(in1(i)+1:in2(i+1)); 
end 
 
MAF = (MAF-min(MAF)); 
MAF = (MAF*20)/max(MAF)-10; 
 
figure 
plot(time,MAF) 
 
%%Preparing data for simulation 
Cycle_dataAPRBS = [time', speed, torque, MAF]; 
figure; scatter(speed,torque) 
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A.4 Excitation Signal Design: Chirp 

clearvars 
close all 
clc 
%%Speed 
hchirp = dsp.Chirp( ... 
    'InitialFrequency', 0.003,... 
    'TargetFrequency', 0.1, ... 
    'TargetTime', 150, ... 
    'SweepTime', 1000, ... 
    'SampleRate', 100, ... 
    'SamplesPerFrame', 15000); 
 
chirpData = (step(hchirp))'; 
 
speed = [chirpData chirpData(end:-1:1)]; 
speed = [speed speed(end:-1:1)]; 
speed = (-speed + 1)*250/2+1500; 
 
time = 0:1/100:600-1/100; 
% Plot the chirp signal 
figure 
plot(time,speed); 
 
%%Torque 
hchirp = dsp.Chirp( ... 
    'InitialFrequency', 0.1,... 
    'TargetFrequency', 0.01, ... 
    'TargetTime', 75, ... 
    'SweepTime', 500, ... 
    'SampleRate', 100, ... 
    'SamplesPerFrame', 7500); 
 
chirpData = (step(hchirp))'; 
 
torque = [chirpData chirpData(end:-1:1)]; 
torque = [torque torque(end:-1:1)]; 
torque = [torque torque(end:-1:1)]; 
torque = (-torque + 1)*(180.6-2*20)/2+20; 
 
% Plot the chirp signal 
figure 
plot(time,torque); 
 
%%MAF 
hchirp = dsp.Chirp( ... 
    'InitialFrequency', 0.06,... 
    'TargetFrequency', 0.001, ... 
    'TargetTime', 75, ... 
    'SweepTime', 500, ... 
    'SampleRate', 100, ... 
    'SamplesPerFrame', 7500); 
 
chirpData = (step(hchirp))'; 
 
MAF = [chirpData chirpData(end:-1:1)]; 
MAF = [MAF MAF(end:-1:1)]; 
MAF = [MAF MAF(end:-1:1)]; 
MAF = MAF*10; 
 
% Plot the chirp signal 
figure 
plot(time,MAF); 
 
%%Prepare data for simulation 
Cycle_dataChirp = [time', speed', torque', MAF']; 
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A.5 LOLIMOT Training Algorithm 

− Script to select which training signal model to run. 

%   Available Neural Network Modelling Process: 
%       Model 1: APRBS Training Signal Model. 
%       Model 2: PRBS Training Signal Model. 
%       Model 3: Chirp Training Signal Model. 
 
clear; 
clearvars; 
close all; 
clc 
 
% Menu 
i = menu('Choose one of the following examples:',... 
    '1. APRBS Training Signal Model', ... 
    '2. PRBS Training Signal Model', ... 
    '3. Chirp Training Signal Model'); 
 
 
% Add Neural Network Model examples directory to MATLAB search path 
LMNDirectory = fileparts(which(mfilename)); 
LMNmodelsDirectory = [LMNDirectory '/LMN']; 
addpath(LMNDirectory); 
addpath(LMNmodelsDirectory); 
 
% Execute demo program 
if i == 1 
    LMNAPRBS 
elseif i == 2 
   LMNPRBS 
elseif i == 3 
    LMNChirp 
end 
 
% Clear variables 
clear i LMNDirectory LMNmodelsDirectory 

− Generic Script compiled to show training algorithm for all excitation training 

signals 

% This script serves as an example of generating 
% Local Linear Neuro Fuzzy Model using Lolimot algorithm. 
% In here a generic form of script for EGR Lolimot Model is presented.     % 
The script can be modified to system of interest. 
% This script is generated using the toolbox (Hartmann et al., 2012) 
 
%   LoLiMoT - Nonlinear System Identification Toolbox 
%   Torsten Fischer, 17-February-2012 
%   Institute of Mechanics & Automatic Control, University of Siegen, 
%   Germany 
%   Copyright (c) 2012 by Prof. Dr.-Ing. Oliver Nelles 

Pre-Start 

clearvars; 
close all 
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clc 
tic 

Training Data 

LMN = lolimot;         % initialize lolimot object 
 
filename=uigetfile; 
load(filename); 
%load('PRBS_Processed_Data.mat') 
%load('APRBS_Processed_Data.mat') 
%load('Chirp_Processed_Data.mat') 
 
% Assign the training Data 
LMN.input = APRBS_Inputs(:,2:4); 
LMN.output = EGR_mf; 
 
% % Assign the training Data 
% LMN.input = PRBS_Inputs(:,2:4); 
% LMN.output = EGR_mf; 
 
% % Assign the training Data 
% LMN.input = Chirp_Inputs(:,2:4); 
% LMN.output = EGR_mf; 

Validation Data 

% Validation PRBS Signal_P1  
filename=uigetfile; 
load(filename); 
load('Val_PRBS_data.mat') 
 
