5,864 research outputs found

    Extracting clinical information from electronic medical records

    Get PDF
    As the adoption of Electronic Medical Records (EMRs) rises in the healthcare institutions, these resources are each day more important because of the clinical data they contain about patients. However, the unstructured textual data in the form of narrative present in those records, makes it hard to extract and structure useful clinical information. This unstructured text limits the potential of the EMRs, because the clinical data these records contain, can be used to perform important operations inside healthcare institutions such as searching, summarization, decision support and statistical analysis, as well as be used to support management decisions or serve for research. These operations can only be done if the clinical data from the narratives is properly extracted and structured. Usually this extraction is made manually by healthcare practitioners, what is not efficient and is error-prone. The present work uses Natural Language Processing (NLP) and Information Extraction(IE) techniques in order to develop a pipeline system that can extract clinical information directly from unstructured texts present in Portuguese EMRs, in an automated way, in order to help EMRs to fulfil their potential.info:eu-repo/semantics/acceptedVersio

    Knowledge-based best of breed approach for automated detection of clinical events based on German free text digital hospital discharge letters

    Get PDF
    OBJECTIVES: The secondary use of medical data contained in electronic medical records, such as hospital discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of medication safety) or for research purposes. However, the automated processing and analysis of medical free text still poses a huge challenge to available natural language processing (NLP) systems. The aim of this study was to implement a knowledge-based best of breed approach, combining a terminology server with integrated ontology, a NLP pipeline and a rules engine. METHODS: We tested the performance of this approach in a use case. The clinical event of interest was the particular drug-disease interaction "proton-pump inhibitor [PPI] use and osteoporosis". Cases were to be identified based on free text digital discharge letters as source of information. Automated detection was validated against a gold standard. RESULTS: Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were detected with 100% precision and 97.97% recall. The F-score for the detection of the given drug-disease-interaction was 96,13%. CONCLUSION: We could show that our approach of combining a NLP pipeline, a terminology server, and a rules engine for the purpose of automated detection of clinical events such as drug-disease interactions from free text digital hospital discharge letters was effective. There is huge potential for the implementation in clinical and research contexts, as this approach enables analyses of very high numbers of medical free text documents within a short time period

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    Event Representations for Automated Story Generation with Deep Neural Nets

    Full text link
    Automated story generation is the problem of automatically selecting a sequence of events, actions, or words that can be told as a story. We seek to develop a system that can generate stories by learning everything it needs to know from textual story corpora. To date, recurrent neural networks that learn language models at character, word, or sentence levels have had little success generating coherent stories. We explore the question of event representations that provide a mid-level of abstraction between words and sentences in order to retain the semantic information of the original data while minimizing event sparsity. We present a technique for preprocessing textual story data into event sequences. We then present a technique for automated story generation whereby we decompose the problem into the generation of successive events (event2event) and the generation of natural language sentences from events (event2sentence). We give empirical results comparing different event representations and their effects on event successor generation and the translation of events to natural language.Comment: Submitted to AAAI'1

    Extracting clinical knowledge from electronic medical records

    Get PDF
    As the adoption of Electronic Medical Records (EMRs) rises in the healthcare institutions, these resources' importance increases because of the clinical information they contain about patients. However, the unstructured information in the form of clinical narratives present in those records, makes it hard to extract and structure useful clinical knowledge. This unstructured information limits the potential of the EMRs, because the clinical information these records contain can be used to perform important tasks inside healthcare institutions such as searching, summarization, decision support and statistical analysis, as well as be used to support management decisions or serve for research. These tasks can only be done if the unstructured clinical information from the narratives is properly extracted, structured and transformed in clinical knowledge. Usually, this extraction is made manually by healthcare practitioners, which is not efficient and is error-prone. This research uses Natural Language Processing (NLP) and Information Extraction (IE) techniques, in order to develop a pipeline system that can extract clinical knowledge from unstructured clinical information present in Portuguese EMRs, in an automated way, in order to help EMRs to fulfil their potential.info:eu-repo/semantics/publishedVersio
    • …
    corecore