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ABSfkAGT

In communication systems, nonlinear adaptive filtering has become increasingly 

popular in a variety of applications SUch as channel equalization, echo cancellation 

and speech cbcling. However, existing nonlinear adaptive filters such as polynomial 

(truncated Voltefra series) filters and multilayer pefceptroiis suffer froftl a number of 

problems. First, although high Order polynomials can approximate complex nonlinear

ities, they also train very slowly. Second, there is no systematic and efficient way to 

select their structure. As for multilayer pefceptrohs, they have a very complicated 

Structure and train extremely slowly. • v

Motivated by the success of classification and fegressidri trees on difficult non

linear and nonparametfic problems, we propose the idea of a tree-structured piecewise 

linear adaptive filter. In the proposed method each node in a tree is associated with a 

linear filter restricted to a polygonal domain, and this is done in such a way that each 

pruned subtree is associated with a piecewise linear filter. A training sequence is used 

to adaptively update the filter coefficients and domains at each node, and to select the 

best pruned subtree and the corresponding piecewise linear filter.

The tree structured approach offers several advantages. First, it makes use of 

standard linear adaptive filtering techniques at each node to find the corresponding 

Conditional linear filter. ,Second, it allows for efficient selection of the subtree and the 

corresponding piecewise linear filter of appropriate complexity. Overall, the approach
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is computationally efficientand conceptually simple.

The tree-structured piecewise linear adaptive filter bears some similarity to 

classification and regression trees. But it is actually quite different from a 

classification and regression tree. Here the terminal nodes are not just assigned a 

region and a class label or a regression value, but rather represent: a linear filter with 

restricted domain, It is also different in that classification and fegressiOn trees are 

determined in a batch mode offline, whereas the tree-structured adaptive filter is deter

mined recursively in real-time.

We first develop the specific structure of a tree-structured piecewise linear adap

tive filter and derive a stochastic gradient-based training algorithm. We then carry out 

a rigorous convergence analysis of the proposed training algorithm for the tree- 

structured filter. Here we show the mean-square convergence of the adaptively trained 

tree-structured piecewise linear filter to the optimal tree-structured piecewise linear 

filter. Sdme new techniques are developed for analyzing stochastic gradient algo

rithms with fixed gains and (nonstandard) dependent data. Finally, numerical experi

ments are performed to. show the computational and performance advantages of the 

tree-structured piecewise linear filter over linear and polynomial filters for equaliza

tion of high frequency channels with severe intersymbol interference, echo cancella- 

tion in telephone networks and predictive coding of speech signals.
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INTRODUCTION  - 1 ;.-" ;

1.1 Introduction

Many problems encountered in communications and signal processing involve 

removing noise and distortion due to physical processes that are unknown and/or time 

varying [I]. These types of processes represent some of the most difficult problems in 

transmitting and receiving information. Adaptive signal processing and specifically 

adaptive filtering offers an effective approach for removing noise and distortion in 

signals, as well as extracting information about t h e  unknown physical process. 

Whenever there is a requirement to process signals that result from operation in an 

environment of unknown statistics, the use of an adaptive filter offers an attractive 

solution to the problem as it can usually provide a significant improvement in 

performance over the use of a fixed filter designed by conventional methods. In this 

chapter weintroduce adaptive filters and discuss some of their applications.

1.2 Introduction to Adaptive Filters

We first discuss the general filtering problem arid then examine the need for 

adaptive filters.



1.2.1 The Filtering Problem

TTie term ’’filter'’ is often used to describe a device in the form of a piece of 

physical hardware or computer software that is applied to a set of noisy data in order 

to extract informationabout a prescribed quantity ofinterestf 2]. The noise may arise 

from a variety of sources. For example, the data may have been derived by means of 

noisy sensors or may represent a useful signal component that has been corrupted by 

transmission through a communication channel. In any event, we may use a filter to 

perform three basic information-processing operations:

1. "Filtering", where the aim is to derive information about the quantity of interest 

at time t based On data measured up to and including time L

2. "Smoothing", where the aim is to derive information about the quantity o f  

interest at tim et based on data measured past timet.

3. "Prediction", where the aim is to derive information about the quantity o f  

interest at time t+x for some !  > 0, based on data measured up to and including

We say that tbe filter is ’’linear" if the filtered, smoothed, or predicted quantity of 

interest is a linear function of the noisy data or observations, as they are sometimes 

Called.-'v"""-:1 ;; ' : 1 ; . .v

In the classical statistical approach to the linear filtering problem, it is assumed 

that the jo in tsta tisticso fth e  usefulsignal andunwanted noise are known, and the 

requirement is to design a filter so as to minimize the effects o f noise according to 

some statistical criterion. A standard approach is to minimize the mean square value 

of the "error signal’’ which is defined as the difference between some desired response 

and the actual filter output. For stationary signals and observations, the resulting
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solution is commonly known as the Wiener filter [ 2].

1.2.2 Onear Adaptive Filters

In this section, we examine the need for adaptive filters, and for simplicity* we 

focus our attention on linear adaptive filters that have finite impulse response(FIR).

The design of a Wiener filter requires a-priori information about the statistics of 

the data to be processed. When this information is not completely known, it is not 

possible to design the optimum Wiener filter. This leads to the concept of adaptive 

filters. By such a device, we mean one that is self designing, in which the filter relies 

on a recursive algorithm to perforin satisfactorily in unknown environments. Figure I 

shows the block diagram of a general adaptive filter, x(k), y(k) and y(k) denote the 

input, output and desired signals of the adaptive filter, respectively. In this section the 

prOgraimnable filter in Figures I is assumed to be a linear FIR filter, and hence the 

elements of the vector o f coefficients c(k) represents the impulse response of such a 

filter at time instant k. The algorithm starts from a predetermined set of initial 

conditions representing complete ignorance about the environment. In stationary 

environments the algorithm should converge ideally to the optimal finite Wiener filter. 

In nonstationary environments, the algorithm offers a tracking capability, whereby it 

can track time variations in the statistics .of .the data, provided that the variations are 

sufficiently slow.

A wide variety of recursive algorithms have been developed in the literature for 

the training o f adaptive filters. The choice of one algorithm over the other depends 

upon several factors such as computational complexity, rate of convergence, 

misadjustment, robustness, and structure! 2].



Figure I . Block Diagram of a General Adaptive Filter



The simplest and most widely used recursive algorithmfor training an adaptive 

filter is the Least Mean Square (LMS) algorithm[3] which is based on the steepest 

descent method for finding the Wiener filter. Here the finite tapped delay line or 

transversal filter shown in Figure 2 is used as the Structutal basis for development of 

the algorithm. Theoutputofsuchafilteris givenby

■ ■ ; A L - I
y(k)=  2  c ( j )x (k -j )  = c'x(k)

: ' J=O;"; ; / ,.v.

where c=[c(0),...,G (L-d)J'is the vector oftap weights and x(k) = [x(k),...,x(k-L+l)]' 

is the input vector to the adaptive filter at time instant k. If x(k) and y(k) are jpindy 

wide sense stationary sequences, then the mean square error (MSE)

e = E {(y (k )-y (k ))2 }

is a constant convex function of c, and if the joint second order statistics of x(k) and 

y(k) are known, then e can be minimized over c analytically to yield the Wiener filter.

When the statistics of x(k) and y(k) are unknown, the tap weight vector can be
: ■ ■ ■ ■ ■ " '  ■.  ’ - ■■ "  ■ V' - . ' ■. . 7 '  . r :
sequentially estimated based on a training sequence using a stochastic gradient 

algorithm:

c(k + I) =  c(k) + |i(y(k) -  y(k))x(k) ( 1. 1)

where the gain parameter |i is a small positive number. Note that y(k) is evaluated at 

the current weight vector c(k) in the above recursion, i.e„ y(k) =  c(k)' x(k). This is the

LMS algorithm. If x(k) and y(k) are in fact jointly wide sense stationary, it can be 

Shown (under further suitable conditions) that c(k) converges to the Wiener filter in

the vapm and mean-square sense [2,3].

Several other recursive algorithms have been developed based PU the stochastic 

Newton method* (as opposed to the stochastic gradient method) and also the method 

of least squares[l,2,4,5]. The algorithms based on these approaches are

f  these algorithms are sometimes referred to as Kalman algorithms





computationally expensive, hut have a faster fate of convergence than the LMS 

algorithm. Hence these algorithms become useful whenever the rate of convergence 

is a critical factor. >

1.3 Modes o f Operation of Adaptive Filters

In this section we identify three basic modes of operation of adaptive filters [6]. 

We discuss these inodes in a relatively general context, which means that the 

unknown systems need not be linear nor time invariant and the adaptive filters need 

not be linear. \ r "

The first mode of operation of an adaptive filter is the direct system modeling 

mode shown in Figure 3(a), which is used for system identification[3,6]. In this 

mode, the adaptive filter is used to approximate the unknown system. Here, the time 

series x(k) is input simultaneously to the unknown system and the adaptive filter. The 

output Of the unknown system y(k) then becomes the desired output for the adaptive 

filter. In practice, there is normally additive noise associated With the unknown System 

which could be measurement noise and/or noise within the system itself. The 

adaptive filter is designed to minimize the error between the output of the adaptive 

filter, y(k), and the output of the unknown system, y(k), in some statistical sense.

The second mode o f operation o f art adaptive filter is the inverse modeling mode 

shown in Figure 3(b), which is used for channel equalization[7]. In this mode the 

adaptive filter is used to approximate the inverse of the unknown system. Here the 

time series x(k) is the input to the Unknown system. The output of the unknown 

system y(k) is the input to the adaptive filter, and the input to the unknown system 

x(k) is the desired output for the adaptive filter. Again, in practice there is normally
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additive noise present in the unknown system* The adaptive filter is designed to 

minimize the errorbetween the output of the adaptive filter, x(k), and the input to the 

unknown system, x(k), in some statistical sense.

The thiid mode of operation of an adaptive filter is the prediction mode shown in 

Figure 3(c), which is used in predictive Coders for speech and images[8]. In this mode 

the adaptive filter is used to predict data at time Mstant k based on data Observed upto 

tiine instant k -  T, for some T > 0. Here, the time series x(k) is delayed and input to 

the adaptive filter, and x(k) is the desired output for the filter. Adaptivity is required 

here since the data x(k) is usually nonstationary. Note that the predictive mode of 

Operation is a special case o f the inverse modeling mode where the unknown system 

M the inverse Mddefing mode of operation simply introduces a delay .

We note that when the adaptive filter is chosen to be fiheaf and FIR, the LMS 

algorithm discussed in the previous section can be used in each mode o f Operation 

with obvious changes in notation.

1.4 Applications of Adaptive Filters

Due to the ability of the adaptive filter to Operate effectively in unknown 

environments and also track the time Variations o f the input statistics, it has been 

successfully applied in such diverse fields as communications, control, radar, sonar, 

seismology, image processing and pattern recognition. In this section we briefly 

discuss three applications of adaptive filters drawn primarily from the field of 

communications, each representing a mode of operation described above.

Echo Cancellation : A practical example of the direct systeM modeling mode o f  

Operation is echo cancellation across the hybrid transformer used M telephone
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Modes of (Iteration of Adaptive Filters (a). Pireet Systeiti Modeling (b) 
Inverse System Modeling (c). Prediction Mode

Delay T

unknown
system

Adaptive
filter

Adaptive
filter

Adaptive
filter



networks [9] (see Figure 4). At any point in a telephone network, when a signal 

encounters a mismatch in impedance, a portion of it gets reflected as an echo. This is 

ahnpying to the speaker and in many cases completely disrupts the conversation. The 

deleterious effects of such echoes depend upon their strength, spectral distortion and 

delay. The main Source of echo in a telephone network is at the junction between the 

"two-wire" local subscriber loop and the "four-wire" Tong distance link called the 

hybrid. Wbenever there is a mismatch of impedance between the subscriber loop 

circuit and long distance Circuit, a portion of the signai ffom the transmitter reaches 

the receiver at the far end through the hybrid and this is called talker echo. One 

method of reducing the talker echo is to construct a filter in parallel with the hybrid 

which models the echo path across the hybrid. The echo can then be cancelled by 

subtracting the output o f the adaptive filter from the output of the hybrid. Since the 

characteristics of the echo path is unknown a-pripri and time Varying, an adaptive 

filter is commonly employed.

Channel Equalization : A practical example o f  the inverse system modeling mode of 

operation is the equalization of digital communication channel to combat intersymbol 

interference[3,6 ,7j (see Figure 5). Such a channel may be modeled by an equivalent 

discrete-time transversal filter with, additive. noiset?!. ;.;The digital signal which is 

applied to the channel is a sequence o f symbols taken randomly from a finite alphabet. 

If the equivalent discrete-time channel has finite bandwidth, each element of the 

channel ouqjut sequence will contain contributions from several input symbols. This 

is called intersymbol interference. The function o f the adaptive filter is to reconstruct 

the transmitted symbol sequence with a very low probability of error. An adaptive 

equalizer is usually trained by transmitting a predetermined sequence known to the



long distance trunk

2 wire

Subscriber
Loop

Transmitter

circuit

Hybrid

Receiver

Filter

Adaptive

Figure 4. Ecbo Cancellation Application

Received
signal

channel

Decision
DeviceFIR filter

Pijgure 5. Channel Equalization Application



receiver, prior to the actual data. Subsequent to this training period, it is still possible 

to track Slow variations in the channel characteristics'"by using the output of the 

decision circuit as a training sequence for the adaptive hltef/,^is.:iSf;-..know'n-as' a 

decision directed equsdizer[7].

Predictive Coding • A practical application of the predictive mode o f operation of an 

Adaptive filter is in the area of waveform coding of speech [ 5 , (see Figure 6). A 

prediction x(k) is made of the original process, x(k), from which the prediction error 

signal e(k) = x(k) -- x(k) is generated. A quantized version eq(k) of e(k) is then 

encoded and transmitted, The speech decoder located at the receiver computes 

x(k) =  x(k) + eq(k) based upon the (assumed errorless) reception of eq(k). It is easy to 

show that if both encoderand decoder predictors have the same initial conditions, die 

Only error in the reconstructed signal at the receiver is equal to the quantization error 

at the transmitter which can be made as small as possible. Since the error signal e(k) 

has a very small dynamic range, the number of bits required to represent it is much 

less than if  we had encoded the speech signal directly. Hence One can achieve a good 

compression ratio. Note (hat adaptivity in the predictor is necessary, since the speech 

signal is hpnstatiOna|y,

Other applications q f adaptive filtering in the field o f communications include 

adaptive spectral estimation, adaptive line enhancer and adaptive beam forming[2].

In the next chapter we demonstrate the need for nonlinear adaptive filtering and 

state some o f the problems associated with existingnonlinear adaptive filters. In 

Chapter 3 we propose a tree-structured piecewise linear adaptive filter to overcome 

the problems in existing nonlinear adaptive filters; In Chapter 4 we derive a Stochastic 

gradient based training algorithm for the tree-structured filter. In Chapter 5 we carry
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out a rigorous convergence analysis of the tree-structured piecewise linear adaptive 

filter, Wherein we show the mean square convergence of the adaptively trained tree 

structured piecewise linear filter to an optimal tree structured piecewise linear filter. In 

Ghaptet1 6 we apply our tree-structured piecewise linear adaptive filter as an adaptive 

equalizer, adaptive echo canceler and adaptive predictor for speech signals. In each of 

the applications, we compare the performance of the tree-structured piecewise linear 

filter with that of linear, second order Volterra and third order Vqlterra types of 

adaptive filters. In Chapter 7 we investigate the problem of automatically inspecting 

the geometry o f U fuel injector nozzle. Here we discuss the direct and indirect 

imaging techniques to accurately obtain the parameters that affect the spray process 

through the nozzle.

■vi, -

,



NONLINEAR ADAPTIVE FILTERING

2.1 Need for Nonlinear Adaptive Filtering

An adaptive filter is referred to as linear if the estimate of the quantity of interest

is obtained adaptively at the output as a linear combination of the available set of 

observations applied at the filter input [I]. An example of linear adaptive filter is the

transversal filter shown in Figure 2 in Section L2. Although linear adaptive filters are 

simply implemented, their performance is inadequate in a variety of applications. 

