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ABSTRACT

In commumcatlon systems nonlmear adaptlve ﬁltermg has become 1ncreasmgly
popular in a varlety of apphcatrons such as channel equallzatlon echo cancellatron' '

and speech codmg However ex1stmg nonlmear adaptlve ﬁlters such as polynomral

. (truncated Volterra serxes) ﬁlters and multllayer perceptrons suffer from a number of

_'_problems First, although h1gh order polynomials can: approx1mate complex nonlmear- .

1t1es vthey also tram very slowly. Second, there is no.systematlc and efﬁcrent-way to~~
'”select thelr structure As for multilayer perceptrons they have a very complrcated

structure and tra1n extremely slowly.

' Motivatedi by; the suct:eSS»’of ‘classification and Tegression t"rees_ioni difficult non- S
linear and honparametric proble'ms, we propose the i'deafof a.f’tree-st:r’uctu:redfpiecewise
linearvadap'tive filter. In the propOSed method each nodefi_n a tree is associated with a

linear filter restricted to a polygo‘nal domain, and this i‘s‘done in'such a way that each
praned subtree is aSSOCiated with a piecewise linear filter. A train,}ing_ sequence .‘is__u'sed :
to adaptively update the ﬁl'té'r coefﬁcients and domains at 'eaf‘ch node, and to selectthe

best pruned subtree and th‘e 'co’rrespondlng piecewise linear"ﬁlte'r.

The tree strUCtUred approach offers several .advantages. First, it .makes use of :
standard lmear adaptlve filtering techmques at each node to ﬁnd the correspondlng_v
conditional linear ﬁlter Second it allows for efﬁclent selectlon of the subtree and thei," |

correspondmg p1ecew1se Imear ﬁlter of appropriate complex1ty Overall the approach '




ix .-

" is computatlonally efﬁcnent and conceptually simple.

The tree structured ptecewrse linear adaptlve ﬁlter bears some smnlarrty to,_

j,clasmﬁcatlon and regresslon trees But 1t 1s actually qutte d1fferent from a

_"class1ﬁcatton and regress10n tree.. Herc the termlnal nodes are not JUSt as51gned a "

reglon and class label or a regresslon value but rather represent a 11near filter w1th ‘

- : restrrcted domam It i also dtfferent in . that classrﬁcatlon and regressmn trees are

; "':determmed ina. batch mode ofﬂme whereas the tree- structured adapuve ﬁlter is deter—‘ :
o mlned recurs1vely in real—trme o ’
We ﬁrst:develop the speciﬁc structure of a tree?strtiCtured -piecevvlse :linear adap'a :
: "“vvi‘-ttve ﬁlter and derlve a stochastlc gradlent -based tralnmg algortthm We then carry out |

,;;“fa r1g0rous convergence analysls of. the proposed tra1n1ng algortthm for the tree-‘ e

] _ _:structured ﬁlter Here we show the mean-square: convergence of the adaptlvely tralned}';ﬁ.;»
L‘tree structured p1ecew1se linear filter to the optlmal tree structured p1ecew1se lmear'_-‘ﬁ
i f{‘ﬁlter S()me new technlques are, developed for analyzmg stochastlc gradlent algo-_ L
- rtthms w1th ﬁxed gams and (nonstandard) dependent data Fmally, numerrcal experl-“r |
o ments are performed to show the computattonal and performance advantages of the‘
: tree structured p1eceW1se l1near filter over lmear and polynomral ﬁlters for equallza-*" B
"tlon of htgh frequency channels with severe 1ntersymbol 1nterference echo cancella— |

' _f,_tlon 1n telephone networks and predrctrve codln g of speech si gnals




CHAPTER 1
INTRODUCTION

s 11 ‘Introduction

Many problems encountered m commumcauons and 51gnal processmg 1nvolve‘1

. re::mvmg noise and drstomon due to physrcal processes that are unknown and/or nme-.i_' I
- varying [1]. These types of processes represent some of the rnost drfﬁcnlt problems_ 1n__' :
u'ansnuttingv and receiving information. Adaptive signal processing and speciﬁeal.ly'_
'adapuve filtering offers an effectlve approach for removmg n01se and drstoruon in
s1gna1s, as well as extracung lnformatlon about the unknown phys1ca1 process. o
Whenever there is a requlrement to process signals that result from operauon inan -
envu'onment of ’unknown statistics, the use of an adaptve filter offers an attracuve "
solunon to . the problem as it can usually provide a 31gn1ﬁcant 1mprovement 1n
performance over the use of a fixed filter de31gned by convennonal methods In thrs

- chapter we introduce adaptive filters and discuss some of their apphcu_u_o_ns.

1.2 Introduction to Adaptive Filters

We first discuss the general filtering problem und then examine .,th.e need,'for o

adaptive filters.



1.2.1 The Filtering Problem

~ The term "ﬁlter 1s often used to descrtbe a dewce 1n the form of a
- physxcal hardware or computer software that is apphed to a set of norsy data in order,::_
to extract mformauon about a prescnbed quanuty of mterest[ 2] The noxse may anse
' from a vanety of sources For example, the data may have been denved by mean of.
' ’noxsy sensors or may represent a useful s1gnal component that has been corrupted by
. rgtransmtssxon through a commumcauon channel In any event we may use a ﬁlter to -

perform three basxc mformatton-processmg operauons

1. ’f"Ftltermg where the aim is to denve mformatlon about the quantlty of 1nte- ,‘st

“at time t based on data measured up to and mcludmg t1me t.

mterest at txme t based on data measured past ume L

-1

| 3. Prechcuon ' where the a1m is to denve mforrnauon about the quantlty of : |
mterest at’ tlme t+ft for some T> 0 based on data measured up to and mcludtng

L '.'We’ .e;ay that the filtér is “linear" if the' filtered, smoothed or predlcted qua ity: of

",mterest 1s a hnear funcuon of the noxsy data’ or observatlons, as they are somettmcs

'called

In the classxcal statxsucal approach to the- hnear ﬁltermg problem, 1t is. assumed
_that the Jomt statlst:tcs of the useful stgnal and unwanted noxse are known and th‘
“requlrement 1s to desxgn a ﬁlter so as to rmmrmze the effects of n01se accordmg :

some staustrcal crttenon A standard approach is to. mlmrmze the mean squ

e of the. "error S1gna1" whxch is deﬁned as the d1fference between some desu'ed

' and the actual ﬁlter output.‘ For statlonary stgna.ls and observatrons,



- :s01u’tion is commonly known as the Wiener':ﬁlte,r [2) o
1.2.2 Linear Adaptive Filters

In thlS secuon, we exarmne the need for adapuve ﬁlters, and for smtphcny, we'”

‘ focus our attentlon on lmear adapuve ﬁlters that have ﬁmte 1mpulse response(FIR)

The des1gn of a Wlener ﬁlter requlres a-pnon mfonnatton about the stat;lstlcs of o

, the data to be processed When this mformanon 1s not completely known 1t is notv

: posmble to de51gn the optmmm Wlener ﬁlter Tlus Ieads to the concept of adapnve '

Lo ﬁlters By such a devxce, we mean one that is self de51gn1ng, 1n whtch the ﬁlter reltes"' .

on a recurswe algonthm to perform sansfactortly in unknown env1ronments thure 1 -
shows the block d.lagram of a general adaptive filter. x(k) y(k) and y(k) denote the
- input,. output and desned signals of the adapnve ﬁlter, respectlvely In thlS sectlon the

" programmable filter: 1n Flgure 1is assumed 10 be a linear- FIR ﬁlter, and hence: theix_

elements of the vector of coefﬁcxents c(k) repnesents the tmpulse responsc of such a: e

ﬁlter at time: 1nstant k The algortthm starts from a predetermmed set of mtttal
-conditions represennng complete xgnorance about the env1ronment In stat;lonary'

envuonments the algonthm should converge 1deally to the optlmal ﬁmte Wlener ﬁlter "

‘In nonstauonary envuonments, the. algonthm offers a trackmg capablllty, whereby it : :

can u'ack time vananons 1n the statlstlcs of the data prov1ded that the vanattons are

sufﬁc1ently slow

A w1de vanety of recurswe algorlthms have been developed in the hterature fori i

i the trammg of adaptlve ﬁlters The ch01ce of one algonthm over the other depends. - )

upon several factors such as computanonal complexxty, ’ rate of convergence,

o tmsadjustment, robustness, and structuref 2].
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Figure 1. - Block Diagram of a General Adaptive Filter



| The sunplest and most w1dely used recurs1ve algonthm for trammg an adapuve
. filter is the Least Mean Square (LMS) algonthm[3] whlch is based on the steepest. i
descent method for ﬁndrng the Wlener ﬁlter Herc the ﬁmte tapped delay line or
transversal ﬁlter shown ll'l Flgure 2 is used as the structural bas1s for development of

the algonthm The output of such a ﬁlter is glven by
L-1

yk) = Z <O x(k ) =_C_"zc.(k) |
j= .
where c= [c(O), ,c(L—l)] is the vector of tap welghts and x(k) = [x(k) x(k-L+1)] |
is the mput vector to the adapuve filter at ume mstant k If x(k) and y(k) are Jomtly
w1de sense stanonary sequences then the mean square error (MSE) | ‘
. e=E(G0-307)
isa constant convex functlon of ¢, and if the joint second order statlsncs of x(k) and
y(k) are known thcn € can be mmmnzed over ¢ analyncally to yleld the Wlener ﬁlter
_When the stausucs of x(k) and y(k) are unknown, the tap welght vector can be; A
: sequennally _estxmated based on a training sequence using ‘a “stochastic gradrent |
algorithm : | E |
o+ 1) =¢(k) +uty(k)4'9(k5');,(k) - ap

where the gam parameter M is a small posmve number Note that v(k) is evaluated at -
the current welght vector c(k) in the above recursron i e y(k) = c(k) x(k) Thts is the
LMS algorithm. If x(k) and y(k) are in fact jointly wide sense stanonary, it can be
shown (under'further suitable conditions) that c(k) converges to the Wiener filter in»
the mean and mean-square sense [2, 3]. |

‘Several other recursive algorithms have been developed based on the stochastic»
Newton method’ (as opposed to the stochastic'gr‘adienti method) and also the method

of least squares[1,2,4,5]. The algdrithrns based on these approaches are

t | these al_g'Or-ithmsa;re sornetimes’referted to as Kalman algorithms .
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- computauonally expensxve but have a faster rate of convergence than the LMS

o algonthm Hence these algorithms. become useful whenever the rate of convergence = EE

isa crmcal factor, .
1:”ModesofOperauon otvadaptive Filters' Ly

In tlus secuon we 1dent1fy three basrc modes of operauon of adapnve ﬁlters [6]

'We dlSCUSS these modes in a relauvely general context Wthh means that the\

‘ unknown systems need not be hnear nor time mvanant and the adapuve ﬁlters need :

: not be lmear

The ﬁrst mode of operauon of an adapttve ﬁlter is the d1rect system modehngf
'mode shown in Flgure 3(a), wluch is- used for system 1dent1ﬁcauon[3 6] In this |
mode the adapuve ﬁlter is used ] approxm:tate the unknown system Here, _the time

.'senes x(k) is mput srmultaneously to the unknown system and the adapttve ﬁlter Thev’

: loutput of the unknown system y(k) then becomes the desued output for the adapuve -

: ﬁlter In pracuce, there is normally additive noise assocrated with the unknown system
- which could be measurement noise and/or noise w1thm the system 1tself The
_ adapuve ﬁlter is desxgned to mmtrmze the error between the output of the adaptlve

' ﬁlter, y(k), and the output of the unknown system y(k) 1n some stattstlcal sense

The second mode of operauon of an adaptive ﬁlter is the inverse modehng modea

shown in Flgure 3(b), whxch is used for channel equaltzatton[7] In this mode the y »

adapuve filter is used to approxrmate the inverse of the unknown system Here the‘
time series x(k) is the mput to the unknown system The output of the unknown
system y(k) is the mput to the adapuve ﬁlter and the 1nput to the unknown system -

x(k) is the desired output for the adaptive filter. A_garn,»ln pracuce there is normally



addmve noise present in the unknown" system The adapnve filter is desxgned to

- vmmumze the error between the output of the adaptlve ﬁlter, x(k), and the mput to the’
' unknown system, x(k), in some statxsucal sense | | |
The th1rd mode of operanon of an adaptive ﬁlter is the pred1ctlon mode shown in

Figure 3(c), Wthh is used i 1n predlcnve coders for speech and 1mages[8] In this mode

the. adapnve ﬁlter is used to predlct data at-time instant k based on data observed uptor _

s ;ij nme instant k - T for some T > 0. Here, the time series. x(k) is delayed and input to

- :the. adaptive filter, and‘x(k,) is the deslred output for the,ﬁlte,r_. Adaptlvny is requrre\d:‘_.

- here since the data x(k) is usually n‘onstati‘onary. Note that the pred1ct1ve mode of

operation is a special case of the inverse modeling mode where the unknown system

C _in:the inVerse modeling'mode of operation ksimply-.int‘rodtxces a delay V'

We note that when the adaptlve ﬁlter is chosen to be lmear and FIR the LMS
algonthm dlscussed m the prevrous section can be used 1n each mode of operanon‘

‘ ?w1th obv1ous changes in notanon
' 1.‘4Applications of Adaptive Filters

. Due to th‘e ability of the. adaptive filter to Operate : effe(:tively in unkn‘OWn ‘
env1ronments and also: track the tlme vanatlons of the mput stausucs, 1t has been -
'successfully applled in such diverse ﬁelds as commumcatlons, control, radar sonar o

: 'sexsmOIOgy, unage processmg and’ pattern recognmon In thxs secnon we bneﬁy'

dlSCllSS three apphcanons of adaptlve filters drawn pnmanly from the ﬁeld of“ : .. '

: 'commumcatlons, each representmg a mode of operanon descnbed above

o 'Echo Cancellanon : A practical cxample of the direct system modelmg mode of o

operatlon is. echo cancellatlon across the hybnd transformer used in telephone
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Figure 3.  Modes of Operation of Adaptive Filters (). Direct Systern Modeling (b).'- -
- Inverse System Modelmg (c). Prcdmuon Mode




10

o _networks 9] (see Flgure 4). At any pomt in a telephone network when a s1gnal
' :encounters a rmsmatch in: 1mpedance, a poruon of it gets reﬂected as an echo Thls 1s

_ annoymg to the speaker and in many cases completely dlsrupts the conversauon The -

deleterious. effects of such echoes depend upon their strength spectral dlStOl'[lOl‘l and o

delay. The main source of echo ina telephone network is at the Juncuon between the

v two-wne local subscnber loop and the 'four -wire" long dlstance hnk called the

= 'hybrxd W’henever there is a rmsmatch of 1mpedance between the subscnber loop

B Cll'CUlt and long dlstance cu'cuxt a pomon of the signal from the transmltter reaches
the recelver at the far end through the hybnd and thls is called talker echo One |
method of reducmg the talker echo is to construct a ﬁlter m parallel w1th the hybnd
.Wthh models the echo path across the hybrid. The echo can then be cancelled by' |
) | subtractmg the output of the adaptlve filter from the output of the hybrld Smce the

charactenstlcs of the echo path is unknown a-prxon and ume varymg, an adathve‘ ,

e filter i is commonly employed.

o Channcl Equalizﬂativon;:_;ﬁA;:pr'actical example of. _the_ ;invexfsc, systern modehng mode of
’ouef:ation is the equallzation of digital communication _cha,;nnelto comhat intersy;tnbol
interference[3 6 7]‘ (seeFigufe 3). Such a channel may be modeled by an equivalent
d1$crete ume transversal ﬁlter with addmve n01se[7] The dngltal sxgnal which is
apphed to the channel is a sequence of symbols taken randomly from a ﬁmte alphabet
‘ If the eqmvalent dlscrete-tlme channel has ﬁmte bandWIdth each element of the ’
‘by;_'channel output sequence will contam conmbutlons from several mput symbols Thls

, 1s called mtersymbol 1nterference The functton of the adaptlve ﬁlter is to reconsu'uct

g the t:ransxmtted symbol sequence w1th a very Iow probablhty of error. | An adapttve‘

- equahzer is usually tramed by transmlttmg a predeterrmned sequence known to the
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j‘_‘recexver pnor to the actual data Subsequent to [hlS trammg pertod 1t 1s sttll possrble S

o to tIack slow vananons in the channel charactenstlcs by usmg the output ‘of the‘ o

' dec1s1on c1rcu1t as a trammg sequence for the adaptlve ﬁlter Thrs is lcnown as a :

o .‘ffdeasmn d1rected equahzer[?]

