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A B S T R A C T   

Previous studies linking large-scale atmospheric circulation and river flow with traditional machine learning 
techniques have predominantly explored monthly, seasonal or annual streamflow modelling for applications in 
direct downscaling or hydrological climate-impact studies. This paper identifies major drivers of daily stream-
flow from large-scale atmospheric circulation using two reanalysis datasets for six catchments in Norway rep-
resenting various Köppen-Geiger climate types and flood-generating processes. A nested loop of roughly pruned 
random forests is used for feature extraction, demonstrating the potential for automated retrieval of physically 
consistent and interpretable input variables. Random forest (RF), support vector machine (SVM) for regression 
and multilayer perceptron (MLP) neural networks are compared to multiple-linear regression to assess the role of 
model complexity in utilizing the identified major drivers to reconstruct streamflow. The machine learning 
models were trained on 31 years of aggregated atmospheric data with distinct moving windows for each 
catchment, reflecting catchment-specific forcing-response relationships between the atmosphere and the rivers. 
The results show that accuracy improves to some extent with model complexity. In all but the smallest, rainfall- 
driven catchment, the most complex model, MLP, gives a Nash-Sutcliffe Efficiency (NSE) ranging from 0.71 to 
0.81 on testing data spanning five years. The poorer performance by all models in the smallest catchment is 
discussed in relation to catchment characteristics, sub-grid topography and local variability. The intra-model 
differences are also viewed in relation to the consistency between the automatically retrieved feature selec-
tions from the two reanalysis datasets. This study provides a benchmark for future development of deep learning 
models for direct downscaling from large-scale atmospheric variables to daily streamflow in Norway.   

1. Introduction 

The plethora of available large-scale atmospheric reanalysis prod-
ucts, climate model outputs and weather (re-)forecasts is growing; in 
combination with quality-controlled streamflow records, this growth 
unlocks unprecedented opportunities for streamflow modelling with 
machine learning on various spatiotemporal scales. The use of machine 
learning in hydrology has evolved over the last decades in association 
with the field of Hydroinformatics (Abbott, 1991; Vojinovic and Abbott, 
2017). A historical overview of the use of neural networks in hydrology 
is given by Abrahart et al. (2012). A review of machine learning 

applications for streamflow modelling is given by Yaseen et al. (2015), 
while Mosavi et al. (2018) provide a review of machine learning ap-
plications specifically for flood prediction. In recent years, a growing 
interest in deep learning is reflected in the literature (Kratzert et al., 
2018; Kratzertet al., 2019; Xiang et al., 2020), and attempts at inte-
grating physical laws of hydrology in deep learning models have been 
made (Jiang et al., 2020). Meanwhile, traditional machine learning 
techniques, such as random forest, support vector machine and shallow 
neural networks, have demonstrated successful applications in the field 
of hydrology. 

Nevertheless, machine learning applications for streamflow 

* Corresponding author at: Geophysical Institute, University of Bergen, Jahnebakken 5, 5007 Bergen, Norway. 
E-mail address: jenny.hagen@uib.no (J.S. Hagen).  

Contents lists available at ScienceDirect 

Journal of Hydrology 

journal homepage: www.elsevier.com/locate/jhydrol 

https://doi.org/10.1016/j.jhydrol.2021.126086 
Received 16 November 2020; Received in revised form 28 January 2021; Accepted 13 February 2021   

mailto:jenny.hagen@uib.no
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2021.126086
https://doi.org/10.1016/j.jhydrol.2021.126086
https://doi.org/10.1016/j.jhydrol.2021.126086
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2021.126086&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Journal of Hydrology 596 (2021) 126086

2

Table 1 
Overview of studies predicting streamflow from large-scale atmospheric circulation (see Table A1 in Appendix A for list of symbols). (See below-mentioned references 
for further information.)  
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modelling predominantly take the form of autoregressive models, in 
which past streamflow observations represent the primary input vari-
ables (Adnan et al., 2019; Thapa et al., 2020; Tongal and Booij, 2018) – 
sometimes in combination with local meteorological observations, 
climate indices and weather forecasts (see for instance Rasouli et al. 
(2012)). Few studies have utilized machine learning for direct trans-
lation from large-scale atmospheric circulation to streamflow without 
also employing past streamflow observations as predictive variables. 

It has long been known that there are important linkages between 
large-scale atmospheric circulation and river flow (Kingston et al., 
2006); Table 1 provides an overview of relevant studies in which 
streamflow has been inferred from gridded large-scale atmospheric 
variables. An early attempt at modelling five-day-average streamflow 
from atmospheric reanalysis data with ensemble neural networks is 
presented by Cannon and Whitfield (2002). Feature selection was car-
ried out with stepwise predictor selection, resulting in the use of 2.5◦ x 
2.5◦ (~250 km × 250 km) gridded cells of geopotential heights, mean 
sea level pressure and specific humidity at 500 hPa, 850 hPa and 1000 
hPa. The study concluded that neural networks are more suitable than 
stepwise linear regression for nonlinear systems with complex in-
teractions between inputs and outputs. Following this, a number of 
studies used machine learning to reconstruct monthly streamflow and 
project hydrological climate-impacts. 

Ghosh and Mujumdar (2008) trained support vector machine (SVM) 
and relevant vector machine (RVM) models on atmospheric reanalysis 
data to reconstruct monthly streamflow in the monsoon season. The 
trained models were subsequently used to project hydrological climate- 
impacts with climate model outputs interpolated to the grid points of the 
reanalysis data. Feature selection was performed on a prior selection of 
large-scale atmospheric variables with known physical connections to 
the monsoon-flooding regime. Principal component analysis (PCA) was 
carried out on 2.0◦ x 2.0◦ (~200 km × 200 km) gridded cells of stan-
dardized mean sea level pressure, air temperature, specific humidity and 
500 hPa geopotential to transform the correlated predictors into an n- 
dimensional set of uncorrelated vectors, whereby most of the variability 
of the original dataset is contained within the first few dimensions. 
Fuzzy clustering of the principal components was performed using three 
classes. The resulting 12 inputs comprised 10 principal components and 
two memberships (as the sum of three memberships is one). Similar 
approaches to feature extraction with PCA and fuzzy clustering for hy-
drological climate-impact modelling with SVM have been followed by 
Okkan and Inan (2015), Sahoo and Sen (2017) and Das and Nanduri 
(2018). 

In the case of Norway, monthly streamflow has been directly 
downscaled from moving windows of atmospheric reanalysis data by 
Huang et al. (2020) using RVM. Precipitation was excluded as an input 
variable in order to make use of variables that are more accurately 
simulated by global circulation models (temperature, pressure and hu-
midity). The best performance was obtained in snowmelt-driven 
catchments in inland regions of Norway. The poor performance in 
small, rainfall-driven catcments was associated with the relative dif-
ference in inter-annual versus intra-annual variability in monthly 
streamflow. 

As is evident from Table 1, most attempts at direct downscaling or 
climate-impact modelling with machine learning have targeted 
monthly, seasonal or annual streamflow, often using variations of cor-
relation analysis for feature selection. Ren et al. (2018) justified selected 
features with expert knowledge and prior assumptions to assess climate- 
impact on monthly streamflow in China. Nilsson et al. (2008) used ca-
nonical correlation analysis to extract features for seasonal streamflow 
modelling with MLP in Scandinavia. Moradi et al. (2020) extracted 
relevant features using correlation analysis and PCA for annual 
streamflow modelling with MLP to a reservoir in the Middle East. The 
majority of the previous studies on monthly, seasonal or annual 
streamflow modelling have used monthly aggregations of atmospheric 
inputs. 

