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Abstract

Objectives

The secondary use of medical data contained in electronic medical records, such as hospital

discharge letters, is a valuable resource for the improvement of clinical care (e.g. in terms of

medication safety) or for research purposes. However, the automated processing and anal-

ysis of medical free text still poses a huge challenge to available natural language process-

ing (NLP) systems. The aim of this study was to implement a knowledge-based best of

breed approach, combining a terminology server with integrated ontology, a NLP pipeline

and a rules engine.

Methods

We tested the performance of this approach in a use case. The clinical event of interest was

the particular drug-disease interaction “proton-pump inhibitor [PPI] use and osteoporosis”.

Cases were to be identified based on free text digital discharge letters as source of informa-

tion. Automated detection was validated against a gold standard.

Results

Precision of recognition of osteoporosis was 94.19%, and recall was 97.45%. PPIs were

detected with 100% precision and 97.97% recall. The F-score for the detection of the given

drug-disease-interaction was 96,13%.
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Conclusion

We could show that our approach of combining a NLP pipeline, a terminology server, and a

rules engine for the purpose of automated detection of clinical events such as drug-disease

interactions from free text digital hospital discharge letters was effective. There is huge

potential for the implementation in clinical and research contexts, as this approach enables

analyses of very high numbers of medical free text documents within a short time period.

Introduction

Increasing patient numbers and ever-shorter length of hospital stays, as well as growing multi-

morbidity and polypharmacy call for information technology solutions to achieve considerable

improvements in the quality and efficiency of health care, especially with regard to the medica-

tion process. Indeed, the urgent need for automated tools that can improve health care pro-

cesses, e.g. by providing real-time support in the medication process, is underlined by

memoranda to this field.[1]

In the digital era, comprehensive medical information pertaining to a given patient are usu-

ally available in electronic medical records (EMR). These data, such as medical history, exam

results, physician notes, and in particular hospital discharge letters, contain high-quality infor-

mation, and therefore are a valuable resource which could be utilized to improve the quality of

care (e.g. in terms of care quality assessment, disease surveillance, and adverse event detec-

tion), but also for research purposes.

However, medical data, and particularly discharge letters are usually unstructured and

mostly written in free text. At present, patient records (electronic or paper-based) and dis-

charge letters still have to be manually reviewed in order to retrieve the information of inter-

est–particularly in view of large numbers of documents this is time-consuming, tedious, error-

prone, or impossible at all. Therefore, what is missing is high-performing systems that can pro-

cess, read and analyze medical free text documents in a highly automated manner.

Indeed, clinical narratives still present a huge challenge to available text analytics systems,

most of which are based on natural language processing [NLP], since the medical terminology

is extensive and very complex.[2, 3] With less complex sources, such as death certificates or

billing information, such approaches have been successfully established. [4] [5] Also results of

recent studies, which have dealt with more complex tasks, were promising. E.g. Iqbal et al.

were successful in identifying antipsychotics and antidepressants-related adverse drug events

(ADEs) from within the free text of psychiatric EMRs, albeit their approach was very specific

to this particular study question [6–8] [9, 10].

In the last years, ontology-driven rule-based systems have shown very good results for

information extraction tasks in various clinical domains.[11]

However, applications for non-English text, e.g. publications that have dealt with German-

language applications are scarce, primarily due to restrictive data protection standards in Ger-

many and Europe, impeding NLP research, as sharable, open-source language resources play a

pivotal role for performance testing and classifier training. [12] Recently, e.g. Richter-

Pechanski et al. showed the application of NLP on German texts with the goal of de-identifica-

tion.[13] Another group of researchers from the University of Heidelberg used NLP technolo-

gies to extract diagnoses from German diagnostic reports[14].

The Medical Informatics Initiative by the German government has now led to the creation

of a national reference corpus for German clinical documents be made accessible on an on-
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demand basis.[12] The same group of researchers also presented an approach of creating syn-

thetic text corpora, which could overcome the limitation of availability[15]. In the introduction

of their publication Lohr et al. presented a good overview on current German text corpora.

Furthermore, they also recently presented an approach for de-identification, which might lead

to more accessible data [16].

A very good overview on the current status of NLP on German texts is given in the review

of Jungmann et al.[17] Especially temporal information extraction and the correct interpreta-

tion of intentionally vague indications of degrees of certainty pose largely unsolved challenges.