Nonlinear adaptive filters have been used as equalizers[7] when the channel induces 

severe intersymbol interference. Nonlinear adaptive filters have been used to identify 

nonlinear systems which occur in noise and echo paths in telephone networks [10-13]

and also digital satellite links where the satellite repetirer uses nonlinear devices like a 

Travelling Wave Tube(TWT)[14]. Nonlinear adaptive filters have also been used for 

nonlinear prediction of speech in the area of speech coding. Such nonlinear systems 

are typically modelled by a truncated Volterra series or by a Wiener or Hammerstein 

m odel[13,15-20]. Thus there is a general need for nonlinear adaptive filtering. In this 

section we illustrate in detail the need for nonlinear adaptive filtering in three

applications, namely channel equalization, echo cancellation and speech coding. We 

also discuss some of the existing nonlinear adaptive filters and point out the problems 

associated with each of them. In chapter 3 we propose a tree-structured piecewise 

linear filter which overcomes the problems associated with the existing nonlinear



adaptive filters.

The channel equalization application In Section 1.4 the use of an adaptive filter as a 

channel equalizer was discussed. In a bandwidth-efficient digital Communication 

system, the effect Of each symbol transmitted over a linear time dispersive channel 

(whose frequency response deviates from the ideal fiat amplitude and linear phase) 

extends beyond the time interval used to represent that symbol. Tiie distortion caused 

by the resulting overlap of received symbols is called "intersymbol ihtefferenee" (I$I) 

[7,21]. ISI increases errors at the receiver and hence the reliability of high-speed data 

transmission over low background noise is reduced. An adaptive equalizer is used to 

Compensate for the unknown time dispersion exhibited by the channel and to 

reconstruct the transmitted symbols[21-26].

For the equalization problem, it is common to assume that the channel is linear, 

bandlimited and corrupted by additive white Gaussian noise. For quality telephone 

channels, linear equalizers are Sufficient to combat the correspondingly mild 

However, for multipath radio frequency channels which have deep nulls in them 

spectral characteristics, nonlinear equalizers are necessary to combat the 

comparatively severe ISI [7,27]. The conventional reasoning here is that, when the 

channel has deep nulls in its spectrum, a linear equalizer is too constrained to both 

invert the channel characteristics and at the same time moderate the noise in the 

vicinity o f the dips in the channel response (and peaks in its inverse response). To 

illustrate the performance limitations of linear equalizers in presence o f severe 

intersymbol interference, we show in Figure 7 the amplitude spectral characteristics of 

two different kinds of channels, and in Figure 8 the probability o f error curves for a 

linear equalizer for these two kinds of channels. Figure 7(a) represents the spectrum
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of a typical data quality telephone channel, whereas Figure 7(b) represents spectrum 

of high frequency and radio frequency channels.

An alternative and more precise explanation of the need for a nonlinear equalizer 

can be based bh the fact that the ultimate purpose of the equalizer is to minimize the 

probability o f error. We shall give a simple argument that in the absence of noise, a 

linear equalizer of sufficiently large (but finite) length followed by a decision device 

can exactly reconstruct the sequence of transmittedsymbols, The argument can be 

extended to show that in the presence Of additive noise, the same receiver can estimate 

the sequence of transmitted symbols with arbitrarily small probability of error per

symbol as the noise variance tends to zero. Note that these results hold for FIR or HR 

channels; even when the channel is FIR and its inverse is HR, only an FIR equalizer is 

required.

Solet g(k) denote the impulse response fora noiseless channel and let G(z) be its

z-transform. Let h(k) denote the impulse response of the inverse channel and let

H(z)=l/G(z) be its z-transform. We assume that g(k) and h(k) are BIBO stable. Of

course w e can reconstruct the information sequence x(k) from the channel output

sequence y(k) using an (in general) IIR equalizer with impulse response h(k) (see Fig

9a). Suppose that x(k) takes on values +1 . We argue that in this case x(k) can be
*

reconstructed from y(k) using an FIR equalizer with some impulse response h(k) 

followed by a sign detector (see Fig 9b). To see this, fix L for the moment and let 

h(k) =  h(k) for k=-L+l,..,0,l,..,L -l and zero otherwise. Refering to Figure 9 we have

x(k) -  x(k) = 2  h(n) y(k -  n) +  £  h(n) y(k -  n)
n  =  -  <*» n = L

Since x(k) is bounded and g(k) is stable, y(k) is bounded. Hence since h(k) is stable
—-L o o '

sup f x(k) -  x(k) I < sup |y(m )| ( X  |h(n)| + X  I h(n) | ) - > 0  asL ->«> ,
k m „ = „ = i
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uniformly for all input sequences x(k). Consequently, we can choose L large enough 

such that supk I x(k) — x(k) I < I, and so x(k) = sign(x(k)) for all k as required.

Now for the case of additive noise, a modification of this argument shows that 

for large enough filter lengtii sup* P{x(k) *  sign(x(k))} —» 0 as the noise variance 

tends to zero. We remark that the length of the filter and the size of the noise variance 

that is required for the linear equalizer to perform well depends on how fast the tails 

of h(k) tend to zero. This provides a connection to the more heuristic argument that a 

linear equalizer performs well when | G(d“ ) | has no deep nulls : | G(e^“ ) | has no 

large dips when |H(ej®)| has no large peaks, which is essentiallytruewhenthetails 

of h(k) tend quickly to zero.

The above discussion provides some justification for using a linear equalizer 

provided we choose the filter length long enough and the noise is small enough; When 

either Of these conditions is not satisfied, a nonlinear equalizer is more appropriate.

Echo cancellation application >  In Section 1.4 the use o f  an adaptive filter as an echo 

canceller was discussed. Echoes are generated as a consequence of impedance 

mismatch betweenthe two-wire subscriber loop and four-wire long distance link at 

the hybrid junction of a telephone circuit The basic idea is to synthesize a replica of 

the echo and subtract it from the actual echo generated in the telephone circuit This is 

typically a system identification problem. Linear adaptive echo cancellers that have 

been proposed in the literature [9, 28,29] are based on the assumption that the echo 

path in the telephone circuit is linear and all o f them accept nonlinearity as an 

unCOrreCtable perturbation. Nonlinear echo paths arise in most practical situations due 

to two major reasons[13]. One is due to the mismatch in the compressor and expander 

characteristic and the other is due to the harmonic distortion in amplifiers and



repeaters, the characteristics of both of these anomalies being unknown. In many 

cases, these anomalies are of sufficient magnitude to degrade the performance of 

linear adaptive echo cancellers. The causes for nonlinear echo paths are discussed in 

further detail below.

A highly Simplified diagram of the interface between a four-wire digital line and 

a two wire analog line in a typical digital telephone network [30] is given in Figure 

10(a). The compander arid expander shown in the figure are used for the non-uniform 

quantization o f speech signals[5]. This is necessary to improve the signal to 

quantization noise ratio (which is the ratio of signal power at the quantizer input and 

the quantization noise power at the output) of the system. A typical compression 

characteristic is shown in Figure 10(b). This is a highly nonlinear characteristic autd is 

called the ji-law compression characteristic. At the transmitting end, the original 

speech signal is passed through a device with compression characteristic and then 

passed through an analog-to-digital(A/D) converter with a uniform quantizer to obtain 

the digitally encoded speech. At the receiving end, the output of the digital-to-analog 

converter(D/A) is passed through a device with expander characteristic which 

performs the inverse operation of compressor chanacteristic. The process of first 

compressing and then expanding a signal is referred to as "companding". A mismatch 

in the nonlinearities introduced by compressor and expander makes the echo path 

have a highly nonlinear characteristic.

Another source of nonlinearity in the echo path is the presence o f automatic gain 

control devices which have characteristics similar to the one in Figure 10(b). A 

further source of nonlinearity in echo path is the presence of large signal amplifiers in 

hybrid circuits(see Figure 10(a)). In practice these amplifiers have a S-shaped gain 

curve with linearity in the middle of the curve and this produces harmonic distortion.
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This causes extremely annoying echoes to be heard by the talker.

Thus nonlinear echo paths inherently exist irt the current telephone network and 

there is a need to cancel the echoes generated by these nonlinear paths whose 

characteristics are not known a priori. Linear adaptive cancellers can perform poorly 

in such environments and hence the use of nonlinear adaptive filters is more

. ' , ,

Speech coding application > For many classes of information signals, including 

speech; the value Of the signal at a given instant is correlatedwith its values at the 

previous instants and hence represents redundant information [31]. The nature of the

correlation depends on the manner in which the information signal was generated. An 

integral part o f signal analysis is to determine the nature of the correlation and hence 

reduce the redundancy in the signal by representing it by a small number o f  

parameters. This is especiallyuseful in communication systems where the existing 

channel capacity cannot accommodate the digitized speech without redundancy 

removal. Thus, instead of transmitting the digitized speech, the parameters

representing the speech are transmitted which requires considerably IeSS channel 

capacity. One o f the most popular analysis techniques for speech signals is the 

method of linear prediction analysis[32]. Over the last two decades, this method has 

become the predominant technique for estimating the basic speech parameters, e.g., 

pitch, formants, spectra, vocal tract area functions, and for representing speech for low

bit rate transmission or storage.

The basic idea behind the linear predictive analysis is that a speech sample can 

be approximated by a linear combination of pastspeech samples, By minimizing a 

suitable cost function of the error (e,g., mean-squared error) between the actual speech



sample and the linearly predicted one, a unique set of predictor coefficients can be 

determined which can be used to represent the parameters of the speech signal. This 

technique o f representing the speech signal by a set o f prediction coefficients or 

parameters is popularly known as Linear Predictive Coding or LPC [32-36]

Although LPC is well-established as an effective method for redundancy 

reduction in speech signals, its residual (defined as the error between the actual speech 

sample and the predicted output) still possesses a significant amount of redundancy 

and hence predictive component [37,38]. This is because the LPC technique is based 

on tile assumption that the speech production process can be modeled by an all-pole 

time varying linear filter. In reality, the speech production is inherently nonlinear and 

can best be represented by a nonlinear dynamical system [39,40]. Furthermore, the 

LPC technique assumes that the sound source ahd the vocal tract are two decoupled 

linear systems. In fact, it is the interaction between the source and the vocal tract 

which actually contributes to the built-in naturalness in the produced speech. It h as. 

been established that this source-tract interaction is a major source of nonlinearity in 

the speech production process [36,41,42].

Many different models have been postulated for quantitatively describing certain 

factors involved in the speech production [38-45]. It can fie stated with certainty that 

no single model has been developed which can account for all the observed 

characteristics of human speech. A highly simplified model of the vocal cord/vocal 

tract system is shown in Figure 11 [42]. A major source of nonlinearity in this 

simplified model is the presence Of the nonlinear glottal impedance Zg (representing 

the path o f source-tract interaction) which depends upon ihe glottal flow and area Ag, 

which in turn depend upon the self-oscillating properties of the vocal cord model. 

Linear predictors can perform poorly in terms of removing redundancy in such
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environments and 'hence nonlinear predictors are moreappropriate. Furthermore, since 

the speech parameters vary from person to person and the speech signal is 

nonstationary, adaptive prediction is necessary.

2.2 Existing Nonlinear Adaptive Filters and Their Shortcomings

In general, we expect a nonlinear adaptive filter to have the following desirable 

properties: simple structure and training algorithm: gOoti !performance (in terms of 

asymptotic mean-square error or probability of error and also rate of convergence); 

and uses established linear adaptive filtering techniques to the extent possible.

Several nonlinear adaptive filters have beeil proposed In the literature in a variety 

of applications. In this section we focus on nonlinear adaptive filters that have been

used for equalisation, echo cancellation and speech coding.

The decision' feedback equalizer (DFE) [6 ,7 ,46,47] is by far die most popular 

nonlinear adaptive equalizer. The DFE consists of two sections, a feedforward section 

and a feedback section. Both sections have structures similar to the linear transversal

filter shown in Figure 2. The input to the feedforward section is the channel output 

sequence and the input to the feedback section is the sequence o f previously detected 

Symbols. The output of the DFE is the sum of the outputs o f these two sections. 

Functionally the feedforward section is the same as that of linear transversal equalizer 

and the feedback section is used to cancel the ISI caused by previously transmitted 

symbols. The idea behind the decision feedback equalizer is that if  the previously 

detected symbols are correct, then the contribution o f these symbols to the ISI of the 

future arriving samples can be exactly cancelled; The output of a decision feedback 

equalizer can be expressed as



where

y(k) = y X  c(j) x ( k - j )  + X  c(j) y(k -  j) = V  z(k) 
j = -L +  I j=  I ' ■ i- ' ■

I=: [x(k + L -  ’ and

c =  [c(—L +  l) , . . . ,c (L -  I)]'. Here y(k) denotes the detected output at time instant k. 

The weight vector c  can be sequentially estimated based on a training sequence using 

the LMS algorithm analogously to (1 4 ) :

c(k + I) = 0 ) 0  +  it(y(k)- y(k))z(k̂ ^̂ ;̂  ̂ ;

Note that y(k) is evaluated at the current weight vector c(k) in (2.1), i.e., 

y(k) = cTk) I(k). In the

I =  [x(k + L -  I), ..,x(k),y(k-  l) , . . . ,y (k -L  + I)]'

training mode,

can be replaced by 

z 0= [x(k +  L -  I x(k),y(k -  l),...,y(k  -  L +T)]' in (2.1), Ih the fully adaptive mode 

y(k) is replaced by y (k) in (2.1). Although the decision feedback equalizer is widely 

used, it suffere ftom tw First, at low signal to noise

ratios(SNR), the decision feedback equalizer can feed back sufficiently many 

incorrectly detected symbols so as to seriously degrade its performance. Second, the 

decision feedback equalizer is limited in its ability to implement complicated 

nonlinearities; in fact the decision feedback equalizer btily differs frdm a linear 

equalizer with feedback in that the feedback filter contains the previously detected 

symbols which are quantized versions of the output o f the equalizer.

Polynomial filters [18,48] which i include linear and quadratic filters as special 

cases, can also be used as nonlinear adaptive equalizers. Polynomial filters can be 

viewed as linear filtere with an extended input space. The output of the polynomial

equalizer can be expressed as

y(k) = £  x  Mh. •. .  Jp)x(k-ji) > • • m  -  jp) = C^k)
• JJ =  I - L +  I S j 1 & • • • S j p 5  L  -  I :



where X(k) is a column vector o f  inputs x ( k - j j )  • • • x(k -  jp) and C is a column 

vector o f weights c ( j i , . . .  J p) (put another way, y(k) is a q-th order truncated 

Volterra series in the x(k)’s). The weight vector C can be sequentially estimated based 

on a training sequence analogously to (1.1):

C(k + I) = C(k) + p.(y(k) — y(k))X(k) (2.2)

Note that y(k) is evaluated at the current weight vector C(k) in (2.2), i.e., 

y(k)'^0(kV'X(k>.-;In:-:'-fhe fully adaptive mode x(k) is replaced by y (k) in (2.2). 

Apriori, a polynomial equalizer seems like an obvious choice for a nonlinear equalizer 

as it appears to possess the desired properties listed above. However, it turns out that 

although sufficiently high order polynomials can yield small asymptotic probability of 

error they will also in general converge very slowly. The properties of polynomial 

filters are further diseussed in Chapter 6.

Multilayer perceptrons [49] have also been proposed to be used as an adaptive 

equalizer, but they require enormous amounts of training arid have a complicated 

structure. .> .

Almost all the nonlinear adaptive filtering approaches tO echo cancellation that 

have been proposed in the literature make use of the discrete Volterra series 

representation to model the nonlinear echo path. Note that truncated Volterra filters 

are identical to the polynomial filters mentioned above. This approach has two 

problems. First, it is not clear which higher order terms can properly be neglected, and 

second, the convergence rate may be extremely slow. In [18], a Kalman filtering 

approach to a second order adaptive Volterra filter is proposed. This approach 

provides a faster rate of convergence, but is computationally expensive. In [10,12], 

echo cancelers based on the principle of "memory cancellation" or "look-up table"



have been proposed. These approaches do not account for possible time variations in 

the echo path response.

The nonlinear adaptive filters that have been proposed as adaptive predictors in 

the literature are the discrete Vblterra filters and the multilayer perception 

architectures[38,50]. The problems associated with these Hnds bf nonlinear adaptive 

filtet^ have been discussed above.

In the next chapter we propose a tree structured piecewise linear filter which 

overcome the problems associated with the nonlinear adaptive filters discussed above.



