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Benefits of spatio-temporal modelling for
short term wind power forecasting at both
individual and aggregated levels

Amanda Lenzia∗ and Ingelin Steinslandb and Pierre Pinsonc

Summary: The share of wind energy in total installed power capacity has grown rapidly in recent years.

Producing accurate and reliable forecasts of wind power production, together with a quantification of the

uncertainty, is essential to optimally integrate wind energy into power systems. We build spatio-temporal

models for wind power generation and obtain full probabilistic forecasts from 15 minutes to 5 hours

ahead. Detailed analysis of the forecast performances on the individual wind farms and aggregated wind

power are provided. The predictions from our models are evaluated on a data set from wind farms in

western Denmark using a sliding window approach, for which estimation is performed using only the last

available measurements. The case study shows that it is important to have a spatio-temporal model instead

of a temporal one to achieve calibrated aggregated forecasts. Furthermore, spatio-temporal models have

the advantage of being able to produce spatially out-of-sample forecasts. We use a Bayesian hierarchical

framework to obtain fast and accurate forecasts of wind power generation at wind farms where recent

data are available, but also at a larger portfolio including wind farms without recent observations of power

production.

The results and the methodologies are relevant for wind power forecasts across the globe as well as for

spatial-temporal modelling in general.
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1. INTRODUCTION

Wind power is a clean, renewable and widely available source of energy and electricity

generated from wind power is increasing world wide. A challenge for utilizing wind power

is that the generated amount of energy varies much and relatively fast over time due to

variations in wind. An important tool for efficiently integrating wind power in a system with

energy sources that can be controlled, e.g. thermal energy and hydro power, is high quality

probabilistic forecasts for short term wind power production [Ackermann, 2005]. Recently,

there has been an increasing amount of research in wind speed and wind power forecasts.

Most of the developments are for point forecasts (e.g. Louka et al. [2008], Catalão et al.

[2011]), i.e. the forecast consists of one value for each wind farm or location. To make better

decisions one also needs to quantify the uncertainty of the forecast, and provide a probability

density function (pdf) instead of a point forecast. This is called a probabilistic forecast. For a

probabilistic forecast to be useful it needs to be calibrated [Gneiting et al., 2007]. Calibrated

refers to a forecast that is reliable: in the long term, 90% of the observed wind production

should be within a 90% forecast interval, 80% of the observations within a 80% forecast

interval and so forth.

In recent years, more emphasis has been placed on probabilistic forecasts in order to

quantify the inherent uncertainties in wind, see Pinson and Kariniotakis [2010] and Bremnes

[2004]. The advantage of using probabilistic forecasts, compared to point forecasts, has been

demonstrated in several applications. Indeed, probabilistic forecasts are the optimal input

to a large class of decision-making problems, where the optimal bid is not the expected

power but a quantile [Gneiting, 2011]. For instance, probabilistic methods are already

widely used among system operators to address decision-making problems related to reserve

quantification [Matos and Bessa, 2011], [Garver, 1966] and unit commitment considering

wind power uncertainty [Papavasiliou and Oren, 2013], [Wang et al., 2011]. Additionally,

quantifying the uncertainties in the forecasts helps define advanced strategies for market
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participation, which in turn reduce imbalance charges to producers making wind power

more competitive in the energy market, and maximize the profit of energy providers with

the development of bidding strategies [Girard et al., 2013]. From the point of view of a

system operator, the aggregated wind power generation over pre-defined areas is of particular

importance. Some recent contributions to the modelling and forecasting of aggregated wind

power energy are Lau and McSharry [2010] and Focken et al. [2002], which do, however, not

account for spatio-temporal dependencies.

To illustrate the challenge of forecasting individual and aggregated wind power

simultaneously, we consider a toy example of two wind farms at one lead time and

denote their forecasts X1 and X2 (these are random variables). The aggregated forecast

for the system is Y = X1 +X2. We know from basic probability, see e.g Ross [2015],

that the expected value for the system is E(Y ) = E(X1) + E(X2) and the variance is

Var(Y ) = Var(X1) + Var(X2) + 2Cov(X1, X2). Hence, to obtain a forecast for the system

Y we also need to model the dependency between the wind farms. This calls for a spatio-

temporal model for wind power production. If the productions at the two farms in our

toy example are dependent and have a positive covariance, but are assumed independent

in the forecast, the variance of Y gets too small and the forecast for Y is not calibrated.

Verification of multivariate probabilistic forecasts is an active field of research, for which

new scores and diagnostic tools are being proposed and discussed, see, e.g., Pinson and

Tastu [2013], Scheuerer and Hamill [2015], Thorarinsdottir et al. [2016] among others. A

pragmatic approach is to evaluate relevant univariate probabilistic forecasts derived from

the multivariate probabilistic forecast.

