
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics 
https://doi.org/10.1007/s13042-017-0756-7

ORIGINAL ARTICLE

Clustering ensemble method

Tahani Alqurashi1 · Wenjia Wang1

Received: 28 September 2015 / Accepted: 20 October 2017 
© The Author(s) 2018

Abstract
A clustering ensemble aims to combine multiple clustering models to produce a better result than that of the individual 
clustering algorithms in terms of consistency and quality. In this paper, we propose a clustering ensemble algorithm with a 
novel consensus function named Adaptive Clustering Ensemble. It employs two similarity measures, cluster similarity and 
a newly defined membership similarity, and works adaptively through three stages. The first stage is to transform the initial 
clusters into a binary representation, and the second is to aggregate the initial clusters that are most similar based on the 
cluster similarity measure between clusters. This iterates itself adaptively until the intended candidate clusters are produced. 
The third stage is to further refine the clusters by dealing with uncertain objects to produce an improved final clustering result 
with the desired number of clusters. Our proposed method is tested on various real-world benchmark datasets and its perfor-
mance is compared with other state-of-the-art clustering ensemble methods, including the Co-association method and the 
Meta-Clustering Algorithm. The experimental results indicate that on average our method is more accurate and more efficient.

Keywords Clustering ensemble · K-means · Similarity measurement · Machine learning · Data mining

1 Introduction

In the context of machine learning, an ensemble is generally 
defined as “a machine learning system that is constructed 
with a set of individual models working in parallel, whose 
outputs are combined with a decision fusion strategy to pro-
duce a single answer for a given problem” [44]. The ensem-
ble method was firstly introduced and well-studied in super-
vised learning fields. Due to its successful applications in 
classification tasks, in the past decade or so, researchers have 
attempted to apply the same paradigm to unsupervised learn-
ing fields, particularly clustering problems, for two obvious 
reasons. Firstly, in unsupervised learning, there is normally 
no prior knowledge about the underlying structure or about 
any particular properties that we want to find or about what 
we consider good solutions for the data [23, 38]. Differ-
ent clustering algorithms may produce different clustering 
results for the same data by imposing a particular structure 

onto the data. Secondly, there is no single clustering algo-
rithm that can perform consistently well for different prob-
lems and there are no clear guidelines to follow for choosing 
individual clustering algorithms for a given problem.

Conceptually speaking, a clustering ensemble, also 
referred to as a consensus ensemble or clustering aggrega-
tion, can be simply defined in the same manner as for classi-
fication, that is, the process of combining multiple clustering 
models (partitions) into a single consolidated partition [36]. 
In principle, an effective clustering ensemble should be able 
to produce more consistent, reliable and accurate clustering 
results compared with the individual clustering algorithms.

However, the transmission from supervised learning to 
unsupervised learning is not as straightforward as this con-
ceptual definition because there are some unique and chal-
lenging issues when building an ensemble for clustering. 
Out of these issues, the key and most difficult one is how 
to combine the clusters that are generated by the individual 
clustering models (members) in an ensemble, as this cannot 
be done through simple voting or averaging as in classifica-
tion–it requires more complicated aggregating strategies and 
mechanisms. There is no effective and scalable consensus 
function in practical application yet, although many have 
been proposed to date.
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In this paper, we propose a three-staged adaptive consen-
sus function based on two similarity measures and use it to 
build a clustering ensemble framework, named the Adaptive 
Clustering Ensemble (ACE). The first stage is to transfer the 
members into binary representation, the second stage is to 
measure the similarity between the initial clusters and adap-
tively merge the most similar ones to produces k consensus 
clusters. The third stage is to identify the candidate clusters 
that contain only certain objects and to calculate their qual-
ity. The final clustering result is produced by an iterative 
process assigning the uncertain objects to a cluster in a way 
that has a minimum effect on its quality.

This is in fact an improved version of our earlier work [2], 
where we developed a Dual-Similarity Clustering Ensemble 
method (DSCE). The DSCE algorithm has been improved 
in three aspects. Firstly, the stability of the DSCE has been 
improved by producing the final clustering result with the 
pre-defined k, even when the members have a different num-
ber of clusters. Secondly, the effect of its two parameters ( �1 
and �2 ) on the quality of the final result has been reduced by 
applying an adaptive strategy for the value for these thresh-
olds. Finally, the object neighbourhood similarity for the 
uncertain objects has been taken into account, in order not 
to lose any information when we eliminate an inappropriate 
cluster.