31

CHAPTER 3 ■;

TREE-jSTRUCTURED PIECEWISE LINEAR FILTER

A simple and logical alternative to the nonlinear adaptive filters described in 

Chapter I  is to build a piecewise linear adaptive filter such that the overall response of 

the filterapproximates the optimal nonlinear response. Figure 12 shows a piecewise 

linear filter characteristic with a scalar input. The filter we propose is adaptive in the 

sense that the number, length and slope of the linear segments get updated as new 

samples arrive.

A piecewise linear filter divides the input space into different regions and selects 

the best linear filter for those inputs belonging to a particular region. Thus the overall 

structure o f a piecewise linear filter is of the form shown in Figure 13 and may be 

described mathematically as follows. Let % denote the input space R l . Let 

Xi * %2» • * >Xn denote a partition of the input space into N disjoint regions i.e.,
N ■

% = u  Xi ’ Xi n  Xj = 0  y  Where i,j = 1,2,..,,N. Let L1 (k ),. , . ,  hN(k) denote
i =  I ■

the impulse responses of N FIR filters each of length L. If the input to the piecewise 

linear filter at the k-th time instant is x(k) then the output of the i-th filter at the k-th 

instant is given by

yi(k ) = LS  ^  (j)x (k -j).
j = 0

The overall output of the piecewise linear filter at the k-th instant is given by

y (k) =  E  9i (k) 1 &  (̂k) e  %i),
i = i



output

Figure 12. A Piecewise Linear Input Output Characteristic
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where x (k) = [x(k),...,x(k — L + I)]' and I(-) is an indicator function.

In the adaptive version 6 f  the piecewise linear filter, the domains Xi. the filters 

hj(k), and the nuniber of domains arid filters N keep changing as new samples arrive. 

In order to obtain the adaptation in an efficient manner, we adopted a tree-structured 

approach. We next describe in detail what atree-structured piecewise linear filter is. 

We start by briefly discussing some basic definitions and terminologies associated 

with a binary tree graph (see [51] for iriore details about tree graphs).

A (binary) tree can be defined as a finite non-eihpty set T of positive integers and 

two functions left(-) and right(-) from T to T \ j  {0}, which together satisfy the 

friHowirig^twO ^

(i) For each t e  T, either left(t) =  right(t) = O or left(t) > t and right(t) > t;

(ii) For each t e  T, other than the smallest integer in T, there is exactly one S e  T 

such that either t = left(s) or t =  right(s).

For each node t e  Tt left(t) and right(t) simply indicate the left and right nodes which 

branch out from t (or are both zero if  t is a terminal node).

The minimuria element of a tree T is called the root o f T, denoted by root(T). If 

s, 16 T  and t = left(s) or t = right(s), then s is called the parent of t and t is called an 

offspring of s. A node s is called an ancestor o f a node t if 

s =  parent(t) or s = parent(parent(t)) or • ‘ • . A node t is called a descendant of a node 

s if  s is an ancestor of t. The depth o f a node t is the number o f ancestors of t. A node 

t is called a terminal node if it is not a parent, that is, if left(t) = right(t) =  0. Let T 

denote the collection of terminal nodes of T. The elements in T - T  are called 

npn^nninal rickies.



For t '  nonempty 'of T -define Ifcft1 (•) and Tight1 (•) ftom Ti to T1 IsJ (O )

, ’ by Ieft1 (t) = left(t) if left(t) G T1, Iight1 (t) = right(t) if right(t) e T1 and 

Ieft1 (t) = Iight1O) = 0 otherwise. T1 is called a subtree of T if the triple T1, Ieft1 (•), 

Iight1O) forms a tree. Given t e  T, the collection Tt consisting of t and all its 

descendehts is called the branch of T stemming from t. It is a subtree of T.

A subtree T1 of T is called a pruned subtree o f T if IoOt(T1) =Toot(T), i.e., if T1 

and T share the same root node; this is denoted by T1 It ls  aeen that ^ defines a 

partial order on the pruned subtrees of a tree. A tree, a subtree and a pruned subtree 

are illustratedTn Figure 14.

To construct a tree-structured piecewise linear filter (or more precisely a family 

of piecewise linear filters) we start with a fixed binary tree T0, and for each node 

t e  T0 we specify a tap weight vector c^= [ct(0 ) ,. . .  ,Ct(L -I)]', an offset dt and a

threshold 0t (actually, there is no threshold 0t associated with terminal nodes t e  T0, 

and in many problems there is no offset dt for t = root(T0) ). We then associate a 

piecewise linear filter with each pruned subtree T <T0 as follows. Let x be an input 

vector, i.e., x e  % = Rt . Then each node t € T0 is associated with the linear filter

yt = ct'x  + dt,

and each pruned subtree T ^ T0 is associated with the piecewise linear filter

YT =  Yt..

where u  is the terminal node in T obtained by starting at the root node and using the 

rule

yt > 0t go toright(t)

Pt go to left(t)



subtree pruned subtree

Figure 14. A Binary Tree, Subtree, Prpned Subtree



Observethat this procedureimpficidy specifies the (polygonal) domain %t of the linear 

filter yt at n od et .We can ...y«ite

yT = yt if x e  Xt and t € f ,

i.e., Pt is just the output of the linear filter at node t if  t is a terminal node of T and the 

input vector x lands in t

A b weights ct, offsets dt, and thresholds 0t for a

family of tree-structured piecewise linear filters of length 2 is illustrated in Figure 15.

The family o f pruned subtrees generated by T0 and the associated partitioning of input 

space is shown in Figure 16. Note that there arc three piecewise linear filters 

corresponding to the three possible pruned subtrees, namely T= {I }, T= {1,2,3} and 

T= {1,2,3,4,5). The root node pruned subtree T={ I } corresponds to a linear filter:

v; 5  -  y { i )= y i

The pruned subtree T={ 1,2,3} with terminal n o d e s T = {2,3} corresponds to a 

piecewise linear filter comprised of two linear filters restricted to polygonal domains 

(one filter for each of the terminal nodes):

y(i,2,3j = p2 if  x e  X2

= h  i f x e  X3 ; .;■■■

Here the domains %2 and- Xs are given by %2 = ( x : pi ^ -0 .03} and 

Xs ~  ( x : pi > -0 .0 3 } . The pruned subtree T={1,2,3,4,5} with terminal nodes 

T =  {2,4,5} corresponds to a piecewise linear filter comprised of three linear filters 

restricted to polygonal domains (again, one filter for each of the terminal nodes):

y{1.2,3,4,5} =p2 ifxes '■ - - ^

= ?4 if X € X4



yi = .5x(k)- .6x(k-l) + 0.1

y3 = .3x(k) + .2x(k-l) + 0.53

y3 > 0.7 \  yes
y2 == .2Ix(k) + .8x(k-l) + 1.3

4̂ -  -05x(k) + . 12x(k-l) -  0.66 y5 = .lx(k) -  .28x(k-l) + 0.3

Figure 15. A  Tree-Structured Piecewise Linear Filter



Figure 16, Pruned Subtrees and Associated Partitioning of Input Space



ys i f *  ̂  %s

H e r e t h e ' ;.'dbrii^ns\;:'.^V3C4 ■ anc  ̂ Xs sr  ̂ given by %2 = ( x : Yi - -0 -0 3 } ,  

Ha  = {x : yi > -0 .03 , y3 < 0.7} arid Xs - I x  Vyi > -0 .0 3 , y i >  0.7). In general, it is 

seen that for any given pruned subtree T of T0, the corresponding piecewise linear 

filter is determined by the linear filters yt and polygonal domains Xt at the terminal 

nodes t€  T. Furthermore the linear filter yt is determined by the weights q  and 

offsets (It at the node t, whereas the domain Xt is determined by the weights Cs, offsets 

Cis andthresholds 0S at the ancestor nodes s of node t.

In the above description of a tree-structured piecewise linear filter we specified 

two parameters dt and 0t at each node which we referred to as the offset and 

threshold, respectively. It is an important observation that we cannot combine these 

parameters into a single parameter without restricting the structure o f the piecewise 

linear filters corresponding to the pruned subtrees. The point here is that the basic tree 

T0 along with tap weights Ct, offsets Clt and thresholds Qt actuallycorresponds to a

family o f piecewise linear filters, one for each pruned subtree T o f T0. The idea is to 

select the right-sizedpm ned subtree so as to avoid Oveffitfing the data (this is 

analogous to selecting the right number of linear segments in Figure 12); a major 

advantage o f the tree-structured approach is that the right-sized pruned Subtree can be 

selected efficiently (see Chapter 4). In order to allow enough flexibility to determine 

appropriate values for Ci, dt and 0t without knowing whether the node t will

eventually be selected as a terminal node, we allow both dt and 0t to be nonzero. We 

proceed by choosing C1 and dt to yield an appropriate filter assuming t will be selected

as a terminal node, and then Ghoose 0t to yield an appropriate split assuming I will be 

selected as a nonterminal node; details are discussed in Chapter 4.



"TRAINING k  TilEl-STRUCTURED PIECEWISE LINEAR EILlER

In the previous chapter we discussed the structure o f a tree-structured piecewise 

linear filter. In this chapter we specify training algorithms for adaptively updating the 

tap weight vectors, offsets and thresholds, and selecting a pruned Subtree and the 

corresponding piecewise linear filter.

Recall that we are considering a family of piecewise linear filters which are in 

one-to-one correspondence with the pruned subtrees of a basic binary tree T0. Let x 

be the input vector to the filter. Using the notation introduced in Chapter 3, each node 

t € T0 is associated with a linear filter

yt = Ct'x + dt ,

and each pruned subtree T ^ T 0 is associated with a piecewise linear filter

. y r = y u  > ■

where t* is the terminal node in T which is arrived at starting from the root node and 

using the rule

yt > 0t go to right(t) 

yt ^ ®t go to left(t).

(4.1)

Also recall that we write

y t = yt if  t € T and x e  Yt



We shall describe adaptive algorithms fof selecting suitable Ĉ , dt and 0t for

t e  T0, and also a suitable T < T 0, based on a sequence of training samples 

(x(k), y(k», k=0,l,..„ where x(k) & the input vector and y(k) is the desired signal at 

time instant k.

In the sequel, we shall derive our training algorithms under the assumption that 

x(k), y(k), k=0,l,..., are jointly stationary random sequences with (x(k), y(k)) jointly 

distributed like (x, yj. By appropriately selecting gain parameters, the tree-structured 

filter should be able to track sufficiently slowly varying nonstationary sequences.

When a training sample is presented to the tree-structured filter, it is used in two 

steps which we shall refer to as "tree growing" and "tree pruning". To start things off, 

the training sample is propagated down the tree. In the tree growing step the tap 

weight vectors, offsets and thresholds are updated at each node. In the tree pruning 

step, the selected pruned subtree and corresponding piecewise linear filter is updated.

More precisely, let £t(k), dt(k), 0t(k) be the selected values of ct, dt, 0t

respectively, and let T(k) be the selected pruned subtree of T6, based on the first k 

training samples (x(i), y(i)), i=0, I , ..., k-I.' NoW for t € T0 let

yt (k) = Ct(k)'x(k) + dt(k)

The k+l-th training sample (y(k), x(k)> is propagated down the tree T6 from root node 

to terminal rtode according to the rule

yt(k) > 0t(k) go to right(t) 

yt(k )< 0 t(k) gotoleft(t)

As the training sample propagates down the tree, the values o f £t(k), dt(k), 0t(k) are 

updated to £t(k+  I), dt(k +  I), 0t(k +  I), respectively, during the tree growing step, 

and then the selected pruned subtree T(k) is updated to T(k+1) during the tree pruning
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We shall specify optimization problems whose solutions are certain values of Ct, 

dt, and 0t which shall be denoted as q \  dt* and 0*, for t e  T0. We shall also specify

an optimization problem whose solution is a certain pruned subtree T* OfT0. We then 

describe the tree growing and pruning algorithms which recursively generate 

estimates Ct(It). Ot(k), 0t(k) and T(k) of , dt*, 0* and T* respectively.

We shall make use of the following notation. Let Xt (k) and x* denote the 

(polygonal) domains corresponding to the decision rule (4.1) with ct, dt, 0t replaced

by £t(k), dt(k), 0t(k) and Ct", dt*, 0t*, respectively. Also, for t e  T0 and T £ T0 let

yt (k) = Ct(k)'x(k) + dt(k)

9t  (k) =  yt (k) if t e  f  and x(k) e  x t(k) 

yt*(k) = Ct*/x(k) + dt*,

' Aj

/9 »

y f  (k) = yf (k) if 16 T and x(k) e Xt,

and

yf =Ct"x + dt*,

y-f = yf if t € T and x 6 Xt*-

It will be convenient to denote E{ • | x e  x*) by Et {-}, P{ • |x  e  Xt*) by Pt!*). and 

Covt {-,-} =C ov{ |x e  Xt*). i.e., Pt, Et and Covt denote the conditional probability, 

expectation and covariance given the input vector passes through node t, respectively.

We discuss tree growing and tree pruning in detail below. A summary of the 

overall algorithmTs givenin Figure 17.



Initialization:

^  ^depth(t) ’

Ci (O) = 0, dt(0) = 0, Qt(O) = O,

Update : '

Let (x(k), y(k)) be the k+l-th training sample.

Letyt(k) = Ct(k)'x(k) + dt(k)

Propagate the training sample from root node to terminal node according to 

yt(k) > 0t(k) go to right(t)

: :yt(k^^

If the training sample passes through node t

£t(k + I) = £t(k) + |i(y(k) -  yt(k))x(k)

dt( k + l )  = dt(k) + H (y (k )-y t(k))

0t( k + l )  = et(k) + p ( y (k ) -0 t(k))

Pt(k + D  = Pt(k) + 4(1 -  pt(k))

et( k + l )  = e,(k) + n < (y (k )-y t(k))2 - e t(fc» '

If the training sample does not pass through node t 

£t (k +  I) = CtOO 

dt( k + l )  = dt(k)

0t( k + l )  = 0t(k)

Pt(k + I) = pt(k) -  HPt(k) 

et( k + l )  = et(k)

Generate T(k+1) using the pruning algorithm.

Figure 17. Summary of Training Algorithm.



4.1 Tree Growing

We discuss the weight and offset adaptation, and the threshold adaptation

separately.

4.1.1 Weight and Offset Adaptation

Here we (inductively) define the optimal tap weight vectors c^ and offsets dt* for 

t e  T0, and specify algorithms for estimating them. Suppose that -c£, Cls*, 0S* are 

defined for all ancestors s of a node t e  T0 (and hence is defined). We choose et* 

and dt* to minimize the.qaean square error (MSE) between the true conditional filter 

output yt and the desired signal y, given that the channel output vector x passes 

through the node t, i.e„ we choose Cj* and dt* to minimize

eI = Etf (yt - y )  I

with respect to £t and dt.

We sequentially estimate the values and dt* based on the training sequence

using an approximate stochastic gradient algorithm :

£t(k+ l)  =  Ct(k) + p ( y ( k ) - y t (k)) x(k) IQt(k) 6̂  x t(k))» (4.2)

dt(k + l )  = dt(k) + |Ji (y(k)-^yt (k)) I(x(k) e  Xt(k))» (4.3)

where the gain parameter p  is a small positive number and Ot(Q) = 0 , 4t(0) -  0. Note 

that these are indeed approximate stochastic gradient algorithms for minimizing gt 

over £t and dt : the instantaneous gradient o f et with respect to £t (for example)
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evaluated x = x(k), y =  y(k) and Yt = Pt(Ic)

-(2/p*) (y(k) -  yt (k)) x(k) I(x(k) e  Xt )• However for large k, %t(k) should 

presumably be close to XV These approximations allow us to update the node 

parameters for all nodes in the tree with each training sample, i.e., it is not necessary 

to wait until the node parameters of all the ancestors of a given node have converged 

in pfder to update the given node parameters. Finally, note that in the fully adaptive 

mode, y(k) is replaced by y(k) = dec(yj^) (k)) in (4.2) and (4.3).