Understanding a spatio-temporal process throughout a country, such as wind power

production in Denmark, is a difficult problem due to the complex temporal and spatial

structures. This explains why there is very little research on large wind power data sets

and most of the prediction systems are optimized for each and every location individually
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without taking the spatio-temporal dependency into consideration. Generally speaking,

several approaches exist for modelling spatio-temporally correlated data [Cressie, 2015]

[Blangiardo and Cameletti, 2015]. A method based on temporal basis functions to account for

the temporal correlation and spatially varying coefficients to account for spatial variability

was used in Lindström et al. [2014] to model ambient air pollution and is available for

implementation in the R package ”SpatioTemporal” [Lindström et al., 2013]. Another

widely used approach focuses on modelling the spatio-temporal covariance function, which

summarizes many aspects of a process. While there has been considerable development

on classes of spatio-temporal covariance functions recently (see e.g. Gneiting and Guttorp

[2010]), in practice, it is common to propose simplifying assumptions, such as separability,

in order to estimate the covariance function in a feasible way. In the following, we use a

relatively simple covariance model that can be re-trained periodically in the same way with

low computational cost. In this way it is possible to have a spatio-temporal predictor for

hundreds of wind farms with an automated model fitting scheme, which is essential given the

abundance of wind farms in power systems today. To our knowledge, this is the first attempt

to date to address Bayesian hierarchical models for obtaining spatio-temporal forecasts of

wind power generation.

Several characteristics in a typical wind power series make it a challenging problem to

generate accurate forecasts. First of all, wind power is bounded below by zero, when no

turbines are operating, and above by the nominal capacity, when all turbines are generating

their rated power output. In addition, wind power series are clearly non-Gaussian. Instead

of using a classical Gaussian distribution, truncated Gaussian, censored Gaussian and

generalized logit-normal distributions have been proposed to model the conditional density

of wind power [Gneiting et al., 2006], [Pinson, 2012]. Our approach is based on the logistic

function, which has shown to be a suitable transformation to normalize wind power data

[Dowell and Pinson, 2016].
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We propose statistical models that yield calibrated probabilistic forecasts of wind power

generation at multiple sites and lead times simultaneously. We define three different models

that share the same data process, or likelihood, but differ in the process model. We start

with a model consisting of a location specific intercept and an autoregressive component

that captures the local variability without considering the dependency between the farms.

This model is well suited for individual forecasts, but it is not calibrated for aggregated

forecasts. To obtain reliable aggregated forecasts, we introduce two different models that

capture the spatio-temporal features present in the data. The first has a common intercept

and a spatio-temporal process, in which spatial and temporal dependency is modelled by a

latent Gaussian field. The second is a combination of the previous two models, with a common

intercept, an autoregressive process and a spatio-temporal term that varies in time with first

order autoregressive dynamics. To meet the computational requirements a stochastic partial

differential equations (SPDE) approach to spatial and temporal-spatial modelling is taken

[Lindgren et al., 2011], [Blangiardo and Cameletti, 2015], for which fast Bayesian inference

can be performed using integrated nested Laplace approximations (INLA).

Moreover, we study the performance of the proposed models in forecasting wind power from

individual and aggregated farms under two different scenarios. In a evaluation scheme, we

consider out-of-sample forecasts in terms of time, that is, they are obtained for wind farms

inside the training set. However, there are situations where not enough data is available

for all the wind farms, and even when it is available, the computational load to calculate

forecasts for all of them can be very high. In those cases, spatial interpolation methods are

used to obtain predictions for the whole system based only on part of the power production

observations. For an energy producer, spatial prediction is of relevance for a number of

operational problems, where wind power generation is only observed at a limited number of

wind farms, while decision-making problems may require an overview of power generation at

all sites over a region. Based on this, in a second evaluation scheme, we consider spatially
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out-of-sample forecasts generated by the proposed spatio-temporal models. For both schemes

we develop and evaluate the forecasts for wind power production in western Denmark based

on a data set for 349 wind farms with energy production observations every 15 minutes from

2006 to 2012.

In Section 2, we provide a short description of the wind power data that we use in our study

and the data treatment. The hierarchical models used to generate probabilistic forecasts of

wind power generation, as well as the framework for producing probabilistic forecasts with

such models, are outlined in Section 3. In Section 4, we give details of the probabilistic

forecasting scheme and outline the scores and the scenarios used for forecast evaluation. In

Section 5, we show the results of a case study where we obtain spatio-temporal forecasts and

spatially out-of-sample forecasts on the individual and aggregated level. Conclusions of the

work are drawn in Section 6.

2. DANISH WIND POWER PRODUCTION DATA

This project is based on a system of 349 wind farms in western Denmark. Observations

of wind power production between January 2006 and March 2012 were provided by the

Transmission System Operator in Denmark and each measurement consists of temporal

average over a 15-min time period.