The rest of the paper is organised as follows. Section 2 
introduces the clustering ensemble problem and the general 
clustering ensemble framework. Section 3 summarises the 
related work, while Sect. 4 details the proposed clustering 
ensemble method with its different stages. Section 5 dis-
cusses the experimental studies and Sect. 6 shows the results 
on real datasets. Section 7 presents the parameter analysis 
and the time complexity analysis of the proposed method. 
Finally, conclusions are given in Sect. 8.

2  Clustering ensemble methods

2.1  Clustering ensemble representation

For a dataset of n objects: X = {x1, x2,… , xn} , let 
Pq = {c

q

1
, c
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} be a clustering result of kq clusters pro-

duced by a clustering algorithm as qth partition, so that 
c
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then be built with m partitions � = {P1,P2,P3,… ,Pm} and 
a  consensus  func t ion  F ,  and  deno ted  by 
�(F,� ) = F(P1,P2,P3,… ,Pm) = F(� ) . It should be noted 
that the members may not necessarily have the same number 
of clusters in their partitions, that is, kq may not be equal to 
a pre-set value k.

The task of a clustering ensemble is to find a parti-
tion P∗ of dataset X by combining the ensemble members 
{P1,P2,P3,… ,Pm} with F without accessing the original 
features, so that P∗ is probably better in terms of consistency 
and quality than the individual members in the ensemble.

2.2  A generic clustering ensemble framework

A common clustering ensemble framework is represented 
in Figure 1, which consists of three components: ensemble 
member generation, consensus function and evaluation. As 
can be seen, the input of the clustering ensemble framework 
is a given dataset to be clustered, and the output is the final 
clustering result of this dataset.

2.2.1  Ensemble member generation

This is the first phase in the clustering ensemble frame-
work, and the main aim here is to generate m clustering 
models as the members for building the ensemble. In prin-
ciple, any clustering algorithm could be used here as long 
as it is suitable for the dataset. In addition, the generated 
members should be different to each other as much as pos-
sible, because a high level of diversity among the members 
means that they have captured different information about 
the data and can potentially help to improve the performance 
of the ensemble. Thus, it is important to apply one or sev-
eral appropriate generation techniques to achieve reasonable 
quality as well as diversity.

Some researchers have selected techniques based on the 
type of applications. For example, for high dimensional 
data, Strehl and Ghosh [36] used random feature sub-
spaces and members are generated for each subspace. They 

Fig. 1  A generic clustering 
ensemble framework
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also generated members by selecting different subsets of 
objects for each member, and they called this technique 
object distribution. Fern and Brodley [8] generated mem-
bers based on random projections of objects into different 
subspaces.

The resampling method was also used by [3, 30, 31]. In 
particular Minaei-Bidgoli et al. [30] used bootstrap tech-
niques with a random restart of k-means, while Monti 
et al. [31] used bootstrap techniques with different cluster-
ing algorithms, including k-means, model-based Bayesian 
clustering and self-organising maps. Moreover, Ayad and 
Kamel [3] used the bootstrap resampling in conjunction with 
k-means to generate the ensemble members.

Arguably, the most commonly used clustering algorithm 
for generating members is k-means because of its simplic-
ity and low computational complexity [4, 10–12, 20, 39]. 
For instance, Fred and Jain [11] used the k-means clustering 
algorithm with random initialisations of cluster centres and a 
randomly chosen k (number of clusters) from a pre-specified 
interval for each member, and they used a large k value in 
order to obtain a complex structure within the ensemble 
members. They also ran k-means with a fixed k to compare 
the two generation techniques, and they found that mem-
bers with a random k are more robust than other members. 
Dimi-triadou et al. [6] and Sevillano et al. [34] applied fuzzy 
clustering algorithms, and in particular c-means in order 
to generate soft clustering members, while Hore et al. [14] 
applied fuzzy k-means.

Strehl and Ghosh [36] used a graph-clustering algorithm 
with different distance functions for each member. Topchy 
et al. [40] used a weak clustering algorithm, which produces 
a clustering result that is slightly better than a random result 
in terms of accuracy due to the fact that it uses a random 
projections on one dimension and splitting the data into a 
random number of hyperplanes. Iam-on et al. [19] exam-
ined different techniques, which included a multiple run 
of k-means with a fixed k for each member, and randomly 
chosen k from an interval, where the maximum k was equal 
to 

√
n . Furthermore, Iam-On et al. [21] applied different 

generation techniques to categorical data, and they ran a 
k-mode algorithm with full space and random subspace with 
a fixed k and random k. They found that these two techniques 
allowed their ensemble method to achieve high performance, 
compared to the k-mode clustering algorithm, as well as sev-
eral other ensemble method such as methods proposed by 
Strehl and Ghosh [36].

