1,236 research outputs found

    An unsupervised fuzzy ensemble algorithmic scheme for gene expression data analysis

    Get PDF
    Background: In recent years unsupervised ensemble clustering methods have been successfully applied to DNA microarray data analysis to improve the accuracy and the reliability of clustering results. Nevertheless, a major problem is represented by the fact that classes of functionally correlated examples (e.g. subclasses of diseases characterized at bio-molecular level) are not in general clearly separable, and in many cases the same gene may belong to different functional classes (e.g. may participate to different biological processes). Results: We propose an ensemble clustering algorithm scheme, based on a fuzzy approach, that directly permit to deal with overlapping classes or with genes or samples that may belong to more clusters at the same time. From our algorithmic scheme several fuzzy ensemble clustering algorithms may be derived, according to the way the multiple clusterings are combined and the consensus clustering is generated. We test some of the proposed ensemble algorithms with two DNA microarray data sets available on the web, comparing the results with other single and ensemble clustering methods. Conclusions: Our proposed fuzzy ensemble approach may be applied to discover classes of co-expressed genes or subclasses of functionally related examples, and in principle it may be applied for the unsupervised analysis of different types of complex bio-molecular data. Fuzzy ensemble algorithms can assign each gene/sample to multiple classes and can estimate and improve the accuracy and the reliability of the discovered clusterings, as shown by our experimental results

    Voting-Based Consensus of Data Partitions

    Get PDF
    Over the past few years, there has been a renewed interest in the consensus problem for ensembles of partitions. Recent work is primarily motivated by the developments in the area of combining multiple supervised learners. Unlike the consensus of supervised classifications, the consensus of data partitions is a challenging problem due to the lack of globally defined cluster labels and to the inherent difficulty of data clustering as an unsupervised learning problem. Moreover, the true number of clusters may be unknown. A fundamental goal of consensus methods for partitions is to obtain an optimal summary of an ensemble and to discover a cluster structure with accuracy and robustness exceeding those of the individual ensemble partitions. The quality of the consensus partitions highly depends on the ensemble generation mechanism and on the suitability of the consensus method for combining the generated ensemble. Typically, consensus methods derive an ensemble representation that is used as the basis for extracting the consensus partition. Most ensemble representations circumvent the labeling problem. On the other hand, voting-based methods establish direct parallels with consensus methods for supervised classifications, by seeking an optimal relabeling of the ensemble partitions and deriving an ensemble representation consisting of a central aggregated partition. An important element of the voting-based aggregation problem is the pairwise relabeling of an ensemble partition with respect to a representative partition of the ensemble, which is refered to here as the voting problem. The voting problem is commonly formulated as a weighted bipartite matching problem. In this dissertation, a general theoretical framework for the voting problem as a multi-response regression problem is proposed. The problem is formulated as seeking to estimate the uncertainties associated with the assignments of the objects to the representative clusters, given their assignments to the clusters of an ensemble partition. A new voting scheme, referred to as cumulative voting, is derived as a special instance of the proposed regression formulation corresponding to fitting a linear model by least squares estimation. The proposed formulation reveals the close relationships between the underlying loss functions of the cumulative voting and bipartite matching schemes. A useful feature of the proposed framework is that it can be applied to model substantial variability between partitions, such as a variable number of clusters. A general aggregation algorithm with variants corresponding to cumulative voting and bipartite matching is applied and a simulation-based analysis is presented to compare the suitability of each scheme to different ensemble generation mechanisms. The bipartite matching is found to be more suitable than cumulative voting for a particular generation model, whereby each ensemble partition is generated as a noisy permutation of an underlying labeling, according to a probability of error. For ensembles with a variable number of clusters, it is proposed that the aggregated partition be viewed as an estimated distributional representation of the ensemble, on the basis of which, a criterion may be defined to seek an optimally compressed consensus partition. The properties and features of the proposed cumulative voting scheme are studied. In particular, the relationship between cumulative voting and the well-known co-association matrix is highlighted. Furthermore, an adaptive aggregation algorithm that is suited for the cumulative voting scheme is proposed. The algorithm aims at selecting the initial reference partition and the aggregation sequence of the ensemble partitions the loss of mutual information associated with the aggregated partition is minimized. In order to subsequently extract the final consensus partition, an efficient agglomerative algorithm is developed. The algorithm merges the aggregated clusters such that the maximum amount of information is preserved. Furthermore, it allows the optimal number of consensus clusters to be estimated. An empirical study using several artificial and real-world datasets demonstrates that the proposed cumulative voting scheme leads to discovering substantially more accurate consensus partitions compared to bipartite matching, in the case of ensembles with a relatively large or a variable number of clusters. Compared to other recent consensus methods, the proposed method is found to be comparable with or better than the best performing methods. Moreover, accurate estimates of the true number of clusters are often achieved using cumulative voting, whereas consistently poor estimates are achieved based on bipartite matching. The empirical evidence demonstrates that the bipartite matching scheme is not suitable for these types of ensembles