%Assigning Validation Data 
LMN.validationInput = Val_PRBS_Inputs(:,1:3); 
LMN.validationOutput = Val_PRBS_Inputs(:,5); 
 
% Validation APRBS Signal_A1 
filename=uigetfile; 
load(filename); 
load('Val_APRBS_data.mat') 
 
%Assigning Validation Data 
LMN.validationInput = Val_APRBS_Inputs(:,1:3); 
LMN.validationOutput = Val_APRBS_Inputs(:,5); 
 
%Validation Chirp Signal_C1 
filename=uigetfile; 
load(filename); 
load('Val_Chirp_data.mat') 
 
%Assigning Testing Data 
LMN.testInput = Val_Chirp_Inputs(:,1:3); 
LMN.testOutput = Val_Chirp_Inputs(:,5); 

Internal Parameters of the Modelling (Hyper Parameters) 

% Se feedback  delays 
LMN.xInputDelay = cell(3,1); LMN.xOutputDelay = cell(1,1);  
LMN.zInputDelay = cell(3,1); LMN.zOutputDelay = cell(1,1); 
LMN.xInputDelay{1} = [1 2]; LMN.xInputDelay{2} = [1:3]; LMN.xInputDelay{3} = 
[1:3]; 
LMN.xOutputDelay{1} = [1 2]; 
LMN.zInputDelay{1} = [1 2]; LMN.zInputDelay{2} = [1:3]; LMN.zInputDelay{3} = 
[1:3]; 
LMN.zOutputDelay{1} = [1:2]; 

Options for training 

% Option to adjust the transition steepness of the validity functions 
LMN.smoothness = 1;   
 
% Termination criterion for maximal number of LLMs 
LMN.maxNumberOfLM = 50; 
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%  Termination criterion for minimal error 
LMN.minError = 1.0e-7; 
 
% Defines min perfomance improvement before assigning new split 
LMN.minPerformanceImprovement = 1e-3; 
 
% Simulation not one-step-ahead prediction 
LMN.kStepPrediction = inf;  % one step ahead predcition k = 1; simulation k 
=inf 
 
% display information 
LMN.history.displayMode = true; 
 
%  Split direction is optimized - axes oblique splits are possible 
LMN.oblique = true;   % (default: true) 
 
% Determines if the analytical gradient is used or not 
 
LMN.GradObj = true; 

Initiate Training of the Local Model Network 

LMN = LMN.train; % trains the network based on the hyperparameters defined                                              
%above 

Generalisation 

load('Val_APRBS_Processed_Data.mat') 
 
yGModel = calculateModelOutput(LMN, Val_APRBS_Inputs(:,1:3),... 
    Val_APRBS_Inputs(:,4)); 
 
JG = calcGlobalLossFunction(LMN, Val_APRBS_Inputs(:,4), yGModel) 

Visualization 

% Model Plot 
figure 
LMN.plotModel 
 
% Validation_ P1 
figure 
plot(calculateModelOutput(LMN, Val_PRBS_Inputs(:,1:3),... 
    Val_PRBS_Inputs(3,5)*ones(size(Val_PRBS_Inputs(:,5))))) 
hold on 
plot(Val_PRBS_Inputs(3:end,5)) 
 
% Validation_ A1 
figure 
plot(calculateModelOutput(LMN, Val_APRBS_Inputs(:,1:3),... 
    Val_APRBS_Inputs(3,5)*ones(size(Val_APRBS_Inputs(:,5))))) 
hold on 
plot(Val_APRBS_Inputs(3:end,5)) 
 
% Validation_ C1 
figure 
plot(calculateModelOutput(LMN, Val_Chirp_Inputs(:,1:3),... 
    Val_Chirp_Inputs(3,5)*ones(size(Val_APRBS_Inputs(:,5))))) 
hold on 
plot(Val_Chirp_Inputs(3:end,5)) 

Miscellaneous Operations 

[outputModel] = calcYhat(LMN.xRegressor,LMN.MSFValue,LMN.MSFValue); 
 
Simulation_check = simulateParallel(LMN,Val_APRBS(:,1:3),Val_APRBS(1,4)... 
    *ones(size(Val_APRBS(:,4))),LMN.localModels,LMN.leafModels); 
toc 
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A.6 Neural Network Training Algorithm 

Script to select which training signal model to run. 

