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ABSTRACT

Most engineering sectors are going through an era of digital transformation or transition,
where they are becoming more dependent on simulation models to make decisions about
the design of engineering structures. However, there still exist several engineering

problems that have significant lack of confidence associated with simulation-based engineering
designs. An example of such problem is the issue of modelling local non-linearities between joints
and assembled structures, a core topic of this thesis. An approach for solving this challenge is
based on exploiting the advantages of combining experimental and simulation data to produce a
validated and verified design, an initial step in the digital twin concept. Modal testing and analysis
has been an established method used for connecting experimental models with simulation models
for linear vibrating structures using the notion of vibration modes, where a simulation model
is often a Finite Element model of the physical structure. However, operational performance of
recent engineering structures have been acknowledged to exhibit complex nonlinear phenomena
which can no longer be handled by the current linear techniques. In addition, strong emphasis is
now devoted to account for non-linearities for current and future designs.

The objective of this thesis is motivated by the industrial needs to progress the development
of integrating experimental test and simulation methods for nonlinear vibrating structures. The
demonstration of the test and simulation integration approach adopted in this thesis is founded
on three different complementary model types, namely, white, black and grey box models. The first
part of the thesis presents a black-box data driven approach for modelling local non-linearities. In
this case, the entire non-linear identification and simulation is derived from experimental data
with no prior knowledge or assumption of the non-linear characteristics with demonstration done
on measured data obtained from the experimental campaign of an aero-engine casing structure.

The second part of this thesis is devoted to the requirement for quantifying and associating
physics-based parameters to each non-linear characteristic observed in an engineering structure.
A novel method for non-linear system identification based on revising an existing black-box
oriented state space model technique is presented. The proposed time-domain method is for-
mulated based on converting a black-box oriented state space model algorithm for a nonlinear
system to a grey-box state space model. The advantage of this method is the ability to extract
a lower number of parameters with physics based interpretation. This method is tested and
validated on simulated data and experimental data obtained from an aerospace structure. The
final part of this thesis addresses the current challenge of predicting the vibration response and
validating simulated models of assembled engineering structures with identified non-linearities.
This challenge is investigated through a framework strategy that permits simulation model
parameters to be updated and upgraded based on experimental observations, to constitute a
white-box model approach. This is achieved by embedding the current linear modal analysis
technique into a test-simulation integration framework for non-linear systems.
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INTRODUCTION

Vibration in engineering structures is still regarded as a critical feature when determining

the performance of an engineering design, especially in the aerospace and automotive sectors.

As such, engineers and researchers are constantly developing methods capable of reducing

or eliminating extreme vibration phenomena, mainly because of the associated damage and

negative consequences on the final product design. Excessive vibrations experienced by structural

components in an aerospace or automotive design can often result in severe disturbance leading

to catastrophic consequences or overall failure of the product.

In the last few decades, different studies and techniques for characterising and obtaining the

underlying physics of linear vibration phenomena have been developed, where advanced method-

ologies have been developed to predict and monitor excessive vibration behaviour in structural

components. An example is the effective use of modal testing and analysis [1] for identifying

linear resonance frequency and damping properties of engineering structures. Other classical

techniques for analysing vibration characteristics in the linear domain have also been developed

and implemented. Examples are the poly-reference least-squares complex frequency-domain

method in [2], the subspace deterministic-stochastic algorithm [3], the eigen-system realisation

algorithm [4]. A unified matrix polynomial approach to modal identification was also introduced

in [5] and many more linear identification methods which can be found in existing literature.
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However, with the continuing interest in increasing the functional performance such as range,

reduced fuel consumption for engineering designs and most importantly for each designed product

to meet the CO2 emission targets and reduced environmental pollution footprint set by regulating

bodies, structural components are now being designed to have certain features such as flexibility,

light-weight, adaptation, active control, inter-connectivity and modularity. The presence of these

features in engineering designs can often expose structural components to reach high vibration

levels resulting from large displacement and introduce or reinforce the presence of nonlinear

behaviour in the entire design with examples illustrated in the recent extensive survey [6].

For example, the recently adopted use of composite materials in aerospace and automotive

design yields light-weight structures, but their vibration performance can become significantly

nonlinear. The use of composite materials in structural engineering also introduces new failure

methods which are different from the existing traditional metal materials, one of these failures is

delamination failure found in most laminated composites structures [7]. Delamination is a serious

failure mode in composite materials not only as a result of the damage it causes to structure but

it also separates the composite material into different layers which can lead to a reduction of

the section strength and material stiffness [8]. Another example is the increased frequency in

the design of engineering structures with inter-connected components leading to the creation

of different types of jointed interfaces with complex nonlinear behaviours. In addition, as both

linear experimental and simulation results become more accurate, the presence of nonlinear

features can become a significant influence limiting the vibration performance of structure.

As a result, engineers are frequently being challenged and confronted by the presence of non-linear

behaviour in modern day structures during a typical vibration or certification test particularly

in the aerospace sector. Examples of case studies where non-linearity have been noticed in

aerospace structures can be found in [9] where non-linearity was detected at the elastomeric

mounts supporting the four turboprop engines of the aircraft during the Ground Vibration Test

(GVT) of the Airbus A400M aircraft designed for military purposes. The F-16 fighter aircraft also

showed some non-linear behaviour at the wing-to-payload mounting interface when a similar

GVT was conducted [10]. Non-linearities were also detected on the Cassini spacecraft due to the

presence of gaps in the support of the Huygens probe [11]. Hence the development of nonlinear
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identification and modelling techniques has become an active research area of vibrations and

structural dynamics.

To investigate this on-going challenge, the last two decades have witnessed the advancement and

development of many new methods and technologies based on theoretical modelling, numerical

analysis and experimental testing to address the wide variety of nonlinear phenomena, in

particular those caused by large vibration amplitude [12, 6]. Some of these have been successfully

applied to address specific challenges, for example, identification of weak non-linearities in

engineering structures was investigated and reported in [13], identification of nonlinear softening

behaviour on a vibration mode of an helicopter was also studied in [14]. Methods for analysing

vibrating structures with localised non-linearites were considered and implemented in [15, 16]

and a multi-degree-of-freedom system based on lumped mass nonlinear stiffness parameter

modelling was examined in [17–19].

Even though different theoretical, numerical and experimental tools and methods are now

readily available to improve our ability of tackle challenges arising from nonlinear vibration, the

complementary role of experimental testing and simulation still remains an important aspect

when determining the vibration performance of a validated engineering structure. Aside from

the complexity associated with non-linearity, an important aspect of successful investigation of a

nonlinear vibration problem is the ability to characterise the type of nonlinear behaviour and also

attribute a parameter value to such nonlinear behaviour. The characterisation and parameter

estimation can be considered as the most important aspect of nonlinear system identification. In

addition, these two tasks are often required when developing a virtual nonlinear model of the

system under consideration.

In this work, it is recognised that in order to successfully achieve these two tasks and effectively

develop a validated virtual model of a nonlinear structure, the complementary role of test and

simulation or a test-simulation integration strategy is inevitable. In this case, the complementary

role of test and simulation is defined as the ability to use a set of measurement test campaign to

improve the simulation or modelling activities and vice-versa. An important subject of this thesis

is the development of physics-based methodology for characterising and estimating nonlinear

parameters from vibration measurements. Further, the importance and requirement to have
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the right balance and integration between experimental testing and simulation for the effective

analyses of nonlinear vibrating structures is another topic investigated in this research. Where

tests can complement or be used as a guide for simulation and, equally, when simulation can be

used to determine required experimental tests. Particular attention is devoted to practical and

industrial applications.
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1.1. OBJECTIVES AND CONTRIBUTION OF THE THESIS

1.1 Objectives and Contribution of the Thesis

Whilst many new methods for theoretical modelling, numerical analysis and experimental

testing of nonlinear systems have been developed, it is rather surprising that their practical

applications on industrial structures or case studies are limited and not commonly used by

practising industrial engineers. In addition, in this era of supercomputers and simulation-based

designs, effective verification and validation remains an important role in the design phase of

an engineering structure. In particular, the emerging "digitilisation paradigm" [20] is becoming

more widespread across most industries, where major aerospace and automotive industries

are expected to be using the "digital-twin concept" by 2025 [20]. A digital twin is a virtual

representation of an engineering system, product or production process built from a combination

of simulation models and data [21, 22] developed to create steady augmentation and reduce failure

rates. From a structural dynamics perspective, verification and validation of linear structures

using modal testing and analysis have been widely adopted as an active step in developing a early

stage digital-twin concept for underlying linear initial design of engineering structure. However,

the extension of this early stage digital-twin concept to structures with non-linearites remains

an active area of research.

To this end, this doctoral thesis is aimed at creating an early stage digital-twin process for vibrat-

ing structures exhibiting non-linear behaviour, based on a combination of test and simulation

models to generate nonlinear predictive tools and models. This is mainly established in this

doctoral thesis by progressing further the development of a selected nonlinear identification

technique and by demonstrating an approach for extending current modal testing and analysis

techniques from linear to nonlinear systems using a test-to-simulation integration strategy.

Three types of modelling approaches were considered in this thesis, namely white-box, black-box

and grey-box modelling. Here, white-box modelling is based on using approximately accurate

knowledge of the physics, black-box modelling is based on using data-driven models without

adequate knowledge of the physics and grey-box modelling is based on a combination of both

white and black box models. To achieve the main aim, three objectives were determined:
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1. Develop a black-box data-driven approach for detection and characterisation of nonlineari-

ties for large structures with multiple nonlinear sources and dynamic modes.

Large sets of data are often acquired during the experimental test campaign of mechanical

structures. The measured data are either in the time or frequency domain, or a combination

of both for convenient use during the linear identification stage. However, once nonlinear

behaviour have been detected from the measured data, characterisation and identification

of parametric models from measured data is always a challenging task. Most importantly,

this is problematic for large assembled structures with several nonlinear vibration modes

and multiple nonlinear sources. Therefore, the first contribution of this thesis is aimed at

the development of a black-box data driven approach for characterising and identifying

structural nonlinearities from measured data only without any assumed knowledge of the

system’s nonlinear physics. The developed data-driven approach is proposed to have the

flexibility to build nonlinear models capable of representing the non-linearities observed on

assembled large structures with multiple nonlinear modes.

2. Propose an effective time-domain grey-box algorithm for experimental identification of

nonlinear parametric models.

A black-box modelling approach has the flexibility for fitting and extracting models from

data only, without making use of nonlinear physics related information of the structure

under consideration but some underlying linear information and dynamic assumptions

are used. The final outcome of this approach often posses several limitations, such as the

large number of parameters obtained from the identified model and the challenges associ-

ated with extracting the physics-based parameters from the resulting model. Therefore,

the second contribution of this thesis is to propose a novel time-domain algorithm for

the identification of nonlinear parameters and coefficients from experimental data. Here,

the resulting identified parameters and coefficients have physics-based quantification of

the nonlinearities in the structure or system under consideration. The theoretical prin-

ciple of the proposed method is developed from the data-driven black box identification

approach implemented in the first objective, in addition with an assumption of treating
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non-linearities as internal feedback forces to the underlying linear model of the system

under consideration, results in a grey-box identification algorithm. The grey-box algorithm

is applied to simulation and experimental case studies.

3. Demonstrate a pre-digital-twin framework for nonlinear vibrating structures using a white-

box modelling approach.

Given the continual increase in the development of High-Performance Computing (HPC),

most engineering sectors are aiming to build high fidelity simulation models to make

design decision and also to account for uncertainties. However, there are many challenges

related to this, one of which is the level of trust that can be given to a specific simulation

result and associated uncertainties. As such, the combined use of simulation models and

test data is still of vital importance, where data obtained from the physical twin can be

used to update or validate the digital twin of the structure under consideration. The final

contribution of this thesis is to demonstrate a pre-digital-twin framework for structures

exhibiting structural non-linearities. This is achieved through the combined use of test and

simulation and by extending the established linear modal testing and analysis methods

to nonlinear structures. In this case, the implemented test and simulation integration

strategy take the form of a white-box modelling approach, where a series of steps are

put together in the coherent framework to obtain improved validated non-linear model.

In this thesis, validation is defined as solving the correct equations, i.e., formulating a

mathematical model and selecting the coefficients such that physical phenomenon of the

nonlinear behaviour is described to an adequate level of fidelity while verification is solving

the equations correctly, i.e., performing the computations in a mathematically correct

manner.

1.2 Thesis Outline

An extensive review on non-linearity with particular attention to the context of structural

dynamics is presented in Chapter 2. To start with, a brief description of the term "non-linearty"

from the perspective of the superposition principle, linear resonance and mode shapes is presented.

7



CHAPTER 1. INTRODUCTION

This is followed by a survey of the recent advances in numerical analysis, experimental testing

and theoretical modelling for non-linear structural dynamics. In addition, an overview of the

root sources of non-linearities in structures is presented and a detailed description of current

non-linear identification methods is also given. The last section of this chapter addresses the

advantages and limitations of the current methods.

Chapter 3 addresses the first objective of this thesis where a black-box data driven approach

is developed. Here, the main aim is pivoted at developing a computational and predictive model

capable of characterising and identifying the non-linearities observed in the structure under

consideration. The black-box data driven approach is established based on the existing black-

box oriented nonlinear state space model identification method. Particular attention is devoted

to selecting the most suitable polynomial degree and order required for the nonlinear model

identification. The developed approach is demonstrated in the experimental identification exercise

of a large assembled aerospace structure containing several bolted connections, where the

identified non-linear models are derived entirely from the measured data obtained from the

extensive experimental campaign.

In Chapter 4, a novel time-domain grey-box method for the identification of non-linear para-

meters is proposed. Given the limitations of the nonlinear state space identification method

implemented in Chapter 3 where the identified models possess a large number of parameters

with limited physics-based interpretation, the proposed method is aimed at developing an al-

gorithm capable of estimating nonlinear parametric models with lower number of parameters

and improved potential for physics-based interpretation of the system under consideration. The

proposed identification method stems from the existing black-box oriented polynomial nonlinear

state space model method which considers the non-linearites as internal feedback forces to the

underlying linear system. The proposed grey-box state space identification method is demon-

strated numerically on a Single Degree of Freedom (SDOF) example with a non-linear stiffness

and damping element.

Chapter 5 demonstrates and challenges the identification abilities of the proposed time

domain grey-box state space method in chapter 4. In this chapter,a lab demonstrator of an

aerospace structure with multiple parts assembled using bolted connection is studied. A Finite
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Element model of the structure is designed for a pre-test and modal analysis. Subsequently, a

range of different experimental data sets were acquired for increasing force levels for further

use in non-linear detection and identification. The full nonlinear identification was conducted on

experimental data, where complex polynomial behaviours were successfully identified at local

joint regions. In addition, data acquired at local bolted regions of the aerospace structure under

consideration is shown to exhibit interesting nonlinear responses such as Jump phenomena.

The final chapter focuses on a test-simulation integration strategy suitable for the develop-

ment of an early stage digital twin of a nonlinear structure. This chapter proposes a holistic

approach for designing and validating assembled structures with identified non-linear phenomena.

The combined use of the established non-linear analysis techniques, both for the experimental

identification and response simulation, is used to achieve an improved knowledge and under-

stand of the physics of any vibrating structure under consideration. The key to the strategy

illustrated in this chapter is ability to obtain an optimum balance and integration between

test and simulation, where major attention is dedicated to growing the importance of including

nonlinear elements into already validated linear finite element models for effective modelling,

response prediction and cross validation with experimental data at the same corresponding force

levels. This holistic approach is demonstrated on a cantilever beam assembly where polynomial

functions are identified and validated for both stiffness and damping characteristics.

The concluding chapter summarises the research, revisits the most important findings and

evaluates the research objectives. It also states the main original contributions of the presented

research work. Lastly, the avenues for the future research in integrating experimental test and

simulations for nonlinear systems in structural dynamics are suggested.
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LITERATURE REVIEW

Abstract

Nonlinear dynamics is now regarded as a wide research topic with a significant level of

interest from a wide range of researchers and engineers in the structural dynamics commu-

nity. In this chapter, a broad review on non-linear dynamics and key developments within the

research field is presented. Firstly, the concept of non-linear dynamics is introduced followed

by further discussions on the effects and sources of non-linearities in structural dynamics.

An extensive review on current methods and approaches to identification and modelling of

structural non-linearities is presented, avenues on prospective development with regards to

the objectives of this thesis are also highlighted. Finally, non-linear identification methods

and process are grouped based on their analysis approach and specific features with further

discussions on the strengths and limitations of each method.
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2.1 Introduction

Non-linearity is an extensive term which could have various meaning in the mathematical and

engineering discipline. From the context of a structural dynamicist, non-linearity occurs when

a system violates the homogeneity principle i.e the absence of the superposition principle. This

means that for any combination of loads applied simultaneously to a system does not yield the

same response as the sum of the individual responses to each of the loads acting separately.

Currently the superposition principle is said to be the benchmark of linear vibration which

also provides an explanation to the failure of current linear identification tools when exposed

to non-linearity. From a mathematical perspective, non-linear systems are usually represented

by a set of differential equations with non-linear terms included in the overall equation. The

corresponding resonance frequencies and mode shapes of such system are considered as the

functions of the operating conditions [23] .

Another important feature of a non-linear system is the fact that their natural frequencies

and mode shapes can vary with respect to the excitation amplitude, in this case, the presence of

non-linearities can easily invalidate results based on linear simulations. In addition, the dynamic

response or behaviour of a strongly non-linear system are usually significantly different from

the response of a linear system as shown in [24] and [25]. It is therefore important to define

methodologies that would accurately predict the behaviour of a non-linear system. Non-linear

systems also exhibit behaviours such as bifurcation, chaos and quasi-periodicity [26]. Aside

from the specific and different features of non-linear system, one of the major challenges or

characteristics is the requirement to have a preceding knowledge of the functional form that

maps the input onto the output for the system under consideration, a typical example is a cubic

polynomial non-linear function established in the Duffing oscillator case study [27].

The selection of various non-linear functions in the process on non-linear system identification

also adds more complexity when compared to linear system identification.Currently, a typical

process of modelling non-linearity in structural dynamics is by including some corresponding

non-linear elements in the mathematical models which describes the non-linear system. For

this type of case study the parameters of these non-linear elements are usually specific and can
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only be obtained from an experimental test or through an updating process. As such in [12], the

authors defined nonlinear identification as the process of identifying non-linear parameters or

constructing a mathematical model representation of a system under consideration.

Non-linear system identification has received a great level of attention over the last few

decades, where it is fair to acknowledge that a high level of maturity and achievements have been

attained with this research field. For example, continuous structures with localised geometrical

non-linearity illustrated in [28, 15], identification of non-linear multi-degree-of-freedom (MDOF)

lumped parameters was also presented in [19, 18]. The identification of weak non-linearities

was also studied on more complex structures, example of this can be found [29] where a strategy

for non-linear modal identification of weak non-linear effects on large aircraft structures was

presented. An aluminium plate attached with two stores used to illustrate the behaviour of

a wing and an engine suspended by a means of non-linear pylon also displayed a presence of

weak non-linearities during a vibration test, the results obtained illustrated some hardening

characteristics as shown in [13]. Similar study was also carried out on a large helicopter with

the identification of a weak non-linear softening behaviour on one of the vibration modes as

shown in [30]. A detailed review on the types of non-linearity and methods of non-linear system

identification can be found in [12].

However the identification and modelling of systems with complex and strongly non-linear

behaviour still remains an area of challenge and active research in structural dynamics [6].

The use of black box to model strongly non-linear behaviour has also received some attention,

one of the major advantage of the black-box modelling method is its mathematical approach

to the identification of non-linearities in a system irrespective of the type and strength of the

non-linearity in the system [31]. The method has also successfully been used to model complex

joints and friction dynamics as shown in [32, 33], despite the advancement of the use of black box

modelling in non-linear identification there still appears to be some major drawbacks. One of the

major disadvantage with black box models is their practical application and usefulness, black

box models are also not able to give any physical quantity or information for a structure under

vibration test which can cause a limitation to its usefulness.The comprehensive literature on

nonlinear structural dynamics presented in this chapter are classified in different groups. These
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classifications are Sources of non-linearities, non-linear Identification Methods and non-linear

Identification Process.The aim of this chapter is to present a brief overview on current literature,

where major attention of the review is tailored to recent development on non-linear identification

and modelling in structural dynamics.

2.2 Modelling Non-linearities in Structural Dynamics

In structural dynamics, the study of non-linearities can be defined as the identification of the

mechanical forces and motion related to the nonlinear phenomena exhibited by a mechanical

system or component of interest. From a mathematical perspective, nonlinear dynamics can be

referred to as the investigation of a nonlinear system represented by a set of nonlinear differential

equations [34]. For linear mechanical structures, the dynamics characteristics namely natural

frequencies, damping ratios and mode shapes are often extracted using the well known modal

analysis approach. These modal parameters are determined either through mathematical models

using (Theoretical Modal Analysis TMA) or from an inverse approach based on experimental

data (Experimental Modal Analysis EMA). The development of super computers and advance

Figure 2.1: Basic skill sets for an effective structural dynamics solution

algorithms also introduced the concept of Finite Element Models (FEM), which are used to
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generate simulated modal natural frequencies and mode shapes. These three approaches have

been well developed for understanding and modelling linear structural dynamics for over 40

years [35].

For nonlinear structures, a linear representation of the system is constructed with the addition

of internal nonlinear restoring forces to represent the nonlinear effects. These nonlinear forces

often depend on specific functions attributed to the mechanics of the system under consideration

which can be described using a range of different parameters. As such, to effectively model and

gain deeper understanding into a particular nonlinear structural challenge, a combination of

different analysis approach are required. According to two technical surveys conducted in [6]

and [36], three primary skills sets/approaches required for a successful solution of a nonlinear

structural dynamic challenge was reviewed in detailed with a range of applications and examples.

A schematic diagram of these skill sets are described in Figure 2.1 which are often referred to

as theoretical modelling, experimental testing and numerical modelling. In addition, Figure 2.1

shows labelled connecting arrows between the three skills sets, these are classified as techniques

that can be used when combining the skills sets for specific application. The literature on these

skills sets and techniques are briefly reviewed in the subsections below.

2.2.1 Theoretical Modelling

Theoretical modelling in nonlinear structural dynamics is an approach often used for constructing

and obtaining thorough understanding of the underlying physics and defining sets of equations

that represents the nonlinear system under consideration. The theory of nonlinear dynamics have

been well developed by mathematicians using the fundamentals developed in Poincare’s theorem.

For example, the perturbation method was used in studying the nonlinear characteristics of single

and multiple degree of freedom systems in [37]. In structural dynamics, the theoretical concept

of Linear Normal Modes (LNM) and its nonlinear extension Nonlinear Normal Modes (NNM)

introduced by Rosenberg and Shaw in [38, 39] and [40] are now seen as classical techniques used

in modelling non-linearities.

In recent years, more advanced theoretical techniques such as bifurcation theory [41, 42]

and isolated response analysis [43] have also been adopted to gain useful insight into complex
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nonlinear behaviour observed in some real-life application. The advantage associated with a

theoretical modelling approach is the ease of use to describe discretised nonlinearites and the

ability to conveniently analyse simple scaled geometry structures such as beam, shells and plate

models. Other types of techniques used in theoretical modelling approach includes, polynomial

approximation [44, 45], cubic splines [46, 47] and non-integer exponents [48, 49]. The challenge

with this type of modelling approach is its in-ability to effectively solve large sets of equations of

motion under multiple specified performance conditions. To tackle this challenge, the combination

of theoretical and numerical modelling (section 2.2.2) is used and this is referred to as simulation

as shown in Figure 2.1

2.2.2 Numerical Modelling

Numerical modelling is used to provide accurate and competent computational algorithms

required for solving both small and large scale challenges associated with nonlinearities. In

structural dynamics, both theoretical and numerical modelling are grouped as simulation tool

sets as shown in Figure 2.1, the computational algorithms developed based on numerical methods

are often used to solve the nonlinear system of equations of motion derived based on theoretical

modelling. The correct combination of both theoretical and numerical modelling tool sets is always

of major importance as even the most advanced numerical algorithm can be unproductive if the

given theoretically formulated equations of motion is not a true representation of the nonlinear

system under consideration.

Different algorithms and numerical methods for the computation of nonlinear systems have

been developed over the last 15 years, most of them are based on a continuation procedure

[50] and are used for studying the periodic solution of a nonlinear system with respect to the

frequency of the harmonic forcing or design parameter. Examples of these numerical methods

includes the shooting method [51] which is based on Newmark time integration, orthogonal collo-

cation methods such as COLSYS [34], AUTO [52], MATCONT [53] and most recently developed

COCO [54], all of which are also useful for bifurcation detection and tracking. Another powerful

numerical method in the frequency domain is the Harmonic Balance (HB) method. It is often

used to compute the periodic solution of finite element models (FEM), with the main advantage
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on the use of truncated and low order Fourier approximations to obtain an accurate solution

for a nonlinear system. The HB method has been applied to several mechanical and vibration

problems, examples of these applications are found in the subsonic flow of an aerofoil motion

with strong cubic nonlinear restoring force [55], unsteady aerodynamic prediction of helicopter

rotors [56], modelling of friction interface elements [57] and the prediction of nonlinear dynamic

response of mechanical structures [58, 59]

2.2.3 Experimental Testing

In this era of super computers and simulation based designs, experimental measurement and

testing still remain an important tool in nonlinear structural dynamics. Till date and according

to Figure 2.1, experimental testing and numerical modelling play complementary and often

matching roles in the development of advanced structures, machines and vehicles. Experimental

testing and measurements are mainly used to uncover uncertainties during design process and

most importantly used for the final verification of the structural design. There exist a wide range

of established modal and linear testing techniques in the literature [60, 61, 1] including the use

of advanced hardware and software such as the Scanning Laser Doppler Vibrometer (SLDV)

[62, 63] for non-contactless measurement. However, experimental testing of nonlinear structures

requires more demand and post-processing techniques such as selecting the right Frequency

Sampling Rate (FSR) and number of harmonics during post processing.

To cope with the challenges and demands that come with the experimental testing of nonlinear

structure, new methods that can capture the unique complex behaviours of non-linearities

are constantly being developed. Methods such as stochastic technique in ref [64, 65] used for

measuring global dynamics and mapping basin of attractions. As developed in the numerical

modelling approach, experimental continuation as in ref [66] techniques are also used to track

unique features such as stable and unstable regions as shown in [67], and further advanced

developed method used in [68] for bifurcation analysis and backbone tracking.
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2.3 Sources of Non-linearities in Engineering Structures

Most fields of engineering such as civil, structural, aerospace, automobile and mechanical engi-

neering experience some form of non-linearity. Before proceeding to the identification of these

non-linearities it is also important to recognise where these non-linearities originate from, a large

majority of the causes of non-linearities in engineering can be traced to (i) The geometric of the

structure. i. e Geometrical Non-linearity (ii) The type of energy going in to the system. i.e Inertia

Non-linearity. (iii) The behaviour/ properties of material under test. i.e Non-linear Material

behaviour (iv) Damping dissipation or characteristics of the structure. (v) The experimental or

simulation set-up. i.e Boundary conditions. Non-linearities can arise from a combination of all

these sources and can easily nullify any results based on linear simulations, it is therefore impor-

tant to be able to accurately identify and understand the contributing sources of non-linearities.

The following subsections gives a brief overview of the common sources of non-linearities in

structural dynamics.

2.3.1 Geometric Non-linearity

This source of non-linearity is mainly based on the type of experiment or analysis that is being

carried out on the structure, geometric non-linearity occurs when the structure is subjected

to a large displacement which arises from the potential energy. An example of identifying a

non-linear term due to large deformation or displacement is to consider the equation of a simple

pendulum which is θ̈+ω2
0 sinθ = 0; which models large angular motion. The non-linear term in

the equation ω2
0 sinθ represents geometric non-linearity. Geometric non-linearities can also be

found in large deformation of flexible elastic continuum structures such as shell, beams and

plate. The vibration of shell structures with geometrical non-linearity was considered in [69]

where the shell is immersed in a fluid, the shell and fluid interaction was defined by a linear

hyper-singular equation. The method of the Lagrange equations was then used to derive the

non-linear finite-degree-of-freedom models of the shells vibrations.

The effects of geometrical non-linearities were also encountered in flexible steel cables used

in the design of bridges and flexible connected beams [70]. Prediction of large displacements and
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dynamic response of panels exhibiting localised geometric non-linearity effect was also studied

in [71] using Reduced Order Model (ROM) and Finite Element Analyses (FEA). A change in

the geometric parameters of a structure also causes an effect in the non-linear behaviour of

the structure, in [72] the non-linear hardening and softening resonance of a cantilever beam

designed with intentional geometric non-linearity was studied. Geometric non-linearity can also

be encountered in composite structures and some components of today’s aircraft structures, an

example of the effects of geometrical structural non-linearity on flutter and limit oscillations

of high aspect ratio wings is presented in [73]. A detailed survey on structural geometrical

non-linearity and its applications are presented in [74].

2.3.2 Material Non-linearity

A material is categorised to have a non-linear behaviour when the law relating the stress and

strain is non-linear, an example of this feature can be found in resilient mounting systems such as

rubber isolators [48]. For linear elastic analysis the stress- strain relationship is defined through

the modulus of elasticity (E) but for the case of non-linear material analysis, the modulus of

elasticity only serves as first point of definition of the overall behaviour. A characteristic property

and analysis in the non-linear material domain involves one of the post-yeild point behaviour, i.e.

the plasticity behaviour. A typical elasto-plastic material characteristics under tensile loading

is studied in [47]. This type of problem involves approximating the non-linear section of the

stress-strain curve with a series of piece-wise linear function to obtain a suitable solution.

Inelastic behaviour is also characterised by a force-deformation relationship which is often

referred to as a backbone curve, it measures the strength against translational or rotational

deformation. There are different types of force-deformation relationships which are used to

characterise material non-linearity, examples of these relationships include monotonic curve,

hysteresis cycle and interaction surface. The use of new materials in structural engineering also

introduces new failure methods which are different from the existing traditional metal materials,

one of these failures is found in the delamination failure found in most laminated composites

structures [7]. Delamination is a serious failure mode in composite materials not only as a result

of the damage it causes to structure but it also separates the composite material into different
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layers which can lead to a reduction of the section strength and material stiffness [8].

2.3.3 Non-linearity From Governing Equations of Motion

This source of non-linearity is obtained from the non-linear terms in the equation of motion

of the system, most of the non-linear terms can be found in the velocities, accelerations or

displacement terms which takes its source in the kinetic energy of the system. Methods for

solving non-linear differential equation is an important aspect of analysis mechanical systems or

structures associated with non-linearities. Conventional analytical methods have been developed

for solving non-linear equations which includes perturbation methods and generalised averaging

methods [26, 75], A classic example of a differential equation used in the perturbation method for

analysing linear system is written in the form as shown in Equation 6.1:

m
d2x
dt2 + c

dx
dt

+kx = 0 (2.1)

Where m, c and k denotes the mass, damping and stiffness properties of the system. However

the usefulness of the perturbation methods in non-linear identification is limited as they are

primarily applied when the non-linear terms in the differential equation is rather small when

compared with the linear terms.

Other available methods used for solving weakly and strongly non-linear equations includes

the describing function [76], the power series method [77], equivalent linearisation method

[78] and the harmonic balance [79, 80]. All these listed methods have their own advantages

and limitations and any deviation in parameters can cause errors in the predicted response

either qualitatively or quantitatively. For example the harmonic balance method is very useful

for solving strongly non-linear vibration problems, however the construction of higher order

approximation to the solution can be very difficult and tedious. This is as a result of the level of

complicated non-linear algebraic equations that must be solved for higher-order approximations.

Some major disadvantages associated with both perturbation and non-perturbation methods of

solving non-linear differential equation is that the methods are not able to correct the convergence

region and the rate of given approximate series [81].

To overcome some of these challenges, a method that provides accurate solution for analysing
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non-linear free vibrations of a conservative oscillator with inertia and static cubic non-linearities

was presented in [82], the solution obtained is based on the Homotopy Analysis Method (HAM)

which was formulated by [83] to overcome the traditional analytical methods. The HAM is able to

correct the convergence region and the rate of approximation series, it is also easy to use and is

able to solve strongly non-linear differential equations analytically. The efficiency and precision

of the HAM have also been tested and proven in the analysis of some non-linear problems

[84, 85], results from these research show that the solutions obtained using the HAM is quickly

convergent and the its coefficients can easily be calculated. The accuracy of the results obtained

from using the HAM also indicates that this method is very valuable for solving problems with

strong non-linearities. It should be noted that there are also other powerful methods used for

solving strongly non-linear problems which are referenced in [81].

2.3.4 Damping Dissipation and Friction

The dissipation of energy in vibrating structures is often referred to as damping which can be

related to a number of mechanisms that operate inside or outside of the vibrating structure.

Internal damping can be allied with the material properties of the structure as shown in [86]

while the external damping is often associated with dry friction at any joints within the structure

and any other form of fluid structure interaction surrounding the structure [87]. Unlike the mass

and stiffness properties of a structure, the damping characteristics of a structure cannot easily be

determined from the finite element method, the mathematical formulation of non-linear damping

requires some experimental knowledge of damping for the structure under test. The challenge

behind this principle is that for a real structure under test, the type of experiment conducted on

the structure is at relatively low amplitude which can only give little or less information about

the non-linear damping behaviour of the structure.

The effects of non-linear damping force on the dynamics of slender structures under flapping

motion was investigated in [88], where linear and non-linear, internal and external damping

force models in different functional forms are incorporated into a non-linear, in-extensible beam

theory. The theory behind damping dissipation is basically a non-linear concept which has not

fully been understood, examples of non-linear damping can be found in dry friction effects such
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as bodies in contact sliding with respect to each other. Hysteretic damping is another example of

non-linear damping effect, an illustration of this can be found in an article written by Tomlinson

and Hibbert, 1979 where a technique, based upon the in-phase and quadrature power dissipated

when exciting a normal mode, is presented which allows the magnitude of the non-linear friction

force and the hysteretic damping constant to be evaluated [89]. Joints and Interfaces are another

major source of non-linearities in structural dynamics, a range of research have been conducted

on methods for modelling joints with several applications referenced in [90–92], in [93], Ewins

suggested the need to review and change the design of joints and structural interfaces to reduce

the effect of non-linearities.

2.3.5 Boundary Condition Effects

Non-linearity can also arise from the boundary condition set-up during an experiment or sim-

ulation, examples of such boundary conditions are rigid constraints, free surfaces in fluids

imperfectly bonded bodies, clearances, and vibro-impacts due to loose joints. Non-linearities that

arises as a result of the boundary conditions sometimes require special treatment compared with

other types of non-linearities, non-linear vibration analysis of doubled layered nano-plates with

different boundary conditions was studied in [94] where the results observed indicated that weak

non-linearities are observed in boundary conditions with clamped movable edge when non-local

effects are neglected.

Furthermore results shows that the type of non-linearity is substantially different from

clamped immovable edge. Clearance and vibro-impact due to loose joints are considered as the

major types of non-linearities associated with the problem boundary condition, typical static test

results associated with these types of non-linearities possesses non-smooth force-displacement

characteristics. Largely, these types of non-linearities are treated specially compared with other

forms of non-linearities.
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2.4 Overview of Non-linear System Identification Methods

The main purpose of any system identification is to obtain specific parameters from a mathe-

matical model which represents the physical model of the system under consideration. These

parameters are acquired by making use of the relationship that describe the input and output

data function. It can be concluded that the identification of linear system which uses vibration

measurement data to determine the mathematical models of linear dynamic system is an es-

tablished area. Linear tools such as modal testing and analysis [95, 1] are available and widely

used by researchers and industries for linear system identification. In structural dynamics the

transfer function relating the input and output of linear system is always constant for all level

of excitation, this implies that the mathematical model obtained through the identification at

an operating force level can be used for the prediction of a model at a different operating level

provided the system is still observed as linear.

However it is difficult or sometimes impossible to obtain a generic mathematical model for a

non-linear system by performing a system identification from a vibration test, thus the identifica-

tion of non-linear system is largely different from the conventional linear system identification.

The continual interest of increasing the performance of today’s engineering structures where

lighter and more flexible structures are constantly being designed consequently leads to more

non-linear vibration problems on structural components. The present challenge is that the theory

behind the identification of non-linear dynamical system is not as established compared to linear

systems, in addition systems that are considered to have weak non-linearities can display some

interesting complex behaviour which today’s linear identification methods cannot accommodate.

Examples of such complex behaviours includes bifurcations, sub-harmonics, jumps, internal

resonance, saturation, super-harmonics, modal interaction, chaos and resonance capture. A

detailed review of these complex non-linear behaviours can be found in textbooks and technical

surveys presented in [6, 12, 26, 27, 96, 97]. The old conventional technique used in studying

non-linear system was the linearisation approach introduced in [98, 99], further non-linear

theories have since then been developed. The perturbation theory [100] was used to analyse

weakly non-linear system, perturbation methods includes the Lindstedt-Poincare technique [100]
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and the multiple scale method [101, 102]. However, there has also been an evolution from weakly

non-linear structures to strongly non-linear structures, thus a need to extend the current methods

used for analysis of weak non-linearities to accommodate strong non-linearities is required.

The aspect of system identification and extraction of model parameters from experimental

measurement in the presence of non-linearity still remains an area that is not yet fully developed,

according to the present literature it is possible to admit that there is currently no general

analysis method that is applicable to the identification of non-linear system. One of the major

reason for this challenge is that the functional which maps the input and output of a non-linear

system is unknown beforehand which makes the overall identification process generally more

difficult. Several research teams in Europe and across the world have devoted time and effort in

the development of non-linear system identification for over thirty years with examples such as

the (COAST) Action F3 structural dynamics project [103] and other benchmark research which

was carried out by research institutions. The Ecole Centrale de Lyon (ECL) benchmark [104] and

the VTT Technical Research Centre benchmark in Finland [105] are examples of frame work

projects which have been devoted to non-linear system identification. In addition to this, several

papers have also been published in conjunction with these projects and research teams [106–108].

Research into non-linear identification methods have proven that the nature of the problem

of the considered non-linear system can greatly determine the type of method or approached

that would be used in analysing the system. As such, In a comprehensive review presented

by Kerschen.,et., al, in [6, 12], seven methods have been identified and categorised as the key

important methods and domain used in the analysis of non-linear system. These methods are:

• Time domain methods

• Frequency domain methods

• Modal methods

• Linearisation methods

• Time-frequency methods

• Black-box modelling
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• Structural model updating methods

These methods have been cited and used in many published papers and textbook such as in

[109–111]. A brief overview on these methods are described in the following subsections with

major attention devoted to their advantages and limitations.

2.4.1 Linearisation Methods

To test for linearity, modal analysis has been the most sophisticated theory used [95, 1], however

it is only restricted to linear system and attempts to apply the same process directly to non-linear

system with some modification such as the curve fitting algorithms has been reached. A method

used for linearising non-linear equations of motion with harmonic forcing referred to as the

harmonic balance method is another linearisation method, it is based on the assumption that sub-

and super harmonics are negligible compared to the fundamental harmonic and it also provides

a process of approximating the FRFs of a non-linear system which for this case the harmonic

balance method is often referred to as the describing function method [1].

The harmonic balance method has been the underlying foundation for several non-linear

system identification, (Meyer and Link.,2002) applied the harmonic balance method to identify

local non-linear stiffness and damping parameters from dynamic response data in [112]. The

investigation was to model the local non-linear effects using a frequency domain representation

which is based on a FE model description in the time domain and also leads to a parametrisation of

the non-linear model which can be used to solve the inverse problem. The equivalent linearisation

method is another technique developed based on replacing non-linear oscillator with external

Gaussian excitation by a linear one with the same excitation such that the mean-square error

between the actual non-linear and linearised systems is minimised in a statistical sense. (Kimura

et al., 1983) applied the same technique for calculating the non-stationary responses of a system

with bilinear hysteresis subjected to non-white random excitations, the method was based on

writing an approximate equation of motion describing the hysteretic behaviour by introducing an

additional state variable and non-linear functions [113].

Another popular linearisation technique which is often associated with the equivalent lin-

earisation method is the statistical linearisation technique which is also used for determining
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the response characteristics of non-linear dynamic system, the statistical method is developed

mainly to replace non-linear elements in a model by linear forms, where the coefficients of

linearisation can be found using the specific criterion of linearisation and is often used to define

the characteristic response of a stochastic dynamic system. (Socha and Pawleta., 2001) presented

a comparison between the statistical and equivalent methods in [114] to determine if in general

both methods are the same for analysing non-linear dynamical system excited by a stationary

Gaussian white noise, the presented argument concluded that the differences between both

linearisation techniques in application to the determination of the response characteristics of

a dynamical system, are eliminated by iterative procedures and can therefore conclude that

statistical linearisation and standard equivalent linearisation are exactly the same methods.

2.4.2 Time Domain Methods

Non-linear identification can also depend on the type of data that is made available during the

identification process, a method is categorised as a time domain method if the data measured

during the identification process is in a time series format. For example the force and acceleration

data obtained from a standard vibration test are classic examples of time series data, the signals

for this type of test are directly provided by the measurement devices. Several applications of

the time domain identification method have been published in papers referenced in [115–119]. A

successful technique used in the time-domain identification method is the Restoring Force Surface

techniques (RFS) which was used to initiate the analysis of non-linear structural system in terms

of their internal RFSs, this technique was introduced by (Masri and Caughey,1979),(Masri et al..,

1982 [120]).

The RFS technique was initially developed for Single Degree of Freedom (SDOF) system,

an extended generalised approach used to analyse multiple degree of freedom (MDOF) system

was later developed by (Masri et al.., 1982 [121]). This nonlinear identification technique has

enjoyed a variety of applications from experimental investigations proposed in [117, 122], the

technique was also used for non-linear system identification in the absence of measured data

in [123] the curve fitting approach was also avoided in [124] to make use of the RFS technique

for identification of non-linear MDOF system. Extensive research was also carried to extend
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the RFS method to the frequency domain analysis which involved applying force-state mapping,

a numerical application of this method can be found in [125] where a method of identifying

non-linear joint properties of a structure through its connection points from measured frequency

response function (FRF) is proposed.

A rather more mathematical technique which is mainly applied in the frequency-domain

is the Hilbert Transform (HT) used famously for the detection of non-linearity, the Hilbert

transform provides some additional information about amplitude, frequency and instantaneous

phase from the signal of a mechanical vibrations [126]. Some methodologies where the HT has

been applied in the time-domain is cited in [127] where a typical inverse problem approach is

used for the identification of non-linearity on a SDOF dynamic system with unknown restoring

and damping force. The HT can also be used to construct non-linear damping and stiffness curves

of large non-linear system with mono-component signals [12]. Further work was carried out

on the decomposition of signals with multiple components into a collection of mono-component

signals which is termed intrinsic mode function (IMFs) by Huang et al. and it is represented

as the Huang-Hilbert transform [128], it consist of two steps which are the Empirical Mode

Decomposition (EDM) algorithm and the Hilbert spectral analysis.

Contrary to the previous methods, HHT is intuitive, direct, a posteriori, and adaptive, with

the basis of the decomposition based on and derived from the data. It is a new time–frequency

analysis technique that can not only offer higher frequency resolution and more accurate timing of

transient events and non-stationary data than conventional methods, but also provide physically

meaningful interpretations. Even though its theoretical base has not been fully established, HHT

has been tested and validated empirically, and has been applied to various fields of scientific

research and industries [129]. Although the HT technique is fast and operational at testing for

non-linearities based on a single measured frequency response function (FRF), however its form

of detection method is based on the level of distortion of the measured FRF and the distortion

of an FRF isn’t always the best way to classify a system as non-linear especially when there

is the presence of weak non-linearities. Another drawback to using the HT is that the test for

non-linearity is based on individual judgement which does not always provide an established

solution to the problem.
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An alternative technique used in the time-domain method is the time-series analysis which is

regularly used in structural dynamics but initiated by control system engineering, it is based on

the linear variant approach of the ARMA model (Auto-Regressive Moving Average) [130]. This

method has long been existence in the world of modelling and prediction purpose and there has

been attempts to generate a similar model for non-linear identification of structures.Currently

the most adaptable and continuing model under the time-series analysis which has been designed

for non-linear case is the NARMAX method (Non-linear ARMA with eXogeneous input models)

introduced by Billings and Leontaritis, examples of cases where the NARMAX model has been

used in conjunction with the non-linear output frequency response function and other methods in

the detection of non-linearity are seen in articles related to structural damage detection [131],

identification of non-linear structures [132], predicting the hysteric behaviour of passive control

systems [133].

There has also been prominent research of using the NARMAX method to estimate model

parameters successively in order to allow a reasonable control of the model which is been analysed

with the aid of an orthogonal estimation. It can be stated that the NARMAX method is now

been enjoyed in both theoretical and experimental aspect of structural dynamics and in several

application it can be used to investigate an established linear system with non-linear parameters.

Irrespective of its usefulness, the NARMAX does not give a direct understanding to the physics of

the system that is being modelled. This often causes a difficult validation stage of the non-linear

system as there would not be any form of correlation test.

