752 research outputs found

    Benefits of spatio-temporal modelling for short term wind power forecasting at both individual and aggregated levels

    Get PDF
    The share of wind energy in total installed power capacity has grown rapidly in recent years around the world. Producing accurate and reliable forecasts of wind power production, together with a quantification of the uncertainty, is essential to optimally integrate wind energy into power systems. We build spatio-temporal models for wind power generation and obtain full probabilistic forecasts from 15 minutes to 5 hours ahead. Detailed analysis of the forecast performances on the individual wind farms and aggregated wind power are provided. We show that it is possible to improve the results of forecasting aggregated wind power by utilizing spatio-temporal correlations among individual wind farms. Furthermore, spatio-temporal models have the advantage of being able to produce spatially out-of-sample forecasts. We evaluate the predictions on a data set from wind farms in western Denmark and compare the spatio-temporal model with an autoregressive model containing a common autoregressive parameter for all wind farms, identifying the specific cases when it is important to have a spatio-temporal model instead of a temporal one. This case study demonstrates that it is possible to obtain fast and accurate forecasts of wind power generation at wind farms where data is available, but also at a larger portfolio including wind farms at new locations. The results and the methodologies are relevant for wind power forecasts across the globe as well as for spatial-temporal modelling in general

    Next Generation Short-Term Forecasting of Wind Power – Overview of the ANEMOS Project.

    No full text
    International audienceThe aim of the European Project ANEMOS is to develop accurate and robust models that substantially outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced statistical, physical and combined modelling approaches were developed for this purpose. Priority was given to methods for on-line uncertainty and prediction risk assessment. An integrated software platform, 'ANEMOS', was developed to host the various models. This system is installed by several end-users for on-line operation and evaluation at a local, regional and national scale. Finally, the project demonstrates the value of wind forecasts for the power system management and market integration of wind power. Keywords: Wind power, short-term forecasting, numerical weather predictions, on-line software, tools for wind integration

    Roles of dynamic state estimation in power system modeling, monitoring and operation

    Get PDF
    Power system dynamic state estimation (DSE) remains an active research area. This is driven by the absence of accurate models, the increasing availability of fast-sampled, time-synchronized measurements, and the advances in the capability, scalability, and affordability of computing and communications. This paper discusses the advantages of DSE as compared to static state estimation, and the implementation differences between the two, including the measurement configuration, modeling framework and support software features. The important roles of DSE are discussed from modeling, monitoring and operation aspects for today's synchronous machine dominated systems and the future power electronics-interfaced generation systems. Several examples are presented to demonstrate the benefits of DSE on enhancing the operational robustness and resilience of 21st century power system through time critical applications. Future research directions are identified and discussed, paving the way for developing the next generation of energy management systems and novel system monitoring, control and protection tools to achieve better reliability and resiliency.Departamento de EnergĂ­a de EE. UU TPWRS-00771-202

    Data assimilation for micrometeorological applications with the fluid dynamics model Code_Saturne