Another strategy is to use a different clustering algorithm 
for each member [12, 45] with a hope that different algo-
rithms may generate more diverse members. Yi et al. [45] 
used some well-known clustering algorithms, such as hier-
archical clustering and k-means. Gionis et al. [12] used the 
single, average, ward and complete linkage methods and 
k-means to generate ensemble members.

In summary, as can be seen, there is no single clustering 
algorithm that is universally used and there are no generally 
agreed criteria for selecting the most suitable ones. In this 
case, it is better to apply the principle of Occam’s razor [5] 
and choose the one with the greatest simplicity and effi-
ciency, if there is no prior specific knowledge on a given 
problem. This is why we chose k-means over others in our 
experiments in this study.

2.2.2  Consensus function

A consensus function combines the outputs of the members 
{P1,P2,P3,… ,Pm} to obtain the final clustering result P∗ , 
and can directly determine the quality of the final solution. 
Therefore, it is considered the most important component 
in an ensemble. A number of existing consensus functions 
have been reviewed by Vega-Pons and Ruiz-Shulcloper [41] 
and they are classified into two main approaches: object co-
occurrence and median partition.

The object co-occurrence approach:  It firstly computes 
the co-occurrence of objects in the members and then deter-
mines their cluster labels to produce a consensus result. 
Simply, it counts the occurrence of an object in one cluster, 
or the occurrence of a pair of objects in the same cluster, 
and generates the final clustering result by a voting process 
among the objects. Such methods are the Relabelling and 
Voting method [4, 7, 47], the Co-association method [11] 
and the Graph-based method [9, 36].

The median partition approach:   This treats the con-
sensus function as an optimisation problem of finding the 
median partition with respect to the cluster ensemble. The 
median partition is defined as “the partition that maximises 
the similarity with all partitions in the clustering ensemble” 
[41]. Examples of this approach include the Non-Negative 
Matrix Factorisation based method [26], the Genetic-based 
method [28, 46] and the Kernel-based method [42].

Vega-Pons and Ruiz-Shulcloper [41] pointed out that 
consensus functions were primarily studied on a theoretical 
basis, and as a result many consensus functions based on the 
median partition approach were proposed in the literature, 
whereas only a few studies focused on the object co-occur-
rence approach. Therefore we chose to develop a consensus 
function based on the object co-occurrence approach, and 
for this reason, we will only review the work related to this 
approach in Sect. 3.

2.2.3  Evaluation

In this phase, the aim is to evaluate the quality of the final 
clustering result. Evaluating the quality of clustering results 
is a non-trivial task as there is no universally agreed standard 
on what constitutes good quality clusters in the first place. 
There are a number of aspects that need to be considered 
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when evaluating the clustering result, but in practice, the 
most common ones are probably accuracy and consistency. 
For measuring accuracy, there are many external validation 
indexes or measures that can be used to evaluate the accu-
racy, but the most common ones used in clustering ensemble 
research are the Adjust Rand Index (ARI) [18] and the Nor-
malised Mutual Information (NMI) [36]. For consistency, 
it is usually represented by the average of a performance 
measure and its variance (e.g. standard deviation) [1] from 
repeated runs with different experimental set-up conditions.

3  Related work

The most popular method in the object co-occurrence 
approach compares the cluster association of each object 
and produces a pairwise object similarity matrix, called an 
adjusted similarity matrix [36], consensus [31], agreement 
[37] and Co-association matrix [11], then the final partition 
is obtained by applying the hierarchical clustering algorithm. 
But, perhaps, any similarity-based clustering algorithm can 
be applied to this matrix.

The Co-association method (CO) avoids the label cor-
respondence problem by mapping the ensemble members 
onto a new representation in which the similarity matrix is 
calculated between a pair of objects in terms of how many 
times a particular pair is clustered together in all ensemble 
members [11]. Basically, CO calculates the percentage of 
agreement between ensemble members in which a given pair 
of objects is placed in the same cluster as follows:

Where xi and xj are objects, Pm is a partition, and � is defined 
as:

In Fred and Jain [11], the final partition is obtained by apply-
ing Single and Average linkage hierarchical clustering algo-
rithms to the Co-association matrix. The CO seems ideal 
for collecting all the information available in the clustering 
ensemble, but in fact it takes into consideration just the pair-
wise relationship between objects in the ensemble members. 
Strehl and Ghosh [36] proposed the Cluster-based Similar-
ity Partitioning Algorithm (CSPA), where also the object 
pairwise similarity was taken into account by representing it 
as a fully connected graph, where nodes correspond to data 
objects and edge weights to their similarities. The final clus-
tering results are obtained by applying the METIS algorithm 
[24] to the constructed graph.