. Predlctrve Codlng A practhal apphcatlon of the predlcuve mode of operanon of an -

| "f‘”_'adapuve ﬁlter 1s m the area of waveform codmg of speech (5, 8] (see Flgure 6) A'. :

X ’._}predlcuon x(k) is made of the original process, x(k), from whxch the predlcuon etror -

| ;»srgnal e(k) x(k) x(k) 1s generated A quanuzed versmn eq(k) of e(k) is. then' o ‘

' encoded and transrmtted The speech - decoder located at the receiver. computes

. " x(k) = x(k) +e€q (k) based upon the (assumed errorless) recepuon of eq(k) It 1s easy to

- _v.show that: 1f both encoder and decoder predtctors have the sarne mmal condmons the‘vj '

' - ‘fonly error m the reconsu'ucted s1gnal at the recelver is equal to the quanuzanon error

o :y at the uansrmtter whtch can be made as small as pos51ble Smce the error 51gna1 e(k)_

| ‘»has a very small dynamxc range, the number of b1ts requrred to represent it 1s much.: T

o _:less than 1f we. had encoded the speech srgnal drrectly Hence °"e can acmeve a good 2‘

f compressmn rauo Note that adaptrvuy m the predlctor rs necessary, smce the speech' e

| /731gna1 is nonstauonary

Other apphcanons of adaptive ﬁltermg in the ﬁeld of commumcauons mclude

o gadapnve spectral esnmauon, adapuve lme enhancer and adaptxve beam formmg[Z]

In the next chapter we. demonstrate the: need for nonhnear adaptlve ﬁltenng and‘

N state 'some: of the problems assoclated with ex1st1ng nonhnear adaptlve ﬁlters In '

}Chapter 3 we propose a tree~structured p1ecew1se hnear adaptlve ﬁlter to overcome,_ P |

:f.-rthe problems in exlstmg nonhnear adaptwe ﬁlters In Chapter 4 we denve a stochasttc S

: i'»gradrent based: trammg algonthm for the ‘tree- structured ﬁlter In Chapter 5 we carry
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~ outa rigorous cohve'rgence analysis of the tree-structured piecewise 'linear adaptiVe R

~filter, wherein we show the mean square convergence of the adaptrvely tramed tree -

'stmctured plecew1se linear filter to an opnmal tree structured p1ecew1se hnear ﬁlter In

Chapter 6 we apply our tree- structured plecew1se lmear adaptrve ﬁlter as an adapnve

equahzer adapuve echo canceler and adapuve predictor for speech signals. In each of :-_ o

: the appllcanons, we compare the performance of the tree structured pxecewrse hnear o o

ﬁlter thh that of lmear second order Volterra and third order Volterra types of -
; adapttve ﬁlters In Chapter 7 we mvesngate the problem of automat1ca11y mspectmg
the geometry of a fuel mjector nozzle Here we. dlSCllSSv the dxrect- and mdn'ect
1mag1ng tcchmques to accurately obtain the parameters that affect the spray process "'

L through the nozzle o
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CHAPTER 2
* NONLINEAR ADAPTIVE FILTERING

2.1 Need for Nonlinear Adaptive Filtering

‘An adaptive filter is referred to as linear if the estirnate of the quantity of inter.est -

is obtamed adaptlvely at the output as a lmear cornbmauon of the avaxlable set of o

observanons apphed at the ﬁlter input [1]. An exarnple of lmear adaptwe ﬁlter is the :
transversal ﬁlter shown in Flgure 2 in Section 1.2. Although l1near adapuve filters are
sunply 1mplemented thelr performance is madequate in a vanety of apphcatlons
Nonlmear adapnve ﬁlters have been used as equahzers[7] when the channel mduces B
severe mtersymbol mterference 'Nonlinear adaptive filters have been used to identify -
nonhnear systems Wthh occur in noise and echo paths in telephone networks [10-13]
and also dxgltal satelhte links where the satellite repeater uses nonhnear devxces 11ke a ‘
Travelhng Wave Tube(TWT)[14]. Nonlinear adaptive filters have also been used for .
nonlinear prediction of speech in the area of. speech coding.' Such nonlinear systems
are typically modelled by a truncated Volterra series or by a Wiener or Hammerstein
model[13, 15-20]. Thus there ls a general need for nonlinear adaptiue filtering. In this
section we illustrate. in detail the need for nonlinear adaptive filtering in three
_ 'applications, narnely]channel equaliz’atlon, echo cancellation and speech coding, We
also dis.cuss sonlc of the, existing nonlinear adaptive ﬁlters and point out the problems

associ_a.t_ed'with each of them. In chapter 3 we propose a tree-structured piecewise

* linear filter which overcomes the problems associated with the existing nonlinear ~ =~
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:' adaptive ﬁltei‘s. S

The channel equahzanon apphcauon -In Secnon 1. 4 the use of an adapnve ﬁlter asa

- channel equahzer was. dlscussed In a bandwrdth—efﬁcrent d.1g1tal commumcauon
system the effect of’ each symbol transmrtted over a hnear time d1spersrve channel

‘(whose frequency response deviates from the 1deal flat amphtude and linear phase) ’

' ‘ :extends beyond the time interval used to represent that symbol The dlstortxon caused
. ‘by the resultmg overlap of recexved symbols is called 1ntersymbol mterference" (s1

[7,21]. ISI 1ncreases errors at the receiver and hence the rehabrhty of hrgh-speed data

3 transnnssron over low background noise is reduced. An adapnve equahzer is used to

vcompensate for ‘the unknown tlme dispersion exhlblted by the channel and to

| »:neconstmct the transnntted symbols[2l 26]

For the equalrzanon problem it is common to assume - that the channel is lmear o
B bandhmrted and corrupted by additive whxte Gaussran noxse For quahty telephone", -

’f‘.f..channels, hnear equahzers are sufﬁcxent to combat the correspondmgly rmld ISL

S ‘However, for mult1path radio frequency channels whlch have deep nulls in therr

‘ spectral charactenstrcs nonlmear equahzers are necessary to combat the
' ‘comparanvely severe ISI [7 27] The convenuonal reasonmg here 1s that when the‘
: channel has deep nulls 1n 1ts spectrurn a hnear equahzer 1s too constramed to both |
1nvert thc channel charactensucs and at the ‘same ume moderate the noise in the v |
’ ‘»'v1cm1ty of the drps 1n the channel response (and peaks in 1ts inverse response) To

‘1llustrate the performance limitations of lmear equallzers in presence of severe '

g mtersymbol mterference we show in Flgure 7 the amphtude spectral charactensncs of S

.‘ _'two chfferent kmds of channels and in Frgure 8 the probabrhty of error curves for a

' hnear equahzer for these two kmds of channels Flgure 7(a) represents the specn'um "
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of a typrcal data quahty telephone channel, whereas Flgure 7(b) represents spectrum

of hlgh frequency and radio frequency channels.

An alternatwe and more premse explanation of the need for a nonlinear equalizer
.can be based on the fact that the ultimate purpose of the equahzer is to minimize the
probablhty of error. We shall nge a srmple argument that in the absence of nolse, a-
linear equahzer of sufﬁcrently large (but finite) length followed by a decrslon devrce
can exactly reconstruct the sequence of transrmtted symbols The argument can be
extended to show that in the presence of add1t1ve n01se, the same recexver can estimate
the sequence »of transmitted symbols with arbitrarily small probabthty of error per
smb'ol as thé noise variance tends to zero. Note that these resul't's* hold-er FIRorIR
 chanriels; even when the channel is FIR and its inverse is IIR, only an FIR equalizer is
required.‘ | e o |

So let g(k) denote the impulse response fora noiSeless channel and let G(z) be its
z-u"ansform Let hv(k) denote the impulse respOnse of the inverse channel and let'
H(z)-l/G(z) be its z-transform We assume that g(k) and hik) are BIBO stable Of
courseé we can reconstruct the information sequence x(k) from the channel output
sequence y(k) usmg an (m general) IIR equalizer with impulse response h(k) (see Fig
9'a). Suppose that x(k) takeson values + 1: We argue: that in this case. x(k) can be
: reconstructed from y(k) using an FIR equalizer with some ir’npulse response h(k’)'
followed by a sign detector (see Fig 9b). To see this, ﬁx L for the moment and let

h(k) h(k) for k--L+1, .0,1,..,L-1 and zero otherwise. Refermg to Fxgure 9 we have

-L
x(k) ~ -x(k)= ¥ hn)yk- n)+ Z h(n) y(k — n)

n=-oco ' 1=L

Since x(k) is bounded and g(k) is stable, y(k) is bounded. Hence since h(k) is stable

SUP [x(k) - x(k) | S sup y(m] ( Z |h(n)| + 2 lh(n)l) -0 asL—->oo |

n=-—oo n=L
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uhif_ormlyn for all input sequ“ence,s x(k). ConSt:quc;ntly, we can choose L large ic'xlloﬁ'gh: S
such that supy | x(k) x| <1, and'so x(k) = sign(i(k)) for allk as re‘quired
Now for the case of addmve noise, a mod1ﬁcanon of this argument shows that' E

for large enough ﬁltcr lcngth supk P{x(k)¢s1gn(x(k))} - O as r.he n01se vanance
tends to zero. We remark that the length of the ﬁlter and the size of the noise Vaﬂan._ce_ e
that is requn‘ed for the linéar'cquslizér to porform wcli”rdéocnds o_n how fastthc talls o
of h(k) :tcnd to zero. This provides a connection to the more heunstxcargumcnt that a N
linear éqﬁalii‘er‘pérforrhs well when IG(éj‘°)|-‘ has no deep ﬁulls N G(é"‘")‘l' hasno
large deS when | H(e/®)|. has no large peaks, Wthh is cssenually true whcn the tails
of h(k) tend quickly to zero. '

~ The above discussion provides some justification for_niSing a linear égﬁali'iér o
provided we 'choo’se' the filter lcngth long enough and the noise is Small”enoug_ﬁ';’.Whén o

either of these conditions is not satisfied, a nonlinear equalizer is more appropriate.

“Echo canccllanon apphcatlon - In Secnon 1. 4 the use of an adaptlve ﬁlncr as an echo |
canceller was dlscusscd Echoes are gcncratcd as a consequcncc of 1mpedancc .
mismatch between the two-wire subscriber loop and four-wire long dlstam_:e_-_l_mk at "

the hybrid junction of a telephone circuit. The basic idea is to synthesi,z: a replica o.f |

the echo and subtract it from the actual echo generated in the telephone circuit. Thisis

typically a system identification problem. Linear adaptive echo cancellers that have

been proposed in the literature [9,28,29] are based on the assumption that the echo
path in the telephone circuit is linear and all of them, accept}nonlinearity as an

" uncorrectable perturbation. Nonhncar echo paths arise in most practical 31tuat10ns due;r |

to two major reasons{13]. One is duc to the rmsmatch in the compressor and cxpander"

characteristic and the other is due to the harmomc distortion in amphﬁers and
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’ repeaters the characterlstrcs ‘of both of these anomahes bemg unknown In many-
'cases, these anomahes are of sufﬁcrent magmtude to degrade the performance of_ -
lmear adapuve echo cancellers The causes for nonhnear echo paths are. dlscussed in .

further detail beIow _ ,:

A hrghly srmphﬁed dtagram of the mterface between a four—wue drgrtal lrne and

L a two wrre analog hne in a typlcal digital telephone network [30] rs grven ‘in Frgure. A

5 10(a) The compander and expander shown in the ﬁgurc are used for the non- unrform' g :

quantlzatlon of . speech srgnals[S] Thrs is necessary to 1mprove the srgnal to G

o quannzatron norse ratro (whrch is the’ ratro of srgnal power at the quantrzer mput and' T

the quantrzatron noise power at the output) of the system. A typtcal compressron S

: characterrstrc is. shown 1n Frgure 10(b). Thrs isa hrghly nonlmear characterrstrc and is B

o Acalled the p.-law compressron charactertsuc At the transrmtttng end the orrgmal.' |

el speech srgnal 1s passed through a devrce with compressron characterrstrc and then

i ’. : passed through an analog-to-drgrtal(A/D) converter wrth a unrform quanuzer to obtarn

‘ the dtgrtally encoded speech At the. recervmg end the output of the drgrtal-to-analog
converter(D/A) 1s passed through a devrce wrth expander characterrstrc whrch
| performs the 1nverse operatron of compressor characterrstrc The process of ﬁrst
'}compressmg and then expandrng a srgnal is referred to as cornpandrng A rrusmatch |
rv‘xn the nonhneantres mtroduced by compressor and expander makes the echo path

'have a hrghly nonhnear charactensnc

Another source of nonlmeanty in the echo path is the presence of automauc gam

.Control devrces whrch have charactertsucs smular to the oone m Frgure IO(b) A

oy .‘:furthervso ce of nonhneanty in echo path is the presence of large s1gnal arnphﬁers 1nv

o - _1hybrrd crrcutts(see Fxgure 10(3)) In practrce these amphﬁers have-a S shaped gam

___curve wrth lmeanty m the mrddle of the curve and this produces harmomc drstornon | ‘; |
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| This causes extremely annoying echoes to be vhe.ard by the tallter
Thus nonhnear echo paths inherently exist in the current telephone network and

_there is a need to cancel the echoes generated by these nonhnear pa,ths whose g
characterxstlcs are not known a pnon Lmear adapnve cancellers can perform poorlyt"f.f B

in such envrronments and hence the use of nonlrnea.r adapnve ﬁlters 1s more

- papp}ropnate. |

:SPCCCh codmg applrcatlon :- For ‘many classes of mformatlon s1gnals, mcludmgi S

speech, the. value of the srgnal at a given instant is correlated w1th 1ts values at the_

previous mstants and hence represents redundant 1nformanon [3‘1] The nature of the -

correlatxon depends on the manner in Wthh the 1nformanon sxgnal was generated An
; mtegral part of srgnal analysrs isto determme the nagure of the correlauon and hencei?vv

'reduce the redundancy in the srgnal by . represent;tng it by a. small number of '

E ,parameters Thrs 1s especlally useful in communlcanon systems where the exlsungv

channel capacrty cannot accommodate the d1g1tized speech wrthout redundancy. ,

. rernoval Thus, mstead of transrrnttmg the ngmzed speech the parametersj.f. e

representmg the speech are transrmtted whlch requtres consrderably less channel :
capacxty One of the most popular analysrs techmques for speech s1gnals 1s the |

. rnethod of hnear predlcnon analysrs[32] Over the last two decades, thlS method has

. become the predommant techmque for esnmaung the basrc speech pararneters e. g .

- p:ttch f’ormants spectra vocal tract area funcuons and for representmg speech for low'

blt rate transmlssmn OI' storage

The basm 1dea behmd the hnear predlcnve analysrs 1s that a speech sample can

B be approx1mated by a lmear combmauon of past speech samples By rmmrmzmg a

o sultable cost funcnon of the exror (e g., mean- squared error) between the actual speech



sample and the hnearly predxcted one, a unlque set of predJctor coefﬁcmnts can be-__‘_" L

deternnned whlch can be used to represent the parameters of the speech 51gna.l Thls:_
techmque of represenung the speech signal by a set of predlcuon coefﬁcxents or

parameters is popularly known as Lmea.r Predlcnve Codmg or LPC [32 36]

Although LPC 1s well estabhshed as an effecnve method for redundancy, el

teducuon in speech s1gnals its residual (deﬁned as the error between the actual speech

| sample and the predlcted output) still possesses a s1gmﬁcant amount of redundancy:

: and hence predJctlve component 137, 38] This is because the LPC techmque is based,_ o

“on the assumpuon that the speech producuon process can be modeled by an all-pole-_'_". .

ume varymg hnear filter. In reality, the speech producuon 1s rnherently nonhnear and"_\i:_,’: ’

can best be represented by a nonlinear dynamical system [39 40]. Furtherrnore the'__
LPC techmque assumes that the sound source and. the vocal tract are two decoupledf _

hnear systems In fact, it'is the mteracuon between the source and. the vocal tract

| ‘whlch actually contnbutes to the built-in naturalness in the produced speech It has R

' ’been estabhshed that this source-tract mteractlon 1s a major source of nonhneanty in

the speech producuon process 36,41, 42]

Many different models have been postulated for quanutauvely descnbmg certam '

v_ factors involved'in the speech productlon [38-45]. Itcan be stated thh certamty thatf.

no single model has been developed which can account for all- the observed.

charactensttcs of human speech. A highly mmphﬁed model of the vocal cord/vocal B

tract system is shown in thure 11 [42]. A major source of nonlmeanty in th1$i :

s1mpl1ﬁed model is the presence of the nonlmear glottal 1mpedance Z, (represennng_'r' S

: the path of source- tract mteracuon) whtch depends upon the glottal ﬂow and area Ag,
"whlch in turn depend upon the self-osc1llat1ng propernes of the vocal cord model _

Linear predlctors can perform poorly in terrns of remOvtng te_dundancy in ,such_'_
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environments and hence nonlinear predictors are more appropriate. Furthermore, s_ince S

~ the speech parameters vary from person to person and - the speech signal is

~ nonstationary, adaptive prediction is necessary.

22 Existing Nonlinear Adaptive Filters and Their‘Shortcoming-‘s"

In general we expect 2 nonlinear adaPtlve ﬁlter to have the followmg desxrablc', I

"propemes simple- structure and trammg algorithm; good performance (in" terms of :

asymptonc mean-square error or probability of error and also rate of convergence),_f -

:and uses estabhshed hnear adapnve ﬁltermg techniques to t.he extent pos31ble e

Several nonlmear adapuve filters have been proposed in the llterature in a vanety o

of apphcauons In this" secuon we focus on nonhnear adapuve ﬁlters that have been s

used for equahzauon, echo cancellanon and speech coding.

’I'he decision feedback equahzer (DFE) [6,7,46,47] is by far the most p0pular R

»nonlmear adaptlve equahzer The DFE consists of two secuons, a feedforward secuon '

and a feedback section. Both sections have structures smular to the lmear transversal o |

ﬁlter shown in' Figure 2. The input to the feed.forward section is the channel output_' S

sequence and the mput to the feedback secuon is the sequence of prewously detccted .‘_"-'__1 S

symbols. The output of the DFE is the sum of the outputs of _these two secnon_s._-“»-'

Functionally the feedforward section is the same as that of linear transversal equalizer = -

and the feedback section is used to cancel the ISI caused by previously ,trahsrnit.ted _ | =

symbols The idea bbehind the decision feedback equalizer is that if the pxeviously S

detected symbols are correct, then the contnbuuon of these symbols to- the ISI of the_,j: :

future arriving samples can be exactly cancelled The output of a decision feedback' . '.; B

equalizer can be expressed as
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‘0‘

j= 3 o) xtk— e z () (k- = z<k> B
' j==L+1 j=1 . c
| whe_re | '_2_’ [x(k+L—1), ,x(k),y(k-l), ,y(k L+1)] ©ad

e=leL 1), c(L-— 1)] Here 7(k) denotes the detected output at time insant k.

The werght vector ccan be sequennally estlmated based on 4 trammg sequence usmg .