2.4.3 Frequency Domain Methods

If the data measured during the identification process take the form of a spectra or FRF, then

that particular identification method is classified as a frequency domain method. Previous

investigation has been carried out by several authors on developing frequency domain methods by

using FRF or spectra data which are classified as frequency domain data for the purpose of non-

linear system identification methods. The method of using frequency domain data was obtained

through functional series –the Volterra and Wiener series [134]. One of the practical application

of the Volterra and Wiener series is the non-linear bearing stiffness parameter estimation in
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flexible rotor-bearing systems by (Khan and Vyas) [135]. Where a frequency domain was adopted

for the identification of higher order Volterra and Wiener kernel from the response of the system

to a Gaussian white noise excitation, the Volterra and Wiener series also helps to generalise the

idea behind the application of impulse response function and FRF to nonlinear system.

The High Order Frequency Response Function (HOFRFs) has received a lot of attention in

the area of system identification with its first application in the field of structural dynamics

focused on the extraction of non-linear parameters by fitting surface to the HOFRFs, a work

carried out by Gifford 1989 in his PhD thesis. (Khan and Vyas 1998) explored the prospect of

non-linear parametric estimation using Volterra and Wiener theories. If one has measured input

and output time data, it is possible to evaluate the FRF’s by carrying out many multi-dimensional

Fast Fourier Transforms and averaging the results, in much the same way as one would evaluate

a standard linear transfer function. An engineering application of a SDOF system with a cubic

stiffness non-linearity which involved using a HOFRF to obtain the first and third order kernels

for the estimation of the non-linear parameters is also presented in [136].

The extension of modal analysis linear tool to study non-linear structures using the Volterra

and wiener series was carried out by (Tawfiq and Vinh) [137], it explains how the functional

series generalises the superposition principles included in the definition of each term of the

Volterra series which constitute the basis of non-linear modal analysis and also allows to get the

impulse responses and transfer function of various orders [137]. Despite the practicality involved

in using the HOFRF and Volterra Kernel transforms, the major limitation to this techniques is

the level of series convergence present in the analysis. Major challenges can be encountered if the

approach is applied to practical engineering with discontinuous or non-smooth non-linearities as

the systems have a demonstration of the Volterra technique. If the system under consideration

includes non-linear behaviours like bifurcation, the Volterra technique might loss its validity due

to the single-value associated to the Taylor series of which Volterra series is a functional of Taylor

series.

A new method for estimating parameters of non-linear parametric models that uses internal

feedback to account for non-linearities was proposed by (Adams and Allemang, 1999), it was

founded on the integration of non-linear systems as linear in the open loop with non-linear
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feedback in the closed loop. Previous work on using the feedback to derive a new formulation

of frequency response function matrices of non-linear system which is called the modulation of

nominal linear system was investigated by the same authors. The advantage of this new method

which is commonly called the non-linear identification through feedback of the output (NIFO)

is its simplicity and how it can be easily applied to estimating the linear frequency response

matrix and non-linear parameters at forced and unforced single and multiple degrees of freedom

systems which can either be linear or non-linear [109].

This method also instigated further development of a new method for non-linear system

identification of mechanical systems, in the absence of an input measurement, using a combina-

tion of time and frequency domain techniques [138], where the restoring force plots are used to

characterise the frequency and amplitude characteristics of non-linearities in the time domain.

The experimental non-linearities are then used in the output-only formulation of the non-linear

identification through feedback of the outputs frequency domain, which can be used to predict

the response of the system.

A different method of non-linear system identification using the frequency domain is the

harmonic balance method which is used in an inverse way to estimate parameters in non-linear

system. Authors such as (Kamyia and Yasuda,2005) investigated and applied these method to

identifying non-linear boundary conditions of machines [139], the analytical technique involved

modelling the boundary as a spring and damper system with effective mass and moment inertia.

The harmonic balance-based identification method was in cooperated into non-linear system with

chaotic behaviour [140], the method is based on extraction of parameters of periodic orbits from a

chaotic sets in an experiment.

A generalised non-iterative approach using reverse spectral analysis technique for the identifi-

cation of linear and non-linear multiple degrees of freedom was proposed by (Rice and Fitzpatrick,

1990 [141]), the method is appropriate for highly coupled non-linear systems and systems with

substantial damping effects. It also helps to define the coefficients of the non-linear terms as

well as the physical model of the linear structure and requires excitation signals at each loca-

tion of the response. (Richard and Singh) [48] also proposed a further method that estimates

the non-linear coefficient and the FRF-based model of the primary linear structure called the
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conditioned reverse path method CRP, this method does not take into consideration the exci-

tation pattern. The formulation is based on utilising multiple-input/multiple-output data from

non-linear system when excited by Gaussian random excitation [110]. The underlying linear

system is also identified without any use of the non-linear terms. (Richard and Singh,2000)

supplementary provided a comparison between reverse path and the CRP methods to illustrate

the similarities and difference that exist between these two methods [142], the evaluation creates

a core difference between both methods.

However a possible limitation that was noticed in the CRP method is that there is a mea-

surement requirement of the structural response at the location of the non-linearity which can

be some worth difficult in reality. Arguably, the reverse path and the condition reverse path

techniques are more advantageous when compared to other techniques within the identification

methods since physical properties are identified, and typically physical domain properties are

preferred over modal domain properties since modal properties can be determined from physical

properties but the opposite is not always true. It is worth commenting that a further integration of

the reverse path and the conditioned reverse path method might be able to provide better results

in terms of the localisation, characterisation, and parametric quantification of non-linearities.

2.4.4 Modal Methods

The theory of modal analysis is based on the form of the modal parameters which are the natural

frequencies, damping ratios and mode shapes of a particular system, these parameters are able

to describe the behaviour of a system with a range of input and output type. Numerous research

has been conducted on the application of modal analysis to non-linear modal structure with the

assumption of weak non-linearities in the system (see, e.g.,(platen et al., 2007 [13]) where a

novel concept of non-linear identification for large system of 5DOF is introduced. Laxalde and

Thouverez also proposed a complex non-linear modal analysis method on a turbo-machinery

blade which also gives a description of a two-dimensional frictional motions by complex variables

[143].

A new direct simultaneous modal approximation method to improve the accuracy of all

eigenvalues and eigenvectors was also introduced by (Chalko et al., 1996) with the adoption of
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current techniques of curve fitting in modal analysis [144]. A new concept of extending modal

analysis to non-linear system identification was first introduced by (Rosenberg, 1962), called

the Non-linear Normal Modes (NNM). The concept is based on the development of a non-linear

model in modal space, the NNMs demonstrates a theoretical background for extending modal

analysis to non-linear system which therefore brings about the development of non-linear system

identification techniques based on non-linear modes [1]. The analysis of NNMs is often more

challenging compared to linear normal modes theory based on the fact that NNMs and their

periods depends on the amplitude of the vibrating system, however the mode of vibration in

resonant conditions can be regarded as an estimate of the NNM. An example on the theoretical

derivation of NNM applied to a two degree of freedom (DOF) system is extracted from [50].

The modified single non-linear mode method presented in [145] which is based on the assump-

tion that the mode of vibration in resonant conditions is assumed to be the same as the normal

mode (or eigenfunction) of the corresponding linear system i.e. the system with the rejected

non-linear term, which in turn is assumed to be known proves the idea behind the estimation of

NNM from the mode of vibration. However to determine if the single non-linear mode method

would give a satisfactory result, the sensitivity of the normal modes to the amplitude of vibration

has to be examined using the Ritz method to check if they vary slightly or significantly with the

amplitude.

The drawback to the approach is that a general criterion, which would enable one to predict

the “sensitivity” of the normal mode shapes to the amplitude before carrying out the calculation

of them, is not available. Other methods of non-linear modes for identification of non-linear

system includes a process which involves modes extraction often referred to as the proper

orthogonal modes (POMs) and are readily obtained from the decomposition of the response

matrix. Instantaneous modes shapes can also be extracted using wavelet transforms, although all

these modes don’t have direct theoretical formulation of the NNMs they can still provide useful

information for non-linear system identification.
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2.4.5 Time-Frequency Methods

The time-frequency methods are often used in the analysis of non-linear oscillatory systems, the

time-frequency analysis is made up of the decomposition of a signal into simpler components

which later add up to produce the original signal. The time-frequency analysis have been used to

study linear system mainly for the estimation of their natural frequencies and damping properties,

examples of these applications are cited in [146–148]. Several techniques have been developed and

studied in structural dynamics using time-frequency method, for example non-linear oscillations

were investigated using the Gabor transforms in [149, 150].

Time-frequency methods offer a different perception to the dynamics of the system, one of its

major advantage is that the decomposition of time-frequency signals permits the storage of time

history data into a section that allows the separation of individual components of the signal which

can help in signal filtering stage. A detailed review on the analysis of non-stationary signals

using time-frequency methods is presented in [151], these methods have now been applied in

most application of structural dynamics. Further techniques have also been developed in the

time-frequency domain for analysing inverse problems, for example a combination of the Hilbert

and Gabor transform was proposed in [149] for the extraction of parameters from measured data.

The Gabor transform was used to detect the time-variant matrix which is able to predict the

spatial behaviour of the system, the matrix is also able to decouple the transient solution into

sets of quasi-harmonic components. The Hilbert transform is then used to identify the elastic

restoring force associated with each component.

The Gabor transforms was also used for the computation of coupled non-linear modes from

measured data in [152] for the extraction of non-linear modal parameters. The wavelet transform

is another approach used in non-linear system identification, the technique involves the expansion

of the system excitation and response in terms of scaling functions, the tangent stiffness of the

structural system is then conveyed as a series of wavelets. A detailed review on the use of

wavelet transform in non-linear structural dynamics is presented in [153], approaches cited

in the review includes non-linear identification techniques associated with wavelet ridges and

skeletons, damping estimation procedures, wavelet-based frequency response function, cross-

wavelet analysis, self-similar signals, coherent structures and chaos.
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Other techniques on the identification of non-linear systems using time-frequency analysis

is presented in [154, 155] which includes the Winger-Ville distribution and the time-frequency

distribution. Although the time-frequency analysis method is suitable for problems with different

non-linear vibration systems, however a major concern with the time-frequency analysis is

that it’s only appropriate for mono-component signals such as systems with a single dominant

frequency. Another minor disadvantage is that the change in amplitude must be slow in relation

to the phase change.

2.4.6 Structural Model Updating Methods

Analysis of complex structures with many DOF in a wider range of frequency can be extremely

difficult, this would require a new estimation or modelling method compared to structures

which are analysed with small DOF system. But the extraction of the required parameters from

experimental measurement can often be a process which is not flexible, however a common

solution to this problem is to use the popular computational technique often referred to as

structural modelling which involves a process of computing the structural model parameters

using the information from the mechanical and geometrical properties of the structure that is

being analysed.

The process behind structural model updating often starts with a creating a finite element

model of the structure with the aid of popular software packages such as MSC Nastran-Patran,

Ansys, Abaqus etc. Where most of the packages are able to give the desired output of a structural

compute in the form of displacement, stress, strain and many more, the structural model update of

the computed model is regularly regarded as finite element model updating. The use of structural

modelling is however not fully accurate as there still proves to be some discrepancies between

structural modelling and practical application, the error is often noticed from a usual percentage

difference between the experimental results and the model prediction. The sources of these errors

can be from improper modelling assumptions or boundary condition, mechanical parameter errors

such as damping constant, young’s modulus and errors that might occur during the event of

conducting the experiment. Thus it is therefore important to correct and improve the accuracy of

the structural model by comparing with measurements obtained from the experimental stage,
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this process is often denoted as structural model updating.

Finite element model updating was introduced to linear structures in the 1990s to improve

the design, construction and maintenance of mechanical systems, (Goge.,2002) demonstrated the

use of finite element model updating on a large aircraft model as shown in [156]. The presented

method uses experimental data from a ground vibration test to perform the computational model

updating (CMU), the CMU procedure involved fitting parameters of a given initial analytical

model i.e the stiffness and mass matrices that corresponds very closely to the measured behaviour

[156]. Other application of finite element updating to linear structures have been published in

several papers for example (Lee and Dobson.,1990 [157]) and (Sheinman., 1996 [158]) and many

more which have all proven that the majority of structural model updating methods are perfectly

suited for linear structures.

On the other hand, updating of non-linear structures or models can sometimes come with some

mathematical and computation challenge because tools such as modal analysis which are suitable

for analysing linear system cannot be applied directly to non-linear system. Schmidt proposed a

method of updating non-linear components with local non-linearities such as coulomb friction

and local plasticity in [159], it involves updating the parameters of non-linear elements in the

input file of a FE code by fitting simulated time history function and its corresponding measured

data. The method of modal state observers was used to overcome the problem encountered in

estimating the initial values and the error between the simulated and time history function.

(Meyer and Link.,2002) formulated a modelling technique based on the harmonic balance method

for the linearisation of the non-linear equilibrium equation of a structure. The technique involved

identifying local non-linear stiffness and damping parameters from dynamic response data,

the non-linearity is being taken into account by assembling non-linear two-degree-of-freedom

elements into larger linear finite element models. The model is linearised using the harmonic

balance method to obtain an appropriate model description in the frequency domain and the

response is calculated iteratively using the dynamic condensation for the linear part of the

structure [112].

A two-step methodology for analysing non-linear system was proposed by (Kerschen and

Golinval) [160], where it decouples the estimation of the linear and non-linear parameters. The

37



CHAPTER 2. LITERATURE REVIEW

method enjoys the application of the reverse-path method and a numerical simulation applied

to an aeroplane like structure [160]. In the absence of non-linear identification tools which are

able to identify parameters or variables used for test correlation, structural model updating

of non-linear structures becomes more challenging. Several research has been made to define

features (i.e., variables or quantities identified from the structural response that give useful

insight into the dynamics of interest) that facilitate correlation [160].

Proper orthogonal decomposition (POD) technique, also known as Karhunen-Loeve (K-L)

decomposition is also a developing tool for non-linear identification in dynamics and vibration, it

functions by extracting spatial information from a set of time-series data available in a domain.

(Lenaerts et al.,2000) investigated the use of proper orthogonal modes of displacements for the

identification of parameters of non-linear dynamical structures with an optimisation procedure

based on the difference between the experimental and simulated POM. POM is mainly an

empirical system of modes with the application of POD to measured displacement of a discrete

structure with a known mass matrix leading to an estimation of the normal modes. A finite

element update of a beam with a local non-linear component was used as an example for this

analysis [161]. Although it is frequently applied to non-linear problems, it should be stated

that the POD only gives the optimal approximating linear manifold in the configuration space

represented by the data [12]. A further work was also carried out by (Kerschen., 2002) in his thesis

on finite element model updating using the features extracted from a non-linear generalisation of

the POD termed non-linear principal component analysis [162].

Aside from the iterative process involved in structural model updating, there are some

other limitations and unresolved issues with structural model updating. One of the major

concerns with structural model updating is the difficulty in correlation between the analytical

and the experimental test. It is generally assumed that the analytical model would have a close

formulation of the actual physical structure, this can pose a challenge when dealing with large

DOF of freedom systems also isolation of non-active DOF from the analytical model requires a

detailed level of attention in order not delete information of the active DOF.

Another disadvantage with structural model update is that it is dependent on the accuracy

the measurement obtained from an experimental test, a current challenge in vibration testing is
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that the majority of the transducer and sensors which are currently available have limitations

with obtaining 3 dimensional measurement data i.e (X,Y and Z) data expect when using a laser

scanner which is not currently a fully developed technology in vibration testing. In the aspect

of non-linear structural updating it obvious from the literature that there are different types

and levels of non-linearities therefore the implementation of structural model updating in non-

linear system can sometimes be a difficult or impossible task as there are no universal features

applicable to all types on non-linearities. Nevertheless structural model updating in totality can

be classified as an important aspect of nonlinear structural dynamics and it is also an essential

aspect of the verification and validation process of a system.

2.4.7 Black-Box Methods

For most non-linear system, the functional which maps the input x(t) to the output y(t) is usually

unknown in advance which is seen as a major challenge in non-linear system identification but

the movement to non-linear black-box modelling has instigated some new methods. A non-linear

black-box structure is a model structure designed to define the non-linear dynamics behaviour

of a system with the use of data only [12]. Non-linearity is caused by various mechanism and

phenomena which can therefore make the black-box modelling approach an aspiring one, with

current theories available to support the approach. Artificial Neural Network (ANN) as a black-

box method in data mining has proven to be an effective tool for system approximation, Cybenko,

1989 discussed the approximation of possible types of non-linearities that can be realised by

artificial neural network and also established that the finite linear combinations of compositions

of a fixed, univariate function and a set of affine functional can uniformly approximate any

continuous function of n real variables with support in the unit hypercube; only mild conditions

are imposed on the univariate function [163].

Non-linear black box modelling is also described as a concatenation of a mapping previously

seen data to a regression vector and a non-linear mapping from the regressor space to the output

space, with several applications as illustrated in [32, 61, 164–166]. There has also been interest

in black-box modelling and non-linear mapping with methods based on artificial neural network,

radial basis network, wavelet network and hinging hyperplanes, wavelet-transforms methods and
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fuzzy sets and fuzzy rule based methods [31]. Various application of ANN for system identification

and modelling have been published with examples from (Jagannathan and Lewis, 1996) where

a novel multilayer discrete-time neural network paradigm was presented for the identification

of multi-input multi-output (MIMO) of a non-linear dynamical system with major attention on

identification error and convergence that shows the constraint for a new identifier structure and

non-standard weight tuning algorithms [167]. Other use of ANN in non-linear identification can

also be noticed in experimental studies with much attention drawn to processing of excitation

signals (Doherty et al ., 1995) worked on how the design configuration such as choice of process

excitation signal, data sampling time, neural network structure can contribute to the successful

reliability of how well a neural network can approximate the non-linear dynamic behaviour of a

system. The method observes the effect of these configuration with the use of a multi-layered

perceptron neural network to identify the non-linear dynamics of a simulated chemical reaction

process, it also proved that the general classification of neural network as a black-box model does

not prevent engineers and experimentalist from applying a certain degree of influence over the

outcome of a non-linear identification experiment [168].

Multilayer perceptron neural network can also denote a comprehensive range of non-linear

SDOF systems with continuous or discontinuous non-linearities, the application of Volterra

Wiener neural network to the identification of non-linear hysteretic dynamic system with more

focus on predicting the response of hysteretic systems with discrete degrees-of-freedom under

known force excitations also proves this concept of representing SDOF as multilayer perceptron

neural network. ANN can be said to be the most established method compared to wavelets

network, neuro-fuzzy models and the use of splines function which are the other forms of

black-box modelling in the field of structural dynamics. However black-box modelling also has

some limitations which can border the usefulness of the method in practical applications, the

parameters obtained from the identification model does not directly provide any information

about the physical properties of the structure under consideration and also how to contract with

simulation of non-linear system where there are large number of parameters to handle which

may lead to over fitting during the training process therefore cause a later error of the parameter

estimation.
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2.5 Non-linear System Identification Process

Another way of classifying the research on non-linear identification is based on the processes or

steps implemented in achieving a successful identification of a non-linear system. In this context

Identification process can defined as the number of steps or procedures required for the complete

identification of a non-linear system. In the field of structural dynamics, the identification process

of non-linear system are often developed based on individual non-linear problem which is being

encountered by the structure. However there are some popular processes which are commonly

used by researchers and engineers in this field. One of the popular process frequently used in

the identification of non-linear system is Non-linear Modal Analysis (NMA) procedure which

involves extending linear modal analysis theory to non-linear system. In a brief overview the

modal model of the underlying linear system is determined based on low level excitation of the

structure during a vibration test. The modal model is than extended by directly adding non-linear

terms to the modes that behave non-linearly and a couple of non-linear coupling terms to any

non-linear mode interaction in the system. A systematic approach and a numerical application of

this process is presented in [17, 13].

A similar flow chart process was proposed by (Fuellekrug and Goege., 2011) in [29], the

process was developed mainly for the identification of weak non-linearities in a large aerospace

structure during ground vibration testing. Likewise, the theory behind this process is based on

the extension of linear modal analysis to non-linear system. Another practical process based on

the restoring force approach was introduced by (Goege.,et.,al) in [32], the process involves eight

different steps where the first three steps are similar to identification process based on the NMA

strategy. The later steps of the restoring force approach includes calculation and plotting of the

non-linear restoring force, curve-fitting of non-linear terms and creation of linearity plots from

fitted non-linear restoring force using the harmonic balance method. Although these identification

processes have successfully been applied to practical problems, one can argue the fact that these

identification process are only applicable to some type of structures and non-linear identification

problems.

A more generic identification process was proposed in [12] and it is still frequently used
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till date according to a recent survey in [6]. Recently, the location of nonlinearity was added to

the already existing steps, the revised identification process is broken down into four different

activities in [169] namely :

1. Detection of non-linearity in the system

2. Location of non-linearity in the system

3. Characterisation of non-linearity i.e type of non-linearity

4. Parametric estimation i.e calculate the non-linear parameter

The implementation of this identification process has now been adopted by many researchers

and engineers in the field of structural dynamics, one of the major advantage of this process

is the universal systematic approached which the process accommodates. An advantage of the

three-step identification process is that it is often implemented in most of the of newly developed

nonlinear identification codes and analysis tool sets. To a certain degree, it can be regarded as a

bench-marking process for a successful identification of a non-linear system.

2.5.1 Detection of Non-linearity

The first stage in identification process of non-linearity is the detection of structural non-linearity

according to the flow diagram above, in general it can be said that almost all practical structures

have a certain degree of non-linearity so it is therefore important to detect the presence and

level of non-linearity in a structure. For a system under test, there are questions which provide a

forward direction to the detection of non-linearity. Examples of such questions are:

• Is the system under test linear or non-linear?

• What is the evolution of non-linear distortions present in the system with increase in

excitation level

Several approaches to the detection of non-linearity in a test structure was described in [12],

(Zhang et al., 2010) also proposed a method for the fast detection and quantification of non-linear

distortion in the output of a dynamic system [170]. The basic idea behind the proposed approach is
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the use of a non-stationary excitation which makes the non-linear distortions also non-stationary,

thus making it possible to differentiate from their stationary plant noise. The non-stationarity

of the excitation allows the evolution of the system non-linearity to be assessed in one single

analysis, greatly accelerating the experiment. An alternative methodology that is based on

the principal component analysis and uses time responses obtained with a random excitation

was presented by (Hot et al., 2012), the method is based on using two criteria to quantify the

difference between two response sub-spaces, based on the angle between them and the residual

error resulting from the projection of one on the other. The concept of limit of linearity and design

decision margins is also addressed in this paper [171].

The literature on non-linearity detection is broad, a summary of the literature is presented

in the text-book by Worden and Tomlinson [61]. Referring back to the fundamental principle

of classifying if a system is linear or non-linear which is the principle of superposition, the

breakdown of this principle can also be used to detect the presence of non-linearity effect in

a system. However the direct application of this principle to the detection of non-linearity is

somewhat limited in practical situation. The test for homogeneity which is a constrained form

of the superposition principle is one of the most often applied method in the detection of non-

linearity in a system, according to (kershen et al., 2006) homogeneity violation is best visualised

in the frequency domain through distortions of FRFs. However, because a weaker condition is

enforced, this linearity test is not reliable [12].

Another proven method of non-linearity detection is by using well-designed excitation signals

which have the ability to disclose the odd and even nature of the non-linearity and also quantify

the non-linearity level based on response, an example of this application is described in [172].

A more practical diagnosis method is the Hilbert transform approach introduced in [173], the

method is based on the fact that the FRF of a system are invariant under a Hilbert transformation,

the Hilbert transform of an FRF for a non-linear system will return a distorted version of the FRF.

However there are some disadvantage with using the Hilbert transform for detection purposes, a

major concern with using Hilbert transform in line with measured FRF data is when the data

that is being used does not start with a zero frequency value and the problem of neglecting the

outbound data usually occur.
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2.5.2 Location of Non-linearity

The second step in the identification process is the location phase, the aim of this step is to identify

the location of the non-linearity in the structure. Location refers to determining exactly where

the nonlinear features are positioned in the spatial description of the structure. In mathematical

terms, this means identifying which of the DOFs in the model are closely located to the source of

the nonlinear behaviour.

Discrete nonlinearities are located at the interface between two components and are re-

sponsible for the majority of their nonlinear behaviour (e.g. joints). These can be modelled by

spring/damper elements with higher-order characteristics and are differentiated in the ‘grounded’

or ‘non-grounded’ variety, depending of the number of degrees of freedom they involve. A grounded

nonlinearity is a function of the absolute displacement/velocity of a single degree of freedom,

while a non-grounded nonlinearity is function of the relative displacement/velocity of one degree

of freedom with respect to another. Grounded nonlinearities are mostly found between the test

structure and its fixture while in general the nonlinearities can be regarded as non-grounded (e.g.

acting across a joint between two components of the structure).

It is important to be aware that no method can provide reliable location information if the

test geometry does not contain DOFs near and/or across the cause of the nonlinearity. Although

this might seem a major issue, the engineer can usually narrow the range of possible locations in

which nonlinearities are expected to be found, based on experience or common assumptions (e.g.

joints play an important role in nonlinear behaviour for assembled structures). In this specific

case, we were aware of the location of the nonlinearities, since the structure comprised primitive

elements coupled through a carefully designed joint.

2.5.3 Characterisation of Non-linearity

The third step in the identification process is characterisation stage, the aim of this step is to

establish the type of non-linearity and functional form of all the non-linearities in the system.

This step can be argued as the most critical or important step in the identification process, a

detailed review on the available techniques for characterisation of non-linearity is presented

in [6, 12]. The characterisation process is concerned with establishing the main source of non-
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linearity in the system and also point out the order of non-linear features in the system. A typical

characterisation process would provide information related to:

• The aspect of motion that drives the non-linear behaviour. (e.g., either displacement or

velocity).

• The effect and functional description of the level of non-linearity in the system. (e.g. bilinear,

multi-linear or polynomial)

• The parametric forms of the functional (e.g. order of the polynomial)

For an accurate characterisation process, it important to determine the behaviour of the non-

linear elastic and dissipative behaviour of the physical structure, the characterisation process

often involve a variety of experimental test and trials to obtain some form of graphical plot which

are in turn used to characterise the system.

The literature on characterisation based on experimental applications are available in [28,

118, 174]. The aim of the characterisation step is to form the fundamental nature of the non-

linearity, it is also very important to have an understanding of the behaviour of the physical

structure which would be useful in the parameter estimation stage of the identification process.

The characterisation step is also able to describe the deviation of the structure once it fails

the linearity principle, this function or description is often obtained by conducting a static test

experiment on the structure. Typical results from this type of test often display a softening or

hardening property for the stiffness of the structure, it could also be presented in the form of an

increase or decrease in the damping of the structure. Characterisation can often be a challenging

task due to the variety of phenomena present in the entire identification of non-linearity.

2.5.4 Parameter Estimation of Non-linearity

The last step in the identification process is parameter estimation, this step aims to quantify the

correct numerical values for the coefficients of the terms that were obtained in the characterisation

stage either through iteration or by direct means. This part of the identification process is majorly

to express or deliver the most important information about the structure or system under test
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by providing the closest numerical values for the stiffness and damping of the structure. There

are several established techniques for parameter estimation of non-linear system either through

experimental or numerical simulation are available in the literature with common examples cited

in [121]. The restoring force technique used in [91, 161], the non-linear identification through

feedback of the output is also presented in [109], other established techniques are also cited in

[6].

The direct parametric techniques such as the reverse path methods in time and frequency

domain is also presented in [175] and [110, 176]. A time-domain subspace technique based on

assuming nonlinearities as internal feedback forces was also introduced in [116], another SDOF

method designed for non-linear quantification referred to as CONCERTO was introduced and

applied to a real structure in [177]. Further direct parametric techniques like the non-linear

resonant decay is also is presented in [178], the corresponding variants technique is also available

in [29]. Despite the level of developed and available estimation techniques, there is a common

limitations which is associated with these techniques. The required experimental response at all

non-linear DOF can sometimes have a disadvantage in a simulation case study.

2.6 Representation of Non-linear Systems

The representation of non-linear system is also a way to classify the literature on non-linear

system identification, the identification of non-linear system are often presented based on the type

of coordinates in which the analysis takes place. There are two forms in which non-linear system

identification are present in the literature, the result of any non-linear identification are presented

using physical coordinate or modal coordinate. The analysis of a non-linear system is regarded in

a physical coordinate if the systems matrices are obtained through spatial discretisation [12].

i. e. The direct manipulation of the mass and stiffness of the structure are mainly used during

the non-linear identification calculation. One of the major advantages associated with using the

physical coordinate is the direct estimation of the physical response of the structure, any solution

obtained from a non-linear identification using this coordinate will always produce a physical

meaning of the entire system.
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However, using the physical coordinate can sometimes come with some limitation depending

on the level of discretisation and the amount of DOF used during the simulation. For a large

structure the system matrices/DOF could be in range of thousands which means solving differen-

tial equations with thousands of coefficient. This process is time consuming and also involves

using super-fast computers which are often expensive. Another disadvantage with using physical

coordinates is the use of reduced order modelling which does not represent the actual dynamics of

the system and can in turn lead to errors in the non-linear identification results. The use of modal

parameters such as eigen values and eigen vectors are directly used during the identification of a

non-linear system is often regarded as a modal space analysis. It often referred to as generalised

coordinates, the use of this approach involves using some set of modes obtained from initial

testing to reproduce new sets of response for the system.

A significant advantage of working in the modal space is based on the principle that the

orthogonal property of the eigen vectors for a DOF is fully described by its own eigenvector

[35, 36], this leads a massive reduction in the level of algebraic manipulation required to generate

a non-linear response. The disadvantage associated with this approach is that the modal response

obtained during a non-linear analysis does not provide adequate physical meaning of the structure

in consideration. This can cause further problems during the structural model updating and the

response correlation between simulated response and the experimental response. In summary it

is arguable that analysis conducted using physical coordinates often generate meaningful results

compared to analysis done using modal coordinates, in addition modal properties can easily be

determined from physical properties by calculating the eigen values of the mass and stiffness

matrices. However the extraction of physical properties from modal coordinates is not always

feasible.
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2.7 Limitations of Current Identification Methods and

Processes

It is clear from the literature on nonlinear system identification that there exists a variety

of nonlinear identification methods and techniques, however for this purpose of this research

only the methods which have been applied in structural dynamics have been cited. From the

review on the seven identification methods which have been highlighted in this report, one can

draw a conclusion that there are multiple techniques or approaches which are available in each

identification method. In a search to understand the applicability of these seven methods, a

statistical analysis on the practical application of these methods most especially in the field of

structural dynamics was conducted. In the analysis small structures are categorised as examples

of simulation or experimental work which has been carried out on beams, plates, lap joints

and small masses connected together with a nonlinear device using the associated technique.

Large structures are categorised as automotive shock absorbers, full scales shear wall structures,

helicopter blades, aircraft wings, ailerons, SmallSat Spacecraft, and a full-scaled small aircraft.

For clarity the chart is intended to show a comparison of how each individual methods have

been applied to different types of engineering structure in the field of structural dynamics, other

theoretical and academic applications of these techniques are also available in the literature.

Despite the level of development in nonlinear identification methods, the chart presented

in Figure 2.2 indicates that only a small percentage of these methods are practically suitable

for structures modelled with large degrees of freedom (DOF) and localised nonlinearity. An

important criterion in the industrial environment is that a method is acknowledged as a good

method if it can be applied to a real life structure or system. In most cases the direct application

of these methods are not always straightforward due to the level of mathematical algorithms

that these methods are founded upon. Furthermore one can admit that techniques such as Gabor

transform, Wigner-Ville distribution, ANN, Neuro-Fuzzy models and Wavelet networks which

all fall under black box modelling are practically not being applied to large structure but they

produce understandable numerical result. From the chart a conclusion can be drawn based on the

level of published papers in the literature that the following identification methods: Time Domain
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Figure 2.2: Practical Application of Current Identification Methods, sub-categorised by small and
large structures

method, Frequency Domain method, Modal method, Linearisation method and Structural model

updating method are popularly used more often to generate reliable nonlinear identification

results that match closely with the real experimental measurement of the structure from a

vibration test.

In the field of structural dynamics, the basic concept behind nonlinear identification is that

every structure is considered to have an underlying linear model (ULM) where the response of

a structure obeys the homogeneity principle up to a certain level before shifting into nonlinear

region where superposition is no longer valid. Regardless of the extensive literature on linear and

nonlinear identification, there is little or no work on developing methodologies that are capable

of enhancing validated linear structural models to accommodate structures with distributed and

localised nonlinearities. In the aspect of the current available nonlinear identification techniques,

it is obvious that some of these popular techniques like the RFS technique can be applied and

used across the seven identification methods listed above, this suggests that future work can

be done on integrating some of the available techniques together to obtain better nonlinear

identification tool boxes. However even if there are better upcoming identification methods or

techniques, it should be noted that a general universal approach or simulation method is far

49



CHAPTER 2. LITERATURE REVIEW

from being reached in the field of structural dynamics. Therefore the literature can be concluded

that the current challenge that is being encountered in nonlinear system identification would

continue to receive solution or concepts based on individual verdict.

50



C
H

A
P

T
E

R

3
IDENTIFYING NONLINEARITIES BASED ON STATE SPACE MODELS

Abstract

This chapter proposes the use of a black-box data driven approach based on Polynomial

Non-linear State Space (PNLSS) models for identifying structural non-linearities from

measured time series data. In this investigation, a PNLSS model capable of describing

a Single Input Multiple Output (SIMO) representation of a system and its corresponding

non-linearities is developed. An identification procedure is stated and implemented with the

procedure exploiting the great flexibility of the PNLSS model to investigate the non-linear

characteristics observed at measured local regions of the structure. The developed approach

is demonstrated on an Aero-Engine casing assembly with multiple joints, where the use of

measured sine-sweep and broadband data obtained from the experimental campaign are

used to access the validity of the proposed PNLSS model estimation.
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3.1 Introduction

Most non-linear identification methods reviewed in section 2.4 of the previous chapter require

prior knowledge or an initial assumption of the mathematical law (model) of the type of non-

linearities present in a system, i.e. they require the functional form or depend on a proposition

that the measured data obey a certain non-linear function. However, research has proven that

such assumptions are only possible for specific applications due to the individualistic nature of

non-linear systems and the fact that non-linear effects can be caused by several sources, therefore

acquiring preceding knowledge can be difficult or sometimes practically impossible. In many

cases, the detection of non-linearity from measured data can easily be achieved by using simple

techniques such as those described in section 2.5.1. After non-linearity has been detected in

measured data, identification of parametric or non-parametric models from such data is still

regarded as a challenging task.

Black-box modelling has proven to be a successful way of tackling non-linear system iden-

tification as reviewed in section 2.4.7, especially for case studies where the functional forms

and mathematical law governing the non-linearities are challenging to obtain prior to the final

parameter estimation. Other black-box modelling techniques which were not cited in section 2.4.7

are the Volterra models [135–137] and state space models [179–181]. Obtaining prior knowledge

of the non-linear functional form or non-linear characteristics of large assembled structures

with joints can be very challenging due to their individualistic non-linear behaviour such as

stick-slip behaviour at macro- and micro-scopic levels and hysteresis damping. As such, black-box

identification methods are often considered as a reasonable approach to gaining useful insights

into the characteristics and nature of non linearities in the system based on measured input and

output data.An emerging black-box modelling method utilised in non-linear system identification

is the state space modelling approach. Most importantly, non-linear state space models based on

their flexibility and capacity to capture different types of non-linear phenomena. Recent work

and contributions in this research area including applications are demonstrated in [181–184].

Relying on the flexible nature of state space models, this chapter introduces the use of a

selected type of state space model to identify the structural non-linearities observed in measured
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data. Major attention is drawn towards the extraction of useful physical information on the

nature of non-linearities present in the system under consideration. A novel identification

approach based on Polynomial Non-linear State Space (PNLSS) method is applied to a Single

Input Multiple Output (SIMO) experimental system with multiple bolted connections, without

any preceding knowledge on the type of non-linearities present in the system. The PNLSS

identification strategy implement in this chapter adopts the great flexibility of nonlinear state

space models to investigate the non-linear characteristics observed at local regions of the test

structure. Furthermore, a study on the trade off between the flexibility of a fitted non-linear

model and its parsimony is illustrated in this chapter.

The chapter is structured as follows. The theoretical context and derivation of the PNLSS

model is described in great detail from Section 3.2 to Section 3.3. The proposed PNLSS identi-

fication procedure including implemented techniques such as the Best Linear Approximation

(BLA) and the full non-linear identification based on Levenberg-Marquardt (LM) optimisation is

described in Section 3.4. In Section 3.5, the PNLSS identification is implemented on measured

data obtained from a test campaign conducted on an aero-engine casing. A parametric and non-

parametric study of the total distortions (noise and non-linear distortions) observed in the test

data are presented. In addition, further analysis on deriving a flexible PNLSS model capable of

capturing the observed non-linearities is presented based on sine-sweep and Frequency Response

Function (FRF) data. The validity of the identified model using new set of measured Sine Sweep

and broadband data is tested and illustrated in this section, while discussions and concluding

remarks are presented in Section 3.7.

Part of this chapter is based on the following journal and conference papers:

S.B.Cooper, K.Tiels, B.Titurus and D.DiMaio (Accepted with revision) Polynomial Nonlinear

State Space Identification of an Aero-Engine Structure. Accepted at the Journal of Computers

and Structures.

S.B.Cooper, S.Manzato, A.Borzacchiello, L.Bregan, B.Peeters (2019) Investigating Nonlinear-

ities in a Demo Aircraft Structure Under Sine Excitation. In R.Barthorpe (Ed.), Nonlinear

Dynamics Volume 1: Proceedings of the 37th IMAC, A Conference and Exposition on Structural
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Dynamics 2019 (pp. 41-57).

S.B.Cooper,K.Tiels and D.DiMaio (2018) Nonlinear Identification of an Aero-Engine Compo-

nent Using Polynomial Nonlinear State Space Model.In G. Kerschen (Ed.), Nonlinear Dynamics

Volume 1: Proceedings of the 36th IMAC, A Conference and Exposition on Structural Dynamics

2018 (pp. 260-273)

3.2 State Space Models

State space models are presented in different approaches as observed in the literature, this

section of the chapter provides a brief overview on various existing types of state space models

and there remarkable properties. A state space representation can conveniently model a system

with multiple inputs and multiple outputs [6]. For this research, discrete-time models are adopted

as opposed to continuous-time models which are computationally intensive due to calculations

of time derivatives and integrals of non-linear functions. A discrete-time state space model in a

general form is expressed as: x(t+1)= f (x(t),u(t))

y(t)= g(x(t),u(t))
(3.1)

where u(t)εRnu is a vector containing the nu input values at time instant t, note that nu = 1 in

this study, while y(t)εRny is the vector of the ny outputs. The state vector x(t)εRna represents

the memory of the system and stores the collective dynamics present in the different outputs.

The first line of 3.1 represents the state equation which describes the evolution of the states

as a function of the inputs and the previous states. The second line of 3.1 is called the output

equation and it relates the system’s output with the states and the inputs [185]. For an accurate

mathematical representation, a discrete time state space model is often represented with xk+1.

However, there is some abuse of notation in this chapter of the thesis where the symbol t denotes

both the continuous time variable and the number of samples in a discrete-time model. It should

be clear from the context which meaning is intended, in continuous time, the state equation has a

time-derivative whereas in discrete time, the state equation has a one sample forward time shift.
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3.2.1 Linear and Non-linear State Space Model

For a linear system, the model equations for its corresponding state space model are given byx(t+1)= Ax(t)+Bu(t))

y(t)= Cx(t)+Du(t))
(3.2)

with the state space matrices denoted by A ∈Rna×na , B ∈Rna×nu , C ∈Rny×nu and D ∈Rny×na and

the transfer function G(z) that corresponds to Equation 3.2 is given by

G(z)= C(ZIna − A)−1B+D (3.3)

where Ina is the identity matrix of dimension na [185]. From 3.3, it is possible to determine the

poles of G(z) based on the eigenvalues of A. using a similarity transformation technique, the

sets of state space matrices ABCD can be converted into a new set of ATBTCT DT that have the

same input/output behaviour [186]. The similarity transform xT (t)= T−1x(t) with an arbitrary

non-singular square matrix Ṫ yields

AT = T−1 AT,BT = T−1B,CT = CT,DT = D (3.4)

For a non-linear system, the state space model equation is defined as a classical linear state space

model with the addition of non-linear functions fNL and gNL to the state and output equations.

A discrete time model of a non-linear state space model is described in 3.5x(t+1)= Ax(t)+Bu(t))+ fNL(x(t),u(t))

y(t)= Cx(t)+Du(t))+ gNL(x(t),u(t))
(3.5)

where the functions fNL and gNL can be a set of basis functions of different types such as

wavelets, sigmoid functions, polynomials, hyperbolic tangents or radial basis functions [186].

In this chapter, polynomial non-linear state space models are selected based on their ability to

provide enough flexibility to cover the problem of interest.

3.2.2 Bilinear State Space Models

A bilinear state space model for a continuous-time system is defined as
dxc(t)

dt = Axc(t)+Buc(t)+Fxc(t)
⊗

uc(t)

yc(t)= Cxc(t)+Duc(t)
(3.6)

55



CHAPTER 3. IDENTIFYING NONLINEARITIES BASED ON STATE SPACE MODELS

where A ∈ Rna×na , B ∈ Rna×nu , C ∈ Rny×na , D ∈ Rny×nu , and F ∈ Rna×nuna , are the bilinear state

space matrices. These models are classified as extension of linear state space models with the

capabilities to handle non-linear systems. Bilinear state space models are seen as universal

approximators for continuous-time non-linear systems and can approximate any causal function

within a bounded time interval [185]. A discrete-time bilinear state space model is given byx(t+1)= Ax(t)+Bu(t))+F(x(t)
⊗

u(t))

y(t)= Cx(t)+Du(t))
(3.7)

normally, it is expected that the discrete-time state space models would preserve the approxima-

tion capabilities of continuous-time models, however this is not always possible for all non-linear

discrete-time systems. This is as a result of the fact that the set of discrete-time bilinear sys-

tems is not closed with respect to the product operation, where the product of the outputs of

two discrete-time bilinear state space systems is not essentially a bilinear system as shown in

[187]. In order to maintain a universal approximation property for discrete-time systems, a more

generic model formulation is required. This generic models are referred to as state affine models

introduced in [188]

3.2.3 Other Types of State Space Models

Aside from linear, bilinear and non-linear state space models, state space models also exist in

other forms which are not often used in similar mechanical or aerospace applications. State affine

model [189] is a more generic way of describing a state space model, a single input, single output

state affine model of degree r is written asx(t+1)=∑r−1
i=0 A iui(t)x(t)+∑r

i=1 Biui(t)

y(t)=∑r−1
i=0 Ciui(t)x(t)+∑r

i=1 D iui(t)
(3.8)

state affine models were introduced in [188] and can be used to model sampled continuous-time

and bilinear systems. They are also good approximators for continuous and discrete-time systems

with finite time interval and bounded inputs. The Linear parameter Varying (LPV) [190] model is

another form of representing state space models, they are used to create linear and time-variant

models. The parameters are a function of any user-chosen vector p(t) ∈ Rs which are used to
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characterise the operating point of the system and are assumed to be measurable. The state

space equation for LPV models are an affine function of p(t):



x(t+1)= A

 x(t)

p(t)
⊗

x(t)

+B

 u(t)

p(t)
⊗

u(t)


y(t)= C

 x(t)

p(t)
⊗

x(t)

+D

 u(t)

p(t)
⊗

u(t)


(3.9)

where A = [A0 A1 A2....As], and A i ∈Rna×na . Other state space matrices B, C, and D are partitioned

in a similar way. LPV models are applied in two special cases, the bilinear and state affine

approach. When p(t) is chosen equal to u(t), and Bi = 0,Ci = 0, and D i = 0 where i=1, . . . . ,s,

then the model equations become identical to the bilinear model equations as expressed in 3.7.

When p(t) is equal to a vector that contains all distinct non-linear combinations of u(t) up to

degree r−1, then the state affine model is obtained. The LPV state space model structure is

particularly useful for non-linear control as it enables the use of different linear controllers at

different operating points. Another type of state space model is the Local Linear Model (LLM)

[190], the principle behind this type of state space model is based on partitioning the input space

and the state space into operating regions in which a particular linear model dominates. The

LLM state space matrices are defined as a sum of weighted local linear models:

x(t+1)=∑s
i=1 pi(φt)(A ix(t)+Biu(t)+Oi)

y(t)=∑s
i=1 pi(φt)(Cix(t)+D iu(t)+Pi)

(3.10)

The scalar weighting functions Pi(.) generally have local support, such as radial basis functions.

The scheduling vector φt is a function of the input u(t) and the state x(t). The last type of state

space listed in this section is the deterministic Neural State Space model [191, 192], this type of

state space model is based on the parametrisation of the general non-linear equation expressed

in (3.1). The non-linear equation is parametrised by multi-layer feed-forward neural networks

using hyperbolic tangents as activation functions:

x(t+1)=WAB tanh(VA x(t)+VBu(t)+βAB)

y(t)=WCD tanh(VC x(t)+VD u(t)+βCD)
(3.11)
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The model expressed in (3.11) can be viewed as a multi-layer recurrent neural network with one

hidden layer. It is also a specific type of NLq system, for which sufficient conditions for global

asymptotic stability were derived in [191].