[18]

Previous studies have mainly focused on the creation of algorithms to recognize events per-

taining to one specific domain, which could be extracted successfully each with a specific

approach (e.g. extrapyramidal side effects of drugs for mental illness).[10] In the majority of

cases, these were NLP-based systems that mapped free text on a specific ontology, or systems,

which detected input parameters by means of information extraction.[6,7,13] [10] While due

to lack of appropriate resources, commonly to begin with refinement or de novo generation of

a terminology have been necessary, we could recently demonstrate that analysis of free-text-

containing medical records is possible with standard tools and terminologies. [19]

Despite innumerable possible applications (e.g. for quality assurance: sentinel systems that

are able to perform medication safety checks using the information contained in free text in

discharge letters) information extraction from clinical narratives has not been widely imple-

mented into clinical routines.

Undoubtedly, there is a need for generic high-performing applications that are able to pro-

cess large amounts of data within short periods of time [9, 20, 21]. We envision tools that are

able to extract comprehensive sets of medical concepts from the given source (e.g. the elec-

tronic medical record) in order to perform complex quality or plausibility checks, such as

matching drug prescriptions and diagnoses [22].

Thus, we aimed to develop a largely generic system, which can be easily adapted to deal

with new text analytics tasks or types of clinical problems, without requiring substantial train-

ing or learning. We designed SemDrugS (Semantic Drug Surveillance) as a best-of-breed

approach, using and combining established components, such as a natural language processing

(NLP) pipeline, a rules engine and a terminology server.

We decided to use a rule-based approach over a model-based approach mainly because we

aimed for a high sensitivity (recall). Some clinical events are very rare, which means there is

almost no training data available. However, our system should be able to detect these rare

cases. This also applies to rarely used active agents. Therefore, we conceived an approach,

which can be implemented with little or even no training [19]

We aimed to test whether this knowledge-based approach is on a par with other state-of-

the-art free text analysis tools, and assess its usefulness for clinical use. Therefore we conceived

an exemplary use case. Using free text digital hospital discharge letters, cases with the specified

drug-disease interaction (DDI) “proton-pump inhibitor use and osteoporosis”should be

extracted. DDIs, which are adverse interactions between a drug and a disease or condition that

a patient has, are common and they are difficult to track and detect without support by

algorithms.

Use of proton pump inhibitors (PPI) is associated with reduction in bone mineral density

[23]. Thus, PPIs should be avoided or used with caution (in terms of a relative contraindica-

tion)[24] in subjects with or at high risk of osteoporosis. This potential DDI is likely to be very

common in elderly patients. In 2015, 13.4 million people in Germany were prescribed PPIs–

i.e. about one in six inhabitants. Especially among older adults, the prevalence of use is very

high.[25] Of note, the percentage of cases without adequate indication for the use of PPIs is
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large (>30%).[24, 26] PPIs are often prescribed for acute gastritis or during a hospital stay as

stress ulcer prevention, but nevermore stopped, although the original indication has ceased to

exist. In 2015 PPIs were added to the Beers’ list of potentially inappropriate drugs (PIM) for

older adults.[27, 28] [23, 24, 29] It is important to note that osteoporosis and osteoporosis-

related fractures are associated with high morbidity and mortality, as well as high health care

costs.[19][20]

Methods

Data

We used discharge letters that were generated in the Berlin Aging Study II (BASE-II). In this

epidemiological study, approximately 2,200 participants received an extensive baseline medical

examination between 2009 and 2014.[30, 31] It was a special feature of this study that every

participant got a discharge letter, summarizing the relevant medical findings that were made

in the study. These letters were written in German language, in the style of a standard dis-

charge letter from Charité-Universitätsmedizin Berlin, including a list of conditions and diag-

noses, sections on diagnostic findings, laboratory values, medication, and a detailed discharge

summary. All sections contained either unstructured free-text or syntactically semi-structured

text. The overall structure (Table 1) of the documents varied considerably over the study

period of five years. A brief analysis of the corpus is given in Table 2. An example of a dis-

charge letter is provided in the supplement (S1 File).

Preprocessing

The discharge letters were only in part available as digital text. For the rest (approximately

n = 600), only a paper based version was available. Optical Character Recognition (OCR) was

Table 1. Basic structure of the discharge letters in the BASE-II study.