N _the LMS algonthm analogously to (1.1):

e+ 1)= c(k>+u<y(k> jeoEe o @n

. Note that y(k) v_isvevaluated at the*current Werght veCtor g(k')’:k 1n ‘4(2_.-1‘), i.’e‘.,
y(k) = c’(k) z(k) | ~ In " the trammg : mode, _
F=[x(k+L=1),.. ,x(k),y(k- 1D ik = L‘+:1)]"‘Y | can e placed by
z= [x(k +-L = 1)yees x(k) y(k --1) ,y(k L-+- l)] m (2 1) In the fully adapuve mode
y(k) is replaced by y (k) in (2.1). Although the demsron feedback equahzer is Mdely |

used, it suffers from two srgmﬁcant problems Fn'st, at low srgnal to nmse

B ,'rauos(SNR) thc dec1sron feedback equahzer can feed back sufﬁcrently many

| 'mcorrectly detected symbols 50 as to serlously degrade its performance Second, the.

o dec1510n feedback equahzer is hmrted in its abxhty to unplement comphcated

: nonlmeanues, m fact the dec1s10n feedback equahzer only d1ffers from a linear
| equahzer w1th feedback in that the feedback filter contams the prevrously detected -

Vsymbols whlch are quannzed versrons of the output’ of the equahzer

Polynormal ﬁlters [18 48] whlch include lmear and quadrauc ﬁlters as specxal
| »;»cases, can also be used as nonlmear adapt1ve equahzers Polynomxal filters can be -
' ‘v1ewed as lmear ﬁlters wath an extended mput space lhe output of the polynomxal ;
}».vequahzer can be expressed as | | EEN R

y(k) 2T el dxEmi) e xkmj)=CXE

p=1 —L+lsh o Sj<L-1



where X(k) 1s a column vector of mputs x(k - _]1) . x(k Jp) and C is a columnf o

' vector of welghts c(]l,.v.,.. , jp) (put another way, y (k) is a q-th order truncatedr» '

Volterra senes in the x(k) s) The welght vector C can be sequenually esumated based '

ona tratmng sequence analogously to (1 n:
C(k *D=C0 (Y(k) y“‘))x(k) T (22) o

,Note that y(k) is evaluated at the current wetght vector C(k) 1n (2 2),v 1e o ¥

- )'(k) C’(k) X(k) In the - fully adapuve mode x(k) 1s rcplaced by y (k) 1n (2 2) . )_

| , Apnon, a polynormal equahzer seems like an obvrous chorce for a nonhnear equahzer» o 1 : ,

- asiit appears to possess the des1red properties’ hsted above However 1t tums out that-‘

0 although sufﬁc1ently htgh order polynomtals can y1eld small asymptotlc probabthty of

e ferror they wﬂl also in general converge very. slowly The properues of polynormal;, ,-;f

. ﬁlters are further dlscussed in Chapter 6

Multxlayer perccptrons [49] have also been proposed to be used as an adaptwes
: equahzer, but they requlre enormous amounts’ of trmmng and have a comphcated

. sn—ucmre = , : s v

Almost all the nonhnear adaptlve ﬁltermg approaches to echo cancellauon that".”'

’ 'have been proposed in- the literature make use of the d1$crete Volterra series -

o representauon to model the nonlinear echo path Note that truncated Volterra ﬁlters.‘ o

: v»are ldenucal to the polynormal filters mentloned above Thls approach has two

problems FlI‘St 1t is not clear whlch higher order terms can properly be neglected and .

second the convergence rate may be extremely slow In (18}, a Kalman ﬁltermgf :

' approach to a second order ~adaptive Volterra ﬁlter 1S proposed Thts approachv
‘ prov.ldes a faster ,rate. of convcrgence, but is computaupnally ,c;tpens};}vc.,ln (10,12],

_ echo,vvcancclersf- based on j:the_principle of "memory cancellation" or 'look-up '_table"
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e *"‘ar:'{'-,;f’have been proposed These approaches do not account for pos31ble ttme vananons 1n~ ~

B ]" the echo path response

The nonlmear adaptrve ﬁlters that have been proposed as adapuve predrctors m - l

B :the hterature am the d1screte Volterra ﬁlters and the mululayer perceptron : ;; S

'archrtectures[38 50] The problems assocxated w1th these lgnds of nonlmear adaptwe o E

- f}_ﬁlters have been d15cusscd above

In the next chapter we propose a tree structured p1ecew1se hnear ﬁlter whjch"

o *f»;;..i_’{:f’*overcome the problems assomated w1th the nonlmear adaptlve ﬁlters d1scussed above AR
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CHAP’I'ER 3
TREE STRUCI'URED PIECEWISE LINEAR FILTER o

A sn:nple and logical alternative to the nonhnear adaptive ﬁlters descnbed in
Chapter 2 is to build a piecemse hnear adaptve filter suchkthat the overall response of |
the: ﬁlter-approximates the opumal nonlinear response. Figure 12 shows a piecewise
hnear ﬁlter charactensnc with a scalar mput The ﬁlter we propose 1s adapt1ve m the ’

sense that the number, length and slope of the lmear segments get updated as new

samples arrive.

A p1ecewme hnear filter d.wides the input space into different regxons and selects”i‘ S

the best linear filter for those inputs belongmg to a particular region. Thus the overall 1
structure of a piecewise linear ﬁlter_is. of the form;shown: in,Figure 13 and may be
' described mathematically‘ as follows. Let X denote the input space R, Let
xl, X2, -- XN denote a partition of the input 'spa.ce:‘ into 'N disjoint regions _i.e;, ,
%= &1 %i: % AX=D Y i#j where i,j=12,..,N. Let hy(K),...,hy(k) denote

i=1 - : ‘
the imp’uIse responses of N FIR filters each of Iength L. If the input to the piecewise
linear filter at the k-th time instant is x(k) then the output of the i-th filter at the k-th :
instant is given by |
. L-1 |
yi (k)= j=ZO h; () x (k=j).

The overall output of the piecewise linear filter at the k-th instant is given by

: N ’
J=Y ¥ ®IxK e ),

i=1



| Figure12. A Piecewise Linear Input Output Characteristic
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. Figure13. Structure of a Piecewise Linear Filter




~where x (k)v'{= [a(k) x(k L + 1)] and I( )is an mdlcator funcnon

o In the adaptive versmn of 'theplecewxs_e'lmear_,:ﬁl.ter, the -domalns-xi; the".ﬁllters:j‘"'-”i* o

| b (l’()' and‘t‘h‘e' nurnber of domains and 'ﬁlter's N keep changing as new'samples-. airi\ie .

_ .In order to obtam the adaptatlon in an efﬁcrent ‘manner, we adopted a tree- structured o

»approach We next descnbe in deta11 what a mee-structured pxecewrse hnear ﬁlter is. e

o We start: ‘by» bneﬁy» dascussmg some basic deﬁmuons and terxmnologles assocxated-_ o

| _ thh a blnary tree. graph (see [51] for rnore detalls about tree graphs)

A (bmary) tree can be deﬁned asa ﬁmte non—empty set T of posmve mtegers and e

 two funcuons left() and nght() from T to TU {0 Whrch ‘t°g¢.th¢.r satisfy the o

followmg two propertles

@) For each t e T exther left(t) right(t) = 0or left(t) >t and nght(t) >t

(i) - For each t € T other than the smallest mteger in T there 1s exactly one s e T' : 7_' . '

“such that erther t= left(s) ort= nght(s)

k'For each node te T, left(t) and rxght(t) smply indicate the left and rxght nodes whrch - o

‘ ‘branch out from t (or are both zeroiftisa termmal node)

The mmunum element of a tree Ti is called the' root of 'T denoted by root(T) If | o

s, teT andt— left(s) ort-nght(s) then s is called the parent of t and tis called an SR

_.offsprmg of A node s is called ‘an’ ancestor of a node lf 7,’ DR

= Pal'cm(t)‘ or S‘==’pafeﬁt(parent(t)) or -=-.A node tis called a descendant of a nodc

sifsis an ancestor of t: The depth of a node t1s the number of ancestors of t. A node-' e

t 1s called a termmal node if it is not a parent that xs, if left(t) rlght(t) 0 Let T : " :

‘denote the collectlcm of termmal nodes of T The elements in _T T are called?' |

’nontermmal nodes




Fora nonerrip.ty §ufbaet’,T1 of T define left; (i)’*aﬁd r‘ightl- () from T; to f'?I:‘l; U{O}
by lefy@®=left) if left®) e Ty, right()= r,ight‘(t) it right() € Ty and
left; (t) =right; (t) = 0 otherwise. Ty is called a subtree of T if the ‘triple T}. ..1¢f:'1y<-),f |
right; (-) 'fOrrns ‘a. tree. G.iiven_t eT, the_.colleeti:o‘n* T, consistifng\ of t and all fits‘
descendents ivs»called‘the branch of T stemming from t. Itisa su’btree of T. |

- A subtree T, of T is called a pruned subtree of T if root(Tl) = root(T) ie.,if Ty
, and T share the same Toot node; this is denoted by T1 <T: Ttis seen that < deﬁnes a‘

' ,partlal ‘order on the pruned subtrees of a tree. A tree, ia sub_tree and a pruned subtree

are 111ustrated in Flgure 14. : | |

To construct a tree- structured p1ecew15e lmear ﬁlter (or rnovredpremsely a farruly_.v |

of plecemse linear ﬁlters) we start with a ﬁxed bmary tnee To, and for each node

te Ty we specxfy a tap .welght vector C = [ct(O), - ,cl(L-l)] -an offset dt and a

'threshold 9[ (actually, there is no threshold 0, assoc1ated with terrmnal nodes te To, |
and in many problems there is no offset dl for t—root(T )). We then assocxate a'
pxecewxse linear ﬁlter w1th each pruned subtree T <T as follows. Let x be an input
vector, ie,xeyx= RY. Then each node t & T, is associated w;tlt the ,hnear filter

Vo= Ct x+d,
‘and each pruned subtree T< T, is associa‘ted with the pie'cewiSe ‘linear m'ter :
' 9’1‘ = 9(. ’

~ where t« is the terminal node in T obtained by starting at the root node and using the

- rule

9;> 0, gotoright(t)
¥ <0, goto left(t)
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© Figure 14 A Binary Tree, Subtree, Pruned Subtree
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Observe that this procedure 1mphcxtly SPemﬁCS the (POlngHal) dornaln x: of the lmear FRSNS

.ﬁlter yl at node t. We can wnte S

.7 Yr=¥, 1fxextandteT

- e, y-p 1s JUSI the. output of the lmear ﬁlter at node t 1f tisa termmal node of T and the .

input vector x lands in t.
A basrc ree T, along with tap weights S offsets d[, and thresholds 0, for a

‘ famxly of tree-structured p1ecew1se linear ﬁlters of length 21is 111ustrated in Frgure 15
The farmly of pruned subtrees generated by T, and the assoc1ated partitioning of input

- 'space is shown in Fxgure 16. Note that there are three pxecemse linear ﬁlters

COH'CSpondmg to the three possible pruned subu‘ees, namcly T=(1}, T=(1, 2 3} and

- T={ 1,2,3,4,5 }. The root node pruned subtree T=({ 1) corresponds to a hnear_ ﬁlter

A §'{1}=5'1 o

- The pruned subtree T—(l 23} wrth terminal nodcs T [2 3} conesponds to a§

| plecemse hnear filter compnsed of two hnear ﬁlters restncted to polygonal domams :

(one ﬁlter for each of the terrmnal nodes) :
Y123 =32 ifxe X2
o =¥3 ifxexs

Here the domains 7%, and %3 are given" by X2 =_{X:§1 <-0.03} and

%3 =(x:§; >-0.03). The pruned subtree T=(12,34,5) with terminal nodes

T=(2,4,5) corresponds to a piecewise linear filter comprised of three linear filters jf '

restricted to polygonal domains (again, one filter for each of the terminal nodes)':
: Y2345 =Yz ifxexz

=4 ifxe x4
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§i= S -6x&-DF01 .

 Figure 15. A Tree-Structured Piccewise Linear Filter o
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Figure 16. Pruned Subtrees and Associated Partitioning of Input Space |




| ;-_-95 if Le ,'x5 :

’jiHere the domams _'x2,x4 and x5 | are glven by ;Q—[x yls—003},v

{x y1>-003 ¥ <07} and =5 >-003 9 >o7} n general it lS

R seen: that for any grven pruned subtree T of To, the correspondmg p1ecew1se lmear?’ E

.'ﬁlter is deterrmned by the lmear ﬁlters yt and polygonal domatns X.: at the terrmnal"_

'nodes te T Furthennore the linear ﬁlter yt is determmed by the welghts c[ and AR ._;‘j B

i i‘”’offsets dt at the node t whereas the domam X: is determmed by the welghts cs, offsets . -

' ._‘ds and thresholds 9 ‘at the ancestor nodes s of node t E L

In the above descrtpuon of a tree-su'uctured ptecew1se lmear ﬁlter we Spec1ﬁed. E

E . tWO parameters dt and 9‘ at each- node whxch we referred to as the offset and: o

= fthreshold respectwely It is an nnponant observauon that we cannot combme these‘k_ﬁ

. vparameters mto a smgle parameter w1thout restncung the structure of the p1ecew1se [

o lmear filters: correspondmg to the pruned subtrees The pomt here 1s that the basm me}f o B

: e To along w1th tap welghts ct, offsets d, and thresholds Gt actually corresponds oa

;;-:'farmly of plecemse lmear filters, one for each pruned subtree T of T The 1dea isto o :

' ‘select the' nght-sxzed pruned subtree s0“as to -avoid overﬁttmg the data (thls is .

o "analogous to selecung the nght number of hnear segments 1n Fxgure 12) a major o

e 'advantage of the tree-structured approach is that the nght-51zed pruned subtree can be , '}: .

o 'v'selected efﬁcxently (see Chapter 4) In order to allow enough ﬂex1b1hty o determme”l x

= :‘zaPPropnate values for cu d[ and 91 w1thout knowmg whether the node t wtllk R

S ‘; eventually be selected as a termmal node, we allow: both dt and 6( to be nonzero We _. | o S

ok 'proceed by choosmg ct and dt to yleld an appropnate ﬁlter asSummg t wﬂl be selected?“ e ‘

. .L‘ias a terrmnal node and then choose 9[ to yleld an appropnate spht assurmng € w1ll be'

. selected as a nonterrmnal node detalls are. drscussed in Chapter 4.



| o CHAPTER 4" |
TRAH\IING A TREE STRUCTURED PIECEWISE LINEAR FILTER

. In the prevrous chapter we d1scussed the. structure of a tree structured precemse EET

lmear ﬁlter In this chapter we specrfy taxmng algonthms for adapuvely unng the

R tap welght vectors offsets and thresholds and seleclng a pruned subtree and theh s

L conespondmg p1ecew1se hnear ﬁlter _

' Recall that we are consrdenng a famﬂy of plecewrse hnear ﬁlters Whlch are 1n'_:

L . one- to-one correspondence W1th the. pruned subtrees of a ba51c bmary tree T Let X :

“be the mput vector to the filter. Usmg the notauon 1ntroduced in Chapter 3, each node -

L ,t e T is assocxated wtth a hnear filter

and each pruned subiree T < T, is associated with a piecewise linear filter

§’T=§'t~. >

- > where b is the termlnal node in T whxch is arnved at startmg from the root node and » L

,.,.-,usmg e £
75"(?6_! gorc‘ilu'ght(t) | - '.: ‘ “(4.i)"
§'t 5_9;',' 'gvov'.to lt”;ft(t)ji.- . |
. Al sorecallthatW . ‘W.'rite i"" - RO

Cjr=§ ifte Tandxey,



TS

We shall descrlbe adapuve algonthms for selecung su1tab1e c[, dt and ©, for : 2

te To, and also a suttable T<T,, based on a sequence_ of tratntng samples,~

'(_(k), (k)), k—O Lo, where x(k) is the mput vector and y(k) is- the des1red s1gnal at(. o

E ttme 1nstant k.
“In the sequel we shall denve our tratmng algonthms under dte assumpnon that

" - ‘x(k) y(k), k=0 1, ., are Jomtly stauonary random sequences w1th (__(k) y(k)) _;omtly '

: ffdrstnbutcd like (x (_ y) By appropnately selectmg gain parameters, the tree structured_" ER A

- “'ﬁlter should be able to track sufﬁaently slowly varylng nonstauonary sequences

When a tra.tmng sample is presented to the tree- structured ﬁlter 1t is used intwo B

g ~steps whxch we shall nefer to as tree growmg and tree prurung 'To start thtngs off, |

B _the trammg sample 1s propagated down the tree In the tree growmg step ‘the tap _"

3 werght vectors, offsets and thresholds are updated at each node In the tree prunmg‘.- .

i 8 step, the selected pruned subtree and correspondmg plecewme hnear ﬁlter is updated.

| More precxsely, let c((lc) dl(k), et(k) be the selected values of S dt, 9t [

' _respecttvely, and let T(k) be the - selected pruned subu'ee of To, based on the ﬁrst k | -_” _‘ IR

"trammg samples (__(1) y(1)), 1—0 1,. k-l Now f'or te T let.
| FR=a®E0 Al |
bThe k+l th trammg sample (y(k) x(k)) is propagated down the tree T from root nodex |
to terrmnal node accordmg to the rule ] |
Sk He e yt(k) > 8,(k) L nght(t)

yt(k) < 9[ (k) go o left(t)

o As the tratmng sample propagates down the tree the values of c[(k), d[(k), Bl(k) arei "

.’ '.updated to ct(k-l- 1), d[(k+ 1), Ot(k+ 1), respecuvely, durmg the tree growmg step,v |

| '-.-and then the selected pruned subtree T(k) is updated to T(k+1) dunng the 'TCC prumng




E We shall ‘spec1fy opunuzduon problems whosc solutmns arc ccrtam values of ct, i _‘
= 'd,, and et Wthh shall be dcnoted as cl , dt and 9[ , for te 'I‘ We shall also spemfy' ‘*
- ~an optumzanon problcm whose solutmn isa certam pruned subtree T of To. ‘We thenf : v |
f‘“.descnbe thc trce growmg and prunmg algonthms Wthh recurslvcly gcncrate"‘
 estimates u(k), u(k>, e«k) and T09 of ¢ 0", O and T° respectxvely |
) We shall make use of the followmg notanon Let x;(k) and X: dcnote the
. f,-.j-(polygonal) domams corrcspondmg to thc decxsxon rule (4. 1) wnh Cu d!, 0, replac ¢ d -

L by ct(k), d[(k), 9‘(k) and ct . dt Gt . respecuvely Also, for te T and T S T let

o 5 (k) o050 +dt<k>

R >)'T (k) = ¥t (k) 1ft eT and X(k) € Xt(k)

s ¥ (k) =c "(k) +al,

(k) yt(k) 1fte Tandx(k)e x[
:‘_y;‘-‘c[ X+d!

o =3 lfteTandzexf RO

S Iewill beconvement to denotc E(- Ixe %) by E,(} p{ Ixe % } by P,{} and
| Covt[ }-Cov{ “e Ixe x,} 1e Pt, E, and Covt dcnotc the condmonal probablhty,, P -

vexpectatlon and covanancc glvcn the mput vector passcs through nodc t, respccnvcly e

We dlscuss tree growmg and tree prumng in- detall bclow A summary of the ¢

' overall algomhm 1s glvcn in Flgure 17



‘ Imuahzanon S
| pz«» I iy

Update . ) LR
' _“Let (_(k), y(k))bethek+l ﬂlt!’almngsamp]e SR

Lt il =a 00+ 4@

SN Propagate the trammg sample from mot node 0 termmal node accordlng to R )

o .1 ,}'t (k) > Gt(k) go to nght(t)
L Y:(k) < Gt(k) go to left(t)
: 1 the n' mmng sample passes thrOugh node o
e sulk- 1) & vc[(k) + u(y(k) ytac»x(k)
.‘f‘;?-‘:fdt(k +1) = 4 () + H(y(K) = Yt(k»
: ‘n}&&+,¥Wm+Mﬂ@ Q&»
- ‘:lib",‘.,"..;...pt(k +D=p@+pd-p®).
S et(k+ 1= et(k)-l-u((y(k) Yt(k)) -et(k))

kD =p i
ek +D =Rl
raté T(k ,uSmg'the pmmng algonthm

g 1 Stminiry of Tning igivithe, e
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4.1 Tree Growing

~ We discuss the wexght and offset adaptanon and the threshold adaptanon'

separately
4.1.1 Weight and Offset Adaptation

Here we (inductively) define the optimal tap weight vectors g; and offsets d,” 'fb_i' '
te .'To;'and"specif‘y algorithms for estimating them. Suppose that Eg , ds, 8" are
defined for all ancestors s of anode te T, (and hence x:'is defined). We choose-_c_: .