3.3 Polynomial Non-linear State Space Model

The state space approach implemented in this thesis is based on a first principle of a general

model illustrated as: x(t+1)= f (x(t),u(t),θ)

y(t)= g(x(t),u(t),θ)
(3.12)

with a functional expansion of the functions f (.) and g(.). In this case, a set of basis functions

need to be selected from the many available possible functions such as wavelets, radial basis,

hyperbolic tangents, sigmoid and polynomial functions. A polynomial non-linear state space

approach is adopted in this thesis. A main advantage of polynomial basis functions is the ability

to easily compute them and also directly apply these functions in a multi-variable framework. In

the polynomial non-linear state space (PNLSS) approach, the non-linear functions fNL and gNL

in 3.5 are expanded using basis functions by extending the state and the output equation with

polynomials in the states and the input:x(t+1)= Ax(t)+Bu(t)+Eζ(x(t),u(t))

y(t)= Cx(t)+Du(t)+Fη(x(t),u(t))
(3.13)

where the vectors ζ and η contains all non-linear monomials with user-chosen degrees larger than

one, and the matrices E ∈ Rnx×nζ , F ∈ Rnx×nη contain the corresponding monomial coefficients.

Here x(t) ∈ Rn is the state vector at time instant t,u(t) ∈ Rnu is the input (excitation) vector at

time instant t, and y(t) ∈Rny is the output vector at time instant t.The vectors ζ(x(t),u(t)) and

η(x(t),u(t)) contain all possible monomials in x(t) and u(t) of user-chosen degrees. The sizes of

the state space matrices are configured in a form where matrices A,B, and E have n rows, the

matrices C,D, and F have ny rows. The matrices A and C have n columns, the matrices B and D

have nu columns, and E and F have a number of columns that corresponds to the total number of

monomials of the user-chosen degrees. Non-linear dynamics are captured because of the inclusion

of the non-linear terms Eζ and Fη. In particular, the monomials ζ(t) and η(t) are formed by all
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possible products of the input and the state variables raised to a chosen degree [179] e.g. for an

element in ζ(t):

ζk,11...,...,1ni (t)= uk(t)
ni∏

i=1
x1i

i (t) (3.14)

Where the total degree of monomial fulfils the conditions: k+∑nx
i=1 l i ∈ 0,2,3, ..., p, where k is the

exponents of the inputs . The use of polynomial expansions are very useful because they are

linear in parameters, hold universal approximation properties and can easily be extended to

multivariate cases.

3.3.1 Approximation Behaviour

when a full polynomial expansion of (3.5) is carried out, all monomials up to a chosen degree r

must be taken into account. In addition, all monomials of different degrees are placed in groups

of increasing degree. The concatenation of the state vector and the input vector ξ(t) is defined as:

ξ(t)= [x1(t)...xna (t)u1(t)...unu (t)]T (3.15)

where the dimensions of the vector ξ(t) is given by n = na+nu. Therefore ζ(t) and η(t) in equation

3.13 is defined as:

ζ(t)= η(t)= ξ(t)[r] (3.16)

In this case the total number of parameters required by the model in 3.13 is given by:
n+ r

r

−1

 (na +ny)=


na +nu + r

r

−1

 (na +ny) (3.17)

When all non-linear combinations of the state are present in ζ(t) and η(t) for a given degree, then

the above mentioned model structure is invariant under a similarity transform.

3.3.2 Model Structure

A data driven non-linear black-box modelling often requires a flexible model structure capable

of uncovering all the non-linearities observed in an interested case study. A benefit of using

state space models is the suitability for modelling a variety of system configurations such as

Multiple-Inputs and Multiple-Outputs (MIMO), Single-Input and Multiple-Output (SIMO) and
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Single Input and Single Output (SISO) systems. In this chapter, the SIMO configuration is used

in deriving a data driven non-linear model for the application case study. Although a PNLSS

model can capture many non-linear effects, it is important that an appropriate model structure is

selected to reduce and manage the effects on the increasing number of parameters based on a

combination of the polynomial degree and number of variables in the inputs and states. For a full

PNLSS model with any polynomial degree combination d1,d2, . . . ,dD , the number of columns in

the matrices E and F can be computed using the expression in:

s =
(

r∑
i−1

(na +nu −1+ r i)!

(na +nu −1)!r!

)
(na +ny) (3.18)

While the number of non-linear terms in Equations 3.13 for a full PNLSS model with consecutive

polynomial degrees 2, 3, . . . , r are determined based on the following expression [183]

s f ull =
(

(na +nu + r)!

(na +nu)!r!
− (na +nu)−1

)
(na +ny) (3.19)

This number is also dependent on the type of model structure used in developing the PNLSS

model. The model structures considered in this thesis are classified as full model and state only

model [183]. For a full model structure all elements in the matrices E and F of equations 3.13

are taken into consideration during the optimisation process, while a state only model structure

only takes into account the elements in Eζ(x(t)) and Fη(x(t)) i.e. no input terms are considered,

in this case, the number of parameters is reduced with nu in (3.19) being considered to be zero.

The state only model parameters are calculated based on

sstate =
(

(na + r)!

(na)!r!
− (na)−1

)
(na +ny) (3.20)

The PNLSS models can also be expressed in a modal model, but this model structure is not

investigated in this thesis.

3.3.3 Model Stability

The only recursive relation present in the general state space model in 3.12 is the state equation.

Therefore, the Stability of the model depends on the initial conditions of the state, the properties

of the input signal and the function f . Hence when analysing the stability of a general state
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space equation such as 3.12, it is important to consider the function:

x(t+1)= f (x(t),u(t)) (3.21)

Where x(0)= x0. The concept of input-to-state stability (ISS) is reflected in this idea and was first

introduced for continuous-time systems in [188], it was subsequently extended to discrete-time

systems in [185]. In general, a system is ISS if every state trajectory corresponding to a bounded

input remains bounded, and if the trajectory eventually becomes small when the input signal

becomes small independently of the initial state.

3.4 A PNLSS Approach to Identification of Structural

Non-linearities

This section of the chapter describes the identification procedure that was implemented in

developing a data driven polynomial non-linear state space model for the practical case study

implemented in this thesis. The state space identification approach used in this chapter is

fundamentally based on four different steps. These steps are listed below with a brief description

and summarised schematically in Figure 3.1.

1. To obtain the PNLSS model of a system, it is often beneficial that the initial linear state

space parameters (A, B, C D) of the non-linear system are first identified. To do this, a

non-parametric best linear approximation (BLA) of the system is determined here using

the local polynomial method (LPM) [193]. Additionally, an estimate of the total variance

(i.e. the sum of the noise and non-linear variance) is obtained.

2. A linear state space parametric model (A, B, C, D) is identified from the BLA using a

frequency domain subspace method [194]. The weighted mean square difference between

the estimated FRF of the BLA and the FRF of the linear state space model is minimised.

This weighting is used to select a frequency band of interest and is typically the inverse of

the total variance estimated in the previous step.

3. The linear state space model is then extended with polynomial terms in the states. The

corresponding polynomial coefficients, together with those of the linear state space model
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are optimised using the Levenberg-Marquardt method [195]. The linear parameters are

optimised again because the initial guess is biased due to nonlinear distortions. During

this optimisation the nonlinear effects are taken care of in this step by extending the state

space model with polynomial terms. Re-estimating the linear coefficients improves the

input/output fit. A cost function is defined to minimise the weighted mean square difference

between the measured and the modelled output spectra of the Polynomial Nonlinear State

Space (PNLSS) model. The weighting is used here to focus on a frequency band of interest.

A fixed number of Levenberg-Marquardt iterations is performed. The models obtained after

a successful Levenberg-Marquardt iteration (i.e. one for which the cost function evaluated

on the estimation data decreases) are retained as candidate models. Models obtained after

an unsuccessful iteration are discarded.

4. This last step involves validating the identified nonlinear model on a new data set that was

not used in the identification process. This cross-validation step is done to avoid over-fitting.

The model among the candidate models that achieves the lowest cost on the validation

data is selected as the final model estimate. The candidate models are selected based

on applying a parameter update evaluating the cost function on the initial parameter

guess. If the new cost function value is lower than the previous value, then the iteration is

classified successful and the parameter update is included as a candidate model. Here, new

swept-sine and broadband data are introduced to measure the performance of the identified

nonlinear model.

3.4.1 Best Linear Approximation

Linear models have proven to possess many attractive properties and therefore can be useful

for approximating non-linear systems, the approximation results can often be employed to gain

useful insight into the level of non-linear distortion present in the system. The Best Linear

Approximation (BLA) of a non-linear system for a given class of input signals is defined as

the linear model GBLA(k) which produces the best approximation of the system’s output in
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Figure 3.1: Schematic of the identification procedure

least-square sense [196]:

GBLA(k)= argminEu[‖Y (k)−G(k)U(k)‖2
2] (3.22)

Where GBLA is the frequency response function (FRF) of the BLA, Eu. is an ensemble average

over the considered class of input signals, Y (k) and U(k) are the discrete Fourier spectra of

the output and the input at frequency line k, and G is the FRF of a linear system. The BLA

generally varies with the input frequency content and the root mean squared (RMS) values, it

can be measured by performing several experiments and acquiring the steady-state periods of the

input-output data [197]. To keep the notation simple, the single input single output case of the
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BLA estimation procedure is described in this section while a generalisation for multiple input

and multiple output non-linear systems is presented in [198, 197]. Usually, the BLA framework is

introduced for period in same period out (PISPO) systems [196], which means that the response

of the system to a periodic input is itself periodic with the same period length, and for (extended)

Gaussian input signals [196]. With this condition obeyed, then the BLA of such system is definite

to exist. The output spectrum of the system can then be written as:

Yk =GBLA(k)U(k)+YS(k)+V (k)+T(k) (3.23)

where the term YS(k) accounts for non-linear distortions, V (k) accounts for additive measurement

noise, and T(k) accounts for leakage due to system and noise transients. To estimate the BLA

and to significantly reduce the effect of leakage, the Local Polynomial Method (LPM) [199, 193] is

often adopted.

The LPM exploits the smoothness over frequencies of GBLA(k) and T(k), and the roughness

over frequencies of U(k),YS(k), and V (k). The basic idea of the LPM is to model the GBLA(k) and

T(k) as polynomials in a local frequency band around frequency line k:

Y (k+ r)=GBLA(k+ r)U(k+ r)+Ys(k+ r)+V (k+ r)+T(k+ r) (3.24)

with

GBLA(k+ r)= ĜBLA(k)+∑R
s=1αsrs

T(k+ r)= T̂(k)+∑R
s=1βsrs

(3.25)

for r =−n,−n+1, ...,0, ...,n−1,n with n > R+1.

Putting all unknown coefficients ĜBLA(k), T̂(k),α1, ...,αR ,β1, ...,βR in a parameter vector

θLPM , and collecting all variables in Equations 3.24 for r =−n,−n+1, . . . ,0, . . . ,n−1,n results in

a linear regression formulation:

Yn = KnθLPM +Vn (3.26)

Solving for θLPM in least squares sense provides an estimate ĜBLA(k) of the FRF of the BLA.

From the residuals, the LPM can also provide an estimate of the covariance matrix of the noise

Vn, which in this case includes the random noise and the non-linear distortions.
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3.4.1.1 Estimating the Linear State Space Model

Once a non-parametric FRF model has been estimated, a parametric model is often required

to get better understanding of the system’s behaviour. To achieve this, a linear state space

parametric model (A B C D) is fitted to the estimated non-parametric FRF ĜBLA (k) in first part

of Equation 3.25. The fitted linear state space model is attained using the frequency domain

subspace identification introduced in [200]. The subspace identification algorithm is is used to

transform the estimated non-parametric BLA (Ĝ(k)) into a parametric model. The purpose is to

estimate a linear discrete-time state space model from the estimated (Ĝ(k)), taking into account

the covariance matrix (ĈG(k)).

For this, the frequency domain subspace algorithm allows the incorporation of the covariance

information for non uniformly spaced frequency domain data. In addition, the quality of the fit

for the subspace identification is assessed by introducing a weighted least-squares cost function

in the form:

VL =
nF∑

k=1
εH

L (k)WL(k)εL(k) (3.27)

where nF is the number of processed frequencies, superscript H represents the Hermitian

transpose while the weighting function isWL(k). The transfer function of the linear subspace

model used in obtaining the FRF of the parametric BLA is calculated using the expression:

GL(k)= C(zkIn − A)−1B+D (3.28)

where Zk = e j( 2πk
N ) represents the Z-transform variable, InεRn×n is an identity matrix with n

being the most suitable model order required to achieve the lowest fitting error from the cost

function minimisation.

Further minimising the cost function with respect to all the linear state space parameters

in (A,B,C,D) with a Levenberg-Marquardt optimisation method often improves the quality of

the fitting results obtained for the linear model.The main aim of the BLA and the subspace

identification algorithm is to identify a linear model from the non-linear model of the device under

test (DUT). The actual system will definitely not adhere to the linear representation, however, it

is important to note at this stage that the goal is to retrieve a parametric model for the best linear

approximation of the system. From the point of the view BLA, the non-linear behaviour of the
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DUT can only result in two types of effects. First, through a bias contribution which can change

the dynamic behaviour of the BLA while the second effect is through a stochastic contribution

which act as disturbing noise. In general, the Best Linear Approximation GBLA of a non-linear

system depends on the amplitude distribution, the power spectrum and the higher order moments

of the stochastic input.

3.4.2 Non-linear Optimisation of a Linear Model

During the estimation of the Linear model, a Weighted least square cost function V L shown

in 3.27 to measure the quality of the model. According to this measure, it turns out that the

subspace algorithm generates acceptable model estimates. However, in practical application the

cost function VL strongly depends on the dimensions of the selected parameter r. To improve the

quality of the linear model estimate, the subspace algorithm can be applied for different values

of r, for example r = na +1, ...,6na while the model that corresponds to the lowest VL is selected.

Another way of obtaining better modelling result is to introduce the cost function:

VWLS =
nF∑

k=1
εH(k)C−1

G (k)ε(k) (3.29)

with

ε(k)= vec(GSS(A,B,C,D,k)−G(k)) (3.30)

to minimise VWLS with respect to all the parameters of (A B C D). This is classified as a non-linear

optimisation problem which can be solved using the Levenberg-Marquardt (LM) algorithm.

This process requires the computation of the Jacobian of the model error ε(k) with respect

to all model parameters. Based on Equations 3.30 and 3.28, the Jacobian of the model error are

computed using the expressions:

∂ε(k)
∂A i j

= vec(C(zkIna − A)−1Ina×na
i j (zkIna − A)−1B)

∂ε(k)
∂Bi j

= vec(C(zkIna − A)−1Ina×nu
i j

∂ε(k)
∂Ci j

= vec(Iny×na
i j (zkIna − A)−1

∂ε(k)
∂D i j

= vec(Iny×nu
i j )

(3.31)

In this case, the subspace algorithm is used to generate a number of initial linear models (e.g.

r = na + 1, ...,6na), which are used as initial starting values for the non-linear optimisation
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procedure. The model that corresponds to the lowest cost function is finally selected. It is worth

stating that there is a higher probability of ending up in a global minimum or at least a good local

minimum due to the high number of different initial models employed during the optimisation.

This is a consequence of fully parametrising the linear state space representation. In addition,

the unstable models estimated with the subspace algorithm during the non-linear optimisation

can be stabilised using methods such as the one described in [196].

3.4.3 Estimation of a Full Non-linear Model

The third step in the identification process is to estimate the full non-linear model x(t+1)= Ax(t)+Bu(t)+Eζ(t)

y(t)= Cx(t)+Du(t)+Fη(t)+ e(t)
(3.32)

with the initial state given as x(1)= x0 and e(t) being the output noise. To achieve this, a second

weighted least squares cost function is utilised. To make the estimates of the model parameters

unbiased, it is often assumed that the input signal u(t) of the model in 3.32 is noiseless. However,

in practical situation, the assumption is not often fulfilled. When the Signal to Noise Ratio

(SNR) at the input is high (> 40dB), the resulting bias in the estimated model parameter is

negligible.If the SNR is too low, it can be increased by using periodic signals.i.e by measuring

a sufficient number of periods and averaging over time or frequency. The second weighted

least squares cost function that would be minimised with respect to the model parameters

θ = [vec(A);vec(B);vec(C);vec(D);vec(E);vec(F)] is :

VWLS(θ)=
nF∑

k=1
εH(k,θ)W(k)ε(k,θ) (3.33)

Where W(k) ∈Cny×ny is a user-chosen frequency domain weighting matrix.

Typically, this matrix is chosen equal to the inverse covariance matrix of the output Ĉ−1
Y (k).

This matrix can easily be obtained when periodic signals are used to excite the DUT. If the

weighting matrix is selected appropriately, it is also possible to put more weight at specific

frequency band of interest. When no covariance information is available and no specific weighting

is required by the user, a constant weighting (W(k)= 1, for k = 1, ...,F) is utilised. The model error
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ε(k,θ) ∈Cny is defined as:

ε(k,θ)=Ym(k,θ)−Y (k) (3.34)

where Ym(k,θ) and Y (k) are the DFT of the modelled and the measured output respectively.

It worth stating that Ym(k,θ) should be calculated with the correct initial conditions to avoid

leakage problems if using non periodic data since the leakage terms in Equation 3.34 Ym(k,θ)

and Y (k) cancel each other.

3.4.3.1 Non-linear Optimisation Methods

To minimise the cost functions introduced in Equations 3.27, 3.29 and 3.33, an iterative non-linear

optimisation algorithm is required. This section provides a summary of the optimisation methods

that could be used to minimise V (θ, Z) with respect to all parameters of θ. Given the iterative

nature, the methods mentioned in this chapter all have a common computation of a parameter

update ∆θ.

1. The Gradient Descent Algorithm

The first algorithm is the Gradient Descent method. It is the most intuitive method to

find the minimum of a function. In this iterative procedure, the parameter update ∆θ is

proportional to the negative gradient OV of the cost function

∆θ =−λOV (3.35)

with λ the damping factor. The main advantages of the gradient method are its theoretical

simplicity and its large region of convergence to a local minimum. However, a drawback to

this method is its slow convergence during the optimisation.

2. The Gauss-Newton Algorithm

This method is very useful when a quadratic cost function V (θ, Z) needs to be minimised:

V (θ, Z)= eT (θ, Z)e(θ, Z)=
N∑

k=1
|ek(θ, Z)|2 (3.36)

with e(θ, Z)εRN being a residual. The iterative procedure in this method makes explicit use

of the quadratic nature of the cost function. This results in a faster convergence compared

68



3.4. A PNLSS APPROACH TO IDENTIFICATION OF STRUCTURAL NON-LINEARITIES

to the gradient descent method. The parameter update ∆θ for this method is given by

∆θ =−(O2V )−1OV (3.37)

This approach requires the knowledge of the Hessian matrix (O2V ) (i.e., the matrix contain-

ing the second derivatives) and the gradient (OV ) of the cost function, both with respect to

θ.The convergence rate of the Gauss-Newton algorithm depends on the assumption that

the residuals ek(θ, Z) are small. In this case, the convergence rate can either be quadratic

or become supra-linear. A major drawback to the Gauss-Newton algorithm is its smaller

region of convergence compared to the gradient method.

3. The Levenberg-Marquardt Algorithm.

The last optimisation algorithm or method mention in this chapter is the Levenberg-

Marquardt algorithm [185, 188]. This method combines the large convergence region of the

gradient descent method with the fast convergence of the Gauss-Newton method. In this

method the columns of the Jacobian matrix need to be normalised prior to the computation

of the parameter update. This helps to increase the numerical stability and also avoids

like for like comparison with the two previous algorithms. The normalised Jacobian matrix

JN (θ, Z) is given by

JN (θ, Z)= J(θ, Z)N (3.38)

where the diagonal normalisation matrix NεRnθ×nθ is defined as

N = diag
(

1
rms(J[:,1](θ, Z))

, ...,
1

rms(J[:,nθ](θ, Z))

)
(3.39)

In most cases, the normalisation yields a better condition number (i.e., the ratio between

the largest and smallest non zero singular value) for JN (θ, Z) compared with J(θ, Z). For

this method, the parameter update ∆θN is computed by solving the equation

(JT
N (θ, Z)JN (θ, Z)+λ2Inθ

)4θN =−JT
N (θ, Z)e(θ, Z) (3.40)

Where the damping factor λ determines the weight between the two methods. For a scenario

where λ has a large numerical value, the second term in 3.40 is important which makes the

gradient descent method dominate the optimisation. but for a scenario where λ is small,
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the Gauss-Newton method takes over. To compute equation 3.40 in a numerically stable

manner, the Singular Value Decomposition (SVD) of JN (θ, Z) needs to be calculated first. If

the Jacobian is singular, the SVD is calculated based on

JN (θ, Z)=Udiag(σ1,σ2, ...,σñθ
,0, ...,0)V T (3.41)

The parameter update ∆θN is then calculated using a truncated SVD resulting in the

expression

4θN =V ∧UT e(θ, Z) (3.42)

The last step involves de-normalisation of the parameter update using the expression

4θ = N4θN (3.43)

The largest singular value of JN (θ, Z) from the first iteration can be used as initial values

for λ, the λ, value is then adjusted based on the success of the parameter update. Different

stop criteria can be used to bring the iterative Levenberg-Marquardt algorithm to an end.

For example, the optimisation can be stopped when the relative decrease of the cost function

becomes smaller than a user-chosen value or when the relative update of the parameter

vector becomes too small. However, a simple approach is to stop the optimisation once a

sufficient high number of iterations imax is exceeded.

3.4.3.2 Calculation of the Jacobian

Since the minimisation of the cost function VWLS(θ) is performed by means of a combination of

the non-linear optimisation methods described in previous subsection. It is required to compute

the Jacobian J(k,θ) of the modelled output with respect to all the model parameters. To compute

this, the expression below is used

J(k,θ)= ∂ε(k,θ)
∂θ

= ∂Ym(k,θ)
∂θ

(3.44)

Given the non-linear relationship in Equation 3.32, it is often practically impossible to calculate

the model output and the Jacobian directly in the frequency domain. Hence, the calculation

can be carried out in the time domain followed by a DFT post processing to obtain Ym(k,θ) and
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J(k,θ). The explicit expression used in calculating the Jacobian in the time domain is based on

considering a discrete-time non-linear model of the formx(t+1)= f (x(t),u(t),a)

y(t)= g(x(t),u(t),b)
(3.45)

Where a and b are the model parameters present in the state and output equation. The partial

derivatives of the output y(t) with respect to a and b are given by
∂x(t+1)
∂a = ∂ f (x(t),u(t),a)

∂x(t)
∂x(t)
∂a + ∂ f (x(t),u(t),a)

∂a

∂y(t)
∂a = ∂g(x(t),u(t),b)

∂x(t)
∂x(t)
∂a

∂y(t)
∂b = ∂g(x(t),u(t),b)

∂b

(3.46)

The above equations can be rewritten in a simpler format expressed as
xa(t+1)= fx(x(t),u(t),a)xa(t)+ fa(x(t),u(t),a)

ya(t)= gx(x(t),u(t),b)xa(t)

yb(t)= gb(x(t),u(t),b)

(3.47)

Hence the simplified expression that define the calculation of the Jacobian in Equations 3.47 can

be regarded as a new dynamic discrete-time non-linear model. The inputs of this Jacobian are the

inputs and the simulated states of the original model, these states are obtained by simulating the

original model with the estimated parameters of the previous Levenberg-Marquardt iteration.

Furthermore, due to the polynomial nature of Equation 3.32, the Equations in 3.47 are also in a

polynomial form, hence, it is possible to obtain a PNLSS model based on the calculation of the

elements of the Jacobian.

3.4.3.3 Initialisation of the Non-linear Model

In Equation 3.47, the simulated states are used to calculate the Jacobian. Hence, it is important

to consider the initial state x0 of the PNLSS model Equation in 3.32 when computing the state

sequence.To achieve this, there are different possible approaches. But the simplest approach is to

calculate the Jacobian for the full data set and then discard the first Ntrans transient samples

of both the Jacobian and the model error. With this approach, a part of the data is not used
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for the model estimation. The last step that needs to be cleared before starting the non-linear

optimisation is the selection of good starting values for θ.

A good starting value for θ is to use the values estimated from the parametric Best Linear

Approximation for matrices A,B,C, and D. The other state space matrices E and F can be set to

have zero initial starting values. Using the parametric BLA as initial values for the non-linear

optimisation comes with two main advantages, first, it gives an assurance that the estimated non-

linear model performs at least as good as the best linear model of the system under consideration.

The second advantage is the ability to obtain a rough estimate of the model order na for a typical

PNLSS model structure as illustrated in Equation 3.32.

3.4.4 Validation of the Non-linear Model

To achieve an optimum PNLSS model, the non-linear parametric search should be pursed

until the cost function in Equation 3.33 stops decreasing. However, in the search for the best

optimisation result, over-fitting can occur during the optimisation as it is often the case for model

structures with many parameters. The over-fitting phenomena can be visualised by applying a

fresh data set to the models obtained from the iterations of the non-linear search. In the case of

over-fitting, the model quality first increases to an optimum and then deteriorates as a function

of the number of iterations. This is as a result of the fact the important parameters are quickly

pulled to minimising values at the start of the optimisation, while the bias error diminishes.

As the minimisation continues, the insignificant parameters are drawn close to reach min-

imising values. Hence, the number of parameters grow rapidly and the variance on the parameter

estimate increases. To the growing number of parameters effect, a stopped search approach [31]

is often implemented. This is used to evaluate the model quality of every estimated model on a

test set, with the possibility of selecting the model that achieves the best result. Note that there is

often no optimisation required in the validation step (no computation of Jacobian, step sizes, etc),

just an evaluation of all the estimated models (this only requires simulating the estimated models

with the validation input, and comparing the measured validation output with the simulated

output). It is worth stating that all equations used in deriving the PNLSS identification theory

in this chapter are already available in the literature with references provided/cited at relevant
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Figure 3.2: Aero-engine casing and the attached Aluminium plate on the bottom right corner

areas.

3.5 Demonstration on an Aero-Engine Casing

3.5.1 Description of the Aero-Engine Casing

The application presented in this chapter was performed on an aero engine casing assembly

structure presented in Figure 3.2. This type of aircraft engine casing assembly is often used

for powering a typical commercial aircraft. The structural configuration of the casing assembly

considered in this paper is a three-layer architecture without any internally attached accessories

such as blades, shafts and other rotating components. The aero-engine casing assembly is made

of three components comprising of casing A, casing B and casing C as shown in Figure 3.1 The

entire assembled casing has structural features that are typical of a full-size assembled system

e.g. multiple body sections and bolted joints.

The total mass of this casing assembly is 461kg. Additionally, the first cylindrical section

of the casing (Casing A) has an aluminium plate with four low stiffness shaped steel blocks
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mounted on it as shown in 3.2. Based on an experimental campaign and initial analysis of

the aero-engine casing demonstrated in [201], the mounted plate forms an additional source of

non-linear behaviour in the entire casing assembly. It introduces localised non-linearities from

the bolted joints and large deformation of the plate depending on the mode of interest and also

reflects on typical operational measurement limitations. To study the nonlinear phenomena

exhibited by the entire assembly in a rather simplified approach, only the first cylindrical section

of the casing (Casing A) was instrumented to obtain measured data during the experimental

campaign as shown in experimental set-up.

3.5.2 Linear Finite Element Modal Analysis

Pre-test analysis is a vital step of Experimental modal testing and analysis, it often has direct

effect on the accuracy and results of test and analysis. A detailed Finite Element (FE) model

of the casing assembly was developed using the commercial ABAQUS FE package, all parts of

the casing and the plates were modelled using shell elements. A linear FE modal analysis was

conducted to extract the FE mode shapes. The linear FE analysis was conducted with the aim of

getting better insight into the selection of appropriate measurement locations, sensor placement

and the test excitation point. In addition, the initial FE analysis was used to determine the

number of expected modes in a given frequency range. Most importantly, since the test was being

conducted on a large aerospace structure with multiple joints and localised non-linearities, the

results from the FE mode shapes were used to quickly and reliably identify the frequency ranges

where the joints and additional localised nonlinear source were actively excited. The FE analysis

highlighted 20 mode shapes between 0-350 Hz. A complete summary of the FE modal analysis is

not included in this chapter. However, it is sufficient to state that the modes of vibration that

engaged the entire casing assembly and the plate were calculated to have FE natural frequencies

of 83.95 Hz and 87.12 Hz as shown in Figures 3.3a and 3.3b.
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(a) (b)

(c) (d)

Figure 3.3: Selected mode shapes obtained from the 3D FE modal analysis. (a) Mode 1: 83.95 Hz,
(b) Mode 2: 87.12 Hz, (c) Mode 11: 233.27 Hz, (d) Mode 14:246.85 Hz.
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In addition, an area of interest on the casing assembly is the bolted connection between

casing A and the aluminium plate. One of the main reasons for this interest is to understand

the influence of connected devices on the casing and their potential introduction of local and

geometrical nonlinearities to the entire structure. The FE model was also able to highlight the

modes of vibration of casing A and plate with natural frequencies ranging between 180 to 300 Hz.

Of all modes of vibration highlighted by the FE model, only those that are prone to stimulate all

joints and plate connections are further investigated in the nonlinear identification section of

this chapter. Figures 3.3c and 3.3d illustrate a selection of modes of vibration where the joints

and local nonlinear sources are stimulated.

3.5.3 Experimental Campaign and Linear Modal Analysis

The casing was suspended horizontally from a test frame using four elastic chords as shown in

Figure 3.4a. The test frame used in this research is classified as a Technology Research Level

(TRL6) structure developed under the Highly Innovative Technology Enablers for Aerospace

(HiTEA) project while the elastic chords are used to represent a free-free boundary test condition.

The experimental set-up was designed to replicate the traditional horizontal configuration of

such component when attached to an aircraft. A total of 32 Integrated Circuit Piezoelectric

(ICP) type single-axis acceleration sensors were employed to instrument the structure. For this

investigation, only the first subassembly section casing A where the plate is bolted to the engine

casing, as illustrated in Figure 3.4b, was fully instrumented. A large shaker visible in Figure

4a was used to apply the excitation inputs to the casing in a vertical direction. The first stage of

the experimental investigation involved conducting a set of traditional modal tests on the casing

and plate assembly to obtain the natural frequencies and damping ratios at low amplitude of

vibration. In addition, a force controlled stepped-sine test at high excitation levels was carried

out on the assembly to check for the symptoms of non-linearity that could be present in the

instrumented section of the casing. A preliminary experimental study highlighting non-linearities

observed at the high amplitude of vibration was already conducted on the engine casing assembly

in [200]. There, the linear FE mode shapes were used to gain an insight into the regions of the

assembly that could potentially show some form of nonlinear behaviour. The first measurements

76



3.5. DEMONSTRATION ON AN AERO-ENGINE CASING

(a)
(b)

Figure 3.4: Experimental set-up of the Engine casing suspended on a TRL-6 frame. (a) Test
Set-up,(b) Instrumented section of the casing

obtained from the test comprised of several low-amplitude responses which were acquired based

on the broadband random excitation. The choice of the broadband excitation was made based

on its conventional use in modal testing. The low level random excitation test was performed

using the Spectral Test module in LMS Test Lab. The test structure was excited near the flange

connecting the casing B with casing A as shown in Figure 3.4a. The structure was excited using

burst random excitation ranging between 30 and 320Hz and the applied random excitation had

an RMS value of 45N. The Frequency Response Functions (FRFs) obtained from the test were

used to identify the linear modal parameters of the entire assembly. Figure 3.5 shows a selection

of the FRFs obtained from the low-level test. A linear modal analysis based on the FRFs obtained

from the low-level random test was conducted using the PolyMAX method [2]. Table 3.1 presents

the corresponding natural frequencies and damping ratios of the casing A with the aluminium

plate bolted to it.
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Mode
Number

Natural
Frequency (Hz)

Damping
Ratio (%)

Mode
Number

Natural
Frequency (Hz)

Damping
Ratio (%)

1 82.17 0.29 9 179.68 0.19
2 84.34 0.19 10 237.51 0.34
3 87.17 0.09 11 238.68 0.12
4 158.42 0.13 12 243.45 0.28
5 163.41 0.39 13 247.01 0.39
6 167.29 0.57 14 285.51 0.42
7 169.98 0.46 15 287.72 0.37
8 172.05 0.46 16 312.51 0.29

Table 3.1: Estimated natural frequencies and damping ratios based on low-level excitation
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Figure 3.5: Acceleration response function obtained from low-level broadband excitation performed
on the non-linear assembly. (a) Bottom centre of the first cylinder (b) Drive point.

3.5.3.1 Non-linear Detection Based on Distortion of Measured Data

To check for symptoms of non-linear behaviour in the casing and plate assembly, several tests

were conducted on the entire assembly using two different types of excitation signals. In this

chapter, stepped and swept-sine excitations were used for investigating the non-linear effects

observed in the measured response of the assembly from low to higher excitation levels. Stepped

and swept sine excitation signals were selected based on their deterministic nature. For a linear

system or structure, the output response would produce a pure sine wave and for a non-linear
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Figure 3.6: Force controlled stepped sine acceleration response: (a) Mnode 2 FRF for frequency
range 230-242Hz, (b) Drive point FRF for frequency range 230-242Hz (c) Mnode 2 FRF for
frequency range 282-296Hz (d) Drive point FRF for frequency range 282-296Hz.

case, distortions are easily detected by visualising the output response of the sine wave. In Figure

3.6 stepped-sine FRFs are presented for the test concentrated around each vibration mode of

interest ranging from the lowest (10N) to the highest (100N) input levels of excitation. These

stepped-sine FRFs only consider the first harmonic and neglect all other higher-order harmonic

components in both input and output [202]. Figure 3.6 shows the lack of homogeneity in the
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(a) (b)

(c) (d)

Figure 3.7: Sine-sweep acceleration responses measured on two different locations of the assembly.
(a) and (b) Drive point (b) and (d) Mnode2

measured FRFs over different excitation levels, this is a clear breakdown of the superposition

principle coming from linear theory. Evidence of non-linearity is observed based on the shift in

frequency and maximum amplitude for the measured frequency bandwidth of 230-241Hz and

282-298Hz. In addition to the observed frequency and amplitude shifts, the resonant peaks also

lean to the left as shown in Figure 3.6, causing a sudden transition (jump) down to a lower energy

80



3.5. DEMONSTRATION ON AN AERO-ENGINE CASING

state when increasing in frequency, and a smaller transition (jump) up to a higher energy state

when decreasing in frequency in the result presented in Figure 3.6. This is most evident in the

FRFs illustrated in Figure 3.6a and 3.6b for frequency bandwidth of 237-241Hz.

Sine-sweep test was also conducted on the casing assembly at multiple excitation levels

to gain some insight into the time series data, the sine-sweep test was conducted to cover a

frequency bandwidth of 200-260 Hz. Accelerations at selected locations of the assembly were

measured at 20N, 50N, 100N, 300N and 450N excitation levels. Figure 3.7 (a-d) shows selected

plots of the measured acceleration against sweep frequency for the modes of the assembly in that

bandwidth.

Symptoms of non-linearity are visible in the plots presented in Figure 3.7 where a frequency

shift is observed for all modes when the amplitude of vibration is increased. The lack of symmetry

feature is also observed around the resonance peak of 238Hz for high amplitude of vibration, this

is more obvious in Figure 3.7b and 3.7d. Skewness of the signal envelop is also observed around

the resonance peaks at high excitation level, resulting to a jump phenomenon and non-smoothness

of the signal envelop.

In practice, many non-linearities exhibit a degree of amplitude dependence and most of these

become more prominent at higher levels of vibration rather than low levels. In this case of the

aero-casing assembly, non-linear behaviour is clearly observed at higher excitation amplitude

using a variety of excitation signals. Therefore, it is important to conduct further analysis on the

casing assembly to gain further insight on the type of non-linearities detected from the measured

data. This includes estimating a Best Linear Approximation (BLA) model based on measured

data and also derive a data driven non-linear model using PNLSS method. All these are described

in following sections below.

3.5.4 Best Linear Approximation of the Casing Assembly

To calculate the BLA of the casing assembly, sine-sweep input and output data sets were acquired

at different excitation levels and different locations of the whole assembly. Although a sine-sweep

is a deterministic signal instead of a random one, the initial linear state space and the FRF of
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Figure 3.8: The difference of the sine sweep input DFT spectrum (U(k)−U(k−1)) of the interested
bandwidth. (a) Frequency range 70-93Hz, (b) frequency range 200-260Hz

the BLA can still be obtained using the expression given by:

GBLA(k)= Y (k)
U(k)

(3.48)

at the excited frequency lines k. The fact that the spectrum U(k) of a sine-sweep is not rough

at all frequencies could pose a challenge in the calculation [199], however the LPM can still be

applied based on calculating the difference between the input at two consecutive frequencies i.e,

(U(k)−U(k−1)). The results obtained from the difference in spectrum calculation are presented in

Figure for frequency bandwidth of interest. As shown in Figure 3.8, the spectrum (U(k)−U(k−1))

remains the same or at least within the same order of magnitude as U(k) in a large part of the

frequency band of interest and only become extinct to zero at 70Hz and 93Hz for Figure 3.8a and

200 Hz and 260 Hz for Figure 3.8b.

This means that the spectrum U(k) is sufficiently rough in the frequency band of interest.

Therefore indicating that the LPM will be able to locally smooth the FRF for the BLA estimation

With the FRFs and the BLA estimated based on the procedure described in section 3.4.1, a

parametric model (ABCD) is fitted on the non-parametric estimated model of the GBLA(k) using

the frequency-domain subspace identification described in [196, 2]. The accuracy of the fitted
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state space model is evaluated using a similar weighted least squares cost function expressed in

Equation 3.27. In this case, the inverse of the estimated total variance of GBLA(k) is chosen as a

weighting function

VL(k)=
nF∑

k=1

∣∣GBLA(K)− ĜBLA(K)
∣∣2

σ2
BLA(k)

(3.49)

Where σ2
BLA(k) represents the total distortions observed in the model. The model fitting error is

then calculated based on the difference between the parametric and non-parametric BLA:

εL =GL(k)−GBLA(k) (3.50)

Figure 3.9 shows the corresponding estimated FRFs and total distortions for the parametric and

non-parametric BLA for two main frequency bandwidth of interest (70-93Hz) and (200-260Hz),

the selected FRFs and total distortion (= noise + non-linear) levels are based on excitation levels

ranging from 20N to 100N. In this thesis, the time-domain signal is transformed to the frequency

domain using the FFT algorithm, meaning that the time domain signal is written as a sum of sine

waves. The amplitude spectrum shows the amplitudes of the frequency components in the Fourier

series also known as the Discrete Fourier Transform (DFT) spectrum in vibration analysis of

signals. An accurate fit is observed between the parametric and non-parametric estimation of

the BLA based on a selected model order of 6, little discrepancies are only noticed at the start and

end frequencies of the bandwidth of interest. The noise and non-linear distortion levels across the

input band mostly lie averagely below -20dB most especial for the distortion estimation illustrated

in Figure 3.9. To get an initial understanding into the non-linearities observed in the measured

sine sweep in preparation for the full non-linear identification, a parametric and non-parametric

BLA model was also estimated for different excitation levels ranging from an RMS value of 20N to

100N. Figures 3.9 and 3.10 shows an illustration of the estimated amplitudes and total distortion

levels across the different excitation levels and frequency bandwidth of interest. Slight shift in

the resonance peaks and reduction in amplitude is observed across the FRFs obtained from the

multiple forcing level BLA estimation as shown in Figures 3.9 and 3.10 at higher excitation level.

Similarly, it is evident that the total distortion (noise + non-linear distortions) also affect the

response of the structure.
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Figure 3.9: nonparametric FRFs and total distortions in the form of a discrete fourier transform
spectrum: (a) Mnode 2 for 70-93Hz (b) Drive point for 70-93Hz.
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Figure 3.10: nonparametric FRFs and total distortions in the form of a discrete fourier transform
spectrum: (a) Mnode 2 for 200-260Hz (b) Drive point for 200-260Hz.

In Figures 3.9 and 3.10, the level of total distortions increases as the forcing changes from

20N to 100N for each frequency bandwidth of interest. The results obtained from the multiple

forcing BLA estimation shows clear signs of non-linearity in the measured data and thus require
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inclusion of non-linear terms in the state space modelling.In this case of the casing assembly,

the increase in total distortion response at higher excitation levels as shown in Figures In this

case of the casing assembly, the increase in total distortion response at higher excitation levels

as shown in Figures 3.9 and 3.10 for the selected frequency ranges is a clear indication of the

presence of non-linearities in the measured sine-sweep data. Furthermore, linear approach or

technique can no longer be used to produce a true representation of the characteristics observed

in the measured data illustrated in Figure 3.7

3.5.4.1 Linear State Space Model of the Casing Assembly

Before developing a PNLSS model, a linear state space model of the system under consideration

is required, in this chapter, the linear state space model for the casing assembly is identified from

the previously estimated BLA using the frequency domain subspace method [196]. A time domain

least squares cost function which calculates the squared error between the simulated model

outputs and the measured data was implemented to evaluate the accuracy of the linear state

space model. The cost function expressed in Equation 3.30 is introduced to assess the quality of

the fit for the linear subspace identification.

Figure 3.11 depicts the comparison between the simulated results obtained from the linear

state space identification and the measured data, the time-domain signal is transformed to the

frequency domain using the FFT algorithm, meaning that the time domain signal is written as a

sum of sine waves. The amplitude spectrum shows the amplitudes of the frequency components in

the Fourier series, plotted as a discrete time fourier transform. These results are identified based

on using the non-parametric BLA estimated model parameters i.e (A, B, C, D) as initial starting

values while the parameters in the E, and F matrices are set to have zero initial values. Judging

from the time and frequency domain results presented in Figure 3.11, the results show that the

initial identified linear model has a reasonable agreement with the measured data. However

large errors and discrepancies are observed mainly around the resonance region which shows a

clear indication that the non-linear dynamics are not yet captured.

The acceleration values at the resonance region are larger and in this case, may mean that the

non-linearities are stronger in those section of the measured data, it therefore evident that the
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Figure 3.11: Comparison of initial linear model against measured data: (a) time domain signal for
drive point, (b) amplitude of the corresponding discrete time fourier transform for drive point, (c)
time domain signal for Mnode, (d) amplitude of the corresponding discrete time fourier transform
for Mnode.

non-linear behaviour that cannot be captured by a linear model and as such a full identification

is required to accurately capture the non-linear dynamics in the measured data. Similarly, the

normalised Root Mean Squared (RMS) error of the linear model on the estimation data-set was

52.6%. Such a relatively high RMS percentage value is also an indication that the proposed linear
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PNLSS Model Study Polynomial Degrees
1 2-3
2 2-3-4-5
3 2-3-4-5-6-7
4 2-4
5 2-4-6
6 3-5
7 3-5-7

Table 3.2: Overview of the polynomial order implemented in the PNLSS identification

model is not sufficient and thus require further identification and minimisation of the selected

cost function.

3.5.5 Non-linear Identification of the Casing Assembly

Referring back to the schematic of the identification procedure illustrated in Figure 3.1, this

section focuses on developing a data driven non-linear model to model the non-linearities observed

in the aero-engine casing assembly based on PNLSS model. Here, sine-sweep excitation at 100N

RMS are used as the estimation data set for the PNLSS identification, while the non-linear

identification is focused around the frequency bandwidth of 200-260 Hz. Furthermore, a study on

using different monomial combination shown in Table 3.2 for the polynomial degrees selection

such as consecutive, non-consecutive, even and odd was conducted.

3.5.5.1 Full Non-linear Model

To begin this stage, the linear state space parameters for (A, B, C, and D) estimated in the

previous section was used as an initial starting value while the matrices (E and F) in Equation

3.33 are initialised as zero. The PNLSS model is evaluated by defining the weighted least-squares

cost function VWLS(θNL) expressed in Equation 3.33. The final estimate of the non-linear state

space parameters (A, B, C, D, E, F) are obtained by minimising the cost function VWLS(θNL).

Here, the parameters in the matrices E and F that correspond to a term in which the input is

raised to a non-zero power, is not optimised, but kept at its initial zero value. In other words,

polynomial terms in the states only are considered.
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A unit weighting W(K) is applied as shown in Equation 3.33 for focusing on the frequency

band 200-260 Hz during the minimisation of weighted least-squares cost function in the frequency

domain. Unit weights are chosen in the frequency band of interest, while weights of 0.05 are

chosen outside this band. It is important to give a non-zero weight to the data outside the

frequency band of interest, since not using the information at those frequencies would lead to an

ill-conditioned optimisation problem (with more unknown parameters than data samples used).

The cost function is minimised with a Levenberg-Marquardt algorithm. In this research, the

Levenberg-Marquardt method is initialised with λ= 200. This relatively large number is selected

to make the optimisation process more robust.

This iterative algorithm can be seen as a mixture of the gradient-descent and the Gauss-

Newton algorithm where the trade-off is determined by the Levenberg-Marquardt parameter

λ. The limiting cases λ = +∞ and λ = 0 correspond to gradient-descent with a zero step-size

(the step-size decreases for increasing values of λ ) and Gauss-Newton, respectively. Close to

a local minimum, the Gauss-Newton method can converge faster, but there is no guarantee of

convergence, especially if the current parameter guess is far away from a local minimum. In

contrast, the gradient-descent method is more robust (under some conditions it is guaranteed

to converge to a local minimum of the cost function), but convergence in the vicinity of a local

minimum can be slow.