4.1.2 Threshold Adaptation

Here we (inductively) define the optimal thresholds 0t* for t e  T0, and specify
,V-'

algorithms for estimating them. Suppose that c* , d , , 0S are defined for all ancestors s 

of a node t e  T0 (and hence %* is defined) and also c^ and df* are defined (and hence

y* is defined). Let <J(t) = left(t) and r(t) = right(t). We proceed by showing that a 

partition x° (t) and x°(t) of %* is optimal in a certain sense, and then showing that 

X q(i) and X- t(t> approximate x°o<t) and X0r(I) rresPectIvely, in a .certain; serisfe for suitable. 

choice o f-0 f;

Suppose we require that the probability that the input vector x passes through 

iĝ visn node t is 1/2. This keeps the tree balanced. Suppose

we also require that the filter outputs yfl(t) and y ^  be easy to fit to the data over their 

respective domains %0(t) and Xr(t) in a suitable sense. A reasonable way to implement 

this is by choosing Xo(t) and Xr(t) to minimize the mean conditional variance of the 

desired signal y given only the knowledge of whether the channel output vector x 

passes through node 0(t) or r(t), given that it passes through node t. Let be the O-



field generated by the events fx  e  } aiid. {x ^-(t))* To condition o n i s  to know 

whether x passes through i (t) or r(t). Formally, for each node t e  T0 — T0 we want to

(4,4)

munmize

Et {V a r ly l^ } }

over partition %9(t) and Xr(t)Of Xt subject to the constraintthat

Pt (x s  Xo(t) } = Pt {x e  Xkd ) = y  • (4.5)

In the Appendix (Section 4.4) it is shown that the partition 

f  & : l ( y  i i  = |}  -B tty j $  0}, X°m = { | e & :  E{y |x - § }  - E tIy] > 0} in fact
A r, 'Al''-* "A -L..'I."-:-. •- Ihsihiriiizes (4.4), provided it satisfies (4.5). Note that E {y |x }  is a conditionally 

unbiased estimate of Et(y}» i.e., Et {E{yjx}} = E J y ]. Hence it is reasonable to
.V . . .  ■ . . .  :: ■ '. ; - - . .  ■ ■ -  . ■ ■

believe that x° (0 and X°r(t) wifi approximately satisfy (4.5). Now we know that yf (x) 

is the optimal affine estimator o f y based on x in the MSE sense and Efy |x ) is the 

optimal nonlinear estimator of y based on x in the MSE sense. Put another way, y*(xj 

Is a wide sense version of E {y |x }  (see [52]). Hence we can interpret X  ̂(t) and x*(t) 

as wide sense versions o f x°o(i) and X % , respectively, i f  we take 0* = Et (yj.

The conclusion of the above discussion is that it is reasonable to take 0t* = Et {y}. 

Now 0t* will (trivially) minimize the cost function

A = Et{ (0 t - y )2 )

over 0t. We sequentially estimate the value of ©A based on the training sequence using 

M approximate stochastic gradient algorithm :

0t(k + I) = 0t(k) + (y(k) -  0t(k)) I(x(k) <= Xt(k)) (4.6)
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where the gain parameter pi is a small positive number and Gt(O) -  O. Note that this is 

indeed an approximate stochastic gradient algorithm for minimizing Ott over Gt : the 

instantaneous gradient o f  Ott with respect to Gt evaluated at x  -  x(k), y = y(k) and 

Gt = Gt (k) is —(2/p* )(y(k) -G t (k)) I(x(k) e  % t) However for large k, %£(k) should 

presumably be close to %t*. As with the tap weight and Offset adaptation these 

approximations allows us to update the node parameters for all nodes in the tree with 

each training sample, i.e., it is not necessary to wait until the node parameters o f all 

the ancestors Ô  a given node have converged in order to update the given node 

parameters. The validity of these assumptions are verified by analysis (Chapter 5) and 

numerical experiments (Chapter 6), Also note that the Offset adaptation (4,3) is 

different from threshold adaptation (4.6). This is consistent with the need for both of 

the parameters dt and Gt corresponding to the uncertainty whether node t will 

eventually be selected as a terpainal node, as discussed in Chapter 3. Finally, note that 

in the fully adaptive mode, y(k) is replaced by y(k) = dec(yT(k> (k)) in (4.6).

4 ,2 T reeIfrUrting f  cv.:-

Here we defme an optimally pruned subtree T* O fT 0 and specify analgorithm  

for estimating it. We choose T* to minimize the mean square error (MSE)betweenthe 

Optimal piecevtise linear filter output y f  and the desired signal y, Le., we choose T*to

m inim ize

ff  =EiIyf-V)3)

over all pruned subtrees T Of T0. Note that we can decompose &r as

st = E  C p ‘
t G T
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where

and

e' = Rt{c'y?-y> I

Pt" = P ( i«  Xi h

as before. Let et(k), pt(k>denote estimates of e* and p* , respectively, based on the 

first k training samples. We estimate T* by the pruned subtree T(k) which minimizes

the "estimated" MSE

M kj = I  £t(k)pt(k)
■■ Jlt e T

over all pruned subtrees T of T0. This approach avoids overfitting the finite amount of 

data used for training up to time k. For small k, T(k) will typically be the root node of 

T0, corresponding to a linear filter being optimal for small data sets; for large k, T(k) 

will usually be a nontrivial pruned subtree of T0, corresponding to a piecewise linear 

filter being optimal for larger data sets. We next derive the estimates of pt(k) and 

et(k).

First observe that p* will (trivially) minimize the cost function

Pt= E{(pt -  I(x e  Xt*))2 }

Ovet pt. We sequeiitially estimate the value of p* based on the training sequence using 

an approximate stochastic gradient algorithm

PtCk-Hl) = Pt(Ic) -H |i(I(x(k) e Xt(k)) -  pt(k)> (4.7)

Where the gain parameter jjl is a small positive number and the pt(k)’s are initialized to

the probabilities of a balanced tree,

Pt(O) *
I

2<iepth(t) \ !r'-, ■:>,



Note that if  |J. < I then pt(k)’s are valid probabilities, i.e., 0 < pt(k) <1 for all t e  T0 

and g -pt (k )=  I for all T < T0. Also note that this is indeed an approximate

stochastic gradient algorithm for minimizing Pt with respect to pt: the instantaneous 

gradient o f Pt with respect to pt evaluated at x =x(k) and Pt == Pt(k) is 

-2(I(x(k) € X i) -  pt(k)). However for Iafge k, %t(k) should presuhaably be close to

Now e* will (trivially) minimize the cost function

Yt = Et{(et - ( y t* - y ) 2)2 } 

over et. We sequentially estimate the value of et* based on the training sequence using 

an approximate stochastic gradient algorithm:

et(k+l) = et(k) + \i ((yt(k) -  y(k))2 -  et(k)) I(x(k) e  %t(k)) (4.8)

where the gain parameter p. is a small positive number. Note that this is indeed an 

approximate stochastic gradient algorithm for minimizing yt over et : the 

instantaneous gradient o f with respect to Zt evaluated at x =  x(k)r y -y (k ) , 

9t = y*(k) and Et = et(k) is -(2 /p t*) ((y?(k) -  y(k))2 -  ^(k)) I(x(k) €  Xt*). However 

fof large k, yt (k) and Xt (k) should presumably be close to y t* (k) and %*. respectively. 

In the fully adaptive mode y(k) is replaced by y(k) =  dec(yr(k) (k)) in (4.8).

Given pt(k), et(k) for I e  T0, the following simple and efficient algorithm 

generates T(k) from T0 (see Chapter 3 for tree notation).



4.2.1 Pruning Algorithm

Assume Tp has M nodes ti < t2 < ...<tM. Let d(t) =  left(t) and r(t) =  right(t) for

t ? Tpv

T - T 0

for t = tM, ti 

{ i f  T Iheni 

5t = et(k)pt(k)

.,,.if; t €  T -  T then ■

{ 5t — So(t)

if Et(k)pt(k) < St then

{ T  ^  T  "  (To(t) U  T r(t)) 

<?<t) ^  p, r(t) P 

St =  EtCk )pt(k>}}}

T(k) =  T

The pruning algorithm described above is essentially a bottom-up algorithm that 

starts from the terminal nodes and proceeds up the tree, pruning away branches. The 

pruning algorithm actually generates the smallest optimally pruned subtree, i.e., if  T  

also minimizes Et (Ic) over T < T0 then T(k) < T . The existence and the properties of 

smallest optimally pruned subtrees are discussed in [51]. Yaiipus pruning algorithms

(including the one mentioned above) have been nsed to design tree-structured 

classifiers[51 ,53] and vector quantizers[54,55].



4.3 Implementation Issues and Remarltsi

(1) Observe tii^t ^ k ) ,  dt(k), 0t(k), pt(k) and Et(Ic) are computed recursively and

must be updated with each training sample. However, T(k) is not computed 

recursively and in fact need not be computed in the training mode. In the fully 

adaptive mode T(k) need only be computed when it is reasonably thought to 

have changed significantly.

(2) It makes some heuristic sense to Scale the gain parameters p. in the update 

equations for £t(k), dt(k), 0t(k) and et(k) so as to compensate for the unequal

probabilities that a training sample passes thrtiugh a particular node. Note the 

factor 1/p* multiplying the instantaneous gradient of the cost functions leading 

to these update equations in this regard. One choice o f nonadaptive scaling 

would be to replace |i  by p/2“dep* (t); a choice of adaptive scaling would be to 

replace \i by |i7pt(k+l) (we scale by l/pt(k+l) instead of l/pt(k) because if 

x(k) e  cstk then pt(k+l) > p and the gain (j/Pt(k+l) is bounded).

(3) We have assumed above that x(k) and y(k) are real valued. Suppose now that 

x(k) and y(k) are complex-valued. In this case it can be argued that the binary 

tree should be replaced by a quaternary tree, Le., a tree in which each node has

four offspring. Let leftl(t), left2(t), rightl(t) and right2(t) denote the four 

offspring of node t on such a tree. The training sample (x(k), y(k)) is now 

propagated from root node to terminal node according to

M y t (k)] < Re[0t(k)], Imfyt (k)] £  lm[0t(k)] go to leftl(t)

Re[yt (k)] < Re[0t(k)], Im[yt (k)J > lm[0t(k)] go to left2(t)

Re[yt (k)] > Re[0t(k)], Im[yt (k)] ^ lm[0t(k)] go to rightl(t)
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Refyt (k)] > Re[8t(k)], Imfyt (k)]> Im[0t(k)] go to right2(t) 

where Ref*] and Imf-] denotes the real and Inmginary parts of the argument, 

respectively. The remaining changes to the training algorithm are obvious and 

we omit the details.

(4) The tree-structured piecewise linear filter described above may be modified into 

a tree-structured piecewise nonlinear filter by replacing the linear filter at each 

node by a nonlinear filter. For example in the channel equalization application, 

a tree-structured piecewise linear equalizer may be easily modified into a trce- 

SfiTietured piecewise decision feedback equalizer by replacing fire linear 

equalizer at each node by a decision feedback equalizer. Thus the input vector

x (fi)«  [x(k),...,x(k -  L +1)]'

is replaced by

z(k) ^ [x(k+ L),...,x(k),y(k -  l),...,y(k -  L)]'

Mltfiftrainingm

z(k) ^ ---- I-)]'

in the fully adaptive mode where y(k) = dec(yT(k) (k)).

(5) We point out that the basic tree T0 should be chosen as large as possible subject

to hardware constraints. The pruning process will always select the right-sized 

subtree and corresponding piecewise linear filter. A dedicated hardware can be 

configured to implement the tree-structured filter. The choice of a large basic 

tree does not pose memory problems since the record associated with each node 

occupies only a few bytes. With additional memory and a separate processing 

unit allocated to each level o f the tree it is possible to configure a parallel 

architecture which allows samples at different levels o f the tree to be processed

simultaneously. Due to the sequential manner in which samples traverse the



tree, only one of the nodes at a particular level o f the tree is processing an input 

sample at any point in time. Hence, all that is required by this parallel 

configuration is to be able to process the input sample at just one node within a 

symbol interval. Thus the proposed tree-structured filter can potentially be used 

in high data rate applications.

The tree-structured piecewise linear adaptive filter was motivated by the 

successful application of classification and regression trees to difficult nonlinear 

and nonparametric problems[51]. However, although our tree-structured filter 

bears some similarity to classification and regression trees, it is actually quite 

different from a classification and regression tree. Here the terminal nodes are 

not just assigned a class label or a regression value, but rather represent a linear 

filter with restricted domain. It is also different in that classification and 

regression trees are determined in a batch mode offline, whereas the tree 

structured filter is determined recursively in real-time. On the other hand, like 

classification and regression trees, our procedure does perform a sequential, 

hierarchical partitioning of the input space. Also a pruning algorithm is used to 

obtain a right-sized tree, i.e., a tree which neither underfits nor overfits the data.

4.4 Appendix

Let y and x be scalar and vector (R l ) valued random variables, respectively. Let 

X, Xi and %2 be Borel subsets of R l with Xi VJ Xi = X and Xi P i X2 = <t>» and let tJ  be 

the c-field generated by the events {x €  X ih  ( x e  Xi)* In die sequel, it will be 

assumed that all quantities are conditioned with respect to x e  X- L is required to 

minimize E {V a r{y |y }}  over Xi and %2 subject to the constraint



P{ x e  X1 } = P { x e  Xa }= 0 .5 . We shall show that Xi0 = (^ : E{y |x  = %} >E {y}},

Xa0 *■{§: EfyJx = S) <E{y)J, solution (assuming that

P{ x s  X 10 } = ?{ x e  Xa0 ) =0.5). L et^f0 be the cr-fie ld  generated by the events 

{ x e  X i°}, { x e  X20 )-

We want to show Ef Varfy |yK )>E {V ar{y  R o m theidentity

E{Var{y ) K= Var{y} -  Var{E{y |^ } }

it is enough to show that V a r fE fy iy )) :£ Var (E fy l^ 0 )) . Let 

g ( §  = E { y |x = | } - E { y ) .  Note that X 10 = fS : g (S) > 0 ), X a° = {^: g (J)^O ). 

Hence

Y ^ f E f y i ^  — E fyj )2}

= E {(E {E {yi2t ) - E { y } |y ) ) 2 } 

= E{(E{g(x) |y } ) 2}

-  ■£■ (E{g(20 I Xe XiK)2 Pt Xi )
i ZZ I

=  £  (E{g (x )I(x e  Xi)))2 P{ x e  X r F 1
i = l

= 2 Z  (EIS (X)KiS Xi))):
i  =  I

since P{ x e  Xi } =  0.5 i -  I, 2.

It is enough to consider the following two cases (the other two cases are similar)

(i) E {g(jt)I(x«i Xi)) > ° »  E {g (x )I (x e  Xa)) > 0

(ii) E{g 0 0 1(x e  .Xi)) > 0» E fg QO I(x s  Xa)) ^ 0
; K.



In the first case we have

V a r {E { y |y } } = 2  £  (E {g (x )I (x e  Xj)})2
^ V :; i = l  - y •;

2 ;
^ 2 2  (E {g (x )I (x e  Xi, g ( X )  >0)})
y :■ ia t: " y y  i-v: ŷyyv'::'

^ 2 ( X  E {g (20I (x e X i,g (x )> O )})2
i = l

= 2 (E{g (x) I (g 00  > 0) })2

-  2 (E{g (x) I (x e  Xi°)})2

.2

< V a r {E {y iy ° } }

In the second case we have

V a r {E { y |y } }= 2  £  (E fc fe ) I fe e  Xi)))2 
I= 1

£2[(E {g(20I(xeX i,g (x)> O )})2

+ (E{g C2L> I(x e  %2, g (x) <0)})2]

£  2 [(E{g (x) I (g (x) > Q)})2 + (E{g (x) I (g (x) < 0)})2]

= 2 X  (E(g (x) I (x e  Xi0)))2
i= i

= Var {E{y|-Sr°})

(in the above cases we have used the fact that if  E {Z } ^ 0  then 

(E{Z})2 £ (E {Z  I(Z^O)))2, and if  E(Z) ^ 0, then (E{Z))2 <S(E{ZI(Z£0)})2). Hence 

Xi0, X2° do in fact have the asserted optimality property.



ANALYSIS OF THE TREE-STRUCTURED 

PIECEWISE LINEAR ADAPTIVE FILTER

the asymptotic (large time) behavior of the training 

algorithm for the tree-structured piecewise linear filter described in Chapter 4. A

fundamental difficulty arises because the training data at a  non-root node depends on 

the unconyerged parameters at its ancestor nodes. Hence the training data at a non

root node filter has a complex nonstationary and dependent character, even with the 

assumption of i.i.d training data to the overall tree filter. A further difficulty in 

analyzing the tree filter is the interaction between the tree growing and tree pruning 

steps.

