2,864 research outputs found

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    A two-stage approach for robust HEVC coding and streaming

    Get PDF
    The increased compression ratios achieved by the High Efficiency Video Coding (HEVC) standard lead to reduced robustness of coded streams, with increased susceptibility to network errors and consequent video quality degradation. This paper proposes a method based on a two-stage approach to improve the error robustness of HEVC streaming, by reducing temporal error propagation in case of frame loss. The prediction mismatch that occurs at the decoder after frame loss is reduced through the following two stages: (i) at the encoding stage, the reference pictures are dynamically selected based on constraining conditions and Lagrangian optimisation, which distributes the use of reference pictures, by reducing the number of prediction units (PUs) that depend on a single reference; (ii) at the streaming stage, a motion vector (MV) prioritisation algorithm, based on spatial dependencies, selects an optimal sub-set of MVs to be transmitted, redundantly, as side information to reduce mismatched MV predictions at the decoder. The simulation results show that the proposed method significantly reduces the effect of temporal error propagation. Compared to the reference HEVC, the proposed reference picture selection method is able to improve the video quality at low packet loss rates (e.g., 1%) using the same bitrate, achieving quality gains up to 2.3 dB for 10% of packet loss ratio. It is shown, for instance, that the redundant MVs are able to boost the performance achieving quality gains of 3 dB when compared to the reference HEVC, at the cost using 4% increase in total bitrate

    Control of distributed power in microgrids: PV field to the grid, islanding operation, and ultra-fast charging station.

    Get PDF
    Aquesta tesi explora el control de l'energia distribuïda en microxarxes (MG) i aborda diversos reptes relacionats amb el control, l'estabilitat, la compartició d'energia, el disseny del convertidor d'energia, la connexió a la xarxa, la càrrega ultraràpida i el subministrament d'energia renovable. El rendiment dels MG s'analitza tant en modes d'operació connectats a la xarxa com en illa, considerant diferents configuracions i escenaris de flux d'energia. La tesi se centra en diversos reptes clau, com ara maximitzar l'extracció d'energia de matrius fotovoltaiques (PV) en MG que utilitzen convertidors DC-DC, injectar potència MG excedent a la xarxa principal mitjançant inversors de font de tensió DC-AC (VSI) sota càrregues no lineals i desequilibrades, optimitzant el rendiment de MG i la compartició d'energia en mode illa mitjançant VSI, connectant-se a la xarxa principal en el punt d'acoblament comú (PCC) mitjançant transformadors de baixa freqüència (LFT) i transformadors d'estat sòlid (SST) i explorant topologies de convertidors de potència per ultra -càrrega ràpida de CC de vehicles elèctrics (EV). L'ús de SST en lloc de LFT pot millorar la capacitat de MG alhora que redueix el volum i el pes de l'arquitectura elèctrica MG. Aquesta tesi proporciona coneixements i solucions per abordar els reptes esmentats anteriorment, contribuint a l'avenç del control, l'estabilitat, la qualitat de l'energia i la integració eficient de les fonts d'energia renovables i la càrrega dels vehicles elèctrics.Esta tesis explora el control de la potencia distribuida en microrredes (MGs) y aborda diversos retos relacionados con el control, la estabilidad, el reparto de potencia, el diseño de convertidores de potencia, la conexión a la red, la carga ultrarrápida y el suministro de energías renovables. El rendimiento de las MG se analiza tanto en modo de funcionamiento conectado a la red como en modo aislado, considerando diferentes configuraciones y escenarios de flujo de potencia. La tesis se centra en varios retos clave, como la maximización de la extracción de energía de las matrices fotovoltaicas (FV) en las MG utilizando convertidores CC-CC, la inyección del excedente de energía de las MG en la red principal a través de inversores de fuente de tensión CC-CA (VSI) bajo cargas no lineales y desequilibradas, la optimización del rendimiento de las MG y del reparto de energía en modo aislado mediante VSI, la conexión a la red principal en el punto de acoplamiento común (PCC) mediante transformadores de baja frecuencia (LFT) y transformadores de estado sólido (SST), y la exploración de topologías de convertidores de potencia para la carga ultrarrápida en corriente continua de vehículos eléctricos (VE). El uso de SST en lugar de LFT puede mejorar la capacidad de la MG y, al mismo tiempo, reducir el volumen y el peso de la arquitectura eléctrica de la MG. Esta tesis aporta ideas y soluciones para abordar los retos mencionados, contribuyendo al avance del control de la MG, la estabilidad, la calidad de la energía y la integración eficiente de fuentes de energía renovables y la carga de vehículos eléctricos. Traducción realizada con la versión gratuita del traductor www.DeepL.com/TranslatorThis thesis explores the control of distributed power in microgrids (MGs) and addresses various challenges related to control, stability, power sharing, power converter design, grid connection, ultra-fast charging, and renewable energy supply. The performance of MGs is analysed in both grid-connected and islanded modes of operation, considering different configurations and power flow scenarios. The thesis focuses on several key challenges, including maximising power extraction from photovoltaic (PV) arrays in MGs utilizing DC-DC converters, injecting surplus MG power into the main grid via DC-AC voltage source inverters (VSIs) under nonlinear and unbalanced loads, optimising MG performance and power sharing in islanded mode through VSIs, connecting to the main grid at the point of common coupling (PCC) using low-frequency transformers (LFTs) and solid-state transformers (SSTs), and exploring power converter topologies for ultra-fast DC charging of electric vehicles (EVs). The use of SSTs instead of LFTs can enhance MG capability while reducing the volume and weight of the MG electrical architecture. This thesis provides insights and solutions to address the aforementioned challenges, contributing to the advancement of MG control, stability, power quality, and efficient integration of renewable energy sources and EV charging