CO(xi, xj) =
1

M

M∑

m=1

�(Pm(xi),Pm(xj))

� =

{
1, if xi and xj are placed in the same cluster.

0, otherwise.

An alternative method to the object pairwise similarity 
matrix is to consider the association between object and 
cluster, which is formulated as a binary membership matrix 
[9, 36]. Fern and Brodley [9] represent this object-cluster 
membership matrix as a bipartite graph, which is called a 
Hybrid Bipartite Graph Formulation (HBGF) algorithm. In 
this graph, there are two different types of nodes; one rep-
resents an object and the other represents a cluster, and an 
edge exists between a cluster and an object belonging to that 
cluster. Then a spectral clustering algorithm was applied to 
obtain the final partition. Strehl and Ghosh [36] proposed 
the hypergraph partitioning algorithm (HGPA), and the 
Meta-CLustering Algorithm (MCLA). The hypergraph is 
constructed in HGPA and MCLA, where each cluster is rep-
resented as a hyperedge. HGPA directly partitions the hyper-
graph by cutting a minimal possible number of hyperedges 
into k connected nodes of approximately the same size using 
the hypergraph partitioning package HMETIS [24]. MCLA 
firstly defines the similarity between pair clusters in terms 
of the shared objects between them, using the extended Jac-
card index [35]. The graph is then constructed where nodes 
represent clusters and the edges represent the similarity 
between pairs of clusters. The final partition, ‘meta-clus-
tering’, is obtained using METIS [24]. The complexity of 
CSPA, HGPA and MCLA is estimated as O(kn2m),O(knm) , 
and O(k2nm2) respectively [36].

A further development by Iam-On et al. [20] aimed to 
redefine the Co-association matrix to also take into account 
the relationship between clusters estimated from a link net-
work model, and to interpret this matrix as feature vectors 
or a Bipartite graph. It used an ordinary clustering algorithm 
onto the new similarity matrix in order to generate the final 
cluster result.

Another method named ‘Division Clustering Ensemble’ 
(DICLENS) was developed by Mimaroglu and Aksehirli 
[29], based on minimum Spanning Tress Similarity, where 
each vertex represents a cluster and the edge represents 
the inter-cluster similarity between clusters. They are, in 
fact, redefining the co-association matrix to be calculated 
between two objects placed in two different clusters, which 
represents the inter-cluster similarity. They then cut edges 
with the lowest similarity to produce disjoining meta-clus-
ters, which represent the final clusters where each object is 
assigned to the most associated cluster. It should be noted 
that they ran the experiment just once using only manually 
generated members. It is widely known that the generated 
members have a direct and strong influence on the ensem-
ble performance and, in many real-world applications, it is 
impossible or impractical to generate clusters manually, so 
then a clustering algorithm has to be employed to generate 
clustering members automatically.

Recently, Alqurashi and Wang [1] highlighted a prob-
lem relating to the uncertain agreement between members. 
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A new method named ‘Object-Neighbourhood Clustering 
Ensemble’ (ONCE) was proposed by taking into account 
the neighbourhood relationship between object pairs, as 
well as the relationship between the pair itself in the simi-
larity matrix calculation. The uncertain agreement prob-
lem was also tackled by Huang et al. [17], who applied a 
sparse graph representation and the probability trajectory 
analysis to propose two clustering ensemble algorithms, 
named ‘Probability Trajectory accumulation’ (PTA) and 
‘Probability Trajectory based graph partitioning’ (PTGP). 
In both algorithms, they first constructed K-elite neighbour 
sparse graph (K-ENG) and they calculated the probability 
trajectory similarity matrix. The random walk process was 
performed on the K-ENG graph to derive a dense similar-
ity matrix based on the probability of random walkers. In 
PTA they applied hierarchal clustering algorithm to obtain 
the final clustering results, whereas in PTGP they applied 
the Tcut algorithm [27].