To sec more precisely the difficulty in analyzing the training algorithm for the 

tree-structured filter, consider the update equation for c t(k) (see (4.2)). This is a

standard LMS algorithm with training data {x(k)I(x(k) 6 3̂ (k)), y(k)}. Note that the 

domain ft (k) depends on the parameters Cj(k),d,(k) and 0s(k) at the ancestor nodes s pf

node t, and hence on (x(i), y (i): I < k}. Thus the training data for a non-root node filter 

{x(k)I(x(k) e ft(k)>, y(k)} is indeed nonstationary and dependent even under the 

assumption that the training data for the overall tree filter (x(k), y(k)) is i.i.d.

There is a large body of literature on the convergence analysis o f LMS and 

LMS-type algorithms with fixed gains and dependent data [56-60], Consider the 

standard LMS algorithm

£(k + l)  = c(k) + n(y(k)~y(k))x(k)
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For data with finite memory (i.e. M-dependent data) quasiconvergence of the weights 

and outputs to the optimal Wiener solution in quadratic mean has been shown 

assuming only the existence of certain moments of the inputs and outputs[59], For 

data with infinite memory (e.g., general strong mixing or asymptotically tineorrelated 

data) similar convergence results have been obtained but require bounded 

weights[60]. The actual algorithm that is analyzed in the latter case is a projected 

version of the LMS algorithm which takes the form

c(k + I) = P(c(k) + p(y(k) -  y(k))x(k))

Here the operator P : R l S projects the weight vector into a bounded region S 

whenever it attempts to leave S.

Now consider the tree-structured filter with i.i.d training data. As mentioned 

above, even with this assumption the training data at a non-root node filter is both 

nonstationary and dependent. Furthermore, it has infinite memory and does not 

obviously satisfy any of the standard dependence models (like strong mixing). The 

actual algorithm that shall be analyzed here is derived from a penalized version of the 

LMS algorithm which takes the form

c(k + I) = ( l - |iv)c(k) + ji(y(k) -  y(k))x(k)

The parameter jiv can be viewed as arising from the penalty cost function 

E {(y -y ) } H- jxv~ 1 IcI2. The advantage of the penalty versus the projection approach 

for our problem is that it is much easier to implement and analyze, and does not 

require prior knowledge of what region the optimal solution lies in. We are not aware 

of any literature on penalized LMS algorithms of this type.
/ / 3 , , ... ; ' \  - : ’;’’ V i.\ ‘ I' .v v;-:' O;.'; ■ • ..V ’ ■ ■

Hence the actual training algorithm for the tree-structured piecewise linear filter 

that we shall analyze takes the form (compare with (4.2), (4.3), (4.6), (4.7), (4.8))

£t(k+l) = (1 -J iv)ct(k) + ji(y(k) -  yt(k))x(k)I(x(k) e &(k))

dt(k + 1) = (I -  sxv)dt(k) + p.(y(k) -  yt(k))I(x(k) e xt(k))



> I * » «  <1 —.^ i^ c ic )  + ,^ < k >  -  "

etd c+ l) =  (I  - HvJetOc) +  n ((y (k ) -  yt(k))2 -  ^(kpC xC k) ^  Xt(Ic))

P t(k+1) =  Pt(Tc) +  |i(I (x (k ) e  Xt(Ic)) -  Pt(Ic))

Otherwise tree growing and pruning is exactly as described in Chapter 4. Note that the 

update equation for pt(k) is unchanged here since ptOe) is bounded a.s.

We shall make the following assumptions :

(A l) (x(k), y(k)} is an i.i.d random process with (x(k), y(k)) jointly distributed like

■ & y)' V - ‘ ■' .

(A2) a'x has a bounded density function for all a *  Q 

(A3) x and y have finite eighth order moments

Remark : To avoid trivialities we shall also assume pT > Qr Covt {x} > Q, Covt {x,yj * 0  

forall t G T0, so that all o f the tree parameters are well defined. In view of (A2) this is 

equivalent to just assuming

Covt{x,y} ^Ofbr all t e  To.

This can be proved by induction on the levels of the tree. Indeed, suppose for node t 

that pi > 0 and Covt{x} > 0, Then ct* =Govt(X)^1 Covt {x,y} * 0  and so y*t = c*'x + dt* is

a continuous random variable. Also Et {y*} =Et Iyj=Qt*. It follows that 

Pt{y* < 0t*} e (0,1) and sp P»* > 0  for s—f(t), r(t). Since a'x is continuous for all a * 0 , 

Govs {xj > 0  for s *=«(t), r<t).

We shall prove the following theorem.

T h eo rem l: Assume (A l)-(A 3) and I < v <  I + (1/5) 4“depU>(Ta).Then
.. •

where

limsup E{(yT(k)<k) -  yV  GO) } = Oflxot) as jx -» 0 ,
k-»«»

a = | ( l - v + i 4 - W ) ,



The theorem asserts that there is quasiconvergence of the output of the selected tree 

filter yT(k) to the optimal tree filter yV in quadratic mean. Note that the theorem 

specifies that the output MSE is asymptotically upper bounded by a ConsLpa where 

a  < I and depends on the depth of the basic tree T0; this is in contrast to linear filtering 

which yields an upper bound const.p[2]. Also note that the theorem does not specify a 

stability bound on p; this is again in contrast to linear filtering where stability bounds 

on p (involving the eigenvalues o f the input autocorrelation matrix) can be readily 

determined[2].

The training algorithm for the tree-structured piecewise linear filter consists of a 

collection o f coupled difference equations at the nodes of a binary tree. Our approach 

to proving Theorem I is to perform an order analysis of these difference equations at 

the successive levels o f the tree. As will be seen in the sequel, there is an interesting 

interplay in the analysis between boundedness and convergence.

The proof o f Theorem I is based on the following two theorems.

Theorem 2 : Assume conditions of Theorem I. Then for T < T0

limsupE(Cy-rOO) } - 0 (p1-v) a s p —*O
k

limsupE{(yT(k)- yrOO) } = 0 (pp) a s p -» 0■ k■:—*<*» -v. ...

(5.1)

(5.2)

where

(3= d . ( i _ v +4
A*

-  depth(T.)
)

Theorem 3 : Assume conditions of Theorem I. Then for T <, T0

limsup P(Etoc) >,e*r I =*. GKp *̂) as p O
k



TTieorem 2 asserts bounds and convergence For the tree-structured filter yT for a fixed 

pruned subtree T of TovThis theorem is concerned with tree growing and is proved in 

Section 5.1. Theorem 3 asserts the convergence of the MSE e too o f  the selected tree 

filter y toc) (with T(k) considered as Axedt ) to the MSE eV of the optimal tree filter
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yV • This theorem is concerned with tree pruning and is proved in Section 5.2.

Assuming Theorems 2 and 3 are true, we prove Theorem I as follows. Here and 

in the sequel Ki, K2,... denote positive constants whose values can change from one 

proof to another.

ProofofTheorem l : We have

E{(jT(k)(k)-yV(k))2} =E{(yT(lc)(k )-y V (k ))2 I(ex(k) V )} (5.3)

+ E {(YT(Ic)Oc) -  yV  (k)) I(e*T(k) > c V ))

Now if e jot) = £*r then it is not hard to see that y tooOO = y r  OO- Hence using Theorem

2 ' ':'v ' - . ■ V  '■ ' v-’

E((^lxiC)Oc)-y V (k ))2 Kexoe) = e*r)}'5Kt'max E{(yT(k)-yV (k))2}
- TST0

= 0(pP) (5.4)

as k «  and jj. —̂ 0. Also using Holder’s inequality and Theorems 2 and 3

E((^Txk)Oc)~ y V 0c))2 Kexoe) >«V )}

< K2 (E(^T0c)Oc))4}1/2 + E((yV(k))4}m ) P(eVoe) > e*r }1/2 

S K3 (max E((yx(k))4}1/2 + 1) PfeVoc) > eV   ̂ .

= 0 (p(1"v)/2) 0 (|Xp/4)

2
t  i.e. e T(Ie) = E{(yx(k)Oc)-y O c)) lfk )  where is the o-field generated by 

(xO), y (i): i < k}



OOiet) (5.5)

aS k-»«> ando--» ^Gpmbining (5.3)-(5,5)^pmplete^ ̂  □

The proofs of Theorem 2 and 3 in the sequel will be simplified by assuming 

dt(k) = dt* = 0. We can do this without loss of generality by considering the augmented 

vectors c t(k) =  (c t(k)', dt(k))', ct = (c* \ d,*)'. There are a few details to be checked here 

but we omit further discussion for brevity.

Also we shall frequently refer to the following fact about linear difference 

inequalities which we state here for convenience and without proof.

Fact: Let {§k} be a sequence of non-negative numbers which satisfies 

::};:::lk+l#fl a(p) + Pk(0))£k + ^ (p .).k  = 0,l.... 

for some functions oOO, Pk(O), Tic(O), 0  > 0. Let

P(O) = limsup Pk (0)>

y(0) = limsup Tk(O)-

Ifliminf^Xo <*(0 ) > 0, Iimsupti _*0a(O )< l and p(p.) = o(a(p)) asp. -» 0,then

iiF T S  ^k = 0 ( ^ ' ) ^  t * 0

(5.6)

(5.7)

(5.8)

Reniark : If the convergence in (5.6), (5,7) is uniform (in |x) then so is the Convergence 

in (5.8). Furthermore, if limsup in (5.6), (5.7) can be replaced by sup, then

= + 1) asO

. V .,x :"- • - •'' ' X , ;
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5.1 Analysis of Tree Growing : Proof of Theorem 2

To establish Theorem 2 it will be seen that it is necessary to obtain good 

estimates on the deviation between the true and desired domains where the linear 

filters are active at each of the nodes. This will require good estimates o f the absolute 

as well as quadratic weight errors. This will in turn require good estimates on the 

second and fourth order moments of the weights.

We will make use of the following Lemmas. It will be convenient to define

l t(k) = I(x(k)€ Xt(Ic)), 

l*(k) = I(x(k)6  Xi).

and

Zt(R) ^ IlCk) - l t*(k>.

Lemma I : For t e Tb

UmsupEf |c t(k) | 4 +(0t(k))4} =0(p.lT' v) as p.—» Q (5.9)■ k ■

Lennna2

where

Lemma 3

F o rte  T0

limsup E{ |Ci(k) -  ct* 12 + (0t(k) -  0t*)2} = O(P t̂) as p. - » O

2

F o rte  T0

(5.10)

lim supE{ ICt(Ic)~ c t*| +  10t(k)- 0t* | } =  QQi*) a sp .- » 0  (5.11)

where
■ t*:t



Yt = Y  (4-  dep!h(t))

Lemma 4 :  For t e T0

limsup E{ |zt(k)| } = O(Ji21i) as Ji 0k-»« (5.12)

l&maric : Note that jZt(k)j= I(x(k)e Xt(k) AxT) where A is the symmetric difference 

operator. Hence E{ | Zt(k) | } = P{x(k) e Xt(k) A xT} is the domain error mentioned above.

Lemmas 1-4 are proved below. Assuming these lemmas hold, we prove Theorem 

2 as follows.

First consider (5.1). We have using Lemma I

E{(yT(k))4} = E { (  £  yt(k) l t(k))4} 
t e  f

v S K 1 max E{(yt(k))4}
t€ T.

SK 1 maxE{ |x |4} E{ |c t(k)|4}
te  T4 

1 -v v:0 (jr ~ v)

as k «»and p. 0, as required.

Next consider (5.2). We have using Holder’s inequality and Lemmas 2 and 4

E{(yT(k)»y*T(k))2}=E{ ( 2  (yt(k) lt(k)-y*(k) lt“(k)))2 }
■ t e f  ■■■ "■ ’ -

SK1 max E{(yt(k) lt(k) — y*(k) lt*(k))2} 
t e  T4

S K2 max (E((yt(k) ~  y* 00) } +E((TtOc)ZtOc)) })
t e  T4 S

S K2 max (E{ |x (2} E{ |c t(k)- ct* | 2)} 
■ te  T4

+ ICt'i- E{ IxI4I 1̂  ^{!^(k)!^}1̂ )

S K3 max (E{ |c t( k ) - c t* |2} +E{ Izt(Ic)I }»«)

4 vl/2\



= O(Hp) +  0 ^ 0  =  0 ^ )  

aS k po land h *-»' Q, as required.

It remains to prove Lemmas 1-4. Note that Leirima 3 Was not directly used in the 

proof o f Theorem 2 above but is necessary to establish the other lemmas and in fact 

will be proved simultaneously with the other lemmas in an induction proof on the 

IeveL pfthetreeT 0.

The proof of Lemmas 1-4 by induction proceeds as follows. We first note that

(5 .9) -(5 .12) are true for the root node I0. Tb see this observe that Cto(k) (and similarly

Gto(Ie)) are generated by (Cssentiallyt) the standard LMS algorithm with i.i.d data 

(k(k),y(ic)} ahdE{jx|*} <°o,E{y8} <«». Also since a'x is a continuous random variable 

for all a*bfO we must have E{xx') > Q. It follows by iitnilar analysis to[61] but 

considering fourth means instead of quadratic means that

limsup E{ |c^ (k )-c ^  I4 -H(GtoOc)-Qto*)4) = 0 (h2) as H-» 0 (5.13)k —»«»

(5.9) -(5.11) (and trivially (5.12)) at the root node to follow from (5.13) and Holder’s 

inequality. ..

Next suppose (5.9)-(5.12) are true for some nonterminal node t e T0. Let 

s = left(t) of s = right(t). We will establish the following sequence o f propositions.

Proposition I : ■'

iiinsupE {|zs(ic))} =OOi211) a sH -»0  (5.14)
k-+~

Proposition 2 :

slip E{ I C5(Te) 12 +  (Gi(Ie))2} = OQa1 v) a$ H 0 (5 . 15)
k

t the only difference is the Hv term and this does not affect the analysis since v > I



J :*-OOi*1."- v*>: "as-it^' 0 --
k V.'.". •'■ ■'■■ ■ ■

(5.16)

Proposition 3 :

Iimsup E{ |Cs(k) -  c 5*12 + (0, ( k ) - 03*)2} = o (l) as p .-+ 0
;; It i »00 ■ >

(5.17)

Proposition 4 :

limsup E {|c,(k ) | 2 + (6, (k))2} =O(I) a sp -> 0
... k-*« ;

Iimsup E{ Ic s(k)I 4 + (0j(k))4} = 0(|X1-V) as p —̂ O

(5.18)

(5.19)

Proposition 5 :

iimsupEf|e s( k ) - c ; I2 + (0,(k) - e ,* )2} =OOip*) as n -»  O
k ' '■ ■ ■ :v:;

(5.20)

Proposition 6 :

limsupE{ Ic5(Tc)-Cj*! + ie5(k ) - Q5* I l=O Oir*) as 0 
k-*»

(5.21)

ITie itka behind Propositions 1-6 is as follows. First5 the estimate Of the domain 

error (5.12) and the absolute weight and threshold errors (5 .11) at the parent node t of 

node s is used tb obtain the estimates of the domain error at node s (5.14). Next an 

estimate o f the second moments of the weights and thresholds (5.15) is derived and 

then used to Obtain an estimate of the fourth moments o f the weights and thresholds 

(5.16). Nexti the estimates of the domain error (5.14) and the fourth moments of the 

weights and thresholds (5.16) are used to obtain the convergence in quadratic mean of 

the weights and thresholds (5.17). Next the convergence in quadratic mean of the 

weights arid thresholds (5.17) is used to obtain a better estimate o f the second
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moments of the weights and thresholds (5.18), and consequently a better estimate of 

the fourth moments of weights and thresholds (5.19). Finally the estimate of the 

domain error (5.14) and the refined estimates of the second arid fourth moments Of the 

weights and thresholds, (5.18) and (5.19), respectively, are used to obtain the final 

estimates of the quadratic and absolute Weight arid threshold enrors, (5.20) arid (5;21), 

respectively. It should be noted that the estimates o f the absolute weight and 

threshold errors (5.21) is riot simply obtained from the estimate of the quadratic 

weight and threshold errors (5.20) By, say, Holder’s inequality; observe that Ps and not 

Ys depends on v in this regard. The above procedure is fairly well optimized with 

respect to obtaining the weakest conditions arid best estimates in Theorem 2 and 

ititimrifoly^Thedreriil.