On finer temporal scales, few attempts can be found in the literature. 
Tisseuil et al. (2010) modelled daily mean flow and fortnightly flow 
statistics from 2.5◦ x 2.5◦ (~250 km × 250 km) gridded atmospheric 
reanalysis data and projected hydrological climate-impact under two 
scenarios with neural networks. Almost a decade later, Liao et al. (2019) 
employed only surface variables from 0.75◦ x 0.75◦ (~75 km × 75 km) 
gridded reanalysis data to model daily streamflow and assess the hy-
drological impact of climate change using climate model outputs. 
Overall, despite increasing spatiotemporal resolution of available 
reanalysis data, attempts at reconstructing daily streamflow from large- 
scale atmospheric circulation with machine learning remain sparse. 

Reichstein et al. (2019) identified five main challenges for successful 
application of deep learning in geosciences: i) interpretability (self- 
explanatory and transparent model structures that allow for causal 
discovery from observational data), ii) physical consistency (integration 
of domain knowledge), iii) complex and uncertain data (methods to cope 
with complex statistics and sources of uncertainty), iv) limited labels 
(methods to exploit data with unsupervised or semi-supervised learning) 
and v) computational demand (technical challenges of Big Data 
computing). However, recognizing the lack of non-autoregressive ma-
chine learning models for direct downscaling to daily streamflow in the 
literature, and embracing the fact that a model should be as simple as 
possible, but nevertheless reliable, this paper focuses on the two first 
points highlighted by Reichstein et al. (2019), namely interpretability and 
physical consistency, within the context of traditional machine learning 
techniques. Hence, a thorough investigation of deep learning is reserved 
for future studies. 

While other studies have focused primarily on monthly, seasonal or 
annual streamflow modelling, this study focuses on the identification of 
major drivers of daily streamflow among relevant atmospheric and 
surface variables in relation to distinct flood-generating processes. The 
objective of this paper is to identify major drivers and investigate the 
forcing-response relationship between large-scale atmospheric circula-
tion and daily streamflow with traditional machine learning techniques 
of increasing model complexity. Specifically, this paper answers the 
following research question: What are major drivers of daily streamflow 
in six selected Norwegian catchments with different climate types, flood- 
generating processes and catchment characteristics, and how does the 
direct translation from atmospheric forcing to streamflow response 
relate to model complexity? In other words, this paper provides a 
sampled screening of the potential of direct downscaling from large- 
scale atmospheric variables to streamflow at a daily temporal scale in 
Norway. The aim is to present a methodology for identification of major 
drivers of daily streamflow and assess the accuracy of reconstructed 
streamflow in relation to model complexity. Major drivers are identified 
using an automatic feature selection procedure that returns atmospheric 
variables deemed relevant at informative pressure levels and aggrega-
tions in the atmospheric column above the relevant catchment. Three 
popular traditional machine learning techniques with differing struc-
tural complexities are explored: the ensemble-based, piecewise linear 
random forest (RF); the nonlinear, kernel-based support vector machine 
(SVM) for regression; and multilayer perceptron (MLP) neural network. 
Multiple-linear regression is used as a baseline model for the 
comparisons. 

This paper is structured as follows. The remainder of Section 1 in-
troduces the case study (1.1). Section 2 presents materials and methods 
in subsections of data (2.1), feature selection (2.2), model development 
(2.3) and evaluation (2.4). Results are shown in Section 3. A discussion 
follows in Section 4, with three subsections focusing on model perfor-
mance (4.1), interpretability and physical consistency (4.2) and poten-
tial and limitations (4.3) respectively. Lastly, Section 5 provides 
concluding remarks and gives directions for future research. 

1.1. Case study 

With 1660 hydropower plants accounting for more than 95% of 
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installed capacity, there are numerous regulated rivers in Norway 
(Norwegian Ministry of Petroleum and Energy, 2015). However, when 
linking large-scale atmospheric circulation and river flow with machine 
learning, it is pivotal that unregulated rivers are used, so that signals 
from atmospheric forcing are less distorted by human activity. The 
Norwegian Hydrological Reference Dataset for Climate Impact Studies 
(Fleig et al., 2013) consists of daily records from 188 active and un-
regulated streamflow gauges deemed suitable for climate impact 
studies. From these 188 stations, 40 stations distributed over six regions 
of Norway were extracted as potential candidates for this study based on 
a filtering procedure considering record lengths, record gaps, flow 
duration curves and mean annual flows from 1950 and onwards. The 
resulting dataset contained four stations in Finnmark; five stations in 
Nordland; eight stations in Trøndelag; ten stations in Vestlandet; ten 
stations in Østlandet; and three stations in Sørlandet. Six representative 
stations (one for each region: Finnmark, Nordland, Trøndelag, 
Østlandet, Vestlandet, Sørlandet) were selected based on the correlation 
matrices for each region, on the grounds of having the overall highest 
correlation with other stations in the region. Fig. 1 shows the 
geographical location of the six selected hydrological stations at the 
catchment outlets and the corresponding annual mean flow normalized 
by catchment area. Important hydro-climatic characteristics for each 

catchment are given in Table 2. 
Station 234.18 is located in the Tana River Basin and is the north-

ernmost catchment considered in this study. This catchment has clearly 
the most pronounced snowmelt-driven flood regime. Station 152.4 
measures the outflow from Lake Fustvatn, which discharges further 
downstream into the fjord Vefsnfjorden through the river Fusta. Both 
rainfall and snowmelt contribute to flood generation in this catchment, 
although rainfall has a tendency to dominate over snowmelt due to the 
coastal climate. Station 308.1 measures the flow in Lake Lenglingen, 
which is part of a network of lakes in mid-inland Norway. The main 
flood-generating process is snowmelt in this catchment. Station 311.6 
measures the river flow at Nybergsund, which is part of a larger river 
system that ultimately discharges into Lake Vånern in Sweden. The main 
flood-generating process is snowmelt – albeit marginally, as mixed 
processes also play an important role. The station 83.2 is located in the 
coastal west, and the main flood-generating process is rainfall. The most 
distinct rainfall-driven flood regime is found in the southernmost 
catchment: Station 22.22 measures river flow in Søgne, which connects 
to the fjord Høllefjorden and eventually drains to the North Sea. 

The selected catchments differ with respect to size, climate types and 
flood-generating processes. The catchments in Vestlandet and Sørlandet 
are located in coastal regions with a temperate oceanic climate. 

Fig. 1. Overview of station locations and regions. The stations are scaled by mean annual flow divided by catchment area. Coordinate system: WGS84. Projection: 
UTM 33 N. Digital elevation data retrieved from: http://www.viewfinderpanoramas.org/Coverage map viewfinderpanoramas_org1.htm. 
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However, given the tilt of the mountain range near the western coast of 
Norway, winds carrying moisture eastward and northward have 
differing effects on the two catchments. All other catchments are located 
in areas with a subarctic climate, where both snowmelt and rainfall 
contribute to generation of high flows to various degrees. Similar 
characteristics are found for the selected catchments in Finnmark and 
Trøndelag. The catchment in Østlandet exhibits a distinctly different 
hydrological behavior, in which mixed processes play a larger role, 
although this station generally exhibits characteristics similar to the 
stations in Finnmark and Trøndelag. Likewise, the catchment in Nord-
land differs from the other catchments by being a high-latitude pre-
dominantly rainfall-driven catchment, with some contribution from 
snowmelt; in terms of hydrological behavior, this catchment resembles 
the catchments in Vestlandet and Sørlandet. In terms of catchment size, 
the smallest catchment (204 km2) is found in Sørlandet, and the largest 
catchment (14 161 km2) is found in Finnmark (see Table 2). 

2. Materials and methods 

2.1. Data 

2.1.1. Hydrological data 
The flow duration curves of the six selected stations are shown in 

Fig. 2. Mann-Kendall tests (Hussain and Mahmud, 2019) of maximum 
annual flows and average annual flows show no statistically significant 
monotonically increasing trends between 1979 and 2018 (see Table 3). 
Descriptive statistics are summarized Table 4. 