Age, Year of birth, Sex

New diagnoses

Previous diagnoses

Medication

Results of physical examination

Results of neurological examination

Blood pressure

Addiction: smoking, alcohol

Geriatric assessment

Adjuvants

Laboratory values

Electrocardiogram (ECG)

Pulse wave analysis

Dual Energy X-ray Absorptiometry (DXA)

Bioelectric impedance analysis (BIA)

Spirometry

Audiometry

Eye refraction test

Tonometry

Depression screening

Discharge summary

https://doi.org/10.1371/journal.pone.0224916.t001
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used (Adobe Acrobat Pro1) to transform the paperbased documents into digital text, retain-

ing the original structure of the documents. Finally, all discharge letters were pseudonymised

before further processing. Names, unique numbers and dates of birth were manually removed,

in compliance with the HIPAA Safe Harbor method. [32] Only the study ID was kept to be

able to assign participants to the gold standard.

After preprocessing, 1982 discharge letters were available for our analyses.

The SemDrugS system

Fig 1 provides a schematic representation of the architecture of SemDrugS (Semantic Drug

Surveillance). The approach, which is described in this paper, was composed of three main

components:

a. A terminology server with an integrated ontology provided access to the Wingert nomen-

clature (WNC) [27, 28], a comprehensive and precise terminology of the medical domain.

Our architecture consumed the CTS2 Application Programming Interface (API). Alterna-

tively any other compliant terminology server may be used [33].

b. The NLP pipeline provided all components necessary for the processing of natural lan-

guage. These include stemming (reducing words to their meaningful stem and splitting up

compound nouns), parsing (breaking down a text into its component parts of language

with an explanation of the form, function, and syntactic relationship of each part), expan-

sion of abbreviations, disambiguation, and extensive spell-correction algorithms. The OCR

processing added some errors with very typical patterns (e.g. “h” is recognized as “n” etc.)

to the text. Recognizing such patterns is also one of the features of the NLP engine. The

result of this multistep process is a machine-readable syntactic representation and interpre-

tation of natural language. Our NLP engine used standard components based on GATE/

JAPE as well as newly developed components, like a stemming algorithm, which is able to

break up German compound nouns.[34] The concept identification was implemented

within the NLP engine and contained concepts provided by the terminology server.

c. The rules engine facilitated the definition and implementation of rule-based knowledge-mod-

ules. The definition was realized in Arden syntax [35], a computer-language, which is opti-

mized for defining rules in the medical domain and enables phrasing, which is close to natural

language. We used a commercial implementation provided by Medexter Healthcare [36].

Implementation

We developed a software that applied the NLP engine to all discharge letters (one by one full-

text), which were mapped onto the terminology, the Wingert nomenclature (WNC), during

that process [37, 38].

Table 2. Description of corpus.

Number of documents: 1,982

Total lines: 184,022

Average lines per document: 93

Total number of tokens: 2,001,114

Average tokens per document: 1,010

Number of unique tokens: 57,745

Average length of token: 11

https://doi.org/10.1371/journal.pone.0224916.t002
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The origin of the Wingert-Nomenclature (WNC) roots back to the mid 1980s when it

started as a German translation of SNOMED 2. In the same way as SNOMED 2 evolved to

SNOMED CT and became an ontology, the WNC terminology is now organized as an ontol-

ogy and can be expressed in description logic (which was not used here, though). It is fully

available (commercial license) in German (a required prerequisite for processing German

free-text) and all relevant medical domains are covered, which include the following major cat-

egories: diagnoses, morphologies, treatments, procedures, agents, microbiology, function,

materials. Especially the whole terminology from some major classifications like ICD-10,

LOINC, ATC and the German Operations and Procedures Key (OPS) is contained in the Win-

gert Nomenclature, which is an important prerequisite to achieve uniform results for patients

from diverse medical departments.

The WNC contains about 110.000 concepts with about 250.000 descriptions. Such descrip-

tions are typically synonyms and related terms but also translations.

The relatively low number of descriptions per concept does not influence the clinical

expressiveness because synonyms are also created virtually during the annotation process.

This can be best explained by the following example: given a concept has two descriptions

“heart” and “cardiac” (which are related but not synonymous terms), and given a second con-

cept “heart infarction”. In this case the system recognizes the compound term “cardiac infarc-

tion” equal to “heart infarction”, because “heart” and “cardiac” are subsumed under the same

concept, forming a “virtual synonym”. This approach is especially useful in languages using

compound nouns, such as German and Dutch.

