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A b s t r a c t

This thesis presents a multichannel adaptive noise cancellation technique (MCLS) for 

cancelling the noise over nonlinear transmission channel. The technique applies to the 

situation in which the reference signal and noisy primary signal are collected 

simultaneously. The coefficients of the multichannel multiple regression transversal filter 

are modified adaptively according to the backward prediction error vector generated from 

the multichannel adaptive lattice predictor. This multichannel adaptive noise cancellation 

procedure involves the NLMS adaptive algorithm.

The performance of the new technique using different types of transmission channels, 

different types of reference inputs and different types of noise-free primary inputs are 

examined analytically. The new approach is experimentally shown to have better noise 

cancellation performance than the existing single-channel adaptive lattice noise 

cancellation algorithm (SCLS) over nonlinear transmission channel case, especially in 

low input SNR situation.
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1. In t r o d u c t io n

i

/

Our major aspect of current research in speech processing, such as recognition and 

coding, is to develop systems which retain good performance across a wide variety of 

acoustic environments. The need for such systems is well appreciated. One method of 

making robust speech systems is to include a pre-processing stage of noise reduction. The 

challenge here is to reduce the noise level, preserve or improve the intelligibility and, at 

the same time, introduce as little distortion as possible.

1.1 Noise Cancellation

Noise Cancellation is a variation of optimal filtering that is highly advantageous in 

many applications. It makes use of an auxiliary or reference signal derived from one or 

more sensors located at points in the noise field where the noise-free primary signal is 

weak or undetectable. This input is filtered and subtracted from a noisy primary input 

containing both noise-free primary signal and additive noise signal (which is a filtered 

version of the auxiliary or reference signal). As a result, the additive noise is attenuated 

or eliminated by cancellation and the estimate of the desired noise-free primary signal 

becomes the output of the process.

The usual method of estimating a noise-free primary signal corrupted by additive 

noise signal is to pass the corrupted signal through a filter that tends to suppress the 

additive noise signal while leaving noise-free primary signal relatively unchanged. The 

filtering can be made fixed or adaptive according to the availability of a priori knowledge 

on the noise-free primary signal and the additive noise.

Adaptive noise cancellation (ANC) is performed when there is no a priori knowledge 

of the noise-free primary signal and the additive noise signal while the adaptive filters 

have the ability to adjust their own parameters automatically. Applications include hand- 

free mobile communication and teleconferencing in a noisy office or home environment.

1
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Figure 1-1 shows a typical two-input ANC system for enhancement of noisy speech. 

In this system one directional microphone takes as the primary input, which is the noisy 

primary signal d(t), and another directional microphone takes as the reference input, 

positioned some distance away where the noise-free primary signal s(t) is weak or 

undetectable, measures the reference signal x(t).

Reference Signal
x(t) 1  

• -----------------► B
x(rri)

d(t)=s(t)+n(t) ■ 
Noisy Primary Signal

d(m) e(m)=d(m)- /;[x(/w)] 
= s(m )

ADC

ADC

h i]

x(t)

Figure 1-1: Two-microphone ANC System 

The noisy observation d(t), i.e. noisy primary signal, can be modelled using

d{t) -  s(f) + /?[x(f)] (1 1 1)

where s(t) and x(t) are the noise-free primary signal and the reference signal, /?[.] is a 

certain kind of transformation by converting the reference signal into the additive noise in 

the noisy primary signal d(t), and t is the continuous-time index. After the directional 

microphones receive the reference signal and the noisy primary signal, separate ADCs 

(Analog-to-Digital Converters) sample and quantize the continuous-time analog signal x{t) 

and d{t) into the discrete-time digital signal x{m) and d(m), where m is the discrete-time 

index. The output signal s(m) may then be recovered by subtraction of an estimate of the 

additive noise /?[x(m)] from the noisy primary signal d(m), where s(m) is the digitized 

estimate corresponding to the analog noise-free primary signal s(t). The /?[.] is an

2
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digitized estimate corresponding to the analog transformation h[.], which is optimized by 

the feedback from e(m), i.e. s(m), adaptively.
/

1.2 Adaptive Filter

An adaptive filter is a computational device that attempts to model the relationship 

between two signals in real time in an iterative manner.

An adaptive filter is defined by the following four aspects:

• the signals being processed by the filter

• the structure that defines how the output signal of the filter is computed from its 

input signal

• the parameters within this structure that can be iteratively changed to alter the 

filter’s input-output relationship

• the adaptive algorithm that describes how the parameters are adjusted from one 

time instant to the next

By choosing a particular adaptive filter structure, one specifies the number and type 

of parameters that can be adjusted. The adaptive algorithm used to update the parameter 

values of the system can take on a myriad of forms and is often derived as a form of 

optimization procedure that minimizes an error criterion that is useful for the task at 

hand.

Many computationally efficient algorithms for adaptive filtering have been developed. 

There are two algorithms most widely used. One is called LMS (least-mean-square) 

algorithm and its variation NLMS (normalized least-mean-square) algorithms, both are 

based on a gradient optimization for determining the coefficients. Another is called RLS 

(recursive-least-square) algorithm [33],

3

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



In general, any system with a finite number of parameters that affect how the output 

y(m) is computed from the input x(m) can be used for the adaptive filter in Figure 1-2.
>

Define the parameter or coefficient vector W(m) as

W(m) = [w0(m) w,(w) ••• ^ _ ,(w ) ]T (1.2.1)

where {w,(m)}, 0 < / < L-1 are the L parameters of the system at time index m. With this 

definition, a general input-output relationship for the adaptive filter is defined by

y(m ) = f ( W ( m ) , y { m - \ ) , . . . , y ( m - N ) , x ( m ) , . . . , x ( m - M  + \)) (1.2.2)

where/(■) represents any well-defined linear or nonlinear function. M  and N  are positive 

integers. M  is the maximum number of previous values on x(m) used to calculate the 

output of y(m). N  is the maximum number o f previous values on y(m) used to calculate 

the output of y(m). Implicit in this definition is the fact that the filter is causal, such that 

future values of the input x{m) are not needed to compute the output y{m). Noncausal 

filters can be handled in practice by suitably buffering or storing the input signal samples. 

In this thesis, this possibility is not considered.

d(m)y (m )x{m ) Adaptive
Filter

e(m )

Figure 1-2: The general adaptive filtering problem

Adaptive filters have been widely used in communication systems, control systems 

and various other systems in which the statistical characteristics of the signals to be 

filtered are either no a priori knowledge or, in some cases, slowly time-variant (non-

4
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stationary signals) [24], Adaptive noise cancellation is one of the most noteworthy 

applications in which an adaptive filter is used to estimate and eliminate the noise 

component in some desired signals [1],

1.2.1 Adaptive Filter Structure

The structure of the adaptive filter defines how the output signal of the filter is 

computed from its input signals. The structure specifies the number and the type of 

parameters that can be adjusted. There are two types of structure discussed in this section. 

One is called linear structure. The other is called nonlinear structure.

1.2.1.1 Linear Structure

Linear structure has played a very crucial role in the development of various signal 

processing techniques. The obvious advantage of linear structure is its inherent simplicity. 

Design, analysis, and implementation of such structure are relatively straightforward 

tasks in many applications.

Although (1.2.2) is the most general description of an adaptive filter structure, in most 

time, we are interested in determining the best linear relationship between the input and 

the desired response for many problems. This relationship typically takes the form of a 

FIR or HR filter structure.

Figure 1-3 shows the structure of a direct-form FIR filter, also known as a tapped- 

delay-line or transversal filter, where z x denotes the unit delay element and each w,(n) is 

a multiplicative gain within the system.

The input-output relationship is shown as

y(m ) = j ^ w i ( m )x ( m - i )  (1.2.3)
1=0
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where L- 1 is the maximum number of the delays within the system.

x(m) x(m-2) x(m-L+1)

W0(m) Wi(m)

Figure 1-3: Structure of an FIR filter

x{m)

(m)

Figure 1-4: Structure of a canonical-form HR filter

The structure of a canonical-form IIR filter is shown in Figure 1-4 [33], In this case, 

the output of the system can be represented mathematically by

(1.2.4)
/=i /=0
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where M  is the maximum number of the previous values of x(m) and y(m) used to 

calculate the output y(m).

A third structure that has proven useful for adaptive filtering tasks is the lattice filter 

structure [33], A lattice filter is an FIR structure that employs L-1 stages of pre

processing to compute a set of auxiliary signals {bj(m)}, 0 < i <L-\, known as backward 

prediction errors. These signals have the special property that they are uncorrelated, and 

they represent the elements of x(m) through a linear transformation. Thus, the backward 

prediction errors can be used in place of the delayed input signals in a structure similar to 

that in Figure 1-3, and the uncorrelated nature of the prediction errors can provide 

improved convergence performance of the adaptive filter coefficients with the proper 

choice o f algorithm. The overall structure of adaptive lattice filter is shown in Figure 1-5.

Reference
Lattice Predictor

Signal ; Lattice Lattice Lattice
111

Stage 1 Stage 2 Stage L-l

Forward
Prediction
Error

Si^  *

Backward Prediction Error Vector

Primary Filtered
Signal Multiple Regression Signal

Transversal Filter

Figure 1-5: Overall structure of lattice predictor and transversal filter

The adaptive lattice predictor, shown in Figure 1-5, is a modular structure that 

consists of a number of cascaded lattice stages. A steepest descent or an exact least- 

squares algorithm is used to adjust the reflection coefficients independently at each lattice 

stage. The lattice structure enjoys the advantages of a simple test for filter stability, good 

performance in finite-wordlength hardware implementations, and greatly reduced
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sensitivity to the eigenvalue spread1 of the reference signal. The decorrelation of the 

signal at each stage allows the LMS algorithms to converge much faster than the 

conventional transversal filter, especially for a reference signal that has a large 

eigenvalue spread. The downside of the lattice filter is that improved convergence comes 

at the expense of increased computational complexity [33],

The structure of /-th lattice stage is illustrated in Figure 1-6.

Forward Prediction Error Forward Prediction Error
at Stage /-I /-th at Stage /

Lattice
Stage

Backward Prediction Error Backward Prediction Error
at Stage /-I at Stage /

Figure 1-6: Structure of /-th lattice stage

A critical issue in choosing the structure of an adaptive filter is its computational 

complexity. Since the operation of the adaptive filter typically occurs in real time, all of 

the calculations for the system must occur during one sample time. The structures 

described above are all useful because the output y(m) can be computed in a finite 

amount of time using simple arithmetical operations and finite amount of memory.

1.2.1.2 Nonlinear Structure

Although the linear structure benefits from its simplicity, however, there are several 

situations in which the performance of linear filters is unacceptable. Trying to identify 

these types of systems using linear models can often give misleading results.

1 The ratio of the maximum to the minimum eigenvalue of a correlation matrix is called the eigenvalue 
spread of the correlation matrix. The spread in the speed o f convergence of filter coefficients is 
proportional to the spread in eigenvalue of the autocorrelation matrix of the input signal [34],
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When confronted with a nonlinear systems problem, the solutions are often difficult 

from an analytical and/or computational point of view. Those difficulties are much more 

magnified in the case of adaptive nonlinear systems [27],

Unlike the case of linear systems which are completely characterized by the system's 

unit impulse response function. It is impossible to find a unified framework for 

describing arbitrary nonlinear systems. Consequently, the researchers working on 

nonlinear filters are forced to restrict themselves to certain nonlinear system models that 

are less general. Nonlinear filters developed using such models include order statistics 

filters [7][12][14], homomorphic filters [1], morphological filters [21][22], and filters 

based on Volterra and other polynomial descriptions of the nonlinearity involved [27],

The polynomial models of nonlinearity description are more general than most of the 

other models that were mentioned above. The Volterra system model is extremely 

popular in adaptive nonlinear filtering [27],

1.2.1.2.1 Volterra Series Expansion

Let x(m) and y{m) represent the input and output signals, respectively, of a discrete

time and causal nonlinear system. The Volterra series expansion [7][9][10][12][13] for 

y(m) using x(m) is given by

oo oo ooW=/*0+Z Mw )+Z Z )x (w - *2)+
(1.2.5)

oo oo oo v  '

" , + S Z " ' S /!f M 2.......
jfcj = 0  k 2~0 k p —Q

In (1.2.5), hp(khk2, ... ,kp) is known as the p -th order Volterra kernel of the system. The 

limitation of Volterra series is that the expansion does not do well when there are 

discontinuities in the system description [27], Even though clearly not applicable in all 

situations, Volterra system models have been successfully employed in a wide variety of 

applications, and such models continue to be popular with researchers in this area.

9

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



Since an infinite series expansion like (1.2.5) is not useful in filter applications, one 

must work with the truncated Volterra series expansion of the form
>

M -\  M - 1 M - 1

y(m ) = h0 + Y dh](k]) x ( m - k ]) + ' £ ^ h2(ku k2) x ( m - k l) x ( m - k 2) +
*,=° W =0

A/-1 M-\ M-\ v 7

^ = 0 ^ = 0  ^ = 0

where P is the order of the truncated Volterra series expansion, and M - 1 is the maximum 

delay of the input x{m) in the calculation. Both P  and M are integers.

*i(0)

♦ Ox{m)

A,( 2)

Figure 1-7: Truncated Volterra system of order P=2 and maximum delay A/-1=2.

An example of nonlinear system characterized using truncated Volterra series 

expansion with order P=2 and maximum delay M -1=2 is illustrated in Figure 1-7. Note 

that this system is linear in the input signal to each coefficient. This fact highly simplifies
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the design problems involving Volterra series representations. On the other hand, even 

for moderately large values of M  and P, the number of coefficients becomes very large.
>

Consequently, the truncated Volterra series representation is most useful in applications 

where the values of M  and P are relatively small.

1.2.1.2.2 Adaptive Volterra Filter

An adaptive filter structure using truncated Volterra series expansions is called an 

adaptive Volterra filter. The block diagram of an adaptive Volterra filter is illustrated in 

Figure 1-8, where d(m) is the noisy primary signal shown in (1.2.7) and x(m) is the 

reference signal. s(m) is the noise-free primary signal, and n(m) is the additive noise 

signal. s(m), the estimate of the noise-free primary signal s(m), is computed using the 

truncated Volterra series expansion on x(m).

d { m )-s { jn )  + n{m) (1.2.7)

The adaptive Volterra filter structure tries to estimate the noise-free primary signal 

s(m) using a truncated Volterra series expansion on the input signal x(m) as (1.2.6).

Adaptive
Volterra

Filter

s(m) d(m )x(m)

e(m)

Figure 1-8: A block diagram of the Adaptive Volterra Filter

The objective, as in most adaptive filtering problems, is to choose the coefficients of 

the adaptive filter, hp(ki,k2,...,kp), so that an appropriate cost function of the error signal 

e(m) is minimized. The adaptive algorithm depends on the choice of the above cost 

function. Among the most commonly used algorithms are LMS-type algorithm, including
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LMS and NLMS, and RLS algorithms. RLS algorithm for adaptive Volterra filtering is at 

least an order of magnitude more complex than LMS-type algorithms [27],
/•

There are 0 ( h f )  coefficients in the polynomial expansion (1.2.6). One big 

disadvantage for the Volterra system model is that the complexity of implementing filters 

using this model can be very high even for moderately values of M  and P. Consequently, 

most of the practical applications of systems employing Volterra series expansions only 

involve low-order models.

V.J. Mathews proposed an adaptive lattice structure for Volterra systems, i.e. Second- 

order Volterra lattice filter. The block diagram with A/=3 and P=2 is shown in Figure 1-9.