When an iteration is successful (i.e. the cost function decreased on the estimation data), the

Levenberg-Marquardt parameter λ is adjusted to half of its previous value in order to make the

optimisation algorithm lean more towards the Gauss-Newton method. This further improves

the speed of the iterative process. While in the case of an unsuccessful iteration, the Levenberg-

Marquardt parameter λ is multiplied with a factor
p

1 0 to make the method lean more towards a

gradient-descent algorithm with a decreased step-size for further optimisation improvement and

robustness. The sine sweep data obtained at 100N level of excitation during the experimental

campaign was used for the PNLSS model estimation. The estimated PNLSS model was developed

using a state only model structure with a model order of 6 where no input terms were considered,

while polynomial degrees of the order (2,3,4,5 and 7) was selected for the PNLSS estimation.

By minimising the second cost function in Equation 3.33, the results obtained from running
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Figure 3.12: Comparison of the identified PNLSS model against measured data: (a) time domain
signal for drive point, (b) amplitude of the corresponding discrete time fourier transform for drive
point, (c) time domain signal for Mnode, (d) amplitude of the corresponding discrete time fourier
transform for Mnode.

the second optimisation problem are presented in Figure 3.12. Comparing the full PNLSS results

with the initial estimated results in Figure 3.12, one can observe a great improvement in the

PNLSS model compared to the initial linear model. The optimised PNLSS model improves on

the results of the initial linear model, most especially around the resonance frequencies as
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shown in Figure 3.12 (a-d). This is a clear indication that the PNLSS model has successfully

been able to capture a large portion of the non-linear dynamics that was not captured in the

initial linear model presented in Figure 3.11. A significant improvement was also observed in

the RMS percentage value after running the optimisation. Compared to the initial estimated

model, a much lower RMS value of 7.2% was obtained for the PNLSS model. This shows a strong

improvement of about 45% RMS reduction between the identified linear state model and the

final estimated PNLSS model, validation of the identified PNLSS model on a new set of sine

sweep data also yield RMS error of 9.1%. With this important improvement, it is evident that a

discrete PNLSS model that describes the non-linear dynamics observed in the measured data

has been successfully modelled without imposing any prior knowledge of the non-linearities in

the measured data.

3.5.6 Identifying a Parsimonious Data Data Driven Model

Although the results achieved in previous section 3.5.5.1 indicated high degree of accuracy that the

identified PNLSS model order of (2, 3,4,5,6 and 7) was able to capture the non-linear phenomena

observed in the measured data, the total number of estimated parameters for the identified model

is very large in the region of 13,728 parameters. The large number of estimated parameters

can be narrowed down to the number of terms in a polynomial growing combinatorially with

the degree of the polynomial. In addition, the combination of both even, odd and high monomial

degrees in developing a suitable PNLSS model can be disadvantageous for some cases where the

non-linear phenomena exhibited by the system are dominated by either even or odd polynomial

degrees.

Hence in this section, a study on deriving a suitable PNLSS model using a series of different

monomial combinations is conducted. The aim is to develop the best PNLSS model with the lowest

number of parameters capable of modelling the non-linearities observed in the measured data of

the aero-engine casing. Seven different PNLSS models were developed based on the monomial

combination and order shown in Table 3.2, sine sweep measured data at 100N was utilised as the

data set for the estimation of each PNLSS model while another set of sine sweep data at 50N was

used for the validation of each estimated PNLSS model. Each monomial combination simulation
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experiment was based on measured sine sweep data with signal sizes of (1474561x1) for the

input and (1474561x2) for the output. The signal sizes are based on the Single Input Multiple

Output (SIMO) configuration which is being considered in this chapter. For quality measures, the
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Figure 3.13: Time and Frequency domain estimated model error for simulated PNLSS model
using monomial combination of 2,4 and 3, 5,7: (a) time domain error signal of the drive point, (b)
amplitude of the corresponding discrete time fourier transform error of the drive point, (c) time
domain error signal of Mnode, (d) amplitude of the corresponding discrete time fourier transform
error of Mnode.
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Polynomial
Degrees

Estimation
RMS Error (%)

Total Number of
Parameters

Simulation Time
(Hours)

2-3 15.91 672 8.37
2-3-4-5 4.89 3696 41.52
2-3-4-5-6-7 1.72 13728 121.29
2-4 16.04 1232 11.74
2-4-6 11.87 4928 63.81
3-5 5.01 2520 34.26
3-5-7 1.58 8856 101.65

Table 3.3: Estimation results for different monomial combination experiments

relative RMS error in the time and frequency domain and the NRMSE of the successful iteration

of the LM optimisation were computed for each estimated PNLSS model. The performance of

each simulated PNLSS model structure in Table 3.2 is calculated based on the expression in

Equation 3.51

NRMSE =
√

1
Nt

∑Nt
t=1(ymodel(t)− ymeasured(t))2

1
Nt

∑Nt
t=1(ymeasured(t))2

(3.51)

Where ymodel and ymeasured are the PNLSS output and measured data, while Nt is the total

number of data points. Transforming the error to the frequency domain was also another criteria

used in judging the performance of each simulated monomial degree combination, the amplitude

plot of the frequency domain error helps to show in which frequency bands the model performs

well, and in which frequency bands it performs poor, based on the order of magnitude of the error

which is classified as the amplitude.

Figure 3.13 shows the time and frequency domain error plots obtained for two PNLSS

simulation results out of the seven PNLSS simulations that was conducted. For all the different

PNLSS models that were estimated, the RMS error of the time and frequency domain is seen

to decrease for increasing model complexity, in particular within the frequency band where

nonlinear distortions are observed as shown in Figure 3.13 and Figure 3.14. The estimation

errors for each PNLSS simulated model is presented in Table 3.3 with an approximate value of

the time taken to compute each simulated PNLSS model. The lowest error value of 1.58% and

1.44% is achieved for monomial combination of the order (3, 5 and 7) as shown in 3.3. In addition,

judging from the time and frequency error comparisons in Figure 3.13, it is possible to conclude

that the monomial combinations with odd degrees can be used to reproduce better fitting PNLSS
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Figure 3.14: Decrease of the NRMS estimation error over 120 Levenberg-Marquardt successful
iteration for the seven simulated PNLSS models based on different monomial degree combination.

models compared to the PNLSS model with even monomial degree combination.

In terms of obtaining a parsimonious model, Table 3.3 shows how the effect of increasing

the complexity of the monomial degrees can cause a drastic growth in the total number of

parameters estimated by each PNLSS model. In this case a parsimonious model is defined as

a monomial combination with the lowest percentage error value between the PNLSS model

and the measured data whilst using the least number of parameters or variables to obtain best

PNLSS model prediction. For a performance perspective, selecting monomial of degrees 3, 5 and 7

yields estimation and validation errors of 1.58% and 1.44% with total number of 8856 estimated

parameters. Compared to the first identified PNLSS model with monomial degrees of (2, 3, 4, 5, 6,

and 7) and 13728 parameters which took just over 5 days on a standard desktop to complete all

the computations, one can conclude that a PNLSS model with monomial degrees of 3 and 5 or 3,

5 and 7 can be used to correctly reproduce or model the non-linearities observed in the measured

data to a high degree of accuracy.
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Using either of these two proposed PNLSS model configurations has not only shown an

advantage in terms of obtaining a reasonable parsimonious model, the computational burden

and time involved in minimising the cost functions for these two models were considerably lower

than the initial identified PNLSS model in Figure 3.12. Figure 3.14 shows the behaviour of the

NRMSE for all simulated PNLSS cases, it is worth stating that for Figures 3.14 and 3.17, there

are more than 120 Levenberg-Marquardt iterations. However, only the successful iterations

(i.e. the iterations for which the cost function decreased during the optimisation process) are

plotted. By plotting the normalised root mean squared error against the number of successful

iterations of the LM optimisation, it is also possible to get some information on the monomial

degree combination that produces the best PNLSS model capable of modelling the non-linearities

based on the error magnitude and convergence rate during optimisation.

In Figure 3.14, the NRMSE with odd monomial degrees generally show significantly better

and faster convergence versus error curve compared to the ones with even and odd monomial

degree combination. The model with monomial degrees 3, 5, and 7 reaches the one but lowest

NRMSE (after the model with monomial degrees 2, 3, 4, 5, 6, and 7), but converges faster and

uses significantly less parameters. Since the obtained NRMSE values with both models are fairly

close, the model with monomial degrees 3, 5, and 7 is retained because of the trade-off between

performance and parameter parsimony as illustrated in the results presented in Table 3.3. From

Figure 3.14, it is apparent that the PNLSS model with monomials of degree (3, 5 and 7) performs

better than the other six different monomial combinations that were simulated.

Comparing the measured data and the simulated PNLSS model in the time domain for

monomial degree 3, 5 and 7 as shown in Figure 3.15a and 3.15c, it is evident that the model was

practically able to accurately reproduce the maximum amplitude of each mode in the envelope of

the time series. In Figures 3.15b and 3.15d, the simulated PNLSS model was able to replicate

correctly the frequency spectrum and also the characteristics for each mode of the measured data.

The non-linear distortions observed in the envelope of the time series at higher excitation level

was also well captured by the simulated PNLSS model as shown in Figures 3.15a and 3.15c.

Based on all these observations it is possible to draw a conclusion that the non-linearities

observed during the experimental campaign of the aero-engine casing assembly are best modelled
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Figure 3.15: Time and frequency domain comparison of the final estimated PNLSS model against
measured data based on polynomial order 3, 5 and 7. (a) and (b) Time domain and amplitude of
the corresponding discrete time fourier transform for the Bolted connection closest to the drive point
between the casing and the plate, (c) and (d) Time domain and amplitude of the corresponding
discrete time fourier transform for the Drive point.

using polynomial with odd degrees. Both the error values and the LM iteration curves demon-

strate the success of how well PNLSS models could be used to model the non-linearities observed

in the experimental data without prior assumptions. Most importantly, this section of the chapter
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Polynomial Degrees Validation Error (%)
2-3 10.83
2-3-4-5 4.71
2-3-4-5-6-7 1.67
2-4 11.69
2-4-6 6.34
3-5 2.13
3-5-7 1.44

Table 3.4: Validation results for different monomial combination experiments

has also shown some advantages and the possibility of obtaining an optimal parsimonious model

with a low percentage error by running several simulation studies using different monomial

degree combinations.

3.5.7 Model Validation Based on Sine-Sweep and Broadband Excitation

To examine the domain of validity for the different simulated PNLSS models, each model is

subjected to a validation experiment by introducing new measured data. In the estimation step,

the models obtained after a successful Levenberg-Marquardt iteration are retained as candidate

models. In the validation step, the model among the candidate models that achieves the lowest

cost on the validation data is selected as the final model. Note that there is no optimization

in this validation step (no computation of Jacobians, step sizes, et cetera), just an evaluation

of all the candidate models by simulating the candidate models with the validation input and

comparing the measured validation output with the simulated output.The validation experiment

was intended to measure the performance of the identified PNLSS models under similar practical

conditions based on the frequency and amplitude range of interest.

However, since the system under consideration is non-linear then it is advisable to use

experimental data with lower excitation levels to avoid extrapolation. In this case, measured sine-

sweep data at 50N was introduced to each identified PNLSS model in Table 3.3, the RMS error in

the time and frequency domain were also used as quality measures to judge the performance of

each validation experiment. Seven different PNLSS model validation experiments were conducted

and a comparison between the measured data and the reconstructed PNLSS model at excitation

level of 50N was used to visualise the performance of each validation experiment. The percentage
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Figure 3.16: Validation of PNLSS model against measured data for 3-5-7 monomial combinations.
(a) Time domain response of the drive point, (b) amplitude of the corresponding discrete time
fourier transform of the drive point (c) Time domain response of Mnode 2 (d) amplitude of the
corresponding discrete time fourier transform of Mnode 2

error of the non-linear PNLSS model for each validation experiment is illustrated in Table 3.4,

where the RMS errors for the validation experiment were generally lower than the errors for the

estimation results.

Amongst all the PNLSS models of the validation experiment, the PNLSS model with monomial
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Figure 3.17: NRMS Validation error over 120 Levenberg-Marquardt successful iteration for the
seven simulated PNLSS models based on different monomial degree combination.

degrees of 3, 5 and 7 had the lowest RMS error value. Figure 3.16 illustrates the time series

envelope and the spectrum for this PNLSS model compared with experimental data at 50N for

two different location on the aero-engine casing, the PNLSS results presented in Figure 3.16 show

good agreement with the measured data most especially around regions of the three dominant

resonance peaks. Although minor discrepancies are still observed between the PNLSS model

and measured data, these discrepancies are outside the resonances/ frequencies of interest and

can be narrowed to errors generated from the flexibility of the PNLSS models. Similar to the

identification results, the normalised root mean squared error (NRMSE) against the number

of successful iterations of the LM optimisation was plotted for each model in the validation

experiment. Results of the NRMSE curve for the seven validation models are illustrated in

Figure 3.17. For all the models, the final NRMSE is less than 10%, indicating that the PNLSS

model structure seems reasonable to capture the non-linear dynamics of the aero-engine casing.

Moreover, the NRMSE is relatively low already after 20 iterations and keeps being small. The
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Figure 3.18: Time-domain performance of the validated model for the monomials of degree 3-5-7
based on the measured broadband data. (a) Time domain response of the drive point, (b) Zoomed-in
time domain response of the drive point, (c) Time domain response of Mnode 2 (d) Zoomed-in time
domain response of Mnode 2.

performance of the model is thus robust to the model selection process as it does not seem to

matter too much which of the models between iterations 20 and 120 actually got selected as the

best one on the estimation data. Comparing the NRMSE for all validation models, two different

monomial degree combinations namely (3, 5, 7) and (2, 3, 4, 5, 6, 7) had almost the same decreasing
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NRMSE curve and RMS error values as shown in Figure 3.17 and Table 3.4. Compared to the

identification results, the PNLSS models with monomial combinations (3, 5, 7) and (2, 3, 4, 5, 6,

7) proved the best performance on the RMS error criterion. Whilst the Levenberg-Marquardt has

proven very effective in this case study based on it’s ability to successfully adjust the optimisation

step size to lean to either of the Gauss-Newton and Gradient-descent algorithms when required

during the optimisation, the Levenberg-Marquardt may sometimes not find the global minimum

during optimisation which can yield inaccurate optimisation results. For optimisation processes

with global minimum challenges, other optimisation algorithm such as simulated annealing

[203] which uses probabilistic method for finding global minimum of a cost function with several

local minima and genetic algorithm [204] which is based on intelligent exploitation of random

search provided with historical data to direct the search into the region of better performance in

solution space. The genetic algorithm is often used for solving both constrained and unconstrained

optimisation problems that is based on natural selection.

To further test the domain of validity of best performed PNLSS model, the PNLSS model was

subjected to another validation test. In this case, broadband data measured at 40N excitation

level was introduced to the PNLSS model with monomial degree combinations of (3, 5, 7). Figure

3.18 shows a time domain comparison of the measured data and reconstructed data by the

PNLSS model. The RMS value of the error on this validation data set is 0.05mm/s2. Figure

3.18 agreeably demonstrates the significance and validity of the PNLSS model using a different

type of excitation signal, where the minimal RMS value can be seen as a way of enhancing the

predictive confidence of the PNLSS model with monomial degree combinations of (3, 5, 7). From a

user point of view, having minor errors between the measured data and the reconstructed PNLSS

models in many cases be tolerable, given that a good estimate of the maximum amplitude, the

frequency of the response and the features of the signals are obtained. Most importantly, for such

a black-box application, the results have shown a great degree of accuracy based on the error

values between the simulated PNLSS model and measured data. It is also worth stating that a

price to pay for the large modelling flexibility implemented in non-linear state space models is

the systematic and variance errors which are sometimes unavoidable depending on the problem

which is being investigated.
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3.6 Remarks on PNLSS Approach for Non-linear Identification

The Polynomial state space approach can often have a number of drawbacks, some of which are

the explosive behaviour of polynomials outside the estimation region and the stability issues

during estimation and validation. On experimental data, it often possible that the estimated

model becomes unstable on the validation set, to overcome this problem an empirical method is

implemented. This is based on passing the validation input signal on to the non-linear optimisa-

tion algorithm, with this, the validation output of the updated model with parameters θtest can

be computed in every iteration using the LM algorithm. When the validation output is unstable,

the optimisation algorithm reacts as if the cost function has increased. This approach guarantees

that the model is stable for the validation set.

Secondly, the PNLSS model is only suitable to handle low order systems such as (na < 10).

For higher order systems, the combinatorial explosion of the number of parameters poses a big

restriction in getting a good identification result. This problem can be overcome by restricting the

number of states included in the polynomial expansion or by imposing a linear relation for a part

of the states. Another disadvantage of the PNLSS approach occurs in the non-linear search stage

of the estimation of the model parameters, the challenge of getting stuck in a local minimum

is imminent. However, this can be seen as a generic burden for most non-linear identification

methods and even some linear modelling techniques. Lastly, the stability of the estimated model

can be difficult to ascertain, though, the risk of instability is inherent to any recursive model.

One can override the instability by adding constraints to keep the model stable. But this may

have a negative influence on the modelling performance.

On positive notes, the PNLSS model can be used to derive a general black box model of a

non-linear system or structure as demonstrated on the aero-engine casing assembly. In addition,

PNLSS models have extreme flexibility and capabilities to cope with multi-variable systems

most especially if the user is not interested in physical interpretation of the model parameters.

Additionally, the PNLSS identification procedure is straightforward and can easily be achieved in

three steps: (1) The Best Linear Approximation computation, (2) Linear model estimation, and

(3) compute a standard non-linear optimisation problem. Another significant advantage of the
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PNLSS approach is the fact that there are no difficult identification settings such as number of

input and output time lags, number of neurons or hyper-parameter values to select by the user

during the non-linear identification. An estimate of the model order is determined in the BLA

estimation step. Although a PNLSS model can be improved by tweaking the non-linear state and

output equations, the standard full PNLSS model often delivers satisfactory results.

Finally, one can conclude that the PNLSS approach to non-linear identification has the Keep

it Simple,Stupid (KISS) principle [205]) embedded. This is based on the assumption that the

user is not interested in overwhelming and complicated mathematical models or cumbersome

identification procedure. But in a rather simple and robust tool that can be used to model a broad

range of non-linear systems. All of which is encompassed in this PNLSS approach.

3.7 Conclusions

In this chapter, a black-box method has been used to gain useful insight into the non-linearities

observed in an aero-engine casing during an experimental campaign. A discrete-time PNLSS

model was used for the identification and validation of the non-linear phenomena observed in

the measured data obtained from a vibration test conducted on a large aerospace structure. The

whole PNLSS model was investigated using Sine-Sweep data, the PNLSS model was initialised

using the best linear approximation and a local polynomial method for local smoothing of the

FRFs. Subsequently, a weighted least-squares minimisation approach was used to estimate the

PNLSS model parameters. The success of the PNLSS model was judged based on RMS errors

between the data simulated from the PNLSS model and the true measured data.

Based on the RMS values of 1.58% and 1.44% on the identification and validation models, one

can conclude that the PNLSS method was able to successfully model the non-linear dynamics

observed in the measured data without any prior knowledge or physical insight to the nature

of the non-linearities. Several drawbacks are associated with polynomial non-linear state space

application, one of which is the explosive behaviour of polynomials outside the estimated region. A

polynomial has a characteristic of attaining large numerical values when its arguments are large,

compared to the behaviour of other basis functions when used in similar application. However,
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it should also be noted that extrapolating with an estimated model is never a good idea most

importantly for non-linear systems.

To overcome the limitation of the great number of parameters involved in the construction of

the multivariate polynomials, tensor techniques can be used to prune the non-linear parameters in

the state space identification.. Based on linearisation of the multivariate polynomial in a PNLSS

model and a tensor decomposition, the non-linear function Eζ(x(t),u(t)) and Fη(x(t),u(t)) in the

state space equation can be represented by decoupled polynomials [182]. This representation

further helps to reduce the number of parameters to be estimated by removing the cross-terms

in the multivariate polynomials. In summary, results presented in this chapter have shown the

strength of using a black-box method to model the non-linearities observed in a large aerospace

structure.
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GREY-BOX STATE SPACE IDENTIFICATION OF NON-LINEAR

VIBRATING SYSTEMS.

Abstract

This fourth chapter introduces a grey-box nonlinear state space identification method based

on insights developed from the existing black-box PNLSS identification algorithm imple-

mented in the previous chapter. The proposed time-domain identification method is capable

of describing a Single Input Single Output (SISO) nonlinear system, expressing the nonlin-

earity as internal feedback forces. An identification theorem is stated and implemented with

major attention on extracting physics-based understanding when using a standard black-

box oriented PNLSS identification algorithm. The proposed grey-box algorithm assumes

that the non-linearities are localised in the physical domain. The method is demonstrated

on a Duffing oscillator example with non-linear stiffness and damping elements. Simulated

sine-sweep and multi-sine data were used for the model estimation and validation.
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4.1 Introduction

In Chapter 3, the advantages of black-box oriented state spaces models and polynomial nonlinear

state space model (PNLSS) were extensively discussed, with a practical demonstration of the

identification capabilities on an Aero-Engine casing. Whilst the practical application proved

successful, the number of estimated model parameters was too large to obtain tangible physics

based parametric models. This makes the approach limited or practically impossible to use for

applications where the identified nonlinear parameters are required for simulating and validating

virtual models such as a Finite Element Models (FEM) of the structure under consideration. An

approach to overcoming this limitation is the use of grey-box 1D modelling concept, a grey-box

approach uses a known model structure with the addition of mathematical functions that can

model a variety of non-linear behaviours.

Grey-box models contain sets of stochastic differential equations used to describe the dy-

namics of a system in continuous time and a set of discrete time measurement equations. They

provide a way of combining the advantages of both white and black-box model types, through

the use of prior physical knowledge to be incorporated in a black box statistical method for

effective parameter estimation. In grey-box modelling, the model structure is often dependent

on the Newton’s law governing the dynamics of the system while a black-box approach uses

abstract mathematical model structures that are adequate and rich to capture all the appropriate

dynamics governing the non-linearities of a given system. The use of grey-box models in mechani-

cal systems application has been in existence for several years with examples originating from

rotating system applications [206] to control systems application [207].

In nonlinear structural dynamics the use of grey-box models for nonlinear identification has

also been adopted, where an identified model structure is enhanced with a suitable mathematical

functions capable of describing a range of nonlinear phenomena. The most common examples

are the use of high order functions such as Chebyshev polynomials [120], polynomial functions

[13],[5], cubic splines [208]. An alternative approach of identifying nonlinearities adopted by

structural dynamicist is the use of feedback models. The feedback modelling principle is based on

treating the nonlinearities in the system as additional internal forces applied to the underlying

106



4.1. INTRODUCTION

linear structure under consideration.

The use of Nonlinear Identification through Feedback of the Outputs (NIFO) methods in

structural dynamics was first introduced by Adams and Allemang in [209], [109], with further

frequency domain applications in [210], [211], [138]. The time domain version of the NIFO

method was also introduced by Marchesiello and Garibaldi in [116] referred to as Time Domain

Nonlinear Subspace Identification (TNSI). Demonstration of the TNSI method on simple and

complex systems were highlighted in [212] and [213]. While the TNSI method makes good use of

the subspace algorithm to compute the final system parameter matrix and also has the benefit of

simultaneously handling several non-linear terms, the frequency domain NIFO method also has

an advantage on its lighter computational effort and theoretical concept. More specifically, the

method uses spatial data in addition to temporal input and output data to resolve the individual

contributions that the linear and non-linear elements contribute to the system dynamics.

However, the successful implementation of both NIFO and TNSI methods does require a

prior knowledge or characterisation of the type of non-linearity present in the system under

consideration. This means that the if the non-linearities are not well characterised, the parameter

estimation will not be well suited for both TNSI and NIFO formulation because it involves a

correlated source of noise which can produce biased parametric estimates. Obtaining prior

knowledge or performing accurate non-linear characterisation can be difficult or impossible

for certain identification problems due to the highly specific nature of practical non-linearities.

Therefore,the non-linear characterisation pre-requisite for the NIFO method makes it challenging

or limited for its application to large structure or complex systems where the non-linearities are

difficult or impossible to calculate from measured input and output data.

In this chapter, a grey-box identification algorithm is proposed. The proposed algorithm is

based on combining the existing PNLSS method used in Chapter 3 with the concept of interpret-

ing nonlinearities as internal feedback forces to the underlying linear model of the system to

develop a grey-box state space identification algorithm. The whole nonlinear parametric identi-

fication is conducted using the force and displacement data measured at equidistantly spaced

sampling times. The advantage of the proposed grey-box state space identification algorithm is

the adaptation of the current optimisation techniques used in the PNLSS method in Chapter
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3 are adopted and taken into account in the identification procedure. The chapter begins with

a description of the proposed grey-box state space identification method in Section 4.2, with

further illustration on the adaptation of the previous chapter’s black-box PNLSS identification

procedure in the proposed time domain grey-box state space identification method. A numerical

demonstration of the proposed method applied to a SDOF Duffing oscillatory system with nonlin-

ear stiffness and damping is presented in Section 4.3. Validation of the proposed identification

method on data obtained from a different type of excitation is demonstrated in Section 4.4 while

the conclusions and future suggestions on the method are detailed in Section 4.5.

4.2 Time Domain Grey-box State Space Identification Method

The proposed time domain grey-box identification method consist of a set of steps to obtain a

successful nonlinear parametric model . This section of the chapter describes a brief overview

implemented in the time domain grey-box state space identification method for identifying

structural nonlinearities. The fundamental principle behind the proposed grey-box method is

based on writing the equations of motion of a discretised nonlinear system in the form of a

black-box PNLSS model with structured state space matrices. In this case the term structured

refers to the imposed sparsity patterns and relationships between elements of the state-space

matrices. The black-box PNLSS model equation is then turned into a grey-box model by modifying

and incorporating sparsity patterns into the state space matrices during the computation of the

Jacobian.

Another important feature of the proposed algorithm is the fact the it is developed using a

block-oriented formulation of nonlinearities in structural dynamics, where the nonlinearities

are considered as additional external feedback forces into the underlying linear model of the

structure. Theoretically, the algorithm is formulated with the assumption that the nonlinearity

in the structure under consideration can be modelled as a localised nonlinear element in the

physical domain and only uses the force and the displacement measured at equidistantly spaced

sampling times. To simplify the computation involved, a continuous-time model representation of

system under consideration is first converted to a discrete-time model in the physical domain.

108



4.2. TIME DOMAIN GREY-BOX STATE SPACE IDENTIFICATION METHOD

Figure 4.1: Flowchart describing the steps in the Grey-box state space identification algorithm.

The discrete time model is further approximated using Tustin approximation method [214]. Next,

the discrete-time model is converted / formulated as a polynomial non-linear state-space (PNLSS)

model with structured state-space matrices. Using the PNLSS identification process introduced

in the previous chapter with modification to the Jacobian of the PNLSS optimisation algorithm

implemented, a discrete-time model can be identified. Once the discrete-time model is identified,

the non-linear stiffness and damping curve estimates can be obtained. The corresponding mass,

linear stiffness, and linear damping can be estimated by fitting a continuous-time transfer

function to the estimated discrete-time transfer function that is present in the identified discrete-

time model.Figure 4.1 shows a flow-chart illustration of all the steps included in the identification

algorithm. A description of each required step is detailed in the following sections.

4.2.1 Step 1 - Nonlinear Model Formulation in the physical domain

The proposed grey-box nonlinear identification algorithm is here developed for the class of

nonlinear vibrating systems that can be modelled as a single degree of freedom (sdof) mass spring
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damper system with localised nonlinear stiffness and damping. The vibration characteristics of

such continuous-time nonlinear systems are assumed in the following form.

M ÿ(t)+d ẏ+ky(t)+ fd( ẏ(t))+ fk(y(t))= u(t) (4.1)

Where M, d, k are the mass, linear viscous damping and linear stiffness constants respectively;

the generalised displacement and applied force are represented by y(t) and u(t). The nonlinear

stiffness and damping are expressed by fk(·) and fd(·). The first step in the algorithm involves

generating input and output data for the continuous-time model of the expression in Equation

4.1. In this case only the input force and displacement are required further for the nonlinear

identification. To obtain the required data, standard time-domain differential equation solvers

such as the Runge-Kutta Method [215], Newmark-time integration method,Central Difference

Method and many more methods discussed in [216] can be used to numerically acquire the force

and displacement data at equidistant sampling times. In the case of an experimental application,

the measured input force and measured acceleration are directly obtainable during the test,

while the acceleration can be integrated to get the velocity and further integrated to get the

displacement signal.

4.2.2 Step 2 - Continuous-time Model Discretisation

Once the force and displacement data for continuous-time model of the nonlinear system have

been obtained, the next step is to construct a discrete-time model from the continuous time

model of the system under consideration. The discretisation step is considered based on its

efficient computational advantages over the continuous-time model. Considering the single

degree of freedom (sdof) single input single output (SISO) continuous-time system in Equation

4.1, assuming zero initial conditions taking the Laplace transform of model equation results in

(
Ms2 +ds+k

)
Y (s)+Ud(s)+Uk(s)=U(s) (4.2)

where Ud(s) and Uk(s) are the Laplace transforms of fd( ẏ(t)) and fk(y(t)), respectively. Based

on representing the non-linearities as internal feedback forces as introduced by Adams and

Allemang in [209], [109] and Marchesiello in [116], the non-linear damping and stiffness can be
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Figure 4.2: Block-oriented feedback representation of the continuous-time system.

thought of as additional internal feedback forces. Together with the applied force u, they act

as an input to a linear mass-spring-damper system and can be demonstrated by rearranging

Equation 4.2:

Y (s)= 1
Ms2 +ds+k

(U(s)−Ud(s)−Uk(s)) . (4.3)

A corresponding block-oriented feedback representation of the system is provided in Figure 4.2.

Given that the measured data (force u(t) and displacement y(t)) are only available at sampling

instances t = 0,Ts, . . . , (N −1)Ts, where Ts is the sampling period and N is the length of the data

record. Since these data are only available at the equidistantly spaced time instances, it is possible

to identify a discrete-time model that maps the measured inputs u(0),u(Ts), . . . ,u((N −1)Ts) to

the measured outputs y(0), y(Ts), . . . , y((N−1)Ts) at the sampling instances only. Identifying such

a discretised model is computationally less expensive than identifying a continuous-time model

(illustrated in Equation 4.1) that maps the complete input signal u(t) to the output signal y(t) at

all times t.

Discretising a continuous-time system can be narrowed down to approximating the time

derivatives with the finite difference approximations. Several approximation schemes exist, such

as forward and backward Euler approximation [217], Tustin approximation [218], and other

types of approaximation techniques cited in [219]. In this thesis, the Tustin approximation is

selected based on its simplicity and modelling convenience in MATLAB. A Tustin approximation

corresponds to an approximation ẏ(t)≈ v(t) [220], where

v((k+1)Ts)+v(kTs)
2

= y((k+1)Ts)− y(kTs)
Ts

, (4.4)
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i.e. the average of v(t) at two consecutive sampling instances kTs and (k+1)Ts is put equal

to a finite difference approximation of the time derivative of y, where this finite difference

approximation involves samples of y at the sampling instances kTs and (k+1)Ts. Taking the

z-transform of Equation 4.4 results in

z+1
2

V (z)= z−1
Ts

Y (z), (4.5)

and thus

V (z)= 2
Ts

z−1
z+1

Y (z). (4.6)

Comparing this with the Laplace transform of v(t)≈ ẏ(t), namely V (s)≈ sY (s), it is clear that a

Tustin approximation corresponds to approximating the Laplace variable s with 2
Ts

z−1
z+1 . A Tustin

approximation of a linear mass-spring-damper system GCT(s)= 1
Ms2+ds+k under consideration is

given by

G(z)=GCT

(
2
Ts

z−1
z+1

)
= 1

M
(

2
Ts

z−1
z+1

)2 +d
(

2
Ts

z−1
z+1

)
+k

= T2
s (z+1)2

4M(z−1)2 +2d(z−1)Ts(z+1)+kT2
s (z+1)2

= T2
s z2 +2T2

s z+T2
s

(4M+2dTs +kT2
s )z2 + (−8M+2kT2

s )z+4M−2dTs +kT2
s

.

(4.7)

Note that even though the continuous-time representation GCT(s) is strictly proper (the degree of

the numerator is strictly smaller than the degree of the denominator), however, this is not the

case for the discretised system.

4.2.3 Step 3 - Approximation of the Discretised Model

One of the challenges encountered in nonlinear identification of structures is the ability to obtain

a balance between model representation and selection of an appropriate algorithm. The model

representation is associated with ensuring that the selected representative model of the structure

does include sufficient nonlinear parameters and elements capable of describing the structural

behaviour. Selecting the right computational algorithm is very essential to solving the equations

of motion of the model efficiently. This step is included in the grey-box identification algorithm
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Figure 4.3: Block-oriented feedback representation of the approximated discretised system.

mainly to avoid heavy computational burden when solving the equations of motion by developing

an approximate model requiring less computational effort whilst maintaining a representation

of the nonlinear behaviour. Since the Tustin approximation of the linear model 1
Ms2+ds+k is not

strictly proper, replacing the feedback representation of the continuous-time mass-spring-damper

system in Figure 4.2 by its Tustin approximation in Equation 4.7 leads to an algebraic loop when

solving for y. This means that a non-linear algebraic equation needs to be solved at each time

step. To avoid this algebraic loop, and also to simplify the computations, the continuous-time

mass-spring-damper system in Figure 4.2 and Equation 4.3 is approximated by a strictly proper

discrete-time transfer function [214].

G(z)= b1zn−1 + . . .+bn

zn +a1zn−1 + . . .+an
(4.8)

The discrete-time approximation introduces a one-sample delay to properly approximate the

continuous-time system as long as the sampling period Ts is small enough. In Figure 4.3, a

new feedback representation of the approximated discretised system is presented with the time

derivative of the modelled displacement ŷ being approximated by its Tustin approximation,

i.e. the block GTustin(z) in Figure 4.3 is a first-order Tustin approximation of a differentiator

GTustin(z)= 2
Ts

z−1
z+1

. (4.9)

and the model order n in Equation 4.8 is assumed to be known. In practice, the model order n

can be determined using a model order selection criterion (e.g. Akaike [221], MDL [222]). The

non-linear functions from the original continuous-time system are grouped together in a function
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f in Figure 4.3 as a feedback forces to the linear system. The function ( f ) contains the non-linear

stiffness and damping. In this case, a polynomial expansion of the form shown in Equation 4.10

is assumed:

f ( ˆ̇y, ŷ)=
r y∑
`=1

p` ŷ`+
r ẏ∑

m=1
qm ˆ̇ym + c. (4.10)

These polynomial expansions are implemented further as state variables during the derivation of

the grey-box state space model. It is worth emphasising the fact that polynomial functions are

assumed in this thesis based on their universal abilities of handling smooth nonlinearities. Other

non-smooth nonlinear functions such as piecewise and tri-linear functions can be implemented.

4.2.4 Step 4 - Formulation of a Discrete Grey-box PNLSS Model

Building on from the approximated discretised feedback model in Figure 4.3, an important

assumption in the proposed grey-box algorithm is addressed in this step. The hypothesis stated

in this grey-box formulation is the possibility of representing the block-oriented feedback model

of the approximated discretised system in Figure 4.3 as a black-box PNLSS model of the form:x(t+1)= Ax(t)+Bu(t)+Eζ(x(t),u(t))

y(t)= Cx(t)+Du(t)+Fη(x(t),u(t))
(4.11)

with matrices A, B, C, D, E, and F. The functions ζ and η are vectors of monomials in the

states x(t) and the input u(t). The discrete non-linear state space model in Equation 4.10 was

successfully implemented as a black-box PNLSS identification method in Chapter 3. In this step,

the black-box PNLSS model equation is modified to a grey-box formulation with the objective of

extracting lesser parameters with physics-based interpretation of the identified model.

The discrete-time non-linear state-space form in Equation 4.11 has non-linear functions ζ

and η that depend on the states x and the input u. The approximated discrete-time model in the

physical space, however, has non-linear function f in Equation 4.10 that depends on the modelled

displacement ŷ and modelled velocity ˆ̇y. Therefore, to express the feedback representation of the

approximated discrete-time system of Equations 4.8 – Equation 4.10 into a black-box PNLSS

state-space of the form of Equation 4.11, then, the outputs of the approximated physical discrete-

time system are required to be the states in the black-box PNLSS model equation. This means
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that the displacement and velocity in the feedback representation of the approximated physical

system in Figure 4.3 ŷ and ˆ̇y must be converted to the two states x in Equation 4.11.

4.2.4.1 Converting the Displacement ( ŷ ) to a State (x)

To convert the displacement ( ŷ ) in Figure 4.3 to a state x in Equation 4.11, the function G(z) in

Equation 4.8 is written in an observer canonical form [223]. In this form, the resulting modelled

output ŷ becomes one of the states x in Equation 4.11. Writing G(z) in observer canonical form

results in

x1(t+1)

x2(t+1)
...

xn−1(t+1)

xn(t+1)


=



−a1 1 0 · · · 0

−a2 0 1
. . .

...
...

...
. . . . . . 0

−an−1 0 · · · 0 1

−an 0 · · · 0 0





x1(t)

x2(t)
...

xn−1(t)

xn(t)


+



b1

b2
...

bn−1

bn


(u(t)− f ( ˆ̇y(t), ŷ(t))) (4.12)

and

ŷ(t)=
[
1 0 · · · 0 0

]


x1(t)

x2(t)
...

xn−1(t)

xn(t)


(4.13)

With the expression in Equations 4.12 and 4.13, the displacement in the physical domain of

Figure 4.3 is now a state of the form ŷ= x.

4.2.4.2 Converting the Velocity ( ˆ̇y) to a State (ẋ)

In parallel with the displacement, the velocity of the approximated discrete-time system must

also be converted to form the second state x in Equation 4.11. To convert the velocity ( ˆ̇y ) in

Figure 4.3 to a state, the GTustin(z) is first written in state-space form:

xTustin(t+1)=−1xTustin(t)− 4
Ts

ŷ(t) (4.14)

ˆ̇y(t)= 1xTustin(t)+ 2
Ts

ŷ(t) (4.15)
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Next, the xTustin needs to be eliminated from the state-space equations to choose ˆ̇y as a state

instead. To select ˆ̇y as a state, the time update ( ˆ̇y(t+1)) must be written as a function of the

states and the input at time t. From Equation 4.15, this results in

ˆ̇y(t+1)= 1xTustin(t+1)+ 2
Ts

ŷ(t+1) (4.16)

Replacing the first term on the right hand side by its expression in Equation 4.14, and the second

term by an expression found from combining Equations 4.12 and 4.13, results in

ˆ̇y(t+1)=−xTustin(t)− 4
Ts

ŷ(t)+ 2
Ts

(−a1 ŷ(t)+ x2(t)+b1
(
u(t)− f

(
ˆ̇y(t), ŷ(t)

)))
(4.17)

xTustin can now be eliminated by replacing it by its expression obtained from Equation 4.15, and

plugging in the expression in Equation 4.10 for f ( ˆ̇y, ŷ) results in:

ˆ̇y(t+1)=−
(

ˆ̇y(t)− 2
Ts

ŷ(t)
)
− 4

Ts
ŷ(t)

+ 2
Ts

(
−a1 ŷ(t)+ x2(t)+b1

(
u(t)−

r y∑
`=1

p` ŷ`(t)−
r ẏ∑

m=1
qm ˆ̇ym(t)− c

)) (4.18)

Rearranging the terms, it is possible to observe that ˆ̇y(t+1) is a function of the states ŷ(t), ˆ̇y(t),

and x2(t), and the input u(t):

ˆ̇y(t+1)=α1 ŷ(t)+ 2
Ts

x2(t)+α2 ˆ̇y(t)− 2
Ts

b1

( r y∑
`=2

p` ŷ`(t)+
r ẏ∑

m=2
qm ˆ̇ym(t)+ c

)
+ 2

Ts
b1u(t) (4.19)

where the coefficient of the linear term in ŷ(t) is

α1 =− 2
Ts

(1+a1 +b1 p1) (4.20)

and the coefficient of the linear term in ˆ̇y(t) is

α2 =−
(
1+ 2

Ts
b1q1

)
. (4.21)

Since ˆ̇y(t+1) is a function of the states and input at time t, it fits in the state-space representation

that is being sought after and can indeed choose xn+1(t)= ˆ̇y(t) to be a state.

4.2.4.3 Grey-box PNLSS Model

Now that the displacement and velocity ( ŷ(t), ˆ̇y(t)) of the approximated physical discrete-time

system in Figure 4.3 has been represented as the states in the PNLSS model equation in the form
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x1(t)= ŷ(t) and xn+1(t)= ˆ̇y(t), it is now possible to formulate a grey-box PNLSS model equation.

This is achieved by putting the newly formulated states of Equations 4.12, 4.13 and 4.19 together

in an original black-box PNLSS model structure. This yields

x1(t+1)

x2(t+1)
...

xn−1(t+1)

xn(t+1)

xn+1(t+1)


=



−a1 1 0 · · · 0 0

−a2 0 1
. . .

... 0
...

...
. . . . . . 0

...

−an−1 0 · · · 0 1 0

−an 0 · · · 0 0 0

α1
2
Ts

0 · · · 0 α2





x1(t)

x2(t)
...

xn−1(t)

xn(t)

xn+1(t)


+



b1

b2
...

bn−1

bn

2
Ts

b1


u(t)

−



b1

b2
...

bn−1

bn

0



[
p1 0 · · · 0 0 q1

]



x1(t)

x2(t)
...

xn−1(t)

xn(t)

xn+1(t)



−



b1

b2
...

bn−1

bn

2
Ts

b1



[
p2 · · · pr y q2 · · · qr ẏ c

]



x2
1(t)
...

xr y
1 (t)

x2
n+1(t)

...

xr ẏ
n+1(t)

1



(4.22)

ŷ(t)=
[
1 0 · · · 0 0 0

]



x1(t)

x2(t)
...

xn−1(t)

xn(t)

xn+1(t)


(4.23)
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From the expression in Equations 4.22 and 4.23, the feedback representation of the approximated

physical discrete-time system can now be written in the form of a grey-box PNLSS model equation

x(t+1)= Ax(t)+Bu(t)+Eζ (x1(t), xn+1(t)) (4.24)

and

y(t)= Cx(t) (4.25)

where the structured matrices A,B,C and E are of the form

A =



−a1 1 0 · · · 0 0

−a2 0 1
. . .

... 0
...

...
. . . . . . 0

...

−an−1 0 · · · 0 1 0

−an 0 · · · 0 0 0

α1
2
Ts

0 · · · 0 α2


−



b1

b2
...

bn−1

bn

0



[
p1 0 · · · 0 0 q1

]
(4.26)

B =



b1

b2
...

bn−1

bn

2
Ts

b1


(4.27)

C =
[
1 0 · · · 0 0 0

]
(4.28)

E =−



b1

b2
...

bn−1

bn

2
Ts

b1



[
p2 · · · pr y q2 · · · qr ẏ c

]
(4.29)
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and

ζ (x1(t), xn+1(t))=



x2
1(t)
...

xr y
1 (t)

x2
n+1(t)

...

xr ẏ
n+1(t)

1



(4.30)

The new expression in Equations 4.24 and 4.25 is referred to as the grey-box PNLSS model equa-

tions with its corresponding model parameters formulated in Equations 4.26 to 4.30. Compared

to the state space matrices of the original black-box PNLSS model in Equation 3.13, the state

space matrices of the newly formulated grey-box PNLSS model (Equations 4.24-4.25) correspond

to the parameters of the approximated discretised system in Figure 4.3. The parameters of the

non-linear stiffness and non-linear damping characteristics are obtainable from the A and E

matrices of estimated grey-box PNLSS model. The mass, linear stiffness, and linear damping

can be estimated by fitting a continuous-time transfer function to the estimated discrete-time

transfer function G(z). Based on this adjusted formulation of black-box PNLSS model Equation,

it is therefore possible to adapt the existing black-box PNLSS optimisation procedure for the

newly formulated grey-box PNLSS model.

4.2.5 Step 5- Estimation of the Discrete-time Non-linear Feedback Model

The next step after the grey-box PNLSS model formulation is the estimation of the model

parameters. In this case, the parameters of the grey-box PNLSS model are the coefficients

of the transfer function of the linear subsystem a1, . . . ,an,b1, . . . ,bn of elements in matrices

A,B and E, in Equation 4.24, and the parameters of the nonlinear stiffness and damping

characteristics, p1, . . . , pr y , q1, . . . , qr ẏ , and c in matrices A,B and E, of Equation 4.24. These

parameters are associated with the elements in the grey-box state space matrices A,B,C and

E, and are estimated by minimising the difference between the measured and the modelled

output in (weighted) mean-square sense. Similar to the black-box PNLSS identification method,
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the minimisation exercise in this grey-box method is also a nonlinear optimisation problem.

Therefore the optimisation routine implemented in the black-box PNLSS model can also be used

in this case. The only difference between the optimisation routine of the black-box PNLSS model

and the grey-box model is the expression of the Jacobian.