One of the main drawbacks of clustering ensemble 
methods, based on object pairwise similarity, is that they 
do not scale very well for a large dataset, as they work at 
the object level, and they do not capture the relationship 
between clusters. However, a clustering ensemble method 
based on the similarity between clusters, such as MCLA, is 
much faster than CO and CSPA. Another point is that most 
of the clustering ensemble approaches transform the initial 
clusters produced by the member into a new representa-
tion, and then produce the final clustering result by clus-
tering this new representation with an ordinary clustering 
algorithm. When applying the same representation to a 
different clustering algorithm, their performance can vary 
considerably and it can be difficult to decide which clus-
tering algorithm is the best one to use. Huang et al. [16] 
also highlighted this limitation and they proposed an algo-
rithm named ‘Ensemble Clustering using Factor Graph’ 
(ECFG), which redefines the ensemble clustering problem 
into a binary linear programming problem and they solved 
this optimisation problem with a factor graph. ECFG first 
estimates the reliability of the clustering decisions of the 
members using an EM algorithm, and it has the ability to 
automatically generate the number of clusters in the final 
clustering result. In their experiment, Huang et al. [16] 
did not report the estimated number of clusters for each 
tested datasets and they used NMI as an evaluation meas-
ure, which is suitable for comparing two partitions that 
have equal number of clusters. We also think that they 
should validate their results using more than one evalua-
tion measure.

Therefore, there is a gap in clustering ensemble meth-
ods with regard to considering the relationship between 
initial clusters, as well as between clusters and objects, 
and this is the motivation of this study.

4  The adaptive clustering ensemble (ACE)

As the consensus function plays a key role in a clustering 
ensemble, directly influencing its performance, our aim is 
to design a consensus function that is more effective and 
efficient. The main idea of the proposed consensus func-
tion is that, instead of calculating the similarity between a 
pair of objects (the object pairwise similarity) as in the CO 
method, we calculate the similarity between pairs of clusters 
generated by the members and we then derive the member-
ship similarity between newly formed clusters and objects. 
The rationale is that we have already generated clusters in 
the first phase of the ensemble process, so it is obviously 
more efficient and possibly more effective to consider just 
the similarity between the initial clusters instead of object 
similarity. We can then extend the concept of shared-neigh-
bour information from the object level to the cluster level. 
Therefore, two clusters are considered to be well-associated 
if their objects resemble one another to a certain degree. If 
two clusters have a high proportion of objects in common 
as determined by the ensemble members, they should be 
merged, whereas if two clusters have a smaller proportion 
of objects in common, they should be kept separated.

However, instead of following some of the single cluster-
ing algorithm procedures in building a consensus function, 
we are using the generated members as initial clusters of the 
dataset and the final clustering is generated in three stages, 
as shown in Fig. 2. The first stage is to transfer the members 
into a binary vector representation. The second is to generate 
the consensus clusters, where the similarity between initial 
clusters is measured and the predefined k clusters are pro-
duced. The third stage is to solve uncertain objects, where 
firstly a certain object is assigned to the cluster that has a 
higher membership value and then the uncertain objects are 
classified to the cluster in a way that has a minimum effect 
on the cluster quality. The developed algorithm is called the 
Adaptive Clustering Ensemble (ACE).

The following sections present the definitions of the 
similarity measures and terminologies and then explain in 
detail how the algorithm works in three stages.

4.1  Definitions of similarity measures

We define two similarity measures: similarity between clus-
ters and similarity between objects and clusters. The latter is 
measured by the degree of membership by which an object 
belongs to a cluster, hence it is called membership similar-
ity. Before defining these similarity measures, we introduce 
some notations used throughout this paper as follows:

1. Sc: The cluster similarity measure between two clus-
ters.
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2. Sx: The membership similarity measure.
3. θ1: The membership matrix, where the columns of this 

matrix correspond to clusters and the rows correspond 
to objects.

4. δ: A binary membership value of an object to a particu-
lar cluster, � ∈ {0, 1}.

5. α1: A threshold for merging clusters, its value is deter-
mined based on Sc.

6. α2: A certainty threshold for placing an object into a 
cluster, its value is determined based on Sx: Number of 
clusters in θ1.

7. C: The set of all the newly formed clusters after the 
merging process has concluded.

8. Pc: Cluster certainty, only calculated for a newly formed 
cluster.

Definition 1 Cluster similarity: Given an ensemble � that is 
built with m clustering partitions � = {P1,P2,P3, … ,Pm} of 
dataset X = {x1, x2,… , xn} , cluster similarity Sc is a measure 
of how much overlap there is between two clusters from dif-
ferent partitions.