Figure 1-9: Block diagram of the Second-order Volterra Adaptive Lattice Filter

The number of lines going into and out of a system component indicates the number 

of input and output signals, respectively, of that component. The backward prediction 

error vector b0, b\ and b2 are orthogonal to each other, and the components of these 

vectors span the whole space by the elements of
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x(/w) x { m - 1) 

x2(/w) x2( m - \ )
x ( n i ) x ( m - 1) x (/w )x (w -2 )

x (/w -l)x (/w -2 )

x ( m -  2) 
x2 ( w - 2 )

( 1.2 .8)

At each stage of the lattice, the prediction error vector has one more element than 

previous stage. This prediction error signal, that corresponds to estimating x(m)x(m-i) for 

the /-th stage, must be computed outside the basic lattice structure. The coefficients 

denoted using the letter g, are used to compute these additional prediction-error signal. 

Efficient computation of the backward prediction-error vectors requires computation of 

the forward prediction-error vectors /o, /i , and fa also. A gradient and least-squares 

adaptive algorithm based on this lattice structure is straightforward [27],

1.2.1.2.3 Adaptive Multichannel Structure

Another approach in adaptive nonlinear filter is proposed by S. Ozgunel, A. H. 

Kayran and E. Panayirci [26] in the application of nonlinear channel equalization. Based 

on the truncated second-order Volterra series expansion, a single-input-multiple-output 

system (shown in Figure 1-10) is introduced. This system has the second-order 

nonlinearity. An algorithm, either LMS or RLS, is used for updating the linear and 

quadratic weights of the second-order nonlinear filter.

x(m) Single Input 
Multiple Outputs 

System
Mm)

Figure 1-10: Single-input-multiple-output system 

The output X(m) of this single-input-multiple-output system is defined by
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K (m ) =

x,(m)
x2(m)
x3(m)

M - \ M  

m~M+1

(1.2.9)

where

*1 M  =

M ]
x3 (w) = F3 \_x{m)x(m - 1)]

( 1.2 . 10)

^ - i  ("») = ^Lr-i [x(w )x(m  -A^ -t-3)] 

x m  ( m )  =  F m  [ x { m ) x ( m - M  + 2)]

XM+1 M  = Fm, 1 -A / +1)]

X(/w) is an (M +l)xl vector and its dimension is determined by the channel length, or 

the maximum delay of input, M -1. This vector is used as the input to the multichannel 

adaptive lattice predictor. X\(m)  is the input for the linear part of the lattice and x2(m), 

X’sipi), , xu+\{m) are the inputs for the nonlinear parts. Figure 1-11 shows the structure 

of the multichannel adaptive lattice equalizer.

This multichannel adaptive lattice equalizer involves the concept of the second-order 

truncated Volterra series expansion. But not all the elements in the second-order 

truncated Volterra series expansion are included. Only elements relating to the reference 

input x(m) are included.
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Original
Signal

s(m)
Nonlinear
Channel

+.
Single Input 

Multiple Outputs 
System

Delay

~b
Multichannel I X(m) 

Channel Input V ec to r!
Noise i................. -*...................t

Multichannel !I
Lattice Predictor ;

Multichannel Backward |  B{m) 
Predictor Error Matrix,

Multichannel 
Multiple Regression 

Transversal Filter

Estimated I s(m)
Signal 1

Figure 1-11: Multichannel adaptive lattice equalizer

1.2.2 Adaptive Algorithm

The configuration of an adaptive filter is illustrated in Figure 1-12. The output of the 

filter is defined by

( 1.2 .11)

where Y(m) = \y(m), y(m- \ ), y(m-P+ l ) f ,  W(m) = [w0(m), wP.x(m)]T and

x(m) denote the filter input, the filter coefficient vector and the desired signal respectively
A

[34], x(m) is an estimate of the desired signal x(m).

The error signal is defined by

e{m) = x [ m )-x { m )  = x{m )-W ^ (1.2.12)
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The adaptive process is based on the minimization of the mean square error criterion 

defined by
s

£(V(/w)] = £ [ [ \ ( m ) - f F T(/w)7(/w)] ]
L tL J J (1.2.13)

= E [ x 2 (m )\  -  2W T {m )E[Y(m )x{m )] + W j (m)\Y_{m)Yj (m )]w (m )

“Desired” or “target” 
signal x{m)

y(m -1)Input y(m) y(m-2)

Wp-iw0

Transversal filter

x(m)

Adaptive
algorithm

Figure 1-12: Configuration of an adaptive filter

1.2.2.1 LMS Algorithm

The steepest-descent method employs the gradient of the averaged square-error to 

search for the filter coefficients over least square-error. A computationally simple version 

of the gradient search method is the LMS (least-mean-square) algorithm, in which the 

gradient of the MSE (mean-square-error) is substituted with the gradient of the 

instantaneous square-error function [34],

The LMS adaptation method is defined by
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(1.2.14)

where the error signal e(m) is given by (1.2.12), and ju is the update step size. The 

instantaneous gradient of the square-error can be re-expressed by

de2 (m ) _ d 
dW(m) ~ dW(m) (1.2.15)

Substituting (1.2.15) into the recursive coefficient update equation (1.2.14) yields the 

LMS adaptation equation:

It can be seen that the filter update equation is very simple. The LMS filter is widely 

used in adaptive filter applications. The main advantage of the LMS algorithm is its 

simplicity in terms of both the memory requirement and the computational complexity, 

which is O(F), where P  is the filter length [34],

1.2.2.2 NLMS Algorithm

In practice, the exact statistics of x(m) and y{m) are unknown and varied over time. A 

time-varying step size /Am), if properly computed, can provide stable, robust and 

accurate convergence behaviour for the LMS adaptive algorithm in these situations. This 

introduces the NLMS algorithm.

The normalized step size /u{m) can be calculated by

(1.2.16)

(1.2.17)
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where a x (m) is an estimate of the input signal power, /j, is a constant to keep the

system stable, and 5  is a small non-zero constant to avoid the divide-by-zero problem, »✓
2

when <jx {m) approaches zero.

Typical estimators include:

• Exponentially weighted estimate:

g x (m) = (l -  c ) a x {m - 1) + cx2 (m) (1.2.18)

• Sliding-window estimate:

y\ 2 1 M —\
a x (m) = l j J l x2(m ~ i) (1.2.19)

M  j=0

where the parameters c (0 < c «  1) and M ( M > L )  control the effective memories of the 

two estimators respectively [33],

1.2.2.3 RLS Algorithm

In the RLS (recursive-least-square) algorithm, the adaptation starts with some initial 

filter states. And successive samples of the input signals are used to adapt the filter 

coefficients. The following steps show the details of the RLS algorithm [34]:

• Input Signals: y(m) and x(m)

• Initial values: O^/w) = SI, w(0)=wi

• F o rm = 1,2, ...

a. Filter gain vector:

K (m )  =
5 - 1, 1 )Y(m)

i + r ' r T(w)<Dw ( /n - i ) ] : (w)
( 1.2 .20)
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b. Error signal equation:

e[m) = x(mJ-fV_T (m -  \)Y_{m) (1.2.21)

c. Filter coefficients:

W(m) = W ( m - l ) - K ( m ) e ( m )  (1.2.22)

d. Inverse correlation matrix update:

(m) = 2-'4>w ( m - 1) -  X 'K ( m )  Y1 (m)® „ ( m - \ )  (1.2.23)

1.3 Comparison

Various aspects in the area of noise cancellation are discussed in the previous sections. 

From those descriptions, the advantages and disadvantages of different methods, different 

structures and different algorithms can be found. After comparing the differences, the 

appropriate method, structure and algorithm under certain scenario can be selected.

1.3.1 Adaptive Filtering vs. Fixed Filtering

According to the availability of a priori information on the reference signal, the 

noise-free primary signal and the transmission channel, fixed or adaptive filtering method 

can be used. Fixed filtering method on noise cancellation is performed when a priori 

information is available. The filter's coefficients are fixed. On the contrary, adaptive 

filtering method on noise cancellation is performed when there is no a priori information 

available. The adaptive filters have the ability to adjust their own parameters, i.e. 

coefficients, automatically.

Adaptive filtering method has to update the coefficients from time to time. 

Apparently it is more complex and less computational efficient than the fixed filtering 

method. As in the most circumstances, a priori information is unavailable. Adaptive
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filtering method is more popular than fixed filtering method in the area of noise 

cancellation.

Sometimes, for a relatively stable system, the coefficients can be trained using 

adaptive filter. After the coefficients are stable at a certain point of time, a fixed filtering 

can be used to improve the system performance.

1.3.2 Lattice Structure vs. FIR/IIR Structures

Adaptive lattice filters, adaptive FIR filters and adaptive HR filters are all linear 

structures of the adaptive filter.

Adaptive lattice filters try to orthogonalize the input signals to the filter and then 

estimate the desired response signal as a linear combination of the transformed signals 

that are hopefully orthogonal to each other. The advantages of lattice structure in adaptive 

filtering applications comparing with FIR and HR structure are shown as below:

• Adaptive lattice structure equipped with LMS-type adaptation algorithm tends to 

show faster and less input signal-dependent convergence behaviour than their 

direct form counterparts, such as FIR and IIR structures.

• Adaptive lattice structure tends to have better numerical properties than their 

direct form counterparts.

• Adaptation of the parameters using the adaptive lattice structure can be done 

independently in each stage without the involvement of other stages.

• The adaptive lattice structure is highly modular; therefore they are very suitable 

for VLSI hardware implementation.

From the above description, the lattice structure among the linear adaptive filter 

structures enjoys the advantages of a simple test for filter stability, good performance in 

finite-wordlength hardware implementations, and greatly reduced sensitivity to the 

eigenvalue spread of the reference signal. The decorrelation of the signal at each stage
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allows the LMS algorithms to converge much faster than the conventional transversal 

filter, especially for a reference signal that has a large eigenvalue spread [33],
/

The downside of the lattice filter is that the computational complexity is higher than 

that of FIR and HR [33],

1.3.3 LMS/NLMS Algorithms vs. RLS Algorithm

From the previous description of the adaptive algorithms, the major advantage of the 

LMS algorithm is the relative simplicity of the algorithm. NLMS is slightly more 

complex than LMS, because of the time-varying step size. But NLMS has better 

performance in the situation of the unknown statistics and time-varying attributes of the 

input.

However, for signals with a large spectral dynamic range, or equivalently a large 

eigenvalue spread, the LMS or NLMS has an uneven and slow rate of convergence. If in 

addition to having a large eigenvalue spread a signal is also non-stationary, then the 

LMS/NLMS can be unsuitable adaptation method. And the RLS method, with its better 

convergence rate and less sensitivity to the eigenvalue spread, becomes a more attractive 

alternative in such situations [34],

RLS algorithm is much more complex than LMS/NLMS algorithms [27],

1.3.4 Linear Structure vs. Nonlinear Structure

The obvious advantage of linear structure is their inherent simplicity. Nonlinear 

structure is much more complicated and higher computational requirement than the linear 

structure. However, if the process is nonlinear, the nonlinear structure has dominant 

performance advantage over the linear structure, including higher noise reduction rate 

and better convergence properties [27],
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1.3.5 Volterra Nonlinear Structure vs. Multichannel Nonlinear Structure

By comparing the two different nonlinear adaptive filter structures, the structure of ’ 

adaptive Volterra filter is more complicated than that of multichannel adaptive lattice 

filter [26][27], In adaptive Volterra filter, the nonlinearity of the system is represented by 

truncated Volterra series expansion. However, the multichannel adaptive lattice filter, 

which includes part of the truncated second-order Volterra series expansion, introduces a 

single-input-multiple-outputs system between the input signal and the lattice predictor, to 

cover the second-order nonlinearity [26],

The total number of elements for the second-order Volterra adaptive filter is 0 (M2) 

[27], where M - 1 is the maximum delay of the input signal. The total number of elements 

for the multichannel adaptive lattice filter is 0(M) [26], Apparently, the multichannel 

structure is less in computational complexity than the Volterra structure.

Both the nonlinear adaptive filters are implemented by using the multichannel 

adaptive lattice predictor. From Figure 1-9, the adaptive Volterra structure has different 

elements on each channel. However, multichannel adaptive lattice structure has the same 

number of elements on each channel. The multichannel nonlinear structure is less 

complex for the hardware implementation than the Volterra nonlinear structure.

1.4 Motivation

In recent years, many applications are developed and implemented in the area of 

speech processing, such as speech recognition, coding, etc. The noise-cancellation pre

processing stage shows high demand in the real-world environment. Meanwhile, more 

and more techniques are developed to provide the system with higher computational 

capability and smaller size.

Several filtering techniques have been proposed over the years. Among them are 

linear processing techniques, whose mathematical simplicity and existence of a unifying 

theory make their design and implementation easy. Their simplicity, in addition to their
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satisfactory performance in a variety of practical applications, has made them methods of 

choice for many years. However, most of these techniques operate assuming a Gaussian 

model for the statistical characteristics of the underlying process, and thus they try to 

optimize the parameters of a system suitable for such a model. Many signal processing 

problems can not be efficiently solved by using linear techniques. To fit into the real- 

world environment using the advanced technologies, some more realistic cases (nonlinear 

system models) of the noise environment need to be investigated in the area of adaptive 

noise cancellation.

An approach of adaptive noise cancellation using the method of independent 

component analysis (ICA) is presented in [42], where the signals are contaminated with 

high-level additive noise and/or outliers. A prewhitening technique is used to reduce the 

power of additive noise, the dimensionality and the correlation among sources. A cross- 

validation technique is introduced to estimate the number of sources. After that, the 

nonlinear function is derived using the parameterized t-distribution density model [42], 

This approach shows good performance in blind separation of independent sources in the 

fields of neural networks and statistical signal processing. However, as the approach 

makes a lot of assumptions on the properties and distributions of signals and system 

models, it can only apply to some specific scenarios. The computational cost of this 

approach is high.

Another approach on adaptive noise cancellation using radial-basis-function-network 

(RBFN) is presented in [44], First, identification (modeling) of the additive noise process 

using RBF networks and its learning algorithm. Secondly, neural control is put on neural 

model obtained in the first stage. This approach uses the online structure learning and 

parameters determination algorithm. The minimum firing strength (MFS) criterion 

ensures that the RBF neurons can represent the input space in sufficient degree. The self

organizing algorithm makes the RBFN covers the input space well [44], As the approach 

uses the neural networks technology, the performance will be limited upon successful 

training of the parameters. The computational cost of this approach is high. Similar
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approach in the area of active noise control is presented in [39], which has the same 

limitation.
s

Under some general continuity requirements, i.e. the function and its n first 

derivatives are continuous and differentiable, the output of a nonlinear system can be 

expanded into a Volterra series [40], The Volterra series can be seen as being the sum of 

the responses of a first-order operator, a second-order operator, etc. The usefulness of the 

Volterra series hinges on the ability to model a very wide class of nonlinear systems and 

the capability of presenting the solution in terms of generalized frequency response 

functions [1][7], However, there are some limitations associated with the applications of 

Volterra series to nonlinear problems. The major drawback of this approach is the 

convergence of the series especially when strong nonlinearities such as saturating 

elements are to be modeled or when the inputs are large [14][15][17], Consequently, the 

present work only relates to the study of weakly nonlinear systems which can properly 

and adequately be characterized by means of a Volterra series. However in these cases, 

the need to determine a large number of Volterra kernels increases the complexity of 

identifying Volterra series models, it is often time consuming and computational cost 

may not be realistic. Thus building a parsimonious nonlinear model with a minimum 

number of Volterra kernels at a reasonable computational cost, while retaining the 

Volterra structure (in terms of the generalized impulse/frequency response function), is 

therefore an important practical problem [41],

The nonlinear models based on Volterra series expansion are more general than most 

of the other models that were discussed in 1.2.1.2. Two specific cases were presented in 

[27], One is adaptive filters employing truncated Volterra series representation of 

nonlinear systems. The other is to use recursive nonlinear difference equations to relate 

the input and output signals of the system. It is possible to treat the truncated Volterra 

series representation as a special case of the recursive nonlinear system representation 

and consider a unified framework for polynomial system representation [27], The 

Volterra system model is extremely popular in adaptive nonlinear filtering, which uses 

the truncated Volterra series expansion based adaptive Volterra filtering technique to
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process the signal under nonlinear environment [27], A second-order Volterra filter with 

rapid convergence is presented in [23], The RLS adaptive second-order Volterra filter is 

presented in [27] to improve the performance of [23] using RLS adaptive algorithm. The 

adaptive Volterra filter shows better performance in modeling the nonlinear system than 

the conventional linear adaptive filter, with higher computational cost and more difficult 

to converge.