- and d(* to minimize the mean square error (MSE) betwe_en the true conditional filter

output ¥, and the desired signal y, given that the channel output vector X passes _‘

through the node t, i.e., we choose ct and d( o mlmrmze

N Et{ (Yt IY) }
with respeet to Gy and dg. '

We sequentially estimate the values E: and dl' based on,’ the trammg sequenee
using an approximate stochastic gradient algorithm: |

ek +1)= ct(k)+u(y(k> ¢ () x(K) Ic_aoe xtac» @Y
dl<k+1> dy(K) + 1 (y() = 1 () T(x(K) € %)), (4.3)

where the gam parameter U isa small posmve number and ct(O) 0 d[(O) 0. Note

that these are mdeed approx1mate stochasnc gradrent algonthms for minimizing €,

over ¢, and dt : the mstantaneous gradlent of (-:t with respect to ct (for example)



evaluated at x x(k), y y(k) Yt (k)

e yw- i (k» x(k) I(.(k) %) Howcver for large kou® Shwld.

S '_v‘f?presumably be close to xt 'I'hese approxtmauons allow us to update the node

" 412 Threshold Adaptation

o of a node te T (and hence xt 1s deﬁned) and also C

: "'j*f‘pararneters for all nodes 1n the tree w1th each tratmng sample, i e, 1t 1s not necessary R

Sto wa:tt unul the node parameters of- all the ancestors of a ngen node have converged -

;';,f;,ln order to update the glven node parameters Fmally, note that 1n the fully adaptlve ; N - i

| : mode, y(k) 1s replaced by y(k) deC(Y’r(k) (k)) m (4 2) and (4 3)

Here we (mducuvely) deﬁne the opumal thresholds 9l for te To, and specrfy'\ﬂ : .

i algonthms for esurnatmg them Suppose that cs R d, 9 are deﬁned for all ancestors s:\f

B iyt is deﬁned) | Let ‘(t)—left(t) and r(t) = nght(t) We proceed by showmg that a

; rjpamuon X o(t) and X ,(l) of xt 1s opnmal m a certam sense, and then showmg that

X X O(t) and X r([) apprommate x 0(t) and x ,([), respecuvely, m a certa.tn sense for sultable ) "

B »chorce of et

Suppose we requlre that the probablhty that the mput vector x passes through"" -

node Q(t) g1ven 1t passes through node tis 1/2 Thts keeps the tree balanced Suppose o

rwe also requme that the ﬁlter outputs y0(t) and Yr(t) bc easy to ﬁt to the data over thell' - |

o ",A}},‘_»’:‘respectlve domams xo([) and x,(l) ina suttable sense A reasonable way to unplement-:-

~ tlus 1s by choosmg Xo(t) and x,(t) 10 mmnmze the mean condtuonal vananc_ of the'

:‘.'desued srgnal y gtven only the knowledge of whether the channel output vector X - .

| ';Passes through node Q(t) or r(v), glven that it passes through node t- Let 5’ be ‘he °" |

anddt are deﬁned (and hence‘i}} o



:ﬁeld generated by the events {x € Xo(t) }' and {x e x,([)} To eondldtxonon—%" 1s to knm:v].
: whet.her x passes through Q(t) or r(t) Formally, for each node te T T we want to \
over partition Xy(o and ey of % subject to the constraint that G

 hlemol=hlzetol=5. @

In ) the Appendlx (Sectlon : 4 4) | shown that the : p‘amnon :v
om—{&ext E{ylx E} &{y}so} xm—(ﬁex; B{ylx €}~&{y}>0} mfacv

| mmm’uzes (4 4), prov1ded 1t sattsﬁes (4 5) Note that E{yix} 1s a condmonally

'unblased esumate of Et[y} 1e Et{E{ylx}} E,{ } Hence 1t 1s reasonable to

that x5 "0 and by l'(l) Wﬂl aPPTOXImatC‘Y SaUSfY @ 5). N°w we fmow that § 7 U

_is the optnnal afﬁne esumator of y based on x in the MSE sense and E(ylx) is the S E
: optxmal nonlmear esnmator of y based on xin the MSE sense Put another way, yt L_) |
is a w1de sense version of E{ylx} (see [52]) Hence we can mterpret x 9([) and x ,(;)
- as wxde sense verswns of x O(t) and x ,(t), respectlvely, 1f we take 9[ = Et{y}
The conclusxon of the above dlscussmn 1s that it is reasonable to take 9t = Et (y} SR
' -,Now et will (tnwally) mxmmxze the cost funcnon : R B
| O a=E(G- -y
_ 'over Gt We sequenttally esnmate the value of 9[ based on the trammg seqbence usmg “ :

an approxunate stochasuc gradxent algonthm

9[(k+ 1) Bt(k)-i-u (y(k) 9[(1()) I(_(k) e Xt(k)) , (46) T



’ where the gam parameter u is a small positive number and 9[(0) 0 Note that tlns is

L mdeed an approxrmate stochasnc gradient algonthm for rmnumzmg o over Gt the»;.‘_ IR

mstantaneous gradlent of at with respect to Bt evaluated at x = x(k) y= y(k) andf

Gt(k) is —(Z/p, ) (y(k) Bl(k)) I(_(k) € Xr) However for large k xt(k) should o "_, o

) presumably e close to Xi- As with the tap Welght and offset adaptanon these- A

approxlmauons allows us to update the node parameters for all nodes in the tree w1th_ o

each tramrng sample ie., it is not necessary to wait until the node parameters of all",'r o

the ancestors of a glven node have converged in order to update the glven node'__-

parameters The vahdrty of these assumptlons are venﬁed by analys1s (Chapter 5) and_ B

numencal expenments (Chapter 6) Also note. that the offset adaptanon 4. 3) 1s-

o -d.\fferent from threshold adaptauon (4 6) Thls is cons1stent w1th the need for both of

the parameters dt and 9: correspondmg to the. uncertamty whether node t wrll o

eventually be selected asa terrnmal node as d1swssed in Chapter 3 Fmally, note that

Sy i in the fully adaptlve mode, y(k) is replaced by y(k) dec(y-r(k) (k)) in (4 6)

4.2 l’l‘re:e Prumng L

Here we' deﬁne an optlmally pruned subtree T" of T and specrfy an algonthm -

. for esumaung it. We choose T o minimize the: mean square error (MSE) between the-- o

" opumal precewrse lmear ﬁlter output Yt and the desned srgnal y, ie., we choose T 0 -

‘minirnize |
‘ . aAe 20

eT =E{(Y'r =i

“over all pruned subtrees Tof T N ote that we can decompose sT

ET = Z et Pt
te_T
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where
& =E(Gi-y)
P =Plxe x).
as”befOi"e Let'et(k) pi(k) denote estimates of €& and De» res'pectively, based on the
ﬁrst k tra1mng samples We esumate T by the pruned subu'ee T(k) which rrumrmzes
the "esnmated" MSE , R
e’-rj('ki =3 st(k) p«k)
: te . ‘

over a.ll pruned subtrees T of T ThlS approach avoxds overﬁmng the ﬁmte amount of

| vdata used for trammg up 10 nme k For small k T(k) w111 typlcally be the root node of |

To, correspondmg to a lmear ﬁlter being opnmal for small data. sets, for large k, T(k) >

: w1ll usually be a nontnv1al pruned subu'ee of To, correspondmg to a plecewxse lmearv .
ﬁlter bemg opu_mal for larger data sets. We next derive the estimates of py(k) ax'l_d.i |
"ei(k). | S : ‘ 7. L : . v -
 First observe that p; will (ttivially) minimize the cost function i
 B=EGc-Ieex)) B
orer pl We sequenually esnmate the value of pt based on the trauung sequence usmg‘ :

‘.an approx1mate stochasue gradlent algonthm
Pl = pt(k>+uauk)e 1@ -p®) @D

where the gam parameter u isa small posmve number and the pt(k) s are 1n1uahzed to
the probabllmes of a balanced tree, k ’
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| ';‘»Note that 1f ]-1 < 1 thc" Pt(k) S are Vahd Pmbabllmes’ 1. e O < p‘(k) <1 for all te T ‘

S me R =

S stochasuc gradxent algomhm for mlmmlzmg [3, w1th respect to pt the mstantaneous:‘” o

gradlent of [3t wrth respect to- pt evaluated at x= x(k) and pt pt(k) 1s“ “
: —2(1(_(k) € xt) pl(k)) However for large k xt(k) should presumably be close tos .

W

e an approxnnate stochasuc gradtent algonthm

Now t-:t w111 (tnvxally) rmnrmlze the cost funcuon
R Et[(et -G - y) ) }

| over el We sequenually esumate the value of et based on the trammg sequence usmg-

)= ;;(k)+ b «ytao y(k» ,._—'etac» I(_(k) c xtac» .

Lo where the gam parameter B is: a small posmve number Note that [hlS 1s mdeed an

, vvapproxxmate stochasuc gradtent algonthm for rmmxmzmg ‘yt over t-:t »‘ the

-'«mstantanet)us grachent of Y wrth respect to . et evaluated at x x(k), y y(k),nf'.ff

o ,'In the fully adapuve mode y(k) is replaced by y(k) dec(ym, (k)) in (4.9)

g =510 and & =0 is ~C/p0) (G200 - Y0’ ~60) 1M € 7). However

S h vfor large k yt (k) and xl(k) should presumably be close to y (k) and x, , respectlvely . g o

- e Gwen pt‘(k' et(k) for te To, the followmg sunple and efﬁcrent algonthmb'- '

“ generates T(k) -from '(see Chapter 3 for tree notauon) -

1 for all T<T Also note that thls 1s 1ndeed an approxrmate-’ L



4.2.1 Pruning Algorithm

Assume T, :has M rioags' <ty <..<ty. Let 4= lefi(t) and ot =right(t) for
'tepr..." | | " | o | R
T=T,
- for t-—tM, e 11
| if teT then
 G=e®pl
1f te T=T. then .
AR =ky ey
if e(OpO<S then
CATeT-ToUTew)
=0, 1=0
5, =80p®) 1))

. The prumng algonthm descnbed above is essentlally a bottom-up algonthm that

' starts from the terminal nodes and proceeds up the tree prunmg away branches The -

prumng algorithm actually generates the smallest opumally pruned subtree, i.e., i T’ .

also rnmmnzes er(k) over T<T, then T(k) <T. The emstence an_d the pr_opemes_ of
smallest optimally Pruned sixbtxees are discussed in [51]. Van’.ous pruning algorithms
(including the one mentloned above) have been used to design tree- structured

: class1ﬁers[51 53] and vector quanuzers[54 55]
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Observe that cl(k), d‘(k), Qt(k), pt(k) and et(lc) are computed recurswely and S |

| v‘ must be updated w1th each trammg sample Howevet, T(k) 1s not computedv '

- vxecursxvely and m fact need not be computed m the trammg mocle In the fully. R

g'__'adapuve mode T(k) need only be computed when 1t 1s reasonably thought to l kD

o fequauons for ct(k) d[(k) et(k) and et(k) $0 as to compensate for the unequal |

| have changed 51gn1ﬁcantly

It makes some heurxsuc sense to scale the gam parameters p. m the update,:

‘.":vprobabxlmes that a trammg sample passes through a partxcular node Note thef ; 0

S factor 1 /Px muluplymg the mstantaneous gradJent of the cost functlons leadmg' .

- would be to replace p., by u/2"d°p‘h(‘), a ch01ce of adapuve scalmg would be to SR

3

»- to these update equatlons m thls regard One ch01ce of nonadapuve scahng

'replace ;,L by u/p,(k+1) (we scale by 1/p,(k+‘1f:'mstead of l/pt(k) because 1f> L

o x(k) € cstk then pt(k+1) > and the’ gain’ u/pt(k+1) is bounded) o

:We have assumed above that x(k) and y(k) are real valued Suppose now that ’
-x(k) and y(k) are complex-valued In th1s case 1t can be argued that the bmary o
| . tree should be replaced by a quaternary tree, 1e a tree m whlch each node has .

o '_four offsprmg Leti_leftl(t)a_leftZ(t), nghtl(t) and. nght2(t) denote. the four R

Re[y’: (k)] < Re[et(k)], Im[yl (k)] S Im[et(k)] go 0. lcftl(t) 1 5
R"[yr 9] <Re[6,09), Ten(§, (k)] > Imtetao] go to left2(t) e

Retyt (k)] > Re[etac)] Imtyt )< Imtetacn go to nghu(o o



Re[yt (k)] > Re[et(k)], Im[yt (k)] > Im[Bt(k)] go to nght2(t)

- where Re[] and Im[-] denotes the real and 1mag1nary parts of the argument. 1

o tespecuvely The remammg changes to the trammg algonthm are obvrous and o

@

o '1s replaced by

O

B . to hardware constramts The prumng process wxll always select the nght—srzed .

we omlt the detalls

: The tree structured pxecewrse lmear filter descrxbed above may be modlﬁed into o

a tree structured pxecewrse nonlmear ﬁlter by replacmg the lmear ﬁlter at each )

node by a nonlmear filter. For example in the channel equahzauon apphcanon, e

a tree-structured p1ecew1se 11near equahzer may be easﬂy modlﬁed into a tree-:

*structured p1ecew1se dec1sron feedback equalrzer by replacmg the lmear:v

o equahzer at each node by a decmon feedback equahzer Thus the mput vector

x(k) [x(k) ,x(k L+1)]

Z(k) [X(k+ L), --,X(k),y(k - 1), ,y(k L)]

in the trammg mode and by

2(k) [y(k+L), ,y(k), (k 1), ,y(k L)]

o in the fully adapnve mode where (k) = dcc(ym, (k))

We pomt out that the basxc tree T should be chosen as large as possxble subject L

' subtree and correspondmg p1ecew15e linear ﬁlter A dedlcated hardware can be' |
. ",conﬁgured to 1mplement the tree-strucnn'ed ﬁlter The choxce of a large ba51c -
tree does not pose memory problems since the record assoc1ated w1th each node

. occuples only a few bytes ‘With addmonal memory and a separate processmg- : ',

- 'umt allocated to each level of the tree it is possrble to conﬁgure a parallel

archrtecture whrch allows samples at dlfferent levels of the tree to be- processed‘v "

' ‘,smultaneously Due to the sequentxal manner in whxch samples traverse the R



: only one: of the nodes at a parttcular level of the tnee 1s processmg an mput"' ,

ymbol interval. Tl u""the proposed u'ee-structured ﬁlter can potennally be used' A
o mhxgh data rate apphcauons ER N N |

o (6) : ,.'I'he tree-structured p1ecew1$e lmear adaptwe ﬁlter was motxvated by thej |

nt ‘m" nme Hence, lal f:f:'that s requlred by thls parallel

s'to be :able to process the mput sample at Just one node wuhm a

:._successful applxcauon of classlﬁcauon and regresslon trees to deficult nonlmear -

' 'j-andb nonparametnc problems[Sl] However although our tree-structured ﬁlter :

o be ;some ‘sin 'lanty to classxﬁcanon and regressxoh tnees, 1t 1s actually qutter

dxff ""'ent‘fr m class1ﬁcauon and regressxon tree. Herc the tenmnal nodes are- -

respecuvely Letv S

(2= -'andlet%’be BT

assumed that all quantmes are condmoned w1th respect to X e x“ It 1s requlred to, o

mmumze E{Var(ylﬁf]] over v xl and X2 subject o
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P(xex }=P(xex2}=05. We shall show mai xi°= (&: Elylx=§) sE{,y}},
0° =(&: Elylx=8) <Ely)}, s a solution ~ (assuming | mai
Plxe x1°}=P {xe x2 }-05)‘ | Lct{/" bc the o—ﬁeld generatcd by the cvents :
v{;e xl°},'{5_<.6__Xz_ ). S |
v, We want to show E(Var(y[4/}) 2 E var{y|{/° »Frbm t‘hcviden_tity |
E{Var{ylé’)}-Var{y} Var(E(y|4/)) |
it s enough o show © that Var{E[ylb’}}SVarvE{yly"}} Let
§®=Elylx=§) ~Ely). Now that ,°= & 5©>0) 2 = (5: £ @0}
'Henccv“‘ "
Var{E{ylém— ((EyI¥)-E(y)?")
| =EEEYIX-EmED)
i ,,=E{<E{g® )7

MN

i

i

<E{g<_)|xex,})2P{xexl} |

1

N

-z <E{g<_)1<_ex,)})2P{xex,}1 R

o ,'=2_E (E{gwlg_exi)}.‘)%

smceP{xe x, } 05 1--1 2.