%   Available Neural Network Modelling Process: 
%       Model 1: APRBS Training Signal Model. 
%       Model 2: PRBS Training Signal Model. 
%       Model 3: Chirp Training Signal Model. 
 
 
clear; 
clearvars; 
close all; 
clc 
 
% Menu 
i = menu('Choose one of the following examples:',... 
    '1. APRBS Training Signal Model', ... 
    '2. PRBS Training Signal Model', ... 
    '3. Chirp Training Signal Model'); 
 
 
% Add Neural Network Model examples directory to MATLAB search path 
NNDirectory = fileparts(which(mfilename)); 
NNmodelsDirectory = [NNDirectory '/NeuralNetwork']; 
addpath(NNDirectory); 
addpath(NNmodelsDirectory); 
 
% Execute demo program 
if i == 1 
    NNAPRBS 
elseif i == 2 
   NNPRBS 
elseif i == 3 
    NNChirp 
end 
 
 
% Clear variables 
clear i NNDirectory NNmodelsDirectory 

Published with MATLAB® R2018a 

Generic Script compiled to show training algorithm for all training signals. 

clc 
clearvars; 
 
%Recording time start 
tic 

Check Directory available for saving network, if not create one 

% %For APRBS 
% if isdir('network_APRB')==0 
%     mkdir('network_APRB'); 
% end 
% if ~isempty(gcp('nocreate')) 
%  delete(gcp) 
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% end 
 
% % For PRBS 
% if isdir('network_PRB')==0 
%     mkdir('network_PRB'); 
% end 
% if ~isempty(gcp('nocreate')) 
%  delete(gcp) 
% end 
 
% For Chirp 
if isdir('network_Chirp')==0 
    mkdir('network_Chirp'); 
end 
if ~isempty(gcp('nocreate')) 
 delete(gcp) 
end 

Load Necessary Data files 

load('NN_data.mat') 
 
%%Define Inputs and Outputs 
%Choose the training signal for which you need to create the network 
 
% %FOR APRBS Signals 
% X = tonndata(APRBS_Inputs (:,1:3),false,false); 
% T = tonndata(EGR_A,false,false); 
 
% %For PRBS Signals 
% X = tonndata(PRBS_Inputs (:,1:3),false,false); 
% T = tonndata(EGR_P,false,false); 
 
%FOR CHIRP Signals 
X = tonndata(Chirp_Inputs (:,1:3),false,false); 
T = tonndata(EGR_C,false,false); 

Choose Training Function 

trainFCN = 'trainbr'; % Bayesian Regularisation backpropogation, as per 
%                       %Matlab performs better than early stopping % 
% trainFCN = 'trainlm'; % fast training algorithm 
 
% 
% trainFCN = 'trainscg'; % Scaled conjugate gradient backpropagation 

Create a Nonlinear Autoregressive Network with External Input 

for k = 1:25 
    inputDelays = 1:3; 
    feedbackDelays = 1:2; 
    hiddenLayerSize = k; 
    net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,... 
        'closed',trainFCN); 
 
    %Input and Feedback Pre/Post-Processing Functions 
    net.inputs{1}.processFcns =... 
        {'removeconstantrows','mapminmax'}; % Customise Input Paramaters 
    %net.inputs{2}.processFcns ={'removeconstantrows','mapminmax'};% 
Customise Output Paramters 
 
    %Prepare Data for Training and Simulation 
    [x,xi,ai,t] = preparets(net,X,{},T); 
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    %Divide Data for Training/ cross-validation/ and test performance 
    %(only if large data sample is available) 
    net.divideFcn = 'divideblock'; % Divides data in block, training first, 
                                  %followed by validation and at last test 
    net.divideParam.trainRatio = 75/100; % Training data 
    net.divideParam.valRatio = 15/100; % validation data fro cross val. 
    net.divideParam.testRatio = 15/100;% separate data used after training 
 
    %%Choose a performance function 
    net.performFCN = 'mse'; % Mean Squared Error 
    net.trainParam.epochs= 100; 
 
    %%Choose Plot Functions 
    net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', ... 
        'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'}; 
 
    %Train the Network 
    [net, tr] = train(net,x,t,xi,ai); 
 
    %Test the Network 
    y = net(x,xi,ai); 
    e = gsubtract(t,y); 
    performance(k) = perform(net,t,y); 
 
    %Plots 
    figure, plotperform(tr) 
    figure, plottrainstate(tr) 
    figure, ploterrhist(e) 
    figure, plotregression(t,y) 
    figure, plotresponse(t,y) 
    figure, ploterrcorr(e) 
    figure, plotinerrcorr(x,e) 
 
    %Save network at every iteration 
%     save(['network_APRB\net' num2str(k)],'net');%save the network 
%     save(['network_PRB\net' num2str(k)],'net');%save the network 
    save(['network_Chirp\net' num2str(k)],'net');%save the network 
end 

Save the Performance 

% fid=fopen('mse_APRB_lm.txt', 'wt'); 
% fprintf(fid, 'Nh\t Performance\n'); 
% fprintf(fid, '%4.0f\t %f\n', [1:25;performance]); 
% fclose all; 
 
% fid=fopen('mse_PRB_lm.txt', 'wt'); 
% fprintf(fid, 'Nh\t Performance\n'); 
% fprintf(fid, '%4.0f\t %f\n', [1:25;performance]); 
% fclose all; 
 
fid=fopen('mse_Chirp_lm.txt', 'wt'); 
fprintf(fid, 'Nh\t Performance\n'); 
fprintf(fid, '%4.0f\t %f\n', [1:25;performance]); 
fclose all; 
 
%Plot the Perfomance 
figure; hold on 
plot(1:25, performance, 'b*-'); hold on; 
legend('Training_Error'); xlabel('Number of hidden layer neurons'); 
ylabel('MSE'); 
 
toc 
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