The proofs of Propositions l -6 are given below. Assuming that the propositions 

hoid, Temmas 1-4 foUoW by induction.

Ihtiof^df i^pdsitiori I ;

First observe that |zs(k)| =I(XOc)CXllQfyA x**) where A denotes symmetric 

difforericfi!, Hetice fo fa r iy 5 > 0

£ {1 ^ 0 0 1 J =E{*(k)e &00AX*}

; s p f io o e  & tk )a x n  '

+  P {(x (k ) e  Xt (Ic) n  zT n  <X«00 A Xs*)))

<E{ Izt(Tc)H +PUytOOS Bt(Ic)) n  {y;(k)>et?}} ^

+ F { { y ^

i i , "SE ( I ZtOO 11 + P(IytCk)-0t(k) -  m oo -  0t*) I >8)
■■ " ■ -■ ' ...: ■;•■■■ v \ . ’ /. ' ' ' ' .....v.

+P( IytOO -  0tOOj E 8} +P( I y*t00-0 /1   ̂8}

sfeflZtOO11 + 2P{ Iyt(k) -  0t(k) -  (y*(k) -  O l  > 8}
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+ 2P {|y*(k )-9 t*| <25} (5.22)

Now as discussed in the Remark following Assumptions (A1)-(A3) we have 

c* * 0. Hence e t*'x has a bounded density and so

P { |y * (k )-e t* |^ 2 8 } = 0 ( l ) 5

Also by Markov’s inequality

P{ Iyt(k)-  et(k) -  (y*(k)- 9t*)I > 5}

S  j  (E{ lyt(k) -  y*t(k) j } + E{ 19t(k) -  9t* | })

< I  (E{ Ix I }E{ Ict(k) -  c t* I} + E{ 19t(k) -  0t* I}).

Hence by (5.11)

P ( I yt(k) -  9t(k) -  (y*(k) -  0t*) I >5} 0(m?)

(5.23)

(5.24)

as k »  and ji —»0.

Substituting (5.12), (5.23), (5.24) into (5.22) gives

E ( I Zt Qc) I } =  OOt215) +  +  0 (1) 5

as k -» oo and p. —» 0. Choose 5 -  |ir*̂  (this choice will minimize the right hand side of 

the above equation). Then

E{ | zs(k) j } == 0 (|iYl/2) =  0 (jx2Ya)

as k -»<*» and p . 0. O

Proof of Proposition 2 :

Cs(Tc) and 0s(k) can be treated similarly; we only consider c s(k). We have 

cs(k+l) = (I — M*v -px(k)x(k)Ts(k)) c,(k) + py(k)x(k)l,(k)
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We first claim that for n -  0 ,1,...,

|c s(k+ l)I2a <,(I —2n|xv + O(Iiv)UOc)4") (CsOc)I2n + o(^)u(k)4n -H2n̂ iv(k) (5.25) 

as |x -*  0, where

u(k)=|x(k)| + |y (k )l+ l

and •

vCkJs^lxCkycsOc)! + ly^D-xOc^OcJ-Ij'Oc)

The details o f these expansions are omitted.

N extobservethatfofn=O ,!,...,

E(v(k)| CjCkyin)

= E((-|x(k)/cs(k)l + ly(k)l) IsOO^OOl l£,(k)|Ms(k)}

£E { [(-IxCkfeCk)! + Iy(Ic)I) lXCkfeOOI |c s0c)|nl s(k)]+ }

S B {  |y(k)| lXOO^Ck)! |c s(k)|n I(IxOtfejCk)I < Jy(k)|)}

-E {  IyOOI2 1 Cs(Tt)In)

= BClyl2) E { |c s(k)|n) (5.26)

Now taking expected values in (5.25) and using (5.26) gives 

E{ jcs(k + l)|2} £ (I —2p,v + o(^v)E{u4}) E{ |c s(k)|2)

+ o(nv)E{u4}+2nE{y2} 

ssO ~2|xv + c<m.v))E{ |c s(k)|2)+ 0 (|x )

as |i 0. Here we have used the independence of u(k) and c s(k), and also 

E{u(k)4) =E{u4) ^ K1 (E{ I x I4) +E{y4 })<<». It follows from the Remark following the 

Fact that



supE{ |c ,(k )|2} = CKp1- v) a sp .-* 0.
k

(5,27)

Now taking expected values in (5.25) and using (5.26) and. (5.27) gives 

E{ X̂ S (I 4p.v + ^|4^)E|u8

-'---/.ftV" --/,.-V •' -V-

= ( l - 4 p v + o(pv)) E{ |c s(k) |4} + 0(jx2-v) (5.28)

as p - » 0. Here we have again used the independence of u(k) and c,(k), and also 

E{u(k)8} = E { u 8} ^ K 2 ( E { | x l 8 ) + E { y 8 } ) < « .  It now follows from the Remark 

folloV^jgthe Faqtthat

supE {|c,(k )|4}=  O(J^vI )  «  0 (p2(1 ~v)) as p -> 0

□  ,

Proof of Proposition 3 :

c3(k) and 0s(k) can be treated separately and similarly; we only consider c,(k). 

W ehave

cV(k+l)M(I ^ p v -  px(k)xfr)'ls(k)) c,(k)+py(k)x(k)lJ(k>

and define

Cs (k+I) = (I -  Pv -  px(k)x(k)'l*(k)) c j*(k) + py(k)x(k)13*(k)

ea(k) = c s(k) -  Cs*(k)

(5.30)

l^ (k) = Cs*(k)-e,*

(5.31)

(5.32)
■ •. ‘ v ■



We first consider e s*(k). Observe that c5*(k) is generated by (essentially) the 

standard LMS algorithm with i.i.d data (x(k) l s*(k),y(k)} = (input,output), and 

E{ 11 |* I,*} < E{y4} < «>. Also, since a'x is a continuous random variable for all a * 0

and p,* > 0 we must have E{xx'l,*} > 0. It foUows by a sirriilar analysis to[61] that

limsup E{ Ies*(k)12} = 0(p) as p -4  0 (5.33)
. k— .

We next consider e5(k). We have

e,(k + 1) = (1 ~ p v -  uxOc)x(k)'ls’ (k)) e 3(k) (5.34)

Hence

ll.d e  + 1>|2 ^ (I + C(U)UOt)4) [ i s(lc)I2 - 2 M e , ( k ) ^ ) 2 ^ s(k )l‘ (k)

+ 0(p)u(k)4 I Zs(Ic) I ( IsiOt) 12 + 1) (5.35)

as p -+ 0, where

u(k) = I + |x(k)| + Iy(Ie)I

Let Xs be the smallest eigenvalue o f E{xx'l,*} > 0. Since e,(k) is measurable and 

x0c)i y(k), ii<L) are independent o f f  k

E{(1 +O(P)Udc)4 Ies(Ic)I2 -2M£J(k),x(k)x(k)/e s(k)i;(k)}

~(1 + 0(p)E{u4)) B { I Sa (k) 12 - 2pE fS.s (L)̂ iE

$ (I -  2pX, + b(p)) E{ J es(k) 12} (5.36)

ien cb  taking expected values in (5.35) and using (5.36) and Holder’s inequality gives 

IS.sCK1) |2} ^ (I — 2|i^s H-o(p))

+  0(p)E{u8}1'2E{ |zs(k)|2} ^  (E{ |Cj(k)|4} +1)1/2



S$i#J

$ (1- 2^  +o(^)) E [ie s(k)|2}

as p -4  0. Now using Propositions I and 2 we have

- 2 ^  +O(P)) E(|erOc)|2} + 0 (p 2-v+11)

as k —̂ and p —»0. It follows from the Fact that

, U2rV+Y' l-V+Ylimsup E { I c s (k) | 2} = 0 ( - ) — 0(p  Y‘) as p —» O
-y-'" V- .V ;̂ -

Since v S I + (1/5) 4~depthfr,), we have I -  v + ys > O and so

limsup E{ Ie1(Ic)I2) » o (l)  a s p -4  O (5.38)
k-»«

Finally, conabimng (5.33) and (5.38) gives

limsupE{ Ifi.d e )-C1*12} £ Ki limsup(E{ Je1(Ie)I2) + E { Ie1*(k)|2))
. Itr-* «•

= o(l) as p-4  0

Proof of Proposition 4 :

(5.18) follows immediately from Proposition 3,

(5.19) can be established by treating cs(k)and Q1(Ic) separately and similarly; we 

only consider c s(k). Combining (5.18) and (5.28) gives

E{ Ic»(k-t-l)14) = (I — 4pv + o(pv))E{ Ic1Oe)I4) + 0(p )  

a s k -4  oo and p —» 0. It follows from the Fact that

limsupE{Ic1Ge)f4J = 0 (% > = CKp1 _v) a s p -4  0
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Proof of Proposition 5 :

e,(k) and 9s(k) can be treated separately and similarly; we only consider c,(k). 

Define e s(k) and e,*(k) as in (5.31) and (5.32). Combining Proposition I, Proposition 4 

M i( i3 7 ) | iv b s  ■

E{ |e,0c4- D l2)> (I -^o(|i.)) H{ I lsQOI2)

as k oo and p —» 0. It follows from the Fact that

( 3 - v  + 2y.V2
limsup E( j e»(k) | 2) = C>( ** ■

; k-*~ '■ |i

Hence combining (5.33) and (5.39) gives

) = 0 (p.p‘) as O

limsupE{ Ic s(k) — c s* |2} £ Ki limsup (E{ |e s(k)|2} + E{ |e s*(k)|2})
k-*« ' k-»« .

J.= 0 (pr) as |i  ̂  d

since p, < I.

(5.39)

Proof of Proposition 6 :

cs(k) and 9s(k) can be treated separately and similarly; we only consider c s(k). 

^Sfine ei(k) Md e/(k) as in (5.31) and (5.32)

' (S.34) W(i hM e/v v

|e,(k  + l) | S [(1 + o(p)uOc)4) |e s(k) | 2 -  2pe1(k/x(k)x(k)/e s(k)i;(k)]1/2

+ OC|i)u(k)2 j z, (k) j ( j c , (k) I 4 1) (5.40)

M t i^ d ^ M c re  y -:V \  V

u(k) = 1 + | x(k) I + I y(k) |

Iiit ^  > O be the smallest eigenvalue of E{joc'I,*} > 0. Since e s(k) ism e a su r a b le  and 

£(k), y(ic), I j (k) are independent o f f k we can apply the conditional Jensen’s inequality



fe {[(I H- I e , CH> i 2 ^ s * 0c>]1/2}

<E{[E{(1 + o(p)u(k)4) |e 5(k)|2 -2Mcs(k)'x(k)x(k)'es(k)ls*(k) j f k}]1/2}

■;y-; *  B|tc± )■> i  ̂ :

<, (I -2pA , + o(p))1/2 E{ |£ s(k )|}

'■■■■■■. (5.41)

as p -» 0  (in the last step we use (I + t |)I/2 = I + rj/2 + o(r|) as rj —► 0). Hence taking 

expected values in (5.40) and using (5.41) and Holder’s inequality gives

E{ |e,(k  + I) I} < (I -  pXs + o(p)) E{ Ie s(k)I}

+ O(P)E{U4}1/2 E {!z,(Sc)12}i/2 (E{ |c ,(k )|2} + 1)1/2

< ( l - p X s + o(p ))E {|eJ(k)j}

+ 0(p)E{ |zs(k)| }ia (E{ IC3(k) j2} 1/2 -S“ l )

as p 0. Now using Proposition I and Proposition 4 we have

E{ |£ ,(k + 1) I } 5 (I -  pA, + o(p)) E{ Ie,(k)I} + 0 (p !+Y“) 

as k —> oo and p —» 0. It follows from the Fact that

„i+r.
limsup E{ |e s(k )|} = Q(^ ~ —-) = 0(pY‘) as p -» O (5.42)

Finally, combining (5.33) and (5.42) gives

Iimsup^BfIsl(Ic)- c * | JSlimsup m { |e s(k>(}-hEfIe*(k)|2}1/2>

= 0 (pY‘) as p -» O

since % < 1/2.
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5.2 Analysis o f  IireePruning : Proof of Theorem 3

To establish Theorem 3 we will make use of the following lemmas.

Lemma 5 : For t e T0

ilhnsupE{Iet(L)I2 + Ipt(k)I2} = 0 (h2(1- v)) asH-4  0

Lemm a 6 : Fpr t e T0

UmsupEf 1 4 0 0 I + Ipr(L)- P,*I} =OOipiy2) asp-*0
k-*<*

Lemmas 5 and 6 are proved below. Assuming these lemmas hold we prove 

Theorem 3 as follows.

Observe that since the number o f  pruned subtrees of T0 is finite, there exists a 

S > 0 su c h d i a t i f e ^ ) >eV^then e too > E r + 8. Hence

P{eT(k)>eV} = P {eT (k )> er+ 8}

~  Pfe T(k) -  £T(ic)(k) > e*r -  £T(k)0c) + 5}

-  P { e  T(k>-  eT(Ic)OO > e t* -  E r(L ) .+  8}

^ P{ I Kf(Ic)--ex(k)(k>I + I e*r -  er (L) I > 8}

m  E  !EtlV-et(k)pl0c ) l> ^ }
5

t€  T.

-Kr maxPf IKK -et(k)Pi(k)|>
te T. 2 Mo I

• 'L,

^ K f  max Pf 14(k) -  K I -K Ipl(Tc) -  pf | >
t € T9

since Ipl(Ie) I < I. Hence by Markov’s inequality

2 |T 0 1(1 -K IK I)

Pfefxk) > E r } £  maxEf |Ct(Ic)- K l  + 1 Pt(k)- K I) r'j-:



MS-:

as k -> oo and p -> 0. Finally by Lemma 6

P{et(k) > &V} =  as J i 0' k->«* „ ■ ’ ,■

It remains to prove Lemmas 5 and 6. Note that Lemma 5 was not directly used in

the proof o f 4Theorem 3» but will be required to establish Lemma 6.

Troof o f Lemma S : v:/

Since Jpl(Tc)I S I  we need only ConsideretCk). We have

EtCk+l) = (1 - ^  -  JiltCic)) et(k) + ItYtOO W  

where yt(k) = y(k) -  yt(k).

W efirstclaim that

et(k+l)2 < ( l - 2 p v + o(p)) E1Ql)2 + o(pv) (yt(k)4 + I) + 2pv(k) 

as p -> O5 where

'■ '7^  i m M M S S M -

The details o f this expansion are omitted. 

iNextqbseiweithat. ’

2
E (v(k )}= E {(-|EiQOl + yt(k) ) IEtQOI It(Ic)}

^E(K -IetCk)I + yt(k)2) IetCk)! l t(k)]+ }

^ E(yt(k)2 1EtCk)I I(IetCk)I <yt(k)2)}

£E {yt(k)4}

^ Ki(E(y4} + E(yt(k)4})

<K2 (1 + E { |c t(k)|4})

(5.43)

Hence by Lemma I

E(VCk)I=Q(P1-Y) (5.44)
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as k -> <*> and p -»  0.

',,Nbrtv takingexpected values in (5.43) and using (5.44) gives 

Efet(IM-I)B < ( I ^ p v + o(n» E i ^ )  w)

p  k■ -* <?<» and. p -» 0. Jt follows from thePaetthat
.. 2 — v ■’

Iimsup E {BtOO2} = 0 (— — ) = CXp2a-v)) a sp -> 0
'Ar**;-"' \  P ■

V. . ;

Proof o f Lemma 6 :

Et (k) and Pt(k) can be treated separately and similarly; we only consider BtOOt . 

We have

e.OM-1) = (I - P v ^ p ltOO) BtOO^pytOO' It(K) 

where&00 =*y0 0 - yt(K)-i^t;;;, ,X

. . . :-er;C^i5 -P’|tvy  ̂ i,r0k» ei*:^ B

.where/yt*< k )^

Ct(Ic) = BtOO-BrOc) V

^(k^eT O D -eT  '

We first consider et(k). Observe that e,*(k) is generated by (essentially) the 

Staodard EMS algorithna with i.i.d data {l*(k), y*(k) } = {input, output} and 

E{ I yT t * I < K1B { i s  18 >««***- Also E ( I *) =Pt* > 0. It follows by similar analysis to[61] 

that

limsupE {leTOOlB = O(P) a s p -->0 (5.45)
.. • ■■ ;

We next consider et(k). We have

t  Io fact, since pt(k) is uniformly bounded a.s., the analysis OfptOc) is easier
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' CCrC- - V ■ ' . : ■ C
CtOe+ I) =  (I - J iv -  p l t*(k)) et(k) -  PZt(R)Ct(k)

+  Pyr(R)2ZtOe) +  p(yt(R)2 -  yt*(R)2) l t(k)

Hence

■ - , '■ ■ ' C e  •.