We employ the ‘set correlation’ as a cluster similar-
ity measurement, which measures the overlap between 
two clusters and takes their size into account. It has been 
developed in the Relevance-Set Correlation (RSC) [15] 
model, as this measure is an equivalent of the Pearson cor-
relation in clustering analysis. After some simplification 
and derivation, it can be represented as follows:

where q and � are two members, q ≠ � , and jq , j� are the 
cluster index in q and � respectively. CM is the Cosine simi-
larity measurement [13]:

Sc is symmetric, i.e. Sc(ci, cj) = Sc(cj, ci) and its value is 
bounded in [− 1, 1]. A value of 1 indicates that the two 
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clusters “are identical”, and a value of − 1 indicates that the 
two clusters are “a complement of each other” [43].

Definition 2 Membership similarity   In general, this is a 
measure of similarity Sx between an object x and a cluster 
c (when a soft clustering is allowed, i.e. an object x may be 
placed in more than one cluster), and hence it is defined as 
the membership similarity.

In this study, it is specifically used to measure the similar-
ity between objects xi ∈ X in a new cluster, �⃖cg , that is formed 
by merging r (initial) clusters �⃖cg = {ci + cj +⋯ + cr} ∈ 𝛤  , 
so that Sc(ci, cj,… , cr) is higher than a pre-set threshold. It is 
defined as follows:

where, �⃖�C  is the set of all the newly formed clusters, 
�⃖�C = { �⃖c1,… , �⃖cg, ...} ; 𝜃1(xi, �⃖cg) is the membership of xi belong-
ing to cluster �⃖cg and is defined as follows:

The value of membership similarity Sx is bounded between 0 
and 1, and a higher value means a stronger membership or a 
higher degree of certainty that an object belongs to a cluster. 
Therefore, objects with different values of this measure can 
be classified as certain, uncertain or totally uncertain for a 
given threshold value �2 , as defined below.

Definition 3 Certain object:  An object, xi , is defined as a 
certain object if its maximum membership similarity Sx is 
greater than a pre-set value �2 , i.e.

Definition 4 Uncertain object:  An object is defined to be 
an uncertain object if its maximum membership similarity 
Sx is less than or equal to �2 , i.e.

Definition 5 Totally certain object:  An object is defined as 
a totally certain object if its maximum membership similar-
ity Sx is 1.

Definition 6 Totally uncertain object:  An object is defined 
as a totally uncertain object if its maximum membership 
similarity Sx is 0.

(3)Sx(xi, �⃖cg) =
1

max{𝜃1(xi, �⃖�C)}
𝜃1(xi, �⃖cg),

(4)𝜃1(xi, �⃖cg) =

r∑

u=1

𝛿(xi, cu)

(5)max(Sx(xi, �⃖�C)) > 𝛼2.

(6)max(Sx(xi, �⃖�C)) <= 𝛼2.
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Definition 7 Cluster certainty:  The cluster certainty, �cg , is 

defined as the mean of the membership similarity of objects 
in a cluster �⃖cg , i.e.

The cluster certainty is calculated for each newly formed 
cluster ∈ �⃖�C.

Choosing an initial value for �2 is not so critical as our 
ensemble algorithm adapts its value through its consensus 
function during the iterations of the algorithm. It is therefore 
reasonable to set the initial value for �2 to be 0.7, and to then 
adapt it if necessary, according to the values of the updated 
membership similarity matrix Sx as described in the algo-
rithm. The detailed investigation and analysis of its influence 
will be given in Sect. 7.

4.2  The ACE algorithm

The diagram of the ACE algorithm is given in Fig. 2 and as 
can be seen it works in three main stages: Transformation, 
Generating Consensus Clusters and Resolving Uncertainty. We 
will give a simple example to illustrate how this algorithm 
works throughout these stages.

4.2.1  Stage 1: transformation

Having generated m members, which represent unmatched 
clusters of objects, this stage transforms them into a new rep-
resentation. In order to avoid solving the relabelling problem 
between clusters, we transform each cluster c to a column 
binary characteristic vector where a value of 1 indicates that 
the corresponding object belongs to that cluster, and 0 indi-
cates that the object does not belong to that cluster.