The measurements at each site have been normalised by the nominal power of the

corresponding wind farm, so that they are within the range [0,1]. Moreover, to avoid including

long chains of zeros that come from temporary shutdown of the turbines for maintenance or

missing data that are reflected as unreasonably long periods of zero wind power production,

we choose to analyze only wind farms containing at most 10% of zero observations. The

evaluation of the predictive performance of individual wind farms and aggregated wind

power is done as % of nominal power, which is a common practice in the wind power field
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(e.g., Pinson [2012], Tastu et al. [2011], Dowell and Pinson [2016]).

Figure 1 (a) shows the spatial correlation of wind power production between one wind farm

located in the southern part of Denmark and the remaining wind farms of the portfolio. The

higher correlations come from farms that are closer, while the correlations of wind farms

far from it are almost zero. Next, we check the dependency of the temporal correlation

at fixed locations. Figure 1 (b) shows the mean autocorrelation function of wind power

production among wind farms located in western Denmark. The autocorrelation function of

the normalized wind power production at a single farm has a slow decay and on average, it

drops down to zero after about 40 hours.

Since our aim is to generate short term forecasts (from 15 min up to 5 hours ahead), we

do not focus on modeling any daily or long term seasonality, which often appears in wind

data due to different wind patterns throughout the day or the year. One should notice that

even though the proposed models can be used to generate predictions at any given time

during the year, for the particular application, we use only the last two days of data to fit

the models (see Section 4.1) where no seasonality can be detected.

[Figure 1 about here.]

Figure 2 (a) shows examples of normalized wind power production from the start of June

1 to the end of June 2 at four different wind farms, while Figure 2 (b) shows their locations

on the map of Denmark. It is clear that wind farms that are close to each other have similar

pattern of power production. The two northeastern farms (blue and red circles) have power

production close to zero at the first day of June and a peak at around noon of June 2, while

the wind farms located at the southwest part of the island (green and pink circles) have

larger power generation at all times, with the peak at the end of June 2.

[Figure 2 about here.]
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Wind power generated by a farm over a period of time is non-Gaussian and bounded

between zero and one after the normalization. In fact, wind power distribution has a

sharper peak than the Gaussian distribution and is also significantly right-skewed. In all the

approaches to be described next, we apply the logit-normal transformation to the normalized

wind power data following the procedure in Pinson [2012].

Let X(s, t) denote the normalized wind power production at location s ∈ Ds and time

t ∈ Dt, with respective observations or measurements indicated by x(s, t). The logit-normal

transformation is given by

y(s, t) = γ(x(s, t)) = ln
( x(s, t)

1− x(s, t)

)
, x(s, t) ∈ (0, 1), (1)

with inverse

x(s, t) = γ−1(y(s, t)) = (1 + e−y(s,t))−1, y(s, t) ∈ R. (2)

Similarly to the approach of Lesaffre et al. [2007] for modelling outcomes in [0, 1], we define

a threshold ε to represent the logit-normal transformation at the bounds. Wind power values

less than ε, or greater than 1− ε, are considered to be 0 or 1, respectively.

Moreover, to evaluate the performance of aggregated wind power forecasts, we obtain the

normalized aggregated wind power at lead time h by

xA(t+ h) =

∑N
j=1 cjx(sj, t+ h)∑N

j=1 cj
, (3)

where cj is the capacity of wind farm at location sj and N is the total number of wind farms

in the portfolio.

3. MODELS AND FITTING SCHEME

8



Lenzi ET AL. Environmetrics

Since wind power is affected by a number of physical factors that depend, for instance, on

changes of season and climate, it is to be expected that the parameters of the model change

slowly over time. Therefore, it is appropriate to either allow the parameters of the models to

track this variation, or to model it directly. In terms of spatial dependence, since prevailing

wind patterns propagate along certain directions, space is usually no longer homogeneous

over all directions. In the case of Denmark, although there is anisotropy in the wind power

data, we noticed that the main direction of the wind changes depending on the days. For

instance, while there is a dependence of the correlation on the direction west to east on the

first two days of January, this dependence is stronger from north to south when looking at the

next two days. To allow the parameters to track these variations by changing according to the

data set that has been modelled, we use a sliding window approach with a relatively simple

covariance model that can be re-trained in the same way periodically with low computational

cost.

In this section, we introduce three different statistical models for wind power production.

We start with a simpler autoregressive model, where each wind farm is considered as an

independent replicate of the same process. Next, we describe two versions of a spatio-

temporal model, in which spatial correlation is captured by a latent Gaussian field with

a Matérn covariance function. The simplest version has only a spatio-temporal component,

while the other has both, an autoregressive process and a spatio-temporal model. The section

ends with the estimation procedure and how we obtain probabilistic forecasts.

3.1. Likelihood

We denote by Y (s, t) the normalized logit-normal transformed wind power generation at

location s and time t, which is calculated using (1). We assume the following distribution

9
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for Y (s, t) at the first level of the hierarchical models considered in this section

Y (s, t) ∼ Normal
(
µ(s, t), σ2

e

)
, (4)

with σ2
e being the variance of a Gaussian white noise both serially and spatially uncorrelated.