It is enough to con51der the foilowmg two cases (the other two cases are 51m11ar) ‘
@) E{g®Ixe x1)} >0, E{g(__)I(__e Xz)} >0
() E(z 0 T e 1)) >0, E(g 0 Ix € x)) €0



i In the ﬁrst case we have

Var{E{ny}} -2 z <E{gu1<.e xo})2

1-.

"5’2 Z(E[g(l()I(Z(_EXng(L) >O)})2 - SR

=l

o 5‘2(2 E{fg ® I(E'E”'Xi,~gf:®’->0)})% SRt TN

‘_ffj"—2<E(gu1<gu>0>})2 ; |
——2(E{gL)I(_e x1°)})2 R
' yl6’° |

R In the second case’ we have

Var{E{ylf/}}-Z z <E{g<_,>1<_e xo})z

52[<E{g<_>1<_ex1,g<_>>0)})2 | e
| ’+<E(g<_>1<_ex2,g<_><0)}>2 SR
"52[(E{g(._)I(g(.)>0)})2+(E{g(_)1(gu<0)})2]

" ,~°2 3 <E{g<__)1<_e x.°)})2

.1'.

~ (m the above cases 'we have used the fact that 1f E{Z}>0 then o

L B (E{Z})2 < (E{Z I(Z ZO)])2 and 1fE{Z} SO then (E[Z})2 S (E[Z I(Z <0)})2) Hence_'. ' EPR

o e x1 , x2° do in fact have the asserted opumahty property
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CHAPTER 5
- ANALYSIS OF THE TREE-STRUCTURED
" PIECEWISE LINEAR ADAPTIVE FILTER

S In this‘y‘eh‘apte_r we ‘analyze the asymptotic (large time) ‘behavior of the training -
 algorithm for the tree:suitetttred pieceWiee linear filter -deskeri:bed in ‘Cha‘_pter 4. A
fundarnentél difﬁculty arise‘s because the training data. at at non;rootv node depends on

~ the unconverged parameters at its ancestor nodes Hence the tra1n1ng data at a non-
root node ﬁlter has a complex nonstauonary and dependent character even w1th the
assumpuon of iid trammg data to the overall tree ﬁlter A further dlfﬁculty in
analyzmg the tree ﬁlter is the 1nteractlon between the tree growrng and tree prunmg'
~steps. | ' ‘ '

" To see tno,re _prea'sely the difficulty in analyzing the u'aining algorithm for the '
tr'ee-str"'uctured‘ﬁlter, consider the c‘update equaﬁon for cuk) (see"(4.2)). “This is a
- standard LMS algorithm with training data (x(0I@&(K) € 3,(K)), y()}. Note that the
domain ¥, (k) depends on the paratﬁeters cs(K), dy(k) and 0,(k) at the anceStornodes srof
node t, and hence on {x(@, y(@) :i<k}. Thus the training_ data for a non-root node filter
{(xMIxK) € x:(), yd)} is indeed nonstationary and dependent even under th_e
assumption' that the t’raining data for the overall tree filter {x(k), _'y‘_(k’) } 1s iid. -

There is a large  body of literature on the convergence anal'ysis of LMS and
LMS -type. algorrthms with fixed gams and dependent data [56-60]. Consider the
standard LMS algonthm ,
| ek D=c00+pyM - 0N



o a» For data w1th ﬁmte memory (1 e. M-dependent data) quasxconvergence of the wetghts‘ S

U and outputs to the opttmal Wtener solutton m quadrattc mean has been shown -

fl ”I'yvers1on of the LMS- algonthm whtch takes the form B

',"v,‘vifassummg only the extstence of certam moments of the mputs and outputs[59] For,.
5 _‘data wrth tnﬁmte memory (c g general strong tmxmg or asymptoucally uncorrelated L

o ;data) snmlar convergence results have been obtamed but requ1re bounded R

- EWCIghtS{GO] CThe, actual algortthm that is analyzed in the latter case 1s a proJected_-_}c IS

C(k+ 1) P(_(k)+u(y(k) y(k))x(k))

L Herc the operator P IRL —->S projects the wetght vector 1nto a bounded regton S -

g whenever 1t attempts to leave S

Now consrder the tree structured ﬁlter w1th i 1 d tramlng data As menttoned' |

Tabove, even wtth tlus assumptton the tratmng data at a non-root node ﬁlter ts both

o {*i‘.nonstatlonary and dependent Furthennore, it has mﬁntte memory and does not,

':'_‘ : Lffobvxously sattsfy any of the standard dependence models (ltke strong tmxtng) Thef " T
actual algonthm that shall be analyzed here 1s denved from a penallze"" vers10n of the s

- -_j :'LMS alg-”“ ‘thm whtch takes the form f, |

c(k+ 1) (1-u")c(k)+u(y(k) yck»x(k)

i i,vThe parameter u ‘can be v1ewed as ansmg from the penalty cost funcuon

e 3 .for our problem 1s that it'is: much easxer to unpletnent and analyze, and does not -

i ,’7of any hterature‘on penahzed LMS algonthms of tlus type

o firequtre pnor knowledge of what regton the opttmal solutton lies. i We;,are.not._.aware E

[ : B{(y y) }éllu"v, T lcl2 'I'he advantage of the penalty versus the prOJectton approach» o

Hence the actua.l tratmng algonthm for the tree-structured ptecew1se hnear ﬁlter o

E fthat we shall analyze takes the form (compare w1th (4.2), (4 3) (4 6) (4.7) (4 8))

t(k+1): - u“)c.(k)w(y(k) yttk»x(k)u_(k) e xt-(k»

dz(k-*-l) (l )dt(k)ﬂl(}’(k) Yt(k))l(_(k)e Xt(k))
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el<k+1) (1- V)et(k>+u<y<k> e,(k»u_(k)e xz(k))
<k+1> (1— “)q(k)w«y(k) y,(k» —a(k»lc_ck)e x;(k)) .
mac+l) pt(k>+ua<_(k>e %00 - pﬂt)) },;g Ry

| Othemuse tree growmg and pruning 1s exactly as descnbed m Chapter 4 Note that the'_ ‘
7 update equanon for pl(k) is-unchanged here since p,(k) is bounded a. s. |
We shall make the followmg assumpuons |
' 'V'(Al) {x(k) y(k)} is an i.i. d random process thh (__(k) y(k)) Jomtly dxstnbuted 11ke E
: (_ y) . S
| , (A2) a X has a bounded densxty funcnon for all a# 0

. o (A3) X and y have ﬁmte erghth order moments

‘Remark To avord tnvmhnes we sha.ll also assume pt > O Covt[x} >0 Cov,(x y} :0‘.1':"
'for allte To, so that all of the tree parameters are well deﬁned In v1ew of (A2) thlS is
equxvalcnt to Just assummg T ‘ |

" ' Cov‘{x,y};toforallte T

- ;Tlus can be proved by mductlon on the levels of the tree. Indeed, suppose for node t "

B "'thatp' >0and C°"t{x}>0 Then e = OV:{X} afe OVz{X )’}¢0 and so y:-—c( x+d, 1s‘.'_',' o

a contmuous random vanable Also E(¥%) -E,{y} : It follows that

' Pl{y“ <0t e (0 1) and so p. >0 for s= (1), r(p). Smce ax»;s conunuous for all a=0 e

.‘ = : Cov, {x} > 0 for s Q(t), r(t)

We shall prove the followmg theorem

| Ihcorem,-f,i Assume (Al) (A3) and1<v<l+ ws) 4‘ "“’"‘“°’ 'I'hen o
hmsup E{(Yr(k)(k) §"'r (k)) } = 0(11“) as Ll - 0

Cwhere




e The theorem asserts that there is quasrconvergence of the output of the selected wee

:.i‘_if'v ﬁlter ym)ﬁto thc optlmal uee ﬁlter y1- rn quadranc mean Nore that Lhe theorcm‘

,‘_‘spemﬁes that the output" MSE 1s asymptoucally upper bounded by a consnu where_"' R o

iﬁ:a = 1 and dcpends on the depth °f the baSIC tTCC To, thrs 1s in contrast to hnear ﬁltermg' s :

E 'whxch y1e1ds an upper bound const u[2] Also note that the theorem does not Sp6c1fy d

o ,{-'Stablhty bOUﬂd On u, thls is: agam m conu'ast to hnear ﬁltenng where stablhty bounds -

S on | [ (mvolvmg the ergenvalues of the mput autocorrelauon mamx) can be rCadlly""' -

i »: ,"determmed[Z]

- Theorem f‘t‘Assume condmons of Theorem l 'I'hen forTiv -

The ,Ammg algonthm for the tree-structured plCCCWISC lmear ﬁlte

collecnon vf ;coupled d1fference equauons at the nodes of a bmary ttee Om- aPPl’Oach. L

‘{ls to perform an order analysrs of these deference equauons at:

an 1nterestmgf~'

hmsup P{ET ' > 61*} = CJ(ll'm) as u - 0 : i’i:.»v R
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Theorem 2 aSserts bounds and convergence for the tree-structured filter yr for a ﬁx.ed'
pruned subtree T of To. This theorem is concerned With tree growing and is proved in
Section 5.1. Theorem 3 asserts the convergence of the MSE €'y Of the selected tree
filter S’ff&) (with T(k) considered as fixed") to the MSE &' of the optimal tree filter

y*r-. This theorem is concerned with tree pruning and is proved in Section 5.2

Assummg Theorems 2 and 3 are true, we prove Theorem 1 as follows Here and
in the sequel K;, Kz. denote posmve constants whose values can change from one

| proof to another.

Proof of Theorerrr ‘1 : We ha‘\vrev |
E{(ym)m 9‘1-<k» ) = E(Grao® - Fr00) e = £r)) 63
*E(Gro® - )’ e > 81')} | |
Now if €y = g} m},n it 1s hot he.rd to see that 3"r<k)(k) = Y (k). Hence using Theorem
EGmo®0 90 0 =€) <Ky max B(Gr00 - Pro)
owhy 54
ask — oovand H—0. Also using Holder’s inequality and Theorems 2> and 3
E((?T@)(k) - 5"'1;(1())2 I(e'rq > vE‘r‘)} | | | |
K EGr® 1 G 00) ) PEmy > €)1
<K (max E(Gr0)) 2+ DPlegy > e )

= O(u“}' V12) OGP

T ie. Erg= E{(ym)(k) y(k)) lfk} where Ty is the c—ﬁeld generated by
{x(D), Y(l) i<k} v



e

‘-O('ua) v e _‘ o _ : (55) o

U 'ask—-noandu—ao Combmmg (5 3) (5 5) completes the proof . i El _ B

The proofs of Theorem 2 and 3 in the sequel will be SImphﬁed by assummg o

o d;(k) T —0 We can do this w1thout loss of generahty by conSIdermg the augrnented e

VCCIOI'S Ct(k) L:(k)' dz(k)) o=@, dt Y. There are a few details to be checked here , o

- wbut we oxmt further d1scuss1on for brev1ty

; Also we shall frequently refer to the followmg fact about hnear dxfference

8 k ’mequalmes whrch we state here for convenience and w1thout proof

Fact: Let {E) be avseq’uen'ce'of n0n-negative‘ntxrribers which‘ Satisﬁes_ -
’ém <(1 —a(u)+Bk(u))€k +vk(u) k= -0, 1.

for sorne fhncdons Ol(ﬂ), ﬁk(ll), 'Yk(l—l) ;,L>0 Let - i | -
B(u)—hmsux) B o (56) i

_}(h‘)fliknifgpﬁ(m}_; L e oy - ‘ R

| ":E’Mirifgé;"b' o) %10,.-1i-;ns;,p,;;,'oam)]g'1" and B(uj ':'-—r/o(df(‘l-l))-as.]‘,l__'.i—; 0, ;hgn,_ e

i) i
li =
msupék (a( )) asu.—->0 7 v (5.8)

Remark I the coorrergenCe in (5.6), (5. 7) is uniform (in p,) then, so is'the con\?ergence :
in (5 8) Furthermore, 1f hmsup in (5 6) (5 7) can be replaced by sup, then

( Ku)

()+1) asu->0

L SUP&k—
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5.1 Analysis of Tree Growing : Proof of Theorem 2

To establish Theorem 2 it will be seen that it is necessary to-obtain good
‘estimates on the deviation between the true and desired domains where the linear -
filters are active at each of the nodes. This will require good c‘stimaté_s of the absolute-
as well as quadratic weight errors. This will in turn require good estimates on the
second and fourth order moments of the weights. | |

VWe will make use of the following Lemmas. It will be convenient to define

L) =1Gx() € x:(0),
1 (k) = Ix(k) %)
and
L 2®=10-LE®.
Lemmal: ForteT;

limsup B @1 + 0.0 =v0<u"“’>, as u—»b R 69
Lcmnia?.: Forte T,
| ngsgp E( 10002 12+ .00~ 8,"?) o) as p=0 (510
where
,Blz%(va+4_@(l))
Lemma3: 4Forte T,

- Emsup E( 16 -l + 16,60 -8 1} =0@") asp=>0 (.11)

where



T "—",?(4,“#(‘)-‘);:7.‘, e g

Lemmad: ForteT,

o ."»Remark Note that lzt(k)l -I(_(k)e xt(k)Ax,) where A 1s the symmetnc deference |

| .'-hmsuv E( Ia(k)l )= O(u “) asu—>o (512) 2

’ ;'f';;;r:._,.f;;«operator Hence E{ Izl(k)l } = P[x(k) € xt(k) A n } is the domam error menuoned above o e

Lemmas 1-4 are proved below Assummg these lemmas hold we provc Thcorem,,»;: .

o _-2 as follows

o ask-eeeandu.-ao asrequued.

FlI‘St conSIder (5 l) We have usmg Lemma 1

B 7’ teT

E{(YT(k)) }—E[( Z )’:(k) ll(k» }

N \’,",‘ | s Kl max E{(yz(k)) '

T ',"5'5,,."1,(1'}}23}E"(.l_zs'_lf_}_E[»]g;(k)l 1 E

R = o(ul N v)

NeXt consxder (5 2) We have usmg Holder s mequahty and Lemmas 2 and 4

;.?ia‘E{(yTao ~5‘9T(k»} “EL(E, G0 100~ 9:(1:) 1. (k)» }

teT-

< K, n max E((yg(k) 1,<k) - 91(1() 11 (k» }
s Kz max as«y,(k) 910:» } + B{(y ;(k)z.(k» })

| *sxz max(E{le }Eucl(k) o |2)}

+|Ct| E(|x| }'”E{Izt(k)l }"2)

”7,<1<3 max(E{lCt(k) ol }+E{|zl<k>n"2)



- =o@h+omn=04P)
ask—-woandp.—-)O asrequu'ed
It remams to prove Lernmas 1-4. Note that Lemma 3 wis not dJrectly used in the

- proof of Theorem 2 above but is necessary to estabhsh the other lemmas and in fact ,

w111 be proved sxmultaneously with. the other lemmas 1n an lnducnon proof on the

o levels of the tree T

The proof of Lemmas 1-4 by 1nducuon proceeds as follows‘ : We ﬁrst note that ‘

: (5 9) (5 12) are true for the root node t0 To see th1s observe that c.,(k) (and s1m11arly o

' 9{‘ (k)) are generated by (essenually*) the standard LMS algonthm with iid data

:{x(k) y(k)} and E{ 1x1%} < o, E(y } <eo. Also smce axisa contmuous random vanable - -

vfor all _a:tbfo we must’ have E{xx } >0 It follows by sumlar analysxs to[61] but

' consrdenng fourth means mstead of quadratic means that

hmsupE{ICu,(k) el 14+ O M- e,, ) }—0(u2) asu—>0 o [ (_5.13) .
o (5 9)- (5 11) (and tnv1ally (5 12)) at the root node to follow from (5. 13) and Holder s
- mequahty
- Next suppose (5 9)-(5 12) are true for some nontermmal node te T Let

$= left(t) ors= nght(t) We w111 establish the followxng sequence of proposmons
Proposidon 1:

lunsupE{lz,(k)n-m % sps0 (514

Proposition 2 :

S E(I6 M1 +@,0F) =0 ) asp—0 (515

- the only difference is the W term and this does not afféct the analysis since v>1



| sngug:.;aoJ‘+<e;-a;));‘}v,="0(u2<',**>) sp-0 (16

. Proposition3:

timsup E(1gs00- ¢/ I + @,00-0, )=o) ssk—0 (A7)

B lPropOsitioniil;_:

msupE(1e, M1 +@,00%) =0 asp—0  (518)
limswpE(e0l +@,601) =0W ) sp—0  (5.19)
ProposmonS | B
hmsupEnc,cm el +<e w-o, >1 O(uB') spo0 G20
| » Proposmon 6
hmsupE{lcs(k) &1+ 10,00 -0,"11 =0 (u’->asu—>o | G20

"The 1dea belund Proposmons 1-6 i is as follows Frrst, the esumate of the domam :
error (5 12) and the absolute wexght and threshold errors (5 11) at thc parent node t of
»node s is used to obtain the esumatesof the doma.m error at node s (5.14). Next. an |

g 'Vlestimate" of the Second moments of "the weights and thresholds (5 l5) is derived and
FV then used to obtain an esumate of the fourth moments of the werghts and thresholds
: (5 16) Next, the esnmates of the domam error (5 14) and the fourth moments of the
wexghts and thresholds (5 16) are used to obtaxn the convergence m quadranc mean of

- _the wexghts and thresholds (5 17) Next the convergence in quadratxc mean of the

B wexghts and,,thresholtls_(S.W)»1s.»used,toobtarn Ha better estimate of the second



momeits of the weights and thresholds (5.18), and consequently 4 betier éstimate of

the fourth moments of weights and thresholds (5. 19‘;«1=my the estimate of the

domdin érror (5 14) and the refined esumates of the second and fourth moments of thef .. :

Wexghts and thresholds, (5.18) and (5. 19), nespecuvely, are used to obta.m the ﬁnal::_l_ 2%

éstimates of the quadrauc and absolute weight and threshold errors, (5 20) and (5. 21),_ o

vnespecnvely It should be noted that the esumates of the absolute wclght and

_threshold errors (5 21) is not su'nply obtained from the estimate of the quadrauc_

welght and threshold errors (5 20) by, say, Holder s mequahty, observc that B, and not | L

¥; depends on'v in thls regard The above procedure is fairly well optumzed w1th'

respect to obtammg the weakest condmons and best esnmates in Thcorem 2 and_.." o

ultlmately Theorem 1.