In general, for cluster cj in clustering member q, its corre-
sponding vector is represented as cq

j
= [�(x1),… , �(xn)]

T , 

(7)𝜌cg =
1

| �⃖cg|

|c⃖g|∑

i=1

Sx(xi, �⃖cg).

where �(xi) is the binary membership and takes the following 
value:

Where i is the index of data objects; j(= 1,… , kq) , the index 
of clusters in each of m members; q(= 1,… ,m) is the index 
of members in an ensemble. There will be km vectors to form 
an n × km cluster matrix �1 = [c1

1
, c1

2
,… ,… , c

q

km
] . Where 

km =
m∑
q=1

kq , which is the total number of clusters in all 

members.

4.2.2  Stage 2: generating new consensus clusters

In this stage, the aim is to find the most similar initial clus-
ters and to merge them to produce k clusters that are as dis-
similar from each other as possible. To achieve this, the fol-
lowing two steps are required:

1. Measuring similarity between initial clusters and merg-
ing the most similar ones

(a) Starting with km initial clusters, we measure the 
cluster similarity Sc , defined in Eq. 1, between the 
initial clusters that are placed in different mem-
bers in �.

(b) The merging process is performed based on the 
following criterion:

(8)�(xi, cj) =

{
1, if xi ∈ cj,∀ i = 1,… , n.

0, if xi ∉ cj

(9)
if Sc(c

q

jq
, c�

j
�

) >= 𝛼1 ⇒ c
q

jq
and c�

j
�

are similar, hence merged.

(10)
if Sc(c

q

jq
, c�

j
�

) < 𝛼1 ⇒ c
q

jq
and c�

j
�

are dissimilar, not merged.

Fig. 2  The diagram of the ACE algorithm
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Parameter �1 is the threshold for merging and is determined 
adaptively based on the similarity values in the cluster simi-
larity matrix Sc.

Its influence and sensitivity on the quality of the final 
clustering result are studied and the details are given later 
in Sect. 7. Our empirical study indicates that it can usually 
start with a relatively high value, e.g. 0.8, and then adapt its 
value in accordance with the similarity values in the current 
similarity matrix.

From Sc , any clusters that satisfy a criterion given in Eq. 9 
will be merged by replacing them with a new cluster �⃖cj . 
This continues until there remain no pairs of clusters that 
are similar enough.

Then the membership similarity Sx between objects and 
the newly formed clusters are calculated using Eq. (4).

To illustrate these steps, we measured the similarity 
between the initial cluster vectors in our illustrative example 
Fig. 3, and gained the similarity matrix Sc. We set �1 equal 
to 0.8. Looking at Sc , we found that c1

1
 and c3

2
 were identical 

and had a similarity greater than �1 with c2
2
 , so we merged 

them. In addition, c1
2
 had a similarity greater than �1 with c2

3
 

and c3
1
 , so we merged them too. We also merged c1

3
 and c2

1
 . As 

a result, we gained four clusters, �⃖c1 , �⃖c2 , �⃖c3 and �⃖c4 in �1 . Thus, 
�1 become the input for the next step in this stage.

2. Producing k consensus clusters
  After the most similar initial clusters are merged, we 

have �1 to represent newly formed clusters and perhaps 
some remaining non-merged initial clusters. The next 
step is to check if the number of the clusters in �1 is 
exactly equal to k clusters, which will be taken as the 
final candidate clusters. For convenience, let � be the 
number of clusters in �1 . There are three possible sce-
narios: (1) � = k , (2) 𝜆 > k , and (3) 𝜆 < k , when check-
ing the number of clusters in �1.

(a) When � = k , i.e. the number of clusters in �1 is 
equal to the pre-defined k, we then take the clus-
ters in �1 as the candidate clusters and adapt �2 to a 
value based on Sx so that it can represent a specific 
percentage of the membership certainty. Then we 
move onto Stage 3.

(b) When 𝜆 > k , i.e. the number of clusters in �1 is 
greater than the pre-defined k, which is the most 
likely scenario in practice, there are two options: 
(A) to terminate the process or (B) to forge ahead 
with brutal merging or eliminating.

  Option A: Coming to this point, the clusters in �1 are 
more dissimilar from each than the given threshold �1 . 
If the value of �1 has reached the minimum acceptable 
similarity, it indicates that the clusters in �1 for the given 
dataset are too dissimilar from each other to be merged 

to obtain the intended k number of clusters. We then 
conclude that the pre-set value for k is unreasonable and 
unachievable, and output the generated clusters.