We assume that µ(s, t) is latent, since it is observed only with a noise term, and can be defined

by other process levels giving rise to different hierarchical models that are described in the

following sections.

3.2. Latent Gaussian structure

3.2.1. Temporal model (Model T)

We start with a time series model where each wind farm is considered as an independent

replicate of the same random process. The independence assumption is of course a

simplification, since the wind power production in one location is probably dependent on the

production in other locations. We assume that µ(s, t), in (4), is constant in time and can be

modelled as

µ(s, t) = b(s) + ws(t), (5)

where b(s) is an intercept specific for each location and ws(t) is an autoregressive process

that can be written as

ws(t) = ρ1ws(t− 1) + νs(t), (6)

with t = 2, . . . , T and |ρ1| < 1. The term νs is uncorrelated with ws(t) and independent

identically distributed as νs ∼ N(0, σ2
ν).

10
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3.2.2. Spatio-temporal model (Model S-T)

This model is a spatio-temporal process with temporal dynamics as in Cameletti et al.

[2013]. This type of model has been used for modelling air quality because of its flexibility in

including time and space dependency, as well as the effect of covariates (see e.g. Fassò and

Finazzi [2011] and Cocchi et al. [2007]). The mean function µ(s, t) in (4) is given by

µ(s, t) = b0 + z(s, t), (7)

where b0 is an intercept that is common to all wind farms and constant in time and space.

The term z(s, t) refers to a spatio-temporal process that varies in time with first order

autoregressive dynamics

z(s, t) = ρ2z(s, t− 1) + w(s, t), (8)

with t = 2, . . . , T and |ρ2| < 1. Moreover, w(s, t) is a zero-mean Gaussian field, assumed to

be temporally independent with covariance function

Cov(w(s, t), w(s′, t′)) =


σ2
wC(h), if t = t′

0, t 6= t′

for s 6= s′. The correlation function C depends on the locations s and s′ through the distance

h = ||s− s′||. This means that the process is assumed to be second-order stationary and

isotropic (see Cressie [1992]). The marginal variance is Var(s, t) = σ2
w and C(h) is the

correlation function defined by the Matérn, given by

C(h) =
1

Γ(ν)2ν−1
(κh)νKν(κh), (9)

11
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where Kν is the modified Bessel function of second kind, order ν. The parameter κ can be

used to select the range, while ν is a smoothness parameter that can be used to determine the

mean-square differentiability of the underlying process. More precisely, the range is defined

to be r =
√

8ν/κ while the marginal variance is σ2
w = 1/(4πτ 2κ2). Although the parameter ν

is fixed to 1 for computational reasons, it remains flexible enough to handle a broad class of

spatial variation Rue et al. [2009]. Applications with fixed parameter ν include Ingebrigtsen

et al. [2014], Cameletti et al. [2013] and Munoz et al. [2013].

3.2.3. Temporal + Spatio-temporal model (Model ST+T)

This is a model defined by an autoregressive process at each location to capture the individual

variability and a spatio-temporal process with temporal dynamics to take into account the

spatial dependence among wind farms. Specifically, µ(s, t) from (4) is defined as

µ(s, t) = b0 + ws(t) + z(s, t), (10)

where b0 is a fixed unknown intercept that is shared by all wind farms. The process ws(t) is

assumed to have autoregressive dynamics as defined in (6). Finally, z(s, t) is a spatio-temporal

component that has the structure of (8) and its spatio-temporal covariance function is the

same as in (9).

3.2.4. Prior specification

For the intercepts a flat prior (uniform) is used. The correlations ρ’s are specified through

β = log(1+ρ
1−ρ), and β has a Gaussian prior distribution with zero mean and precision 0.15.

A log-Gamma prior with parameters 1 and 0.00005 is assumed for log(σ2
e) and log(σ2

ν). The

priors for the parameters in the Matérn field, κ and τ , are specified with the parameterization

log(κ) and log(τ) as Gaussian distributed. The prior mean for log(κ) is chosen heuristically

12
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so that the range of the field is about 20% of the diameter of the region, while the prior

mean for log(τ) is chosen so that the corresponding variance of the field is 1. Finally, the

prior precisions of log(κ) and log(τ) are set to 0.1.

3.3. Inference and prediction

The key feature of the models described above is that they can be handled within the

theoretical and computational framework developed by Rue et al. [2009] and Lindgren et al.

[2011]. Rue et al. [2009] introduced integrated nested Laplace approximations (INLA) that

allows us to directly compute accurate and fast approximations of the posterior marginals

for latent Gaussian Markov random field (GMRF) models. A key feature is the utilization of

the sparseness of the precision matrix (inverse covariance matrix). For spatial and spatial-

temporal modelling, Gaussian random fields (GRF) models are popular choices, see Cressie

[2015]. Lindgren et al. [2011] introduced a link between latent GRF models and GMRF

models: modeling can be done using latent GRF models (with dense covariance and precision

matrices), while computations are carried out with GMRFs with a sparse precision matrix.