    Approximate and timing-speculative hardware design for high-performance and energy-efficient video processing

    Get PDF
    Since the end of transistor scaling in 2-D appeared on the horizon, innovative circuit design paradigms have been on the rise to go beyond the well-established and ultraconservative exact computing. Many compute-intensive applications – such as video processing – exhibit an intrinsic error resilience and do not necessarily require perfect accuracy in their numerical operations. Approximate computing (AxC) is emerging as a design alternative to improve the performance and energy-efficiency requirements for many applications by trading its intrinsic error tolerance with algorithm and circuit efficiency. Exact computing also imposes a worst-case timing to the conventional design of hardware accelerators to ensure reliability, leading to an efficiency loss. Conversely, the timing-speculative (TS) hardware design paradigm allows increasing the frequency or decreasing the voltage beyond the limits determined by static timing analysis (STA), thereby narrowing pessimistic safety margins that conventional design methods implement to prevent hardware timing errors. Timing errors should be evaluated by an accurate gate-level simulation, but a significant gap remains: How these timing errors propagate from the underlying hardware all the way up to the entire algorithm behavior, where they just may degrade the performance and quality of service of the application at stake? This thesis tackles this issue by developing and demonstrating a cross-layer framework capable of performing investigations of both AxC (i.e., from approximate arithmetic operators, approximate synthesis, gate-level pruning) and TS hardware design (i.e., from voltage over-scaling, frequency over-clocking, temperature rising, and device aging). The cross-layer framework can simulate both timing errors and logic errors at the gate-level by crossing them dynamically, linking the hardware result with the algorithm-level, and vice versa during the evolution of the application’s runtime. Existing frameworks perform investigations of AxC and TS techniques at circuit-level (i.e., at the output of the accelerator) agnostic to the ultimate impact at the application level (i.e., where the impact is truly manifested), leading to less optimization. Unlike state of the art, the framework proposed offers a holistic approach to assessing the tradeoff of AxC and TS techniques at the application-level. This framework maximizes energy efficiency and performance by identifying the maximum approximation levels at the application level to fulfill the required good enough quality. This thesis evaluates the framework with an 8-way SAD (Sum of Absolute Differences) hardware accelerator operating into an HEVC encoder as a case study. Application-level results showed that the SAD based on the approximate adders achieve savings of up to 45% of energy/operation with an increase of only 1.9% in BD-BR. On the other hand, VOS (Voltage Over-Scaling) applied to the SAD generates savings of up to 16.5% in energy/operation with around 6% of increase in BD-BR. The framework also reveals that the boost of about 6.96% (at 50°) to 17.41% (at 75° with 10- Y aging) in the maximum clock frequency achieved with TS hardware design is totally lost by the processing overhead from 8.06% to 46.96% when choosing an unreliable algorithm to the blocking match algorithm (BMA). We also show that the overhead can be avoided by adopting a reliable BMA. This thesis also shows approximate DTT (Discrete Tchebichef Transform) hardware proposals by exploring a transform matrix approximation, truncation and pruning. The results show that the approximate DTT hardware proposal increases the maximum frequency up to 64%, minimizes the circuit area in up to 43.6%, and saves up to 65.4% in power dissipation. The DTT proposal mapped for FPGA shows an increase of up to 58.9% on the maximum frequency and savings of about 28.7% and 32.2% on slices and dynamic power, respectively compared with stat

    Mastering Uncertainty in Mechanical Engineering

    Get PDF
    This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering

    Search Methods for Mobile Manipulator Performance Measurement

    Get PDF
    Mobile manipulators are a potential solution to the increasing need for additional flexibility and mobility in industrial robotics applications. However, they tend to lack the accuracy and precision achieved by fixed manipulators, especially in scenarios where both the manipulator and the autonomous vehicle move simultaneously. This thesis analyzes the problem of dynamically evaluating the positioning error of mobile manipulators. In particular, it investigates the use of Bayesian methods to predict the position of the end-effector in the presence of uncertainty propagated from the mobile platform. Simulations and real-world experiments are carried out to test the proposed method against a deterministic approach. These experiments are carried out on two mobile manipulators - a proof-of-concept research platform and an industrial mobile manipulator - using ROS and Gazebo. The precision of the mobile manipulator is evaluated through its ability to intercept retroreflective markers using a photoelectric sensor attached to the end-effector. Compared to the deterministic search approach, we observed improved interception capability with comparable search times, thereby enabling the effective performance measurement of the mobile manipulator