An approach on acoustic echo cancellation using Volterra technique is presented in 

[43], This approach includes a nonlinear upstream module based on polynomial Volterra 

filters identifies the loudspeaker impulse response, and a linear downstream module 

identifies the global linear response. The tracking of the overall system model is achieved 

by a modified NLMS algorithm [43], As this structure includes the second-order and 

third-order nonlinearity, the computational complexity is high.

Another approach to control the nonlinear noise processes using adaptive Volterra 

filters is presented in [38], This approach uses a Volterra filtered-X LMS algorithm based 

on a multichannel structure for feedforward active noise control. RLS algorithm is used 

to update the coefficients of the filter. The adaptive Volterra filter uses the truncated 

Volterra series expansion to include the nonlinearity [38], Although this approach shows 

good performance over nonlinear noise processes, the structure is very complicated and it 

is difficult to converge.

The availability of a wide set of multichannel information sources in application areas 

have stimulated a renewed interest in developing efficient and cost effective processing 

techniques for multichannel signals. For the past two decades, multichannel adaptive 

signal processing has been an extensive research area. Many different methodologies and 

techniques like block-type multichannel schemes or scalar-only operations schemes have 

been used, and many different concepts like multidimensional signal processing, least- 

squares type algorithms have been combined with multichannel applications.

An approach of building a multichannel structure using the nonlinear model with a 

minimum number of Volterra kernels at a reasonable computational cost, while retaining
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the Volterra structure (in terms of the generalized impulse/frequency response function), 

is presented in [26] regarding nonlinear channel equalization. Only some basic elements
>

within the Volterra series expansion are used, which shows good performance in 

nonlinear channel equalization and less computational complexity than the adaptive 

Volterra filter. The method on transferring the nonlinear problem into several linear 

problems can be used onto the nonlinear adaptive noise cancellation applications [26],

Another approach using multichannel feedforward adaptive systems for noise 

cancellation is presented in [34], It alters the reference-signal compensation filtering from 

the conventional choice, ways to force systems to converge to arbitrary solutions of 

possible interest other than the standard Wiener solution. It collects reference signals 

from different sources. Then it uses the multichannel feedforward adaptive structure to 

cancel the noise adaptively. If there is a very large number of measurement points, which, 

conventionally, the noise cancellation would require a correspondingly complex, possibly 

prohibitively large, structure. This approach enables very efficient usage of error signals, 

such that systems with large numbers of disturbance-cancellation points need employ 

only a relatively small number of error signals in the actual control-system 

implementation [34], However, this approach does not consider the possibility of 

nonlinear property o f the transmission channel (propagation path) between the reference 

signal and the primary signal.

Inspired by the research of [23] [26][27] [28] [34] [3 8] [3 9] [40] [41 ] [42][43 ] [44] [40][3 4], 

this thesis will focus the research in the area of adaptive noise cancellation under 

nonlinear transmission channel using multichannel adaptive lattice structure. A two- 

microphone system will be built. The truncated Volterra series expansion will be used to 

include the second-order or higher-order nonlinearity. The lattice technique will be used 

to reduce the sensitivity to the eigenvalue spread of the reference signal, with better 

convergence behaviour and better numerical properties. NLMS algorithm will be used to 

update the coefficients within the filter, with better performance in unknown statistics 

and time-varying input over LMS algorithm. The multichannel lattice structure should 

show positive results when the transmission channel has nonlinear properties.
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2 SCLSfo rANC

According to the lattice structure proposed by S. M. Kuo and D. R. Morgan [30], the 

traditional lattice structure for adaptive noise cancellation including the adaptive lattice 

predictor and the multiple regression transversal filter, as shown in Figure 1-5. Because 

its reference input is a single-channel input, it is also called SCLS (single-channel lattice 

structure) in comparison with MCLS (multi-channel lattice structure), which will be 

discussed in the next chapter.

The adaptive lattice predictor is a modular structure that contains a number of 

cascaded lattice stages. A steepest descent or an exact least-squares algorithm is used to 

adjust the filter coefficients independently at each stage [30],

2.1 Lattice Stage

The lattice stage, as illustrated in Figure 2-1, is the basic component with two input 

and two output channels within the lattice predictor [30],

Stage I

Figure 2-1: Detailed structure of /-th lattice stage

The recursive equations that describe the lattice structure are expressed by

= / = 1,2,..., Z, -1  (2.1.1)
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and

b,(m) = bl_l ( m - \ ) - k I( m ) f l_l (m), I = \ , 2 , . . . , L - l  (2.1.2) ’

where fi(m) is the forward prediction error, bi(m) is the backward prediction error, ki(m) is 

the reflection coefficient, I is the stage (order) index, and L -1 is the total number of 

cascaded stages [30],

2.2 Structure and Algorithm

The overall SCLS for ANC, as illustrated in Figure 1-5, is composed of two major 

parts: the adaptive lattice predictor and the multiple-regression transversal filter.

The adaptive lattice predictor consists of a number of cascaded lattice stages, as

illustrated in Figure 2-1. The reference signal x(m) is used as the input signal for stage 1,

as shown in Figure 2-2 and expressed by

fo{m) = bo(m) = x {m) (2.2.1)

Given these initial conditions and a set of reflection coefficients k\(m), ..., kL.\(m), the 

pair of outputs f{m)  and bi{m) can be produced by moving through the lattice filter, stage 

by stage, as illustrated in Figure 2-2.

x(m)
Stage 1 StageL - 1

Figure 2-2: Lattice predictor o f  SCLS

To complete the specification of the adaptive lattice filter, a means of determining the 

reflection coefficients {ki(m)}, 1 < I <L-1, is required. In [30], a steepest-descent method
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designed to minimize the sum of the MSEs of forward and backward prediction errors at 

each stage, expressed by
/

4i(m) = E [ f? (m )  + t i ( m ) \ ,  l = \ ,2 , . . . ,L - \  (2.2.2)

where gi(m) is the cost function of stage I at time m.

Similar to the derivation of LMS algorithm [30], the cost function defined in (2.2.2)

can be approximated by a sum of the instantaneous squared forward and backward

prediction errors:

l ( m )  = / , 2(m)+bf(m),  / = 1 ,2 ,...,£ -1  (2.2.3)

A

From (2.1.1) and (2.1.2), the gradient of the 4 i \ m) with respect to the reflection 

coefficient ki(m) becomes

dk, (m) dk, (/n)

_ d {[/;-. (m) ~ K (« )V i (m ~ I )] ' + ( m - \ ) - k ,  (m) f,_, ( / w )]2 J
dk, (m)

= - 2 [ / /  M  bi (m ~ 1) ■+ b, (m) / M (m)]

*  ( \  (22 A) ok, (m)

Substituting this gradient estimate into the steepest-descent method, the reflection 

coefficient ki(m+\) can be recursively updated by

k, (w + l) = k, ( m ) - — S7£ (m) 
y } lK } 2 } (2.2.5)

= k, (m) + v, [ / ,  (m)b, ( m - 1) + b, (m) /_ ,( /» )] , / = 1,2,...L -1

where fii is the step size at the /-th stage.
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As with the NLMS algorithm [30], the constant step size Hi can be replaced by a time- 

varying step size /ui(m) which is normalized to the signal power at the /-th stage. This 

time-varying step size has the advantage of responding to the changing input signal 

power, which can be estimated by recursively averaging the sum of the squared forward 

and backward prediction errors. Thus, let

is the power estimate of the sum of the forward and backward prediction errors at the 

input of stage I, where 0 < a  «  1 is a smoothing factor.

Thus the update formula in (2.2.5) becomes

k, (m +1) = k, (m) + //, ( « ) [ /  (m) b,_, ( m - 1) + b, (m ) / M (m)] (2.2.8)

where yi(m) is calculated by (2.2.6) and (2.2.7), /=  1, 2, ..., L-l.

The major function of adaptive lattice predictor is to transform the correlated 

reference signals {x(m) x(m-1) ... x(m-L+l)} into a corresponding sequence of 

uncorrelated backward prediction errors {bo(m) b i(w )... fa.i(m)}.

The detailed SCLS is illustrated in Figure 2-3.

The multiple regression transversal filter with coefficients {w0(m) W\(m) ... wL.](m)} 

then operates on the backward prediction errors {b0(m) b\(m) ... fa.i(m)} to produce a

(2 .2 .6)

where /u is a constant, and

Pi {m) = ( l  -  a)  Pi (m - 1) + a  [ / , ! ,  ( m) +  6*, (m - 1)] (2.2.7)
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filter output s(m). As shown in Figure 2-3, the initial step of the multiple-regression 

transversal filter is formed as

e0(m) = d ( m ) - w 0(m)b0(m) (2.2.9)

where dim) is the noisy primary signal, and the following steps of the multiple-regression 

transversal filter are formed as

el {m) = el_x( m ) - w l (m)b1{m), /  = 1 ,2 ,...,1 -1  (2.2.10)

x(m)

Stage 1 StageZ-l

w0(m)

d(m)

y(m)

Figure 2-3: Detailed structure of SCLS

Finally, the output signal is formed by

y { m) = yE ^ , { m ) b , ( m )  (2.2.11)
1=0

and s(m), i.e. the estimate of the noise-free primary signal s(m), is formed by

A L - 1

s \m) = eL-\ {m) = d ( m ) - y ( m )  = d ( m ) - Y JWi{m)bl {m) (2.2.12)
1=0
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The coefficients of the multiple regression transversal filter are updated by the NLMS 

algorithm, expressed by
/

w, (m +1) = w, (m) + - J ± — bt (m)e, (m) (2.2.13)
Qi W

where jj. is a constant and Ol (m) is an estimate of the backward prediction error power 

at stage /, which can be obtained using

Q, (m) = (l -  a )  Q, (m - 1) + a t f  (m ) (2.2.14)

where a  is a smoothing factor and 0 < a «  1.

The overall SCLS can be viewed as a lattice pre-processor followed by a transversal 

filter. The pre-processor (adaptive lattice predictor) decorrelates (whitens) the reference 

signal to produce uncorrelated backward prediction error signal. The transversal filter 

operates on these uncorrelated signals; thus the convergence of the adaptive transversal 

filter does not suffer from eigenvalue disparity problem [30],
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3 M CLSfo rANC

This chapter introduces the MCLS (multichannel lattice structure) for ANC under 

nonlinear transmission channel. A specific definition of the problem and the basic 

assumption are provided. The detailed description of its structure and algorithm is 

illustrated.

3.1 Problem Definition and Assumption

The objective of ANC is to eliminate the noise from the noisy primary signal and 

recover the noise-free primary signal adaptively. ANC uses the reference signal, noisy 

primary signal and the adaptive structure to cancel the additive noise signal from the 

noisy primary signal adaptively, and recover the noise-free primary signal eventually.

As illustrated in Figure 1-1, the continuous-time analog impulse response of the 

transmission channel between the reference signal and the noisy primary signal, h[.], can 

be linear or nonlinear. And in most of the cases, it should be nonlinear. If the 

transmission channel is nonlinear, i.e. nonlinear impulse response, the existing SCLS 

normally can not recover the noise-free primary signal successfully. SCLS has bad 

performance and poor convergence properties over the nonlinear cases.

By using MCLS over the nonlinear cases, the noise-free primary signal can be 

recovered successfully. Some experiments show the positive results using this structure 

over nonlinear cases.

To simplify the simulation, the problem model, as illustrated in Figure 3-1, is used in 

this thesis.

The problem is stated as follows:

Given a reference signal x{m) and a noisy primary signal d(m), which can be 

expressed by
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d  (m) = 5 (m) + n (m) = s {m) + /?[* (/w)]

where s(m) is the noise-free primary signal, n(m) is the additive noise signal within the 

noisy primary signal d{rri). According to (3.1.1), the additive noise n(m) is the reference 

signal x(m) degraded by the nonlinear transmission channel, where h is the discrete-time 

digital impulse response of the nonlinear filter equivalent to the nonlinear transmission 

channel, and m is the discrete-time index.

Multichannel Adaptive 
Lattice Structurex{m)

h(m) h{ni)

n(m)

s(m) - h

d{m) e(m)

Figure 3-1: Problem model for MCLS proposal

Assume the impulse response of the nonlinear transmission channel can be expressed 

by the truncated Volterra series expansion, i.e. n(m) can be simulated using the Volterra

series expansion, as shown in (1.2.5) or the truncated version as shown in (1.2.6) to make

it realizable. To simplify the structure and the calculation, rt(m) is assumed that it can be 

expressed by a second-order Volterra series expansion as

M -\ M - 1JW-1

n(m) = h0 + Y JM k \ ) x ( m - k ^  + ' £ Y Jh2(k\’k2)x (m - k\ ) x {fn- k2) (3-l-2)
k,= 0 *,=0*2=0
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where ho, h\(k\), hi{k\,ki) is known as the 0th, 1st and 2nd order Volterra kernel of the 

system. The 2nd order Volterra kernels can characterize the second-order nonlinearity of 

the system.

The goal of MCLS is to eliminate the additive noise signal n(m) and recover the 

noise-free primary signal s(m) from the noisy primary signal d(m) when the transmission 

channel is nonlinear, while the nonlinear transmission channel can be characterized using 

the second-order truncated Volterra series expansion.

3.2 MCLS

As described in the previous chapter, the existing SCLS exhibits bad performance and 

poor convergence property under nonlinear cases. They are, therefore, unsuitable for 

practical ANC under nonlinear transmission channel.

The objective of MCLS is to produce satisfied results under nonlinear transmission 

channel case. The algorithm should exhibit improved convergence property over existing 

SCLS and should provide meaningful solutions in the presence of nonlinear property on 

the transmission channel.

MCLS uses the Volterra series expansion of the nonlinear system, and provides the 

significant improvement on ANC performance and convergence property under nonlinear 

transmission channel.

The block diagram of MCLS is shown in Figure 3-2. The single channel reference 

signal x(m) is fed into the SIMO module, generating the multichannel output vector X(m). 

The multichannel vector X(m) is then fed into the first MALP stage and the initial stage 

of MMRTF. Each MALP stage produces the forward prediction error vector F(m) and 

backward prediction error vector B(m). The generated F(m) and B(m) are then fed into 

the next MALP stage. Meanwhile, the initial MMRTF stage uses X{m) and d(m) to 

generate the initial error output Eo(m), the generated error output E(m) and backward 

prediction error vector B(m) are fed into the next MMRTF module. The signal is
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processed stage by stage. The error output of the last MMRTF stage, El-\{m), is the 

output of MCLS, i.e. s(m), which is the estimate the noise-free primary signal s(m).

MALP MALP MALP

SIMO Stage 2 Stage L-l BL-dm)KL.m

B l -i M

d (m )  
-------- ►

MMRTF 

Initial Stage
Eo(m)

Eo(m) MMRTF E\(m; MMRTF E2(m) EL.2(m) MMRTF

Stage I
K\(m)

Stage 2
m m )

StageL-l 
mdm)

EL.\(m) 
 ►

s(m)

Figure 3-2: Block diagram of MCLS

The reflection coefficient vector K(m) of each MALP stage and the coefficient vector 

W{m) of each MMRTF stage are generated adaptively using adaptive algorithm, such as 

LMS/NLMS or RLS. In this thesis, NLMS algorithm is used.

In the following sections, the detailed structure inside each module will be described 

extensively. The process of how the noisy primary signal is filtered by using the 

reference signal and MCLS will be illustrated.