2.1.2. Atmospheric data 
Atmospheric data was retrieved from two reanalysis datasets of 

differing spatial resolution: a fine-resolution reanalysis dataset, ECMWF- 
ERA5 (Hersbach et al., 2020), and a coarser-resolution reanalysis 
dataset, ECMWF ERA Interim (hereby abbreviated ERAI) (Dee et al., 
2011). The column above each hydrological station was downloaded for 
a standard selection of variables at 20 pressure levels between 1000 hPa 
and 50 hPa. The atmospheric reanalysis data were aggregated to daily 
values by summing or averaging extensive and intensive variates, 
respectively. Table 5 provides an overview of the atmospheric reanalysis 
data and variates used for feature selection (see Table A1 in Appendix A 
for list of symbols). Table 6 shows the geographical coordinates of the 
atmospheric columns. 

2.2. Feature selection 

The hydrological and atmospheric data spans the period January 1, 
1979, to December 31, 2017. To ensure a testing set of five consecutive 
years and also reserve the maximum flows at each hydrological station 
for the training set, the data was split as shown in Fig. 3. Two years 
(1979–1981) were set aside for cross-validation to prevent overfitting. 
Five years (2009–2014) were reserved for testing. The remaining 31 
years were used for training. 

The simplest machine learning model considered in this study, 
random forest (RF), was first used to select features as identical input 
variable selections to all machine learning models as well as the baseline 
model. Feature selection was carried out on the training data with two 
loops of random forests based on the following assumptions: 

1. Streamflow is, albeit to various degrees, directly forced by large- 
scale atmospheric circulation as represented in the gridded pressure 
columns above the catchments; 

2. Aggregations and/ or lags of atmospheric variables can only in-
fluence present streamflow if aggregated backwards in time; 

3. Catchment response times and hydrological regimes vary from 
station to station even within a near-homogenous region. Therefore, 
each station requires a unique set of aggregated atmospheric inputs to 
establish a representation of catchment characteristics in the forcing- 
response relationship. Ta
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Both aggregations of atmospheric variables and lags between at-
mospheric variables and streamflow were systematically investigated 
using a range from two days to three months (88 days) backwards in 
time. First, an outer loop was used to build n random forest (RF) models, 
whereby n moving windows of i) cumulative sums and averages and ii) 
lags were fed to a RF consisting of 25 trees, roughly pruned by limiting 
the depth of each regression tree to 10. Following this, the weights per 
model were sorted and the top ten features from n = 88 models were fed 
to a new RF; this inner loop facilitates a fair comparison of the relative 
importance of different aggregations and lags across the n × 10 highest 
weighted features. This procedure was followed for each reanalysis 
dataset. 

Fig. 2. Flow duration curves with logarithmic scales.  

Table 3 
Mann-Kendall trend analysis (only shown for maximum annual flow) at 0.05 
significance level. z = normalized test statistic, s = Mann Kendall’s score, p = p- 
value of the significance test.   

Slope (m3/yr) z s p Trend 

234.18/ Finnmark − 5.46 − 0.60 − 51  0.55 No trend 
152.4/ Nordland 0.69 1.26 105  0.21 No trend 
308.1/ Trøndelag − 0.09 − 0.31 − 27  0.75 No trend 
311.6/ Østlandet − 0.85 − 0.47 − 40  0.64 No trend 
83.2/ Vestlandet − 0.11 − 0.24 − 21  0.81 No trend 
22.22/ Sørlandet 0.35 1.11 93  0.27 No trend  

Table 4 
Descriptive statistics of each hydrological station. The lag autocorrelations of 3, 7 and 10 days display the correlated lagged daily mean flows. The 98.5th percentile 
approximates the flood threshold.   

Minimum 
flow 

Maximum 
flow 

25th 
percentile 

50th 
percentile 

75th 
percentile 

98.5th 
percentile 

3 days lag auto- 
correlation 

7 days lag auto- 
correlation 

10 days lag auto- 
correlation 

Unit (m3/s) (-) 
234.18/ 

Finnmark 
27.2 3208.0  49.3  92.0  177.3  1144.3  0.88  0.70  0.58 

152.4/ 
Nordland 

0.80 290.2  3.8  22.7  49.6  132.7  0.80  0.55  0.44 

308.1/ 
Trøndelag 

0.20 188.3  2.3  6.2  15.7  87.2  0.91  0.74  0.64 

311.6/ 
Østlandet 

11.9 777.0  25.1  46.8  90.9  289.5  0.95  0.84  0.75 

83.2/ 
Vestlandet 

1.7 248.6  13.2  30.7  59.1  144.9  0.86  0.67  0.58 

22.22/ 
Sørlandet 

0.04 195.8  3.2  8.8  19.3  76.9  0.69  0.40  0.30  
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Table 7 displays the summed weights of the top 50 – 500 highest 
weighted features extracted from ERA5 for each hydrological station. 
Corresponding information on automated feature selection from ERAI is 
given in Table 8. As can be seen, the top 50 highest weighted features 
account for approximately 80% of the model input across the reanalysis 
datasets, with a cross-validation coefficient of determination (R2) 
ranging from 0.76 to 0.95. Based on this general pattern, the top 50 
highest weighted features were extracted as input variables for multiple- 
linear regression (MLR), random forest (RF), support vector machine 
(SVM) and multilayer perception (MLP) neural network. To aid visual 
interpretation, the top 30 highest weighted features extracted from 
ERA5 and ERAI for each hydrological station (accounting for ~ 80% of 
summed weights) are shown in Fig. 4. Interestingly, lagged variables led 

to a far lower out-of-the-bag R2 than did cumulative sums and averages 
(not shown). Consequently, only cumulative sums and averages – and 
not lagged variables – comprise the coarse-resolution and fine-resolution 
feature selection for each model at each hydrological station. 

As seen in Fig. 4, shortwave radiation (SW) and temperature variates 
(T) at the surface (t2m) and in the boundary layer (1000–850 hPa) are 
the most important variables, with some variation between ERA5 and 
ERAI, for the snowmelt-driven flood regime at station 234.18 in Finn-
mark. The two-month moving window of shortwave radiation from 
ERAI corresponds to the two-month moving window of temperature at 
950 hPa from ERA5 and may be interpreted as reflecting seasonality in 
the north. The one to three weeks moving windows of surface temper-
ature reflect melting. A similar consistency is seen for the snowmelt- 

Table 5 
Overview of atmospheric and surface variables from reanalysis data used in this study.  

Data Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Pressure levels (hPa) Atmospheric 
variables 

Surface variables 

ERA5 1979–2018 0.25◦ x 0.25◦ 1 h 50; 100; 150; 200; 250; 300; 350; 400; 450; 500; 550; 600; 
650; 700; 750; 800; 850; 900; 950; 1000 

RH, T, U, V, W, Z, Cloud, LW, Precip, SLP, SW, 
Tcv, Tcw, t2m, td2m, ERAI 1979–2018 0.75◦ x 0.75◦ 6 h  

Table 6 
Location of atmospheric columns retrieved from the reanalysis data.  

Atmospheric column 234.18/ Finnmark 152.4/ Nordland 308.1/ Trøndelag 311.6/ Østlandet 83.2/ Vestlandet 22.22/ Sørlandet 

ERA5 70.00◦N, 28.00◦E 66.00◦N, 13.25◦E 64.25◦N, 14.00◦E 61.25◦N, 12.25◦E 61.25◦N, 6.00◦E 58.00◦N, 7.75◦E 
ERAI 69.75◦N, 27.75◦E 66.00◦N, 13.50◦E 64.55◦N, 14.25◦E 61.50◦N, 12.00◦E 61.50◦N, 6.00◦E 57.75◦N, 7.50◦E  

Fig. 3. Splitting of data into training, cross-validation and testing sets.  

Table 7 
Summed weights of input from ERA5 as a function of the number of features sorted in order of decreasing importance. The corresponding out-of-the-bag coefficient of 
determination (R2) on unseen training data is given for 100% of the input.  