The original idea comes from the work of Whittle [1954] and Whittle [1963], where it is

shown that the only stationary solution to the SPDE

(κ2 −∆)α/2η(s) =W(s), s ∈ Rd, α = ν +D/2, κ > 0, ν > 0, (11)

is a GRF with Matérn covariance function. The innovation processW on the right hand side

of (11) is Gaussian white noise and ∆ is the Laplacian.

An approximation to the solution of the SPDE in (11) can be obtained using the finite

element method (FEM), a numerical technique for solving partial differential equations

[Lindgren et al., 2011]. This is done by representing the infinite dimensional GRF by a

13
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linear combination of finite basis function

η(s) =
∑
k

ψk(s)wk (12)

where the wk’s are random weights chosen so that the representation in (12) approximates

the distribution of the solution to the SPDE in (11). The random weights form a GMRF

and the ψk’s are basis functions defined on a triangulation of the domain, i.e. a subdivision

into non-intersecting triangles. Figure 3 shows the triangulation of western Denmark data

set described in Section 2.

[Figure 3 about here.]

Next, the posterior estimates of the model parameters, which we will denote by π(θ|y),

are computed using INLA [Rue et al., 2009]. This method approximates the integral

involved in the calculation of the marginal posterior distributions of the parameters by

Laplace approximation, making use of the Markov structure of the latent variables in the

computation. We use the R-INLA package to perform inference and prediction. For more

information on the package see http://www.r-inla.org.

In addition to the marginal distribution of the model parameters, one can also get marginal

posteriors for linear combinations of variables in the GMRF. For non-linear functions one can

base approximations on Monte Carlo sampling. This is achieved by first sampling from the

posterior of the parameters π(θ|y), followed by sampling from the Gaussian approximation

of the latent field π(η|y,θ). For Gaussian likelihoods, the Laplace approximation is exact

and the samples are directly computed from the posterior distribution. These samples can

then be used to obtain the sum of the linear predictors through the build-in function

inla.posterior.sample.

14
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4. FORECAST EVALUATION

4.1. Probabilistic forecasting scheme

We evaluate the predictive performance of the models described in Section 3 using a time

moving window approach with data from western Denmark in 2009, so that we consider

each wind farm as a training set with length L = 2× 96 = 192 observations, i.e., two days.

In total, the model is fit to 364/2 = 182 different data sets. We obtain forecasts for lead times

h = 1, . . . , 20, that is, from 15 minutes up to 5 hours following the training data. Notice that

we have compared different lengths of data window L with respect to the root mean squared

error (RMSE) and continuous ranked probability score (CRPS). Model T is very sensitive to

the window length, such that less than two days of observations in the training set resulted in

poor estimation at all lead times. On the other hand, Model S-T and Model ST+T showed

to be robust for different values of L, with small changes in the forecast performance for

different training sets.

Moreover, because of the high-time resolution of the Danish wind power time series (15-

minutes) and the dependency structure in space and time of Model S-T and Model ST+T,

the fitting can be very computationally expensive. One way to deal with high-time resolution

data is to define the model on a set of knots instead of all time points. Knot-based linear

combinations are widely used to tackle computational problems in large data sets (e. g.

Paciorek [2007] and Wikle and Cressie [1999]). To fit the spatio-temporal component z(s, t)

in (8), we define a set of equally spaced knots at every 12 data points (3 hours), such that the

points in time are reduced to only 17 knots, instead of the original 192 observations. Note

that the component ws(t) in models Model T and Model ST+T is fitted to the complete

training data, since it does not involve spatio-temporal interactions.

We evaluate probabilistic forecasts of wind power production from individual wind farms

and aggregated.
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Let X̂(sj, t+ h) denote the random variable of the wind power forecast at wind farm sj

and lead time h. The aggregated forecast of wind power generation is taken as

X̂A(t+h) =

∑N
j=1 cjX̂(sj, t+ h)∑N

j=1 cj
, (13)

where cj is the capacity of wind farm sj and N is the number of wind farms. To find

the pdf of the aggregated forecasts, f̂XA(t+h)
, the joint distribution for all wind farms

{X̂(s1, t+ h), X̂(s2, t+ h), . . . X̂(sN , t+ h)} needs to be assessed. Finally, point forecast of

aggregated wind power production is obtained as the mean (or median) of f̂XA(t+h)
.

The aggregated wind power forecast in (13) is a sum over non-linear transformations of the

predicted transformed wind power production. To access the predicted aggregated forecast,

we sample from the joint posterior of the parameters and compute the expected transformed

wind power production. For each wind farm, we add an independent identically distributed

Gaussian error with mean zero and variance equal to the sample from the posterior

distribution of σ2
ε . For each sample and each wind farm, the corresponding accumulated

production is then calculated using (13).