3.2.1 SIMO Module

Using the concept of second-order truncated Volterra series expansion, as (3.1.2), it 

involves all the second-order nonlinearity. The linear part is shown as

( l ) x ( / w - l )

\  { M +  \)

(3.2.1)
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and the nonlinear part is shown as

^■ 0)x2 (w)

(w-l)
J ^ ’̂ x ( rn )x{m -1) 

h ^ x { m - \ ) x { m - l )

^ MA)x 2( n - M  + \) 0 

where

(3.2.2)

i = J
[h2( i , j )  + h2( j , i ) ,  i * j

(3.2.3)

From (3.2.1) and (3.2.2), the elements in the first row of each matrix or vector are 

called basic elements, which can be used to characterize the linearity and second-order 

nonlinearity of the system. The other elements are only those basic elements with simple 

delays, called non-basic elements. In MCLS, only basic elements are used. Some results 

in later simulations prove that MCLS can provide effective ANC even if the non-basic 

elements exist.

xjm) x{m) >x\{m) 

* ¥ ) * ¥ )  > X , ( M )

Figure 3-3: Detailed structure of SIMO
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In this thesis, SIMO (single-input-multiple-output) module, as shown in Figure 3-3, is 

used to produce the linearity and the second-order nonlinearity of the nonlinear system by 

generating the multichannel reference signal vector X(m). '

The multichannel reference signal vector X{m) is defined by

x, (m) = x(w) 
x2 (m) = x2 (m) 
x3 (m) = x ( m ) x ( m - 1)

xM(m) = x ( m ) x ( m - M  + 2) 

x m +i (m) = x ( m ) x ( m - M  + l)

(3.2.4)

where M - 1 is the maximum delay, and X(ni) hasM+1 channels.

It is easy to expand the second-order nonlinearity into the arbitrary-order nonlinearity 

using the similar SIMO structure. For 3rd-order with maximum delay M -1=2, the 

multichannel reference signal vector X(m) is defined by

£(»>) =

x, (m) = x(w)
x2 (m) = x2 (m)
x3(w) - x(/w)x(/w-l)
x4 (m) = x(ni) x(m - 2)
x5 (w) = x3 ini)
x6 {m) = x2 (/w) x (/» -1)
x7 (m) = x2 (m)x(m - 2)
x8 (/w) = x(/w)x2 (m -l)
x9 [m) = x (/») x2 (w - 2)
x,o(/w) = x(w)x( /w-l)x( /w-2)

(3.2.5)

For 2nd order SIMO withM-1 maximum delays, the number of basic element isM+1. 

For P^-order SIMO with M-\  maximum delays, the total number of basic element is 

calculated by
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p - l

'M 'M = '+ Zp=0
n  (m - p )
q = 0

(3.2.6)

From (3.2.6), the total number of SIMO output channels can be calculated for 

arbitrary number of order and arbitrary number of maximum delays. When the order of 

nonlinearity and maximum delay are increased, the total output channel number of SIMO 

module will be increased exponentially. Some calculation results are shown in Table 3-1.

Table 3-1: Total channels of different order (P) and different maximum delay (M-1)

Channels M-\=\ M -1=2 M-l=3 M - 1=4 M -1=5

P=2 3 4 5 6 7

P=3 5 10 17 26 37

P=4 7 16 41 86 157

P= 5 9 22 65 206 517

P=6 11 28 89 326 1237

In this thesis, the research will be concentrated on the second-order nonlinear model, 

and some experiments will be made on the third-order nonlinear model with small value 

of maximum delay M - 1 to verify whether MCLS can show positive results on higher- 

order cases.

3.2.2 MALP Module

The major function of MALP (multichannel-adaptive-lattice-predictor) module is to 

transform a sequence of correlated reference signal vectors {X{m), X(m-1), ...,X(m-L+1)} 

into a corresponding sequence of uncorrelated backward prediction error vectors {Bo(m\ 

Bi(m), ..., Bi.\(m)}. Each MALP module includesM+l lattice stages, as illustrated in 2.1. 

The structure of they'-th MALP stage is illustrated in Figure 3-4.
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Lattice Stage [2, j\

Lattice Module [M+l,y]

Lattice Stage [M,j\

Lattice Stage [l,y]

Backward
Prediction

Error
Vector

Backward
Prediction

Error
Vector

Forward
Prediction

Error
Vector

Forward
Prediction

Error
Vector

Figure 3-4: Structure ofy'-th MALP stage

After feeding the reference signal x(m) into the SIMO module, the multichannel 

reference signal vector X(m) is generated, which contains M+\ elements. X(m) is fed into 

the first MALP stages, as
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E 0(m) = H0(m) = X (m )  (3.2.7)

All the reflection coefficients, % y](/w), are calculated adaptively and individually. The 

reflection coefficient vector in y'-th MALP stage, i.e. K/jn) shown in Figure 3-2, is 

defined by

^;W = hu]Ŵ [MW>---’V;]W’V+u]W]T <3'2-8)

The forward prediction error vector ony-th MALP stage, i.e. Fj(m) shown in Figure 

3-2, is defined by

(m)= [f[u] (m) ’f[u] (W)]T (3 2-9)

The backward prediction error vector on y-th MALP stage, i.e. B,(m) in shown in 

Figure 3-2, is defined by

2.J M  = [*[.,/] M  . ̂ 2.;] W  —  b[M,j] M  . b[M^] (W)]T (3.2.10)

According to the definition of the lattice stage, each element within the forward

prediction error vector Ej(m) is calculated by

A ‘.a M = M _  kM  M  h u n \ ~ 1) <3 -2 -1

and each element within the backward prediction error vector Bj{m) is calculate by

K a  (m )  =  b[uj-A ~  1) -  M  (3 2 12>

where / = 1, 2, ... , M+l andy = 1, 2, ... , L -l.
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From the previous description of the NLMS algorithm in (2.2.6), (2.2.7) and (2.2.8), 

the time-varying step size /Z[,j](/w) is defined by

where jn is a constant, and P[i,j\(m) is the power estimate of the sum of the forward and 

backward prediction error squares at the input of lattice module in z'-th channel and y'-th 

MALP stage, defined by

h .A  (™) = ( \ - a ) P \ U] ( m - \ ) + a [ f l H] (/») + $£,_„ ( w - l ) ]  (3.2.14)

where a  is a smoothing factor and 0 < a  «  1.

The reflection coefficient of the lattice module in z'-th channel and y'-th MALP stage, 

can be recursively updated by

(m + 0 := \ u )  M + P[u] ( m )[ f[i j ]  Cm ) b[i,H) (w -  0 + b[ij] (w )4>-i] W ]  (3-2-15)

The uncorrelated backward prediction error vectors Bo(m), B\(m), ..., and Bl-\{w ) are 

generated stage by stage accordingly.

3.2.3 MMRTF Module

The uncorrelated backward predictor error vectors, generated by the MALP modules, 

are fed into the MMRTF (multichannel-multiple-regression-transversal-filter) modules. 

The major function of MMRTF module is to produce the filtered output from the 

generated backward prediction error vectors 5(z?z)and the noisy primary signal d(m).

The structure of y'-th MMRTF stage is illustrated in Figure 3-5. In (3.2.10), the 

uncorrelated backward prediction error vector Bj(m), which is generated by the y'-th
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MALP stage, contains M +1 elements. The coefficients within y-th MMRTF stage 

construct the coefficient vector Wj(m), as defined by

(3.2.16)

$0»)

Figure 3-5: Structure ofy'-th MMRTF stage

In the first channel ofy'-th MMRTF stage, the error output e^jpri)  is calculated by

e[w] (m ) = e j- i (m ) -  w m  ( m ) \ j ]  H  (3 -2 -17>

then the rest of e^jpri), where 1 < i <=M+1, is calculated recursively by

% J ]  ( W )  =  V d  ( m )  ~  W [U]  ( m )  * [ » ■ ; ]  W  < 3  2 - 1 8 >

where fy,,,](»?) is the /-th element in which is the backward predictor error vector 

from y'-th MALP stage.
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The error output e[M+\,j](m) becomes the filtered output of y-th MMRTF stage, as 

defined by
/

V w ] W = £ , M  (3.2.19)

By combining (3.2.17), (3.2.18) and (3.2.19), the error output of y'-th MMRTF stage 

can be calculated by

M+1
Ej  ( m )  = E h  ( m )  -  £  wM  ( m )  ̂ ( m )  =  ( m)  -  W j  ( m f  B t ( m )  (3.2.20)

i= l

where W/jri) and B,{m) are defined in (3.2.16) and (3.2.10).

At the initial MMRTF stage, wherey = 0, (3.2.20) is replaced by

E0 (m) = d ( m ) -  W_0 (m)T B0 (m) (3.2.21)

where d(m) is the noisy primary signal.

Using NLMS algorithm, the filter coefficient in /-th channel and y'-th MMRTF stage, 

is updated by

w[u](m + l) = W  + -~  M( A ,j](»)«[,>] H  (3-2.22)
U[/,y] \m)

A

where // is a constant and Q[j,j\(m) is the power estimate of the backward predictor error 

at the /'-th channel within Bj(m), i.e. the backward prediction error vector at the y'-th 

MALP stage. Q[ij](m) can be calculated recursively by

§ M  M  = O'-«)§[/.>] (w - 0 + (w) (3 2 -23)
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and the filtered output of the last MMRTF stage, i.e. (L-l)-th stage, becomes the estimate 

of the noise-free primary signal s(m), i.e. s(m), as defined by
/

El_l (m) = s(m)  (3.2.24)

3.2.4 Summary of the Algorithm

After all the detailed descriptions in the previous sections, the architecture of MCLS 

is illustrated. SIMO module, MALP module and MMRTF module are described 

individually in details. The definition and calculation of the inputs and outputs inside and 

between these modules are illustrated.

In this section, the overall algorithm of MCLS will be summarized, from where the 

simulations can be implemented.

The overall algorithm is shown as the follows.

• Set initial conditions:

-  As the system is causal, the value of all variables is zero when m <= 0.

-  Set the constants, jj. and a, let 0 < ju, 0 < a  « 1 .

• For the sample iterations (m): m -  1,2, 3,...

(a) SIMO module:

-  Generate the multichannel reference signal vector X(m) from the single-channel 

reference signal x(m) using (3.2.4).

(b) e[m(m) = d(m).

(c) For the stage iterations (/): j=0, 1, ..., L-\
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i. MALP stage:

-  Ify = 0, F/m )  = Boim) = X(m),
/

-  ify * o,

• Calculate K/m), i.e. the reflection coefficient vector in y'-th MALP 

stage, using (3.2.8), (3.2.13), (3.2.14), and (3.2.15).

• Calculate F/(m) and B/m),  i.e. the forward prediction error vector 

and backward prediction error vector on y'-th MALP stage, using 

(3.2.9), (3.2.10), (3.2.11), and (3.2.12),.

ii. MMRTF stage:

-  Calculate the filter coefficient vector on y'-th MMRTF stage, i.e. W/m), 

using (3.2.16), (3.2.22), and (3.2.23).

-  Calculate the error output at y'-th MMRTF stage, i.e. E/m), using (3.2.20) 

or (3.2.21).

(d) The filtered output of last MMRTF stage, becomes the estimate of noise-

free primary signal s(m), i.e. El-/™) = s(m).

From the above summary of the algorithm on MCLS, the simulation and comparison 

will be made to verify whether MCLS has the performance improvement over SCLS 

when the transmission channel has nonlinear properties.

3.3 Relationship between MCSL and SCLS

The detailed structure of MCLS is illustrated in Figure 3-2, Figure 3-3, Figure 3-4 and 

Figure 3-5. The detailed structure of the existing SCLS is illustrated in Figure 2-3 

respectively. When the total number o f channels becomes one, i.e. only linear part is 

going through the structure, MCLS will be the same structure as SCLS, which means that
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the existing SCLS is a special case of MCLS. MCLS can be considered as an extension 

of SCLS to provide ANC under nonlinear cases.
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4  S i m u l a t io n  a n d  C o m p a r is o n

This chapter evaluates the performance of MCLS, which is discussed extensively in 

Chapter 3, and compares the performance between MCLS and SCLS. Both MCLS and 

SCLS are implemented using MATLAB and the simulations are carried out using a wide 

variety of simulated inputs and simulated transmission channels. Figure 4-1 shows the 

test model for the simulation and comparison in this thesis.

x{m)

n(m)

s(m) -f-

d{m)

h(m)

SCLS

MCLS

Figure 4-1: Test model for the simulation and comparison

The definitions o f the variables in Figure 4-1 are shown as follows:

• x(m) is the reference signal.

• s{m) is the noise-free primary signal.

• n(m) is the additive noise signal, where n(m) = h[x(m)\ It is the distorted version

of the reference signal x(m) , as shown in (3.1.1).
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• h(m) is the impulse response of the simulated transmission channel.

• d(m) is the noisy primary signal, i.e. the noise-free primary signal s(m) with the 

additive noise signal n(m). '

• sm(m) is the filtered output signal of MCLS, as illustrated in Figure 3-2. It is one 

estimate of the noise-free primary signal s(m).

• ss(m) is the filtered output of SCLS, as illustrated in Figure 2-3. It is another 

estimate of the noise-free primary signal s(m).

The simulations were implemented using a number of different noise-free primary 

signals, different types of simulated transmission channels, and different type of 

reference signals. Both structures, MCLS and SCLS, are evaluated to compare the 

stability and the performance upon different simulation scenarios.

4.1 Definitions

Before starting the simulation analysis, the definition of measurements, the definition 

of different simulated transmission channels and the definition of input signals are 

described in this section.

4.1.1 Measurements

To implement the simulation and comparison, the definitions of some frequently-used 

measurements need to be emphasized.

4.1.1.1 RE

The RE (residue-error) is the difference between the noise-free primary signal and its 

estimate, i.e. the filtered output either from MCLS or from SCLS. REm(/w) and REs(/n) 

are used to represent the residue error from MCLS and SCLS respectively. They are 

defined by
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REm (m) = 5m (m) -  s (m) (4.1.1)

RES (m) = 5S (m) -  s(m ) (4.1.2)

where s(m) is the noise-free primary signal, sm(m) is the filtered output signal from 

MCLS, ss(m) the filtered output signal from SCLS, as shown in Figure 4-1.

RE is an instant measurement, which shows the instant result from both structures to 

evaluate and compare their performance.

4.1.1.2 MSE

Sometimes, the residue error can not show the performance difference clearly. 

Another measure, MSE (mean-square-error), is introduced. The MSE measurement is a 

weighted average of the squared distance between the noise-free primary signal and its 

estimate with the number of samples as the weight factors. It is used to measure the mean 

square-error results of the simulations under certain input SNR level, defined by

where e(m) is the residue error. s(m) is the noise-free primary signal. s(m), i.e. the 

estimate of s(m), is the filtered output signal from either MCLS or SCLS. M  is the 

number of samples within the measurement period.

MSE is an average measurement.

4.1.1.3 SNR

The SNR (signal-to-noise ratio) is a measurement of the signal strength relative to the 

additive noise. The ratio is usually measured in decibels (dB). In this thesis, the input and 

output SNR are defined by

(4.1.3)
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SNRin =101og

C m \
I - ! Wm-1 __

10 M
Z « »V rn=1

(dB) (4.1.4)

SNR output lOlog

f  M
Z * ’ M
1=1

10

Z * »
V «=i

(dB) (4.1.5)

where s(m) is the noise-free primary signal. n(m) is the additive noise signal, as shown in 

(3.1.1). e(m) is the residue error signal, as shown in (4.1.3). M  is the total number of 

samples in s(m), y(m), and e(m) within the given measurement period.

SNR defined in (4.1.4) and (4.1.5) are the average measurement. They are used to 

provide the general evaluation of the performance from both MCLS and SCLS. The SNR 

levels mentioned in the following simulations and comparisons are all referred to those 

average SNR levels.