    Get PDF
    Air quality is a major health and environmental issue worldwide. Similarly, the accuracy of wind resource assessment triggers significant economic and environmental repercussions. In order to study these two topics, it is necessary to accurately determine local wind fields using numerical models of micrometeorology. Such simulations are extremely sensitive to meteorological conditions at the domain borders. Up to present, the boundary conditions (BC) were estimated based on the results of larger scale simulations, which provide information that is not accurate enough, or even incomplete, for local scale purposes. As a matter of fact, the lack of knowledge about the BC represents a major source of error and uncertainty for micrometeorological studies.The potential sites for wind farm installation as well as built environments (urban areas or industrial sites) can be equipped with instruments measuring meteorological variables or pollutant concentration. The observations provided by these instruments represent a second source of information, insufficiently exploited for micrometeorological studies. Indeed, the in situ measurements are perturbed by the complex geometrical features on sites and might be difficult to exploit. In order to improve the exactitude and the accuracy of the BC, and consequently of the locale-scale atmospheric simulations, data assimilation (DA) methods, suited to this micrometeorological problem, could be applied to take benefit from the available observations.So far, DA methods have been mainly developed for large-scale meteorology and employed to correct the initial conditions (IC). In order to broaden the application scope of DA to micrometeorology, existing DA methods must be adapted to be able to correct the BC instead of IC.Two of the existing DA methods seem compatible with computational fluid dynamics (CFD) models used for micrometeorology over complex geometries: the back and forth nudging (BFN) algorithm and the iterative ensemble Kalman smoother (IEnKS). We have adapted these two methods, from a theoretical perspective, so as to include the BC in the control variables. The performances of the adapted versions of the BFN algorithm and the IEnKS have first been assessed with a simplified, 1D model of atmospheric flow with two layers, based on the shallow-water equations. The BFN algorithm and the IEnKS have then been tested in 2D and 3D with the atmospheric module of the open-source CFD model Code_Saturne.The first study case with Code_Saturne corresponds to a real application of wind resource assessment in a mountainous region with steep topography where three meteorological masts have been installed during a few months and provided in situ wind observations. The second case is a study of pollutant dispersion in an urban area, based on the measurements of wind and pollutant concentration coming from the ``Mock Urban Setting Test'' field campaign carried out in the USA. In this second case, the turbulence is also included in the BC and thus in the control variables. For both studies, some observations are assimilated and the remaining ones are used to validate the results.The experiences performed for the wind resource assessment study have revealed that the CFD models present too strong nonlinearities (flow recirculation after obstacles) for the BFN algorithm, which is based on a linearity assumption. However, both cases have shown the ability of the IEnKS to reduce the error and the uncertainty of the BC by assimilating a few observations, with operationally affordable computational costs. Consequently, the simulated wind fields with Code_Saturne are also closer to the validation observations and the confidence intervals are reduced. Eventually, the IEnKS allows, in one case to estimate the wind potential, and in the other case to build the pollution maps, with much more exactitude and accuracy.La qualité de l’air est un enjeu sanitaire et environnemental majeur. Par ailleurs, l'estimation précise des potentiels éoliens est la source d’importantes retombées économiques et environnementales. Pour étudier ces deux sujets, il est nécessaire de reconstituer précisément les champs de vent locaux grâce à des modèles numériques de micro-météorologie. Ces simulations sont extrêmement sensibles aux conditions météorologiques aux limites du domaine d’étude. Jusqu’à présent, les conditions aux limites (CL) étaient estimées à partir de simulations à plus grande échelle, qui fournissent des informations imprécises, voire incomplètes pour l’utilisation à micro-échelle. Par conséquent, la méconnaissance des CL représente une source majeure d’erreur et d’incertitude dans les études micro-météorologiques. Les sites susceptibles d’accueillir un parc éolien et les environnements bâtis (quartiers urbains ou sites industriels) peuvent être équipés d’instruments de mesures météorologiques et de concentration de polluants. Les observations fournies par ces instruments constituent une seconde source d’information, jusqu’à ce jour peu exploitée pour les études micro-météorologiques. En effet, étant à l’intérieur du domaine, les observations sont perturbées par la géométrie complexe des sites étudiés. Afin d'améliorer la précision des CL et donc des simulations atmosphériques à l'échelle locale, des méthodes d'assimilation de données (AD) adaptées à cette problématique pourraient permettre de mettre à profit les observations disponibles. Jusqu’à présent, les méthodes d’AD ont été principalement développées pour répondre aux besoins de la météorologie à grande échelle et donc utilisées pour corriger les conditions initiales (CI). Afin d'élargir le champ d'application de l’assimilation de données aux simulations à l’échelle locale, il faut adapter les méthodes d'AD pour qu'elles permettent de corriger les CL plutôt que les CI. Parmi les méthodes d'assimilation de données existantes, deux semblent compatibles avec les modèles de mécanique des fluides atmosphérique (CFD) utilisés pour la micro-météorologie en géométrie complexe : l’algorithme de nudging direct et rétrograde (BFN) et le lisseur de Kalman d’ensemble itératif (IEnKS). Nous avons adapté ces deux méthodes d’un point de vue théorique pour inclure les CL dans les variables de contrôle. Les performances des versions adaptées du BFN et de l'IEnKS ont tout d'abord été étudiées avec un modèle simplifié d’écoulement atmosphérique à deux couches en 1D, basé sur les équations de Saint-Venant. Le BFN et l’IEnKS ont ensuite été testés en deux puis trois dimensions avec le module atmosphérique du modèle open-source de CFD Code_Saturne. Le premier cas d’étude avec Code_Saturne correspond à une application réelle d’estimation de potentiel éolien dans une région montagneuse au relief très accidenté où trois mâts de mesure fournissent des observations de vent. Le second cas d’étude correspond à une étude de dispersion de polluants en milieu urbain, basé sur les observations de vent et de concentration, provenant de la campagne de mesures « Mock Urban Setting Test » aux USA. Dans ce second cas, la turbulence est également incluse dans les conditions aux limites. Dans les deux cas, une partie des observations est utilisée pour l’assimilation et le reste pour la validation des résultats. Les expériences menées sur le premier cas ont révélé que les modèles de CFD présentent des non-linéarités trop fortes (recirculations derrière les obstacles) pour l’algorithme de BFN, fondé sur une hypothèse de linéarité. Les études avec cette méthode n'ont donc pas été poursuivies. En revanche, les deux cas d'étude ont montré la capacité de l'IEnKS à réduire l'erreur et l'incertitude sur les CL grâce à l'assimilation d'une petite dizaine d'observations, en un nombre raisonnable de calculs. Par suite, l'écart entre les champs de vent simulés et les observations de validation est également réduit. De même, l'incertitudesur les simulations est plus faible. Finalement, l'IEnKS permet d'estimer le potentiel éolien dans un cas et les concentrations en polluant dans l'autre, avec beaucoup plus de précision

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms
    • …
    corecore