Number of features in order of decreasing weights Summed weights (%) from ERA5 variates 
234.18/ Finnmark 152.4/ Nordland 308.1/ Trøndelag 311.6/ Østlandet 83.2/ Vestlandet 22.22/ Sørlandet 

50  72.6  81.9  76.5  81.4  78.4  66.9 
100  82.8  86.5  85.0  86.7  85.2  76.1 
150  87.8  89.2  88.6  89.8  88.7  81.1 
300  95.0  94.1  94.6  95.1  94.4  90.6 
500  98.4  97.6  98.1  98.2  98.0  96.5 
Out-of-the-bag R2  0.92  0.87  0.93  0.95  0.89  0.76  
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driven flood regime at station 308.1 in Trøndelag and station 311.6 in 
Østlandet. The persistence of near-surface temperature and vertical 
wind variates in aggregation windows of one to two months is evident 
for all stations where snowmelt is the main flood-generating process; 
this may be interpreted as snow accumulation, for which precipitation 
(moisture and uplift in the boundary layer) and persistent temperatures 
around 0 ◦C are needed. At longer aggregations, mid-level troposphere 
temperatures and relative humidity are also important. This may link to 
troposphere-stratosphere interactions and effects on the Jet Stream at 
60 N, but conclusive statements upon this cannot be drawn. 

For the rainfall-driven flood regime at station 152.4 in Nordland, 
shorter moving windows of moisture variates, dew point temperature 
and eastward winds between 700 hPa and 950 hPa are of importance. 
This distinct difference relative to the snowmelt-driven flood regimes is 
confirmed by the extracted features for station 83.2 in Vestlandet and 
22.22 in Sørlandet. The seasonality in these rainfall-driven flood regimes 
is represented through moisture and wind variates, as opposed tem-
perature variates in the case of snowmelt-driven flood regimes, reflect-
ing the coastal influence on temperature and the seasonal variation in 
winds. Moreover, the dominant aggregation period in rainfall-driven 
flood regimes does not extend beyond roughly three weeks. 

In essence, these feature selections reflect that the contribution of 
snowmelt to streamflow generation requires temperatures around or 
below the freezing point throughout the winter season (t2m), followed 
by an increase in incoming short-wave radiation (SW) and consistent 
corresponding shifts in the temperature profile in the spring (T). The 
contribution of rainfall to streamflow generation, on the other hand, is 
linked with the presence and transport (U, V) of moisture sources (Tcv, 
Tcw, RH, td2m), as well as uplift (W) in the boundary layer (1000 – 850 
hPa). 

The features extracted for station 22.22 in Sørlandet are less 
consistent between the two reanalysis datasets for periods longer than 
roughly two weeks. It should be mentioned that where orographic 
rainfall occurs, the local variability in rainfall can be triggered by sub- 
grid orographic features. The role of catchment characteristics is only 
implicitly embedded in the statistical linking of the atmosphere and the 
hydrological regimes. Sub-grid orographic features will be more pro-
nounced in smaller, steeper catchments, and this in term is less likely to 
be revealed in the established statistical links at daily level. The feature 
selection using nested loops of random forests was intentionally mild to 
minimize the early rejection of possibly useful predictors. 

2.3. Model development 

2.3.1. Preprocessing of model inputs 
The atmospheric data were scaled by removing the median of each 

feature and dividing by the interquartile range (25th to 75th percen-
tiles). This standardization is more appropriate in the presence of out-
liers; the resulting input data has zero mean, zero median and a standard 
deviation of 1, while outliers are preserved without skewing the distri-
bution. Since the hydrological data is skewed, heteroscedastic and 
strictly positive, a Box-Cox transformation was applied before splitting 
into training, cross-validation and testing sets. 

2.3.2. Baseline 
The baseline model in this study is a multiple-linear regression 

(MLR) model. The preprocessed selected features (top 50 highest 
weighted features) for each hydrological station subject to trans-
formation were used to construct a MLR model for each of the two 
reanalysis datasets. 

2.3.3. Random forest 
A random forest (RF) consists of n numbers of regression trees from 

which the average prediction for a given set of inputs is returned. The 
regression trees collectively work as an ensemble of piecewise linear 
models, where instances are sorted until a leaf with a linear regression 
model is reached. This structure makes RF less sensitive to parameters 
and hence relatively robust. For each hydrological station, an RF was 
trained on the preprocessed selected features from the atmospheric 
column above the relevant station. Pruning was carried out by limiting 
the depth and increasing the number of samples required for splitting 
into nodes and leaves with the use of cross-validation. All the RF models 
were built using bootstrap samples, so that samples, as opposed to the 
full dataset, of the extracted features were used to train each individual 
regression tree. The mean-square error was used as the loss function. The 
models were implemented in Python using RandomForestRegressor in 
sklearn (Pedregosa et al., 2011). 

2.3.4. Support vector machine 
Although originally developed for classification problems, support 

vector machine (SVM) (Cortes and Vapnik, 1995) is also applicable to 
regression problems. The idea behind this algorithm is to maximize the 
margins to an n-1 dimensional hyperplane for an n-dimensional dataset, 
so that the distance between the closest vectors – or support vectors – 
and the hyperplane is maximized. To maximize this distance, a loss 
function is used, whereby smaller distances between the support vectors 
and the hyperplane are costlier than larger distances. For regression 
problems, this hyperplane is a regression curve defined by the support 
vectors. Kernels such as a radial basis function may be used to handle 
non-linearity if data is not linearly separable after standardization and 
mapping to a higher dimensional space. In essence, the kernel then 
behaves as a weighted k nearest neighbor algorithm for unseen data in 
infinite dimensions, in which closer observations have a larger influence 
on the prediction of unseen data. 

For each hydrological station, an SVM was trained on the pre-
processed selected features from the atmospheric column above the 
relevant station. Two parameters in the SVM model were tuned with the 
use of cross-validation. These parameters respectively control i) the 
strength of L2 regularization, and ii) the epsilon-tube, denoting the 
difference between the predicted and observed value for which no 
penalty occurs during training. The SVM models were implemented with 
a radial basis function in Python using SVR in sklearn (Pedregosa et al., 
2011). 

2.3.5. Multilayer perceptron 
Multilayer perceptron (MLP) is a feed-forward neural network. In-

puts propagate through the hidden layers by means of activation func-
tions. Each hidden node is associated with a bias and weights per input, 

Table 8 
Summed weights of input from ERAI as a function of the number of features sorted in order of decreasing importance. The corresponding out-of-the-bag coefficient of 
determination (R2) on unseen training data is given for 100% of the input.  

Number of features in order of decreasing weights Summed weights (%) from ERAI variates 
234.18/ Finnmark 152.4/ Nordland 308.1/ Trøndelag 311.6/ Østlandet 83.2/ Vestlandet 22.22/ Sørlandet 

50  76.4  78.6  76.3  81.2  81.7  71.9 
100  84.0  85.1  85.0  87.2  87.1  82.5 
150  88.4  88.6  89.1  90.2  90.0  87.3 
300  94.9  94.1  94.6  95.2  94.7  93.8 
500  98.4  97.8  98.1  98.4  97.9  97.8 
Out-of-the-bag R2  0.92  0.87  0.93  0.95  0.89  0.82  
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Fig. 4. Selected features from ERA5 (black crosses) and ERAI (colored markers) in order of decreasing importance (see Table A1 in Appendix A for list of symbols). 
The relative importance of features is reflected by marker size. Shaded areas show pronounced aggregation windows. 
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and the activation function transfers the signal until the output layer is 
reached. To avoid saturation of neurons, the inputs should be stan-
dardized and normalized. To avoid overfitting, regularization methods 
such as dropout or weight decay can be applied. 

For each hydrological station, an MLP was trained on the pre-
processed selected features using stochastic gradient decent. Hyperbolic 
tangent activation functions and rectified linear units were used in the 
hidden layers along with L2 regularization. MLP differs from RF and 
SVM by being more complex, less transparent due to randomized noise 
in the hidden layers, and more sensitive to parameters. Parameters were 
tuned using the cross-validation set. In addition to the use of cross- 
validation for parameter tuning, early stopping was employed; when 
the loss on an arbitrary 10% of the training data stopped decreasing 
above a threshold value (0.0005–0.5), training was stopped. With one to 
three hidden layers per model, the MLP models constructed may be 
referred to as shallow neural networks. The models were implemented 
in Python using MLPRegressor in sklearn (Pedregosa et al., 2011). 