In the following simulations, different input SNR levels are generated to evaluate 

MCLS and SCLS over different noise environments. Different output SNR levels are 

measured to compare the performance between MCLS and SCLS regarding the ability of 

noise cancellation.

4.1.2 Transmission Channels

There are three types of transmission channels being used in this thesis:

• Second-order nonlinear transmission channel, the transmission channel with 

second-order nonlinearity, named ‘Second-Non’ in the simulation titles.

• Linear transmission channel, the transmission channel without nonlinearity, 

named ‘Linear’ in the simulation titles.
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• Third-order nonlinear transmission channel, the transmission channel with third- 

order nonlinearity, named ‘Third-Non’ in the simulation titles.

A certain number of channels are utilized in each transmission channel type. The 

description of those channels is illustrated in Table 4-1. Various transmission channels 

are simulated to provide the solid evidence of the evaluation and comparison upon MCLS 

and SCLS.

Table 4-1: Description of the transmission channels used in the simulations

Channel
Type

Chan
#

Impulse response of the transmission channel

Second-
Non

1 /?[x(m)] = 0.7x(/w) + 02x{m )x{n i)+0. \x{m )x{m  -  2)

2 /t[x(m )] = 0. lx(/w) + QAx{m) x(m  - 1) + 0.5x(/w) x(m  -  2)

3 = 0.2x(w) -I- 0. 1jc(w — l) -i- 0. 1jc(w — 2) + 0. 1a:2 (m) 

+ 0. lx2 [m — l) + 0. lx2 {m -  2) + 0.1 x(m )x(m  - 1)

+ 0. lx(/w) x(m  -  2) + 0. \x(m  - 1) x(m  -  2)

4 /t[x(w )] = 02x[m )  + 03x{m  -  5 )x (m  -  7) + 0.5x(jw -1  l)x(/w -12)

Linear 1 //[x(w )] = 0.7x(/w) + 0.2x(/m-1) + 0.1x(tw- 2 )

2 /7[x(w)] = 0.3x(/w) + 0 .7x(/« -2)

Third-
Non

1 /?[*(/«)] = 0.1x(/w) + 0 .3 x (w -l)x (/w -l)  + 0 .6x(/«)x(/w -l)x(/w -2)

2 /?[x(/w)] = 0.4x(/m) + 0.3x(/w) x(/w) + 0.3x(/w- 2 ) x(/w- 2 ) x(w - 2 )
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4.1.3 Signals

The types of noise-free primary signal and reference signal are defined in this section., 

These signals will be fed into MCLS and SCLS to evaluate and compare the results upon 

different simulation scenarios.

4.1.3.1 Signal Type

There are three types o f input used in this thesis, single/multiple-frequency signal, 

voice signal, and WGN/CGN signal.

4.1.3.1.1 Single/Multiple-Frequency Signal

The single/multiple-frequency signal is an input constructed by one or several 

different frequencies. It can be used either as the noise-free primary signal or as the 

reference signal. In this thesis, the single-frequency signal is defined by

cos
f  f

2 k — m  
v / .  j

(4.1.6)

and the two-frequency signal is defined by

s(in) — — cos 
v ’ 2

'  f  N2 k — m
A

+ —cos 
2

f  f  N 
2 k — m

A
(4.1.7)

where f \  and f i  are different frequencies, and f s is the sampling frequency. 16 kHz is used 

as the sampling frequency in this thesis.

The magnitude of the frequency response of one-frequency signal, where f \  = 100Hz, 

is shown in Figure 4-2(a). The magnitude of the frequency response of two-frequency 

signal, where f \  = 500Hz and f i  = 2 kHz, is shown in Figure 4-2(b).
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(a) Sine wave input with f1=100Hz
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(b) Sine wave input with f1 =500Hz and f2=2000Hz
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Figure 4-2: Frequency response of single/multiple-frequency signal

4.1.3.1.2 Voice Signal

The voice signals, i.e. the digitized wave files chosen from the TEMIT speech 

database, are used as the noise-free primary signal. The sampling frequency/s is 16 kHz. 

The description of the voice signals used in this thesis is illustrated in Table 4-2.

Table 4-2: Definition of voice signals

Name Sex Dialect Region 

/File Set

Sentence Length

(samples)

sil573.wav Female DR12/TEST3 His captain was thin and haggard 
and his beautiful boots were 
worn and shabby.

79565

2 DRl -  Speaker dialect region number 1, which is New England region.
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Table 4-2 (Continued)

si919.wav Male DR34/TEST Obviously, the bridal pair has 
many adjustments to make to 
their new situation.

79975 i
/

si2194.wav Female DR65/TEST He had fallen into a soft job, and 
now the job was gone and he 
was stranded.

75572

Different voice signals from different speakers and over different dialect regions are 

selected to evaluate and compare the performance of noise cancellation ability using both 

MCLS and SCLS.

4.1.3.1.3 WGN/CGN Signal

White noise is simply a sequence of uncorrelated random variables. A random 

process consisting of a sequence of uncorrelated real-valued Gaussian random variables 

is a white noise process referred to as WGN (white Gaussian noise) [30], In this thesis, 

the WGN signal is generated by the wgn(.) function in MATLAB.

According to the definition, the magnitude response of ideal WGN signal should be 

flattened in the frequency domain. The CGN (coloured Gaussian noise) signal is a 

random process where the magnitude response is not flattened in frequency domain.

The CGN signal can be generated by passing the WGN signal through a filter. In this 

thesis, we use the 6-order Butterworth lowpass filter with the specific cutoff-frequency/c 

to generate the CGN signal. An example of the magnitude frequency responses of both 

WGN signal and CGN signal with f c = 2 kHz are shown in Figure 4-3. The magnitude of 

the frequency response of WGN signal is flattening, while CGN signal is not.

WGN signal and CGN signal are used as the reference signal in this thesis.

3 TEST -  Test set of wave files
4 DR3 -  Speaker dialect region number 3, which is North Midland region.
5 DR6 -  Speaker dialect region number 6, which is New York City region.
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(a) Frequency response of white gaussian noise
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(b) Frequency response of colored gaussian noise
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Figure 4-3: Frequency response of WGN and CGN

4.1.3.2 Noise-free Primary Signal

Four different noise-free primary signals, i.e. s(m) shown in Figure 4-1, are used in 

the simulations. The description of those noise-free primary signals is illustrated in Table 

4-3. #2, #3 and #4 are 3 different voice signals. This implies that the research in this 

thesis will be focused on the performance in speech applications.

4.1.3.3 Reference Signal

Three different reference signals, i.e. x(m) shown in Figure 4-1, are used. The 

description of these reference signals is illustrated in Table 4-4. #2 is WGN signal and #3 

is CGN signal, which implies that the research in this thesis will be focused on the 

performance evaluation under common noise environments.

56

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



Table 4-3: Description of the noise-free primary inputs used in the simulations

Noise-free 
primary input #

Description

1 two-frequency signal, as shown in (4.1.7), with/i=500Hz, 
/ 2=2000Hz

2 voice input, “sil573.wav” in Table 4-2

3 voice input, “si919.wav” in Table 4-2

4 voice input, “si2194.wav” in Table 4-2

Table 4-4: Description of the reference inputs used in the simulations

Reference input # Description

1 one-frequency signal, as shown in (4.1.6), with/i=100Hz

2 WGN signal, as illustrated in 4.1.3.1.3

3 CGN signal, as illustrated in 4.1.3.1.3, where/c=6000Hz

4.1.3.4 Noisy Primary Signal

The noisy primary signal, i.e. d{m) shown in Figure 4-1, is generated by passing the 

reference signal x(m), as shown in Figure 4-1, through the simulated transmission channel, 

multiplying a factor that can control the input SNR level, then adding up to the noise-free 

primary signal s(m).

The simulated noisy primary input, d(m), is calculated by

rfW  = s (m )+ i H Q  ( 4 , 8 )
A
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where s(m) is the noise-free primary signal, h[x{mj\ is calculated using the impulse 

response illustrated in Table 4-1, and A is a factor which can control the input SNR level, 

as defined by '

S N R lnpu,

A = 10 20 x 1=1 (4.1.9)

where SNRinput is the input SNR level in decibel (dB) and M  is the total number of 

samples in either reference signal or noise-free primary signal.

The noisy primary signal generated by (4.1.8) has the designated input SNR level.

4.1.4 Title

The title of the simulations is defined in the following format:

where CChan Type> is the type name of the transmission channel, CChan #> is the 

channel index within the transmission channel type, the description of CChan Type> 

and CChan #> can be found in Table 4-1. CNFP #> is the index of the noise-free 

primary signal, which is illustrated in Table 4-3. CRef #> is the index of the reference 

signal, which is illustrated in Table 4-4. For example, if the transmission channel is 

second-order nonlinear transmission channel, the channel index is 1, the simulation uses 

noise-free primary signal #2 and reference signal #3, the title of this simulation comes to 

Second-N on-C H 1 -0 2 -N 3.

CChan Type>-CHCChan #>-OCNFP #>-NCRef #>
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4.2 Method of Analysis

The simulation S econ d -N on -C H l-O l-N l is used as an example to illustrate the " 

method of analysis on the simulation result in this thesis. This simulation uses the 

Second-order nonlinear transmission channel #1, as described in Table 4-1. The noise- 

free primary signal #1, as described in Table 4-3, is a two-frequency signal with f \  = 

500Hz and fa = 2 kHz under the sampling frequency / s = 16 kHz,. The reference signal #1, 

as described in Table 4-4, is a one-frequency signal, with f \  = 100Hz under the same 

sampling frequency.

Figure 4-4 shows the residue error results from both MCLS and SCLS when the input 

SNR level is lOdB. The upper part of Figure 4-4 shows the residue error result from 

MCLS, i.e. REm. The lower part of Figure 4-4 shows the residue error result from SCLS, 

i.e. RES. The residue error is calculated by subtracting the noise-free primary signal from 

the filtered output, as shown in (4.1.1) and (4.1.2).

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104
Second-Non-CHl -0 1 -N1 ,REs (SNR-lOdB)

1

0.5

I
I  °S

-0.5 

-1
0.2 0.4 0.6 0.8 1 12  1.4 1.6 1.8 2

Sample x 1Q«

Figure 4-4: RE in Second-N on-C H l- 0 1 -N1 when SNRinput = 10dB
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From the result in Figure 4-4, we can not distinguish the performance difference 

between MCLS and SCLS clearly. This is the reason on the introduction of MSE 

measurement, which is used to calculate the mean-square-error in a certain measurement 

period, as shown in (4.1.3). In the following simulations, the total number of samples in 

MSE measurements is selected to be all equal to 200. Figure 4-5 shows the mean-square- 

error (MSE) from MCLS and SCLS when the input SNR level is lOdB. The solid line 

shows the MSE result from MCLS and the dashed line shows the MSE result from SCLS.

Second-Non-CHl-Ol-Nl.MSE (SNR-lOdB)
10

 Multichannel Lattice Structure
—  Single-channel Lattice Structure

10°

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Sample 10*

Figure 4-5: MSE in Second-N on-C H l- 0 1 -N1 when SNRjnput= 10dB

From the result in Figure 4-5, it can be distinguished clearly that the MSE result from 

MCLS is lower than the MSE result from SCLS, which means that the performance of 

MCLS is better than SCLS when the transmission channel has the second-order 

nonlinearity (Second-Non-CHl) and the input SNR level is lOdB.
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Using RE and MSE measurements, the performance can be evaluated on a given 

input SNR level. When the input SNR level changes, there will be a lot of plotting results 

of RE and MSE measurements. '

To evaluate and compare the general performance between MCLS and SCLS, 

input/output SNR measurement, as defined in (4.1.4) and (4.1.5), is used to evaluate the 

average output SNR level upon different input SNR level. To get the output SNR in more 

stable states, the output SNR level is calculated from the later 80% of the samples. For 

example, if there are 10000 samples in total, the output SNR level will be calculated from 

the samples in the range of 2001-10000. This will avoid the unstable initial state of both 

MCLS and SCLS, and will get a more accurate result.
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Figure 4-6: Input/Output SNR in Second-N on-C H l- 0 1 -N1
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Figure 4-6 shows the average output SNR performance of MCLS and SCLS when the 

input SNR changes from -80dB to 80dB. The solid line shows the result from MCLS and 

the dashed line shows the result from SCLS.

The effective range of input SNR level is defined for applicability reason, where 

SNRoutput > SNRinput. In the input/output SNR plotting, as shown in Figure 4-6, the low- 

end input SNR level o f effective range is where the output SNR level is equal to OdB6. 

The high-end input SNR level of effective range is the highest input SNR level within the 

effective range. The concept of effective range is very useful to evaluate and compare the 

performance between MCLS and SCLS.

In Figure 4-6, two squared points, labelled EffML and EAmh, are the low-end and 

high-end of the effective range on MCLS. Two circled points, labelled EITsl and EffsH, 

are the low-end and high-end of the effective range on SCLS.

One asterisked point, labelled CP, is the crossover point where the input SNR levels 

of both MCLS and SCLS are the same. Meanwhile, the output SNR level of both MCLS 

and SCLS are the same as well.

The dotted lines point to the different input or output SNR levels with the specific 

corresponding names. The description of the points and their corresponding input/output 

SNR levels in Figure 4-6 is illustrated in Table 4-5.

From the description in Table 4-5, if the effective range does not exist, the given 

structure can not provide the functionality of noise cancellation. If CP does not exist, 

SCLS is always better than MCLS. If CP exists, when the SNRinput > SNRcp, the 

performance of SCLS is better than MCLS. When the SNRinput < SNRcp, the performance 

of MCLS is better than SCLS.

6 In speech applications, when the output SNR is equal to OdB, the noise-free primary signal can not be 
detected by the human ear. It means that the result is useless.
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If SNRcp > SNRehml, MCLS has the performance improvement on noise cancellation 

comparing with SCLS. Otherwise, MCLS has no improvement over SCLS.

Table 4-5: Description of the points and input/output SNR levels in Figure 4-6

Point
Label

Input 
SNR level

Output 
SNR level Description

CP SNRcp Varied Crossover Point. SNRcp is the input SNR level at the 
point CP, where the outputs SNR levels from both 
MCLS and SCLS are the same.

EffML SNREfiML OdB Low-end of effective range using MCLS, where the 
output SNR level is OdB and the input SNR level is 
SNREfiML.

EffkiH SNREffMH SNRMaxM High-end of effective range using MCLS, where the 
input SNR level is SNRehmh- The output SNR level 
at this point is SNRm3xm, called the maximum 
effective output SNR level using MCLS.

EffsL SNRehsl OdB Low-end of effective range using SCLS, where the 
output SNR level is OdB and the input SNR level is 
SNRehsl-

Effsu SNRehsh SNRMaxS High-end of effective range using SCLS, where the 
input SNR level is SNRehsh- The output SNR level at 
this point is SNRMaxM, called the maximum effective 
output SNR level using SCLS.

If SNRehml < SNRcp < SNRehmh, the performance of MCLS is better than the SCLS 

when the input SNR in the range from SNRehml to SNRcp. If SNRcp > SNRehmh, the 

range will be from SNREhml to SNRehmh- If SNRcp < SNRehml, the range is not existed. 

This range is also called effective SNR improvement range, which shows the effective 

improvement of MCLS comparing with SCLS.

The weighted average of the output SNR difference within the effective improvement 

range between MCLS and SCLS is called average SNR improvement (SNRimp), as 

defined by
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S N R  Imp -

|  SN R „^-SN R cp

,ifSNRcp <SNREflML 

I  (SNRMoutput - SNRSouput) ,ifSNREfiML<SNRcp<SNREflMH (4.2.1)
SNR,—., =SNRei

—  X  ( S N R Moutpu, - S N R - s o o tp o . )  ,  ifSNRcp >SNREnMH
M  SNR,^,=SNRErML

where M  is the number of points within the effective improvement range, SNRvioutput is 

the output SNR level from MCLS at the given input SNR level, SNRs0utPut is the output 

SNR level from SCLS at the given input SNR level. If the effective improvement range 

exists, the input SNR level will stay in the effective range.