In the ontology all concepts are connected via taxonomic (“is a”), partonomic (“is part of”),

and semantic relations like “is contraindication of”. E.g., a typical concept would be

“M000562”, which contains 25 terms in seven languages: Inflammation, inflammatory process,

inflammatory, inflammatory illness, etc.

The features of the NLP pipeline include fully-automated expansion of abbreviations (PPI

and proton-pump inhibitor are detected identically), a disambiguation algorithm (which uses

the ontology itself to resolve ambiguous terms, by exploring the context before and after the

Fig 1. Architecture of the SemDrugS approach. All components used the terminology server and the included

ontology in order to facilitate a semantic interpretation.

https://doi.org/10.1371/journal.pone.0224916.g001
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ambiguous term via semantic paths; if disambiguation is not possible, all possible interpreta-

tions are used in parallel), management of synonyms, as well as a spell-checker and a spelling-

correction algorithm (e.g. „prtone-pmp inhbtor“). Moreover, the NLP engine is capable of

detecting negations (e.g. “no signs of osteoporosis”). Furthermore, the NPL engine is able to

access further databases, e.g. to resolve tradenames of drugs. Finally, a very helpful feature is

the integration of a pattern matching system, providing the basis for regular expression detec-

tion and named entity recognition (NER). This feature is important to recognize and extract

laboratory values and results of clinical measurements, e.g. blood pressure measures. Also,

some discharge letters contained ICD-10 codes, which were extracted by means of regular

expressions. Following their extraction, the textual label of each code is looked up in the termi-

nology and fed back into the NLP engine to be mapped onto the Wingert nomenclature. For

example, the ICD-10 code “M82.02” is resolved to the label “Osteoporosis in multiple myelo-

matosis: Upper arm”, which is then mapped to “M0006E0 Osteoporosis T000439 upper arm

GA00026 in M000E3C multiple myelomatosis”. The use of ICD-10 codes when given in the

document is to be favored over free-text since a unique label is assigned to every ICD-10 code.

Bone densitometry results were identified by means of NER, using the keyword “T-Scor-

e”(“name”). The corresponding concept id in the terminology is “W000F9D”. The correspond-

ing measured value was retrieved and processed via the integrated rules-engine. The respective

rule was implemented to identify both osteoporosis as well as osteopenia, according to the

WHO definition (S1 Table). The outcome of the rule, i.e. the interpretation of the bone density

measurement, was added as a medical concept to the results of the NLP pipeline. For example

the expression “T-Score: -2.7” led to the concept “M0006E0 Osteoporosis”.

With regard to medications, active agents, as well as trade names were detected and pro-

cessed. Notably, the NLP pipeline identified drug trade names already on the level of the syn-

tactic analysis. Stemming was applied to every single word, the result being pure word stems

without suffixes. Subsequently, all stems were labeled with specific linguistic information, e.g.

“trade name”. The conjunction of the trade names and active agents was then achieved by

browsing a database of all drugs, that are available in Germany[39], looking up any stem that

was labeled as “trade name”. Once the active agent had been identified, the corresponding con-

cept in the terminology was retrieved. Notably, common trade names (e.g. “Aspirin”) were

already included in the terminology.

The ontology contained taxonomic relations. This facilitated the use of parent concepts

instead of enumerations. To illustrate this, in Fig 2 the parent concepts “osteoporosis” and

“PPI” and their descendants (subclasses) are represented.

Fig 2. Hierarchical representation of osteoporosis and PPI in the ontology.

https://doi.org/10.1371/journal.pone.0224916.g002
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The use of parent concepts allowed for a very compact formulation of rules, only referring

to such concepts instead of using regular expressions or enumerations of string literals. In the

present use case, we explicitly included only two concepts, the parent concepts “osteoporosis”

and “PPI”, while there were 21 osteoporosis and 13 PPI subclasses (i.e. 273 possible

combinations).

The output of NLP pipeline and terminology mapping was a xml based structure–a so-

called “concept graph”–representing the underlying (linguistic) syntax and semantics. Finally,

a rule was formulated in Arden syntax, linking the semantic concept “PPI”with the concepts

“osteoporosis” and”osteopenia“, and defining this combination as a relative contraindication.