4.2. Point and probabilistic forecast scores

We assess the quality of predictive performance of the models proposed in Section 3 using

both point and probabilistic forecast scores. We obtain point forecast at a specific location

as the mean of the forecast density. For each lead time, point forecast of individual power is

assessed using the root mean squared error (RMSE), where the mean is taken over all wind

farms and data sets,

RMSE(t+ h) =

√√√√ 1

DN

D∑
i=1

N∑
j=1

(x(sij, t+ h)− x̂(sij, t+ h))2 (14)
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where x(sij, t+ h) is the normalized wind power production at wind farm sj of data set i and

lead time h. The term x̂(sij, t+ h) = γ−1(ŷ(sij, t+ h)) is the predicted value of x(sij, t+ h).

To evaluate the performance of forecast densities, we use the continuous ranked probability

score (CRPS). Gneiting and Raftery [2007] showed that CRPS is a strictly proper scoring rule

for the evaluation of probabilistic forecasts of a univariate quantity that assesses calibration

and sharpness simultaneously Gneiting and Raftery [2007]. A lower score indicates a better

density forecast. It is defined as

CRPS(F, x) =

∫ ∞
−∞

(F (y)− δ{y≥x})2dy (15)

where δ{A} is the indicator function that is equal to one when property A is satisfied and

zero otherwise, F is the cumulative distribution function of the density forecast and y is the

observation. With the available samples, we can approximate the mean CRPS at each lead

time by

CRPSF,x(t+ h) =
1

DN

D∑
i=1

N∑
j=1

( 1

n

n∑
k=1

|x̂(k)(sij, t+ h)− x(sij, t+ h)|

− 1

2n2

n∑
k,l=1

|x̂(k)(sij, t+ h)− x̂(l)(sij, t+ h)|
)
,

(16)

where n is the number of samples. Again, the mean CRPS is taken over all the wind farms

and data sets in the training set.

Reliability, also referred to as calibration, of probabilistic forecasts is assessed with

reliability diagrams. In a calibrated forecast, the observed levels should match the nominal

levels for specific quantile forecasts, which results in points aligning with the diagonal in the

reliability diagram. To construct reliability diagrams, we start by introducing an indicator

variable I(α)(sij, h), which is defined for a quantile forecast q̂(α)(sij, t+ h) issued at lead time
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h and wind farm si of the training data j, with observed value x(sij, t+ h) as follows

I(α)(sij, h) =


1 if x(sij, t+ h) ≤ q̂(α)(sij, t+ h)

0, otherwise

The indicator variable I(α)(sij, h) shows whether the actual outcome lies below the α quantile

forecast (hits) or not (miss). Next, n
(α)
h,1 denotes the sum of hits and n

(α)
h,0 the sum of misses

over all the realizations

n
(α)
h,1 =

D∑
i=1

N∑
j=1

I(α)(sij, h) and n
(α)
h,0 = DN − n(α)

h,1 .

An estimation â
(α)
h of the actual coverage a

(α)
h is then obtained by calculating the mean of

I(α)(sij, h) over the N wind farms in the D validation sets

â
(α)
h =

1

DN

D∑
i=1

N∑
j=1

I(α)(sij, h) =
n
(α)
h,1

n
(α)
h,1 + n

(α)
h,0

. (17)

Here, we use nominal levels from 5% to 95% in steps of 5%. Since the number of observations

used to calculate the reliability diagrams is of limited size and the observed proportions are

equal to the nominal ones only asymptotically Toth et al. [2003] Bröcker and Smith [2007],

we follow the idea of Bröcker and Smith [2007] of generating consistency bars for reliability

diagrams.

4.3. Evaluation scheme

We evaluate probabilistic forecasts of Danish wind power production from two different

scenarios. First, we consider time forward forecast performances at the locations of the

training set. The spatio-temporal models, i.e, Model S-T and Model ST+T, have the

advantage of being able to provide forecasts where recent observations are not available.
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Based on this, in a second evaluation scheme, we study the performances of spatially out-of-

sample forecasts, which are based on k-fold cross-validation with k = 5. Notice that overall, 5

to 10-fold cross-validation is recommended as a good compromise between bias and variance

(Breiman and Spector [1992]; Kohavi et al. [1995]). The forecast performance measures from

the second scenario are obtained by combining the estimates from the 182 data sets in the

training set.

5. RESULTS

In this section we show the results from a case study, where we use the models described

in Section 3 to forecast individual and aggregated wind power in Denmark. As described

in Section 4.3, we evaluate and discuss the performances of our models when we consider

time forward forecasts at the locations of the training set. We call these spatio-temporal

forecasts, and we also show the case of spatially out-of-sample forecasts, i.e, for wind farms

that are not in the training set. Details of the probabilistic forecasting scheme can be found

in Section 4.1, while the methodology used to rank point and probabilistic forecasts is in

Section 4.2.