IelO c+ 1)| < ( l - 2 p l t*(k) +  o(p))1/2 Iet(R)I

+  O(P)U(R)2 Izt(R)Klet(R)I + 1) + O(p) Iyt(R)2 » y t* (R)2 1 (5.46)

as p - » 0 ,  where

uOc) = 1 + I x(k)| + |y(k)|

By Jenseri’s inequality ' J

Ef (I - 2 |x l*(k) +  o(p))1/2 } S E{(1 - 2 p lt*(k) +  o(p)) }1/2

U V ' V - - . /:/ V ^
= ( l - 2 p p *  + o (p ))1/2

= I - P pT + O ( P )  (5.47)

as p -+ 0  (in the last step we use ( l+ r i )1/2 = 1+ it/2 + o ( t | )  as t |-+  0). Hence taking 

expected values in (5.46) and using (5.47) and Holder’s inequality gives

EU elOe+ 1) |} S(1 -TtpT + o(p))E{ |et(k)|}
V ■■ ' . V  'VV": VVVVVV:'- : . ■ -’■ • T''' C ' '' ‘V ’■ - V v  I V  .. <J"'. V1;. :

C ■ ■ : '
+  0 ( p ) E ( u4 }1/2 E{j Z1(R )12 J1/2 CEfet(R)2 ) +  \ ) m

j- ; ■ ■ V . , ;  .

• CC :;VCĈ 'V;' v +  O (P)E( I ft(R)2 -YT(R)C I c 

^ (1-ppT +O(P)) E d e t(R) n

v Vy::
c c - v  u

'Hs' + O (P )E fiy t(R)2 - y T (R)2 1) (5 .48)

as p - » 0. But by Holder’s inequality and Lemma 2

E fl yt(k)2 -  yTOe)2 1}

— Ef Iyt(R) + yt*(R)||yt(k) -  yt*(k) I}

- - V - '  ' ' ■ / ' c c c c . ; ; -  v :- ;  . . , c / ^ / J V V C



< R i (E(yM 1/2 +-E{ I yt(k) IZ] il2 +  E { | $* (k)I?}1/Z) E ^ y^(fe))?}

(I + B fIct(Ie)12J l/2>£{ Ict(k) — c^]2) 1̂  ^

= OOipiy2) (5.49)

as k -»«» and |x —* 0. Hence combining (5.48) and (5.49) and using Lemmas 4 and 5 

we get , :

ECIetOc+1) | } s  ( I - m  +o(H))E{ Iel(Ic)I) ;

+  0 ( h 2 ~ v + * ) +  0 (h 1+Pi/2)

as k-»°°  and j i - + 0 .  Since v <  I + (1/5) 4~deptĥ  it is easily verified that 

I -  v + Yt > Pt/2. Hence

E d e tOc+1)| }<  ( I -H pt* + o(n)) E{ IetOe)! }+0(^ i1+Pl/2) 

as k —»°° and h -» 0. It follows by the Fact that

2 1/2, x2, 1/2

,,1 + P./2
limsup E{ I et(k) I} = 0 (—------ -) = O(Hftf ) a s n - > 0
■ k—»«• ' H

(5.50)

Finally, combining (5.45) and (5.50) gives

limsupE(IetOe)-Et* I) ^limsup(E{IetOe)!} + E { Iet*(k)|2}1/2)' - • k -4« . . ■ ■ • k —> «*

= O(Hpl7z) asH-^O

since ft < I. □:

■ Vi-" ■ ' ■ ' ' - .
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3 ^ E R 0 t o r r A I .  RESULTS A l ^  DISCUSSION

In this chapter we present results of computer simulations which compare the 

performance o f  the proposed tree-structured piecewise'linear adaptive filter with that 

of existing linear and polynomial (truncated Volterra series) adaptive filters in the 

appUcatiorts o f channel equalization, echo cancellation and speech coding. The tree- 

structured filters were trotted using the the proposed algorithm in Chapter 4, and the 

linear and polynomial filters were trained using the LMS-type algorithms described in 

Chapter 2. We also compare the computational com pl^ity aind convergence rate of 

the tree-structured filter and the polynomial filters.

6.1 Channel Ec^alizafidn Application

In this section we present results o f computer simulations which compare the 

performance o f a tree-structured piecewise linear equalizer with that of linear and 

polynomial equalizers, and also the performance o f a tree-structured piecewise 

decision feedback equalizer with that o f a standard decision feedback equalizer.

In our simulations[62], we considered binary PAM signaling through an 

equivalent discrete-time channel with z-transform

G(z) =  0.227 +  0.460z-1 + 0.688z~2 + 0.460z~3 + 0.227Z-4 . This is a reasonable 

model for a channel encountered in communication systems with severe ISI ( | G(Cjffl) |  

has deep nulls) [7], The channel is corrupted by additive white gaussian noise, which



is independent of theinformation sequericei Each infOTmatiori symbol is +1 

(independently) with probability 0.5.

A filteif of length L =  I l  was used for all equalizers. For the polynomial 

equalizers, polynomials of order q £ 3 were considered. For the tree equalizers, a full 

tree of depth d = 5 was chosen as the basic tree T0 (these choices will be discussed 

further). All of the simylation results to be presented were obtained by averaging over 

an ensemble o f 200 equalizers with independent data.

In Figures 18 and 19 we show the output MSE as a function of time (up to 5000 

iterations) for the linear, second order polynomial, third order polynomial and tree- 

structured piecewise linear equalizers for SNRs of 10 dB and 20 dB. For each type of 

equalizer and SNR, the gain p. was chosen to be about one-half the value where 

unstable behavior first occurred. In Figure 20 we show the probability of error as a 

function of SNR after about 40,000 iterations when all o f the equalizers have 

converged. We make several observations. First, it is clear that a nonlinear equalizer is 

necessary to achieve a small asymptotic probability of error. Second, it is also clear 

that higher order polynomial equalizers have lower asymptotic probability of error but 

converge more slowly ( more precisely, higher order polynomial equalizers require 

much smaller gains p, for stability which limits the rate of convergence)^ Indeed, the 

second and third order polynomial equalizers have a higher output MSE than the 

linear equalizer even after 5000 iterations, although their asymptotic error rates are 

much smaller. Next, it is seen that the tree-structured equalizer initially converges 

about as fast as the linear equalizer and from then on converges much faster and to a 

much lower probability of error. Finally, it is seen that the tree-structured piecewise 

linear equalizer converges much faster and to a significantly lower probability o f error 

than the second or third order polynomial equalizers. In fact, it is verified that no
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combination o f the linear, second and third order polynomial equalizers performs as 

well as the tree-structured piecewise linear equalizer, either in terms of rate of 

convergence or asymptotic probability of error. Fourth and higher order polynomials 

exhibited extremely high computational complexity and low rates o f convergence. A 

detailed discussion comparing computational complexity and convergence rates of thd 

tree-structured piecewise linear filter versus polynomial filters is given in Section 6.4.

In Figures 21 and 22 we show the output MSE as a function of time (up to 5000 

iterations) for the decision feedback and tree-structured piecewise decision feedback 

equalizers for SNRs of 10 dB and 20 dB. For each equalizer and SNR, the gain p was 

again chosen to be about one-half the value where unstable behavior first occurred. In 

Figure 23 we show the probability of error as a function of SNR after about 40,000 

iterations when both of the equalizers have converged. It is seen that the tree- 

structured piecewise decision feedback equalizer initially converges about as fast as 

the decision feedback equalizer and from then on converges much faster and to a 

significantly lower probability of error (about 6dB for an error probability of 10-1 and 

about 2dB for an error probability of KT2).

6.2 Echo Cancellation Application

In this section we present results o f computer simulations which compare the 

performance of a tree-structured piecewise linear adaptive echo canceler with that o f 

linear, second-order and third-order polynomial types o f adaptive echo cancelers 

[12,17,63].

In our simulations [64] we considered an echo path which consisted of a 

memofyless nonlinear system followed by a linear and another memoryless nonlinear
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System as shown in Figure 24. The two nonlinear systems correspond to the 

compressor and expander shown ih Figure 10 and the linear system corresponds to the 

hybrid and other associated circuitry in the telephone network [301. A typical mu-law 

compressor and expander characteristic with mu == 255 was chosen for simulation and 

the liiiear system is assumed to have an impulse response[10]

:..: ĝCkT==̂ -0- ^ , f

This is a reasonable ffiodel[30] which takes into account the presence of comparider 

for nonuniform quantization of speech signals in digital telephone networks. As stated 

in introduction (also see 113]), the volume dependent gain charac teris tics these

companders is a major source of nonlinearity in the echo path.

In Figure 24, x(k) is the speech signal from the far end speaker, n(k) constitutes 

the speech signal of the near end speaker and/or noise generated in the hybrid, and 

y(k) is the output signal of the echo path itt the telephone network. n(k>is generated 

independently o f the input x(k) to the echo path. x(k) is also fed as input to the 

adaptive filter and the adaptive filter is trained to minimize the mean square 

error(MSE) between the outputs of the echo path and the adaptive filter.

A filter o f length L=IO was used for all echo cancelers. For the tree-structured 

echo canceier, a full tree of depth d = 5 was chosen as the basic tree T0 . All o f  the 

simulation results to bepresented were obtained; by avenging over an ensemble of 

200 echo cancelers with independent data.

In Figure 25 we show the output MSE ^  of time (up to 4000

iterations) for linear, second order polynomial, third order polynomial and tree- 

structured piecewise linear echo canceier for an SNR of 10 dB. For each type of echo 

canceier, the step size ji was chosen about one half the value where unstable behavior 

first occurred. Tn Tigure 26 we show the asymptotic MSE as a functkmof SNR after
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about 20,000 iterations when all the echo cancelers have converged. Wc make several 

observations. First, it is clear that nonlinear adaptive cancelers are necessary to cancel 

echos on nonlinear echo paths. Second, it is also clear that higher order polynomial 

echo cancelers have lower asymptotic MSE but converge more slowly. Indeed the 

second and third order polynomial echo cancelers have a higher output MSE than the 

linear echo canceler even after 1500 iterations, although their asymptotic MSE is 

smaller. Next, it is seen that the tree-structured echo canceler initially converges 

about as fast as the linear echo canceler and from then on converges much faster to a 

lower asymptotic MSE. It is also seen that the tree-structured echo canceler converges 

much faster and to a significantly lower asymptotic MSE than the second Or third 

order polynomial echo canceler.

6.3 Speech Goding Application

In this section we present results of computer simulations which compare the 

performance o f a tree-structured piecewise linear adaptive predictor with that of 

linear, second-order and third-order polynomial types of adaptive predictors for 

speech-type signals.

Numerical experiments were performed on real as well as synthesized speech 

data[65]. Real speech data consisted of a speaker uttering thevow els a, e, i and u. 

Synthetic speech was generated using the simplified model o f Figure ll(b ). An 

impulsive train with a period o f 10 milli-seconds was used for voiced speech and 

white Gaussian noise was used for unvoiced segments o f the speech signal. A 

nonlinearity of the form U1BxpC- J a2 x I) was introduced in the system to represent the 

nonlinear glottal impedance in the speech production model. The sequences Iai } and



{a2 ) were dynamically generated every 5Q miili-seConds using a first order auto

regressive (AR) model driven by two independent white noise sources W 1 (Ic )  and 

W 2  (k), i.e., ■■

ai(k) = 0.4a1(k -l)  + w 1(k)

U2 (k) = 0.4a2(k -l)  + w2 (k).

A filter of length L=12 was used for all predictors. For the tree-structured 

predictor a full tree of depth d=6 was chosen as the basic tree T0.

In Figures 27 and 28 we show the learning curves (upto 4000 iterations) for 

linear, third order polynomial and tree-structured piecewise linear adaptive predictors 

for real and synthetic speech data, respectively (the learning curve for second order 

polynomial predictor has not been included since it overlaps considerably with the 

learning curve o f the linear predictor). For each type of predictor, the gain |i was 

chosen to be about one-half the value at which unstable behavior first occured. In 

Figures 29 and 30 we show the SNR (defined as the ratio ofpow er ininput signal to 

the power in prediction error signal) in dB versus the filter length for linear, second 

Order polynomial, third order polynomial and tree-structured piecewise linear adaptive 

predictors for real and synthetic speech data, respectively, We m akeseveral 

pbseryations. First, it is clear that nonlinear predictors perform better than linear 

predictors for prediction of speech-type signals. Second, although higher order 

polynomial predictors yield higher SNRs, they also converge very slowly. Indeed the 

second and third order polynomial predictors have higher M$E than the linear 

predictor even after 4000 iterations although their asymptotic MSE is smaller. Third, 

the tree-structured predictor initially converges about as fast as the linear predictor 

and then converges to a much smaller asymptotic MSE (higher SNR); It is also seen 

that the tree-structured predictor converges much faster and to a lower asymptotic

■. LiJ' . .■
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MSE than the second order or third order polynomial predictors. Filially it can be 

seen from Figures 29 and 30 that the performance of different predictors does not 

improve significantly when the filter length is increased beyond a certain value. In our 

simulations, this value is approximately 12.

Apart from the SNR criterion discussed above to compare different types of 

predictors, another important criterion that is used in the choice of a p r e d ic t  

amount o f compression that the predictor can achieve for a specified amount of 

fidelity or SNR. The compression is inversely proportional to the number of 

coefficients o f the predictor that needs to be transmitted to the receiver. In Figure 31,
' V . - ’ " . Vv .V’ ■ '-vV\ V,.' - ; • • V ' . ' ,V'.. ' v  V-/ .V v  v V \ : v,V"' v
we plot the the number of parameters that needs to be transmitted vs SNR in dB for 

the different predictors for real speech data. As seen from the figure, for SNR’s above 

9dB, the tree-structured piecewise linear predictor requires fewer parameters to be 

transmitted than the linear, second and third order polynomial predictors and hence 

achieves a better compression. It is also true that the tree predictor converges much

faster at these SNR’s. Hence the tree-structured predictors are extremely useful to
:V:v-;VV v -VvV  iV V V V '^ V V 1 V^vyV:'-V v  -'VV;-
encode speech signals for toll and broadcast quality transmissions in communication

systems where such SNR’s are required[32].

6.4 Comparison of Tree-Structured Piecewise Linear and Polynomial (truncated 

Volterra series) Filters

We first consider the computational complexity and rate of convergence o f  an 

unpruned tree-structured piecewise linear filter of length L and depth d versus a 

polynomial filter o f length L and order q.
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We can estimate the computational complexity of training the tree-structured and 

polynomial filters as follows. By computational complexity we mean here the number 

of parameter updates required for each training sample. For the polynomial filter, the 

complexity is just the number of tap weights C which is1-

L +  q 
q

- 1

For the tree filter the complexity is the combined number of tap weights Cj, offsets (It,

and thresholds 0t along a path from the root node to a terminal node, and also all of 

the probabilities pt, which totals

Lr = (d + 1)(L + 2) + 2d + 1 -  2.

Denote by L r (L, d), Lp (L, q) the explicit dependence of Lr and Lp on L, d, q. Then 

L r ( l l ,5 ) =  14Q while Lp( I l 5I )=  11, LP(11,2) =  77, LP(11,3) =  363, LP(11,4) =  1364 

(hence the complexity of the third order polynomial filter is already much larger than 

the tree filter for the example considered above). It is seen that the computational 

complexity sets severe limits on the filter length and order of a polynomial filter 

compared with the filter length and depth of a tree filter; in particular for fixed q and d, 

the complexity o f the polynomial filter Lp°ci3 whereas the complexity of the tree filter 

L foeL. Also, recall that the training of the tree filter can be carried out in a highly 

parallel fashion (see Section 4.3), which does not seem possible for a polynomial 

filter.