The data slot of the rule reads as follows:

trigger: = event {E003230}; /� PPI �/

has_Osteoporosis: = call hasIndex with "M0006E0";

has_Osteopenia: = call hasIndex with "M002BF8";

The trigger event points to the parent concept “PPI” and thus all concepts semantically sub-

sumed under “PPI” trigger the execution of that rule. Furthermore, the curly-braces-expres-

sion “hasIndex” also uses the taxonomy of the WNC to decide if one of the concepts found in

the discharge letter is subsumed under either a “osteoporosis” or a “osteopenia” concept.

Statistics

The results of the automatic DDI detection were compared to the preexisting study database of

the BASE-II study. Since the generation of discharge letters was based on the same data, that

had also been entered in the database, we could use this database as our gold standard.

After a manual review of all false positives and false negatives the precision, recall and F-

score were calculated.

Ethical considerations

The Berlin Aging Study II was performed in compliance with the World Medical Association

Declaration of Helsinki on Ethical Principles for Medical Research Involving Human Subjects.

The BASE-II study was approved by the Charité-Universitaetsmedizin Berlin ethics committee

(approval number EA2/029/09). In addition to this no further ethics review was required for

this particular analysis.

Results

Prevalence of osteoporosis and PPI use in the BASE-II study

According to our gold standard overall 1332 of the 1982 participants (67.2%) had evidence of

osteoporosis or osteopenia, and 148 participants used a PPI (7.5%).

Results of the automated detection and consistency with the gold standard

In 1298 out of 1982 participants (65%) SemDrugS found evidence of osteoporosis or osteope-

nia, and in 145 participants (7.3%) SemDrugS detected a PPI medication. Ninety-one partici-

pants were found to have the clinical event of interest, PPI use and osteoporosis/osteopenia

(4.6%). Precision, recall, and F-score are provided in Table 3.

Discussion

The presented approach of combining a terminology server, a NLP pipeline, and a rules engine

proved to be very effective. The clinical event examined was extracted with excellent precision

and recall in a large set of free text discharge letters.
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In order to extract the given DDI it was necessary that the two concepts “osteoporosis” and

“PPI” were reliably identified. Particularly osteoporosis and osteopenia were only inconsis-

tently listed in the diagnosis section, thus the necessary information had to be retrieved from

measured values provided or by detection of a range of synonymous expressions, like “low

bone density” in the narrative summary.

The number of participants that were recognised as osteoporosis-positive was higher than

the true cases of osteoporosis as defined by the gold standard. Indeed in many discharge letters

there were general recommendations for prevention of osteoporosis, with the term osteoporosis

being mentioned when the doctor assumed an increased risk of osteoporosis, e.g. because of a

borderline-result of the DXA, low vitamin D levels in the blood or other markers of bone break-

down (e.g. increased levels of deoxypyridinoline in the urine), but without an actual diagnosis

of osteoporosis or osteopenia. Consequently, there were a considerable number of false posi-

tives. This is reflected by the suboptimal precision of 94.19% for the detection of osteoporosis.

Thus, although the system is already capable of detecting negations and a range of modalities,

like speculations/conjecture, it proved to be problematic that the system is not yet capable of dis-

tinguishing between random general recommendations made, e.g. for a healthy diet for preven-

tion of osteoporosis in cases with neither osteoporosis nor osteopenia, and true cases, where

such a recommendation was justified by a given diagnosis or an increased risk of osteoporosis.

In contrast, both precision and recall were very high for the detection of PPI medication.

There were no false positives and in only three cases, subjects with PPI were misclassified as

not having a PPI (false negatives). Manual review showed that in two of these cases OCR qual-

ity was especially bad and in one case the prescription read “gastric acid protection”, which

could not be interpreted as “PPI”.

Overall, with both precision and recall higher than 95%, the approach, which has been used

in the present study, proved feasible and effective. It even outperforms current machine learn-

ing approaches, including implementations using modern neural network architectures, like

Recurrent Neural Networks (RNN) und convolutional neural network (CNN). [40, 41]

Since the output of NLP pipeline, the concept graph, is a generic structure representing the

syntax and the underlying semantics, only the rules have to be reformulated to adapt our

approach to any use case. Such rules can combine any number of conditions and medications,

as well as other entities like laboratory values, in an arbitrary boolean expression.

Notably, in contrast to other similar approaches [6,7], no curation of the terminology was

required, since all concepts were already included.

As mentioned above, the use of terminology-based rules contributed to the excellent results,

since all concepts were recognized equally and independent of their frequency. This is important

Table 3. Evaluation of the automated extraction versus gold standard.