5.1. Spatio-temporal forecast performance

Figure 4 summarizes the spatio-temporal forecast performances of the three models

introduced in Section 3 in terms of RMSE and CRPS. As we can see from Figure 4 (a),

Model T and Model ST+T outperformed Model S-T with respect to RMSE and CRPS

when forecasting individual wind farms at lead times 1-6 (i.e, from 15 minutes up to 2

hours ahead). For higher lead times, the three models have similar performance. In terms of

aggregated wind power production, Model T performed similar to Model ST+T in terms of
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point forecast (RMSE), but it has poor performance according to CRPS values, as shown in

Figure 4 (b).

Reliability diagrams for each model at lead times h = 1, 7, 13 and 19 are presented in Figure

5. These diagrams compare the theoretical and the observed proportions of a set of quantiles

from forecasts made at all wind farms and data sets in the training set. The forecasts at

individual wind farms produced by the three models presented in Section 3 perform similarly

well in terms of reliability, with points close to the diagonal for most quantiles, see Figure

5 (a). Since the number of observations used to calculate reliability diagrams is relatively

small (182 data sets in the training set), consistency bars for the evaluation of forecasts

from aggregated farms are also plotted, as shown in Figure 5 (b). The aggregated forecasts

provided by Model ST+T are the best calibrated among the three models for most of the

quantiles at all lead times, followed by Model S-T. Even though the performance of Model

T is comparable with the performance of the other models in terms of aggregated forecast

density mean (RMSE), we can see that this model does not produce reliable probabilistic

forecasts for the aggregated data. This fact is more obvious for the lower quantiles; more

than 50% of the observed aggregated forecasts are below the nominal 5% quantile at lead

times h = 7, 13 and 19.

[Figure 4 about here.]

[Figure 5 about here.]

We further explore aggregated probabilistic forecasts from models in Section 3 with plots

containing the 5%, 50% and 95% quantiles of the aggregated forecast densities together with

the actual observed aggregated power produced at four different data sets in the training

set, as shown in Figure 6. We noticed that Model T results in forecast densities that are

consistently too narrow. On the other hand, Model ST+T provides the widest aggregated

forecast densities among the three models in most of the data sets, which produces calibrated

forecasts at all lead times, as confirmed in Figure 5 (b).
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[Figure 6 about here.]

5.2. Spatially out-of-sample forecast performance

Figure 7 shows the out-of-sample forecast performances in terms of RMSE and mean CRPS

for individual wind farms (a) and aggregated wind power (b). They are computed as the

mean of the RMSE and CRPS from the 5-fold cross validations as described in Section 4.3.

It can be seen that Model ST+T outperforms Model S-T at all lead times when predicting

wind power at individual wind farms under RMSE and CPRS. When looking at aggregated

out-of-sample forecasts, while for shorter lead times than 2 hours, Model S-T is better than

Model ST+T in terms of RMSE, for longer horizons, Model ST+T out-performs Model S-T

under the same score. In terms of CRPS, Model ST+T produces better aggregated forecasts

at lead times 1-20 (i.e., from 15 minutes to 5 hours ahead).

Reliability diagrams at lead times h = 1, 7, 13 and 19 are presented in Figure 8. We observe

from Figure 8 (a) that Model S-T and Model ST+T provide relatively well calibrated forecast

densities for individual farms. In terms of aggregated forecasts, we can see from Figure 8 (b)

that Model ST+T is calibrated, since the line is always within the consistency bars. On the

other hand, aggregated forecast densities obtained with Model S-T are poorly calibrated for

quantiles lower than 0.75. Indeed, 20% of the observations are below the 5% forecast quantile

at lead times 1, 7, 13 and 19.

[Figure 7 about here.]

[Figure 8 about here.]

6. CONCLUSIONS

In this article we have presented hierarchical spatio-temporal models for obtaining

probabilistic forecasts of wind power generation at multiple locations and lead times. We
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started with a time series model consisting of an autoregressive process with a location

specific intercept. The results for individual probabilistic forecasts were satisfactory in

terms of skill scores and reliability, however, the aggregated probabilistic forecasts were not

calibrated. After finding the unsatisfactory results for the reliability of aggregated forecasts,

we introduced two different spatio-temporal models. The first has a common intercept for

all farms and a spatio-temporal model that varies in time with first order autoregressive

dynamics and has spatially correlated innovations given by a zero mean Gaussian process

with Matérn covariance. The second model has a common intercept, an autoregressive

process to capture the local variability and the spatio-temporal term. To deal with the

non-Gaussianity of wind power series, a parametric framework for distributional forecasts

based on the logit-normal transformation was used.

In a case study, the proposed models have been used to produce probabilistic forecasts of

wind power at wind farms in western Denmark from 15 minutes up to 5 hours ahead for a

test period of one year. Using an SPDE approach that is implemented in the R-INLA library,

we obtained fast and accurate forecasts of wind power generation at wind farms where data

is available, but also at a larger portfolio including wind farms at locations that are not

included in the training set. We provided detailed analysis on the forecast performances

based on appropriate metrics tailored for probabilistic forecasts.