This step provides the expressions of the Jacobian corresponding to the considered grey-box

model structure. To keep the notation compact, ζ(x1(t), xn+1(t)) is denoted by ζ(t). The Jacobians

are of the form

Jθ(t)= ∂ ŷ(t)
∂θ

= C
∂x(t)
∂θ

(4.31)

where θ is a free parameter (a1, . . . ,an,b1, . . . ,bn, p1, . . . , pr y , q1, . . . , qr ẏ , or c).

These partial derivatives can be computed from the state equation which generally results

in an expression for ∂x(t+1)
∂θ

as a function of ∂x(t)
∂θ

, i.e. a recursion, which can be seen as the state

equation of another state-space model. The specific results are as follows:

∂x(t+1)
∂a1

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂a1

+



−1 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0

− 2
Ts

0 · · · 0


x(t) (4.32)

∂x(t+1)
∂ai

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂ai

+



0 0 · · · 0
...

...
...

0 0 · · · 0

−1 0 · · · 0
...

...
...

0 0 · · · 0


x(t) (4.33)
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for i = 2, . . . ,n and where the −1 in the matrix in front of x(t) appears in the ith row.

∂x(t+1)
∂b1

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂b1

+



−p1 0 · · · 0 −q1

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

− 2
Ts

p1 0 · · · 0 − 2
Ts

q1


x(t)+



1

0
...

0

2
Ts


u(t)

−



p2 · · · pr y q2 · · · qr ẏ c

0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0

2
Ts

p2 · · · 2
Ts

pr y
2
Ts

q2 · · · 2
Ts

qr ẏ
2
Ts

c


ζ(t)

(4.34)

∂x(t+1)
∂bi

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂bi

+



0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0

−p1 0 · · · 0 −q1

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0



x(t)+



0
...

0

1

0
...

0



u(t)

−



0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0

p2 · · · pr y q2 · · · qr ẏ c

0 · · · 0 0 · · · 0 0
...

...
...

...
...

0 · · · 0 0 · · · 0 0



ζ(t)

(4.35)
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for i = 2, . . . ,n and where the non-zero rows in the matrices are the ith rows of those matrices.

∂x(t+1)
∂p1

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂p1

+



−b1 0 · · · 0
...

...
...

−bn 0 · · · 0

− 2
Ts

b1 0 · · · 0


x(t) (4.36)

∂x(t+1)
∂pi

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂pi

−



0 · · · 0 b1 0 · · · 0
...

...
...

...
...

0 · · · 0 bn 0 · · · 0

0 · · · 0 2
Ts

b1 0 · · · 0


ζ(t) (4.37)

for i = 2, . . . , r y and where the non-zero column in the matrix in front of ζ(t) appears in the (i−1)th

column.

∂x(t+1)
∂q1

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂q1

+



0 · · · 0 −b1
...

...
...

0 · · · 0 −bn

0 · · · 0 − 2
Ts

b1


x(t) (4.38)

∂x(t+1)
∂qi

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂qi

−



0 · · · 0 b1 0 · · · 0
...

...
...

...
...

0 · · · 0 bn 0 · · · 0

0 · · · 0 2
Ts

b1 0 · · · 0


ζ(t) (4.39)

for i = 2, . . . , r ẏ and where the non-zero column in the matrix in front of ζ(t) appears in the

(r y −1+ i−1)th column.

∂x(t+1)
∂c

=
(
A+E

∂ζ(t)
∂x(t)

)
∂x(t)
∂c

−



0 · · · 0 b1
...

...
...

0 · · · 0 bn

0 · · · 0 2
Ts

b1


ζ(t) (4.40)
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In all these expressions, the term ∂ζ(t)
∂x(t) is given by

∂ζ(t)
∂x(t)

=



2x1(t) 0 · · · 0 0

3x2
1(t) 0 · · · 0 0
...

...
...

...

r yxr y−1
1 (t) 0 · · · 0 0

0 0 · · · 0 2xn+1(t)
...

...
...

...

0 0 · · · 0 r ẏxr ẏ−1
n+1 (t)

0 0 · · · 0 0



(4.41)

The Jacobians can then be computed as Jθ(t)= ∂ ŷ(t)
∂θ

= C ∂x(t)
∂θ

. It’s worth stating that in the black-

box PNLSS model, the elements of the A,B,C,D,E, and F matrices are the free parameters, while

in the grey-box model, the parameters of the nonlinear feedback model are the free parameters.

The parameter updates are computed in the same way for both models, the only difference is the

expression for the Jacobian as illustrated above.

4.2.6 Step 6 - Estimation of the Continuous-Time Model

The final step in the grey-box PNLSS identification algorithm involves estimating the continuous

time model from the discrete-time nonlinear feedback model. It is important to note that the

identified nonlinear stiffness and damping models are polynomials, i.e. static function. As such,

the identified grey-box model can be expressed in either a discrete-time or continuous-time form,

since these functions are the same in both models. The only model that needs to be estimated

from the discrete time model is the continuous time model of the linear block G(z). The result

of this estimation gives a continuous-time model of the mass m , linear damping d, and linear

stiffness k . The linear continuous time model G(z) can be estimated from the FRF of the discrete

time model.

To perform this estimation, the inverse operation of the discrete frequency response is

required. The inverse (FRF) operation calculates a continuous-time transfer function that cor-

responds to a given complex frequency response. This is done by using a minimisation error
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function illustrated in Equation 4.42 to estimate the best model given FRF data of the discrete

time model.
n∑

k=1
wt(k) |h(k)A(w(k))−B(w(k))|2 (4.42)

Where A(w(k)) and B(w(k)) are the Fourier transform of the polynomials at frequency w(k),

and n is the number of frequency points associated with the length of the data (h and w). This

estimation method is was developed by Levi and demonstrated in [224].

4.2.7 Grey-box PNLSS Identification Process

The formulated grey-box identification method estimates its parameters based on an optimisation

routine, where the output of the grey-box non-linear state-space matrices is non-linear in the

parameters. Minimisation of the least squares cost function or simulation error in mean-square

sense will generally result in a non-convex optimisation problem [225]. To avoid getting stuck in

a bad local optimum of the cost function, a good parameter initialisation is often required.

In this case, a linear and non-linear initialisation was considered. The standard linear

initialisation the best linear approximation (BLA) implemented in the previous chapter was also

applied in this chapter. The non-linear initialisation implemented here is tailored to a non-linear

feedback structure with similar concept with the method developed by Johan Paduart in [179].

In this case, the BLA is estimated, followed by the opening of feedback loop, and estimation of

the non-linearity as a linear least-squares problem. In addition, the estimation of non-linear

damping models is incorporated.

4.2.7.1 Best Linear Approximation of a Grey-box PNLSS Model

To initially understand the nonlinear effects and observe the distortions introduced in the data,

the BLA of the system is first estimated. The BLA of a system with input u(t) and output y(t) is

defined for a class of input signals as the linear system whose output approximates the system’s

output best in mean-square sense around the operating point, i.e.

GBLA(k)= argminG(z)Eu
{‖Ỹ (k)−G(k)Ũ(k)‖2

2
}

(4.43)
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with ũ(t)= u(t)−E{u(t)}

ỹ(t)= y(t)−E{y(t)}
(4.44)

where GBLA is the frequency response function (FRF) of the BLA, Ỹ (k) and Ũ(k) are the discrete

Fourier transform (DFT) spectra of ỹ(t) and ũ(t), and the expected value Eu{·} in Equation 4.43 is

the ensemble average over the given class of input signals. In the remainder of this chapter, it

is assumed that the mean values are removed from the signals when a BLA is calculated. The

notations u and y will be used, instead of ũ and ỹ. If the BLA exists, the minimising parameter

in Equation 4.43 can be obtained as

GBLA(k)= SYU (k)
SUU (k)

, (4.45)

where the expectation in the cross-power and auto-power spectra SYU and SUU is again an

ensemble average over the considered class of input signals. Note that for periodic excitations,

Equation 4.45 reduces to [226]

GBLA(k)= Eu

{
Y (k)
U(k)

}
. (4.46)

The invariance of the BLA is very useful. It means that the BLA can be estimated by aver-

aging Equations 4.45 or 4.46 over a number of realisations of signals belonging to the same

Riemann-equivalence class. This is the main idea in the robust method [226], which provides

non-parametric estimates of the BLA, the noise variance, the non-linear variance, and the total

(= noise + non-linear) variance.

After obtaining a non-parametric estimate of the BLA, a parametric rational transfer function

model is typically estimated on top of the non-parametric estimate. Nevertheless, since the linear

block G(z) in Equation 4.8 is assumed to be strictly proper (in order to avoid an algebraic loop in

the feedback model), the Output Error (OE) model starting from the time domain data is immedi-

ately estimated, with this estimation, it is then possible to easily impose strict approximation of

the transfer function and at the same time have the same estimation procedure for both periodic

and non-periodic inputs.
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4.2.7.2 Initialisation of the Non-linear Model

Since the nonlinear parameters of discrete-time grey-box model are estimated using an optimi-

sation, it is important to select an initial state x0 of the grey-box PNLSS model equation when

computing the state sequence of the Jacobian. To achieve this, the non-linear initialisation starts

with an estimation of the BLA. Again, since the linear block is assumed to be strictly proper, the

linear block is estimated as an Output Error model starting from the time domain data. Next, an

initial estimate for the non-linear block is obtained by cutting the feedback loop (and thus using

the measured output as an input to the model).

The path from the measured input to the output only contains the linear block, of which

already have estimated parameters. The output of this path is removed from the output of the

model:

v(t)= y(t)− Ĝ(q)u(t) (4.47)

The path from the measured output (which is temporarily used as an input to the model) to the

output of the model contains the unknown non-linear block as well as a known time-derivative

approximation block GTustin and the already estimated linear block. By expanding the non-linear

block in terms of basis functions (in this case polynomials, see Equation 4.10, the parameters of

the non-linear feedback (the polynomial coefficients p1, . . . , pr y , q1, . . . , qr ẏ and c) are estimated

using linear least squares computation.

4.2.7.3 Estimation of the Nonlinear Grey-box Model Parameters

To estimate the nonlinear parameters in the state space matrices of the grey-box model, a

weighted least squares cost function is minimised through an optimisation. The weighted

least squares cost function VLS that would be minimised with respect to the model para-

meters a1, . . . ,an,b1, . . . ,bn and p1, . . . , pr y , q1, . . . , qr ẏ in the grey-box state space matrices θ =
[vec(A);vec(B);vec(C);vec(E); ] is:

VLS(θ)=
nF∑

k=1
εH(k,θ)ε(k,θ) (4.48)

126



4.3. NUMERICAL DEMONSTRATION ON A DUFFING OSCILLATOR

Compared to the parameter estimation method for the black-box PNLSS model where the model

parameters are the elements in matrices θ = [vec(A);vec(B);vec(C);vec(D);vec(E);vec(F)]. In

the grey-box model, the model parameters are not the elements in the matrices A, B, C, D, E, and

F. Instead, the free parameters are the numerator and denominator coefficients of G(z), and the

polynomial coefficients of the stiffness and damping curve.

4.3 Numerical Demonstration on a Duffing Oscillator

In this section, the newly formulated grey-box PNLSS model identification process is demon-

strated on a simple generic mechanical system where only a set of input (force) u(t) and output

(displacement) y(t) measurements are available for t = 0, . . . , N−1. Figure 4.4 shows an illustration

of the system considered for this demonstration. To give a structural dynamics interpretation of

Figure 4.4: Simple input and output mechanical system.

the system under consideration,the objective of the demonstration is to examine the performance

of the proposed grey-box PNLSS identification procedure on a model that can be represented

as a SDOF mass-spring-damper system, with non-linear stiffness and non-linear damping as

illustrated in Figure 4.5. Here, M is the mass, k the linear stiffness, d is the linear damping, kNL

is the nonlinear stiffness and dNL is the nonlinear damping. Since the one of the assumptions in

deriving the grey-box is based on considering the non-linearities as feedback internal forces to the

original linear, the single degree-of-freedom mass-spring-damper system with non-linear damping

and stiffness can also be represented as a feedback model. The block-oriented feedback model of

SDOF system in Figure 4.5 can be represented as a linear system in the feed-forward branch

and the non-linear damping and stiffness in the feedback. The block GTustin(z) in Figure 4.6

represents a first-order transfer function of a discrete-time approximation of the time-derivative.
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Figure 4.5: A nonlinear mass-spring-damper system.

Figure 4.6: Feedback representation of the mass-spring-damper system.

4.3.1 Problem Description

The vibration characteristics of the considered Duffing oscillator system illustrated in Figure

4.5 are governed by Newton’s second law of motion described in Equation 4.49. The linear and

non-linear parameters selected for the system under consideration are listed in Table 4.1 with

the corresponding natural frequency (ω0) and damping ratio ( η ).

M ÿ(t)+Cv ẏ(t)+K y(t)+ fnl( ẏ3, y3)= u(t) (4.49)

The system was simulated in time-domain using standard MATLAB ODE45 function with

acceptable Relative and Absolute error tolerances. The relative and absolute tolerance values

were set to 1e−3 and 1e−6 while the sampling frequency ( f s) was set to 2800 Hz to obtain a

better and accurate integration. The excitation selected for u(t) was a sine-sweep, a sine-sweep
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Linear M(K g) C(Ns/m) K(kN/m) ω0(Hz) ε

Coefficients 3 155.81 7.61 253.57 1.63

Nonlinear p1(N/m) p2(N/m2) p3(N/m3) q1(Ns/m) q2(Ns/m2) q3(Ns/m3)
Coefficients 7.04 ·104 −2.38 ·108 1.75 ·1015 −3.66 −39.96 7.92 ·103

Table 4.1: Linear and nonlinear parameters of the Duffing oscillator

also referred to as a chirp signal is a type of sine-wave signal where the frequency increases

upwards or decreases downwards depending on the direction of the chirp or sweep. One of the

advantages of using sine-sweep is the capability of exciting the nonlinearities present in the test

structure or system under consideration. Furthermore, its is also very useful for describing the

vibration of an Oscillatory motion. A linear sine-sweep excitation with sweep rate of 100 Hz/min

in 210 - 280 Hz was chosen, the RMS amplitude of the signal was ranged from 1 -5 N and total

data sample of 117601. The simulated sine-sweep time series and corresponding FRFs are plotted

in Figure 4.7, it also shows a comparison of the amplitude for different RMS levels. From both

the time series and FRF plots, it can be seen that when varying the RMS value, the shape of the

amplitude changes, also indicating a significant level of distortion for both envelope of the time

series and the distortions observed at the resonances peak for RMS values of 3N and 5N.
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Figure 4.7: Generated sine-sweep time series and frequency domain response for the SDOF sys-
tem:(a) Time domain response, (b) amplitude of the corresponding discrete time fourier transform
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4.3.2 Best Linear Approximation of the Duffing Oscillator

Similar to the black-box PNLSS identification procedure, the first step in this proposed Grey-box

PNLSS identification is the estimation of the parametric and non-parametric BLA of the duffing

oscillatory system in Figure 4.5. The BLA of the simulated sine-sweep input u(t) and output

y(t) for t = 1, ...N was estimated using the LPM method [27] that was applied in the previous

chapter. A model order of 2 was selected for the estimation based on a single mode analysis. A

parametric linear model is then estimated in the frequency domain using the frequency subspace

identification algorithm [220], it is worth noting that the linear behaviour of the nonlinear

feedback model is included in this BLA estimation. In addition to the estimating BLA FRFs, total

standard deviation (including the noise and non-linear distortion) of the BLA was also calculated.

The amplitude and total distortions of the GBLA are plotted in Figure 4.8 for different force levels

where Figure 4.8a is the FRF and 4.8b is the total distortion (noise + non-linear distortion). From
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Figure 4.8: Estimated BLA and non-linear distortions for different force values: (a) amplitude
of the discrete time fourier transform of the BLA FRF, (b) amplitude of the discrete time fourier
transform of the nonlinear distortions.

the plots in Figure 4.8, it is possible to observe that varying the RMS amplitude value changes

both the BLA FRF and the calculated distortion, a shift to the right for higher force value is

observed on both the FRF and the total distortions. Furthermore, in Figure 4.8a for higher input

excitation, the FRF of the GBLA becomes less smooth at the resonance peak. This is as a result
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of the fact that the non-linearites in the system become more excited and dominant requiring

further identification investigation.

4.3.3 Linear Grey-box State Model of the Duffing Oscillator

Before constructing the nonlinear grey-box PNLSS model, a linear state space model of the

system under consideration is required, a linear state space model of the SDOF system in Figure

4.5 is constructed in an approximated discretised grey-box form of Equations 4.24 and 4.25 using

the sine-sweep data at 5N excitation level. Based on the physical description of the SDOF system

given in Equation 4.49, nonlinear terms in the state are selected as polynomial functions with

quadratic and cubic functions of the output displacement. The approximated discrete-time linear
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Figure 4.9: Estimated Linear model compared with original data and error: (a) time domain
response of the SDOF, (b) corresponding displacement amplitude of the discrete time fourier
transform of the SDOF.

block of the SDOF system, which is of the form 4.8, is estimated based on and Output Error (OE)

model function implemented in matlab. The Matlab OE function oe minimises the prediction

error (difference between measured and modelled output) in mean-square sense in the time

domain. More information on output error models and prediction error minimisation can be found

in [227]. The results of the identified linear grey-box model are illustrated in Figure 4.9, where

the true model data in red is compared with the estimated linear grey-box model in blue for both
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time domain and spectrum. The error levels are also plotted in orange on each graph, error levels

were evaluated based on a calculated difference between the true data and the modelled linear

output. The results show low error level of around 40 dB below the true spectrum at the outer

region of the resonance, however the error gradually increases around the resonance frequency

region as observed in both spectrum and time domain result shown in Figure 4.9 where the

linear identified grey-box model is unable to capture the true representation of the characteristics

observed in the true data with an RMS error value of 69.9%. Results obtained from this linear

grey-box identification reinforces the presence of nonlinearity in the system and the fact that a

linear approach will not produce a satisfactory result.

4.3.4 Nonlinear Initialisation of the Duffing Oscillator Model

During the estimation of the linear grey-box model, the Output Error (OE) function was used to

account for the quality of the estimated model. In this section, an initial estimate of the nonlinear
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Figure 4.10: comparison of estimated initial nonlinear model against true nonlinear data. (a)
Time domain data response (b) corresponding displacement amplitude spectrum of the discrete
time fourier transform.

model is estimated by cutting the feedback loop and solving a linear least squares problem to

obtain the polynomial coefficients (p1, . . . , pr y , q1, . . . , qr ẏ and c) of the nonlinear block. The results

of this estimation is referred to as the initial nonlinear model since the estimation uses the results
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from the identified linear model and approximated derivative of the GTustin(z). Initialisation of

the nonlinear model conducted in this section is crucial to avoid the optimisation of the nonlinear

model conducted in the next section from getting stuck in a local minimum. Figure 4.10 depicts

a comparison of the estimated initialised nonlinear model with the true nonlinear data, where

Figure 4.10a is the time domain data and 4.10b is the spectrum. Compared to the estimated linear
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Figure 4.11: comparison of estimated initial nonlinear model against true nonlinear data. (a)
stiffness curve (b) damping curve

model illustrated in Figure 4.9, the error at the resonance region of Figure 4.10 is considerably

lower, in addition, the estimated initial nonlinear model is able to capture a level of distortion

characteristics illustrated at the resonance peak which was not captured by the estimated linear

model. The time domain RMS error achieved by the estimated nonlinear initialised model is

31.8% which is significantly lower than the 69.9% value obtained by the linear model.

Unlike the black-box PNLSS identification method demonstrated in Chapter 3 where the

fitting of the time domain and spectrum data in conjunction with the RMS error are used to judge

the accuracy of the estimated model without any significant physics based interpretation. In the

proposed grey-box PNLSS identification method implemented in this chapter, the time domain

and spectrum are not only made available and used, it is also possible to extract the stiffness and

damping characteristics of the estimated model in order to gain physics based understanding of
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the estimated model. Figure 4.11 shows the comparison of the stiffness and damping curve of

the estimated initialised nonlinear model with the true nonlinear data. While the time domain

and frequency spectrum comparison illustrated in 4.10 show a reasonable fit, the stiffness and

damping extracted from the estimated model shows less fit or correlation. This is more apparent

in extracted damping curve in Figure 4.11b where only the linear region of the extracted curve

has a perfect correlation with the original nonlinear damping curve. Judging from the fitness

of the stiffness and damping curve and the RMS error value of 31.8%, it is possible to conclude

that the initialised nonlinear model is not sufficient and thus requires further identification and

minimisation of the error function.

4.3.5 Estimation of the Nonlinear Coefficients of the Duffing Oscillator

To estimate a parametric grey-box nonlinear model of the duffing oscillator, a weighted least

squares cost function VLS expressed in Equation 4.48 is defined through an Levenberg-Marquardt

optimisation routine to evaluate the grey-box PNLSS model. To begin the optimisation routine

the grey-box PNLSS model parameters obtained from the estimated initialised nonlinear model

in the previous section were used as starting values. In this section, the optimisation is performed
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Figure 4.12: comparison of the identified nonlinear model against true nonlinear data. (a) time
domain data response (b) corresponding displacement amplitude spectrum of the discrete time
fourier transform.
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on the parameters of the grey-box PNLSS model which are the coefficients of the transfer function

of the linear subsystem a1, . . . ,an,b1, . . . ,bn of elements in matrices A,B and E, in Equation 4.24,

and the parameters of the nonlinear stiffness and damping curves, p1, . . . , pr y , q1, . . . , qr ẏ , and

c in matrices A,B and E, of Equation 4.24. For this optimisation, the Levenberg-Marquardt

method is initialised with λ = 100 to make the optimisation procedure more robust, a fixed

number of 300 iterations was selected to have a good trade off between the convergence and

computational time. In Figure 4.12 a time domain and frequency spectrum comparison of the
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Figure 4.13: comparison of the identified nonlinear model against true nonlinear data. (a) nonlin-
ear stiffness curve (b) nonlinear damping curve

estimated nonlinear model based on optimisation with the true nonlinear data is illustrated. The

obtained nonlinear model features lower error level ranging generally within 35dB below the true

nonlinear spectrum data, similarly, compared to Figure 4.10a this new time domain estimate

is able to capture the nonlinear distortions observed at the resonance peak better. The final

RMS error obtained based on the nonlinear optimisation is 5.5%, this shows a significant error

reduction compared to the initial estimated nonlinear model error of 31.8%. The corresponding

nonlinear stiffness and damping curve obtained from this estimation are depicted in Figure 4.13,

where a more accurate correlation is observed in this nonlinear stiffness curve compared to the

one illustrated in Figure 4.11a. However the damping curve is non yet fully correlated, this could
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be as an indication for further optimisation iteration to fully estimate the damping coefficients.

By plotting the normalised root mean squared error against the successful iterations of the LM

optimisation, it is possible to observe the convergence behaviour of the models. From Figure 4.14,

one can observe the advantage of making the extra effort in estimating a nonlinear initial model to

use as starting values for the optimisation and estimation of the nonlinear model. The extra effort

during the nonlinear initialisation pays itself back as shown in Figure 4.14, where the convergence

of the nonlinear model show significantly better and faster performance compared to the linear

model convergence curve. Starting from the linear model would require many optimisation
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Figure 4.14: NRMS estimation error over successful Levenberg-Marquardt iterations.

steps/iterations before it would even achieve the same error of the nonlinear model which was

based on using the initialised nonlinear model parameters as starting values for the optimisation.

Achieving that same error is even not guaranteed, since the optimisation might get stuck in a

local optimum before reaching the same error as that of the initial nonlinear model. Table 4.2

presents the identified coefficients values for the nonlinear parameters p1, . . . , pr y , q1, . . . , qr ẏ , for

the simulated duffing oscillator example. The advantage of this proposed grey-box identification

algorithm compared with the black-box PNLSS method implemented in Chapter 3 is that

the coefficients of each nonlinear parameter in the grey-box PNLSS matrices A,B and E, in

136



4.3. NUMERICAL DEMONSTRATION ON A DUFFING OSCILLATOR

Equation 4.24 can be tracked during the identification and optimisation. In Table 4.2, the relative

error between the true nonlinear coefficients and the estimated coefficients for each nonlinear

parameter for the linear, initialised nonlinear and final nonlinear models are calculated and

reported. It is obvious from Table 4.2 that the coefficients of the nonlinear stiffness parameters

Nonlinear Parameters p1(N/m) p2(N/m2) p3(N/m3) q1(Ns/m) q2(Ns/m2) q3(Ns/m3)

True Coefficients 7.04 ·104 −2.38 ·108 1.75 ·1015 −3.66 −39.96 7.92 ·103

Estimated Linear. 4.90 ·104 −1.33 ·107 1.35 ·1015 0.22 −1.36 2.89 ·102

Rel. error 0.3049 0.9442 0.2277 1.0603 0.9659 0.9635
Initialised Nonlinear. 1.63 ·105 −1.33 ·107 1.35 ·1015 1.27 −1.36 2.89 ·102

Rel. error 1.3167 0.9442 0.2277 1.3470 0.9659 0.9635
Estimated Nonlinear. −1.29 ·104 −2.31 ·108 1.75 ·1015 −2.74 −40.14 6.81 ·103

Rel. error 1.1835 0.0294 0.0028 0.2520 0.0045 0.1402
Optimised Nonlinear. 7.16 ·104 −2.31 ·108 1.75 ·1015 −2.97 −40.14 6.81 ·103

Rel. error 0.0159 0.0294 0.0028 0.1885 0.0045 0.1402

Table 4.2: True and estimated polynomial coefficients of the nonlinear stiffness and nonlinear
damping curve of the grey-box PNLSS model. The relative estimation errors on the non-zero true
coefficients are indicated in orange.

p2, and p3 gradually decreases as from the linear model to the estimated nonlinear model.

However, as errors for these coefficients decreases, the error for coefficient of p1, which is the

linear parameter of the polynomial function increases. The coefficients for q1, q2 and q3, on

the other-hand had a relative large error for the linear and initialised nonlinear model while a

reduction is observed in error during the optimisation resulting in the values presented for the

estimated nonlinear model. For both p1, and q1,, the error for estimated nonlinear coefficients

are seen as the highest amongst others, further optimisation of these parameters could improve

the overall identified nonlinear model.

4.3.6 Improving the Stiffness and Damping Estimates

While the estimated nonlinear model results presented in Figures 4.12 and 4.13 showed nearly

perfect matching correlation with the true nonlinear data, the errors for some of the coefficients

presented in Table 4.2 are still relatively high. To overcome this large error, further consideration

of the linear part of the stiffness and the linear part of the damping either as part of the linear

block or part of the nonlinear block was implemented in this section to observe if the error could

137



CHAPTER 4. GREY-BOX STATE SPACE IDENTIFICATION OF NON-LINEAR VIBRATING
SYSTEMS.

be further reduced. A feedback model structure as in Figure 4.5 with linear block

G̃(z)= G(z)
1+β1G(z)+β2GTustin(z)G(z)

(4.50)

and a nonlinear feedback

f̃ ( ˆ̇y(t), ŷ(t))= f ( ˆ̇y(t), ŷ(t))−β1 ŷ(t)−β2 ˆ̇y(t) (4.51)

has the same input/output behaviour for all β1 ∈R and β2 ∈R
A static linear gain β1 can be split off from the nonlinear stiffness and be taken into account

in the linear block. Likewise, a static linear gain β2 can be split off from the nonlinear damping

and also be taken into account in the linear block:

ŷ(t)=G(z)
(
u(t)− f ( ˆ̇y(t), ŷ(t))

)
(4.52)

Adding and subtracting β1 ŷ(t)+β2 ˆ̇y(t):

ŷ(t)=G(z)
(
u(t)− f ( ˆ̇y(t), ŷ(t))+β1 ŷ(t)+β2 ˆ̇y(t)−β1 ŷ(t)−β2 ˆ̇y(t)

)
(4.53)

The ˆ̇y(t) in the last term is equal to GTustin(z) ŷ(t), since it is the output of the GTustin block which

has ŷ(t) as input:

ŷ(t)=G(z)
(
u(t)− f ( ˆ̇y(t), ŷ(t))+β1 ŷ(t)+β2 ˆ̇y(t)−β1 ŷ(t)−β2GTustin(z) ŷ(t)

)
(4.54)

Transferring the last two terms from the right hand side to the left hand side, results in

(1+β1G(z)+β2GTustin(z)G(z)) ŷ(t)=G(z)
(
u(t)− f ( ˆ̇y(t), ŷ(t))+β1 ŷ(t)+β2 ˆ̇y(t)

)
(4.55)

and finally

ŷ(t)= G(z)
1+β1G(z)+β2GTustin(z)G(z)

(
u(t)− ( f ( ˆ̇y(t), ŷ(t))−β1 ŷ(t)−β2 ˆ̇y(t))

)
(4.56)

= G̃(z)
(
u(t)− f̃ ( ˆ̇y(t), ŷ(t))

)
(4.57)

which has the same form as (4.52), but with a linear block

G̃(z)= G(z)
1+β1G(z)+β2GTustin(z)G(z)

(4.58)
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Figure 4.15: comparison of estimated optimised nonlinear model against true nonlinear data. (a)
stiffness (b) damping

and a nonlinear block

f̃ ( ˆ̇y(t), ŷ(t))= f ( ˆ̇y(t), ŷ(t))−β1 ŷ(t)−β2 ˆ̇y(t) (4.59)

From this formulation it is possible to conclude that the static gains β1 and β2 can be adjusted to

further improve the coefficients of the nonlinear stiffness and damping parameters presented in

Table 4.2. Causing a further augmentation of the correlation between the true and estimated

nonlinear curves. It is worth stating that the adjustment of the static gains parameters does not

change the input/output behaviour of the model. Results obtained from these adjustment are the

nonlinear stiffness and damping curves presented in Figure 4.15 and coefficients of the optimised

nonlinear estimates presented in Table 4.2. From Figure 4.15, it is clear that the consideration of

the linear terms as part of the nonlinear block certainly improves the newly estimated nonlinear

stiffness and damping curve compared with the ones presented in Figure 4.13. The relative error

values for the linear parts of the stiffness and damping polynomial functions have also reduced.

4.4 Validation of the Non-linear Feedback Model

To examine the domain of validity of the proposed grey-box PNLSS model, the estimated model of

the Duffing oscillator demonstrated in Section 4.3 is validated on a newly generated sine-sweep
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and multi-sine data sets. In the validation step, the final optimised nonlinear model parameters

presented in Table 4.2 and Figure 4.15 was introduced to a simulated sine-sweep data generated

at 3N RMS excitation level. It is important to note that no further optimisation was conducted

in this step, only an evaluation of the final identified coefficients of the nonlinear model in the

previous section was carried out by simulating these coefficients with the sine-sweep data input

at 3N and comparing the modelled output with the original simulated data. This validation

experiment was intended to measure the performance of the identified Grey-box PNLSS models

under similar conditions based on the frequency and amplitude range of interest.
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Figure 4.16: comparison of validated nonlinear model against true data. (a) time domain data
response (b) corresponding displacement amplitude spectrum of the discrete time fourier transform.

Results obtained from the sine-sweep validation experiment are presented in Figure 4.16,

where the modelled validation output in purple is compared with the original simulated data in

red for both time domain and spectrum output responses. The error obtained from the validation

exercise is also plotted on the same Figure 4.16 in yellow, the validation results illustrated

above feature a low error level difference generally lying between 35-40dB at both start and end

frequencies and around 25dB at the resonance region. The Levenberg-Marquardt iterations used

in constructing this validation model are presented in Figure 4.17. It is observed that the optimal

model is reach after 26 successful iterations when using a nonlinear initialised model. Similar to
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the estimation error presented in Figure 4.14, the significant difference in the NRMSE result

of the linear model and nonlinear model ascertains the importance of initialising the nonlinear

linear model before final estimation and validation of the nonlinear coefficients.
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Figure 4.17: NRMSE validation error over successful Levenberg-Marquardt iterations.

4.4.1 Multi-sine Data Validation

The final test conducted on the proposed grey-box PNLSS identification algorithm is to assess the

behaviour of the proposed identification method on a different type of signal often used in the

field of nonlinear identification. In this case, multi-sine data sets was generated at three different

excitation levels, one period and seven phase realisations of a full random-phase multisine

with 5600 samples per realisation are used for generating the multi-sine validation signal. The

multisine excites the frequencies between 210 Hz and 280 Hz with a frequency resolution of 2 Hz

(the sampling frequency is 2800 Hz), this is done to mimic the similar frequency bandwidth that

was used in the sine-sweep estimation data.The major advantage of the random-phase multisine is

that it still has (asymptotically for sufficiently large N samples) all the nice properties of Gaussian

noise, while it also has the advantages of a deterministic signal: the amplitude spectrum does not

show dips at the excited frequencies [228].
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Figure 4.18: Comparison of simulated multi-sine time and frequency domain data at different
force levels. (a) time domain data response (b) corresponding amplitude spectrum of the discrete
time fourier transform.

Three different amplitude levels are considered: 1N rms, 3N rms, and 5N rms. The time

domain and frequency response function (FRF) results for the generated multi-sine data are

presented in Figure 4.18. In the Frequency spectrum plotted in Figure 4.18b, a reduction in

amplitude and frequency is observed which also corresponds to a nonlinear softening character-

istics. To obtain comparable results that were achieved during the sine-sweep data estimation,

the nonlinear identification was conducted on the 5N RMS data set. The same identification

procedure implemented in Section 4.3, where the linear model was first estimated, followed

by a nonlinear initialisation and nonlinear parameter estimation was used in estimating the

nonlinear model for this multi-sine data. The time domain and spectrum results obtained from

the nonlinear identification are presented in Figure 4.19, where the error obtained from each

model is superposed over the original simulated multi-sine data at 5N rms. In Figure 4.19, a

trend in the model error similar to the sine-sweep estimation is observed, where a large error is

reported for the estimated linear model. Further refinement of the nonlinear estimation produces

a significant error reduction through each estimated model with the optimal identified model

being the optimised nonlinear model (in purple), where a significant difference of around (50dB)

is noticed between the maximum magnitude spectrum of the true data and the error of the
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Figure 4.19: Comparison of multi-sine estimated model errors against true nonlinear data. (a)
time domain data response (b) corresponding magnitude spectrum of the discrete time fourier
transform.

optimised nonlinear model.
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Figure 4.20: NRMSE error over successful Levenberg-Marquardt iterations for the multisine data.

The NRMSE against the Levenberg-Marquardt iterations for the multi-sine data identification

is equally presented in Figure 4.20 for the estimation and validation models. Compared to the
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sine-sweep data identification, it is observed for the multi-sine data that the optimal model is

reached after the first 5 iterations. In addition, the final NRMSE fall within and below 1% for

both estimation and validation models. Both Figures 4.19 and 4.20 agreeably demonstrates the

significance and strength of the grey-box PNLSS model using a different type of excitation signal,

where the achieved small RMS value indicates the predictive confidence of the proposed grey-box

PNLSS model. From a user point of view, having minor errors between the true simulated data

and the identified grey-box PNLSS models is in many cases acceptable, given that a good estimate

of the maximum amplitude, the frequency of the response and other important features of the

predicted responses are obtained. Most importantly, for this Duffing oscillator application, the

results have shown a good degree of accuracy based on the various errors criteria discussed and

presented in this chapter.

4.5 Conclusions

The main objective of this chapter was to introduce a nonlinear time domain grey-box PNLSS

identification algorithm by revisiting the black-box PNLSS identification method implemented in

Chapter 3. The underlying theoretical formulation and steps involved in the proposed grey-box

identification method were highlighted and discussed in Section 4.2, an important assumption

made during the formulation of the identification theorem is the notion that the nonlinearities

in a system act as internal feedback forces to the underlying linear model of the system under

consideration. The proposed identification method was demonstrated on a simulated Duffing

oscillator example, where sine-sweep data was used for the nonlinear parameter estimation and

validation. A further validation proof was also conducted using multi-sine data to check the

validity of the identification method on broadband data.

The success of the grey-box PNLSS identification algorithm was judged based on the rela-

tive errors between each identified nonlinear coefficients and the original nonlinear coefficient

used in generating the data as presented in Table 4.2. In addition, the RMS values of 0.2%

and 1% achieved on the identified and validated grey-box PNLSS models were also used as

supplementary measures for arbitrating the attained nonlinear model for the Duffing oscillator
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example. One key feature demonstrated in this proposed grey-box identification algorithm is the

ability to track the behaviour and estimation of each coefficient for each nonlinear parameter

p1, . . . , pr y , q1, . . . , qr ẏ , in the formulated grey-box PNLSS matrices A,B and E, in Equation 4.24.

Having this coefficient tracking capabilities provides the possibility of plotting and visualising

the evolution of the nonlinear stiffness and damping curve at each identification stage, such as

the nonlinear initialisation and final estimation stages.

Compared to the exponentially increasing characteristics and very large number of the esti-

mated nonlinear parameters attained using black-box PNLSS identification method implemented

in Chapter 3, in this grey-box method, the estimated model has the advantage of being parameter-

parsimonious where the number of estimated nonlinear coefficients is significantly reduced. Most

importantly, once the model is estimated, the linear discrete-time transfer function G can be

transformed to a continuous-time representation, allowing for obtaining meaningful parameters

(e.g. the mass, linear spring constant, and linear damping coefficients). The estimated nonlinear

block can be interpreted as the sum of a nonlinear stiffness and a nonlinear damping curve. These

important features and advantages are not present or easily achieved when using the general

unstructured nonlinear state space models.

While the competences of the proposed grey-box PNLSS identification method have been

demonstrated in Section 4.3 of this chapter, future work is still required to advance the nonlinear

identification capabilities. The numerical example demonstrated in this chapter was for used

a single nonlinear mode or SDOF. Future research on this topic should include developing the

Jacobian of the grey-box algorithm to accommodate multiple nonlinear modes, different types

of nonlinearities and multiple nonlinear sources rather than a single localised source. Another

improvement that could be benefited by this proposed method is the development of a method

to calculate the confidence interval of the estimated nonlinear parameters and coefficients.

Implementing the proposed method using noisy or imperfect data would be another avenue to

challenge the strength of the proposed method and finally demonstration of the identification

algorithm on measured data obtained from mechanical systems.
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GREY-BOX IDENTIFICATION OF AN AEROSPACE STRUCTURE.

Abstract

Complex shaped aerospace structures such deploy-able missiles are prone to exhibit some

level of nonlinear phenomena due to their aerodynamically tailored design and application.

Aside from the aerodynamic loads experienced by a missile during flight, a fundamental

challenge is the inevitable concentrated structural non-linearities observed often around

the jointed parts of the missile and connections to the air-frame. Activation of these non-

linearities often affects the dynamic response of the missile and in some cases lead to

structural failures. To obtain better understanding and improve the design, the nonlinear

dynamic behaviour of a prototype missile is examined using the grey-box PNLSS identifi-

cation method proposed in Chapter 4. The demonstration is conducted on measured data

obtained from experimental campaign of the prototype missile.
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5.1 Introduction

Based on the extensive review conducted on Chapter 2, it is now broadly acknowledged that

nearly all engineering structures posses a degree of nonlinearity, at least in certain conditions of

motion or operational environment. A large majority of these non-linearities are narrowed down

to the design of the structure, nature of the joints design, material and geometric properties.

For example, most aircraft components are designed and manufactured separately and later

connected together through bolted connections or other joining means to create a complete

assembled aircraft [229]. Effective characterisation of the mechanical properties such as stiffness

and damping for jointed or assembled structures in a dynamic analysis remains a recurring

challenge for most structural dynamicist [6]. Most assemblies or connections are made through

the use of bolts, rivets, adhesives, pins and elastomers, the response of these elements under

large external forces or compressive loads can often alter the global dynamic response of the

assembly.

Further more, research on bolted joints and other types of nonlinear features have been

proven to introduce large uncertainties in the stiffness and damping properties of a structure

which can often render the response of the structure nonlinear, identifying and predicting

the effect of these non-linearities at operational conditions also poses a challenge to present

structural engineers dealing with complex nonlinear structures. Experimental identification of

the nonlinearities arising from these jointed properties have been noticeable in many structural

dynamic applications, for example in complex aerospace and mechanical structures [230], micro-

mechanical systems with magnetic or friction forces [231], machineries with rubber isolation

mounts and assembled structures with bolted interfaces [232]. Hence, the parametric estimation

of these nonlinear behaviours from measured data would be of extreme benefit in obtaining better

virtual response prediction of structure under consideration.

Extensive efforts have been devoted on the application of developed nonlinear identifica-

tion methods to identify nonlinear parameters from experimental data, for example weak non-

linearities was studied on a more complex aerospace structure in [29] where a strategy for

non-linear modal identification of weak nonlinear effects on a large aircraft was presented. An
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aluminium plate attached with two stores used to illustrate the behaviour of a wing and an engine

suspended by a means of nonlinear pylon also displayed the presence of weak non-linearities

during a vibration test, the results obtained illustrated some hardening characteristics as shown

in [13]. A similar study was also carried out on a large helicopter with the identification of weak

nonlinear softening behaviour on one of the vibration modes as shown in [177]. Other examples of

case studies where non-linearity have been noticed in aerospace structures can be found in [233]

where non-linearity was also detected at the elastomeric mounts supporting the four turboprop

engines of the aircraft during the Ground Vibration Test (GVT) of the Airbus A400M aircraft

designed for military purpose. The F-16 fighter aircraft also showed a nonlinear behaviour at

wing-to-payload mounting interface of the aircraft when a similar GVT was conducted [10].

Despite the practical advancement and increasing interest in nonlinear identification from

experimental data, only a selected range of methods have successfully been used to obtain

parametric nonlinear models from experimental data. To continue this practical progression, this

chapter addresses the nonlinear experimental identification of a prototype assembled missile. This

involves the use of time domain grey-box PNLSS identification algorithm established in Chapter

4 and other nonlinear signal processing techniques to identify the type of non-linearity present

in the assembled missile, the complete identification process i.e. (Detection, Characterisation

and Parameter estimation) was achieved based on experimental data. Measured time series

and frequency data driven by Sine-sweep test and random excitation were exploited to gain an

useful insight to the dynamic behaviour and properties of the assembly. The validity and practical

application of the proposed grey-box PNLSS identification method in Chapter 4 was mainly put

to test in this chapter.

The structure of the chapter is as follows, Section 5.2 gives a brief description of the and of

test structure under investigation. The experimental study followed by the linear identification

based on measured data from low level random excitation and linear finite element modelling

are presented in Section 5.3. Section 5.4 provides the initial nonlinear detection and time

frequency analysis. The parametric nonlinear identification results based on the grey-box PNLSS

identification algorithm are presented in Section 5.5. The conclusion of the study and the collective

use of different analysis techniques in this chapter are summarised in Section 5.6.
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Part of this chapter is based on the following conference papers:

S.B.Cooper, D.DiMaio, D.J.Ewins (2017) Nonlinear Vibration Analysis of a Complex Aerospace

Structure. In G. Kerschen (Ed.), Nonlinear Dynamics Volume 1: Proceedings of the 35th IMAC,

A Conference and Exposition on Structural Dynamics 2017 (pp. 55-68).

S.B.Cooper, (2016) Nonlinear vibration analysis of a complex aerospace structure. In proceed-

ings of the Defence and Security Doctoral Symposium. https://doi.org/10.17862/cranfield.rd.4288874.v2.

S.B.Cooper, M.Rosatello, A.T.Mathis, K.Johnson, M.R.W.Brake, M.S.Allen, A. A.Ferri, D.R.Roettgen,

B.R.Pacini, R.L.Mayes (2017) Effect of Far-Field Structure on Joint Properties.In M.S.Allen,

R.L.Mayes, D.Rixen (Ed.), Nonlinear Dynamics Volume 4: Proceedings of the 35th IMAC, A

Conference and Exposition on Structural Dynamics 2017 (pp. 63-77)

5.2 The Aerospace Test Structure

A Missile Test Structure (MTS) was designed and manufactured for a related piece of research in

[234] as shown in Figure 5.1 which was extracted from the publication. The MTS, while not an

exact scale replica of any particular missile system (for ease of manufacture and classification),

has structural features that are typical of a full-size system e.g. multiple body sections, bolted

joints, hanger and launch rail assembly. MTS is made up of 4 sections of aluminium tubing,

a nylon nose cone, aluminium fins and hangers and a detachable aluminium launch rail. The

approximate dimensions are: overall length 1200 mm, outside diameter 60 mm, overall mass 3

kg. Since most of the nonlinear phenomena experienced in mechanical vibrations are attributed

to joints, friction and geometric non-linearities, the test structure has related features which

can be used for investigating the effect of non-linearities caused by bolted joints and assembled

multibody sections at high levels of vibration test.
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Figure 5.1: Missile Test Structure.

5.2.1 Linear Finite Element Model of the MTS

The use of pre-test simulation to plan modal test has been an active procedure used by many

researchers and industrial engineers, to obtain a pre-test model an analytical or FE model of

the structure is often required [169]. The advantage of starting from a FE model is the fact that

the numerical results can be used in order to plan test strategy and to find optimal location

for sensors, shakers and suspension, allowing the optimal control and observation of number of

selected target modes. To generate the FE model of the MTS, a computer aided design of each

individual part was drawn using the geometry sketch tool in ABAQUS commercial software. To

keep the model simple and capable of describing the dynamic representation of the MTS, each

bolted connection and joint was modelled and assembled together using tied kinematic constraint.

Material properties of aluminium was selected for the tube, launch rail and fins, while material

properties of nylon was selected for the nose. Figure 5.2 shows an illustrated of the CAD model

for each part and the final assembly of the MTS.