    Waning sovereignty? The kindred myths of “origins” and “vanishing” of the State

    Get PDF
    This article discusses, from an historical-neo-institutionalist and relational-strategic perspective, the postmodern thesis of the end of the state due to the increasing processes of world globalization. The main hypothesis is that the arguments which predict the structural crisis or the disappearance of the State in the age of neo-liberal globalization have their roots in a theoretically and historically implausible concept of sovereignty that ignores and distorts central aspects of statehood and state-building in terms of both institutional structure and political action. The myth of the “origins” of the State in Medieval or Renaissance times shares with the postmodern vision of the “vanishing” of the state, the same underlying misconception of the scope and limits of the state power. Sovereignty (the monopolization of political power) was always a claim, a desiderata, a contested and unfinished political project not an accomplished empirical fact.S

    A Systematic Approach to Human Powered Vehicle Design with an Emphasis on Providing Guidelines for Mentoring Students

    Get PDF
    The objective of this research is to provide guidebook that approaches the design of a human powered vehicle (HPV) from a systematic view for an ASME competition. The guidebook introduces students to design and enhances their current understanding related to design, general engineering principals, and engineering principals specific to HPVs. In terms of the design process a combination between the traditional design process and the systems engineering design process is discussed. From here the design process in broken into six main sections for the guidebook, and an evaluation section used to emphasis the usefulness of the guidebook. First an overall view of the traditional and system engineering design processes are given, along with an overview of the human powered vehicle competition (HPVC). This is followed by details of project planning and problem development. Next the conceptual stage is introduced where concept generation and evaluation methods and examples are discussed. Embodiment design is given in the following section, where solution variants are modeled in a preliminary layout. Next, methods of how to create a more defined preliminary layout are given in the detail design section were a definitive layout is established. Finally prototyping, testing, redesigns, and final design recommendations are outlined in the last section. In addition, the guidebook provided is meant to serve as a method that can be used to mentor students in the design process of an HPV. As such, the guidebook has been developed through a literature review of design theories, managerial, organizational, and engineering practices that have had beneficial impacts, and past experiences with designing HPVs. In terms of past experiences, the interactions with students involved in a creative inquiry at Clemson University have used as a subjective means to outline some of the important design considerations needed to be discussed. Additionally, Clemson\u27s HPVs have primarily consisted of tadpole tricycles and as such, a more in depth analysis is included for this particular HPV style

    Machine Learning based Early Fault Diagnosis of Induction Motor for Electric Vehicle Application

    Get PDF
    Electrified vehicular industry is growing at a rapid pace with a global increase in production of electric vehicles (EVs) along with several new automotive cars companies coming to compete with the big car industries. The technology of EV has evolved rapidly in the last decade. But still the looming fear of low driving range, inability to charge rapidly like filling up gasoline for a conventional gas car, and lack of enough EV charging stations are just a few of the concerns. With the onset of self-driving cars, and its popularity in integrating them into electric vehicles leads to increase in safety both for the passengers inside the vehicle as well as the people outside. Since electric vehicles have not been widely used over an extended period of time to evaluate the failure rate of the powertrain of the EV, a general but definite understanding of motor failures can be developed from the usage of motors in industrial application. Since traction motors are more power dense as compared to industrial motors, the possibilities of a small failure aggravating to catastrophic issue is high. Understanding the challenges faced in EV due to stator fault in motor, with major focus on induction motor stator winding fault, this dissertation presents the following: 1. Different Motor Failures, Causes and Diagnostic Methods Used, With More Importance to Artificial Intelligence Based Motor Fault Diagnosis. 2. Understanding of Incipient Stator Winding Fault of IM and Feature Selection for Fault Diagnosis 3. Model Based Temperature Feature Prediction under Incipient Fault Condition 4. Design of Harmonics Analysis Block for Flux Feature Prediction 5. Flux Feature based On-line Harmonic Compensation for Fault-tolerant Control 6. Intelligent Flux Feature Predictive Control for Fault-Tolerant Control 7. Introduction to Machine Learning and its Application for Flux Reference Prediction 8. Dual Memorization and Generalization Machine Learning based Stator Fault Diagnosi

    Analyzing video compression for transporting over wireless fading channels

    Get PDF
    Wireless video communication is becoming increasingly popular these days with new applications such as TV on mobile and video phones. Commercial success of these applications requires superior video quality at the receiver. So it is imperative to analyze the effect of a wireless channel on a video transmission. The aim of this research is to analyze the video transmission over Rayleigh fading channels for various bit error rates (BER), signal to noise ratios (Eb/N0) and Doppler rates, and to suggest which source coding scheme is best at which BER, Eb/N0 and Doppler rates. Alternative schemes such as hybrid (digital/analog) schemes were considered and their performances were compared with pure digital communication. It is also shown that the combination of digital and analog video communication does not yield any better performance compared to pure digital video communication
    corecore