Osteoporosis/osteopenia PPI Osteoporosis/osteopenia

and PPI

True positives 1298 145 87

False positives 80 0 4

False negatives 34 3 3

True negatives 570 1834 1888

Recall (%) 97.45 (96.45–98.23) 97.97 (94.19–99.58) 96.67 (90.57–99.31)

Precision (%) 94.19 (CI 92.42–95.58) 100.00 (99.50–100.00) 95.60 (93.92–96.84)

F-Score (%) 95.79 98.98 96.13

Notes: Data are given as N, or proportion and 95% confidence interval; N = 1982

https://doi.org/10.1371/journal.pone.0224916.t003
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to note, when comparing our approach to artificial intelligence-based algorithms, that always

need a sufficient number of training data. In the presented approach training data is only needed

for the annotation pipeline of the terminology server, which however can be regarded as a sepa-

rate task. The terminology server that we used already had a very high annotation quality. [13, 19]

In contrast to previous studies, which have mapped free-text on a classification, [42, 43] e.g.

the international classification of diseases (ICD-10), we instead used a comprehensive termi-

nology and ontology. Any classifications have limitations when used for other than its

intended purposes. E.g. ICD-10, the most widely used classification of diagnoses, is used

worldwide mainly for morbidity and mortality statistics, and reimbursement systems, but only

the upcoming ICD-11 revision will have a novel architecture that will allow a wider use. Drugs

are not yet included in the ICD-10, but are most commonly classified according to the Ana-

tomical Therapeutic Chemical Classification System (ATC) system. Thus for the given task

several classifications would have been needed. Instead of using multiple classifications, we

used the WNC terminology, which covered all relevant concepts contained in the discharge

letters.

To the best of our knowledge, there is no directly comparable study. There are similar stud-

ies with English clinical text as mentioned in the above related work section [6–8] [9, 10]. E.g.

the most readily comparable study by Iqbal et al. showed F-Scores of> 0.85 [6]. Admittedly,

results based on different languages are difficult to compare, since every language is different,

e.g. semantic concepts are different, and the different underlying structural rules (syntax,

grammar, etc.) require different approaches for every language. Therefore NLP frameworks

available for English language cannot readily be adapted to deal with German text.

In the foreseeable future, with the availability of sharable German corpora, also there will

more and better possibilities of comparison. [12, 15]

This study demonstrates that the approach presented here is clearly feasible and can be of

great value in medical practice and in research as it facilitates the processing of medical and

pharmaceutical questions in a very efficient manner. Implementation into the hospital infor-

mation system, e.g. via an alert function, could assist the user by means of a warning message

in dedicated individual cases, while the background analysis of medical documentation does

not add any additional burden to the healthcare professional.

Likewise, epidemiological studies could profit from the technology, which may ease, e.g. the

identification of suitable patients with the exposure or outcome of interest to be included in

their samples. In a similar vein, Cui et al. have already developed a query interface to be used

in their research project for patient cohort identification [10].

We believe that combining established components in terms of a best of breed approach

increases the robustness of semantic recognition, which is of crucial advantage, particularly

when OCR quality is bad.

The very low number of “hits”in this use-case further illustrates the value of such technol-

ogy, which is able to extract rare cases very efficiently (and with an precision higher than 95%),

compared to the otherwise necessary manual review of thousands of documents, which is a

time-consuming, tedious, and error-prone process.

Strengths and limitations

A major advantage of this study was that the BASE-II study database provided a reliable gold

standard for the validation of the results of the automated detection.

The discharge letters, we have used in this analyses were generated in an epidemiological

study. Discharge letters from clinical practice may be more heterogeneous and thus our

approach still has to prove its worth in clinical practice.
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Conclusion

We could show that our approach of combining NLP, a terminology server and a rules engine

for the purpose of automated detection of a specified clinical event (e.g. drug-disease interac-

tion) based on digital hospital discharge letters was effective. The good performance can be

attributed to a comprehensive terminology, a well-structured ontology and a good annotation

algorithm mapping the free-text onto the terminology.

Certainly, recent innovations and future developments in text mining technologies, particu-

larly implementation of modern embedding techniques could help to further enhance the per-

formance of the presented approach and similar approaches. [44, 45]

Knowledge-based systems show great promise for both clinical and research applications,

as they facilitate effective analyses of very high numbers of medical text documents within a

short time.
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