SNRMaxs, defined in Table 4-5, shows the maximum output SNR level that SCLS can 

provide in the corresponding simulation. SNRMaxM, defined in Table 4-5, shows the 

maximum output SNR level that MCLS can provide respectively.

From the result in Figure 4-6, CP is at the point where the input SNR level of either 

MCLS or SCLS is 16dB. The effective range of MCLS is where the input SNR level 

stays between -64dB and 3OdB. The effective range of SCLS is where the input SNR 

level stays between -15dB and 44dB.

The maximum output SNR level using SCLS is about 44dB, which is about 14dB 

higher than the one from MCLS. This is because MCLS includes the additional 

adaptation steps for the second-order nonlinear elements, which introduces higher output 

level of base noise. On the contrary, the existing SCLS only includes the linear elements 

with less adaptation steps, resulting lower output level of base noise.

The effective improvement range of MCLS over SCLS is where the input SNR level 

stays between -64dB and 16dB. When the input SNR level stays in this range, MCLS has 

performance improvement comparing with SCLS.
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In this example, two-frequency signal is used as the noise-free primary signal and 

one-frequency signal is used as the reference signal. The transmission channel uses 

second-order nonlinear channel #1. The result is analyzed step-by-step. In the remaining 

simulations, and the typical simulations7 are discussed in detail to analyze and compare 

the performance between MCLS and SCLS over different scenarios.

4.3 Simulations and Analysis

In this thesis, the simulations are grouped upon different type of transmission 

channels to verify whether MCLS has better performance in ANC comparing with SCLS 

over different scenarios.

4.3.1 Second-order Nonlinear Transmission Channel

The main focus o f this thesis is to verify whether MCLS, which is based on second- 

order Volterra series expansion, can provide better performance than SCLS when the 

transmission channel has second-order nonlinearity. Extensive simulations will be carried 

out to provide the evidences with positive results.

4.3.1.1 Simulation Scenarios

There are totally 60 simulations carried out over 4 different second-order nonlinear 

transmission channels, 4 different noise-free primary signals and 3 different reference 

signals as described above.

Channel #1 and #2, as illustrated in Table 4-1, are used to provide the evidences that 

MCLS has the performance improvement over SCLS when the transmission channel only 

contains the basic second-order nonlinear elements8.

7 Typical simulation: In this thesis, the simulations with the voice signal as noise-free primary signal and 
WGN signal as reference signal are selected as the typical scenario of the simulations. Detailed analysis 
will be given in those simulations.
8 Basic second-order nonlinear elements are the elements contained in the output of SIMO module (3.2.4).
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There are 30% output of the impulse response with second-order nonlinearity in 

channel #1, and 90% in channel #2 respectively. Simulation results show whether the 

different proportion of nonlinear elements will affect the performance of both MCLS and1 

SLCS. 12 simulations (No. 1-12), as illustrated in Table 4-6, are carried out over channel 

#1. Another 12 simulations (No. 13-24), as illustrated in Table 4-7, are carried out over 

channel #2. L is the maximum number of stages of both MCLS and SCLS.

Table 4-6: Simulation titles using second-order nonlinear channel #1

No. Simulation Title L No. Simulation Title L

1 Second-Non-CHl-Ol-N1 4 7 Second-Non-CHl-03-N1 4

2 Second-Non-CHl-01-N2 4 8 Second-Non-CHl-03-N2 4

3 Second-Non-CH1-Ol-N3 4 9 Second-Non-CHl-03-N3 4

4 Second-Non-CHl-02-N1 4 10 Second-Non-CHl-04-Nl 4

5 Second-Non-CHl-02-N2 4 11 Second-Non-CHl-04-N2 4

6 Second-Non-CH1-02-N3 4 12 Second-Non-CHl-04-N3 4

Table 4-7: Simulation titles using Second-order nonlinear channel #2

No. Index Text L No. Index Text L

13 Second-Non-CH2-Ol-Nl 4 19 Seeond-Non-CH2-03-N1 4

14 Second-Non-CH2-Ol-N2 4 20 Second-Non-CH2-03-N2 4

15 Second-Non-CH2-01-N3 4 21 Second-Non-CH2-03-N3 4

16 Second-Non-CH2-02-N1 4 22 Second-Non-CH2-04-N1 4

17 Second-Non-CH2-02-N2 4 23 Second-Non-CH2-04-N2 4

18 Second-Non-CH2-02-N3 4 24 Second-Non-CH2-04-N3 4
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Channel #3, as illustrated in Table 4-1, is used to provide the evidence that MCLS has 

the performance improvement over SCLS when the transmission channel not only
»

includes the basic second-order nonlinear elements, but also includes the non-basic 

second-order nonlinear elements9. 12 simulations (No. 25-36), as illustrated in Table 4-8, 

are carried out over channel #3. L is the maximum number of stages of both MCLS and 

SCLS.

Table 4-8: Simulation titles using Second-order nonlinear channel #3

No. Index Text L No. Index Text L

25 Second-Non-CH3-01-N1 4 31 Second-Non-CH3-03-N1 4

26 Second-Non-CH3-Ol-N2 4 32 Second-Non-CH3-03-N2 4

27 Second-Non-CH3-01-N3 4 33 Second-Non-CH3-03-N3 4

28 Second-Non-CH3-02-N1 4 34 Second-Non-CH3-04-N1 4

29 Second-Non-CH3-02-N2 4 35 Second-Non-CH3-04-N2 4

30 Second-Non-CH3-02-N3 4 36 Second-Non-CH3-04-N3 4

Channel #4, as illustrated in Table 4-1, is used to provide the evidence that even the 

absolute maximum delay10 exceeds the second-order Volterra series expansion, but the 

relative maximum delay11 stays inside the limit of SIMO module output. In this case, by 

increasing the number of MALP and MMRTF stages, the performance improvement can 

be achieved between MCLS and SCLS.

12 simulations (No. 37-48), as illustrated in Table 4-9, are carried out over Channel 

#4 using L = 4. Another 12 simulations (No. 49-60), as illustrated in Table 4-9, are 

carried out over Channel #4 using L = 13.

9 Non-basic second-order nonlinear elements are the elements contained in the second-order Volterra series 
expansion (3.2.2), but not included in output of SIMO module (3.2.4).
10 The maximum delay within the impulse response of the transfer function, for example, x(n-l l)x(n-12) 
comes to 12 at Second-Non channel #4 in Table 4-1.
11 The maximum difference of the delay within each nonlinear element, for example, x(n-\ l)x(w-12) comes 
to 1 at Second-Non channel #4 in Table 4-1.
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Table 4-9: Simulation titles using Second-order nonlinear channel #4

No. Index Text L No. Index Text L
/

37 Second-Non-CH4-Ol-Nl-L4 4 49 Second-Non-CH4-01-Nl-L13 13

38 Seeond-Non-CH4-Ol-N2-L4 4 50 Second-Non-CH4-01-N2-L13 13

39 Second-Non-CH4-01-N3-L4 4 51 Second-Non-CH 4-01-N3-LI3 13

40 Second-Non-CH4-02-N1-L4 4 52 Second-Non-CH4-02-Nl-L13 13

41 Second-Non-CH4-02-N2-L4 4 53 Second-Non-CH4-02-N2-L13 13

42 Second-Non-CH4-02-N3-L4 4 54 Second-Non-CH4-02-N3-L13 13

43 Second-Non-CH4-03-N1-L4 4 55 Second-Non-CH4-03-N1-Ll3 13

44 Second-Non-CH4-03-N2-L4 4 56 Second-Non-CH 4-03-N2-Ll3 13

45 Second-Non-CH4-03-N3-L4 4 57 Second-Non-CH4-03-N3-L13 13

46 Second-Non-CH4-04-N1-L4 4 58 Second-Non-CH4-04-N1-L13 13

47 Second-Non-CH4-04-N2-L4 4 59 Second-Non-CH4-04 -N2-L13 13

48 Second-Non-CH4-04-N3-L4 4 60 Second-Non-CH4-04-N3-L13 13

In all these 60 simulations, as described in Table 4-6, Table 4-7, Table 4-8 and Table 

4-9, some other parameters in both MCLS and SCLS are set as the follows:

• Maximum delay of the SIMO module: M - 1=2.

• Smoothing factor: a , as defined in (3.2.14) and (3.2.23), is set to be 0.00075.

• Step size factor: fi, as defined (3.2.13) and (3.2.22), is set to be 0.00075.

4.3.1.2 Analysis over Channel #1

The result of simulation No. 5, i.e. Second-N on-C H l- 0 2 -N2 in Table 4-6, is 

analyzed here. It uses the second-order nonlinear transmission channel #1 in Table 4-1, 

the noise-free primary signal #2 in Table 4-3 and the reference signal #2 in Table 4-4.
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Figure 4-7: RE in Second-N on-C H l- 0 2 -N2 when input SNRinput = OdB
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Figure 4-8: MSE in Second-N on-C H l- 0 2 -N2 when SNRinput = OdB
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Figure 4-7 shows the RE results from both MCLS and SCLS when the input SNR 

level is OdB. The RE from MCLS (REm) is smaller than the RE from SCLS (RES).

Figure 4-8 shows the MSE results from both MCLS and SCLS under OdB input SNR 

level. The MSE from MCLS is lower than the MSE from the SCLS.

The result of RE/MSE shows that MCLS has improved ANC ability comparing with 

SCLS when the input SNR level is OdB.

Second-Non-CHl -02-N2-L4 SNR

—  Multichannel Lattice Structure
—  Single-channel Lattice Structure

120

100

00

I
E f

a

-20

-40

-60

-80

-80-80 -40 -20 20 800 40 60
Input SNR (dB)

Figure 4-9: Input/Output SNR in S econd-N on-C H l- 0 2 -N2

Figure 4-9 shows the output SNR levels from both MCLS and SCLS when the input 

SNR levels ranges from -80dB to 80dB. There is no effective range when using SCLS. 

This means that SCLS can not provide ANC functionality in this simulation. On the
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contrary, when the input SNR level is from -26dB to 21dB, MCLS has the ability to 

cancel the noise adaptively.

The detailed results of all 12 simulations using second-order nonlinear channel #1 can 

be found in Table 4-10.

Table 4-10: Simulation results using Second-Non channel #1

No SNRe„s (dB) SNReam (dB) SNRcp
(dB)

SNRimp (dB)

L H Max L H Max L H IMPAvg

1 -15 44 44.236 -64 30 30.169 16 -64 16 33.234

2 -33 27 27.223

001 23 22.693 -9 -58 -9 17.200

3 -41 25 25.129 -55 21 21.162 -17 -55 -17 9.943

4 N/A N/A N/A -35 20 20.296 41 -35 20 43.466

5 N/A N/A N/A -26 21 21.198 22 -26 21 18.146

6 -7 25 25.293 -23 21 20.774 15 -23 15 11.294

7 N/A N/A N/A -39 20 19.565 37 -39 20 41.440

8 -5 23 23.031 -31 21 21.232 19 -31 19 17.199

9 -13 25 24.678 -28 21 20.814 10 -28 10 11.177

10 N/A N/A N/A -37 23 23.449 42 -37 23 42.851

11 -3 24 24.152 -29 22 21.870 20 -29 20 17.619

12 -11 23 22.857 -27 20 20.086 12 -27 12 10.833

The first column is the simulation index, which is defined in Table 4-6. The SNRehs 

represents the effective range using SCLS, where L shows the low-end input SNR level, 

H shows the high-end input SNR level, and Max shows the maximum output SNR level. 

The SNRehm represents the effective range using MCLS, where L shows the low-end 

input SNR level, H shows the high-end input SNR level, and Max shows the maximum 

output SNR level. The SNRcp column shows the input SNR level on the crossover point. 

The SNRimp represents the effective improvement range when MCLS has performance
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improvement over SCLS, where L shows the low-end input SNR level, H shows the 

high-end input SNR level, and IMPAvg shows the average SNR improvement over the
>

effective improvement range. IMPAvg can be calculated using (4.2.1). N/A represents not 

available.

From the results in Table 4-10, the average SNR improvement of the simulation No. 5 

is about 18.146dB when the input SNR level ranges from -26dB to 21dB. All the 

simulations using Second-order nonlinear channel #1 has the effective improvement 

range. SCLS can not provide ANC functionality in some simulations, such as No. 4, 5, 7 

and 10 in Table 4-5, where MCLS can provide.

The comparison of SNR improvements over second-order nonlinear channel #1 using 

different noise-free primary signals and reference signals is shown in Figure 4-10.
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Figure 4-10: SNR Improvement over Second-Non channel #1

When the reference signal is the one-frequency signal, MCLS gets the best average 

SNR improvement, which is around 37dB. When the reference signal is WGN signal, the 

average SNR improvement is around 17dB. When the reference signal is CGN signal, the 

average SNR improvement is around 6dB.
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From the results in Figure 4-10, the values of average SNR improvements are 

grouped according to different reference signals. The values of average SNR 

improvements are close under the same reference signal. /

The comparison of maximum effective output SNR between MCLS and SCLS over 

second-order nonlinear channel #1 is shown in Figure 4-11. The value in the table is 

SNRMaxDesc, which is defined by

SNR M a x D e s c

, if  SNR„„s not available 
, if S N R ^s < SNRM a x M

(4.3.1)

SNRMaxs -  SNRMaxM > otherwise

where SNR\iaxs and SNRMaxM are defined in Table 4-5. SNRMaxDesc shows the maximum 

effective output SNR decrease by comparing MCLS with SCLS.

«3
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Figure 4-11: Max output SNR Decrease over Second-Non channel #1

When the noise-free primary signal is two-frequency signal and the reference signal is 

one-frequency signal, the SNR-MaxDesc can be about 14dB. In other noise-free primary 

signal and reference signal combinations, the SNRMaxDesc is below 5dB.
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4.3.1.3 Analysis over Channel #2

The result o f simulation No. 17, i.e. Second-Non-CH 2- 0 2 -N2 in Table 4-7, i s ’ 

analyzed here. It uses the second-order nonlinear transmission channel #2 in Table 4-1, 

the noise-free primary signal #2 in Table 4-3 and the reference signal #2 in Table 4-4.

Figure 4-12 shows the RE results from both MCLS and SCLS when the input SNR 

level is lOdB. Apparently, the RE from MCLS (REm) is smaller than the RE from SCLS 

(RE,).
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Figure 4-12: RE in Second-N on-C H 2-02-N 2 when SNRinput = 10dB

Figure 4-13 shows the MSE results from both MCLS and SCLS under the same input 

SNR level. The MSE from MCLS is lower than the MSE from SCLS.

The result of RE/MSE shows that MCLS has improved ANC ability comparing with 

SCLS when the input SNR level is lOdB.
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Figure 4-13: MSE in Second-N on-C H 2- 0 2 -N2 when SNRinput = lOdB

Figure 4-14 shows the output SNR levels from both MCLS and SCLS when the input 

SNR levels ranging from -80dB to 80dB. There is no effective range using SCLS. This 

means that SCLS can not provide ANC functionality in this simulation. On the contrary, 

when the input SNR level is from -16dB to 21dB, MCLS has the ability to cancel the 

noise adaptively.

The detailed results o f all 12 simulations using Second-order nonlinear channel #2 

can be found in Table 4-11, where the simulation indices are defined in Table 4-7.

The average SNR improvement of the simulation No. 17, as shown in Table 4-11, is 

about 19dB when the input SNR level ranges from -16dB to 21dB. All the simulations 

using Second-order nonlinear channel #2 has the effective improvement range. SCLS can 

not provide ANC functionality in some simulations, such as No. 16, 17, 18, 19, 20, 22, 

and 23 shown in Table 4-11, where MCLS can provide.
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Figure 4-15: SNR Improvement over Second-Non channel #2
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The comparison of SNR improvements over second-order nonlinear transmission 

channel #2 is shown in Figure 4-15.