5.2.1.1 Linear Finite Element Modal Analysis of the MTS

A detailed Finite Element (FE) mesh of the CAD model of the MTS was obtained using mesh

generator in the commercial ABAQUS FE package, the result of generated mesh is presented

in Figure 5.3. The model comprises about 720,000 nodes, and consists of mainly shell elements

namely isotropic and orthotropic elements, the tubes and nose modelled using isotropic elements

while the launch rail and fins were modelled with orthotropic elements. A linear FE modal

analysis was conducted to extract the FE mode shapes. The linear FE analysis was conducted

with the aim of getting better insight into the selection of appropriate measurement locations,

sensor placement and the test excitation point. In addition, this initial FE analysis was used to
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Figure 5.3: Mesh model of the Missile Test Structure.
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Figure 5.4: Linear FE Modes of the Missile Test Structure. (a) mode 1 (b) mode 2

determine the number of expected modes in a given frequency range. Most importantly, since the

test was being conducted on a test structure with multiple joints and localised non-linearities, the

results from the FE mode shapes are used to quickly and reliably identify the frequency ranges

where the joints and additional localised nonlinear source could be actively excited. Figure 5.4

shows two FE modes obtained at frequency range of 150Hz to 200Hz. Correlating the results of
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Figure 5.5: Linear FE Modes of the Missile Test Structure.(a) mode 4 (b) mode 5
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the linear FE model in very close quantitative agreement with the experimental observations, i.e.

carrying out a formal linear model updating process, is not an objective of this chapter. However

the results obtained from the linear FE modal analysis can be seen as satisfactory prerequisite

for the modal tests and nonlinear identification. Of all modes of vibration highlighted by the FE

model, only those that are prone to stimulate all joints and launch rail connections are further

investigated in the nonlinear identification section of this chapter. Figures 5.5a and 5.5b illustrate

two modes of vibration where the joints and local nonlinear sources are excited.

5.3 Experimental Test and Linear Modal Analysis of the MTS

To subject the MTS to a representative vibration environment the MTS was hung on a test frame

using fishing lines, springs and light connection ropes as shown in Figure 5.6, the test setup was

designed to replicate the usual boundary condition experienced by such device when attached to

an air vehicle. The black frame was bolted on a seismic table to disallow any form of movement

to the frame during the vibration test, the complete assembly was tested and examined to ensure

that the level of vibration transferred to the missile test structure is reduced to a minimum or

zero value. The assembled missile and hanger was instrumented with 15 accelerometers and a

force transducer, the connection areas between the hanger and the missile were instrumented

appropriately to capture any nonlinear phenomena exhibited by the bolted connection.

Figure 5.6: Missile Test Structure Experimental Set-up.
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5.3.1 Low Level Test Campaign

The first measurements obtained from the experimental test comprised of several low random

data which were acquired based on broadband excitation, the choice of broadband excitation

was made based on its conventional use in modal testing. The use of broadband excitation also

provides some early information on the behaviour of the structure and experimental configuration,

the low level random test was performed using the Spectral Test module in LMS Test Lab [233],

the test structure was excited close to the hanger attachment at the tail section as shown in

Figure 5.6. The structure was excited using burst random excitation filtered in 120-550Hz. The

FRFs and associated coherence functions obtained from the test was exploited to identify the

linear modal properties of the test structure, the shape of the FRFs and ordinary coherence

plots were also used as an indication to determine if the assembly was behaving linearly at the

specified excitation level.

A selection of the Frequency Response Functions (FRF) and coherence functions obtained from

the low level random excitation are plotted below in Figures 5.7a to 5.7d. The linear resonance fre-

quencies and damping ratios were estimated using the frequency-domain identification algorithm

(Polymax) method presented in [2], the PolyMAX method uses measured Frequency Response

Functions (FRFs) as principal data. The measured FRF is is seen as the right matrix-fraction

model which represents a pair of inputs and output. The corresponding resonance frequencies

and damping ratio identified using the low level random data obtained from the missile test are

presented in Table 5.1. The resonance peaks of the FRFs indicates that the structure is lightly

damped across the selected bandwidths, the coherence function corresponding to each FRF or

measured position are all close to unity for the whole excited frequency range.

5.4 Non-linear Detection and Analysis

Detection indicates that some effect attributed to non-linearity is observed, and it is deemed

that the standard linear model cannot adequately represent the system response. There several

techniques of detecting nonlinear behaviour from measured data, this however depends on the

type of excitation signal used during the test campaign. Stepped sine and Sine-Sweep excitation
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Figure 5.7: FRFs and Coherence responses obtained from low-level broadband excitation.(a) and
(b)FRF and coherence response for the centre tube of the Missile, (c) and (d) FRF and coherence
response for the far-end of the Hanger.

are predominantly suitable in determining if a structure has a nonlinear behaviour at higher

excitation level, if linear, the structure would produce a pure sine wave in the output and if

nonlinear, distortions are easily detected by visualising the output envelop of the sine wave.
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Mode Frequency (Hz) Damping ratio (%)

1 144.38 0.75
2 154.90 0.94
3 183.04 0.52
4 253.57 1.63
5 292.17 1.72
6 315.41 1.34
7 358.05 0.69
8 492.44 0.72
9 524.85 0.75

10 539.21 0.71

Table 5.1: Estimated resonance frequencies and damping ratios based on low-level random data

5.4.1 Time Series and FRF Inspection

Visualisation of raw time series obtained from Sine-Sweep excitation can often reveal some level

of nonlinear behaviour in the structure, any form of nonlinear distortions observed in the time

response envelop is sufficient to prove the presence of non-linearity in the structure. In this

research, Sine-Sweep test was conducted on the second, third and fourth mode of the assembly.

Accelerations at every sensor locations on the MTS were measured between 0.5N and 15N. The

Sine-Sweep test was conduct using the Multi-input Multi-output (MIMO) Sine-Sweep module in

LMS Test Lab package , the input excitation force was uncontrolled however parameters such

has the start and end frequencies, sweep type and sweep time were specified. To detect any form

of nonlinear behaviour, the first observation is shown in Figure 5.8a and 5.8b where an absence

of proportionality is noticed between the time responses from low to high excitation level. This

indicates the breakdown of superposition principle, secondly, Figures 5.8b sweep-up shows clear

skewness in the time responses as the excitation level increases from 1N to 5N. The skewness in

the envelope of oscillation in Figure 5.8b where a sudden transition from low to high amplitude of

vibration is observed can also be described as a jump phenomenon, this is also a useful technique

for detecting nonlinear behaviour in the structure.

The final and most important observation from the time response envelope is the shift in

the resonance frequency, a negative drop can be seen in the location of the resonance frequency

between Figure 5.8 (a and b), where the resonance frequency has shifted / reduced from 250Hz
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Figure 5.8: Nonlinearity detection based on envelope time series inspection.(a) measured time
signals at different force levels for mode 2 (b) measured time signals at different force levels for
mode 4

to 230.2Hz due to the increase in the excitation level from 1N to 5N. Other forms of nonlinear

behaviours which are observed in the time response envelope are peak distortion, non-smoothness

and discontinuity of the sweep response at 5N compared to the response at 1N excitation level,

indication of multiple solutions and bifurcation points are also observed around the resonance

frequency for the response at 5N, all these observations are sufficient enough to detect the

presence of non-linearity in the MTS assembly.

Another simplified method of detecting non-linearity in a structure from experimental mea-

surement is based on the assumption that the FRF of a linear system is independent of the input

amplitude. This assumption is often used by most researchers in the field of structural dynamics,

it serves as a basic initial step in nonlinear identification and it associated with the homogeneity

of the system [171]. For a nonlinear structure the FRF is dependent on the magnitude of the

input force applied during the experimental test. The FRF cross correlation method presented in

[235] is a simple method of quantifying non-linearity and it has been adopted in this section of the

research to detect some non-linearities in the missile test structure. The first and most noticeable

indicator of nonlinear behaviour is a lack of homogeneity in frequency response functions over

different force inputs. By looking at Figure 5.9 it is immediately obvious that the structure
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Figure 5.9: Non-linearity detection based on FRF inspection. (a) MTS Nose, (b) (Hanger)

behaves differently for different input forces, in contrast with established linear theory. The

shifts in frequency and amplitude of the FRFs were here deemed not to be safely negligible,

and we require a full identification of the non-linearities. A significant number of shifts was

observed in the resonance frequency and response amplitude as shown in Figure 5.9a and 5.9b.

The characteristics observed from the Sine-Sweep excitation FRFs shows that the assembly has

a softening behaviour within the range of the input excitation levels.
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5.4.2 Time Frequency Analysis using the short time Fourier transform

In Section 2.4.5 of Chapter of 2, time frequency analysis was mentioned as a nonlinear identi-

fication method available in the literature [6]. An important advantage of the time frequency

methods is the ability to map a time-frequency-amplitude characteristic of a signal on a single

plot. The mapping of these three parameters (time-frequency-amplitude) on a single plot can be

used to study the general time-varying characteristics of a vibration signal. In this section, the

Short-Time Fourier-Transform (STFT) is used to analyse and assess the the nonlinear character-

istics and harmonics presented in the measured sine-sweep data obtained from the experimental

campaign of the MTS. The principle of the STFT is derived from the discrete fast Fourier trans-

form (FFT) that is used to estimate the frequency spectrum of the analysed signal. The Fourier

transform (FT) used to map a time-domain signal to frequency domain is defined in [236] as:

X (ω)=
∫ ∞

−∞
x(t)e− jωtdt (5.1)

while the FT has been extensively adopted in structural dynamics, a specific limitation of the

FT is the inability to capture non-stationary effects which are often observed in data acquired

from nonlinear systems. This led to the improvement of the classical FT to develop a STFT for

signal processing as described in [236]. To compute the STFT, the signal under consideration is

first multiplied by a window ω(t−τ) which is a short window of the original signal followed by a

calculation of the FT of the signal based on the selected window ω(t−τ) along the time axis. This

yields a time-dependent representation of the form:

X (ω,τ)=
∫ ∞

−∞
x(t)ω(t−τ)e− jωtdt (5.2)

Even-though the STFT has the disadvantage of not being able to adjust the length of the selected

window, the STFT is still well used in modal analysis [237], structural dynamics [238] and in

nonlinear identification [239].

Here, the displacement of the time-domain data used in generating the FRFs plotted in

Figures 5.9a and 5.9b were used to compute the STFT spectrogram for three different force levels

and different sensor location of the MTS. The STFT spectrogram for the measured sine-sweep

data at four different location were also selected. In this chapter, the fixed time and frequency
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(a) (b)

(c) (d)

Figure 5.10: Estimated spectrogram maps obtained for sweep frequency (120-400 Hz) at 1N. (a) and
(b) spectrogram of 2 sensors located at the front and rear tube of the MTS. (c) and (d)spectrogram
of 2 sensors located at connections between the tube and the launch rail.

resolution limitation of the STFT was used as an advantages to locate and detect areas of the

structure where the nonlinearity is more dominate based on computed STFT spectrogram. In

Figure 5.10 (a-d) the STFT spectrogram at 1N is displayed respectively,where the spectrogram

at Figure 5.10 (a and b) are the results obtained for the sensor located on the front and rear

of the tube of the MTS. The spectrogram illustrated in Figure 5.10 (c and d) are the results

obtained for the two sensors located on the connections between the tube and the launch rail.

In Figure 5.10 (a and b), the spectrogram response mainly exhibits the fundamental harmonic
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(a) (b)

(c) (d)

Figure 5.11: Estimated spectrogram map obtained for sweep frequency (120-400 Hz) at 3N.(a) and
(b) spectrogram of 2 sensors located at the front and rear tube of the MTS. (c) and (d)spectrogram
of 2 sensors located at connections between the tube and the launch rail.

component for the excited sweep frequency range. In addition, the level of the amplitude or energy

observed at these sensor locations fall below -70dB, compared to 5.10 (c and d), where traces of

other harmonics are beginning to appear at higher frequencies and higher amplitude levels are

observed in the spectrogram. For increased excitation level at 3N, the spectrogram results for

the same sensor locations are illustrated in Figure 5.11 (a-d), where Figure 5.11 (a and b) which

represent the sensors on the tube have similar fundamental harmonic characteristics as that

of the 1N excitation case. However, the spectrogram for the sensor location of the connections
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(a) (b)

(c) (d)

Figure 5.12: Estimated spectrogram map obtained for sweep frequency (120-400 Hz) at 5N. (a) and
(b) spectrogram of 2 sensors located at the front and rear tube of the MTS. (c) and (d)spectrogram
of 2 sensors located at connections between the tube and the launch rail.

between the tube and the launch rail ( Figure 5.11 (c and d)) show evidence of nonlinearity

through the appearance of strong harmonic components between 500 and 600 Hz with higher

intensity amplitudes frequency lines.

This activation of the nonlinearity can be attributed to the opening of the connection between

the launch rail and the tube of the MTS. The strengths of these harmonic components keep

growing with the excitation level as presented in the STFT spectrogram in Figure 5.12 (a-d) for

5N excitation. At the highest excitation level (5N), the fundamental harmonic for the excited
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frequency range still remain dominate for the sensor locations on the tube (Figure 5.12 (a

and b)), indicating the absence of nonlinearities in those region of the structure. While the

appearance of harmonic components on the spectra is stronger for the sensor location of the

connections between the tube and the launch rail ( Figure 5.12 (c and d)), indicating the presence

of nonlinearities within that particular location of the structure. Based on the results obtained

from this STFT analysis, it is evident that measured data obtained from these accelerometers

locations (i.e connection between the tube and lunch rail) should be used for the grey-box nonlinear

identification section.

164



5.5. NON-LINEAR IDENTIFICATION BASED ON GREY-BOX PNLSS

5.5 Non-linear Identification Based on Grey-box PNLSS

In this section, the formulated grey-box PNLSS model identification method introduced and

demonstrated on a simple SDOF Duffing oscillator system in Chapter 4 is applied as an identi-

fication tool to investigate the nonlinearities observed within the joints and bolted connection

of the Missile Test Structure. Similar to the black-box PNLSS identification case study of the

aero-engine in Section 3.5 of Chapter 3, the first step involved in this grey-box identification is to

obtain a Best Linear Approximation (BLA) of the MTS. The next step is the derivation of a linear

and nonlinear initialised model, required for the following step which is the final estimation of

the nonlinear model which consist of the nonlinear parameters and coefficients. The nonlinear

identification is conducted on measured data presented in Figure 5.8b which is obtained from

a narrow band sine-sweep between 210Hz -280Hz, identification procedure and discussion of

results are detailed in the following sections.

5.5.1 Best Linear Approximation of the Aerospace Test Structure

Using the insight gained from the STFT analysis, the relative acceleration between the two

sensors located at the connection between the tube and launch rail was calculated and used

for the nonlinear identification. To estimate the BLA of the MTS, measured sine-sweep input

and the calculated relative acceleration at 3 different excitation levels were introduced to the

Local Polynomial Method (LPM) [199] algorithm used in Section 3.5. Figure 5.13 shows the

corresponding estimated FRFs and total distortions for the non-parametric BLA for the main

frequency bandwidth of interest (210-280Hz), the FRFs and total distortion (= noise + non-linear)

levels are based on excitation levels ranging from 1N to 5N. In Figure 5.13a, a shift in resonance

peak and reduction in amplitude is observed across the estimated BLA FRFs which indicates a

softening behaviour. The total distortions also increases as the excitation level changes from 1N

to 5N, this result further confirms the presence of non-linearity in the measured data and thus

require inclusion of non-linear terms in the grey-box state space modelling.
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Figure 5.13: Estimated non-parametric BLA FRFs and total distortions for (mode 4). (a) amplitude
of the discrete time fourier transform of the BLA FRF, (b) amplitude of the discrete time fourier
transform of the nonlinear distortions

5.5.2 Linear and Nonlinear Initialised Model

Before developing a nonlinear grey-box PNLSS model of the MTS, an underlying linear grey-box

state space model of the system under consideration is required, in this chapter, the underlying

linear grey-box state space model for the MTS is identified on the calculated relative displacement

based on measured acceleration data at 5N. The higher level excitation data was used for deriving

the underlying linear model based on the fact that the estimated model will be used for the

initialisation of the nonlinear model. The Output Error function [227] implemented in Chapter

4 was used to model the prediction error between the measured data and the modelled output.

The results of the identified linear grey-box model are illustrated in Figure 5.14, where the

displacement from the measured data in red is compared with the estimated linear grey-box

model in blue for both time domain and spectrum. It is evident from the both Figures 5.14 (a and

b) that the identified underlying linear model is unable to model the nonlinear jump phenomena

observed at the resonance region of the measured data. The results show high error level across

the whole time domain data with an output RMS value of 90.6%.

Based on the feedback model structure described in Figure 4.3 and the assumption that the

nonlinearities in a system can be seen as nonlinear feedback forces to the underlying linear
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Figure 5.14: Estimated Linear grey-box model compared with measured data and error (mode 4).
(a) time domain data response (b) corresponding displacement amplitude spectrum of the discrete
time fourier transform

model of the structure, an initialised nonlinear model of the MTS could be estimated. This was

achieved by introducing polynomial degrees to the identified underlying linear model and the

measured input force at 5N. The introduced polynomials are computed as a function based on

relative displacement and velocity calculated from the measured accelerations. Finally, initial

parameters and coefficients are estimated by solving a linear least squares problem.

Results obtained from the estimated initialised nonlinear model are illustrated in Figure 5.16,

where a comparison of the estimated initialised nonlinear model with the measured nonlinear

data is displayed. The error at the resonance region of this estimated model is significantly lower

compared to the error at the resonance region of the estimated underlying linear model presented

in Figure 5.14. This estimated initial nonlinear model is able to capture nearly all distortion

characteristics illustrated at the resonance peak which was not captured by the estimated linear

model. The time domain RMS error achieved by the estimated nonlinear initialised model is

15.3% which is greatly lower than the 90.6% value obtained by the linear model.

In addition, similar to the numerical demonstration in Chapter 4 it is also possible to extract

the stiffness and damping characteristics of the estimated model in order to gain physics based

understanding of the estimated model. Figure 5.15 shows the stiffness and damping curve of
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Figure 5.15: Estimated nonlinear initialised stiffness and damping curve (mode 4)
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Figure 5.16: Comparison of estimated initial nonlinear model against measured data. (a) Time
domain data (b) spectrum (mode 4)

the estimated initialised nonlinear model. Unlike the numerical example in Chapter 4, where

there were true parameters with stiffness and damping curves to compare with, it is not the case

for this application where the algorithm is tested with real measured data and all manner of

imperfections. However, both estimated stiffness and damping curve do have polynomial like

characteristics or function and not any other type of function which shows good evidence that the
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algorithm is able to fit the measured data well. It is worth stating that the nonlinear initialised

model obtained in this section is important and will be used in the next section as initial starting

parameters for the final nonlinear model estimation.

5.5.3 Estimation of a Full Nonlinear Model of the MTS

To estimate a final parametric grey-box nonlinear model for the missile test structure, a weighted

least squares cost function VLS expressed in Equation 5.3 is defined through an Levenberg-

Marquardt optimisation routine to evaluate the grey-box PNLSS model.

VWLS(θ)=
nF∑

k=1
εH(k,θ)W(k)ε(k,θ) (5.3)

Where W(k) ∈Cny×ny is a user-chosen frequency domain weighting matrix. Here the parameters

obtained from the initialised nonlinear model are used as starting values for the optimisation

routine, the final estimation is then obtained by minimising the cost function. Due to the large size

of data points being used for the optimisation, a unit weighting W(k) data selection was applied

to focus on the frequency bands around the resonance peak. This unit weight was chosen to speed

up the optimisation process and also focus on the regions where nonlinear characteristics are

observed. Final time domain and spectrum results obtained from the optimisation are presented

in estimated in Figure 5.18, comparing this estimated nonlinear grey-box model with the initial

estimated results in Figure 5.14, it is clear that there is a great improvement in the estimated

nonlinear model compared to the initial linear model. The obtained nonlinear model features

lower error level ranging generally within 40-45dB below the measured nonlinear spectrum data,

similarly, compared to Figure 5.14a this time domain estimate is able to capture the nonlinear

distortions observed at the resonance peak region. Although, a slight increase in error is observed

towards the ends of the time data and spectrum plot, this increase in error can be associated with

the weighting unit which was selected to focus more around the resonance frequency (215-245).

However, the final RMS error obtained based on the nonlinear optimisation is 1.26%, this shows

a significant error reduction compared to the initial estimated nonlinear model error of 15.3%.

The corresponding nonlinear stiffness and damping curve obtained from this estimation

compared with the initial curves obtained from the nonlinear initialised model are presented in
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Figure 5.17: comparison of the identified nonlinear model against true nonlinear data for mode 4.
(a) time domain data response (b) corresponding displacement amplitude spectrum of the discrete
time fourier transform.
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Figure 5.18: Final estimated nonlinear stiffness and damping curve (mode 4)

Figure 5.18. While the parameters and coefficients estimated and tracked during the optimisation

are recorded in Table 5.2. Compared with the numerical example of the grey-box identification

demonstrated in Chapter 4, where there are true nonlinear parameters to compare the estimated

results. In this case, there are no true parameters to compare with. However, judging from the
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Stiffness Parameters x1(N/m) x2(N/m2) x3(N/m3)
Initialised nonlinear model 1.72 ·105 1.61 ·106 1.48 ·1015

Final nonlinear model 2.24 ·103 2.71 ·106 2.08 ·1015

Damping Parameters ẋ1(Ns/m) ẋ2(Ns/m2) ẋ3(Ns/m3)
Initialised nonlinear model −0.97 0.11 5.41 ·102

Final nonlinear model −0.068 0.11 5.41 ·102

Table 5.2: Estimated nonlinear parameters of the Missile Test Structure for Mode 4

coefficients presented in Table 5.2, the similarities and consistency in the estimated parameters

and coefficients for both initialised and nonlinear model can be seen as a form of confidence

in assessing the capabilities of the identification algorithm in an imperfect environment. The

convergence behaviour of the initialised nonlinear and final estimated nonlinear models was

also monitored by plotting the root mean squared error against the successful iterations of the

Levenberg–Marquardt optimisation. Figure 5.19 shows the convergence plot obtained from the

optimisation conducted on both models, this convergence plot can also be used as a form of

measuring the performance of each model. In this case, from Figure 5.19, it is obvious that the

nonlinear model performs better than the initialised nonlinear model with the optimisation

starting with a lower NRMSE and also converges to the final error value faster. This better
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Figure 5.19: NRMSE error over successful Levenberg-Marquardt iterations.
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performance is can be attributed to the fact the the starting parameters used for the optimisation

was based on the optimised initialised nonlinear model. This validates the significance of the non-

linear initialisation step incorporated in this grey-box identification algorithm before progressing

to the final nonlinear estimation through an optimisation procedure.

5.6 Conclusions

In this chapter, the capabilities of the grey-box PNLSS identification algorithm introduced in

Chapter 4 is put to test by applying it to measured data obtained from test campaign conducted on

a prototype missile test structure. The missile test structure had key features such as joints and

multi-body sections which could be used to investigate the effect of nonlinearities in structures.

To begin the application case study, a finite element model of the MTS was built to run a linear

FE modal analysis, FE mode shapes obtained form the linear FE modal analysis were used

to pre-test planing of the modal test. For the test, three different excitation signals were used

to acquire acceleration data. First, data obtained from random excitation was used for the

linear identification, dedicated narrow band sine-sweep data were then used for the nonlinear

identification. The detection of nonlinearity was also achieved based on time-series and FRF

inspection.

The success of the grey-box PNLSS identification of the MTS was judged based on the RMS

errors between each identified nonlinear achieved on the identified grey-box PNLSS models and

the measured data. Based on the RMS values of 15.3% and 1.26% obtained on the initialised

and nonlinear models, it can be concluded that the PNLSS algorithm was able to successfully

model the nonlinearities observed in the MTS . Corresponding coefficients estimated from both

models and presented in Table 5.2 also show good comparisons. Future work is still required to

advance the nonlinear identification capabilities. Another improvement that could be benefited

by this application is the development of a method to calculate the confidence interval of the

estimated nonlinear parameters and coefficients. In addition, the validity of this application

could be strengthened by applying a different identification algorithm on the measured data

and compare the estimated Using the identified nonlinear parameters to generate nonlinear
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FE models and further cross validation with controlled test. could also be an area of future

development.
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VALIDATION OF NONLINEAR VIBRATING STRUCTURES.

Abstract

The last three chapters have been centred on the development and applications of nonlinear

identification methods in structural dynamics. However, predicting and validating the vibration

response of identified non-linearities in structures remains a challenge. In addition, when non-

linear effects are substantial or the need for simulating and predicting nonlinear vibration response

in a virtual sense is of vital importance, current linear simulation tools generally prove to be

unsatisfactory. In this chapter, an holistic approach to integrating test-based system identification

and simulation for non-linear structures is presented.The benefit of the strategy presented shows

the certainty and complementary role of simulation and experimental testing in achieving a

validated nonlinear structural model. The proposed approach is demonstrated on a twin cantilever

beam assembly structure coupled with a flexible arch shaped beam, where polynomial-type non-

linearities are identified and validated.
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6.1 Introduction

Non-linearities often originate from different sources in engineering structures. A large majority

of these non-linearities are narrowed down to the design of the structure, the nature of the

joints and material and geometric properties as briefly discussed in the literature review. Whilst

great progress has been achieved in the identification of non-linearities as shown in the previous

chapters and in [12, 6], adequate verification and validation of these nonlinear effects in a virtual

domain still acts as a challenging task to present engineers dealing with complex nonlinear

structures. In addition, the increasing use of industrial broad concept such as "digital twin" is

introducing a revolution in the way engineering structures are being designed and validated,

where the combination of simulations and experimental analysis are used to make important

engineering decisions.

In the last two decades, the combined use of simulation models and experimental data to

create a virtual prediction tool or design results has increased exponentially. For example, in

linear structural dynamics, the correlation of Finite Element Methods (FEM) and Experimental

Modal Analysis (EMA) have continuously been used as a validation technique for linear structures.

However, today’s engineering structures are being designed to meet stricter regulations requiring

the use of light weight materials and multiple components which introduces a range of advanced

mechanical behaviours some of which can be narrowed to have nonlinear effects. Hence, the

accurate representation of experimental identified nonlinear features in a virtual duplicate such

as a Finite Element model of the structure would be of extreme benefit as a predictive tool to help

make engineering decisions. One of the ways of addressing this task is to consider an effective

integration of experimental nonlinear identification and FE modelling of nonlinear structures.

Despite the advances in nonlinear system identification and developments in the numerical

computation of nonlinear systems, there is little or no activity on the integration of experimental

nonlinear identification and the validation of FE models of structures with identified non-

linearities using measured and numerical data. The primary objective of this chapter is to explore

the potential and ability of obtaining a validated nonlinear FE finite model of a structure by

implementing developed experimental techniques and numerical tools available in the literature.
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This chapter is preceded by an opinion paper in [36] where a new approach to modal testing

was proposed for nonlinear structures. subsequently, a practical application of the proposed

procedure was demonstrated on a wing-pylon structure in [169] with encouraging results. The

promising results obtained from the first practical application of the procedure has led to further

research on issues that were not addressed in the first case study. In this chapter, the engineering

challenges encountered when two validated monolithic linear structures are coupled together

to form a single assembled structure is addressed. This chapter demonstrates the procedures

and technical contents required to uncover some new nonlinear phenomena exhibited by the

assembled structure with specific attention on validating the FE model of the nonlinear structure.

The chapter is organised as follows: section 6.2 describes a brief overview of the proposed

approach with the different phases required to obtain a validated FE model of a structure

containing some nonlinear elements. In section 6.3, the test and simulation integration modular

framework is applied on the cantilever beam assembly, where the first phase of the framework

is conducted with the main focus on the derivation of an Underlying Linear Model (ULM) for

the twin cantilever beams uncoupled and coupled with the arch shaped beam respectively using

conventional modal analysis techniques. The nonlinear identification is also described in this

section where the detection, characterisation and quantification of non-linearity is carried out

using measured experimental data. In addition, the final phase of the procedure is addressed.

The final phase of the frame work goes beyond nonlinear identification, it introduces the central

role and importance of validating the finite element model of structure with the identified non-

linearities using specifically controlled measured experimental data. Finally, discussions and

conclusion of the holistic approach are drawn in section 6.4 with suggestions for future research

on this aspect of nonlinear structural dynamics.
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Part of this chapter is based on the following journal and conference papers:

S.B.Cooper, D.DiMaio and D.J.Ewins (2018) Integration of system identification and fi-

nite element of nonlinear vibrating structures. Journal of Mechanical Systems and Signal

Processing,102,401-430.

S.B.Cooper,and D.DiMaio (2016) Experimental and Numerical Modelling of Nonlinear Com-

plex Assembled Structures. Proceedings of the 27th ISMA, An International Conference on

Noise and Vibration 2016 (pp. 2597-2612).

S.B.Cooper, A.DelliCarri and D.DiMaio (2016) Model upgrading T0 augment linear model

capabilities into nonlinear regions. In G. Kerschen (Ed.), Nonlinear Dynamics Volume 1: Pro-

ceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016 (pp.

203-217).

6.2 Integration of FE and test-based identification for

nonlinear structures

Validation of linear FE models using modal test data is now widely practised in many areas

of structural dynamics and design with the availability of several validation techniques such

as the Modal Assurance Criterion (MAC), Coordinate Modal Assurance Criterion (COMAC),

Frequency Domain Assurance Criterion (FDAC) and Frequency Response Assurance Criterion

(FRAC) [1, 35]. These techniques are often used to validate a linear finite element model either

through experimentally-measured Frequency Response Functions (FRF) or mode shapes or both.

Based on the successful application of the combined use of EMA and FEM in linear structural

dynamics, it is evident that the development of a similar validation procedure for nonlinear

structures where the combined use of experimental and finite element techniques are used to

obtain models proficient enough to describe the observed nonlinear characteristics. Hence in [36],

a systematic approach was introduced to extend current modal testing and analysis techniques

to a situation where nonlinear effects are captured and modelled.
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6.2. INTEGRATION OF FE AND TEST-BASED IDENTIFICATION FOR NONLINEAR
STRUCTURES

The objective of the approach was to extend existing linear techniques with the addition of

just as much nonlinear analysis as required to construct a model which is capable of predicting

the nonlinear behaviour of such structure with a given accuracy. The approach is designed to

integrate current modal analysis techniques with nonlinear identification methods and available

nonlinear numerical algorithms in order to obtain a valid nonlinear FE model of the structure

under consideration. It does not rely on any specific method but uses a collection of toolbox

methods to obtain the final validated structural model. A schematic diagram extracted from [169]

is presented in Figure 6.1 showing a step by step guide of the proposed approach. In principle,

the integration framework is developed to be very flexible and generic. Meaning that the user

can select any current state of the art developed tool box for the nonlinear identification and an

appropriate numerical method for the computation of the periodic solution for the FE Model of

the given structure.

Since the fundamental principle of integration was developed from a modal testing approach,

it is important to stress that the whole procedure will only produce reliable results if a validated

linear model of the test structure under consideration is available. As such, the integration

comprises of three different phases, Phase I is referred to as linear model validation, Phase II

is the nonlinear identification phase while Phase III is the nonlinear model validation phase.

Phase I generally covers current industrial practice in linear structural dynamics which includes

linear modal testing, model updating and model validation. PHASE II, described in Section 6.3,

involves the nonlinear identification section of the overall approach.
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Figure 6.1: Data flow scheme of FE and test-based identification integration procedure showing
the steps in each phase Courtesy of Arnaldo DelliCarri, University of Bristol, United Kingdom.
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6.3 Demonstration on Cantilever Beam Assembly

6.3.1 Description of the Test Structure

The case study presented in this chapter was performed using a test rig intended to understand

the effect of connecting two validated monolithic linear beam structures together to form a

single assembled structure. In Figure 6.2a, the first sub assembled structure is made up of two

cantilever steel beams assembled on the same rectangular steel base and the steel base is bolted

on a seismic block to isolate and reduce any energy transfer that may occur through the base. A

linearity test and validation was conducted on the linear model of the assembly to ensure that

the structure behaves in such a manner to be called a linear structure. In Figure 6.2b, the two

cantilever beams are connected together at their tips with a flexible curved beam. The ends of the

curved beam are bolted to the tips of the two cantilever beams using M4 bolts as shown in Figure

6.2b. Table 6.1 presents the dimensions of each component in the assembly. The configuration of

test rig in Figure 6.2 was chosen because, while fairly simple, it represents a typical assembled

engineering structure that can easily generate some level of nonlinear behaviour when high levels

of vibration excitation are introduced. The assembly was instrumented with 10 accelerometers

and a force transducer; each accelerometer is given a node number as shown in Figure 6.2b.

Component Dimension (m)
Cantilever Beam 0.3*0.025*0.012
Rectangular Steel Base 0.718*0.17*0.025
Curved Beam 0.18*0.012*0.0005

Table 6.1: Dimensions of the cantilever beam assembly

6.3.2 Linear model validation (phase I)

Phase I starts with a conventional modal test and procedures needed for a linear model validation.

At this stage, only the fundamental linear properties of the structure are of interest. A first

linear model validation is conducted on the first sub-assembly in Figure 6.2b where the two

vertical steel beams are not connected. In addition, the sub-assembly was excited at different

levels of excitation to check for linearity. A second linear validation was also conducted on the full
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(a) linear assembly (b) nonlinear assembly

Figure 6.2: photograph of the cantilever beam structure. .

assembled structure in Figure 6.2b. The main advantage of conducting the test is to extract the

Underlying Linear Model (ULM) that is intended to represent the test structure under conditions

where the non-linear features in the structure are effectively not activated. Separation of linear

and non-linear effects is very challenging as both high and low level excitation can lead to either

stiffness, damping or both types of non-linearity. In this phase, special attention is given to the

level of input excitation applied to the structure. If signs of non-linear behaviour become apparent

in this test phase, then special care is taken in the type of data used in validating the ULM.

6.3.2.1 Linear Modelling

The first measurements obtained from the experimental test conducted on the sub-assembly

structure in Figure 6.2a comprised several low-level random data which were acquired based on

burst random excitation. The choice of broadband excitation was made based on its conventional

use in modal testing. The low-level excitation test was performed at 0.5N using the Spectral Test

module in LMS Test Lab and the structure was excited close to the base of one of the beams as

shown in Figure 6.2. The structure was excited using burst random excitation ranging between

20-1000Hz. The FRFs and associated coherence functions obtained from the test were exploited

to identify the linear modal properties of the test structure. The linear natural frequencies and
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Figure 6.3: Linear acceleration response function and coherence measured at low-level excitation
for the linear assembly. a (drive-point acceleration response) and b (Coherence)

Mode Frequency (Hz) Damping ratio (%)

1 102.15 0.24
2 627.24 0.22

Table 6.2: Estimated linear resonance frequencies and damping ratios based on low-level excita-
tion

modal damping ratios were estimated using the Polymax identification algorithm presented in

[2].

The corresponding natural frequencies and damping ratios identified using the low-level

random excitation are presented in Table 6.2. Figure 6.3 shows a selected FRF and coherence

plot obtained from a low- level test: the resonance peaks of the FRF indicate that the structure is

lightly damped across the selected bandwidths. The ordinary coherence function corresponding

to each FRF or measured point are all close to unity except right at the second resonance of the

whole excited frequency range. To check the behaviour of the sub-assembly, the structure was

excited at several excitation levels using the same burst random excitation used in the previous

test. The test was conducted to observe any frequency or damping shifts from the response of

the structure. A selection of the FRFs and coherence functions obtained from the different levels
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Figure 6.4: Comparison of acceleration response functions at three excitation levels for the linear
assembly in figure 2a. (a) Magnitude and (b) coherence: (blue) measured form 0.5N, (d-blue)
measured form 3N, and (red) measured from 5N excitation.

of excitation test are presented in Figure 6.4. The results obtained from this test shows hardly

any shift in the natural frequency or in the damping or distortion in the response curve and it is

therefore possible to conclude that the sub-assembly is still behaving linearly within the excited

range.

6.3.2.2 Linear Finite Element Model of the Sub-assembly

The test structure shown in Figure 6.2a was modelled mathematically using beam finite elements.

In order to keep the model simple yet capable of describing the general dynamic behaviour, the

whole structure was modelled using 2D beam elements. Since the structure was made out of

steel beams, standard material properties for steel were selected for the initial FE modelling.

The FE model was generated using the commercial ABAQUS FE package and a linear modal

analysis was conducted to extract the FE mode shapes and natural frequencies over a bandwidth

of 1000 [Hz]. Figure 6.5 shows the first four bending modes of the beam and the corresponding

frequencies obtained from the linear FE modal analysis. It worth noting that due to the identical

design of the cantilever beams, each beam has its individual first and second bending modes but
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(a) (b)

(c) (d)

Figure 6.5: Finite Element mode shapes of the cantilever beam for the linear assembly in Figure
6.2a. (a) Mode 1, (b) Mode 2, (c) Mode 3 and (d) Mode 4.

with exactly the same natural frequencies. Hence a total of four mode shapes were obtained from

the linear FE modal analysis.

6.3.2.3 Linear Model Updating

The initial FE model generated from ABAQUS was then correlated and updated using the experi-

mental results obtained from the low-level random excitation modal test. The main objective in

this step is to correct the FE natural frequencies and mode shapes over the frequency bandwidth

of interest. The FE model updating was executed using FEM-tools software by Dynamic Design
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Mode
FE Freq
Before

Test Freq
Hz

Diff (%)
Before

MAC (%)
Before

Updated
FE Freq

Diff (%)
After

MAC (%)
After

1 105.21 102.11 3.04 82.7 102.33 0.21 98.4

2 105.21 102.11 3.04 82.7 102.33 0.21 98.4

3 641.29 627.24 2.24 79.1 627.81 0.09 96.5

4 641.29 627.24 2.24 79.1 627.81 0.09 96.5

Table 6.3: Updated FE Model Natural Frequencies and MAC Values for the linear-assembly in
Figure 6.2a

Solutions (DDS). FEM-tools uses a Bayesian Parameter Estimation (BPE) technique to minimise

the error for a given set of defined parameters, and the error minimisation is performed using an

iterative process that modifies the distance between the FE and experimental results [240].

The updated natural frequencies and MAC values for the first 4 modes are presented in Table

6.3. In addition to the MAC correlation procedure, the system mass and stiffness matrices were

also used to compute the FE frequency response for the first bending mode of the cantilever beam.

Proportional damping was used for the simulation of the FE response and Figure 6.6 shows

comparisons between the measured response at two levels of excitation (dots) and predicted

responses using the linear FE model. Based on the results obtained from the MAC correlation,

and the response curves in Figure 6.6, it is possible to conclude that a relatively successful

linear FE model was obtained. The validated FE model can also be classified as an accurate

representation of the test structure with an acceptable accuracy based on the good prediction of

the FE response at low and high excitation levels

6.3.2.4 Underlying Linear Model

Since there are two different configurations of the test structure being used for this case study as

shown in Figure 6.2 and the first sub-assembly in Figure 6.2 has been validated to an acceptable

accuracy. This section is aimed at obtaining an Underlying Linear Model (ULM) of the proposed

non-linear assembly in Figure 6.2b. The ULM is defined here as a model of the test structure

where the non-linearities are negligible, meaning that the test structure is excited at nearly zero

excitation so that any amplitude-dependent non-linear features within the structure are not
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Figure 6.6: Comparison between measured data and FE simulated response at the driving point
for the first vibration mode of the linear assembly in Figure 6.2a.

activated. The same experimental and linear FE procedures used for validating the linear model

were also used to validate the second test structure configuration in Figure 6.2b. A selection of

the FRF and coherence obtained from this test are illustrated in Figure 6.7 over a bandwidth

of 1000 [Hz]. The natural frequencies and modal damping ratios were also identified using the

same Polymax identification technique that was used in the linear modelling. Table 6.4 shows the

list of frequencies and damping ratio obtained for this model. Comparing the linear FRF plots

obtained from both structures, it is obvious that by connecting the two cantilever beams together

with a flexible curve introduces new dynamics into the system where the new assembly can be

regarded as a new structure. Also in Table 6.4 more natural frequencies and modal damping

ratios are identified and compared with those identified from the two monolithic cantilever beams.

By contrast, it is therefore important to create a new finite element model for this new assembled

structure where each feature will be accurately represented.

6.3.2.5 Underlying Linear Finite Element Model

The updated FE model of the cantilever beams was improved by adding the geometry of the

flexible curved beam. This was modelled with the exact dimensions presented in Table 6.1 using

2D beam elements. The bolted joint between each cantilever beam and the curved beam was
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Mode Frequency (Hz) Damping ratio (%)

1 95.66 0.17

2 99.17 0.18

3 141.42 0.13

4 250.77 0.10

5 481.59 0.07

6 620.15 0.28

7 625.32 0.26

8 720.96 0.08

9 988.08 0.05

Table 6.4: Estimated Linear resonance frequencies and damping ratios based on low-level random
data for the nonlinear assembly in Figure 6.2b
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Figure 6.7: Acceleration response function and Coherence obtained from low-level broadband
excitation performed on the non-linear assembly. (a) Acceleration response and (b) Coherence.

modelled by means of linear springs in ABAQUS, where an initial stiffness coefficient of 500Nm

was assigned to each connected Degree of Freedom (DOF) as a starting parameter to model the

joints. For this FE model, standard material properties of steel were also used to model the curved

beam and the material properties of the other components in the assembly were left unchanged

since they were already updated. Similarly, a linear frequency analysis was conducted on this
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Figure 6.8: Linear Finite Element Mode shapes of the Non-linear Cantilever Assembly in figure 2b.
(a) Mode 1 and (b) mode 2.

version of the FE model to obtain the natural frequencies and mode shapes. Figure 6.8 illustrates

the first two mode shapes and frequencies obtained from the analysis.

6.3.2.6 Underlying Linear Model Updating

The new FE model was also correlated and updated using the low-level burst random excitation

modal test conducted on the complete assembly. In this model, the primary unknowns are the

coefficients of the stiffness used in modelling the joints and the exact material properties of curved

beam. FEM-tools software by Dynamic Design Solutions (DDS) [240] was used for the model

updating. To start the updating process for this FE model, a sensitivity analysis was conducted

on the coefficients of the linear springs to quantify the variation in the natural frequency of the

model as a result of modifying the coefficients. The coefficients obtained for all combinations of

responses and parameters were then stored in a sensitivity matrix and by analysing the matrix

information, the sensitive and insensitive zones of the structure were obtained. The sensitivity

coefficients are computed internally by FEM-tools using a finite difference method [240].

The updated FE frequencies were then compared against the measured natural frequencies.

The second parameter that was selected for the updating process for this model was the Young’s

modulus of the curved beam, although there were no physical measurements obtained for this
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Mode
FE Freq
Before

Test
(Hz)

Diff (%)
Before

MAC (%)
Before

FE Freq
(Hz) After

Diff (%)
After

MAC (%)
After

1 102.66 95.66 6.63 81.3 96.49 0.86 98.1

2 106.87 99.17 6.89 84.7 99.55 0.38 95.7

3 157.35 141.42 11.41 73.9 141.71 0.21 96.4

4 284.21 250.77 11.65 68.5 248.25 -1.00 82.7

5 515.18 481.59 6.97 62.7 484.64 0.63 82.3

6 672.81 620.15 8.49 80.6 619.52 0.09 96.8

7 680.14 625.32 8.77 78.3 626.24 0.15 93.4

Table 6.5: Updated FE Model Natural Frequencies and MAC Values for the FE model of the
nonlinear assembly in Figure 6.2b.

Components
Initial
Material Properties

Updated
Material Properties

Initial
Stiffness

Final
Stiffness

Cantilever
Beam

Steel
(E = 210G pa, υ= 0.27)

Steel
(E = 195.4 Gpa, υ= 0.27)

Rectangular
Base Beam

Steel
(E = 210G pa, υ= 0.27)

Steel
(E = 195.4Gpa, υ= 0.27 4)

Curved
Beam

Steel (E = 210G pa, υ= 0.27) Steel (E = 195.4 Gpa, υ= 0.27) 500Nm 397Nm

Table 6.6: Final Material Properties obtained from the model calibration

part of the structure due to light weight of the component. However, the data sheet provided by

the manufacture indicated steel as its material property. Therefore margin of 5% was permitted

for the variation in the material property values during this process and the updated natural

frequencies and MAC values for the first 7 modes are presented in Table 6.5. In Table 5 the MAC

percentage values were used as a form of quantifying the quality of the correlation between the

FE model and the experimental data for each mode. A MAC value of 80% and above is often

regarded as acceptable.

In this case, the majority of the MAC and frequency values are within acceptable figures, the

final material property values and linear stiffness coefficients obtained from the updating process

is presented in Table 6.6. In addition to using MAC to quantify the validation of this ULM, the

frequency response for the FE model was also computed by extracting the mass and stiffness

matrices from ABAQUS. The FRFs were computed using a new proportional damping matrix
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Figure 6.9: Comparison between measured data and FE simulated response at node 1 and driving
point for the first and second modes of the nonlinear assembly. (a) node 1 and (b) drive point.

calculated by using the FE mass and stiffness matrices and the identified modal damping ratios.