The proofs of Proposmons 1 -6 are given below Assurmng that the proposmonsj"fi__" Fory

_hold, Lemmas 1-4 follow by 1nducnon

| Proof of Proposmon 1:

F1rst observe that Iz,(k)l =I(x(k) e x,(k)Ax,) where A denotes symmetnc o '_ -

d1fference Hence for any 8> 0
E{lz,(k)l} P{x(k)e 2 A X

SP{X(k)e x:(k)Ax;}
+P{(_(k)e xt(k)mxx m(x.(k)Axs))}

,?E{ 1z} +P{(y;(k)s 8 (k)) m (CHGE 6’1}
+P{{§'1(k)<91 I AGE ez(k)} }

SEuz,(k)lHPuylm 0,0) - (910:) et |28} P
s+B{ly;(k)—9‘j(k)‘l_$,6}+.P{| l(k) -0, I<8}
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(< »’+'2Plyl9~1‘(k>"—'él" »| '5‘25‘}5( e e 22) e
: Now as dlscussed i the Remark followxng Assnmpuons (Al)b( AB) ;ve have
‘¢l #0. Hence ez has a bounded densxty and s0 SR

P{ I?.t(k) 9, I <28} O(l) 6 R | ’ (523)
- ‘Also by Markov s mequahty | ' Y

‘ P“Yt(k) el(k) (3’1(1() ez )|>5}

o1

& I‘z\l*us;{.. l'.c_lao .-;g: L}fsi :exk,)j—,esi Do

ol ool

s bHence by (5 11)
uy,ao - (‘yuk) et > 8} - .9M 62
"".{"nask-;aoandu—)O » ; ; :
5 Subsntuung (5 12),(5.23), 6. 24) into (5.22) gwes s
Y‘ p
E(1%001) R ) O(“ +o<1) 5

Cask — oo and p. —> 0 Choose 5= u (thls ch01ce w111 mmumze the nght hand s1de of
'the above equanon) Then ' , o ' ’ o
B Ef |21} = om‘“’z) 0< ’*‘)

| ,;Proof of Proposmon 2 |
: Cs(k) and 6 (k) can be treated sumlarly, we only con81der c. (k) Wc have e

s(k+1) (1 -} -LLX(k)X(k)l (k))cs(k)+uy(k)X(k)1 (k)



& o

We first claim ’fhat forn=0, 1 | |
|41 < (1 20" + 0™ lg;(k) 12 + oo fz"‘#vﬂé) 2
as 1= 0, where - R |
S w0 E@ Rl
and . - |
Vi) = (13006 ®)| + 1300 ) 509201, R
The details of these eXpansiér;S are omitted.
N‘cib(tkobsvcrvc that forn=0,1,...,
CEM®IL®I") |
 SEIE®E00] + 1y001) 150! Is.,(k)‘l“l.(ljc)‘}‘
SEL L 1x0e 001 + 1y001) 1202001 1640011600 |
SE{ YO 060! e P00l < oD R
SE( 130912 16:0017) R
=E{ly} E(les®I™) o (526
Now takmg expectéd values in k5.25) and using (5.26) gives o
| E{igs(k+1)I2} S (1- 20" + oW E(W D E(Ies®@)(?)
~ +o(u")E(u') + 2uE(y?)

= (1-20" + o(u")) E{|¢.®) |2} + OG0

as p—0. Here we have used the indcpéndcncc of u(k) and ¢,(k), and also

»E{u(k)‘_} =E{u*) <K, (E{,|2(.|4_} +E{y*]) < oo. It follows from the Remark followihg the - o '

~Fact that



| supE{ l”g.tkim =0(u")asu—>0 e

s ;Now takmg cxpected values m (5 25) and usmg (5 26) and (5 27) nges""vz o

; followmg the Fact that

i f’Proof of Proposmon 3

| Euc (k+1>n }sa 4pY +o(u”)E(u })E[Ics(k)l }

+o(u")E{u }+4uE[y2}Euc,<k)| )

'~—<1 4" +o(u”))E{lc.(k)| 1+oq.t2 “) -5(5.28),;"' o

i as u-)O Here we have agam uscd the mdependcncc of- u(k) and c,(k), and also .

' ".E{“(k)s} Eius}SKz (E{lxl }+E(y })<m It_., now follo,ws_ from' the .R\,cmarkv

S“pE{Ics(k)l} 0(“u B ya om’“*"’) asu->0

c,(k) and 0 (k) can bc n'eated separatcly and s1m11arly, we only con51der c,(k) ‘

W -Wc have =

L sl = (= - R0 LR SR WROLE 629

gD = (1= - ORI ) SR KOL® (530

Ca®al-g® 63D

. - g:(k)zg;(k)—g;

S oem



We ﬁrst consider e;(k)' Observe that c;ao is generated by (essentially) the R

standard LMS algonthm w1th iid data {x(k)l (k) y(k)} {mput Out‘pu't}; zin‘d"i_'_': o

E{lxl‘l }<oo E(y* }<oo Also smceaxlsaconnnuous random variable foralla=0

~and ps > 0 we must have E[xx 1 JY>0. It follows by a similar a.nalysxs to[61] that

;hmsgplsng.ml}=o<u)asu—>o_ B (533>["

’ Wc ncxt consxdcr e,(k) Wc havc | |
o Qs(k+1) (1 g ux(k)x(k)l () 81 (k) (534)
BRI
| chcc ; |

|c.(k+ l)l2 st +o(u)uck)“)les(k)|2 -QHCs(k) xE)x(K)’ es(k)l (k)

| +0(u)uCk)‘|z,Ck>|<|c,ac>|2+1) e

asprOwhere o0 s
Cu®) =1+ [xE)| + [yE©)|

. Let l,- b'e the smallcst cigen‘vameof B{’g’l,"} >Q Since g,(k)xs Tk mcésorable and .

va(k) y(k), 14 (k) are mdcpcndent of Iy
E(Q+ 0(11)\1(110“!6;(1()!2 —ZHcs(k) x(k)X(k) es(k)l (k)}

-(1+0(u)B(u })E{!es(k)l }-ZuE[e.m'E{xxl }e,oo} .

s(1- 2u>~,+o(u))1-:{|e,(k)|} . | ,‘ R ’, (5.36):,::

Hence taking cxpcctcd values i in (5 35) and using (5. 36) and Holder s mequahty glVGS
Eflesk+ DI?) s (1= -2, +o(u))E{ @12 )

O B E(10 1) E(8@IY) +DP
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S(l -2% +0(u)) E{ les(k)l ]

+0(u)E(Iz,(k)I}‘” (E{lcs(k)l }‘”+1> RNCE ) R

as u 0. Now usmg Proposmons 1 and 2 we havc '

E{les(k-*-l)l }sa-zuMo(u»EUe,(k)l }+O(u2 ””') :

ask-noandp.—-)o It follows from r.he Fact that .
' 2 v+Y- L —viy . »
lmsupE[Ieka)I }-O( ) O(n ') asu—-»O

Smce v s 1+ (1/5) 4'““”““') we have 1-v+ y, > 0 and S0

hmsupE[le,aol} om -0 (53Y)

: Fmally, comblmng (5 33) and (5. 38) nges

hmsupE{lC-(k) csl }<K1 hmsup(E{]e,(k)l }+E“es(k)l n

=o(l) asp ,—'»o_,{».-ﬂ.; . f,f |

) Proof of Proposmon 4 | :
(5 18) follows 1mmcd1ately from Proposmon 3 . o |
(5 19) can be estabhshcd by trcatmg c,(k) a.nd 9 (k) separately and sm:nlarly, we
only cons1der c,(k) Combmmg (5 18) and (5 28) glvcs e R

E{Ics(k+1)l )= a- 4u +0(u"))E[lcs(k)l }+0(Ll)
K ask—>ooandu—>o Itfollows fromtheFactthat

| hmsupEucsac)n 1= 0<"> 0(u‘ V)asu—»o



Proof of Proposmon 5: |

cs(k) and 9 (k) can be trcatcd scparatcly and smnlarly, we only consxdcr c,(k) ‘
Définé &:(k) and e (k) as in (5.31) and (5. 32). Combmmg Proposmon 1, Proposmon 4 

and(537)g1vcs | | R g
Ellee D1’ 1<<1 {224, + 00) E{ 12400 %) + 0G5+ 702

as k — oo and u -0. It follows from the Fact that

v : . (3 V+2‘{.)f2 B e .
‘ lxmsupE{les(k)l }_O(_‘T—"—) O(l-l-') asu._)o L (5.39)

Vchcc combmmg (5 33) and (5 39). glvcs

hkmjgva[Igs-(k)—gs 12 }SKI hmsup (E(les(k)l }+E{les(k)| })
: =‘O(u’_’")' as'iL ;>'0"~"

Proof of Proposiﬁoﬁ.S o » |
g_,(k) and 9.(k) can be ,ti'cat_cd 'sépar_ately ;a_nd Simﬂérly;. »-weabnly,cénsidctg,‘(l'g)_. :
i)‘é‘ﬁﬁe e,(k)":iﬁd e/’ () as in (5.31) and (5.32). | R L
From (5 34) we havc g |
les(k+ l)l <[ +0(u)0(k)4) Ies(k)l2—2w= (k) X(k)X(k)es(k)l (k)]m '
 +O@uk)? Ifz,,(k)l(lgs(k)j,l P BT (5 40)

as jt = 0, where
| U(k)—1+IX(k)I+IY(k)I .
: Lct 7\, > O be thc smallcst clgcnvaluc of E{xx 1 } > 0 Smce c,(k) is Tk measurable and e

_ x(k) y(k) 1 (k) are mdependcnt of 3’,( we can apply the condmonal Jensen’s mequahty




. toget

E{[(l+0(u)U(k)“)Ies(k)|2—2ucs(k)X(k)X(k)cs(k)l (k)]"’} o
_»'<E{[E{<1+o(u>uac)4)|e,(k>|2 2ue 0c>x(k)x<k)e, )1 (k)l:fk]]m}
o .—-E{[(l+o(u)E{u })les(k)lz—2ues(k)'E{xx1 }e,Ck)l"’} |

B _;s a —m; +o(u))"" B( Ies(k)l }

yv'»:"‘—(l M’M(u»E“e’a‘)' } “(5.41) o

,- as u—-»O (m the last step we use (1 +n)"-2;—1+n/2+o(n) as 11 —+0) Hence takmg i
he ',.'expected Values m (5 40) and usmg (5. 41) and Holder s mequallty glves » ‘. RS .

E“es(k“)“<(1-u?~s+o(u))E(|e,(k)” o |
*0(“)E{“ }‘”Etlzs(kn }”2 (Euc,am }+1)‘ﬂ
H<(1 uA,+o(u»E{|e,(k)n |

. . o(u)E“Zs(k)I}m (E{Ics(k)l }"2-!»1)

| 'as u—; 0 Now usmg Proposmon 1-and Proposmon 4 we have S _
E{Ie,(k+1)llS(l—u&+0(u))E(Ies(k)|}+O(u“")

o ,’Aask—noandu—ao Itfollows from theFactthat

) o< )asu—»o (542

hmsup E{ Ies(k)l y=i 0(
Fmally, combmmg (5 33) and (5 42) glves ; f : A T

hmsupﬁucm c. |}<hmsup<E{|e.(k>n+E{|e,ac>| }"‘)

;—O(u") asu->0 I I



- 5.2 Analysis of Tree Pruning : Proof of Theorem 3

- To establish Theorem 3 we will makc_é ufs'é,' of the félloWing lemmas. -

LcmmaS ForteT
| lunsupE{I&(k)|2+|Pz(k)l }-' (;12“ “’) asu-—»O

_Lcmma6 ForteT o o i
hmsup E{ Iq(k) € | + Ip!(k) Pz ” O(uﬁ‘n) asu—-)O

i ,Lemrm' mas 5 and. 6 al'evproved b_clow. Assummgr these lemmas h.Old Weprove .
~ Theorem 3 as f'ollows ’ ‘ ‘ : R
Observe that since the number of pruned subtrecs of T, is ﬁmte, therc cnsts a L

j5;0suchﬂ1at1fey(k)>er thenem)>er+8 Hence
P{em,>er} P{em)>e1-+8}

" 'P{Sm) ET(k)(k)>81‘ eT(k)(k)'*"s}
<Pf€T<k) €T<k>(k)>8r e (0+3)

<P{lem) em)(k)l+ler er(k)|>5}

<P X l&pz &(k)n(k)l>-}

teT

<K lrxeuggt1?{‘]&‘.;'1)1' -&(l‘c)p;,(k)lﬁ.> 2|$ T)

| | 5
<K; m P -+
1 max {I&(k) &l In(k) p’tlk 2T, l(1+l&!)}

~ since |p,(k)| < 1. Hence by Markov’s inequality

e . Ky . o
Ple'r > €'r) S 5 maxE(le®-¢ | + In@O=p 1}




- »as k =0 and I 0. Fmally by Lcmma 6

E hms“PP{e’r(kPET’} O(um) asu--»o

| It remams 10 prove Lemmas 5 and 6. Notc that Lcmma 5 was not dxrcctly used in - ‘

= the proof of Theorem 3 but will be requlred to estabhsh Lemma 6.

e ProofochmmaS

Smcc ]p«k)l s l we necd only conSIdcr q(k) We have | |
(k+1) 1= u’ ull(k)) &(k) + P-Yt(k) lt(k)
where yt(k) y(k) yz(k)
Wc ﬁrst claum that

o &(k+1)2<(1 2u +o<u» &0()2+o(u“) (y.(k) +1>+2uv(k)

'wﬁ;OQMm R S
Lo s (—le.ck>|+yt(k>)ie,a<>| mk)
- 'I'he detalls of thlS cxpansxon are om1ttcd.
Next obscrve that o

| EG0) =E(C1a00l + 507 a1 uk)}
- s ;._V'Hl_";';l{sE{[(—la(k)l+y.ck> ) l&(k)! Lot } o
o s EI® 1601 1e®] <ylck) >} o

U {ya(k))

< K1(E{y }+E{yl(k) })’fj" | e

R T

R



sk—eandp—0 R
~ Now taking expected values in (5.43) and using (5.44) gives
E(e(k+1)%} <(1- 20" + 0(w) E(e,(0°} + OG*™")

as k -—) oo and u - 0. It follows from thc Fact that

limsup E{e,(k)’) =

ProofofLemma6 o i . | o

: e‘(k) and p,(k) canbetreated separately and 51m1larly, we only cormder et(k)f -

Wehave | | |
O P ,' &(k+1) (l-u ull(k»emwyz(k) W
 where yl(k> 0 - Judo.Let T
© EGeD= -w ) W) +"Lii;"®2' 10
where §0=y00-,00. Define

et(lg);gck);—et(k),
el =g 0 e

‘ ~We»bﬁrvst consider ,ve,‘{k); ObSefvc-that g (k) is generated byv (essentially) the
| standard LMS 'algor’it»hm wu:h iid data {1 (k), yl(k) }_{mpuL output} and
| E{IS’Q‘I }<K1E{|x| } < oo, Also E{l }-pl >0. It follows by sxmﬂar analy31s to[61]
 that

_.‘i{*‘j&pﬁ'{|e?(k>r2}=o(u>}asii-?°z N YO

‘We next COnsider e, (k). We have

t ‘I fact, since p,(k) is uniformly bounded a.s., the analysis of 'p;(k) is easier
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- akeDs (l—u‘ - 17.00) 6,00 - 12 (96,00
U 0’ AO() + u(ylac) NS )ll(k)
Hencc 'k -
| l&Oc+l)I<(1—2u1 )+ oup!? iq(k)l | - _
o +O(u)u(k)zlzt(k)l(let(k)l -+1)+0(u>|yl<k) -9:0:) | (5.46_'5
>»’asuv—§0,'»whfcr¢"i P | ; ST L T | |
| | Cu=140x00+ 101
By Jenscn s mequahry ’ i v
| E{ a -2uL (k)+o(u))”2 )< E{(l -Zuu (k)+o(u)) }“2 |
- ,"—(I—Zupz -+o(u»"2

'f—l—upl +o(u) o (5.3_’77‘)‘;_.