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems

    A Comprehensive Survey of Data Mining-based Fraud Detection Research

    Full text link
    This survey paper categorises, compares, and summarises from almost all published technical and review articles in automated fraud detection within the last 10 years. It defines the professional fraudster, formalises the main types and subtypes of known fraud, and presents the nature of data evidence collected within affected industries. Within the business context of mining the data to achieve higher cost savings, this research presents methods and techniques together with their problems. Compared to all related reviews on fraud detection, this survey covers much more technical articles and is the only one, to the best of our knowledge, which proposes alternative data and solutions from related domains.Comment: 14 page

    An advanced computational intelligent framework to predict shear sonic velocity with application to mechanical rock classification

    Get PDF
    Shear sonic wave velocity (Vs) has a wide variety of implications, from reservoir management and development to geomechanical and geophysical studies. In the current study, two approaches were adopted to predict shear sonic wave velocities (Vs) from several petrophysical well logs, including gamma ray (GR), density (RHOB), neutron (NPHI), and compressional sonic wave velocity (Vp). For this purpose, five intelligent models of random forest (RF), extra tree (ET), Gaussian process regression (GPR), and the integration of adaptive neuro fuzzy inference system (ANFIS) with differential evolution (DE) and imperialist competitive algorithm (ICA) optimizers were implemented. In the first approach, the target was estimated based only on Vp, and the second scenario predicted Vs from the integration of Vp, GR, RHOB, and NPHI inputs. In each scenario, 8061 data points belonging to an oilfield located in the southwest of Iran were investigated. The ET model showed a lower average absolute percent relative error (AAPRE) compared to other models for both approaches. Considering the first approach in which the Vp was the only input, the obtained AAPRE values for RF, ET, GPR, ANFIS + DE, and ANFIS + ICA models are 1.54%, 1.34%, 1.54%, 1.56%, and 1.57%, respectively. In the second scenario, the achieved AAPRE values for RF, ET, GPR, ANFIS + DE, and ANFIS + ICA models are 1.25%, 1.03%, 1.16%, 1.63%, and 1.49%, respectively. The Williams plot proved the validity of both one-input and four-inputs ET model. Regarding the ET model constructed based on only one variable,Williams plot interestingly showed that all 8061 data points are valid data. Also, the outcome of the Leverage approach for the ET model designed with four inputs highlighted that there are only 240 "out of leverage" data sets. In addition, only 169 data are suspected. Also, the sensitivity analysis results typified that the Vp has a higher effect on the target parameter (Vs) than other implemented inputs. Overall, the second scenario demonstrated more satisfactory Vs predictions due to the lower obtained errors of its developed models. Finally, the two ET models with the linear regression model, which is of high interest to the industry, were applied to diagnose candidate layers along the formation for hydraulic fracturing. While the linear regression model fails to accurately trace variations of rock properties, the intelligent models successfully detect brittle intervals consistent with field measurements

    Identifying major drivers of daily streamflow from large-scale atmospheric circulation with machine learning

    Get PDF
    Previous studies linking large-scale atmospheric circulation and river flow with traditional machine learning techniques have predominantly explored monthly, seasonal or annual streamflow modelling for applications in direct downscaling or hydrological climate-impact studies. This paper identifies major drivers of daily streamflow from large-scale atmospheric circulation using two reanalysis datasets for six catchments in Norway representing various Köppen-Geiger climate types and flood-generating processes. A nested loop of roughly pruned random forests is used for feature extraction, demonstrating the potential for automated retrieval of physically consistent and interpretable input variables. Random forest (RF), support vector machine (SVM) for regression and multilayer perceptron (MLP) neural networks are compared to multiple-linear regression to assess the role of model complexity in utilizing the identified major drivers to reconstruct streamflow. The machine learning models were trained on 31 years of aggregated atmospheric data with distinct moving windows for each catchment, reflecting catchment-specific forcing-response relationships between the atmosphere and the rivers. The results show that accuracy improves to some extent with model complexity. In all but the smallest, rainfall-driven catchment, the most complex model, MLP, gives a Nash-Sutcliffe Efficiency (NSE) ranging from 0.71 to 0.81 on testing data spanning five years. The poorer performance by all models in the smallest catchment is discussed in relation to catchment characteristics, sub-grid topography and local variability. The intra-model differences are also viewed in relation to the consistency between the automatically retrieved feature selections from the two reanalysis datasets. This study provides a benchmark for future development of deep learning models for direct downscaling from large-scale atmospheric variables to daily streamflow in Norway.publishedVersio

    Clustering ensemble method

    Get PDF
    A clustering ensemble aims to combine multiple clustering models to produce a better result than that of the individual clustering algorithms in terms of consistency and quality. In this paper, we propose a clustering ensemble algorithm with a novel consensus function named Adaptive Clustering Ensemble. It employs two similarity measures, cluster similarity and a newly defined membership similarity, and works adaptively through three stages. The first stage is to transform the initial clusters into a binary representation, and the second is to aggregate the initial clusters that are most similar based on the cluster similarity measure between clusters. This iterates itself adaptively until the intended candidate clusters are produced. The third stage is to further refine the clusters by dealing with uncertain objects to produce an improved final clustering result with the desired number of clusters. Our proposed method is tested on various real-world benchmark datasets and its performance is compared with other state-of-the-art clustering ensemble methods, including the Co-association method and the Meta-Clustering Algorithm. The experimental results indicate that on average our method is more accurate and more efficient
    • …
    corecore