Figure 6.9 shows the comparisons between the measured response (dots) and predicted responses

at two levels of excitation using the linear FE model To quantify the correlation between the

measured data and linear FE model, the Frequency Domain Assurance Criterion (FDAC) was

used as tool for correlation. FDAC is a model validation technique discussed in [241] and [242]

that extends the formula of the Modal Assurance Criterion to encompass Frequency Response

Functions (or Acceleration Responses). It is particularly useful in this case, since it is insensitive

to the relative scale factor of two responses and to the frequency shift that might affect them.

While a successful correlation between linear FE model and the measured data at the low-level

excitation of 0.5N (blue) was achieved, the results shown in Figure 6.9 illustrates that the same

linear FE model could not be used to reproduce an acceptable frequency response of the structure

at the higher excitation level of 5N (red).

6.3.2.7 Overview of Phase l Results

In view of the importance of FE and experimental modal analysis (EMA) in linear structural

dynamics, conventional modal testing and model validation procedures have been applied to
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Frequency Range Excitation Level (N) MAC {%} Frequency Discrepancy {%} FDAC {%}

95-98 0.5 98.1 0.86 97.4

95-98 5.0 10.16 77.1

98-103 0.5 95.7 0.38 98.6

98-103 5.0 13.13 76.3

Table 6.7: Validation Results Using FDAC Values for the FE model of the nonlinear assembly in
Figure 6.2b.

both test structures in Figure 6.2 to obtain a valid linear FE representation of the structure at

relatively low amplitudes of vibration. With this validation procedure, it is possible to describe

the linear dynamic response of both test structures to an acceptable accuracy as shown in the

MAC and FDAC values presented in Table 6.5 and 6.7 which are all above 80%. In Table 6.7,

the percentage correlation of the FDAC at 0.5N for the selected frequency range are also above

95% and by common practice, they can be regarded to be within the acceptable range for linear

validation techniques.

However, in practice, many non-linearities exhibit a degree of amplitude dependence and

most of these become more prominent at higher levels of vibration rather than low levels. This

is evident in Figure 6.9 where the validated underlying linear FE model of the non-linear test

structure (Figure 6.2) at 0.5N could not successfully predict the response of the structure when

the excitation was increased by a factor of 10. In addition, the FDAC values at 5N presented

in Table 6.7 are below 80% with the frequency discrepancies between 10% and 14% and so

it is obvious that the underlying linear FE model of the structure can only be used as a true

representation of the structure within the validated excited range of 0.5N. In this case, the error

between the predicted response and measured data of the non-linear structure at 5N is a clear

indication of the presence of non-linearities in the test structure which are not represented in the

validated underlying linear FE model. As such, it is important to conduct further analysis on the

structure. This includes the identification of non-linearities and the non-linear model validation

of the structure. All these are further investigated in Phases II and III.
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6.3.3 Non-linear identification (phase II)

Referring to the chart in Figure 1, the second phase is primarily focused on non-linear identifica-

tion of the structure using experimental data. The overall objective of this section is to locate and

identify areas of the structure that exhibit any form of non-linear behaviour and, in addition,

to build a model of the non-linearity present in the structure. Each non-linear element needs

to be identified so as to be incorporated into the initial validated underlying linear FE model

and this would ensure that the FE model is able to capture and to accommodate the described

non-linear behaviour in the structure. In this Phase, new experiments are conducted under more

strictly controlled excitation conditions. This is to ensure that the structure is vibrated at high

amplitudes of normal operating conditions that would activate the non-linearities in the structure

in service.

Special care and attention are taken into consideration during the measurements obtained

in this phase: non-linear systems are sensitive to input data hence the exact excitation signals

are specified and extra care are taken when deriving the response functions. The four stages

recommended in [36] i.e (Detection, Characterisation, Location and Quantification) are adopted

in this phase. This enables the use of different developed non-linear identification algorithms

and techniques to characterise and estimate the non-linearity in the test structure. The location

stage was not relevant in this chapter based on the assumption that the curved beam and the

bolted joints are responsible for the non-linearity.

6.3.3.1 Detection of Non-linearity

The first step recommended in [36] for the experimental non-linear identification process is to

consider if the structure exhibits some level of non-linear behaviour under different excitation

conditions. This is often judged based on the absence of linear theory observed in the dynamic

behaviour of the structure. In this case, Figure 6.9 already shows an early indication of non-

linearity present in the structure both through the absence of proportionality in the measured

data and the large error observed in the response prediction at high amplitudes of vibration.

There are several techniques for detecting non-linear behaviour from measured data, this mostly

depends on the type of excitation signal used during the test campaign.
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Stepped and swept-sine excitations are predominantly suitable for investigating the response

of non-linear structures at higher excitation levels. This is mainly due to their deterministic

nature. If linear, the structure would produce a pure sine wave in the output and if non-linear,

distortions are easily detected by visualising the output of the sine wave. Other techniques for

detecting non-linearity from measured data are presented in [170, 171, 61]. Another intuitive

method or indicator of non-linear behaviour is a lack of homogeneity in the frequency response

functions over different excitation levels. The use of low-level and high-level random excitation is

suitable for homogeneity testing on the FRFs and ordinary coherence.

Time Series and FRF Inspection.

Visualisation of raw time histories response data obtained from sine sweep excitations can be

used to reveal non-linear behaviour in the response of the structure. In this chapter, swept sine

tests were conducted on the first and second modes of the non-linear assembly in Figure 6.2b.

Accelerations at selected locations of the assembly were measured at 0.5N, and 5N excitation

levels. Figure 6.10 (a and b) shows selected plots of the measured acceleration against sweep

frequency for the first and second modes of the assembly. Both sweep-up and sweep-down

sine excitation test were conducted. This particular test was conducted using the Multi-input

Multi-output (MIMO) Sine Sweep module in LMS Test Lab, given knowledge of the acquisition

parameters and process functions, the sweep rate and instantaneous sweep frequencies were

calculated.

The detection of non-linear behaviour in the response to the sine-sweep excitation is achieved

here by visually inspecting the measured time histories. Symptoms of non-linearity are visible

in the plots presented in Figure 6.10, in particular, Figure 6.10a, where a frequency shift is

observed for both modes when the amplitude of vibration is increased from 0.5N (dark blue) to

5N (red). Skewness of the signal envelope in Figure 10b is also observed at 5N excitation around

the resonance peak of mode 2, resulting to a jump phenomenon and the non-smoothness of this

envelop. The comparison of frequency responses measured at different controlled excitation levels

is another convincing way to detect non-linearity.

In Figure 6.11 stepped-sine FRFs are presented for each test concentrated around the mode

194



6.3. DEMONSTRATION ON CANTILEVER BEAM ASSEMBLY

80 85 90 95 100 105 110 115

Sweep Frequency (Hz)

-50

-40

-30

-20

-10

0

10

20

30

40

50

A
c
c
e
le

ra
ti

o
n

 (
m

m
/s

2
)

(a)

80 85 90 95 100 105 110 115

Sweep Frequency (Hz)

-40

-30

-20

-10

0

10

20

30

40

50

A
c

c
e

le
ra

ti
o

n
 (

m
m

/s
2
)

(b)

Figure 6.10: Sine-sweep acceleration data measured on node 1 of the non-linear assembly in Figure
6.2. (a) sine-sweep for mode 1, (b) sine-sweep for mode 2

of interest, from the lowest (1N) to a high (5N) input levels of excitation. These stepped-sine

FRFs only take into account the first harmonic and neglects all other higher-order harmonic

components in both input and output [202]. Figure 6.11 (a) and (b) illustrate the breakdown of

the principle of superposition coming from linear theory by comparing responses measured at

mode 1 in ascending order from 1N to 5N. Similarly, measured FRFs obtained for mode 2 are

illustrated in Figure 6.11 (c) and (d) between 1N and 4N where this principle is also violated. The

shifts in frequency and amplitude observed in FRFs obtained for both modes 1 and 2 here are

deemed not to be negligible, and will require further identification of the non-linearities. Finally,

aside from the frequency and amplitude shifts, the resonant peaks lean to the left, causing a

sudden transition (jump) down to a lower energy state when increasing in frequency, and a

smaller transition (jump) up to a higher energy state when decreasing in frequency. This is most

evident in the FRF obtained from mode 1 as illustrated in Figure 6.11 (a) and (b).

6.3.3.2 Characterisation of Non-linearity

The third step in the non-linear identification process is the characterisation of the non-linear

system. This step seeks to characterise the aspects of motion that drives the non-linearity in
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Figure 6.11: Force controlled Stepped Sine acceleration response measured at Node 1of the non-
linear assembly. (a) Mode 1 sweep up, (b) Mode 1 sweep down, (c) Mode 2 sweep up and (d) Mode 2
sweep down.

the structure. Aside from identifying the characteristics that drives the non-linear behaviour,

the selection of appropriate functional forms to represent the non-linearities in the structure is

mainly achieved in this step. Non-linear characterisation also helps in determining the type of

non-linearity in the structure and in addition seeks to provide answers to some major questions

that arise when dealing with non-linear system. Some of the typical questions that arise are
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listed below: a) What is the strength of the non-linearity? i.e is it weak or strong non-linearity

b) What is the source of the non-linearity? i.e. is it stiffness or damping non-linearity or both c)

What is the non-linear stiffness characteristic? i.e. is it hardening or softening d) What is the

characteristic of the restoring force? i.e. is it symmetric or asymmetric.

Of all the characterisation methods available in the literature, the restoring force surface

method has proven its ability to characterise the stiffness and damping properties of a non-linear

structure directly from measured acceleration data. By presenting the restoring force surface

results of a non-linear structure as a function of the displacement, velocity and acceleration in a

three-dimensional plot, it is possible to visualise the nature of the non-linearity in the structure.

The stiffness and damping properties of the non-linearity can also be visualised by taking a slice

of the three-dimensional plot at zero values of the corresponding velocity and displacements. To

this end, a modified version of the restoring force surface introduced in [120] was used to obtain

qualitative information on the non-linear stiffness of the non-linear assembled test structure in

this study.

Acceleration Surface Method.

In this section, the Acceleration Surface Method (ASM) for non-linear characterisation is

discussed. This is a similar approach which has been used to provide some qualitative charac-

terisation of the non-linear stiffness and damping at the wing-to-payload interfaces of the F-16

aircraft [243]. In this case, new Swept-Sine tests were conducted around the first and second

modes at high level of excitation levels. The acceleration surface was computed using acceleration

data measured at nodes 1 and 2 of the assembly. These nodes were selected to visualise the non-

linear behaviour caused by the connection. The measured acceleration signals were integrated

twice using the Trapezium rule and then filtered using a high pass filtering system designed in

MATLAB to obtain the corresponding velocity and displacement signals. For more details on data

signal processing obtained from sine excitation, the reader can refer to [61].

To visualise the form of stiffness non-linearities in the non-linear beam assembly connections,

a cross section along the axis of the zero-velocity value of the acceleration surface plot in Figure

6.12 was plotted and is presented in Figure 6.13. This was computed separately for each mode in
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Figure 6.12: Acceleration Surface plot across the non-linear connection.

order to visualize the form of non-linearity exhibited by that specific mode. Figure 6.13a (left)

shows the qualitative stiffness curve for mode 1 across node 1 and 2 while Figure 6.13b (right)

illustrates the qualitative stiffness curve for mode 2 across nodes 1 and 2, these figures are mainly

useful to understand the behaviour of the elastic non-linearities within the selected mode. The

stiffness curves show the symmetric nature of the non-linearities in the assembly most especially

for mode 2 within the excitation range. The stiffness curves for both modes have also revealed

that an accurate representation of the non-linear behaviour in the structure should account for

smooth and symmetric effects, the nature of the non-linearities in the system also indicates that

the non-linear stiffness can be modelled using odd functions or a polynomial with odd powers.

6.3.3.3 Quantification of Non-linearity

Once the non-linearity has been characterised, the last step in the non-linear identification

process is the estimation of the coefficients associated with the non-linear stiffness and damping

properties. There are a number of techniques used for non-linear parameter estimation, examples

of these techniques are the frequency domain feedback method [210], subspace identification

methods [244] and [116], the reverse path method [142, 110], non-linear auto-regression and

the RFS method [245]. Since the focus of this chapter is to estimate the non-linear stiffness and
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Figure 6.13: Qualitative Stiffness curve obtained across the beam connection of the non-linear
assembly . Mode 1 (a), Mode 2 (b).

damping properties caused by the complex assembly of the test structure, an alternative MDOF

approach of the RFS method was adopted.

The initial extension of the RFS method for parametric estimation of MDOF system was intro-

duced in [121] which was conducted in the modal space, however Al-Hadid and Wright proposed

a useful form of estimating non-linear parameters using the physical coordinate representation

of the non-linear forces while retaining a modal coordinate approach for the linear system [118].

Since the acceleration surface method was applied in the characterisation step, a direct parameter

estimation of the RFS was adopted to estimate the initial stiffness coefficients of the characterised

model. In addition the time-domain Hilbert transform (HT) approach (FORCEVIB) proposed

in [246] for identifying instantaneous modal parameters was also adopted for the estimation of

non-linear parameters.

Estimation of Non-linear Stiffness Coefficient.

The RFS method is very suitable for parameter estimation from sine excitation. However,

its domain of applicability is generally limited to reduced-scale structures since it requires a

rigorous writing of Newton’s law of dynamics. Hence a simplified assumption of the structure is
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Figure 6.14: Measured vs Polynomial fit stiffness curve of the nonlinear assembly . (a) Mode 1, (b)
Mode 2

always considered, to estimate the coefficients of the non-linear characterised stiffness, a lumped

parameter representation of the test structure was developed. The advantage of this approach

is the fact that a new model of the parametric model of RFS can be reconstructed based on an

appropriate polynomial order selection or curve fitting method that fits the measured RFS. A

similar approach was introduced by Masri in [247] where a least squares method was used to

estimate the mass required to obtain the coefficients of a polynomial model. Figure 6.14 presents

the comparison between the measured stiffness curve and the polynomial model of the stiffness

curve for modes 1 and 2.

The polynomial coefficients and effective mass value were obtained using the direct parameter

and least square estimation approach discussed in the non-linear identification survey in [12],

results of the polynomial fit are presented in Table 6 and the direct parameter approach is full

explained in appendix B of [248].

MSE = 100
(

1
N

∑
i
(Pi −Mi)2

P̄M̄

)
(6.1)

It is worth noting that the curve fitting approach was used in this stage of the identification

in order to estimate the required effective mass of the model, and the estimated mass value is
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Property Identified Model

Estimated
Effective Mass

2.89 Kg

Actual Mass of Test Structure 3.62 Kg

NMSE_Mode l 3.05 %

NMSE_Mode 2 1.92 %

Table 6.8: Identified parameters

expected to be a sensible fraction of the actual test structure as stated in the Dynamic Testing

Agency Hand book (DTA) and in [61]. To check the quality of the fit, the Normalised Mean

Squared Error (NMSE) illustrated in Equation 6.1 was used to calculate the deviation between

the measured stiffness and reconstructed polynomial model.

When applying the NMSE the deviations (absolute values) are summed instead of the

differences, hence the NMSE is often used to show the most prominent differences between

models. A model with a very low NMSE implies that the prediction error or residuals between

the predicted model and the observed model is low and also shows that both the predicted and

the measured model match closely well. As observed in Table 6 the NMSE for both modes 1 and 2

are below 5%, these results could also be used as a sign of accurate identification.(
mode1=−1.2e12x3 +1.5e8x2 +8.8e5x+0.028
mode2=−7.4e12x3 +1.5e7x2 +9.2e5x+0.52

)
(6.2)
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Non-linear Identification based on Hilbert Transform.

Recently, the potential of the Hilbert Transform (HT) in the application to non-linear vibration

system identification has attracted increasing interest [236, 127, 129]. A number of HT-based

system identification algorithms, such as free vibration identification method (FREEVIB) [126]

and forced vibration identification method (FORCEVIB) [246], have been successfully developed.

However, both FREEVIB and FORCEVIB only consider the primary component (i.e., the funda-

mental quasi-harmonic solution) of system response. This type of simplification can often limit

the proficiency of both algorithms when used in characterising the type of non-linearity present

in a test structure. Hence in [249] Feldman developed a signal decomposition technique for

system identification, named Hilbert Vibration Decomposition (HVD), where an initial vibration

signal is decomposed into a sum of components with slowly varying instantaneous amplitude and

frequency using a time domain analysis of the IF of the initial vibration signal.

In this chapter, the HVD and FORCEVIB methods were applied to characterise the instanta-

neous non-linear characteristics of the test structure using measured swept sine excitation. The

non-linear estimation using the FORCEVIB algorithm was implemented in 4 different steps. (1)

The HT of the measured vibration (and excitation) signals was obtained and their envelope and

the IF were calculated, (2) The instantaneous modal parameters such as the modal frequency,

modal damping, and modal mass value were calculated based on the signal envelop and IF, (3)

low-pass filtering of the modal parameters and calculation of the scale factor functions around

the selected extrema points of displacement and velocity of the measured signal; and scaling the

smooth modal parameters and (4) Presentation of results in the form of the backbones, damping

curves, average static force and average friction force characteristics.

Finally, curve fitting of the identified average non-linear characteristic was made to estimate

the non-linear stiffness and damping coefficients. With the procedure described above, in this

chapter the (IF) and (IA) of measured input and output vibration signals obtained from the test

structure in Figure 6.2b was calculated. With the IF and IA extracted, the instantaneous modal

parameters are obtained for each mode of vibration (modes 1 and 2) and the average non-linear

elastic force and non-linear damping force are also calculated respectively. Final identified results

are illustrated in Figure 6.15. In Figure 6.15(a) and (b), the stiffness and damping characteristics

202



6.3. DEMONSTRATION ON CANTILEVER BEAM ASSEMBLY

-2 0 2

Displacement (mm) 10-4

-150

-100

-50

0

50

100

150

A
v

e
ra

g
e

 E
la

s
ti

c
 F

o
rc

e
 (

N
)

Elastic Static Force

-0.2 0 0.2

Velocity (mms
-
1)

-4

-3

-2

-1

0

1

2

3

4

D
a

m
p

in
g

 F
o

rc
e

 (
N

)

Damping Force

(a)

-2 -1 0 1 2

Displacement (mm) 10
-4

-150

-100

-50

0

50

100

150

A
v
e
ra

g
e
 E

la
s
ti

c
 F

o
rc

e
 (

N
)

Elastic Static Force

-0.2 -0.1 0 0.1 0.2

Velocity (mms
-
1)

-3

-2

-1

0

1

2

3

D
a
m

p
in

g
 F

o
rc

e
 (

N
)

Damping Force

(b)

Figure 6.15: Hilbert Transform based Identified non-linear stiffness and damping curves for the
non-linear assembly. (a) Mode 1, (b) mode 2

for modes 1 and 2 of the non-linear test structure are shown, for mode 1 Figure 6.15a the stiffness

curve is observed to have nearly a linear characteristics while the damping characteristics show

more of a higher order polynomial trend. In Figure 6.15b, the HT identified stiffness and damping

characteristics for mode 2 are observed to have a non-linear behaviour with a polynomial-like

non-linear model.

Comparing both stiffness curves obtained from the RFS and HT based identification, one can

detect the non-linear identical trend displayed by both curves which is a good correlation between

both identification techniques. With the HT-based identification, neither low-pass filtering nor

narrow band can cancel out noise from measured data. Hence, errors are bound to occur during

the computation of the signal envelop and inverse Fourier components. As a consequence, further

errors are generated in the identified stiffness and damping curves. This is most evident in

Figure 6.15, where the FORCEVIB algorithm fails to produce results around zero velocity and

displacement values. The estimated modal mass value obtained for modes 1 and 2 are 3.08 and

4.50. However, compared to some existing non-linear identification techniques which assume

a prior knowledge of the type of non-linear stiffness and damping model before parameter

estimation. The RFS and HT-based identification methods as non-parametric identification
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Figure 6.16: Experimental backbone curves identified from sine-sweep data for the non-linear
assembly. (a) Mode 1, (b) Mode 2

methods can directly characterise the non-linear stiffness and damping model from measured

data, as shown in Figure 6.14 and Figure 6.15.

Aside from stiffness and damping estimation, the HT-based identification technique can

also provide information about the backbone of a non-linear system. In [236] the procedure for

constructing the Skeleton curve (backbone) as a function between the envelope and the modal

frequency for a vibration mode from measured data is described. The backbone obtained from

the time domain estimation of the modal parameters for modes 1 and 2 is presented in Figure

6.16. The obtained backbone has a typical non-linear form of softening stiffness characteristics.

The instantaneous modal frequency and envelope obtained from the HT analysis are varying

functions of time and have a fast oscillation about their smooth averaged values as discussed in

[249]. As a result, the HT identified backbone with the presence of non-linearity will not always

produce a smooth curve, but an oscillated curve (i.e. a curve varying in magnitude). Similar to

the illustrated backbone curve, the HT identification method can also characterise the damping

curve of a non-linear system as a function of the modal damping coefficients against vibration

amplitude.

A damping curve is an essential feature of a non-linear structure where the system property
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Figure 6.17: Experimental damping curves identified from sine-sweep data for the non-linear
assembly. (a) Mode 1, (b) Mode 2

often shows that the damping is amplitude-dependent. Figure 17 shows the damping curves

obtained from the HT identification for modes 1 and 2, the damping curve illustrates the modal

damping coefficients as a function of amplitude. For a linear structure, the damping character-

istics which are not expected to change, hence the damping curve will normally turn out as a

straight line. However, for a non-linear structure, where the modal damping depends on the

vibration frequency the damping curve depicts the modal damping coefficients as a function of

frequency. The obtained damping curve for modes 1 and 2 in Figure 6.17 display its non-linear

characteristics at high vibration amplitude, indicating that the damping property of the structure

increasingly becomes non-linear as the excitation force increases.

The use of HT-based identification can sometimes produce false results at the ends of its

estimation due to the inefficiency in cancelling out noise from measured data which often leads to

accumulation of further errors in the computation of the signal envelope and Fourier components.

This is also evident in the estimated damping force characteristics illustrated in Figure 6.15. It is

worth asserting that for both RFS and HT identification techniques, each stiffness and damping

function, backbone cure and damping curve was obtained directly from measured data without

any assumption of the forms of non-linearity present, classifying both as non-parametric.
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6.3.3.4 Overview of Phase II

In this phase, experimental data measured on the nonlinear test structure in Figure 6.2 has

been exploited using already developed nonlinear identification methods. Swept sine test data

in conjunction with the acceleration surface method were used to detect and characterise the

nonlinearities present in the structure. The nonlinear stiffness coefficients for modes 1 and 2

were estimated using a direct parameter estimation method and least squares fit to estimate the

effective mass. The HT-based identification technique was also used to estimate the structure’s in-

stantaneous dynamic parameters (i.e. natural frequencies, stiffness and damping characteristics

and backbone curves) and their dependence on the vibration amplitude directly from measured

time signals.

The nonlinear model of the test structure was created by curve fitting the experimentally

obtained restoring force characteristics, although the methods used in this nonlinear identification

phase have been selected based on the swept sine excitation signal used during the test and

also the ability to capture some interesting dynamic nonlinearities observed in this particular

application. Other nonlinear identification methods based on random excitation applied in the

first case study [169] could also be used to obtain similar results. Finally, the use of different

identification methods to obtain similar nonlinear stiffness and damping characteristics also

show the validity and reliability of the results achieved in this phase.

6.3.4 Non-linear FE modelling and validation (phase III)

Aside from identifying the non-linearities present in structures based on experimental data,

engineers today also require the use or at least are willing to understand the effects of these

identified non-linearities on the mechanical or physical response of a structure under certain

operating conditions. Hence, this phase III was undertaken in the light of providing some level

of solution to this challenge and also to integrate both the aspects of non-linear identification

and numerical computation of non-linear systems together. Phase III can be said to be the

least-developed phase of the proposed methodology. The steps are clearly defined in [169], but

the ability to execute them is not as well developed compared to other Phases. In this phase,

the non-linear characterised model identified in phase II is added to the stiffness and damping
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properties of the validated underlying linear FE model.

This step is introduced in order to capture and describe the non-linear effects which are

habitually amplitude-dependent as opposed to linear systems which are amplitude-independent.

Non-linear identification only quantify the quantification of physical parameters which were not

existing in the linear one. Therefore, in this phase the linear model must be upgraded with new

physical laws that can describe the non-linear dynamics measured in the test structure. Hence, in

this phase, the FE model is now referred to as a “non-linear FE model”. Another motivation behind

this phase is to exploit the non-linear FE model to understand new experimental measurements,

discover new non-linear regimes of motion which were not noticed in the identification phase

and finally, to conduct design modifications while retaining the knowledge of the non-linear

characteristics present in the structure of interest.

The analysis conducted in this phase was carried out in three different consecutive steps

which are model upgrading, model updating and model validation as per [12]. First, upgrading

a model requires changes to be made to the equation of motion of a discretised (FE) model in

order to accommodate previously identified non-linear characteristics in phase 2. The upgrading

procedure is easily achievable through any commercial FE package that allows the introduction

of customised elements (springs or dampers) between two interested degrees of freedom and also

defines a customised non-linear force-displacement/velocity relationship between the connected

DOF, as discussed in [12]. The second step involves updating the model. This task is often

executed for linear structures where the parameters such as Young’s modulus and Poisons ratio

of the FE model are updated to match measured results.

In the case of a non-linear structure, updating the FE model involves modifying the coefficients

of customised elements that were included in the validated underlying linear FE model in order

to match the measured characteristics. The updating step in this phase is achieved iteratively

where each updating loop requires the re-evaluation of the FE model and subsequent correlation

with measured data until a low residual percentage error is achieved. Once the updating of the

non-linear FE model has been successfully achieved, the model can then be used for prediction of

new responses at different excitation levels and then validated with new measured data.
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6.3.4.1 Non-linear Finite Element Model of the Assembly

The validated underlying linear FE model of the non-linear structure in phase I was used for the

analysis in this phase. Details of the linear FE model can be found in section 6.3.2 of this chapter.

The mass and stiffness matrices of the FE model of the assembly were extracted from ABAQUS

simulation software into MATLAB for the numerical computation. To reduce the computational

burden in this phase, it is often advisable to create a reduced model of the underlying linear FE

model (ULM) of the test structure. The reduced model is defined here as a selection of interested

physical DOFs and number of modes of the ULM while the rest of the DOF are transformed into

modal coordinates to reduce the size of the system matrices and number of equations to solve

numerically.

It is important that the reduced ULM must include selected DOFs from regions in the

structure where the non-linear features are present or identified and also where the structure is

being excited. In this section the reduced model FE model of the non-linear test structure was

obtained using the Craig-Bampton model reduction technique presented in [250]. Figure 6.18

shows a schematic of the reduced FE model of the test structure and regions with the non-linear

features. The dashed lines represent the linear FE model while the red-dots are the retained

nodes. The validated underlying linear model in phase I had a total of 6542 DOFs, in this phase

the model was reduced to 136 DOF. The non-linear connections were modelled by connecting each

associated DOFs in the reduced FE model with the customised non-linear spring elements that

describe the force-displacement or velocity relationship identified in phase II.

Figure 6.18 and Table 6.9 show a sample of the arrangement, order and magnitude of

the non-linear spring elements that were added to the reduced FE model before numerical

computation. It worth noting that the non-linear spring elements are made up of only higher

order polynomial terms and do not contain linear terms. Proportional damping was introduced to

obtain an appropriate linear damping matrix for the numerical model of the structure. Following

the relation in the proportional damping equation the damping matrix was computed using

Cv =αM+βK (6.3)

where the coefficients α and β were computed using a least-square estimation. The damping
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Nonlinear
Element

Node Connection DOF Connection Model
Stiffness
Coefficient N/m

1 Node_1-Node_7 Dof _1- Dof_21 x^3 -7.4e12

2 Node_1-Node_7 Dof_1 -Dof_21 x^2 1.5e7

3 Node_2-Node_15 Dof_4 -Dof_45 x^3 -7.4e12

4 Node_2-Node_15 Dof_4 -Dof_45 x^2 1.5e7

5 Node_7-Node_15 Dof_21 -Dof_45 x^3 -7.4e12

6 Node_7-Node_15 Dof_21 -Dof_45 x^2 1.5e7

Table 6.9: Non-linear Stiffness Elements included in the FE Model of the nonlinear assembly in
Figure 6.2

Figure 6.18: Schematic diagram of the FE model with non-linear element..

matrix was computed for the first 6 modes of the structure by setting the target modes in the

least square estimation to the first 6 modal damping ratios obtained from the linear identification

of the structure presented in Figure 6.2b and Section 6.3.2 of this chapter. In this context, the

coefficients obtained from the least square estimation are α = 2.7195 and β = 1.8034e−6.

6.3.4.2 Numerical Simulation and Experimental Correlation

As expressed in the introduction, a number of algorithms and numerical methods have been

developed for computing the forced response of a non-linear system. In this section, the shooting

method developed in [51] based on Newmark time integration was adopted in computing the
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steady state Frequency Response of the new non-linear FE model. The equation of motion

required to solve this type of numerical problem is written in the form:

Mẍ+Cẋ+K x+ fnl(x, ẋ)= F sinωt (6.4)

Where M, C and K denote the linear mass, damping and stiffness matrices obtained from the

underlying linear FE model of the structure, fnl(x, ẋ) represents the non-linear stiffness and

damping terms which contain the coefficients and polynomial order of all the active non-linear

DOFs in the system while F sinωt is the external periodic force at the harmonic frequency of

interval ω. The forced response simulation was computed in a frequency range spanning the 1st

and 2nd modes of the non-linear assembly, to assess the effect of each type of non-linearity (i.e.

stiffness and damping) in the structure.

The numerical simulation was conducted in two stages. The first simulation was computed

for the case where only the non-linear stiffness terms were included in the FE model while the

non-linear damping terms were considered in the second stage. The simulation was computed for

different forcing amplitudes ranging from F = 1N to F = 5N. To clearly evaluate the effects of

the non-linearities in the model, each amplitude response was normalised to its corresponding

forcing amplitude with the relating law (H = X /F). The forced response simulation was computed

for both the linear model (i.e. without the non-linear elements) and the non-linear model where

the non-linear terms are included. The normalised responses are converted into accelerations vs

frequency. Similarly, to validate the accuracy of steady-state frequency responses obtained from

the numerical computation, experimental stepped-sine tests were conducted on the non-linear

test structure in Figure 6.2b under forced controlled conditions.

The test was conducted for a range of different forcing amplitudes using the stepped-sine

module in LMS Test Lab. The control strategy implemented in LMS Test Lab only accounts

for the ability to control the first fundamental harmonic of the main forcing frequency which is

often applied in many industrial vibration tests. The stepped-sine sweep test conducted included

sweeps in both upward and downward frequency directions for the selected bandwidth with

forcing amplitude ranging from 1N to 5N. To compare like for like, the results obtained from

the numerical model were further post-processed to consider only the first harmonic response
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Figure 6.19: Comparison of measured and FE simulated acceleration responses for modes 1 and 2
of the non-linear assembly. (a) driving point and (b) node 1 at 2N (blue) and 5N (red) force levels.
Dotted lines are from experiments, continuous lines are from upgraded FE model, before updating
(using starting coefficients).

in the simulation. Figure 6.19 shows the non-linear response comparison of the numerical and

experimental results for the first 2 modes. Here the non-linear response is defined as a measured

frequency response of the structure under controlled forcing condition with the first fundamental

harmonic response of the structure.

The results comparing both experimental (dot) and numerical for the horizontal DOF of the

driving point and horizontal DOF for node 1 at 2N (blue) and 5N (red) force levels are presented

in Figure 6.19. As observed in Figure 6.19, while the shape of the numerical response of the

upgraded FE model corresponds with the measured data obtained from the control test at low

level excitation ,the model still fails to capture the exact measured points. However, the upgraded

FE model now indicates that it includes the necessary parameters to describe the non-linear

characteristics observed in the experimental measurements at least for the low force level (2N). At

higher forcing level (red, 5N), large deviations are observed between the computed and measured

response. This is mostly evident around the resonance peaks of both modes, where unusual

phenomena (like a long back bone response) and loops are observed in the computed response.

In [169], a similar loop observed in Figure 6.19 b was also detected in the results obtained
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for the non-linear response. The loops and unusual response behaviour probably indicates that

the strength of the non-linear parameters in the model are too strong leading to the generation

of multiple and unstable solutions around the resonance peaks. It is evident from Figure 6.19

that the non-linear FE model is still not able to capture the dynamics of structure at high forcing

level, this also shows the breakdown of the results in the non-linear identification phase. Since

both measured data and FE responses have the same non-linear behaviour (softening shape)

at low force level, it is understandable that the coefficients of the non-linear parameters need

to be updated to increase the accuracy of the upgraded FE model. At this stage, the updating

process is only considered on the coefficients of the non-linear parameters since the polynomial

model obtained from the non-linear identification already shows promising results as observed in

Figure 6.19.

6.3.4.3 Non-linear FE Model Updating

In contrast to non-linear system identification, non-linear model updating in this chapter is

aimed at generating improved numerical parameters which can be used to obtain predictions for

alternative loading arrangements or modified structural configurations. The main objective here

is to ensure that the non-linear stiffness and damping parameters in the updated FE model are

physically meaningful when compared with measured data. In linear structural dynamics, model

updating has received a significant level of attention with several developed updating methods

and procedure as discussed in [251]. In contrast, model updating of non-linear structures has also

received a small number development as illustrated in [6] and in [252] where major efforts are

devoted to model updating of jointed structures. In this chapter, the parameters of the non-linear

FE model are updated in order to minimize the difference between the numerical frequency

response and the measured frequency response.

Based on the concept of frequency shifting and linear FE model updating, a technique to

measure the closeness between measured and FE FRFs was proposed in [241], also known as

FDAC. In the context of FRF-based updating procedures, FDAC helps in selecting the frequencies

that should be used and also helps to choose the intervals where the FE model is close to the

measured data. Since the objective of non-linear model updating stage of this chapter is to
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minimise the error between the FE frequency response and the experimental frequency response,

two main optimisation studies regarding the choice of objective functions were performed. The

first objective function was the FDAC which is defined as the measure of the closeness between

the measured frequency response and the FE frequency response at selected frequency intervals,

while the second objective function represents the normalised root-mean-square as shown in

Equations 6.5 and 6.6:

FDAC(ωa,ωx, j)=
([Ha(ωa)]T

j [Hx(ωx)] j)2

([Ha(ωa)]T
j [Ha(ωa)] j)([Hx(ωx)]T

j [Hx(ωx)] j)
(6.5)

RMSE(ωa,ωx)=
√

(
∑n

i=1([Ha(ωa)] j−[Hx(ωx)] j)2)
N

RMSE1
(6.6)

where j corresponds to the measured column of H, (ωa) is the frequency at which Ha (numerical

FE frequency response) is being calculated, (ωx) is the frequency at which Hx (measured frequency

response) was measured experimentally and N is the number of points used to interpolate the

experimental data. In Equation 6.5, the FDAC values are restricted to the interval [(0,1) or in

percentages (0%,100%)] where a value close to 1 or 100% (in percentage form) means perfect

correlation. In terms of FDAC objective function, the shift at a fixed frequency ωa in the FE

model is defined as the difference

∆ωshi f t(ωa)=ω∗
x −ωa (6.7)

where ω∗
x is the frequency at which FDAC reaches its maximum for all measured frequencies.

One of the main advantage of the FDAC in linear model updating is its insensitivity to relative

scale factor of the two responses and the flexibility in selecting frequency points to be correlated

making it a useful method for frequency response ‘shape’ correlation. Taking the shape of the

frequency response into consideration, the improved FDAC can be written in the form

FDAC(ωa,ωx, j)=
([Ha(ωa)]T

j [Hx(ωx)] j)∣∣[Ha(ωa)] j
∣∣ ∣∣[Hx(ωx)] j

∣∣ (6.8)

In this context, FDAC takes values in the range [(-1, 1) or (-100%, 100%)], where a value of

FDAC near 1 or 100% means both frequency responses have a high shape similarity. Evaluating

equation (6) for a given set of FE and measured responses within the same frequency bandwidth,
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the FDAC value is obtainable. A perfect updated model will have only positive unitary values for

all(ωx) =(ωa),and as a result, the criteria for the shape and equal frequency pairing of the FE

model response will be given by a percentage value. The FDAC was selected for the final objective

function based on its current existence in linear model updating for model correlation and model

validation approach as discussed in [241, 242].

The non-linear FE model updating was performed using a gradient-based optimiser to calcu-

late the sensitivities of the objective function with respect to the design variables. The fmincon

algorithm in Matlab [253] is used to solve the error minimisation problem, gradients calculations

are performed with a standard interior-point approach using Forward Finite Differences (FFD)

method. To minimize the deviation between the FE and measured response, the non-linear

stiffness parameters at the associated DOF of the FE model were updated, see Table 6.9 for

the arrangement of the parameters and coefficients used in the updating process. The initial

frequency response obtained from the upgraded FE model in Figure 6.19 showed that the coeffi-

cients of the non-linear parameters used for the numerical predictions were too high, hence large

deviations were observed between the predicted and measured response as shown in Figure 6.19.

With this knowledge, the non-linear terms (i.e.x3, x2) and coefficients in Table 6.9 were used as

the design variables in the updating process.

The starting point (initial values of the design variables) were the coefficients of the polyno-

mial terms identified in non-linear identification section, (see Table 6.9 for details) while each

design variable was allowed to vary within ±0.6% of the starting value. The Matlab fmincon

algorithm was used to find the coefficients of each cubic and quadratic term that minimises the

objective function, a total of 15 iterations was achieved before obtaining the values that satisfies

the local minimum of the objective function. The non-linear updating was performed near modes

1 and 2 using the non-linear frequency response obtained from 5N excitation level. Figure 6.20

shows the results obtained after the non-linear updating process. The estimated non-linear

parameters obtained from the updated model, along with the initial non-linear parameters, are

presented in Table 6.10. From this table, a significant improvement can be observed across the

coefficients of the cubic terms while the coefficients of the quadratic terms remain unaffected.

In addition, the coefficients of the cubic terms connecting nodes 1 and 7 have reduced
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Figure 6.20: Comparison of Stiffness updated acceleration responses with measured data for
modes 1 and 2. (a) node 1 and (b) driving point across two force levels. Dotted lines are from
experiments, continuous lines are from the updated upgraded FE model.

considerably compared with the coefficients connecting nodes 2, 7, and 15. This is probably

related to the fact that the non-linear elements across node 2, 7 and 15 are more activated due to

their closeness to the excitation source compared with the other non-linear element in the model.

In general, the shape and data of the updated FE frequency response show very good agreement

with the experimental response. This also indicates that the updated estimated coefficients

are more accurate. The accuracy of the updated FE model was quantified by calculating the

normalised (I2 −norm) error of the discrepancies between the response of the updated model

and the measured data. The frequency response for load case 4N and 5N was used in computing

the norms:

EH = ‖Ha −Hx‖
‖Hx‖ ×100 (6.9)

where Ha and Ha are the updated model and frequency response, and ‖‖ corresponds to the

(I2−norm) error. In addition, the value obtained for the objective function was also used to judge

the accuracy of the updated model.

Table 6.11 presents values of the percentage error and objective functions for 4N and 5N

levels of excitation While the shapes of the updated FE frequency response (i.e. 5N red) correlates
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Nonlinear
Element

Node
Connection

DOF Connection Model
Stiffness values
before updating

Stiffness values
after updating N/m

1 Node_1-Node_7 Dof_1x- Dof_21x x^3 -7.4e12 (N/m^3) -1.9e11 (N/m^3)

2 Node_1-Node_7 Dof_1x -Dof_21x x^2 1.5e7 (N/m^2) 1.5e7 (N/m^2)

3 Node_2-Node_15 Dof_4x -Dof_45x x^3 -7.4e12 (N/m^3) -0.2e12 (N/m^3)

4 Node_2-Node_15 Dof_4x -Dof_45x x^2
1.5e7
(N/m^2)

1.5e7 (N/m^2)

5 Node_7-Node_15 Dof_21x -Dof_45x x^3 -7.4e12 (N/m^3) -3.8e12 (N/m^3)

6 Node_7-Node_15 Dof_21x -Dof_45x x^2
1.5e7
(N/m^2)

1.5e7 (N/m^2)

Table 6.10: Updated Non-linear Stiffness Coefficient

Excitation Level Objective Function (FDAC) Error (E_{H})
4N 87.3 % 12.4 %
5N 84.1 % 15.7 %

Table 6.11: Error and objective function values (%) for the Non-linear Stiffness updated FE model

well with the measured data, the percentage error and objective function values are slightly

different when the same model is used to predict the response at 4N (pink) ,as shown in Table

6.11. This can be related to the characteristics of the non-linear features in the test structure,

where the response amplitude decreases as the excitation force increases. This also relates to the

evidence of non-linear damping in the response of the structure at higher excitation levels. It is

worth noting that the updating was performed using the 5N excitation response before using the

same updated parameters to predict the response at 4N.

Finally, while the updated and predicted FE responses show good agreement with the avail-

able set of measured data points most especially for modes 2, there is still a large percentage

discrepancy between the FE response and measured data, most especially around the regions of

the resonance peak of mode 1, where some interesting dynamics (like a long backbone response)

which are not seen in the measured data is observed in the FE response. This is more evident

around the resonance peak of mode 1as illustrated in Figure 6.20, where it is extremely difficult

to select the true value for the new maximum vibration amplitude and resonance frequency due

to long backbone response observed. As a result, it is evident that the non-linear FE model could
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still be improved further to enhance its predictive capacity and also increase to the accuracy of

the whole model by reducing the normalised error value.

6.3.4.4 Non-linear Damping Identification Based on Model Updating

The upgraded FE model in section 5.1 only included non-linear stiffness terms. In this section

the aim is to further improve the accuracy of the non-linear FE model by including non-linear

damping terms in the already updated non-linear FE model. The assumption here is based on

the results obtained from the first updating process where the current non-linear FE model fails

to predict the response amplitude of the structure to an acceptable value or at least to similar

response shape observed in the experimental test. Estimation of non-linear damping parameters

/coefficients remains a challenging aspect of non-linear system identification with little or no

understanding. In phase II (section 4.3.2), the results obtained from the HT identification based

on sine-sweep data showed the damping characteristics was non-linear, however obtaining a

parametric model for the damping was not feasible.

Using the knowledge of the result obtained from the non-linear stiffness FE model updating,

where the coefficients of the cubic terms had the highest level of convergence or improvement, it

was obvious that a cubic non-linear spring element was an acceptable choice for modelling the

stiffness. In this section, a similar arrangement used in the non-linear stiffness modelling was

implemented in modelling the non-linear damping characteristics. The main difference here is

that only cubic spring dampers were considered in the design variables for this updating process,

the starting (initial values of the design variables) were set to 1Ns/m, while each variable was

allowed to vary between (1−1000Ns3/m3) as a first start since there was no prior knowledge

of the coefficients. The objective function was left unchanged Matlab fmincon algorithm was

used to find the coefficients of each cubic term that minimizes the objective function, a total of

25 iterations was completed before obtaining the values that satisfies the local minimum of the

objective function.

Table 6.12 presents the non-linear damping model updating arrangement and the estimated

cubic coefficients after updating Similar to the stiffness updated model, the non-linear damping

updating was conducted using the 5N (red line and dots) response. Of interest is also for the new
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Nonlinear
Element

Node
Connection

DOF Connection Model
Damping values
before updating
Ns^3/m^3

Damping values
afterupdating
Ns^3/m^3

7 Node_1-Node_7 Dof_1x-Dof_21x x^3 1 4.2

8 Node_2-Node_15 Dof_4x-Dof_45x x3 1 11.7

9 Node_7-Node_15 Dof_21x-Dof_45x x3 1 23.9

Table 6.12: Updated Non-linear Damping Coefficient

upgraded and updated FE model to be able to predict the response of the structure at either higher

or lower excitation levels. one more excitation 4N (pink) level was computed using the parameters

from the newly updated FE model, measurement at the corresponding level of excitation were

also obtained during the test. In Figure 6.21, the frequency response of the newly updated FE

model is compared with measured data, a good agreement between both measured and predicted

response is observed. To assess the improvement caused by the inclusion of cubic dampers in

the FE model, the accuracy of the damping updated FE model was quantified by calculating the

normalised (I2 −norm) error of the discrepancies between the frequency response of the newly

updated model and the measured data. These values were compared with the previous values

listed in Table 6.11.

The corresponding errors and improvement are illustrated in Table 6.13. In Table 6.13, the

objective function and error values obtained from the non-linear damping updating are presented

for each excitation levels. From the table, one can observe a significant improvement of about 10%

in the objective function values, also the normalised error values are now below 10%. This is more

evident in the shapes of the non-linear frequency responses illustrated in Figure 6.21, compared

to the initial responses illustrated in Figure 6.20 where a long backbone characteristic is observed

in the first mode. The new non-linear FE responses with non-linear dampers do not show such

particular behaviour, rather the new updated FE response show similar shape and agreement

with measured data. Furthermore, the new updated non-linear FE frequency responses also

illustrates the importance of including the non-linear dampers in the initial stiffness updated FE

model through their good agreement with measured data at different excitation levels.