" as B0 (m the last step we. use (1 +n)1’2~1+n/2+o(n) as n -—)0) Hencel _taking':_i ! :

-cxpecx:ed valucs in (5 46) and usmg (. 47) and Holder s mequahty glves
o E{l&(k+1)l}<(l ol +0(u))E{lel(k)|} T |
| +0(u)E{u }’”E(lzt(k)l }"’ (E(q(k)z}ﬂ)"z

+0(u-)E{ly‘(k) -5':(10 I
<(1-un +o(u»E{|q(k)|}
+001)E{Izt(k)l}“2(E{st(k)2}“z+1) S T
S +o<u)E{|y.(k) -9.‘(k) I} 64w
.-f'asg-»o But by Holder smequahty and Lemma2 e |
i {iyz(k) ii:ao o :
<E( yiao +‘9:ac>uyt<k> 9:(k>| }



®

S Bl }"‘+Euytao| ' '+E{|?:ac)|2}’”)E{(j?‘(k)%&:oo')zj'? »
<K2 (1+E[|cl(k>| }"Z)Encla@ aiHe
=omW? | , : o - - 64%1
as k = & and [T 0 Hencc combmmg (5 48) and. (5 49) and usmg Lcmmas 4 and 51 k '
we get.
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| | CHAPTER6 =
© ' EXPERIMENTAL RESULTS AND DISCUSSION

In th1s chapter we present results of computer srmulauons which compare the}'__

performance of the proposed tree- structured piecewise Tlinear adaptxve ﬁlter w1th thatv' o

of emstmg hnear and polynomral (truncated Volterra senes) adaptlve filters in the . I_ o

apphcatlons of channel equahzatron, echo cancellation and specch codmg The tree-";':-

structured ﬁlters were trained using the the proposed algorithm ‘in Chapter 4, and the
- linear and polynomJaI ﬁlters were tramed using the LMS type algonthms descnbed in
Chapter 2. We also compare the computanonal complexity and convergence rate of

| the tree- structured ﬁlter and the polynomral filters.
~ 6.1 Channel Equalization-Application =

In this section we present results' of cotnputer simulations which 'vcompare the
‘ performance of a tree~structured piecewise linear equahzer with that of linear and -
: .polynomlal equahzers, and also the performance of a tree-structured piecewise

- decision feedback equahzer wrth that of .a»standard decrsxon feedback equalizer.

| In our srmulanons[62] we consxdered bmary PAM signaling through an

E eqmvalent - d1screte~t1rne  channel with  z-transform .

G(2)=0. 227 + 0. 4607:1 +0. 6882"2 +0. 460z'3 +02272%,  This is a reasonabtei”.. ]

_' model for a channel encountered in communication systcms wrth severe ISI (IG(e’“’)I |

has ,deep _nulls_) {71. ..'I'he vch_avnnel is corrupted by additive white gaussian nols,c, whxch o
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s mdependent of the 1nformanon sequence Each 1nformatton symbol is +1

i (1ndependent1y) w1th probablhty O 5.

A ﬁlter of length L- 11 was used for all equahzers For the polynomlal" ST

| equahzers, polynomrals of order qs3 were consrdered For the tree equahzers, a full
" tree of depth d=5 was chosen as the basic tree T (these chorces thl be dlscussed .
o further) All of the. Stmulanon results to be presented were. obtamed by averagmg over:-:"

an ensemble of 200 equahzers wrth 1ndependent data

“In thures 18 and 19 we show the output MSE as a funct:lon of ume (up to 5000’ -

. 1terauons) for the hnear, second order polynomtal thtrd order polynomral and tree-;}' '

structured plecew1se lmear equalrzers for SNRs of 10 dB and 20 dB For each type of_ E |

equahzer and SNR the gam 1 was chosen to be about one- half the value where:: |

\ unstable behaVIor ﬁrst occurred In thure 20 we show the probabrhty of error as a

'funcuon of SNR after about 40000 iterations - when all of the equahzers have B

’ ,converged We make several observauons Frrst, itis clear that a nonhnear equahzer is

, necessary to achteve a small asymptouc probabrltty of €ITOT. Second it 1s also clear"';’ .

| k that hi gher order polynoxmal equahzers have lower asymptottc probablhty of error butr o .

: vconverge more slowly ( more precrsely, hrgher order polynormal equahzers requlre |

much smaller gams u for stablhty whlch hrmts the rate of convergence) Indeed the .

second and thlrd order polynormal equahzers have a h1gher output MSE than the',

lmear equahzer even a.fter 5000 1terattons, although thexr asymptottc en'or rates are :

vmuch smaller Next 1t is seen that the tree- structured equahzer mltxally converges o

‘labout as fast as the hnear equahzer and from then on converges much faster and to a'f' . o

| ‘much lower probablhty of error Fmally, 1t 1s seen that the tree structured p1ecew1$e :

' B lmear equallzer converges much faster and to a srgmﬁcantly lower probablhty of error I

: vthan the second or. thrrd order polynormal equahzers In fact 1t 1s venﬁed that no o
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combmanon of the hnear, second and thlrd order polynormal equallzers performs as o

" 'well as the tree structured p1ecew1se hnear equahzer, either in- terms of rate of_f__'. _'

ljconvergence or asymptonc probab1hty of erTor.. Fourth and hlgher order polynomlalsf'- R

| exh1b1ted extremcly h1gh computauonal complex1ty and low rates of convergence A E

e detalled d1scusS1on companng computauonal complexxty and convergence rates of the e

- - :tree structured pxecewrse hnear ﬁlter versus polynormal ﬁlters is g1ven in Sectxon 6 4

t 17.:, ‘about 2dB for an error probablhty of 10’2)

Sl ,'.[12 1, 63]

In Flgures 21 and 22 we show the output MSE as a functlon of ttme (up to 5000

’ ;iltcrauons) for the decxswn feedback and tree~structured p1ecew15e dectsron feedb _kr-;'n S

- cquahzers for SNRs of 10 dB and 20 dB For each cquahzer and SNR the galn tt wasﬁ‘."-"-. ;'. ._ N

- _' agam chosen to. be about one- half the value where unstable behavror ﬁrst occurred, In"; o

: L Frgure 23 we show the probabxhty of error as a funcuon of SNR after about 40 0()0,' | .. -

‘.~1teranons when both of the equahzers have converged It 1s seen that the tree-.f_ : S

,su'uctured plecew1se dccxston feedback equahzer mmally converges abo"': b

P T,.the decrston feedback equahzer and from then on convcrges much faster and to a : o

E _31gmﬁcantly lower probablhty of error (about 6dB for an crror probablhty of 10' 1 and’ o

S 62 EchoCancellauon Ap‘plication

In thls secuon we present results of computer sxmulauons”wflch cornpare the -

o performance of a tree structured p1ecew1$e linear adapnve echo canceler w1th that of :

‘ hnear second-ordcr and thtrd-order polynomxal types of adaptwe e

In ‘our s1mulanons [64] we cons1dered an, echo path Wthh consxsted of a

o memoryless nonhnear syste"n followed by a lmear and another memoryless nonhnearf - s |



@ decision fmbaek .qu.nzu
‘ TM struaur.a p.gcm. .
S mbodudzoqualizor

CQutput MSE

.
U

ﬂm "M i ’*’ 59“-« ) JM"*"VF;AA WW
‘»\HV‘ “WJY”M)J Mr/v' "’\/‘V’iw\ \'i """" "'Mv"*\MJWL

R 525 1250 1875 2550 312% . .3750 . =37S 5500
© Numger cf 1ieratic/s

. Figare21. Leaming Curves for SNR of 10dB



o @ docwnmwuqunlhw
® Tm ttwurﬁd mwn




',1,00*'1 v B T T U
: - (D decision teecback equaiizer

‘@ Tree stiuctured plecemo
-7 decigion leedback equalizer

) 10° 5

102 - R

Pobdmyetam FRCTPR IR e

100 4

000 - - 2500 800 . 7.50 100 125 1850 175 200

SNR in dB

Figure 23. Asymptotic Probability of Emror Curves



89

systern as shown in Frgure 24 The two nonlmear systems correspond to the. :

: compressor and expander shown in thure 10 and the linear system corresponds to the oo |

hybrid and other assocrated c1rcu1try m the telephone network [30] A typrcal mu-law _

compressor and expander charactertsuc w1th mu = 255 was chosen for snnulauon and o sl

| the lmear system 18 assumed to have an nnpulse response{lO]

E g(k) e—OSk k>0

- 4. Thrs 1s a reasonable model[30] wh1ch takes into account the presence of compander: .

for nonumform quanuzauon of speech srgnals in dtgrtal telephone networks As stated _

. ; tn mtroductxon (also see [13]), the volume dependent gain charactertsucs of these_ L

‘ ",_companders isa maJor source of nonhneanty in the echo path

In Frgure 24 x(k) is the speech 51gnal frorn the far end speaker, n(k) consntutes - _‘

- - the speech srgnal of the near end speaker and/or noise’ generated in the hybnd and -

'y.(k)lls the: output srgnal of the echo path in the telep-hone network n(k) 1s generated o

. _mdependently of the mput x(k) to the echo path x(k) 1s also fed as mput to the . ‘

' 'adaptlve ﬁlter and the adaptive filter lS tramed o rmmrmze the mean square .

) error(MSE) between the outputs of the echo path and the adaptlve ﬁlter g B

A ﬁlter of length L-lO was used for all echo cancelers For the tree-stmctured_: '_

’echo canceler, a full tree of depth d = 5 was chosen as the bastc tree T All of the o

s1mulatron results to be presented were. obtamed by averagmg over an ensemble of K

_200 echo cancelers w1th mdependent data

In Flgure 25 we show the output MSE as.a funcuon of nme (up to 4“0'.

1terauons) for hnear second order polynormal thtrd order polynormal and tree-."' |

i _ structured ptecewxse hnear echo canceler for an SNR of 10 dB For each type of echo::'ﬂ |

canceler the step size. i was chosen about one half the value where unstable behawor

i ﬁrst oc,curr_ed.;,j In ,lftgure.:26 we show the vasyr}nptouc MS_E;as_ a functlon,ol_.'_ _SNR»after (. o
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N f'about 20 OOO 1teratxons when all the echo cancelers have converged. We make severa.l‘ o .

o observatxons Ftrst 1t 1s clear that nonlmear adapuve cancelers are’ necessary to canceli

. ‘. echos on nonhnear echo paths Second 1t is also clear that hlgher order polynom1a1 o

:j._echo cancelers have lower asymptotlc MSE but converge more slowly Indeed the

= | second and thrrd order polynormal echo cancelers have a hlgher output MSE than the‘:_-:

" hnear echo canceler even after 1500 1terauons, although the1r asymptoth MSE 1s o

-smaller Next 1t 1s seen that the tree-structured echo canceler mmally converges-"
: about as fast as the hnear echo canceler and from then on converges much faster to a . |

g ',lower asymptouc MSE It 1s also seen: that the tree-st:ructured echo canceler converges |

L much faster ;

. ‘, order polynomralvechocanceler

In thrs sectxon we present results of computer s1mulauons wh1ch compare the,i’ :

"d, 10 a sxgmﬁcantly IOWer asymptouc MSE than the second or thxrd o -

performance of a ’u'ee-structured p1ecew13e hnear adapnve predrctor thh that of e s

1fj;l‘lmear, second-order and thmd order polynomlal types of adapuve predxctors for .

Numencal expenments were performed on real as well as synthesrzed speech = B

= data[és Real speech data con81sted of a speaker uttermg the VOWGIS a, e i a“d u.

:’Syntheuc speech was generated usmg the snnphﬁed model of Flgure ll(b) An

- " unpulsrve tram w1th a pertod of 10 mrlh-seconds was used for v01ced speech and- )

whlte Gaussmn n01se was used for unvoxced segments of the speech s1gnal AV A

"‘;':nonlmeanty of the form a1 exp(—lazx I) was mtroduced m the system to represent the : |

'} | nonhnear glottal 1mpedance in the speech producuon model The sequences [al ) and i '



{a2} were dynarmcally generated every 50 mllh-seconds usmg a ﬁrst order auto—f

.regresswe (AR) model dnven by two mdependent whxte n01se sources W1 (k) and_ o |

WZ(k)r 1 C *» | :
al(k) 04a1(k—1)+W1(k)
LT e LAY az(k) O4a2(k—1)+wz(k)

A ﬁlter of length L-12 was used for all predJctors For the tree- structuredvj; -

: predsctor a full tree of depth d-6 was chosen as the basrc uee T 5’.; P e R

In Flgurcs 27 and 28 we show the learnmg curves (upto 4000 1terauons) for;h‘f,' :

"‘hnear, thu'd order polynouual and tree-structured p1ecewrse llnear adapuve predlctorsr’-‘f :_1 o

| :for real and synthetlc speech data, respecuvely (the learmng curve for second order} :

| _polynormal predlctor ‘has not ‘been mcluded smce it overlaps consxderably w1th the o

learmng curve of the hnear predlctor) For each’ type of pred1ctor, _the gam u was |
,chosen to be about one-half the value at ‘which unstable behavxor ﬁrst occured. 'In.
3 Fxgures 29 and 30 we show the SNR (deﬁned as the rauo of power in mput s1gnal to

,.']the power in predrctlon error s1gnal) m dB versus the ﬁlter length for lmear, second '

- order polynormal ‘h‘fd order polynomial and. ttee-structured p1ecew1se lmear adapuve | -

_predlctors for real and syntheuc speech data, respecuvely We make sever al:f’ SRS

'}observauons Fu'st it is clear that -nonlinear predxctors perform better than lmear;

',prcdlctors for predacuon °f speech-type SIgnals Second, although hlgher order : -

., polynom1al predxctors yield hrgher SNRs they also converge very slowly Indeed thef’:

| second and thlrd ‘order polynormal predrctors have hlgher MSE than the hnear: :fﬂ‘_ _

l?fcdlct_Ql’ even after 4000 iterations. although their asyrnptouc MSE is small_er._ Third, -'

- the tree-suuctured predictor initially COnverges about as fast as the line'ar predictor

"and then COnVcrges toa much smaller asymptouc MSE (hxgher SNR). Tt is also seen o

that the u'ee structured predlctor converges rnuch faster and to a lower asymptottc
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S ‘_MSE than the second order or thll'd order polynormal predlctors Fmally it can be o

;,‘;’f"tf.seen from Flgures 29 and 30 that the performance of dlfferent predlctors does not o

o fnnprove mgmﬁcantly when the ﬁlter length is mcreased beyond a certam value In our . f B

- *srmulauons tlns value is approxrmately 12 A.

| - Apart from the SNR cntenon dlscussed above to compam different types of

‘..jpred;ctors, another unportant cntenon that is used m the choxce of a predxctor is the G

?1'_"-amount of compresswn that the predlctor can, achreve for a specrﬁed amount of o

L faster at }these?SNR’.

- ;‘{_ﬁdehty or SNR The c0mpresswn is. mversely proporuonal to the number of : |

coefﬁaents of the predxctor that needs to be transnutted to the recerVer l'.n Flgure 31

- we plot the the number»of parameters that needs to be transrmtted vs SNR m dB forf ] - .

. ,9dB the‘ftnee'

icto; s'f;for real speech data. As s seen from the ﬁgure for SNR s above*i - o
structured plecewrse lmear predJCtor requlres fewer parameters to bejfﬂf |

1 V'near, second and thll’d order polynormal predrctors and hence2 _ R

o achxeves a better compress1on Tt 1s also true that the tree predrctor converges much RRA

5. 'Hence the u'ee-structured pred1ctors are extremely useful o .

encode speec: ‘1gnals for toll and broadcast quahty transrmssrons 1n commumcatlon’;' Lo

g ‘j_syStems where such SNR s are requlred[32]

6.4 Companson of‘ Tree Structured P1ecew1se Lmear and Polynormal (truncated R

We ﬁrs nsrder the computatronal complexrty and rate of convergence of anf. : : |

) .v"-"f::f_‘;unpruned tree structured plecew1se hnear ﬁlter o“ ;length L and 'dcpth' d :'.versus a: ‘-

s polynomlal ﬁlter of length L and order a
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L . v}lcornplexny is ]USt the number of tap welghts C Wthh 1s

We can esumate the computatlonal complexlty_of trammg the tree-structured and'» S o

B polynormal ﬁlters as follows By computanonal complexny we mean here the number. -

S of parameter updates reqmred for each lrammg sample For the polynormal ﬁlter, the"‘_..g : ':

Lp= Lq_ 1

R o For the tree ﬁlter the complexlty is the combmed number of tap welghts ct, offsets d, i

o and thresholds et along a path from the root node to a terrmnal node and also all of SO

. whlch totals 7: , ‘, S T

= 40 while LP(“ =11, LP(ll 2' "7*'va(11 3) "'363 Lp(n 4)—1364 o

. = “"‘»(hence thé\ complextty of the thtrd order polynonnal ﬁlter 1s already much larger than-' e

‘ fthe trce ﬁlter for the example consxdered above) It xs seen that the computanonal. o .

vcomplexny sets severe lnmts on the ﬁlter length and order of a P°1Yn0rma_1 ﬁlter Ry

- compared thh the filter length and depth of a tree ﬁlter' i partlcular for ﬁxed q andd, -~

P _the complexrty of the polynormal ﬁlter LpocE whereas the complex1ty of the tree ﬁlteri. - "




We can also get some rough bounds on the asymptonc convergence rates of the_' f \
tree-stmctured and polynomlal filters as follows Suppose we assume that the range‘
and distribution of the eigenvalues of the (extended) 1nput autocorrelatlon matrix -
E[X X'} for the polynoxmal filters and the (conditional) input autocorrelatlon matnces '
E{x X ] of the tree ﬁlter are the same (with ).mm the minimum exgenvalue and Xa\, the
average eigenvalue). Suppose we -also assume that for the tree ﬁlter we have
x:(k)=% and p(k)=p, and furthermore pe = 1/2depth®), Then (under sultable.
independence assumptions) the conve;gence of the MSE’s Q.ill occur if and only if .the, : "

- gain parameter Y is upper bounded by

flp = — 2 for polynomial filter,
, LP)"aV" : ' B

for tree ﬁltexf,

and hence the corresponding largest time constant will be lower bounded by - |

.,

Ctps= ,, for polynomial ﬁltei',. o
: In(1 = BpAmin) - o e
-2 o
Tr= for tree filter.