2.3.6. Model complexity 
In the context of machine learning, the term “model complexity” is 

often used to reflect the dimensionality of the space of possible models, 
expressed as the number of degrees of freedom measured by the 
adjustable hyper-parameters. As each of the models described above was 
developed for each station and dataset with a unique set of hyper- 
parameters and inputs, a conceptual classification of relative model 
complexity based on general model characteristics shared between 
models employing the same algorithm was used to assess the improve-
ments to accuracy with increasing model complexity (see Table 9). This 
allows for a separation between model performance resulting from 
strong and near-linear coupling between the large-scale atmospheric 
circulation and the catchment (small inter-model differences) and model 
performance resulting from the structural complexity in which non- 
linearity is handled (consistently larger inter-model differences). The 
word “reconstruct” is used to refer to this translation from large-scale 
atmospheric circulation to streamflow using major identified drivers 
only; it should not be confused with prediction, in which catchment 
characteristics will also contribute as explicit model inputs. An illus-
trative flowchart of the methodology is provided in Fig. 5. 

2.4. Evaluation 

Four metrics commonly applied for evaluation of hydrological 
models were used to assess the performance of the machine learning 
models: Pearson’s r (R) (Equation (1)), normalized root-mean-square error 
(NRMSE) (Equation (2)), Nash-Sutcliffe Efficiency (NSE) (Equation (3)), 
and Kling-Gupta Efficiency (KGE) (Equation (4)). Pearson’s r measures the 
strength of a positive or negative linear relationship between the 
reconstructed and observed flows. However, it does not distinguish 
systematic errors; therefore, the root-mean-square error normalized by 
mean flow was used to indicate discrepancies in flow magnitudes be-
tween reconstructed and observed flows. Nash-Sutcliffe Efficiency (Nash 
and Sutcliffe, 1970) is useful to assess model performance in relation to a 
‘mean-flow benchmark’, whereby positive values indicate accuracy 
above estimating a particular value in the data series as the mean of all 
data points. Lastly, the Kling-Gupta Efficiency is a decomposition of the 
NSE into correlation, variability bias and mean bias and is intended to 
improve certain shortcomings (Gupta et al., 2009); hence, KGE has 
gained popularity for model evaluation in the hydrological community. 
However, KGE does not have the intuitive mean flow benchmark (NSE 
= 0). In fact, using the mean flow as benchmark predictor results in 
KGE = 1 −

̅̅̅
2

√
≈ − 0.41 (Knoben et al., 2019). Therefore, KGE cannot be 

regarded a substitute for NSE nor can it be directly compared; rather all 
aforementioned components of KGE should be considered, and a con-
current use of KGE and NSE may constitute a better foundation for 
model evaluation. In the equations below, n denotes the sample size, 

Qrec is the reconstructed flow, Qobs is the observed flow, R2 is the co-
efficient of determination, σ is the standard deviation, and overbars 
indicate arithmetic means. Box-Cox back-transformation was performed 
before the models were assessed with R, NRMSE, NSE and KGE. 

R =

∑n
i=1(Qobsi)(Qreci)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1
(Qobsi)

2∑n

i=1
(Qreci)

2
√ (1)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Qreci − Qobsi)
2

n

√

*
1

Qobs
− (2)  

NSE = 1 −
∑n

i=1(Qreci − Qobsi)
2

∑n
i=1

(
Qobsi − Qobs

− )2 (3)  

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(R2 − 1)2
+

(
σQprec

σQobs
− 1
)2

+

(
Qrec

−

Qobs
− − 1

)2
√
√
√
√ (4)  

3. Results 

Fig. 6 shows the flow duration curves of observed and reconstructed 
flows in the testing period (2009–2014). Time series of the corre-
sponding daily flows are shown for multiple linear regression (MLR), 
random forest (RF), support vector machine (SVM), and multilayer 
perceptron (MLP) separately in Fig. 7, Fig. 8, Fig. 9 and Fig. 10 
respectively. At first glance, the flow duration curves seem similar. 
However, flows below exceedance probabilities of 10% and above 90% 
are consistently smaller and larger than the observed flows for MLR. This 
is not observed for the machine learning models. A closer look at the 
time series of daily streamflow as reconstructed from the identified 
major drivers reveal that MLR fails to capture peaks and only gives a 
rough representation of the seasonal variation in streamflow. 

While the baseline model, MLR, clearly is outperformed by the ma-
chine learning models, both at high flows and low flows, some differ-
ences in relation to model complexity and hydrological regimes are also 
evident. The simpler model, RF, captures the seasonal behavior in 
snowmelt-driven flood regimes (234.18, 308.1 and 311.6), but tends to 
underestimate the magnitude of the annual peaks. SVM, on the other 
hand, captures the timing of these peaks better, but does so at the 
expense of some overestimation, particularly the annual peak in 2010 in 
Finnmark. The most accurate and timely reconstruction of streamflow 
that clearly distinguishes between high flows and low flows is obtained 
with MLP. 

RF also fails to capture the magnitude of the larger peaks at stations 
152.4, 83.2 and 22.22. Comparing the peaks in these rainfall-driven 

Table 9 
Overview of model characteristics and complexity classification.  

Model Model type Model 
structure 

Hyper-parameters Model 
complexity 
(discretized) 

MLR Parametric Linear – Naïve(0) 
RF Non- 

parametric 
Piece-wise 
linear 
ensemble 
averaging 

Number of trees, 
pruning criteria (e.g. 
maximum depth or 
number of samples 
per node or leaf) 

Simple(1) 

SVR Non- 
parametric 

Nonlinear 
kernel 

Epsilon-tube, L2- 
penalty, tolerance 

Intermediate 
(2) 

MLP Non- 
parametric 

Nonlinear 
hidden layers 

Number of hidden 
layers, activation 
function, solver, L2- 
penalty, learning rate, 
momentum, number 
of iterations, tolerance 

Complex(3)  
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Fig. 5. Workflow of feature selection and model development.  
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Fig. 6. Flow duration curves of observed (black) and predicted flows by MLR (red), RF (blue), SVM (yellow) and MLP (green) using extracted features from ERA5 
(left) and ERAI (right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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flood regimes as reconstructed from the identified major drivers by RF, 
SVM and MLP, it is evident that increasing model complexity leads to 
more distinct peaks. Furthermore, a more accurate separation of high 
flows and low flows is obtained with MLP. 

For the identification of major large-scale atmospheric drivers of 
daily streamflow, ERA5 is not consistently favored over ERAI. However, 
effects related to the scale of the atmospheric input relative to the size of 
a given catchment was not specifically investigated in this analysis. 
Nevertheless, differences in reconstructed flows for each station may be 
viewed in relation to the consistency between identified drivers from the 
two reanalysis datasets. This is most apparent for station 22.22, where 
identified drivers beyond two weeks are scattered in space and time 
across ERA5 and ERAI (see Fig. 4, Section 2.2). In the case of station 
311.6, where mixed processes also contribute to the generation of high 
flows, the reconstructed streamflow is consistently higher with ERA5, 
and the inter-model differences between RF, SVM and MLP are generally 
smaller than for the other stations. 

Metrics for training and testing of MLR, RF, SVM and MLP are given 
per station in Tables 10 – 15. The best scores on the testing sets are 
highlighted in bold. The poorest performance is seen for station 22.22; 
only MLP captures some of the streamflow dynamics at this station – and 
to a larger extent with the coarser reanalysis data (ERAI). 