To validate the accuracy of all non-linear parameters and corresponding coefficients in the
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Figure 6.21: Comparison of Damping and Stiffness updated acceleration responses with measured
data for modes 1 and 2.(a) Node 1 and (b) drive point across three force levels. Dotted lines are
from experiments, continuous lines are from the updated upgraded FE model.

non-linear FE, the model was used to predict the response of the structure and compared with

measured data at 3N (green) as shown in Figure 6.21. The comparison of both responses at 3N

in Figure 6.21 are in very good agreement with exact measured data points lying on the FE

response, the equivalent objective function and normalised error values were also calculated and

illustrated in Table 6.13 to quantify the validity and accuracy of the correlation between the FE

response and measured data for this excitation case. The normalised error and objective function

have been particularly useful in this case, since they are insensitive to the relative scale factor of

two responses and to the frequency shift that might affect them.

In addition, both parameters do not require that the frequency responses be defined at

the same frequency points, making them useful indicators for quantifying the accuracy and

validity of the correlation between both numerical and measured Frequency responses. Table

6.13 illustrates the error distribution between the linear and non-linear model. In Table 6.13,

while an improvement of around 10% is observed in the values of the objective function and

normalised error for 4N and 5N excitation level, the values obtained for these parameters at 3N

which was not used in the updating stage even show higher percentage accuracy of 97.2% for the
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Excitation
Level

Objective
Function 1 (FDAC)

Error
(E1_H)

Objective
Function 2 (FDAC)

Error
(E2_H)

Error
Improvement

3N 97.2 2.8%

4N 87.3 % 12.4% 96.8 3.2% 9.2%

5N 84.1 % 15.7 % 93.5 6.5% 9.2%

Table 6.13: Error distribution across the Upgraded non-linear FE model

objective function and 2.8% for the normalised error value, this could be as a result of the fact

the non-linearity is not fully activated in at this excitation level compared to the higher levels.

Here, a model with a lower normalised error implies that the prediction error or residuals

between the predicted model and the observed model is low and also shows that both the

predicted non-linear FE model and corresponding measured data are in good agreement. Finally,

the discrepancy between the measured and predicted maximum acceleration for the 3N and 4N

load cases are within 1% and also much lower than the discrepancy obtained in linear model

validation stage, the objective function values in Table 6.13 and correlation plots in Figure 6.21

also show that the shapes of the non-linear responses are well persevered within the excitation

range for both the experimental and FE results. All these evidences are used as an indicator for a

good validated non-linear model.

6.3.4.5 Validation of the Non-linear Model

The last step in phase three is validation of the non-linear model, this step is conducted to assess

the predictive capabilities of the newly generated non-linear FE model and also evaluate the

accuracy of the updated non-linear parameters in the presence of new data. This step can be

achieved by performing the validation against a controlled structural modification or evaluating

the predictive performance of other modes of the structure. In this case, the validation was

conducted by comparing the predicted response of the third mode (141.3Hz) against newly

measured force controlled stepped sine test. The new measured stepped sine test data were not

used in the non-linear identification phase.

Figure 6.22 shows the newly computed non-linear FE response for mode 3 compared with

stepped sine test data, the new non-linear response was generated using the updated non-linear
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Figure 6.22: Comparison of measured and FE predicted acceleration responses for mode 3 of the
non-linear assembly. (a) Node 1 at 1N and 3N force level; (b) drive point at 1N and 3N ;(c) Node 1
at 4N, 6N and 7N force level; (d) drive point at 4N, 6N and 7N force level. Dotted lines are from
experiments, continuous lines are from the predicted FE model.

model obtained in Figure 6.21. Although the third mode indicates the presence of more damping

non-linearity compared to the previous modes, the results presented in Figure 6.22 the predictive

abilities of the non-linear FE model. While some discrepancies are observed between the computed

responses and the measured data at the starting frequencies of the results in Figure 6.22, the
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Excitation
Level (N)

FDAC (%) Error (%)

1 95.7 4.3

3 95.7 4.3

4 93.8 6.2

6 93.8 6.2

7 93.8 6.2

Table 6.14: Validation and Error Results Using FDAC and Normalised Error Values

overall shape and trend of the non-linear response was observed to be in good agreement with

measured data. It is worth stating that the third mode (141.3Hz) is a local mode of the flexible

curved beam which was not instrumented with accelerometers due to the light weight of the

curved beam.

However the successfully correlation of the local mode on other measured points of the

structure without changing any non-linear parameter shows a good predictive performance

for the new non-linear FE model. The error between the computed acceleration response and

measured data for the third mode was quantified by normalising the acceleration responses using

the normalised error formulae in Equation 6.5 and the Frequency Domain Assurance Criterion

(FDAC) as a good correlation indicator. Table 6.14 shows the FDAC percentages and the error

distribution for the third mode of the structure.
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6.4 Conclusions

In this chapter, a case study considering and accounting for the effects of non-linearities when

performing model validation activities in structural dynamics is presented. Furthermore, we

have provided a practical methodology for integrating already-existing linear model validation

techniques with recent developments in non-linear system identification and numerical modelling

to offer a pragmatic solution to the ongoing challenge in the area of non-linear structural dynamics.

From the results, we can conclude that the finite element model validation of structures with local

non-linearities is feasible to an acceptable degree of engineering accuracy. This is attributed to

the progress in the area of non-linear system identification, increased development of numerical

algorithms for computing the periodic solution of non-linear systems and finally, the ability to

integrate the theoretical concepts and experimental knowledge of non-linear systems with the

current validation techniques in linear systems.

The overall aim of the chapter has been to demonstrate a logical approach to validating finite

element models of structures with localised non-linearities, based on knowledge obtained from

the linear model validation of the structure of interest and measured data. The aim was achieved

by following the 3 phases illustrated in Figure 1, Linear Validation, Non-linear Identification and

Non-linear Model Validation. The methodology was also outlined in sequential steps making it

possible to comment on the strengths and weaknesses of each step in each phase before moving

on to the next phase. This kind of approach can be considered as a useful tool for industrial

engineers that are confronted with similar challenges. Although the whole methodology still relies

on careful and time-consuming FE and experimental procedures, the experimental validation of

non-linear FE models can now be attempted using measured stepped-sine data.

Phase I, which is associated with the linear validation of the test structure, was executed using

classic linear validation tools and methods such as EMA and MAC. This part of the methodology

is already developed and does not require the derivation of new methods or technology. However,

phases II and III which involve the experimental non-linear identification and non-linear model

validation of the structure are executed using selected methods that were suitable for each step

in the methodology. In phase III, periodic solutions of the non-linear FE model were computed
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using the shooting method which was also used to gain insight into the dynamic response of the

structure. These results were validated using experimental data obtained from force- controlled

stepped-sine test data. The robustness of the non-linear FE model was validated by using the

FE model to predict the response of the structure for different excitation levels which were

subsequently correlated with measured data. The reliability of the validation was quantified

by calculating the normalised error between the measured and model predicted response. In

Table 6.13 and 6.14 the final error values all fall below 10%, which are all within the uncertainty

quantification region.

Comparing the predicted FE response at 5N in Figure 6.21 and in Figure 6.9, it is obvious

that the FE response in Figure 6.21 is in closer agreement with its corresponding measured data

compared to the former. With this observation, one also measures the importance of upgrading

the already-validated linear model in phase I with the identified non-linear elements in phase

II, to develop the validated non-linear FE model presented in phase III. This type of sequential

work flow is certainly more helpful in understanding the non-linear behaviour and predicting

the non-linear response of the structure of interest. Regardless of the advances in non-linear

system identification, there are still several challenges that need to be addressed in this area.

One of the major challenges is the lack of reliable methods or algorithms to identify precisely the

multiple non-linearities present in our current day design. In section 6.3.3.2, we used sine-sweep

data for 2 modes to estimate a polynomial model for the physical stiffness representation of the

non-linearity across the two cantilever beams.

However, at the end of the finite element model validation phase (phase III), a total of 9

non-linear elements were successfully identified of which 6 were quantified during the non-linear

model updating stage and the other 3 remained unaffected. Hence, there is also a need to account

for the sensitivity of each non-linear element in the FE model and also to rank their degree

of significance in the FE model. Finally, it is also important to develop better algorithms and

methods for quantifying the percentage correlation / error between non-linear FE responses and

measured data, rather than the normalised error values which were used in this chapter. The

reward in venturing into this research area of structural dynamics would help the community

to acquire more knowledge and understanding in accurately predicting the actual vibration
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amplitude of structures with non-linear features. Results from such research investment will not

only benefit the academic community but would also be of great advantage to industrial partners

to enable accurate prediction of fatigue life of structures with non-linear behaviour.
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CONCLUSION

The overall aim of the research presented in this doctoral thesis was to contribute to the de-

velopment of methods and strategies for tackling the increasing challenge associated with the

verification and validation of nonlinear phenomena encountered the design of vibrating structures.

The scope of the work presented in this thesis was dedicated to the integration of two distinct

competences (experimental testing and simulation), for the progression of current approaches

to solving the on-going non-linear structural dynamic difficulties encountered when designing

engineering structures. To accomplish the aim of the research presented in this thesis, three

key objectives were highlighted and discussed in the introductory section of this thesis. These

objectives are:

1. Develop a black-box data-driven approach for detection and characterisation of nonlineari-

ties for structures with multiple nonlinear sources and dynamic modes.

2. Propose an effective time-domain grey-box algorithm for experimental identification of

nonlinear parametric models.

3. Demonstrate a pre-digital-twin framework for nonlinear vibrating structures using a white-

box modelling approach.

227



CHAPTER 7. CONCLUSION

The first objective was addressed in Chapter 3 where an existing black-box oriented nonlinear

state space method was used to develop a data driven identification approach for representation of

the non-linearities observed in vibrating structures with multiple nonlinear sources and dynamic

modes. A discrete-time PNLSS model was developed for the identification and validation of the

non-linear phenomena using measured input and output data only without any prior nonlinear

physics based knowledge of the structure under consideration. In addition, this chapter also

investigated a specific challenge often encountered when deriving and using black-box models

which is the choice between the flexibility and parsimony of the identified non-linear models.

This challenge was addressed in Section 3.5.6 by conducting and validating a series of simulated

experiments using seven different monomial combinations to derive the most suitable PNLSS

model with the lowest number of parameters capable of reproducing the non-linearities observed

across multiple vibration modes.

The developed data-driven identification approach was applied on experimental data obtained

from the test campaign conducted on a large assembled aero-engine casing structure. The success

of the identified PNLSS models were judged based on RMS errors between the data simulated

from the PNLSS model and the true measured data, where RMS values of 1.58% and 1.44% were

obtained on the identification and validation of the best PNLSS model illustrated in Figures 3.14

and 3.15. An important result obtained in this chapter is attributed to evidencing the flexible

mathematical structure of black-box models, where different PNLSS models with monomial

degree combinations ranging between orders (2 and 7) were introduced to the measured data for

the aero-engine casing. Results obtained were presented in Tables 3.3 and 3.4, where a PNLSS

model with monomial degree combination of (3, 5, 7) was identified as the most suitable model

capable of reproducing the nonlinear behaviour observed on experimental data measured at a local

bolted connection of the aero-engine casing. This result also strengthens and correlates well with

current notion that odd polynomials are very useful for modelling nonlinearities originating from

joints or bolted connections as evidence in the ref [232]. Three main contributions demonstrated

in this chapter are highlighted as:

• The developed black-box oriented PNLSS data driven identification approach proves that

black-box models can still be considered as useful tools for identifying and interpreting
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non-linearities in structural dynamics.

• The applicability of the identification approach was demonstrated on a large aerospace

structure, where it was evident that a parsimonious PNLSS model was capable of describing

observed complex nonlinear characteristics.

• Model errors between the measured data and final identified PNLSS models obtained from

identification and validation cases studies were below 3%.

To overcome two limitations of the developed PNLSS data driven identification approach pre-

sented in Chapter 4, the second objective of this doctoral thesis was achieved in Chapters 4 and 5.

These two limitations being the very large number of estimated nonlinear parameters and the

difficulty in extracting physics based meaningful quantified parameters. These disadvantages led

to the introduction of a novel time domain grey-box state space identification method capable of

identifying structural nonlinear stiffness and damping parameters. The proposed algorithm was

based on combining the existing PNLSS method used in Chapter 3 with the existing concept of

treating non-linearities as internal feedback forces to the underlying linear model of the system.

These ideas were used to develop a grey-box state space identification algorithm. An important

attribute of the proposed grey-box identification algorithm is that the formulation of the identifi-

cation theorem is based on modifying the structure of the original black-box PNLSS matrices.

Here, the a discrete-time PNLSS model equation (as in Equation 3.13) with nonlinear functions

which depend on the states x and the input u is modified to a structured PNLSS state space of the

form shown in (Equations 4.24 and 4.24). The resulting formulation contains nonlinear functions

that depend on the model displacement and velocity, thus turning the black-box PNLSS model

algorithm to the grey-box PNLSS model algorithm. The modifications made to the black-box

PNLSS matrices were devoted to formulating a grey-box algorithm with the ability to extract

physics-motivated reduced number of nonlinear parameters during the identification.

The proposed time domain grey-box PNLSS identification method was first successfully

applied to a numerical single degree of freedom Duffing oscillator example in Chapter 4 where

nonlinear stiffness and damping coefficients were identified. Similar to Chapter 3, the accuracy

of each identified nonlinear parameter and coefficients was calculated based on the relative
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error between the identified and the true coefficients as illustrated in Table 4.2. In addition,

correlation and RMS error between the true and identified sine-sweep, nonlinear stiffness and

damping curves presented in Figures 4.12 and 4.15 were also used to measure the confidence of the

estimated parameters. To test the identification capabilities of the proposed grey-box state PNLSS

identification method further and with all real-world imperfections. A practical application of

the method on a larger scale was presented in Chapter 5. Here the non-linearities observed at

the bolted connection of an aerospace structure was successfully identified and validated using

measured sine-sweep and multi-sine data. Results obtained from this demonstration showed

that the method can be confidently applied to measured data with an accuracy of 95% correlation

between the measured and identified time-domain response. Three key findings drawn from the

work presented in these two chapters are:

• The proposed grey-box method is able to identify nonlinear models that has the advantage of

being parameter-parsimonious, where the number of estimated nonlinear coefficients are

minimal and posses physics-based interpretation of the model.

• Tracking the evolution of each identified nonlinear parameter and corresponding coefficient

is a key feature embedded in the method, providing the possibility of visualising the nonlinear

stiffness and damping curve.

• Application of the method on both simulation and experimental case studies yielded RMS

model errors below 5%.

While the last two objectives were centred around the development and application of nonlinear

identification methods using experimental data, implementation of the identified nonlinear

features in a virtual sense or development of early stage digital twin models of the identified

nonlinear characteristics is of interest to practising engineers. To this end, the final objective of

the research focused around the above interest is covered in Chapter 6. Where the importance of

integrating two different research techniques, experimental tests and simulations, for effective

modelling and validation of engineering structures exhibiting different nonlinear phenomena

is demonstrated. The entire test and simulation integration is based on a coherent framework

consisting of 10 different steps that permits the extension of current modal testing and analysis
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procedure for linear structural dynamics to engineering structures with local non-linearities. The

10 steps listed in this framework are grouped into three phases. Phase I involves the use of classic

linear tools to derive an Underlying Linear Model (ULM) of the structure. In Phase II, specific

tests and measurements are conducted under controlled excitation for the identification and

characterisation of nonlinear features, while Phase III is devoted to augmenting the underlying

linear model with the identified nonlinear elements and validating the augmented model.

The integration strategy was successfully applied to an assembled multiple cantilever beam

structure, where polynomial type non-linearities are identified and validated. The usefulness of

integrating test and simulation in this way is in the complimentary roles that test and simulation

can play when addressing some of the challenges experienced in nonlinear structural dynamics.

An example is the aspect of using simulated models to develop the required experimental testing

for a given engineering structure. Similarly, the experimental testing and data can be used to

extract important modelling parameters such as damping and most importantly, cross validating

the simulated model. The main contributions originating from this chapter are:

• An integration strategy for experimental identification and simulation of nonlinear vibrating

structures is presented and demonstrated on a test structure.

• Augmentation of validated linear simulation models with nonlinear elements to account for

observed nonlinear behaviour was proven to be plausible.

• Implementation of nonlinear damping elements for improved nonlinear response prediction

led to the reduction in the NRMSE between the test and simulation models from 15.7% to

below 10%.

In conclusion, in spite of the recent developments and contributions of this thesis, there is not

yet a single or universal approach to addressing most of the challenges encountered in the field

of nonlinear structural dynamics. This can partially be attributed to the individualistic nature

of nonlinear systems. However, exploring a combination of the respective methods and analysis

demonstrated in this thesis can be used to provide increasing insight and physics-based predictive

capabilities outcome to some of these challenges. Most importantly, all methods and procedures
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stated in this thesis have all been demonstrated on physical engineering structures of different

sizes. This can be seen as a further progress in responding to industrial needs and applications.

7.1 Suggestions and Future Direction of the Research

The results presented in this thesis have shown significant progress towards addressing some of

the nonlinear structural dynamics challenges encountered during the design and manufacturing

of components subjected to vibrations and dynamic loads. While the results presented herein

indicate a level of advancement, there is still more work and avenues for continuous research

to develop these techniques and extend the applicability of currently available methods and

framework to large-scale, complex real-world structures. Some future research topics relevant to

the work presented in this thesis and nonlinear structural dynamics in general are listed and

discussed below.

• Spatial location and characterisation of distributed structural non-linearites.

Majority of the work presented in this thesis have been devoted to challenges arising from

localised non-linearites in engineering structures. But most engineering structures are made of

multiple components and complex geometries causing non-linearities to originate from different

parts of an assembled structure. Therefore, developing a robust method capable of locating and

characterising structures with distributed non-linearities would be a meaningful advancement

in this research domain. At the moment, most nonlinear identification methods are based on

lumped parameter nonlinear modelling or assumed localised non-linearity as presented in the

literature review. A proposed approach that could potentially be used to address this specific

challenge is the use of nonlinear state-space models implemented in Chapter 3 and Chapter 4.

The flexible and mathematical model structure of these state-space models could be seen as an

advantage and in practice can be applied to structures with distributed non-linearities without

any limitations. However, as demonstrated in Chapter 3, extracting physical interpretation of the

system under consideration can be challenging or sometimes impossible. This challenge would

need to be considered when developing new methods.

• Ranking and assessment of nonlinear dynamic modes.
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In the literature review chapter, three steps (detection, characterisation and parameter estima-

tion) were listed as prerequisite for a successful nonlinear identification. Whilst there are many

available methods for detecting non-linearity, the question of whether the detected non-linearity

should be considered or progressed to a full nonlinear identification remains unanswered. An

example of this is illustrated in the practical case study of the aero-engine casing in Chapter 3,

where three nonlinear consecutive modes were detected but not assessed quantitatively before

progressing to full nonlinear identification. This can be narrowed down to the unique nature

of nonlinear systems, where as currently described the the literature, some structures can be

considered to possess characteristics of weak non-linearities while some can be strongly nonlinear.

For this purpose, the development of techniques capable of ranking or assessing the strength

of the non-linearity detected in a system would be of future benefit. Typical solution that could

be offered to this particular challenge could start with examining the variation in the frequency

and vibration amplitude of response under different dynamic loading for the structure under

consideration. Then, a suitable variation score or ranking could be used to determine the strength

of the detected non-linearity.

• Development of robust identification methods for nonlinear damping mechanism.

Modelling of damping mechanism has always been a known challenge in structural dynamics.

While the research on estimation of linear damping parameters have received a significant

attention, nonlinear damping on the other hand has so far received relatively little attention

since most developed nonlinear identification method address only stiffness non-linearities.

Another avenue to progress this research is the advancement of numerical and experimental

methods through the use of nonlinear optimisation routine and tools such as the Levenberg-

Marquardt method to properly account for characteristics of nonlinear damping (e.g., friction,

joints, sliding contacts, micro and macro slips) as demonstrated in Chapter 4 and Chapter 6

during the identification and validation process.

• Uncertainty quantification associated with verification and validation of structural non-

linearites.
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A challenge that is often associated with the successful design of a structure is uncertainty, which

can be represented through imprecision and system variability or through lack of awareness and

inadequacy. For example, it is common in structural dynamics to observe the influence of noise,

boundary conditions and experimental set-up on measured data, this can often cause scattering

or dispersion within the band of accuracy of certain parameters used during an investigation. In

addition, for simulations or computational modelling, uncertainties are not often considered even

though a change in a simulation parameter can cause a substantial alteration on the response

of the mechanical system under consideration. An important requirement frequently requested

by engineers and researchers is a method or integrated strategy of identifying and accounting

for such uncertainties during a design and validation exercise. Future research should therefore

consider incorporating uncertainties for both experimental and simulation activities to attain

better structural designs.

Nonlinear system identification in structural dynamics remains an active research topic,

where the the development and use of individual toolbox philosophy is largely adopted by most

researchers and industrial engineers. This toolbox adoption can partially be associated to the

distinctive nature of nonlinear systems as proven in this thesis. Whilst a large percentage of

this work has been focused on validation of nonlinear structures, the growing interest of the

digital twin concept is set to disrupt the traditional ways of designing and validating structural

models. A digital twin as defined in the introduction is a virtual representation or twin of

the physical system. This means that the digital twin of a design would consist of a real-time

description and monitoring of of the product, from product design to end of life. To achieve this,

further developments beyond the integration of test and simulation models are required. The

digital-twin will involve both test and simulation models as prerequisite but it will also entail

connecting machine learning and other artificial intelligence tools together with real-time testing

and Internet of Things (IOT) for exchange of data.
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[148] M.Boltežar and J.Slavič (2004) Enhancements to the continuous wavelet transform for

damping identifications on short signals. Mechanical Systems and Signal Processing,

18(5), 1065–1076.

[149] D.Spina, C.Valente, and G.R.Tomlinson (1996) A new procedure for detecting nonlinearity

from transient data using the Gabor transform. Nonlinear Dynamics, 11(3), 235–254.

249



BIBLIOGRAPHY

[150] H.Franco and R.M.O.Pauletti (1997) Analysis of nonlinear oscillations by gabor spectro-

grams. Nonlinear Dynamics, 12(3), 215–236.

[151] J.K.Hammond and P.R.White (1996) The analysis of non-stationary signals using time-

frequency methods. Journal of Sound and vibration, 190(3), 419–447.

[152] S.Bellizzi, P.Guillemain, and R.Kronland-Martinet (2001) Identification of coupled non-

linear modes from free vibration using time-frequency representations. Journal of

Sound and Vibration, 243(2), 191–213.

[153] W.J.Staszewski (2000) Analysis of non-linear systems using wavelets. Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,

214(11), 1339–1353.

[154] R.Ghanem and F.Romeo (2001) A wavelet-based approach for model and parameter identi-

fication of non-linear systems. International Journal of Non-Linear Mechanics, 36(5),

835–859.

[155] M.Feldman and S.Braun (1995) Identification of non-linear system parameters via the

instantaneous frequency: application of the hilbert transform and Wigner-Ville tech-

niques. In PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL

ENGINEERING SPIE INTERNATIONAL SOCIETY FOR OPTICAL pp. 637–637.

[156] D.Goege (2003) Automatic updating of large aircraft models using experimental data from

ground vibration testing. Aerospace Science and Technology, 7, 33–45.

[157] H.G.Lee and B.J.Dobson (1991) The direct measurement of structural mass, stiffness and

damping properties. Journal of sound and vibration, 145(1), 61–81.

[158] .Sheinman, I. (1994) Damage Detection and Updating of Stiffness and Mass Matrices

Using Mode Data. Computer Structures, 59(1), 149–156.

[159] R.Schmidt (1994) Updating Non-Linear Components. Mechanical System and Signal

Processing, 8(6), 679–690.

250



BIBLIOGRAPHY

[160] G.Kerschen and J.C.Golinval (2005) Generation of Accurate Finite Element Models of

Nonlinear Systems – Application to an Aeroplane-Like Structure. Nonlinear Dynamics,

39, 129–142.

[161] V.Lenaerts, G.Kerschen, and C.Golinval, J. (2001) Proper Orthogonal Decomposition for

Model Updating of Non-Linear Mechanical Systems. Mechanical Systems and Signal

Processing, 15(1), 31–43.

[162] G.Kerschen On the Model Validation in Non-linear Structural Dynamics Thesis (2002).

[163] G.Cybenko (1989) Approximation by Superpositions of a Sigmoidal Function. Mathematics

of Control, Signals, and Systems, pp. 303–314.

[164] Abdessalem, A. B., Dervilis, N., Wagg, D., and Worden, K. (2019) Model selection and

parameter estimation of dynamical systems using a novel variant of approximate

Bayesian computation. Mechanical Systems and Signal Processing, 122, 364–386.

[165] Dervilis, N., Simpson, T. E., Wagg, D. J., and Worden, K. (2019) Nonlinear modal analysis

via non-parametric machine learning tools. Strain, 55(1), e12297.

[166] Q.Chen, K.Worden, P.Peng, and T.Leung, A. Y. (2007) Genetic algorithm with an improved

fitness function for (N)ARX modelling. Mechanical Systems and Signal Processing,

21(2), 994–1007.

[167] F.L.Lewis and S.Jagannathant (1996) Identification of Nonlinear Dynamical Systems Using

Multilayered Neural Networks. Automatica, 32, 1707–1712.

[168] S.K.Doherty, J.B.Gomm, and D.Williams (1995) Experiment Design Consideration For

Non-Linear System Identification Using Neural Network.. Computers chem. Engng,

21(3), 327–346.

[169] A.DelliCarri, B.Weekes, D.DiMaio, and D.J.Ewins (2016) Extending modal testing technol-

ogy for model validation of engineering structures with sparse nonlinearities: A first

case study. Mechanical Systems and Signal Processing,.

251



BIBLIOGRAPHY

[170] E.Zhang, J.Antoni, R.Pintelon, and J.Schoukens (2010) Fast detection of system nonlin-

earity using nonstationary signals. Mechanical Systems and Signal Processing, 24(7),

2065–2075.

[171] A.Hot, G.Kerschen, E.Foltête, and S.Cogan (2012) Detection and quantification of non-

linear structural behavior using principal component analysis. Mechanical Systems

and Signal Processing, 26, 104–116.

[172] J.Schoukens, R.Pintelon, Y.Rolain, and T.Dobrowiecki (2001) Frequency response function

measurements in the presence of nonlinear distortions. Automatica, 37(6), 939–946.

[173] M.Simon and G.R.Tomlinson (1984) Use of the Hilbert Transform in modal analysis of

linear and non-linear structures. Journal of Sound and Vibration, 96(4), 421–436.

[174] V.Lenaerts, G.Kerschen, and J.C.Golinval (2003) Identification of a continuous structure

with a geometrical non-linearity. Part II: Proper orthogonal decomposition. Journal of

Sound and vibration, 262(4), 907–919.

[175] K.S.Mohammad, K.Worden, and G.R.Tomlinson (1992) Direct parameter estimation for

linear and nonlinear structures. Journal of Sound and Vibration, 152(3), 471–499.

[176] P.Muhamad, N.D.Sims, and K.Worden (2012) On the orthogonalised reverse path method

for nonlinear system identification. Journal of Sound and Vibration, 331(20), 4488–

4503.

[177] <Ordinary Differential Equations-App-A.pdf>.

[178] D.R.Roettgen and M.S.Allen (2017) Nonlinear characterization of a bolted, industrial

structure using a modal framework. Mechanical Systems and Signal Processing, 84,

152–170.

[179] J.Paduart, L.Lauwers, J.Swevers, K.Smolders, J.Schoukens, and R.Pintelon (2010) Identifi-

cation of nonlinear systems using Polynomial Nonlinear State Space models. Automat-

ica, 46(4), 647–656.

252



BIBLIOGRAPHY

[180] J.P.Noel, A.F.Esfahani, G. and J.Schoukens (2017) A nonlinear state-space approach to

hysteresis identification. Mechanical Systems and Signal Processing, 84, 171–184.

[181] A.Svensson and T.B.Schön (2017) A flexible state–space model for learning nonlinear

dynamical systems. Automatica, 80, 189–199.

[182] A.E.Fakhrizadeh, P.Dreesen, K.Tiels, J.P.Noël, and J.Schoukens (2018) Parameter reduction

in nonlinear state-space identification of hysteresis. Mechanical Systems and Signal

Processing, 104, 884–895.

[183] R.Relan, K.Tiels, A.Marconato, P.Dreesen, and J.Schoukens (2018) Data driven discrete-

time parsimonious identification of a nonlinear state-space model for a weakly nonlinear

system with short data record. Mechanical Systems and Signal Processing, 104, 929–

943.

[184] J.Decuyper, Troyer, T., C.Runacres, M., K.Tiels, and J.Schoukens (2018) Nonlinear state-

space modelling of the kinematics of an oscillating circular cylinder in a fluid flow.

Mechanical Systems and Signal Processing, 98, 209–230.

[185] L.Ljung and T.Söderström (1983) Theory and practice of recursive identification, MIT press,

.

[186] P.Eykhoff (1974) System identification: parameter and state estimation.

[187] R.RMohler and W.J.Kolodziej (1980) An overview of bilinear system theory and applications.

IEEE Transactions on Systems, Man and Cybernetics, 10(10), 683–688.

[188] E.Sontag (1979) Realization theory of discrete-time nonlinear systems: Part I-The bounded

case. IEEE Transactions on Circuits and Systems, 26(5), 342–356.

[189] W.J.Rugh (1981) Nonlinear system theory, Johns Hopkins University Press Baltimore, .

[190] V.Verdult (2002) Non linear system identification: a state-space approach.

[191] J.A.K.Suykens, J.P.L.Vandewalle, and B.L.DeMoor (2012) Artificial neural networks for

modelling and control of non-linear systems, Springer Science & Business Media, .

253



BIBLIOGRAPHY

[192] J.A.K.Suykens, B.L.R.DeMoor, and J.Vandewalle (1995) Nonlinear system identification

using neural state space models, applicable to robust control design. International

Journal of Control, 62(1), 129–152.

[193] R.Pintelon, J.Schoukens, G.Vandersteen, and K.Barbé (2010) Estimation of nonparametric

noise and FRF models for multivariable systems—Part I: Theory. Mechanical Systems

and Signal Processing, 24(3), 573–595.

[194] R.Pintelon (2002) Frequency-domain subspace system identification using non-parametric

noise models. Automatica, 38, 1295–1311.

[195] D.W.Marquardt (1963) An Algorithm for Least-Squares Estimation of Nonlinear Parame-

ters. Society for Industrial and Applied Mathematics, 11(2), 431–441.

[196] R.Pintelon and J.Schoukens (2012) System Identification: A Frequency Domain Approach,

Wiley-IEEE Press, .

[197] R.Pintelon, J.Schoukens, G.Vandersteen, and K.Barbé (2010) Estimation of nonparametric

noise and FRF models for multivariable systems—Part II: Extensions, applications.

Mechanical Systems and Signal Processing, 24(3), 596–616.

[198] T.P.Dobrowiecki and Schoukens, J. (2007) Linear Approximation of Weakly Nonlinear

MIMO Systems. IEEE Transactions on Instrumentation and Measurement, 56(3), 887–

894.

[199] J.Schoukens, G.Vandersteen, K.Barbé, and R.Pintelon (2009) Nonparametric Preprocessing

in System Identification: a Powerful Tool. European Journal of Control, 15(3-4), 260–

274.

[200] T.Glad and L.Ljung (2000) Control Theory Multivariable and Nonlinear Methods, Taylor

and Francis, London.

[201] S.B.Cooper, D.DiMaio, I.Sever, and S.Patsias An Experimental Case Study for Nonlin-

ear Model Validation: Effects of Nonlinearities in an Aero-Engine Structure. In 35th

International Modal Analysis Conference (IMAC) Society for Experimental Mechanics.

254



BIBLIOGRAPHY

[202] B.Weekes and D.J.Ewins (2015) Multi-frequency, 3D ODS measurement by continuous scan

laser Doppler vibrometry. Mechanical Systems and Signal Processing, 58-59, 325–339.

[203] Bertsimas, D., Tsitsiklis, J., et al. (1993) Simulated annealing. Statistical science, 8(1),

10–15.

[204] Lynch, B. J. (2006) Optimizing with Genetic Algorithms. Minesota supercomputing institute,

Feb,.

[205] B.R.Rich (1995) Clarence Leonard (Kelly) Johnson: 1910–1990: A Biographical Memoir.

Biographical Memoirs, 67, 221–241.

[206] Sjöberg, J. (2000) A nonlinear grey-box example using a stepwise system identification

approach. In Proceedings of the 11th IFAC Symposium on Identification, Santa Barbara,

USA.

[207] Ljung, L., Zhang, Q., Lindskog, P., and Juditski, A. (2004) Estimation of grey box and black

box models for non-linear circuit data. IFAC Proceedings Volumes, 37(13), 399–404.

[208] J.P.Noël, G.Kerschen, E.Foltête, and S.Cogan (2014) Grey-box identification of a non-

linear solar array structure using cubic splines. International Journal of Non-Linear

Mechanics, 67, 106–119.

[209] Adams, D. and Allemang, R. (1999) A new derivation of the frequency response function

matrix for vibrating non-linear systems. Journal of Sound and Vibration, 227(5), 1083–

1108.

[210] D.E.Adams and R.J.Allemang (1999) Characterisation of nonlinear vibrating systems

using internal feedback and frequecy response modulation. Journal of Vibration and

Acoustics, 121, 495–500.

[211] K.Worden, D.Hickey, M.Haroon, and D.E.Adams (2009) Nonlinear system identification of

automotive dampers: A time and frequency-domain analysis. Mechanical Systems and

Signal Processing, 23(1), 104–126.

255



BIBLIOGRAPHY

[212] Marchesiello, S. and Garibaldi, L. (2008) Identification of clearance-type nonlinearities.

Mechanical Systems and Signal Processing, 22(5), 1133–1145.

[213] Noël, J.-P., Marchesiello, S., and Kerschen, G. (2014) Subspace-based identification of a

nonlinear spacecraft in the time and frequency domains. Mechanical Systems and

Signal Processing, 43(1-2), 217–236.

[214] Glad, T. and Ljung, L. (2014) Control theory, CRC press, .

[215] Tocino, A. and Ardanuy, R. (2002) Runge–Kutta methods for numerical solution of stochastic

differential equations. Journal of Computational and Applied Mathematics, 138(2),

219–241.

[216] Gavin, H. (2001) Numerical integration for structural dynamics. Department of Civil and

Environmental Engineering, Duke University: Durham, NC, USA,.

[217] Rong, Z., Yuewu, L., and Fuxin, Z. (2003) Numerical solutions for the transient flow in the

homogenous closed circle reservoirs. Acta Mechanica Sinica, 19(1), 40–45.

[218] Janiszowski, K. B. (1993) A modification and the Tustin approximation. IEEE transactions

on Automatic Control, 38(8), 1313–1316.

[219] Van Der Houwen, P., Sommeijer, B., and Kok, J. (1997) The iterative solution of fully implicit

discretizations of three-dimensional transport models. Applied numerical mathematics,

25(2-3), 243–256.

[220] Pintelon, R. and Schoukens, J. (2004) System Identification: A Frequency Domain Approach,

Wiley, .

[221] Bozdogan, H. (1987) Model selection and Akaike’s information criterion (AIC): The general

theory and its analytical extensions. Psychometrika, 52(3), 345–370.

[222] Sclove, S. L. (1987) Application of model-selection criteria to some problems in multivariate

analysis. Psychometrika, 52(3), 333–343.

256



BIBLIOGRAPHY

[223] Al-Muthairi, N., Bingulac, S., and Zribi, M. (2002) Identification of discrete-time MIMO

systems using a class of observable canonical-form. IEE Proceedings-Control Theory

and Applications, 149(2), 125–130.

[224] Ljung, L. (1995) Building models from frequency domain data. In Adaptive Control, Filter-

ing, and Signal Processing pp. 229–239 Springer.

[225] Jain, P., Kar, P., et al. (2017) Non-convex optimization for machine learning. Foundations

and Trends® in Machine Learning, 10(3-4), 142–336.

[226] Westwick, D. T. and Schoukens, J. (2012) Classification of the poles and zeros of the best

linear approximations of wiener-hammerstein systems. IFAC Proceedings Volumes,

45(16), 470–475.

[227] Ljung, L. (1999) System identification. Wiley Encyclopedia of Electrical and Electronics

Engineering, pp. 1–19.

[228] Schoukens, J., Vaes, M., and Pintelon, R. (2016) Linear system identification in a nonlinear

setting: Nonparametric analysis of the nonlinear distortions and their impact on the

best linear approximation. IEEE Control Systems Magazine, 36(3), 38–69.

[229] Hernández, S., Menga, E., Moledo, S., Romera, L., Baldomir, A., López, C., and Montoya,

M. C. (2017) Optimization approach for identification of dynamic parameters of localized

joints of aircraft assembled structures. Aerospace Science and Technology, 69, 538–549.

[230] P.Noël, J., L.Renson, and G.Kerschen (2014) Complex dynamics of a nonlinear aerospace

structure: Experimental identification and modal interactions. Journal of Sound and

Vibration, 333(12), 2588–2607.

[231] D.A.Czaplewski, C.W.Dyck, H.Sumali, J.E.Massad, J.D.Kuppers, L.Reines, W.D.Cowan,

and C.P.Tigges (2006) A soft landing waveform for actuation of a single pole single

throw Ohmic RF MEMs switch. Journal of Micromechanical Systems, 15, 1586–1594.

257



BIBLIOGRAPHY

[232] D.J.Segalman, D.L.Gregory, M.J.Starr, B.R.Resor, M.D.Jew, J.P.Lauffer, and N.M.Ames,

Handbook on Dynamics of Jointed Structures. Report, Sandia National Laboratories

(2009).

[233] C.Croufer and A.Santangelo Modern Solutions for Ground Vibration and Modal Survey

TestingLMS..InLMS Ground Vibration Test Workshop.

[234] C.Roberts, D. (2016) Multi-axis vibration testing of an aerodynamically excited structure. Journal of

Vibration and Control,.

[235] Kragh, K. A., Thomsen, J. J., and Tcherniak, D. (2010) Experimental detection and quantification

of structural nonlinearity using homogeneity and hilbert transform methods. In ISMA2010:

International conference on Noise and Vibration Engineering.

[236] M.Feldman (2011) Hilbert transform in vibration analysis. Mechanical Systems and Signal Process-

ing, 25(3), 735–802.

[237] Li, Z. and Crocker, M. J. (2006) A Study of Joint Time-Frequency Analysis-Based Modal Analysis.

IEEE Transactions on Instrumentation and Measurement, 55, 2335–2342.

[238] Nagarajaiah, S. and Basu, B. (2009) Output only modal identification and structural damage detection

using time frequency & wavelet techniques. Earthquake Engineering and Engineering Vibration,

8(4), 583–605.

[239] Neild, S., McFadden, P., and Williams, M. (2003) A review of time-frequency methods for structural

vibration analysis. Engineering Structures, 25(6), 713–728.

[240] FEMtools Dynamic Design Solutions (DDS) NV. (2007).

[241] R.Pascual, J.Golinval, and M.Razeto A frequency domain correlation technique for model correlation

and updating. In Proceedings -SPIE The International Society for Optical Engineering pp. 587–

592.

[242] W.Heylen and S.Lammens FRAC: A Consistent way of Comparing Frequency Response Functions.

In International Conference on Identification in Engineering.

258



BIBLIOGRAPHY

[243] T.Dossogne, J.P.Noel, C.Grappasonni, G.Kerschen, B.Peeters, J.Debille, and M.Vaes, J. Nonlinear

Ground Vibration Identification of an F-16 Aircraft - Part II Understanding Nonlinear Behaviour

in Aerospace Structures Using Sine-sweep Testing. In International Forum on Aeroelasticity and

Structural Dynamics.

[244] J.P.Noel A Frequency-domain Approach to Subspace Identification of Nonlinear Systems Thesis

(2014).

[245] S.F.Masri, J.P.Caffrey, T.K.Caughey, A.W.Smyth, and A.G.Chassiakos (2004) Identification of the

state equation in complex non-linear systems. International Journal of Non-Linear Mechanics,

39(7), 1111–1127.

[246] M.Feldman (1994) Non-Linear System Vibration Analysis Using Hilbert Transform-II. Forced

Vibration Analysis Method ’FORCEVIB’.. Mechanical Systems and Signal Processing, 8(3), 309–

318.

[247] S.F.Masri, G.A.Bekey, and H.Sassi (1982) Non-parameter identification of a class of non-linear

multidegree dynamic systems. Journal of Earthquake Engineering Structural Dynamics, 10,

1–30.

[248] S.B.Cooper, D.DiMaio, and D.J.Ewins (2017) Integration of system identification and finite element

modelling of nonlinear vibrating structures. Journal of Mechanical Systems and Signal Processing,

102, 401–430.

[249] M.Feldman (2006) Time-varying vibration decomposition and analysis based on the Hilbert transform.

Journal of Sound and Vibration, 295(3-5), 518–530.

[250] D.J.Rixen (2004) A dual Craig–Bampton method for dynamic substructuring. Journal of Computa-

tional and Applied Mathematics, 168(1-2), 383–391.

[251] J.E.Mottershead and M.I.Friswell (1993) Model Updating in Structural Dynamics: A Survey. Sound

and Vibration, 167(2), 347–375.

[252] R.M.Lacayo, B.J.Deaner, and M.S.Allen (2017) A numerical study on the limitations of modal Iwan

models for impulsive excitations. Journal of Sound and Vibration, 390, 118–140.

259



BIBLIOGRAPHY

[253] S.Ebbesen, P.Kiwitz, and L.Guzzella (2012) A generic particle swarm optimization Matlab function.

In 2012 American Control Conference (ACC) IEEE pp. 1519–1524.

260


	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Objectives and Contribution of the Thesis
	Thesis Outline
	List of Publications

	Literature Review
	Introduction
	Modelling Non-linearities in Structural Dynamics
	Theoretical Modelling
	Numerical Modelling
	Experimental Testing

	Sources of Non-linearities in Engineering Structures
	Geometric Non-linearity
	Material Non-linearity
	Non-linearity From Governing Equations of Motion 
	Damping Dissipation and Friction
	Boundary Condition Effects

	Overview of Non-linear System Identification Methods
	Linearisation Methods
	Time Domain Methods
	Frequency Domain Methods
	Modal Methods
	Time-Frequency Methods
	Structural Model Updating Methods
	Black-Box Methods

	Non-linear System Identification Process
	Detection of Non-linearity
	Location of Non-linearity
	Characterisation of Non-linearity
	Parameter Estimation of Non-linearity

	Representation of Non-linear Systems
	Limitations of Current Identification Methods and Processes

	Identifying Nonlinearities based on State Space Models
	Introduction
	State Space Models
	Linear and Non-linear State Space Model
	Bilinear State Space Models
	Other Types of State Space Models

	Polynomial Non-linear State Space Model
	Approximation Behaviour
	Model Structure
	Model Stability

	A PNLSS Approach to Identification of Structural Non-linearities
	Best Linear Approximation
	Non-linear Optimisation of a Linear Model
	Estimation of a Full Non-linear Model
	Validation of the Non-linear Model

	Demonstration on an Aero-Engine Casing
	Description of the Aero-Engine Casing
	Linear Finite Element Modal Analysis
	Experimental Campaign and Linear Modal Analysis
	Best Linear Approximation of the Casing Assembly
	Non-linear Identification of the Casing Assembly
	Identifying a Parsimonious Data Data Driven Model
	Model Validation Based on Sine-Sweep and Broadband Excitation

	Remarks on PNLSS Approach for Non-linear Identification
	Conclusions

	Grey-box State Space Identification of Non-linear Vibrating Systems.
	Introduction
	Time Domain Grey-box State Space Identification Method
	Step 1 - Nonlinear Model Formulation in the physical domain 
	Step 2 - Continuous-time Model Discretisation
	Step 3 - Approximation of the Discretised Model
	Step 4 - Formulation of a Discrete Grey-box PNLSS Model
	Step 5- Estimation of the Discrete-time Non-linear Feedback Model
	Step 6 - Estimation of the Continuous-Time Model
	Grey-box PNLSS Identification Process

	Numerical Demonstration on a Duffing Oscillator
	Problem Description
	Best Linear Approximation of the Duffing Oscillator
	Linear Grey-box State Model of the Duffing Oscillator
	Nonlinear Initialisation of the Duffing Oscillator Model
	Estimation of the Nonlinear Coefficients of the Duffing Oscillator
	Improving the Stiffness and Damping Estimates

	Validation of the Non-linear Feedback Model
	Multi-sine Data Validation 

	Conclusions

	Grey-box Identification of an Aerospace Structure.
	Introduction
	The Aerospace Test Structure
	Linear Finite Element Model of the MTS

	Experimental Test and Linear Modal Analysis of the MTS
	Low Level Test Campaign

	Non-linear Detection and Analysis
	Time Series and FRF Inspection
	Time Frequency Analysis using the short time Fourier transform 

	Non-linear Identification Based on Grey-box PNLSS
	Best Linear Approximation of the Aerospace Test Structure
	Linear and Nonlinear Initialised Model
	Estimation of a Full Nonlinear Model of the MTS

	Conclusions

	Validation of Nonlinear Vibrating Structures.
	Introduction
	Integration of FE and test-based identification for nonlinear structures
	Demonstration on Cantilever Beam Assembly
	Description of the Test Structure
	Linear model validation (phase I)
	Non-linear identification (phase II)
	Non-linear FE modelling and validation (phase III)

	Conclusions

	Conclusion
	Suggestions and Future Direction of the Research

	Bibliography