In(1 = prAmin)

These -_bounds can be derived using standard arguments (see [2]) and we do not go‘~ ,

through the details here. It is seen that the (asymptotic) rate of convergence, like the

computational complexity, sets severe limits on the ﬁlter length and order of n_vi

polynomlal filter compared thh the ﬁlter length and depth of a tree filter; in parncular'

for fixed q and d and also L, large enough such that Hp, HT <« 10\ nins W€ Can use a- S

Taylor series expanswn to show (approxxmately) that the ume constant for the =

polynomlal ﬁlter tpoch whereas the time constant for the tree ﬁlter tTocL
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Now in the above dlscussmn ‘we > have compared the computauonal complex1ty ”

""jand rate of convergence of an unpruned tree structured ﬁlter and a polynormal ﬁltcr‘

o However an 1mportant advantage of the tree structured approach is that itis poss1ble .

o ":’:to efﬁcrently construct and select a pruned subtree of appropnate s1ze Indeed, note "

that the tree growmg phase generates all the pruned subtrees whlle the tree prunmg' B

b - A‘phase selects a pamcular pruned subtree wrth very httle addmonal computatlon (the . -

‘rcomplexrty mcreases by the number of condltlonal MSE esnmates et along a

. vt_lpamcular path from root node to termmal node plus the prumng algonthm 1tse1t‘) The L

o effect of selecung the pruned subtree 1s 0 avord overﬁttlng the data and to speed the - o

= 'mmal rate of convergence Now one. could concelve of an approach whrch adapttvely"

selects a polynomlal ﬁlter of appropnate order from a sufﬁcrently large bank of |

T - _polynomral ﬁlters However it 1s not clear how to efﬁcrently construct and select from; :

o ;such a bank of polynomlal ﬁlters smce polynormal ﬁlters of drff '_ nt orders are notv v

o vclearly related Furthermore the fannly of polynom1al ﬁlters of d.tfferent order w1ll m‘v =

L g gcneral be so coarsc that no combtnauon of polynomlal ﬁlters of dxfferent order wﬂl_

' well as the pruned tree ﬁlter as was the case in the examples consrdered' o



) ' CHAPTER 7 T
" AUTOMATIC INSPECTION OF FUEL INJECTOR GEOMETRY

7.1 Introduction S

~This research is part of an ongoing atomization project investigating the

cha_racteﬁstics of the spray process of fuel injectors. ‘This project is s"pons‘bred by the

Engineering Research Center. Previous research has shown' 'fthat"thei geometry of the o

fuel injector nozzle affects the efficiency of the spray proccss of the 1nJector and’ 1n- S

turn the fuel efﬁc1ency of ‘the engme[66] A typical fuel m_]ector cup is shown m S

- Figure 33

" Geometrical features of the nozzle such as circularity of the hole, inlet and outlet E

dJameters, droop and prOJectlon angles, entrance he1ght taper and radlus of curvature'

at the 1nlet of the 1nJector hole contnbute significantly to the performance of the fuel i

| 1nJector (see. Flgure 34). However the small size of the hole of the nozzle =prevents

mechamcal means of accurately measurmg the geometncal features mentloned above L

The goal of thls work is to acqume an 1mage of the 1n_|ector hole optlcally and use "

image processing and analysis techniques to accurately measure ‘the geomemc,alj- o

features of the nozzle. The first stage of the research was focused on obtaining -

: informmion abOut the circularity and size of the inlet(bottom) and outlet. (top) of ~the

injector hole The holes were 1maged using a mlcroscope, VldlCOl’l camera 1mage§.ffi e

dlgxtlzer and composxte translatlon stages. for holdmg and posxtlonmg the fuel 1n]ector -

This is shown in Fxgure 33. The circularity mformatxon‘at any ngen _depth was_.f_f."'.. U



:Imagc 'cqulsmon Set-up,- Jrig
rinal Imagc of the Top th Inje

o
wa’



L ';Figu,r,_e" 34 : Schematlc of the Cross Scction of the Mold of the Fuel InJectorCup s o




R\,

f”.fobta‘" ed by “cons m]ctlng _hree dlmensronal w1reframe and three d1mens1onal sohd. i

.,»"_68] Model ﬁttlng approaches and mathematlcal morphology;j}?vv L

i used ® Obtm" mfmna“"" about the circularity and size of the hole near te

:'V“wnh respect to an "1deal" nozzle hole was 1nvestlgated[ 67 68]

outlet The desrgn of measures that 1nd1cate the relatrve geometry at the outlet hole‘: e

The second stage of the research was focused_ on obtalnmg gCOmetncal : 4-

- :r"»_lnformatlo _ near the mlet of the hole[69] Smce the mJector 1nlet 1s at the bottom of e

..j;';'the hole as seen from the outsrde and s1nce there 1s a smoothly rounded bevel at the_

1n1et of the hole 1t 1s not possrble tO capture an 1mage near the 1nlet b)’ff OC u‘smg the : L L

;gtf,.-;ﬁltenng process used. toclean up the segmented unage ut1hzes a morpholog1cal ﬁlter‘.,_;‘ :

emovmg norse and preservmg: the geometncal e tructure of the_'

vy ,then obtamed Al

_screpancy between the shapes of the real and ideal nozzles was L
the relevant geomemcal feature' such as crrculanty of the hole,: ‘- _,

S f‘rl’mlct and Olltlet dlameters droop and pro;ectton an le_s_‘ entrance helght and taper w Crc 3 s
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: automa‘tically‘»obtained by the inspection ‘algorithm' After ’Obtaini.n’g’ the "diameters TR N

| along the ﬁnger of the ‘mold, sphne ﬁttmg techmques were used to determme the

effectwe radius of the bevel[72]

7.2 Image Acquisition .

Image acqu1s1tlon is performed us1ng a mlcroscope V1d1con camera, tlme base s

' corrector, unage dtgmzer a compos1te translatton stage and a hght source. For 1mage' -

acqu1s1tlon usmg d1rect 1mag1ng, the fuel 1nJector cup 1s mounted on the composrtef R

translatlon stage which holds and pos1tlons the fuel mjector (see Flgure 33) The hole X

of vthe 1nJector is 111um1nated from the open end of the 1njector cup Thus- the hole gctsf"j‘ : ey

S from the bottom We refer to such a-scheme of 111urmnat10n as. "back hghtmg o

-Another scheme of 111ummat1ng the hole is to dlrectly 1llum1nate top of the hole, ' .

: wh1ch we refer to. as" top 11ght1ng (see Flgure 33) Slnce the s1ze of the hole is

. extremely small (1n the range of ten- thousands of an 1nch in dlameter) the 1llurmnated ‘

B hole 1s- optlcally vrewed through a mlcroscope with a large enough magnrﬁcauon of

- :the order of 200 The mlcroscope is focused at dlfferent depths along the nozzle hole

1o obtam cross sectlonal 1nformatlon A vidicon camera attached to the rrucroscope,_ '

captures the 1mage and a trme base corrector is used to synchromze the video s1gna1.' o

output of the camera. ‘The video s1gnal is then quantlzedto 256 gray levels usinga - o

digitizer and the djgitized'Output is stored as a tWo-d’imens’ional array ‘on the ‘;
: computer This. two-dlmens1onal array 1s treated as the orrglnal 1mage for further - |
PTOCCSSIng and analys1s o e :
Acqu1s1t10n using 1nd1rect 1mag1ng is perfonned by 111ummatmg the mol d from :

,the bottom Thus the lmage acqulred w111 have a hrgh contrast w1th the background; :



Ty ; f plxels havmg gray scale values near 255 and the mold 1tself havmg gray scale va]ues'

v :,,near zero..

73D1 mctvsln dlrcctlmagmg B SR

The dnect 1mag1ng techmque descnbed above can be used to obtam accurate R

- ",estlmates of the outlet dlameter and three d:lmensmnal w1reframes of the hole, but the -

o techmque fa11s to gwe prov1de estrmates of the geometncal mformatlon near the 1nlet.

| vportlons of the hole Thrs 1s because the lmages obtalned at depths near the 1nlet of the 1 '

';:'hole are blurred due to 1mperfect focusmg and mtemal scattenng of the hght

25 _A‘_‘T_Moreover, an 1mage of the bottom of the hole has a false edge due to the dlI‘CCthll of_

. kR 1llum1natlon of the hght through the hole

Indxrect 1magmg usmg the molds has several advantages (l) Smce the outer-j_‘ ‘

L .;_.;'surface of the ﬁnger of the mold represents the 1nner wall of the actual hole it is

o ‘poss1ble to obtam geometncal mformatlon near: the 1nlet of the hole (see Flgure 36) '

o ,(2) By usmg 1mage processmg techmques it is possrble to obtaln the actual dlameter A

:of the hole "at any grven depth and hence the amount and nature of the taper’-

(lmear/nonlmear) can also be determn‘ed It should be noted that 1n order to achleve »

:: the same mformatlon usmg dlrect rnagmg one has to use mterpolatlon techmques

'__whlch 1nherently mtroduces errors (3) It is p"SSlb1C to measure the droop angles, : )

2 ifpro;ectxon angles and entrance helght for multlple onﬁce nozzles Wthh is' 1mpossrbleﬂ |

o o usmg dJ]'CCt 1mag1ng due to the 1naccess1b1hty of the 1nlet portlons of the hole B » e
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7.4 Image Analysis

We discuss analysis on images obtained by direct and indirect-imaging_

‘scparatcly. The inspection algorithm for analyzing images obtained by direct imaging R

involves several stages inciuding filtering, segmentation, binary image cleaning; area -
: measufement,v center location, and the discrepancy measurement [72]. The output of
the algorithm contains the effective area and the equivalent diameter of the holjc‘-'u_r_lde'r S
study. ‘The discrepancy between the Shapes of the »real.fand‘idéal' nozzles . is.'aISo .'
contamcd A block diagram of the algonthm is shown in Flgure 37. A complete_

dcscnptlon of the analysis of injector images obtained usmg direct imaging is in [72]. -
7.4.1 Indirect Imaging

As mentioned in the previous section, indirect imaging offers several advantages g

* over direct imaging. In terms of processing and analysis, the back-lit images obtained

by indirect imaging offers an additional advantage in the sense that the compliéated S

- filtering process used for direct imaging is not necessary since the image has a
reasonably high contrast with a clear background. A block diagram of the inspectibn

‘ algo‘rithrh for images obtained by indirect imaging is shown in Figurc 38. The ihput ié '

the mold of the nozzle and the output consists of geometrlcal features such as the -

droop and pl‘OJCCthH angles entrance height, sac edge lines of the mold center lines
and diameter plots for the fingers of the mold, and the radius of curvature of the 1nlet

portion of the hole.

The image of the mold of the nozzle is captured usmg the 1mage acquisition

technique discussed in Sectlon 7.2. A typlcal 1mage of the mold of the nozzlc__
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| image
| Acquisition -

|

~ Segmentation

v

1 '.b-‘-lfiblté’ringv |

p Ae
| Measurement.

" Location

Discrepancy

|- Measurement

- Figure 37, Block Diagram of Inspection Algorith for Direct Imaging
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Imagé |

Acquisition

Threshoid

]
. Detect

Boundary

Compute Sac
- -Edge Lines

Obtain -
Diameter

/

Spline Fitting

Compute Radius
| of Curvature -

Figure 38.  Block Diagram of Inspection Algorithm for Indirect Imaging



Z,’."':obtamed by such a techmque is shown m Frgure 36 »Thrs 1mage 1s ﬁrst converted to a’*--‘ o

- : two peaks w1de1y separated from each other due to the mold and the background 3;;, L

T f‘;_‘}-;;SInce 1t 1s clear that the background p1xels havc a gray sca]e value CIOSC t0 255 and

::7.: ’pomts of thc ﬁngers and then ﬁndmg ,'Sthe avera

S : .center pomts bThe sac edge hnes are obtamed :

' “bmary 1mage by selectmg a sultable threshold‘ and assrgnmg all pxxels below the’ !

3that the mold 1s not completely transparent to the lrght the threshold value 1s selected_' S
'f']ust before the second peak of the hr;ogram curve The thresholded 1mage of thef, = e

_ g‘.age is, shown m Flgure' 3 The boundary of the thresholded 1mage 1s,‘:,'_

e f,fdetected usmg a gradlent techmque T e.center nes of the- ﬁngers ‘f the mold are‘_v g R

‘ng :,the thresho_,ﬁv ed 1mage vert1 'ally and ob

> slope . of Athe 11ne formed by the» :

i | by scanmng the ﬁnger at an angle perpendlcular to the cente hne and countmg the-.; e

e fnumber of dark prxels ,1n _the ﬁnger of the thresholded 1mage FlgureA41 shows onej' B o

o fjiﬁ s Ch plot for theiﬁlma“ e of Flgure 36 Thc same plO.

[

mng the center S

snrmlar manner by searchmg for a_: RIS
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; 5 _"_dtameter plot A typlcal dlameter plot for a nozzle w1th 1ntent10nally rounded 1nlet 1s:: : . i

e ” (_selects that ﬁlter whxch' ylelds the least average squared en‘or between the da
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Theoretlcally, the radxus of curvature of the bevel (near the mlet) at each pomt 1s‘ L

= ‘obta1ned by ﬁndmg the radJus of the osculatmg c1rc1e at that p01nt[73] If f(x) 1s the e L

. .'curve obtamed by mterpolatlng the dlscrete pomts correspondlng to the edges of the: TR

, __JEEI;lmages taken at dtfferent depths, then the radlus of curvature at any POmt xo is glven_“v S

[1 +f'(xo)21 7

= f-shown in Flgure 42 Because of the: spatlal resolunon of the plxels in the lmage, the‘ S
o 'Y. :;f'. 'smoothed(lnterpolated) curve sull appcars wavy as shown 1n the Flgure 43 whlch‘, AR

. *makes 1t unsultable for obtammg rehable estlmates of the radlus of curvature Hence,fv;.-' o

R .}:‘_i,thls data is passed through a bank of polynomlal ﬁ_lters whlch then automatlcallyjf;v} :f;' - L

Here we use the cub1c sphne mterpolauon to smooth the

-"joutput of the polynomlal ﬁlter The best ﬁt polynomlal for the glven set of data is :

B shown in. Flgure 44 The radlus of curvature is now obtalned usmg the above equatlon‘_; o

o ‘:Wthh is shown m Flgure 45 as a functlon of d1stance along the wall "f 'th”_’,ﬁnger fromf B

& :-.the orlgm The dJStan' ” betWeen tWO pomts Xo and x1 along the curve 11s evaluated'.v":"' L
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 CHAPTER 8
' CONCLUSIONS AND RECOMMENDATIONS

There 1s a general need for nonlinear adaptlve ﬁltermg both due to the nature of ' B S

s1gnals that needs to be processed as well as performance hrmtatlons of hnear- f_'.

adaptlve ﬁlters in a vanety of apphcanons We have demonstrated that the exrstmg o

nonhnear adaptxve filters such as polynomial (truncated Volterra senes) ﬁlters_su_ffer-

from several problems. First, as the order of the seri‘e’s is increased, the computational -~~~

d_cornplexlty becomes extremely large and ‘the convergence rate becomes extrernely.':
slow. Second, there: is no systematlc way of neglecting higher order” terrns in the ¥
series. |

Motivated by the success of classification -and regr'ession trees‘_‘on‘ di_fﬁ,‘cultf
nonlinear and nonparametric problems, we proposed the idea of a tree’-s_tr'ui:tured
~ plecewise linear adaptive filter. ‘In the proposed method each node in a tree is
associated with a linear ﬁlter’restn'cted'to a polygonal domain, and this 1s done in such
a ’Way that each pruned subtree is associ-ated with a piecewise linear filter. A t_raining
sequence is used to adaptively update the .ﬁlter coefficients and domains at each node,

and to select the best pruned subtree and the corresponding piecewise linear filter.

- The tree-structured approach offers several advantages. First, it makes use of

~ standard linear adaptive filtering techniques at each node to find the corresponding i

conditional linear filter. Second, it allows for efficient selection of the subtree and the |
| ‘correspondmg p1ecew1se llnear ﬁlter of appropriate complexity. Overall, the approach

__1s computatlonally efﬁment and conceptually simple.
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1
'

The tree structured plecewrse lmear adaptlve ﬁlter bears some srmrlanty to :

_classrﬁcatlon and regressron trees But 1t 1s actually qurte dlfferent from a |

' 'vclassrﬁcatlon and regnessron tree. Here the termmal nodes are not Just assrgned a

: regron and a class label ora regressron value but rather represent a hnear ﬁlter w1th Y

restncted domam It is- also dlffenent m that classrﬁcatlon and regressron trees are

o determlned m a batch mode ofﬂme whereas the tree structured adaptlve ﬁlter 1s e

o determmed recursrvely in real tlme

We ﬁrst developed the specrﬁc structure of a tree structured p1ecew1se lmear s
‘adaptwe ﬁlter and denved a stochastlc gradlent based tramlng algorlthm We then

: 'camed out a ngorous convergence analysrs of the proposed tralnmg algorlthm for the

L tree structured ﬁlter We showed the mean square convergence of the adaptrvely

o tralned tree structured plecewrse lmear ﬁlter t0. the optrmal tnee structured p1ecew1se .
lmear ﬁlter Thrs :mvolved an asymptotrc order analysrs of the ﬁxed gam stochastrc',’: :
L gradrent based trarnlng algorrthms at the successrve levels of the tree The analysrs “.
was comphcated by nonstandard dependent trarnlng data at non-root nodes o

o correspondmg to u onverged parameters at ancestor nodes Some new: technlques A

have been developed for analyzmg stochastlc gradrent algorlthms w1th ﬁxed garns and

(nonstandard) dependent data

Numerrcal experrments showed the computatronal and performance advantages =

jof the tree- structured precew1se lmear ﬁlter over lmear and polynomral ﬁlters for

r -
&

‘":uequalrzatlon of hrgh frequency channels wrth severe mtersymbol mterference echo g

& vcancellanon in telephone networks and predlctlve codmg of speech srgnals

' varranons of the proposed tree-structured ﬁlter and trammg al gorrthms whrch mlght be

t

- tned Here we have used. an LMS algorrthm and a mean thresholdmg rule for

There are ‘also several toplcs for further research Flrst there are numerous- R
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- computing the node weights and thresholds. Alternatively, we could use a signed LMS -

algorithm and a median thresholding rule for computing node weights and thresholds. -

We could al’so: abandon stochastic gradient algdrithms ‘altogcther ~and u»s‘e.‘ N

appropriately conceived recursive least squares type algorithms.
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