Xhe number o f terrps of thê  
L + p - 1

P
and

of
q
I

p=i

L + p- 

P

fox^n c ( j * , . . . , j L) with j i +  

-  I ( see [52]).
L + q

q

• + jL =P is



Wc can also get some rough bounds on the asymptotic convergence rates of the 

tree-structured and polynomial filters as follows. Suppose we assume that the range 

and distribution of the eigenvalues of the (extended) input autocorrelation matrix 

E {X X ') for the polynomial filters and the (conditional) input autocorrelation matrices 

Et (x x ')  o f die tree filter are the same (with Xmjn the minimum eigenvalue and Xay the 

average eigenvalue). Suppose we also assume^rhaf..|pi^drc 'tree, filter we have 

Xt(k) = X* and pt(k )- p* and furthermore p* = l/2depth(t). Then (under suitable 

independence assumptions) the convergence of the MSB’s will occur if  and only if the 

gain parameter \L is upper bounded by

l^pXay

- 2 
2dLXm

for polynomial filter.

for tree filter,

and hence the corresponding largest time constant will be lower bounded by

, 2
Tp= -

Tt = -

kt(l HP̂ -mm)

. 2 ;
^(1 “  M-T̂ niin)

for polynomial filter, 

for tree filter.

These bounds can be derived using standard arguments (see [2]) and we do not go 

through the details here. It is seen that the (asymptotic) rate of convergence, like the 

computational complexity, sets severe limits on the filter length and order of a 

polynomial filter compared with the filter length and depth of a tree filter, in particular 

for fixed q snd d and also L0 large enough such that |i.p. Ht <  IAminr we can use a 

Taylor series expansion to show (approximately) that the time constant for the 

polynomial filter TpoeLq whereas the time constant for the tree filter tt«L .
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Now in the above discussion we have compared the computational complexity 

arid rate oficonvergenceof an unpruned tree-structured filter and a polynomial filter. 

However, an important advantage o f the tree-structured approach is that it is possible 

to efficiently Construct and select a pruned subtree of appropriate size. Indeed, note 

that thfe tree growing phase generates all the pruned subtrees, while the tree pruning 

phase selects a particular pruned subtree with veiy little additional computation (the 

complexity increases by the number of conditional MSE estimates et along a 

particular path from root node to terminal node plus the pruning algorithm itself). The 

effect o f selecting the pruned subtree is to avoid Overfitting the data and to speed the 

initial rate o f convergence. Now one could conceive of an approach which adaptively 

selects a polynomial filter of appropriate order from a sufficiently large bank of 

polynomial filters. However it is not clear how to efficiently construct and select from 

such a bank o f  polynomial filters since polynomial filters o f different orders are riot 

clearly related. Furthermore, the family of polynomial filters of different order will in 

general be so coarse that no combination of polynomial filters of different order will 

perform as well as the pruned tree filter, as was the case in the examples considered 

above.
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■ CHAPTER 7

AUTOMATIC INSPECTION OF FUEL INJECTOR GEOMETRY

7J  Introduction

This research is part o f an ongoing atomization project investigating the 

characteristics of the spray process of fuel injectors. This project is sponsored by the 

Engineering Research Center. Previous research has shown that the geometry of the 

fudl injector^Nozzle affects the efficiency of the spray process of the injector and in 

turn the fuel efficiency of the engine[66). A typical fuel injector cup is shown in 

Figure 33.

Geometrical features of the nozzle such as circularity o f the hole, inlet and outlet 

diameters, droop and projection angles, entrance height, taper, and radius of curvature 

at the inlet of the injector hole contribute significantly to the performance o f the fuel 

injector (see Figure 34). However the small size of the hole o f the nozzle prevents 

mechanical means of accurately measuring the geometrical features mentioned above. 

The goal of this work is to acquire an image of the injector hole optically and use 

image processing and analysis techniques to accurately measure the geometrical 

features of the nozzle. The first stage of the research was focused on obtaining 

information about the circularity and size of the inlet (bottom) and outlet (top) of the 

injector hole. The holes were imaged using a microscope, vidicon camera, image 

digitizer arid composite translation stages for holding and positioning the fuel injector. 

This is shown in Figure 33. The circularity information Ut any given depth was



Fuel Injector CupvImage Acquisition Set-up, Original Image o f Bottom 
Lit Injector Hole, OnginsJ Image o f the Top Lit Injector Hole.
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obtained by constructing three dimensional wireframe and three dimensional solid 

versions of the hole[67,68]. Model fitting approaches and mathematical morphology 

was used to obtain information about the circularity and size o f the hole near the 

outlet. The design of measures that indicate the relative geometry at the outlet hole 

with respect to an "ideal" nozzle hole was investigated[ 67,68].

The second stage of the research was focused on obtaining geometrical 

information near the inlet of the hole[69]. Since the injector inlet is at the bottom of  

the hole as seen from the outside and since there is a smoothly rounded bevel at the 

inlet of the hole, it is not possible to capture an image near the inlet by focusing the 

microscope at the corresponding depth. Instead of directly imaging the hole, a mold of 

the hole was prepared and image acquisition was performed on the mold rather than 

the hole itself (see Figures 35 and 36). We refer to the process of directly imaging the 

hole as "direct imaging" and the process of imaging the mold as "indirect imaging". 

Examples of direct imaging are shown in Figure 33. Detailed photographic studies and 

image processing techniques showed very little discrepancy between the images 

obtained from the actual hole and the mold representing it.

The images obtained were slightly blurred due to background noise. Several 

image processing techniques were used to obtain accurate information relative to the 

inlet diameter, the equivalent area, and the radius of curvature of the bevel at the inlet. 

Image segmentation was performed using a histogram oriented approach[70]. The 

filtering process used to clean up the segmented image utilizes a morphological filter 

for two reasons: removing noise and preserving the geometrical structure o f the 

nozzle[72]. The discrepancy between the shapes of the real and ideal nozzles was 

then obtained. All the relevant geometrical features such as circularity of the hole, 

inlet and outlet diameters, droop and projection angles, entrance height and taper were
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Figure 35. Mold Image of the Fuel Injector Cup (Top View)
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;%iiAQn t̂ipiiU ’̂:«bt^ned by the irispectiOh algorithm. After obtaining the diameters 

along the finger of the mold, spline fitting techniques were used to determine the 

effective radius of the bevel[72].

7.2 Image AequisitiQn

Image acquisition is performed using a microscope, vidicon camera, time base 

corrector, image digitizer, a composite translation stage and a light source. For image 

acquisition using direct imaging, the fuel injector cup is mounted on the composite 

translation stage which holds and positions the fuel injector (see Figure 33). The hole 

of the injector is iliuminated from the open end o f  the injector cup. Thus the hole gets 

lit from the bottom. We refer to such a scheme of illumination as "back-lighting". 

Another scheme of illuiiunatirig the hole is to directly illuminate top of the hole, 

Which: we refer to as "top-lighting" (see Figure 33). Since the Size Of the hole is 

extremely small (in the range of ten-thousands of an inch in diameter), the illuminated 

hole is dptically viewed through a microscope with a large enough magnification of 

the order of 200. The microscope is focused at different depths along the nozzle hole 

to obtain cross-sectional information. A vidicon camera, attached to the microscope, 

captures the image, and a time base corrector is used to synchronize the video signal 

output of the camera. The video signal is then quantized to 256 gray levels using a 

digitizer and the digitizedoutput isstored  as a two-dimensional array on the 

computer. This two-dimensional array is treated as the original image for further 

processing and analysis.

Acquisition using indirect imaging is performed by illuminating the mold from 

the bottom. Thus the image acquired will have a high contrast with the background
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pixels having gray scale values near 255 and the mold itself having gray scale values 

near zero.

7.3 Direct vs. Indirect Imaging

■■;.̂ e:;lifihifccf;4hia^hg technique described above can be used to obtain accurate 

estimates of the outlet diameter and three dimensional wireframes of the hole, but the 

technique fails to give provide estimates of the geometrical information near the inlet 

portions of the hole. This is because the images obtained at depths near the inlet of the 

hole are blurred due to imperfect fbcusing and internal scattering of the light. 

Moreover, an image of the bottom of the hole has a false edge due to the direction of 

illumination of the light through the hole.

Indirect imaging using the molds has several advantages. (I) Since the outer 

surface of thd finger of the mold represents the inner wall o f the actual hole it is 

possible to obtain geometrical information near the inlet of the hole (see Figure 36). 

(2) By using image processing techniques it js possible to obtain the actual diameter 

of the hole "at any given depth" and hence the amount and nature o f the taper 

(linear/nonlinear) can also be determined. It should be noted that in order to achieve 

the same information using direct imaging one has to use interpolation techniques 

which inherently introduces errors. (3) It is possible to measure the droop angles, 

projection angles and entrance height for multiple orifice nozzles, which is impossible 

using direct imaging due to the inaccessibility of the inlet portions of the hole.
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7.4 Image Analysis
' ’ ' ‘A '

We discuss analysis on images obtained by direct and indirect imaging 

separately. The inspection algorithm for analyzing images obtained by direct imaging 

involves several stages including filtering, segmentation, binary image cleanings area 

measurement, center location, and the discrepancy measurement [72]. The output of 

the algorithm contains the effective area and the equivalent diameter o f the hole under 

study. The discrepancy between the shapes of the real and ideal nozzles is also 

contained. A block diagram of the algorithm is shown in Figure 37. A complete 

description of the analysis of injector images obtained using direct imaging is in [72].

7.4.1 Indirect Imaging

As mentioned in the previous section, indirect imaging offers several advantages 

over direct imaging. In terms of processing and analysis, the back-lit images obtained 

by indirect imaging offers an additional advantage in the sense that the complicated 

filtering process used for direct imaging is not necessary since the image has a 

reasonably high contrast with a clear background. A block diagram o f the inspection 

algorithm for images obtained by indirect imaging is shown in Figure 38. The input is 

the mold of the nozzle and the output consists of geometrical features such as the 

droop and projection angles, entrance height, sac edge lines of the mold, center lines 

and diameter plots for the fingers of the mold, and the radius of curvature of the inlet 

portion of the hole.

The image of the mold of the nozzle is captured using the image acquisition 

technique discussed in Section 7.2. A typical image o f  the mold of the nozzle
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obtained by such a technique is shown in Figure 36. This image is first converted to a 

binary image by selecting a suitable threshold and assigning all pixels below the 

threshold to a gray level value of 0 (black) and all ,pixels above the threshold a gray 

level value of 255 (white) (see Figure 39). The choice of threshold is made as follows. 

The histogram of the original mold image is obtained which is expected to consist of 

two peaks widely separated from each other due to the mold and the background. 

Since it is clear that the background pixels have a gray scale value close to 255, and 

that the mold is not completely transparent to the light, the threshold value is selected 

just before the second peak of the histogram curve. The thresholded image of the 

original image is shown in Figure 39. The boundary of the thresholded image is 

detected using a gradient technique. The center lines of the fingers of the mold are 

obtained by first scanning the thresholded image vertically and obtaining the center 

points of the fingers and then finding the average slope of the line formed by the 

center points. The sac edge lines are obtained in a similar manner by searching for a 

slanted edge immediately below the finger and computing the average slope of the 

detected edge. The center lines and sac edge lines for the image in Figure 36 is shown 

in Figure 40. The slope of the center line represents the droop angle and projection 

angle is simply obtained using the equation y =  90 -  (a  + P), where a  and P arc the 

angles of the center lines and sac edge lines with respect to the horizontal, 

respectively. The diameter versus the distance from the base o f the finger is obtained 

by scanning the finger at an angle perpendicular to the center line and counting the 

number of dark pixels in the finger o f the thresholded image. Figure 41 shows one 

such plot for the image of Figure 36. The same plot also indicates the amount (if any) 

and nature o f taper in the actual hole of the fuel injector nozzle.
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figure 39. Thresholded Image of the Image inFigure36
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Figure 41. A Diameter Plot for the Right Orifice
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Theoretically, the radius of curvature of the bevel (near the inlet) at each point is 

obtained by finding the radius of the osculating circle at that point[73]. If f(x) is the 

curve obtained by interpolating the discrete points corresponding to the edges of the 

images taken at different depths, then the radius of curvature at any point X0 is given

by. P.!
[I + f  (X0/ ]

3_ 
21 2

Here we use the cubic spline interpolation to smooth the
Ir(X0)I

diameter plot. A typical diameter plot for a nozzle with intentionally rounded inlet is 

shown in Figure 42. Because of the spatial resolution of the pixels in the image, the 

smoothed(interpolated) curve still appears wavy as shown in the Figure 43, which 

makes it unsuitable for obtaining reliable estimates of the radius o f curvature. Hence 

this data is passed through a bank of polynomial filters which then automatically 

selects that filter which yields the least average squared error between the data and the 

output o f the polynomial filter. The best fit polynomial for the given set of data is 

shown in Figure 44. The radius o f curvature is now obtained using the above equation 

which is shown in Figure 45 as a function of distance along the wall of the finger from 

the origin. The distance between two points X0 and Xi along the curve is evaluated

using I  (I + f (x)2)1/2 dx.
X0

The techniques used for analyzing the mold iamges have been fully automated 

such that once the image has been acquired, the measurements are obtained without 

the need for further human intervention.

We are currently extending these techniques to examine the use of direct 

imaging by confocal microscopy.



Figure 42. Diameter Plot for Intentionally Rounded Nozzle



Figure 43. Interpolated Curve for the Plot in Figure 42



Figure 44. Best Polynomial fit for the Curve in Figure 42
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

There is a general need for nonlinear adaptive filtering both due to the nature of 

signals that needs to be processed as well as performance limitations o f linear 

adaptive filters in a variety of applications. We have demonstrated that the existing

nonlinear adaptive filters such as polynomial (truncated Vblterra series) filters suffer 

from several problems. First, as the order of the Series is increased, the computational 

complexity becomes extremely large and the convergence rate becomes extremely 

slow. Second, there is no systematic way of neglecting higher order terms in the 

series.

Motivated by the success of classification and regression trees on difficult 

nonlinear and nonparametric problems, we proposed the idea of a tree-structured 

piecewise linear adaptive filter. In the proposed method each node in a tree is 

associated with a linear filter restricted to a polygonal domain, and this is done in such

a way that each pruned subtree is associated with a piecewise linear filter. A training 

sequence is used to adaptively update the filter coefficients and domains at each node, 

and to select the best pruned subtree and the corresponding piecewise linear filter.

D ie tree-structured approach offers several advantages. First, it makes use of 

standard linear adaptive filtering techniques at each node to find the corresponding 

conditional linear filter. Second, it allows for efficient selection of the subtree and the 

corresponding piecewise linear filter Of appfbpriate complexity. Overall, the approach 

is computationally efficient and conceptually simple.



The tree-structured piecewise linear adaptive filter bears some similarity to 

classification and regression trees. But it is actually quite different from a 

classification and regression tree. Here the terminal nodes are not just assigned a 

region and a class label or a regression value, but rather represent a linear filter with 

restricted domain. It is also different in that classification and regression trees are 

determined in a batch mode offline, whereas the tree-structured adaptive filter is 

determined recursively in real-time.

We first developed the specific structure of a tree-structured piecewise linear 

adaptive filter and derived a stochastic gradient-based training algorithm. We then 

carried out a rigorous convergence analysis of the proposed training algorithm for the 

tree-structured filter. We showed the mean-square convergence of the adaptively 

trained tree-structured piecewise linear filter to the optimal tree-structured piecewise 

linear filter. This involved an asymptotic order analysis of the fixed-gain stochastic 

gradient based training algorithms at the successive levels of the tree. The analysis 

was complicated by nonstandard dependent training data at non-root nodes
V : / V v  ► - " V V - V  W  V  7 '-" V ' . 'V - V  ■ v ;:? V '; '" V V ,

corresponding to unconverged parameters at ancestor nodes. Some new techniques 

have been developed for analyzing stochastic gradient algorithms with fixed gains and 

(nonstandard) dependent data.

Numerical experiments showed the computational and performance advantages 

of the tree-structured piecewise linear filter over linear and polynomial filters for 

equalization of high frequency channels with severe intersymbol interference, echo 

cancellation in telephone networks and predictive coding of speech signals.

There are also several topics for further research. First, there are numerous 

variations of the proposed tree-structured filter and training algorithms which might be 

tried. Here we have used an LMS algorithm and a mean thresholding rule for



computing the node weights and thresholds. Alternatively, we could use a signed LMS 

algorithm and a median thresholding role for computing node weights and thresholds, 

We could also abandon stochastic gradient algorithms altogether and use 

appropriately conceived recursive least squares type algorithms.
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