Table 4-11: Simulation results using Second-Non channel #2

No SNRehs (dB) SNRehm (dB) SNRcp
(dB)

SNRimp (dB)

L H Max L H Max L H IMPAvg

13 -5 43 42.879 -51 30 30.170 25 -51 30 31.685

14 -26 27 27.220 -47 23 22.695 -1 -47 23 15.087

15 -30 25 25.119 -38 21 21.164 -7 -38 21 5.770

16 N/A N/A N/A -22 20 20.273 50 -22 20 45.455

17 N/A N/A N/A -16 21 21.083 30 -16 21 19.139

18 N/A N/A N/A -4 20 19.670 25 -4 20 6.909

19 N/A N/A N/A -26 20 19.557 47 -26 20 43.630

20 N/A N/A N/A -21 21 21.231 26 -21 21 17.825

21 -2 20 20.130 -10 20 20.277 20 -10 20 5.768

22 N/A N/A N/A -25 23 23.441 51 -25 23 45.014

23 N/A N/A N/A -19 22 21.823 28 -19 22 17.801

24 0 10 9.995 -8 19 19.322 22 -8 19 6.135

When the reference signal is the one-frequency signal, MCLS gets the best average 

SNR improvement, which is around 40dB. When the reference signal is WGN signal, the 

SNR improvement is around 14dB. When the reference signal is CGN signal, the SNR 

improvement is around 7dB. From the results in Table 4-11, the values of average SNR 

improvement are grouped according to different reference signals. The values of average 

SNR improvement are close under the same reference signal.

The comparison of SNRMaxDesc over second-order nonlinear channel #2 is shown in 

Figure 4-16. Only when the noise-free primary signal is two-frequency signal, the
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SNRMaxDesc ranges from 4dB to 13dB. Using other noise-free primary signals, i.e. voice 

inputs, the SNRMaxDesc does not exist.
/

"O

1-freq WGN CGN

12.709 4.525 3.954B2-freq
0.000 0.000 0.000□ si1573.wav
0.000 0.000 0.000
0.000 0.000 0.000H si2194.wav

Reference Signal

Figure 4-16: Max output SNR decrease over Second-Non channel #2 

4.3.1.4 Analysis over Channel #3

The result of simulation No. 29, i.e. Second-N on-C H 3-02-N 2 in Figure 4-17 

shows the output SNR levels from both MCLS and SCLS when the input SNR levels 

ranging from -80dB to 80dB. There is no effective range using SCLS. This means that 

the existing SCLS can not provide ANC functionality in this simulation. On the contrary, 

when the input SNR level ranging from -18dB to 21dB, MCLS has the ability to cancel 

the noise adaptively.

The detailed result o f  all 12 simulations using second-order nonlinear channel #3 is 

shown in Table 4-12, where the simulation indices are defined in Table 4-9.

The SNR improvement of the simulation No. 29, as shown in Table 4-12, is about 

14.7dB when the input SNR level ranges from -18dB to 21dB.
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Table 4-12: Simulation results using Second-Non channel #3

No SNRehs (dB) SNRehm (dB) SNRcp
(dB)

SNRImp (dB)

L H Max L H Max L H IMPavs

25 -9 44 43.799 -56 30 30.170 22 -56 30 32.246

26 -32 27 27.226 -50 23 22.694 -8 -50 23 13.159

27 -35 25 25.125 -45 21 21.165 -12 -45 21 7.274

28 N/A N/A N/A -27 20 20.290 47 -27 20 44.712

29 N/A N/A N/A -18 21 21.195 24 -18 21 14.736

30 -1 21 20.998 -11 21 20.685 21 -11 21 6.818

31 N/A N/A N/A -30 20 19.563 43 -30 20 42.614

32 -4 22 22.169 -23 21 21.245 20 -23 21 13.632

33 -7 24 23.930 -16 21 20.732 16 -16 21 6.650

34 N/A N/A N/A -29 23 23.446 48 -29 23 44.097

35 -2 23 22.863 -22 22 21.897 22 -22 22 13.847

36 -5 22 21.725 -15 20 19.966 17 -15 20 6.944

All the simulations using Second-order nonlinear channel #3 has the effective 

improvement range. SCLS can not provide ANC functionality in some simulations, such 

as No 28, 29, 31 and 34 in Table 4-12, where MCLS can provide.

The comparison of average SNR improvements is shown in Figure 4-18.

When the reference input is one-frequency signal, MCLS gets the best average SNR 

improvement, which is around 40dB. When the reference signal is WGN signal, the 

average SNR improvement is around 14dB. When the reference signal is CGN signal, the 

SNR improvement is around 6dB. From the results in Figure 4-18, the average SNR 

improvements are grouped according to different reference signals. The values of average 

SNR improvements are close under the same reference signal.
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The comparison of SNRMaxDesc over second-order nonlinear channel #3 is shown in 

Figure 4-19. When the noise-free primary signal is one-frequency signal and the 

reference input is two-frequency signal, the SNRMaxDesc is about 14dB. In other noise-free 

primary signal and reference signal combinations, the SNRMaxDesc is below 5dB.
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55t/3
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wmmm
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12-freq 13.629 4.532 3.959

□  sa1.wav 0.000 0.000 0.313

Ifflsi919.wav 0.000 0.924 3.198

Hsi2194.wav 0.000 0.966 1.759

Reference Signal

Figure 4-19: Max output SNR decrease over Second-Non channel #3

The simulations over second-order nonlinear channel #3 shows that even if the SIMO 

module only includes the basic elements within the second-order Volterra series 

expansion, as shown in (3.2.4), MCLS will provide the performance improvement over 

SCLS when the transmission channel includes the non-basic second-order nonlinear 

elements, as shown in Table 4-1.

4.3.1.5 Analysis over Channel #4

The result of simulation No. 41 and No. 53, i.e. Second-N on-C H 4-02-N 2-L 4  

and Second-N on-C H 4-02-N 2-L 13 in Table 4-9, are analyzed here. They use the 

second-order nonlinear transmission channel #4 in Table 4-1, the noise-free primary
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signal #2 in Table 4-3 and the reference signal #2 in Table 4-4. L = 4 in simulation No. 

41 and L = 13 in simulation No. 53.
/

Figure 4-20 shows the output SNR levels from both MCLS and SCLS when the input 

SNR levels ranges from -80dB to 80dB when L = 4. Both MCLS and SCLS have no 

effective range, which means that they all do not have the ANC ability in this simulation.

Second-Non-CH4-02-N2-L4 SNR

—  Multichannel Lattice Structure
—  Single-channel Lattice Structure

120

100

-20

-40

-60

-60

80-60 -40 -20 0 20 40 60-80
Input SNR (dB)

Figure 4-20: Input/output SNR in Second-N on-C H 4-02-N 2-L 4

The detailed result of all 12 simulations (No. 37-48), defined in Table 4-9, using 

Second-order nonlinear channel #4 with L = 4 is shown in Table 4-13. From the result in 

Table 4-13, most simulations either have no effective SNR improvement range or show 

very small average SNR improvement. This is because the absolute maximum delay 

within the transmission channel exceeds the limit of the SIMO module.
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Table 4-13: Simulation results using Second-Non channel #4 withZ=4

No SNRe«s (dB) SNRehm (dB) CP SNRimp (dB)

L H Max L H Max L H IMPAvg

37 -6 43 43.175 -30 30 30.163 24 -30 30 17.874

38 -29 27 27.215 -29 23 22.690 N/A N/A N/A N/A

39 -34 25 25.128 -35 21 21.158 -20 -35 21 0.502

40 N/A N/A N/A -7 19 19.318 49 -7 19 33.971

41 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

42 -1 19 19.031 -2 16 15.870 13 -2 13 0.408

43 N/A N/A N/A -11 19 19.160 45 -11 19 32.815

44 -1 18 17.927 -1 14 14.047 N/A N/A N/A N/A

45 -6 24 23.764 -7 20 19.867 8 -7 20 0.459

46 N/A N/A N/A -10 23 23.053 50 -10 23 33.438

47 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

48 -5 21 21.247 -5 19 18.725 10 -5 19 0.461

As discussed in 4.3.1.1, the absolute maximum delay of channel #4 exceeds the limit 

of SIMO module. But the relative maximum delay does not. By increasing the number of 

MALP and MMRTF stages, the desired result can be achieved.

The simulation No. 53, Second-N on-C H 4-02-N 2-L 13 in Table 4-9, is used to 

verify the result using L=  13.

Figure 4-21 shows the output SNR levels from both structures when the input SNR 

levels ranges from -80dB to 80dB when L =  13. There is no effective point from SCLS, 

which means that the existing SCLS does not have ANC ability in this simulation. On the 

contrary, when input SNR is from -14dB to 16dB, MCLS has the ability to cancel the 

noise adaptively.
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Figure 4-21: Input/output SNR in Second-N on-C H 4-02-N 2-L 13

This simulation shows that even if the absolute maximum delay exceeds the limit of 

SIMO module, but the relative maximum stays in the limit of SIMO module, ANC can be 

achieved by increasing the total number of stages of MALP and MMRTF modules in 

MCLS. The detailed result of all 12 simulations (No. 49-60), as defined in Table 4-9, 

using second-order nonlinear channel #4 with L = 13 is shown in Table 4-14.

The average SNR improvement of the simulation No. 53, as shown in Table 4-14, is 

about 14.2dB when the input SNR level ranges from -14dB to 16dB. All the simulations 

using Second-order nonlinear channel #4 with L = 13 have the effective improvement 

SNR range. SCLS can not provide ANC functionality in some simulations, such as No 52, 

53, 55, 58 and 59 in Table 4-14, where MCLS can provide.
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Table 4-14: Simulation results using Second-Non channel #4 with L- 13

No SNRe«s (dB) SNReom (dB) CP SNRimp (dB)

L H Max L H Max L H IMPAvg

49 -6 42 42.197 -34 29 29.383 23 -34 29 20.502

50 -29 22 22.164 -46 17 17.258 -10 -46 17 11.560

51 -34 21 21.398 -42 17 16.719 -17 -42 17 4.883

52 N/A N/A N/A -8 14 14.209 44 -8 14 34.453

53 N/A N/A N/A -14 16 16.431 22 -14 16 14.192

54 -1 15 15.059 -8 15 14.901 15 -8 15 4.550

55 N/A N/A N/A -12 14 13.881 40 -12 14 33.019

56 -1 14 13.993 -19 16 16.057 17 -19 16 12.266

57 -6 19 19.115 -13 16 16.022 11 -13 16 4.663

58 N/A N/A N/A -11 19 19.026 46 -11 19 33.921

59 N/A N/A N/A -17 16 16.379 19 -17 16 12.919

60 -5 17 17.320 -11 15 15.067 12 -11 15 4.625

The comparison of SNR improvements is shown in Figure 4-22. The values of 

average SNR improvement are grouped according to different reference signals, i.e. the 

values of average SNR improvements are close under the same reference signal. When L 

= 4, under WGN signal or CGN signal, MCLS does not provide or only provides a little 

performance improvement. But when L = 13, the average SNR improvement is about 

12dB under WGN and about 5dB under CGN respectively. This shows that the 

performance of MCLS is closely related to the maximum delay property of the 

transmission channel.

The comparison of SNRMaxDesc over second-order nonlinear channel #4 with L = 4 

and L = 13 is shown in Figure 4-23. When the noise-free primary signal is one-frequency 

signal and the reference input is two-frequency signal, the SNRMaxDesc is about 13dB. In
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other noise-free primary signal and reference signal combinations, the SNRMaxDesc 

below 5dB.
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Figure 4-22: SNR improvement over Second-Non channel #4
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Figure 4-23: Max output SNR decrease over Second-Non channel #4
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4.3.1.6 Summary on Second-order Nonlinear Transmission Channels

From the analysis of the previous 60 simulations, MCLS has the performance ’ 

improvement comparing with SCLS when the transmission channel has second-order 

nonlinearity.

The values of average SNR improvement are grouped according to the different 

reference signal. When the reference signal is one-frequency signal, the average SNR 

improvement is about 37dB. When the reference input is WGN signal, the average SNR 

improvement is about 15dB. When the reference input is CGN signal, the average SNR 

improvement is about 6dB. The values of maximum output SNR decrease is around 13dB 

when the noise-free primary signal is two-frequency signal and the reference signal is 

one-frequency signal, and around 5dB for other scenarios respectively.

Different distribution of linear and second-order nonlinear elements within the 

transmission channel will not produce much difference on the performance improvement.

Even if the SIMO module only includes the basic elements within the second-order 

Volterra series expansion, MCLS has the performance improvement over SCLS when the 

transmission channel also includes the non-basic second-order nonlinear elements.

When the absolute maximum delay in transmission channel exceeds the limit of the 

definition of SIMO module and the relative maximum delay stays in the limit, the 

performance improvement can be achieved by increasing the total number o f stages (L) 

of MCLS.

4.3.2 Linear Transmission Channel

Simulations over linear transmission channel are implemented to evaluate and 

compare the performance of MCLS with SCLS when the transmission channel only has 

the linear elements. There are totally 24 simulations carried out over 2 different linear
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transmission channels, 4 different noise-free primary signals and 3 different reference 

signals, as described in Table 4-1, Table 4-3 and Table 4-4.

Table 4-15: Simulation titles using linear channel #1

No. Index Text L No. Index Text L

61 Linear-CH1-01-Nl 4 67 Linear-CHl-03-N1 4

62 Linear-CH1-01-N2 4 68 Linear-CHl-03-N2 4

63 Linear-CH1-01-N3 4 69 Linear-CHl-03-N3 4

64 Linear-CHl-02-N1 4 70 Linear-CHl-04-N1 4

65 Linear-CHl-02-N2 4 71 Linear-CHl-04-N2 4

66 Linear-CHl-02-N3 4 72 Linear-CHl-04-N3 4

Table 4-16: Simulation titles using linear channel #2

No. Index Text L No. Index Text L

73 Linear-CH2-01-N1 4 79 Linear-CH2-03-N1 4

74 Linear-CH2-01-N2 4 80 Linear-CH2-03-N2 4

75 Linear-CH2-01-N3 4 81 Linear-CH2-03-N3 4

76 Linear-CH2-02-N1 4 82 Linear-CH2-04-N1 4

77 Linear-CH2-02-N2 4 83 Linear-CH2-04-N2 4

78 Linear-CH2-02-N3 4 84 Linear-CH2-04-N3 4

12 Simulations (No. 61-72), as illustrated in Table 4-15, are carried out over Linear 

channel #1. Another 12 simulations (No. 73-84), as illustrated in Table 4-16, are carried 

out over Linear channel #2.

The result of simulation No. 65, i.e. L in e a r -C H l- 0 2 -N2 in Table 4-15, is 

analyzed here. It uses the linear transmission channel #1 in Table 4-1, the noise-free
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primary signal #2 is a voice file named “sil573.wav” under the sampling frequency 16 

kHz in Table 4-3 and the reference signal #2 defined in Table 4-4.
/

Figure 4-24 shows the output SNR levels from both MCLS and SCLS when the input 

SNR level ranges from -80dB to 80dB.
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Figure 4-24: Input/Output SNR in L in e a r - C H l- 0 2 -N2

Both MCLS and SCLS have the effective range. There is no CP existed, which means 

the ANC performance of SCLS is always better than MCLS.