Scatter plots comparing the performance of RF, SVM and MLP 
against the baseline model on the testing set are provided in Fig. 11. The 

corresponding score ranges obtained using identified drivers of daily 
streamflow are displayed for each metric in Fig. 12. In summary, the 
highest performance in terms of correlation (R), normalized root-mean- 
square error (NRMSE), Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 
Efficiency (KGE) is obtained with MLP. Furthermore, the lowest drop on 
the aforementioned metrics from training to testing is also obtained with 
MLP. It should be emphasized that the scores obtained with simpler 
metrics (R and NRMSE) on the testing set at times differ marginally 
between the machine learning models; however, when summarizing the 
highest scores on the more sophisticated metrics (NSE and KGE) from 
Tables 10-15, the more complex models (SVM and MLP) perform 
consistently better. 

4. Discussion 

4.1. Model performance 

The direct translation from identified major drivers to daily 
streamflow was most accurately made with the most complex model 
(MLP), with a Nash-Sutcliffe Efficiency (NSE) on the testing set ranging 
from 0.71 to 0.81 on all stations except for station 22.22, representing 
the smallest catchment. Although all models performed substantially 
worse on station 22.22, MLP still obtained the highest NSE there as well 
(0.59). Patterns of increasing accuracy with model complexity were 

Fig. 7. Observed (blue) and reconstructed flows from identified drivers by baseline model (MLR) using data from ERA5 (orange) and ERAI (purple). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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found, indicating that structural complexity is needed to exploit infor-
mation in the identified major drivers – although the machine learning 
models showed marginal differences on simpler metrics like correlation. 
From the results, it is clear that a simple multiple-linear regression 
(MLR) is unsuitable for direct downscaling from large-scale atmospheric 
variables to daily streamflow. This is in alignment with previous find-
ings (Cannon and Whitfield, 2002) and does not require further elabo-
ration here. 

The drops in NSE from training to testing provide an indication of the 
robustness of the machine learning models, MLP had an average drop of 
0.03 with ERA5 and less than 0.01 with ERAI. A slightly larger drop in 
NSE (0.04 – 0.05) was observed for SVM and the largest drop (0.11) was 
observed for RF, mostly due to the inability to generalize for station 
22.22. These drops inversely reflect the robustness of the models. In 
other words, the most accurate model, MLP, is also the most robust 
model. This may seem counter-intuitive, as MLP is more sensitive to 
parameters than RF, but nevertheless supports conclusions from previ-
ous studies, showing that there are limitations to linear models when 
applied to nonlinear systems with complex interactions between inputs 
and outputs (Cannon and Whitfield, 2002). In essence, a shallow neural 
network may generalize well when parameters are tuned optimal or 
near-optimal with the use of cross-validation. The fact that the drop in 
NSE was somewhat larger with the fine-resolution reanalysis data 
(0.25◦) may be an artifact of scale issues. Nogueira (2020) assessed the 

differences in spatiotemporal resolution and convective and micro-
physical parameterizations between ERA5 and ERAI by relating sys-
tematic and random components of the differences in rainfall against the 
differences in temperature, water vapor, evaporation, moisture flux 
divergence and pressure vertical velocity. The study concluded that the 
spatial and temporal representation of rainfall, as well as other vari-
ables, in ERA5 and ERAI have similar error and bias except in the tro-
pics, where ERA5 provides improvements due to the increased quantity 
and quality of assimilated observations. In other words, ERAI may be 
preferred to ERA5 for the specific use and purpose of this study when 
only a single atmospheric column is to be considered. 

The substantially lower model performance at station 22.22 in 
Sørlandet must be viewed from a catchment perspective. Station 22.22 is 
located in a catchment that differs from the other catchments in a 
number of ways. Firstly, it is the smallest catchment of the six consid-
ered, has the second largest annual flow normalized by catchment area 
and the lowest lag autocorrelation as compared to the other stations. 
This indicates a rapidly responding system. Needless to say, the role of 
atmospheric forcing on finer spatiotemporal scales may therefore be of 
greater importance here than for the other stations. Secondly, it has the 
most dominantly rainfall-driven flood regime. Sivakumar et al. (2001) 
identified the possible existence of chaos in rainfall-runoff processes; 
this in turn complicates streamflow reconstruction in rainfall-driven 
flood regimes. Thirdly, both feature selections from ERA5 and ERAI 

Fig. 8. Observed (blue) and reconstructed flows from identified drivers by RF using data from ERA5 (orange) and ERAI (purple). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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show the lowest dominant aggregation period for this station, with the 
largest disagreement on aggregated atmospheric variables beyond 
roughly two weeks. This indicates that coupling between the large-scale 
atmospheric circulation and the catchment not only occurs on a shorter 
time-scales, but also that catchment characteristics, like slope, perme-
ability, land use and antecedent soil moisture; sub-grid features, like 
topography; and local variability may play an equally, or more, 
important role in streamflow generation at the temporal resolution of 
one day. A traditional hydrological modelling approach could be used to 
investigate the relative importance of local variability, sub-grid topog-
raphy and catchment characteristics in depth. 

For prediction tasks, catchment characteristics must undoubtedly be 
included for all stations; however, the relative improvements in accu-
racy with the inclusion of catchment characteristics can be expected to 
be higher for station 22.22. This, in turn, may from a hydrological 
climate-impact perspective, point to the potential of direct downscaling 
with shallow neural networks in catchments where forcing from large- 
scale atmospheric circulation dominates local variability, sub-grid fea-
tures and catchment characteristics in daily streamflow generation to 
the degree that an NSE in the range of 0.7 – 0.8 can be obtained on daily 
testing data spanning five consecutive years. As such, the methodology 
presented in this paper may be used to filter out suitable catchments for 
direct downscaling in the context of hydrological climate-impact 
modelling. Among the six catchments considered, the smallest inter- 

model difference in performance was observed for station 311.6 in 
Østlandet, while the overall intra-model performance was consistent for 
all but station 22.22 in Sørlandet. Station 311.6 would therefore be most 
suitable for direct downscaling, while station 22.22 would not be suit-
able without complementary modelling using more physically-based 
approaches. 

The inability to reconstruct the magnitude of annual peak flows 
accurately, with a tendency towards underestimation by RF, over-
estimation by SVM and a modest combination of both by MLP, is 
partially a reflection of the loss functions used to optimize the models 
(mean-flow metrics) and may hence improve with customized loss 
functions particularly penalizing error on high flows. While a complex 
model structure should not be used to compensate for an inadequate 
selection of input variables, a thorough investigation with deep learning 
should be undertaken, in which variates selected based on i) expert 
knowledge/ prior assumptions, ii) identified major drivers from an 
automated feature selection procedure as presented in this paper and iii) 
all available data respectively are investigated in relation to increasing 
model complexity. Additionally, some catchments are influenced by 
complex catchment characteristics that lag or amplify the catchment 
response dynamically in space and time; for such catchments, complex 
statistics are required to infer a forcing-response relationship from the 
atmosphere, and the direct linking between large-scale atmospheric 
circulation and daily streamflow with traditional machine learning 

Fig. 9. Observed (blue) and reconstructed flows from identified drivers by SVM using data from ERA5 (orange) and ERAI (purple). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Observed (blue) and reconstructed flows from identified drivers by MLP using data from ERA5 (orange) and ERAI (purple). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 10 
Training and testing metrics for station 234.18 in Finnmark.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.37 0.32 0.42 0.29 1.42 1.29 1.37 1.29 − 1.83 − 1.86 − 4.34 − 5.44 − 0.20 − 0.20 − 0.64 − 0.77 
RF 0.92 0.86 0.88 0.83 0.65 0.68 0.77 0.75 0.63 0.59 0.42 0.38 0.61 0.72 0.50 0.57 
SVM 0.88 0.84 0.79 0.79 0.71 0.78 0.93 0.82 0.70 0.69 0.53 0.52 0.81 0.82 0.76 0.76 
MLP 0.90 0.87 0.89 0.89 0.63 0.64 0.67 0.61 0.75 0.71 0.73 0.75 0.81 0.83 0.82 0.86  

Table 11 
Training and testing metrics for station 152.4 in Nordland.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.65 0.57 0.71 0.67 0.88 0.95 0.84 0.89 − 0.37 − 0.87 0.37 0.23 0.35 0.20 0.67 0.63 
RF 0.87 0.84 0.88 0.84 0.57 0.64 0.57 0.64 0.55 0.41 0.57 0.46 0.64 0.59 0.65 0.63 
SVM 0.89 0.86 0.88 0.83 0.55 0.60 0.54 0.64 0.62 0.57 0.68 0.61 0.68 0.71 0.76 0.79 
MLP 0.90 0.88 0.90 0.86 0.49 0.55 0.48 0.60 0.75 0.71 0.76 0.73 0.82 0.82 0.83 0.86  

J.S. Hagen et al.                                                                                                                                                                                                                                 



Journal of Hydrology 596 (2021) 126086

17

techniques is unsuitable. To separate atmospheric forcing from anthro-
pogenic forcing, the selected catchments should not be heavily devel-
oped, regulated or otherwise strongly influenced by human activity. 