Our results showed that all the proposed approaches produce calibrated short-term

forecasts for individual wind farms. However, we found that modeling spatial dependency

is required to achieve calibrated aggregated probabilistic forecasts. Indeed, our case study

showed that spatial dependency is important for aggregated properties, and individual

forecasts do not reveal this. Moreover, when we simulated from the spatio-temporal model

containing an autoregressive term (Model ST+T), we obtained results that are in accordance

with our case study, where the proposed models performed equally well for individual

forecasts, while aggregated probabilistic forecasts benefit from having a spatio-temporal
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model with the autoregressive term. Model ST+T was introduced due to unsatisfactory

reliability for the aggregated forecasts. Hence, evaluating aggregated forecasts can be a tool

for investigating and improving models, even when spatially out-of-sample forecasts are the

purpose of the modelling. Indeed, results from spatially out-of-sample forecast performances

showed that when predicting wind power at new locations that are not included in the

training set, having the autoregressive term in the spatio-temporal model improved the

forecast performance.

This work was motivated by the need to produce accurate short term probabilistic forecasts

at multiple wind farms and lead times, which will ultimately be applied on a national scale.

A possible extension of the models described in this work is to include weather forecast

information in the linear predictor. This approach usually requires ensemble forecasts to be

generated from sophisticated numerical weather prediction (NWP) models and has shown

to produce reliable wind power forecasts up to 10 days ahead Taylor et al. [2009].

SUPPLEMENTARY MATERIAL

The file supplementary.pdf contains the supplementary material for this manuscript. In

Section 1 we present tables with summaries of RMSE and CRPS as an extension to the

graphical results in Sections 5.1 and 5.2 of this manuscript. Section 2 includes the results of

a simulation study based on our case study.
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Figure 1. (a) Map of spatial correlation of wind power production between one wind farm located in the southern part of western

Denmark and the remaining wind farms. The correlations between wind farms in a closer proximity are clearly higher than between wind

farms that are farther apart. (b) Mean autocorrelation function of wind power production at wind farms located in western Denmark.

The autocorrelations decay slowly.
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Figure 2. (a) 15 min resolution of normalized wind power production at four wind farms from the start of June 1 to the end of June

2. (b) Locations of the four wind farms presented in (a).
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Figure 3. The western Denmark triangulation. The red dots denote the observation locations of the wind power production data.

30



FIGURES Environmetrics

5 10 15 20

4
6

8
1

0
1

2

Lead time

R
M

S
E

Model T

Model S−T

Model ST+T

5 10 15 20

2
3

4
5

6

Lead time

C
R

P
S

(a)

5 10 15 20

2
4

6
8

1
0

Lead time

R
M

S
E

Model T

Model S−T

Model ST+T

5 10 15 20

1
2

3
4

5
6

7

Lead time

C
R

P
S

(b)

Figure 4. Mean RMSE and mean CRPS (as % of nominal power) of spatio-temporal wind power forecasts at lead times 1, . . . , 20 (i.e.,

from 15 minutes up to 5 hours) for Model T (blue), Model S-T (green) and Model ST+T (orange). (a) Forecasts for individual wind

farms. (b) Forecasts for aggregated wind farms.
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Figure 5. Reliability diagram of spatio-temporal wind power forecasts at lead time 1 (Top left), 7 (Top right) , 13 (Bottom left) and

19 (Bottom right). The diagrams were calculated using Model T (blue), Model S-T (green) and Model ST+T (orange). (a) Forecasts

for individual wind farms. (b) Forecasts for aggregated wind farms.
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Figure 6. 5% and 95% quantiles (dashed lines), as well as the median (solid lines) of the aggregated forecast densities from four

different data sets in the training set, together with the actual observed aggregated power produced (circles) at lead times 1-20 (i.e.,

from 15 minutes up to 5 hours). The forecast densities correspond to Model T (blue), Model S-T (green) and Model ST+T (orange).

An example of a data set where all the models have forecast densities that cover the actual aggregated production is shown in the Top

left plot. In the Top right plot, the observations lie close to the median of the forecast densities from Model S-T and Model ST+T,

but close to the 5% quantile of the forecast density from Model T. Bottom left and Bottom right plots illustrate cases where Model T

has forecast densities that are too narrow and fail to predict the aggregated wind power, while the forecasts from Model ST+T provide

densities that are wide enough to cover the true value at all lead times.
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Figure 7. Mean RMSE and mean CRPS (as % of nominal power) of spatially out-of-sample wind power forecasts at lead times 1, . . . , 20

(i.e., from 15 minutes up to 5 hours) for Model T (blue), Model S-T (green) and Model ST+T (orange). (a) Forecasts for individual

wind farms. (b) Forecasts for aggregated wind farms.
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Figure 8. Reliability diagram of spatially out-of-sample wind power forecasts at lead time 1 (Top left), 7 (Top right) , 13 (Bottom

left) and 19 (Bottom right). The diagrams were calculated using Model T (blue), Model S-T (green) and Model ST+T (orange). (a)

Forecasts for individual wind farms. (b) Forecasts for aggregated wind farms.
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