The detailed result of all 24 simulations using linear transmission channel #1 and #2 

is shown in Table 4-17. None of them has the effective SNR improvement range.
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Table 4-17: Simulation results using Linear channels

No SNRehs (dB) SNReitm (dB) CP SNRjmp (dB)

L H Max L H Max L H IMPAvr

61 -74 44 44.392 -62 30 30.169 N/A N/A N/A N/A

62 -66 27 27.223 -50 23 22.694 N/A N/A N/A N/A

63 -60 25 25.130 -53 21 21.164 N/A N/A N/A N/A

64 -42 35 35.293 -25 16 16.459 N/A N/A N/A N/A

65 -61 28 27.838 -9 22 22.361 N/A N/A N/A N/A

66 -47 24 24.159 -13 21 21.136 N/A N/A N/A N/A

67 -56 26 26.206 -38 20 19.565 N/A N/A N/A N/A

68 -80 25 24.583 -22 21 21.224 N/A N/A N/A N/A

69 -61 25 24.871 -27 21 20.830 N/A N/A N/A N/A

70 -54 32 32.075 -37 23 23.449 N/A N/A N/A N/A

71 -80 27 26.899 -21 22 21.912 N/A N/A N/A N/A

72 -59 23 23.207 -24 20 20.073 N/A N/A N/A N/A

73 -58 44 44.395 -52 30 30.169 N/A N/A N/A N/A

74 -65 27 27.223 -38 23 22.691 N/A N/A N/A N/A

75 -56 25 25.129 -43 21 21.171 N/A N/A N/A N/A

76 -31 35 35.301 -14 16 16.297 N/A N/A N/A N/A

77 -59 28 27.838 N/A N/A N/A N/A N/A N/A N/A

78 -38 24 24.153 -1 16 16.103 N/A N/A N/A N/A

79 -45 26 26.206 -27 20 19.559 N/A N/A N/A N/A

80 -75 25 24.583 -10 21 20.881 N/A N/A N/A N/A

.81 -51 25 24.871 -15 21 20.766 N/A N/A N/A N/A

82 -43 32 32.074 -26 23 23.435 N/A N/A N/A N/A

83 -74 27 26.899^ -9 22 21.560 N/A N/A N/A N/A

84 -50 23 23.206 -12 20 19.838 N/A N/A N/A N/A
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However, almost all the cases in Table 4-17, except No. 77, have the effective SNR 

range using MCLS, which means that MCLS has the ANC ability over the linear 

transmission channel. '

To summarize the simulations over linear transmission channel, MCLS shows the 

ANC ability. But the performance of MCLS is worse than SCLS. So under the linear 

transmission channel, use MCLS has no advantage at all. According to 3.3, the SCLS is a 

special case of the MCLS. It should be considered to switch MCLS into SCLS in case of 

the linear transmission channel.

4.3.3 Third-order Nonlinear Transmission Channel

Simulations over third-order nonlinear transmission channels are implemented to 

evaluate and compare the performance of MCLS with SCLS. There are totally 24 

simulations carried out over 2 different third-order nonlinear transmission channels, 4 

different noise-free primary signals and 3 different reference signals as described in Table 

4-1, Table 4-3 and Table 4-4.

12 Simulations (No. 85-96), as illustrated in Table 4-18, are carried out over third- 

order nonlinear channel #1. Another 12 simulations (No. 97-108), as illustrated in Table

4-19, are carried out over third-order nonlinear channel #2.

The result of simulation No. 92, i.e. Third-N on-C H 1-03-N 2 in Table 4-18, is 

analyzed here. It uses the third-order nonlinear transmission channel #1 in Table 4-1, the 

noise-free primary signal #3 in Table 4-3 and the reference signal #2 in Table 4-4.

Figure 4-25 shows the output SNR levels from three structures when the input SNR 

level ranges from -80dB to 80dB. The solid line refers to T-structure, which is the MCLS 

with the third-order SIMO module, as illustrated in (3.2.5). The dashed line refers to M- 

structure, which is the MCLS with the second-order SIMO module, as illustrated in 

(3.2.4). The dash-dotted line refers to S-structure, which is SCLS.
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Table 4-18: Simulation titles using Third-Non channel #1

No. Index Text L No. Index Text L /

85 Third-Non-CHl-Ol-Nl 4 91 Third-Non-CHl-03 -N1 4

86 Third-Non-CHl-01-N2 4 92 Third-Non-CHl-03-N2 4

87 Third-Non-CHl-01-N3 4 93 Third-Non-CHl-03-N3 4

88 Third-Non-CHl-02-N1 4 94 Third-Non-CHl-04-N1 4

89 Third-Non-CH1-02-N2 4 95 Third-Non-CH1-04-N2 4

90 Third-Non-CHl-02-N3 4 96 Third-Non-CH1-04-N3 4

Table 4-19: Simulation titles using Third-Non channel #2

No. Index Text L No. Index Text L

97 Third-Non-CH2-Ol-Nl 4 103 Third-Non-CH2-03-N1 4

98 Third-Non-CH2-Ol-N2 4 104 Third-Non-CH2-03 -N2 4

99 Third-Non-CH2-Ol-N3 4 105 Third-Non-CH2 -03 -N3 4

100 Third-Non-CH2-02-N1 4 106 Third-Non-CH2 -04 -N1 4

101 Third-Non-CH2-02-N2 4 107 Third-Non-CH2-04 -N2 4

102 Third-Non-CH2-02-N3 4 108 Third-Non-CH2-04-N3 4

The effective SNR range of S-structure is between EffsL and EffsH, while EffML and 

EITmh for M-structure, EffrL and EffrH for T-structure respectively. There are maximum 

three crossover points among those three structures, from where we can find out the SNR 

improvement range using the similar method as we discussed in 4.2.

The detailed result of all 24 simulations using third-order nonlinear channel #1 and #2 

is shown in Table 4-20.
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Figure 4-25: Input/Output SNR in T h ird -N o n -C H l-0 3 -N 2

In Table 4-20, SNReo- stands for the effective SNR range, while S for S-structure, M 

for M-structure and T for T-structure. L stands for the low-end input SNR level. H stands 

for the high-end input SNR level. Max stands for the maximum output SNR level.

SNRcp stands for the input SNR on the crossover point, where MS for the crossover 

point between M-structure and S-structure, while TS for T-structure and S-structure, and 

TM  for T-structure and M-structure respectively.

SNRimp stands for the effective SNR improvement range. IM PAvg represents the 

average SNR improvement, where MS for the crossover point between M-structure and

S-structure, while TS for T-structure and S-structure, and TM  for T-structure and M- 

structure respectively.
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Table 4-20: Simulation results using Third-Non channel #1 and #2

No SNREfr (dB) SNRcp SNRimp (dB)
/

S M T (dB) L H IMPAvg

85 L -16 -17 6 MS 6 -17 30 0.582

H 44 30 -4 TS N/A N/A N/A N/A

Max 44.282 30.102 12.885 TM N/A N/A N/A N/A

86 L -36 -38 -48 MS -15 -38 23 1.754

H 27 23 18 TS -17 -48 18 8.303

Max 27.222 22.693 22.693 TM -19 -48 18 6.714

87 L -45 -47 -50 MS -25 -47 21 1.788

H 25 21 16 TS -30 -50 16 3.424

Max 25.128 21.159 21.159 TM -33 -50 16 1.595

88 L N/A N/A N/A MS N/A N/A N/A N/A

H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A

89 L N/A N/A -10 MS 26 N/A N/A N/A

H N/A N/A 17 TS 23 -10 17 11.942

Max N/A N/A 14.397 TM 21 -10 17 9.307

90 L -4 -6 -9 MS 17 -6 20 1.796

H 22 20 14 TS 10 -9 14 3.687

Max 21.907 20.109 17.768 TM 7 -9 14 1.876

91 L N/A N/A N/A MS N/A N/A N/A N/A

H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A

92 L -9 -12 -23 MS 12 -12 12 2.339

H 24 21 16 TS 8 -23 8 9.742

Max 23.957 20.918 16.044 TM 6 -23 6 7.454

93 L -17 -20 -23 MS 3 -20 21 2.187
H 25 21 15 TS -3 -23 15 4.024

Max 24.803 20.772 20.652 TM -7 -23 15 1.877

94 L N/A N/A N/A MS N/A N/A N/A N/A

H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A
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Table 4-20 (Continued)

95 L -7 -10 -21 MS 14 -10 21 2.203

H 26 21 18 TS 12 -21 18 9.867
Max 25.914 21.343 20.877 TM 10 -21 18 7.784

96 L -15 -18 -21 MS 4 -18 20 2.059

H 23 20 15 TS -1 -21 15 3.782

Max 23.076 20.016 19.866 TM -5 -21 15 1.834

97 L -9 -29 -16 MS 22 -29 30 15.432

H 44 30 3 TS -7 -16 3 3.884

Max 43.793 30.173 28.090 TM N/A N/A N/A N/A

98 L -24 -42 -44 MS 0 -42 23 12.935

H 27 23 18 TS -5 -44 18 13.914

Max 27.210 22.693 22.692 TM -26 -44 18 1.797

99 L -33 -51 -53 MS -9 -51 21 12.658

H 25 21 16 TS -16 -53 16 13.352

Max 25.126 21.160 21.160 TM -39 -53 16 0.919

100 L N/A N/A N/A MS N/A N/A N/A N/A

H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A

101 L N/A -1 -4 MS N/A N/A N/A N/A

H N/A 17 16 TS 35 -4 16 20.174

Max N/A 17.112 16.347 TM 15 -4 16 1.958

102 L N/A -12 -14 MS N/A N/A N/A N/A

H N/A 21 15 TS 24 -14 15 18.423

Max N/A 21.059 20.306 TM 0 -14 15 1.572

103 L N/A N/A N/A MS N/A N/A N/A N/A

H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A

104 L N/A -15 -18 MS 28 N/A N/A N/A

H N/A 21 16 TS 21 -18 16 16.320

Max N/A 21.118 20.848 TM -1 -18 16 1.866

105 L -4 -26 -27 MS 19 -26 21 14.488
H 23 21 15 TS 11 -27 15 15.015
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Table 4-20 (Continued)

Max 23.015 20.832 20.823 TM -14 -27 15 1.155

106 L N/A N/A N/A MS N/A N/A N/A N/A
H N/A N/A N/A TS N/A N/A N/A N/A

Max N/A N/A N/A TM N/A N/A N/A N/A

107 L N/A -13 -16 MS 29 N/A N/A N/A

H N/A 22 18 TS 24 -16 18 17.098

Max N/A 21.684 21.402 TM 4 -16 18 2.044

108 L -3 -23 -25 MS 20 N/A N/A N/A

H 20 20 15 TS 13 -25 15 14.536

Max 19.971 20.049 19.984 TM -11 -25 15 1.330

In simulation No. 92, as shown in Table 4-20, when the input SNR level ranges from 

-12dB to 12dB, the performance of M-structure is better than S-structure, and the average 

SNR improvement is 2.339dB. When the input SNR level ranges from -23dB to 8dB, the 

performance of T-structure is better than S-structure, and the average SNR improvement 

is 9.742dB. When the input SNR level ranges from -23dB to 6dB, the performance of T- 

structure is better than M-structure, and the average SNR improvement is 7.454dB. The 

maximum effective output SNR of S-structure is 23.957dB, while M-structure is 

20.918dB and T-structure is 16.044dB respectively.

The comparison of SNR improvement (T-structure vs. M-structure) over third-order 

nonlinear transmission channel #1 is shown in Figure 4-26. When the noise-free primary 

signal is two-frequency signal, there is no improvement. When the reference signal is 

WGN signal, the average SNR improvement is about 7dB. When the reference signal is 

CGN signal, the average SNR improvement is about 1.7dB.

The comparison of SNRMaxDesc (T-structure vs. M-structure) over third-order 

nonlinear channel #1 is shown in Figure 4-27. When the noise-free primary signal is two- 

frequency signal and the reference signal is one-frequency signal, the maximum output 

SNR decrease is about 17dB. Otherwise, it is below 2.5dB.
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B2-freq □  si1573.wav DDsi919.wav Elsi2194.wav

1-freq WGN 

Reference Signal
CGN

Figure 4-26: SNR improvement (TM) over Third-Non channel #1

ca
13
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17.216646 0.000351 0.000283§  2-freq

2.341128□  si1573.wav
0.579053 0.120378GDsi919.wav

0.466496 0.150656

Reference Signal

Figure 4-27: Max output SNR decrease (TM) over Third-Non channel #1

The comparison of SNR improvement (T-structure vs. S-structure) over third-order 

nonlinear transmission channel #2 is shown in Figure 4-28. When the reference signal is 

one-frequency signal, there is no improvement. When the reference signal is WGN signal,
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the average SNR improvement is about 1.8dB. When the reference signal is CGN signal, 

the average SNR improvement is about ldB.

□ 2-freq □  si1573.wav Hsi919.wav Esi2194.wav

1 -freq WGN 

Reference Signal

CGN

Figure 4-28: SNR improvement (TM) over Third-Non channel #2

02
T3 2.5

2.0

0.5

0.0

-0.5
1-freq WGN CGN

2.083255 0.000632 0.000B 2-freq
0.764923 0.753145□  si1573.wav
0.269594 0.008666
0.28192 0.065633

Reference Signal

Figure 4-29: Max output SNR decrease (TM) over Third-Non channel #2
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The comparison of SNRMaxDesc (T-structure vs. M-structure) over third-order 

nonlinear transmission channel #2 is shown in Figure 4-29. When the noise-free primary 

signal is two-frequency signal and the reference input is one-frequency signal, the 

maximum output SNR decrease is about 2dB. In other occasions, it is below 0.8dB.

To summarize the simulations over third-order nonlinear transmission channels, it 

appears that by modifying MCLS to include the third-order nonlinearity using the third- 

order SIMO module, it has the performance improvement when the reference signal is 

WGN signal or CGN signal. As more adaptation steps are added into the structure, the 

fixed error increased. The maximum output SNR level is decreased. The simulation result 

shows that the MCLS with third-order SIMO module (T-structure) can only provide the 

marginal performance improvement over SCLS or M-structure with the expense of lower 

maximum output SNR level and higher computational complexity.
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5  C o n c l u s i o n s  a n d  F u t u r e  W o r k

/

This thesis addressed the problem of adaptive noise cancellation under nonlinear 

transmission channel using the typical two-microphone ANC system. A multichannel 

lattice structure (MCLS) is applied, where the single-channel reference signal is 

converted into the multichannel signal vector, where second-order or higher-order 

nonlinearities are included. The multichannel signal vector is processed through the 

multichannel adaptive lattice predictor and the multichannel multiple regression 

transversal filter stage-by-stage, where NLMS algorithm is used. The truncated Volterra 

series expansion is used to model the nonlinear transmission channel.

The results provide the evidences that the multichannel lattice structure had a 

performance improvement over the single-channel lattice structure, especially in low 

input SNR conditions. The major drawback of the single-channel lattice structure is that 

the performance deteriorates rapidly when the transmission channel has nonlinear 

properties. However, the transmission channel in real world environment tends to be 

nonlinear. The results shows the evidences that by correctly selecting the maximum 

number of delay, maximum stage number, smooth factor, and step size, significant noise 

attenuation can be achieved by using the multichannel lattice structure.

The results of the simulations using one-frequency signal, white Gaussian noise 

signal and coloured Gaussian noise signal as the reference signal, using two-frequency 

signal and voice signals as the noise-free primary signal, over different simulated 

nonlinear transmission channels, show that the multichannel lattice structure provided 

improvement on output SNR level and the effective SNR range over the single-channel 

lattice structure when the transmission channel has nonlinear properties.

When the transmission channel is purely linear, the performance of the single-channel 

lattice structure is better than the multichannel lattice structure. Because in the 

multichannel lattice structure, the adaptation steps increased, so the base noise level is 

increased.
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The third-order nonlinear transmission channels are evaluated using the multichannel 

lattice structure with third-order SIMO module. The simulation results show that the
>

multichannel lattice structure can only provide the marginal performance improvement, 

with the expense of high computational complexity and decreased maximum output SNR 

level.

Future research needs to be conducted in the evaluation of the multichannel lattice 

structure in real world noise environment to model its nonlinear properties. As the 

increased base noise level decrease the maximum output SNR level, the reason needs to 

be investigated to try to avoid or decrease its effect. The adaptation process needs to be 

monitored and optimized to speed up the convergence and increase the noise cancellation 

ability.
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