4.2. Interpretability and physical consistency 

The automated feature selection procedure presented in this paper 
differs from methods used in previous studies (see Table 1, Section 1). In 
contrast with [canonical] correlation analysis, stepwise predictor se-
lection, maximal information coefficient or simply prior assumptions, 
this study has used the weights assigned by roughly pruned, boot-
strapped random forests to extract relevant features. Furthermore, 
dimensionality reduction was not carried out; rather, the resulting 
feature selections comprised aggregated variables from two-daily to 
three-monthly moving windows. Consequently, the feature selections 
retain both cross-correlations and autocorrelations within the data, and 
this translates into information in the most complex model, MLP. The 
setup using two different atmospheric reanalysis datasets provides a 
validation of the feature selection procedure. Although some variability 
was seen between the extracted features from ERA5 and ERAI, the 

general patterns of the extracted temperature variates and shortwave 
radiation for station 234.18 in Finnmark, station 308.1 in Trøndelag and 
station 311.6 in Østlandet were consistent and interpretable for 
snowmelt-driven flood regimes. Likewise, the importance of shorter 
moving windows of moisture variates, dew point temperature and 
boundary layer winds was consistent for the rainfall-driven flood re-
gimes at station 152.4 in Nordland, station 83.2 in Vestlandet and sta-
tion 22.22 in Sørlandet. Seasonality was represented with aggregations 
of temperature variates for snowmelt-driven flood regimes and moisture 
and wind variates for rainfall-driven flood regimes at two to three 
months. 

The inconsistency in features extracted for station 22.22 in Sørlandet 
beyond two weeks may, as mentioned above, indicate the relative 
importance of catchment characteristics or the inability of the selected 
traditional machine learning techniques to treat complex statistics. 
Furthermore, all atmospheric reanalysis datasets contain biases. When 
biases across two reanalysis datasets differ, the resulting feature selec-
tions will differ accordingly. Moreover, the feature selection procedure 
with looped random forests assumed the same pruning depth for all 
regression trees and a constant retrieval of ten candidate variables per 

Table 12 
Training and testing metrics for station 308.1 in Trøndelag.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.55 0.52 0.56 0.51 1.16 1.16 1.16 1.20 − 2.82 − 2.76 − 3.83 .-5.49 − 0.39 − 0.35 − 0.63 − 0.93 
RF 0.88 0.88 0.88 0.86 0.66 0.68 0.67 0.69 0.55 0.55 0.55 0.56 0.60 0.60 0.61 0.65 
SVM 0.91 0.88 0.90 0.88 0.57 0.64 0.59 0.63 0.73 0.74 0.74 0.75 0.75 0.83 0.78 0.83 
MLP 0.92 0.90 0.92 0.90 0.52 0.57 0.54 0.57 0.80 0.78 0.79 0.79 0.82 0.85 0.82 0.87  

Table 13 
Training and testing metrics for station 311.6 in Østlandet.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.54 0.68 0.54 0.65 0.71 0.56 0.71 0.59 − 2.25 − 0.90 − 1.92 − 0.82 − 0.20 0.17 − 0.10 0.22 
RF 0.93 0.90 0.90 0.86 0.32 0.32 0.37 0.38 0.77 0.76 0.68 0.62 0.76 0.84 0.72 0.74 
SVM 0.92 0.88 0.90 0.88 0.33 0.36 0.38 0.38 0.78 0.77 0.66 0.56 0.80 0.85 0.69 0.67 
MLP 0.93 0.90 0.92 0.91 0.30 0.33 0.34 0.31 0.83 0.81 0.77 0.76 0.85 0.87 0.80 0.82  

Table 14 
Training and testing metrics for station 83.2 in Vestlandet.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.75 0.78 0.75 0.77 0.56 0.53 0.56 0.55 0.11 0.24 0.09 0.16 0.51 0.56 0.50 0.52 
RF 0.85 0.85 0.88 0.86 0.46 0.46 0.42 0.43 0.45 0.44 0.59 0.56 0.61 0.60 0.68 0.69 
SVM 0.91 0.90 0.91 0.89 0.35 0.37 0.35 0.38 0.76 0.75 0.75 0.74 0.79 0.84 0.77 0.83 
MLP 0.91 0.90 0.91 0.90 0.36 0.37 0.35 0.36 0.76 0.76 0.78 0.78 0.81 0.84 0.82 0.86  

Table 15 
Training and testing metrics for station 22.22 in Sørlandet.  

Model R NRMSE NSE KGE 

ERA5 ERAI ERA5 ERAI ERA5 ERAI ERA5 ERAI 

train test train test train test train test train test train test train test train test 

MLR 0.57 0.56 0.63 0.67 1.00 0.99 0.97 0.90 − 0.90 − 1.25 − 0.04 − 0.49 0.18 0.07 0.49 0.25 
RF 0.86 0.77 0.84 0.79 0.66 0.77 0.65 0.71 0.32 − 0.15 0.53 0.43 0.47 0.32 0.68 0.68 
SVM 0.83 0.78 0.88 0.86 0.69 0.73 0.58 0.60 0.35 0.32 0.62 0.56 0.55 0.60 0.69 0.67 
MLP 0.85 0.81 0.87 0.85 0.63 0.68 0.61 0.61 0.55 0.50 0.60 0.59 0.68 0.72 0.71 0.72  
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moving window; this number could be considered a function of catch-
ment size, dominant streamflow-generating mechanism and annual 
flow, giving larger candidate retrieval per moving window in smaller, 
rainfall-driven, fast-responding catchments. 

It should be emphasized that the method directly linking large-scale 
atmospheric variables to streamflow on daily level presented in this 
paper is not intended as a replacement for traditional hydrological 
modelling tools. This study has identified major large-scale atmospheric 
drivers using traditional machine learning techniques. For streamflow 
prediction, the importance of catchment characteristics and their role in 
transforming atmospheric inputs into a spatial and temporal pattern of 
streamflow cannot be overstated. However, the possibility of establish-
ing such direct links between the atmosphere and the hydrological re-
gimes on a daily level unlocks opportunities for direct downscaling to 
daily streamflow from climate model outputs. This will provide a deeper 
understanding of how climatic changes in large-scale atmospheric cir-
culation can drive changes in streamflow at the catchment scale. As 
such, machine learning techniques can supplement conventional 

hydrological models by providing a complementary approach to inter-
preting potential future changes – directly from global circulation 
models. Thus, a complementary approach that shortens the state-of the- 
art modelling chain – with downscaling, bias-correction and hydrolog-
ical modelling – will allow for evaluation of a larger ensemble of models 
and hence provide better uncertainty estimates, as well as avoid some of 
the potential errors and biases introduced in the modelling chain. As a 
result, a stronger physical basis for explaining patterns of non- 
stationarity in the current and past climate may be obtained and thus 
further be used to distinguish natural variability from climate change- 
induced trends. 

4.3. Potential and limitations 

Snowmelt-driven floods in Norway are decreasing in magnitude and 
frequency (Vormoor et al., 2016). This trend is expected to continue into 
the future, as rising temperatures lead to less snow accumulation 
(Hanssen-Bauer et al., 2017; Lawrence, 2020), also causing a shift in the 

Fig. 11. Scatter plots of observed versus reconstructed flows by MLR (red crosses), RF (blue triangles), SVM (yellow squares) and MLP (green circles) using identified 
drivers . The black dashed line is the 45◦ line corresponding to a perfect model. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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timing of spring floods. As snowmelt-driven floods decrease, a transient 
change towards predominantly rainfall-driven streamflow generation 
also in northern or mountainous areas can be expected. However, this 
transition need not be linear or monotonic due to the competing effects 
of increases in winter precipitation versus temperature. While none of 
the hydrological stations used in this study showed statistically signifi-
cant trends, several hydrological stations in Europe have shown both 
statistically significant increases and decreases (Blöschl et al., 2019); 
future applications of the methodology presented in this paper may 
therefore need to include learning of trends as a minimum requirement 
to cope with non-stationarity. 

In the current model setup, only one atmospheric column per station 
was considered representative of the relevant large-scale atmospheric 
circulation. A more elaborate approach may involve a grid search with 
the use of meta-heuristics, resulting in more than one representative 
atmospheric column per station and hence a more spatially distributed 

identification of major drivers. This may be particularly useful in large 
catchments with contrasting characteristics, in which daily streamflow 
results from several distinct and independent drivers that may form 
compound events. An example of this would be partly mountainous 
catchments with low-lying valleys where rivers directly connect to the 
sea so that drainage is affected by pressure. While climate indices may – 
complementary to large-scale atmospheric variables – feed as model 
input to identify major drivers, care should be taken, as robust repre-
sentation of large-scale atmospheric circulation is needed also in a 
changing climate. 

Despite the fact that existing discipline knowledge may be used to 
assess the consistency and interpretability of feature selections as 
employed in this study, a clear separation of correlation and causation 
cannot be inferred from the model structures. This becomes increasingly 
problematic as the model complexity increases. Furthermore, ensuring 
that the maximum peaks were included in the training data facilitated a 

Fig. 12. Range of scores obtained on the four metrics, Pearson’s r (R), normalized root-mean-square error (NRMSE), Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta 
Efficiency (KGE) on the testing set. The spread gives a measure of the consistency between scores obtained with ERA5 and ERAI by MLR (red crosses), RF (blue 
triangles), SVM (yellow squares) and MLP (green circles) on the testing set. The scores obtained during training are displayed with black marker outlines. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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fair comparison of the generalization obtained by the three machine 
learning models. In other words, extrapolation techniques in each al-
gorithm were not explicitly addressed in this study, but should be given 
attention in future studies. 

The findings of this paper demonstrate the potential for direct 
downscaling from large-scale atmospheric variables to daily streamflow 
with shallow neural networks. This calls for an investigation of gain in 
accuracy with deep neural networks. Despite a growing interest in the 
scientific community, deep learning is largely unexplored in the field of 
hydrology (Ardabili et al., 2020), and the number of available algo-
rithms and model structures are increasing – particularly through hy-
bridization. As transparency tends to decrease reciprocally with model 
complexity, a robust collection of benchmark studies with traditional 
machine learning techniques is needed. With a sample of six hydrolog-
ical stations from catchments with low anthropogenic influence, the 
generalization of the findings of this paper is limited. This calls for 
further benchmark studies involving more hydrological stations; for the 
case of Norway, the additional 34 regionally filtered stations from the 
Norwegian Hydrological Reference Dataset for Climate Impact Studies 
(Fleig, 2013) may be tested with the methodology presented here. As 
such, this paper provides a step towards a collection of robust bench-
marks for deep learning models in the context of daily streamflow 
reconstruction and statistical downscaling from large-scale atmospheric 
variables in Norway. 

5. Conclusion 

This paper identified major drivers of daily streamflow in snowmelt- 
driven and rainfall-driven flood regimes in Norway from large-scale 
atmospheric variables in two reanalysis datasets of fine (0.25◦) and 
coarse (0.75◦) spatial resolution. Consistency between the feature se-
lections from the two reanalysis datasets was confirmed. The translation 
from large-scale atmospheric forcing to daily streamflow using the 
identified drivers was investigated in relation to model complexity with 
three machine learning models: random forest (RF), support vector 
machine (SVM) for regression and multilayer perceptron (MLP). A 
sampled screening of six hydrological stations located in catchments 
with a low degree of anthropogenic influence was presented. This paper 
provides a first step towards applying machine learning for direct 
downscaling from large-scale atmospheric circulation on a daily tem-
poral scale in Norway and may hence serve as a benchmark for later 
developments of deep learning models. 

In answering the research question posed introductorily, the 
following is concluded: 

Major drivers of daily streamflow in each of the six investigated 
catchments reflect unique forcing-response relationships from the at-
mosphere, but also exhibit similarities within dominantly snowmelt- 
driven and rainfall-driven flood regimes respectively. In catchments 
where high flows to a large extent are generated by snowmelt (234.18, 
Finnmark; 308.1, Trøndelag; and 311.6, Østlandet), two distinct ag-
gregation periods of boundary layer and near-surface temperature var-
iates were evident at one to three weeks and two to three months, 
respectively representing melting and seasonality. A consistent aggre-
gation window in between these two dominant aggregation periods was 
also found, reflecting snow accumulation with moisture and tempera-
ture variates. In catchments where high flows primarily are generated by 
rainfall (152.4, Nordland; 83.2, Vestlandet; and 22.22, Sørlandet), the 
dominant aggregation period does not extend beyond 3 weeks. In these 
catchments, the identified major drivers are moisture, wind and tem-
perature variates in the boundary layer, with less short-term influence 
from variables in the middle and upper troposphere. Seasonality is not 
represented through temperature variates, but rather moisture and wind 
variates with aggregation windows around three months. 

Increasing accuracy with model complexity was found for all the six 
investigated catchments. Furthermore, the most complex model, MLP, 
was found to be the most robust machine learning model with the lowest 

drop in Nash-Sutcliffe Efficiency (NSE) from training to testing. In all but 
the southernmost, and smallest, catchment, MLP obtained an NSE 
ranging from 0.71 to 0.81, with an average drop of less than 0.02. This 
supports previous findings stating that neural networks handle non- 
linearity in complex systems better than linear or piecewise linear ap-
proaches. The inter-model and intra-model differences in performance 
indicate the strength of the relationship between direct forcing from 
large-scale atmospheric circulation and daily streamflow and may hence 
be used to filter out suitable catchments for direct downscaling in the 
context of hydrological climate-impact modelling. However, since 
streamflow is the product of both atmospheric forcing and catchment 
characteristics, the latter must be explicitly included in streamflow 
prediction using the identified major drivers. Among the six investigated 
catchments, station 311.6 in Østlandet was determined most suitable for 
direct downscaling, while station 22.22 in Sørlandet was determined 
unsuitable without further investigation of the relative importance of 
catchment characteristics, sub-grid features and local variability by 
traditional hydrological modelling approaches. 

Future research should focus on further development of benchmark 
studies and move towards exploration of deep learning for daily 
streamflow reconstruction with major drivers identified from large-scale 
atmospheric forcing and catchment characteristics. Increasing the 
number of hydrological stations representing the various snowmelt- 
driven and rainfall-driven flood regimes will particularly aid in assess-
ing the scalability of the findings presented in this paper. Furthermore, 
clustering of hydrological stations based on catchment characteristics 
may allow the development of a transient model structure, in which 
[changes in] dominant streamflow-generating mechanisms or timing of 
annual peaks may feed into the automated feature selection procedure. 
As such, the input variable selections may be directed towards features 
and aggregation windows characteristic of rainfall-driven flood regimes 
in line with decreasing snowmelt-driven floods. For all of these potential 
future studies, the work presented here may serve as a benchmark. 
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