  Option B: However, as there is no gold-standard for 
setting up the minimum acceptable similarity threshold, 
it is then also reasonable to go ahead with the process by 
adapting the threshold value �1 to reflect the similarity 
distribution in the current similarity matrix Sc , and then 
merging the clusters with the above described step, or 
eliminating the clusters with the following steps. The 
elimination is carried out based on the cluster certainty. 
The certainty of each cluster in �1 is calculated by Eq. 7 
and their certainty values are ranked in a descending 
order.

 i. If each of the top k clusters contains at least 
one certain object based on the current value 
of �2 , then these clusters are taken as the final 
candidate clusters. For the remaining clusters, 
they will be brutally “eliminated” by moving 
them from �1 to a new matrix �2 in order to be 
used in the next stage. The cluster similarity Sc 
and membership similarity Sx will be updated 
accordingly and �1 will be adapted. Then, we 
move onto stage 3.

CD

6 5 4 3 2 1

1.75 DSCE

2.875 ACE

3.25 MCLA3.4375ONCE

4.5625CO

5.125DICLENS

(a) The critical difference diagram of the first experiment.

CD

5 4 3 2 1

1.625 ACE

3 MCLA

3.1875 CO

3.5DICLENS

3.6875ONCE

(b) The critical difference diagram of the second experiment.

Fig. 3  The Critical difference diagram of the critical level of 0.1 in 
which it shows the comparison of six ensemble methods using eight 
datasets. a The critical difference diagram of the first experiment. b 
The critical difference diagram of the second experiment
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 ii. Otherwise, we adapt �2 to be the maximum 
membership similarity to the kth cluster and 
consider the first k clusters as the final candi-
date clusters.

(c) When 𝜆 < k , i.e. the number of clusters in �1 is less than 
the pre-chosen k, then we consider if any clusters in �1 
can be divided by adapting the value of �1 . In this case, 
it is possible that �1 is unreasonably low and should 
be adapted incrementally to an appropriate value, then 
we should go back the beginning of this stage until the 
number of the clusters in �1 reaches k and move onto 
the next stage.

4.2.3  Stage 3: enforce hard clustering

The aim here is to ensure that each object is assigned to 
only one cluster. So, the inputs of this stage are: Sx, which 
is the membership similarity matrix; θ2, which contains the 
membership similarity of the eliminated.

As defined earlier, for an object, if its maximum member-
ship value Sx(xi, cj) <= 𝛼2 (∀j = 1,… , k) , it is considered as 
an uncertain object, and as a totally uncertain object if its 
maximum membership value is zero. Four main steps are 
required as follows:

1. Check whether �1 contains any totally uncertain 
objects.

  There is a possibility that the previous stage may have 
resulted in totally uncertain objects in �1 . This is of a 
particular concern during the elimination process, as this 
may have caused information to be lost for some objects, 
so we verify that each object in �1 has a membership 
value associated with at least one cluster. If �1 con-
tains some totally uncertain objects, we calculate their 
neighbourhood similarity with clusters in �2 . We are in 
fact modifying our early definition of neighbourhood 
similarity [1], by calculating the average occurrence of 
their objects’ neighbours and the other objects placed 
in the candidate clusters. In other words, we calculate 
the similarity between the totally uncertain object and 
the candidate clusters in �1 as the average of how many 
times they are classified in the same cluster in �2 with 
other objects that are already placed in the candidate 
clusters in �1.

2. Identify totally certain and certain objects in �1 as in 
definitions 5 and3.

  As certain objects have a higher similarity value than 
�2 , we assign them to the cluster that has a maximum 
membership similarity among other clusters in �1.

3. Measure the quality of each candidate cluster in �1.
In principle, any cluster quality measure can be used, so 
in this study we measure the compactness of the certain 

objects in a cluster as the quality metric, and here we call 
it the original quality of each cluster.

  The compactness of a cluster is usually measured by 
the variance, Var, which is the average of the squared 
differences from the mean, as follows:

It is basically the absolute value of the difference between 
the membership similarity value of object xi in cluster �⃖c , 
and the mean of the objects similarity in cluster �⃖c (cluster 
certainty pc⃖  calculated by Eq. 7).

At the beginning, the size of each candidate cluster equals 
the total number of classified objects, and these objects are 
the only ones that we can assign to a candidate cluster with 
certainty, as they have the maximum membership similarity 
with the classified candidate clusters.

4. Identify uncertain objects in �1 as in equation 6.
  For each uncertain object the following steps are per-

formed:

(a) Identify the clusters of the current uncertain object 
in �1

(b) For each identified cluster, we recalculate its 
quality using the Eq. 11 by including the current 
object membership similarity with the identified 
cluster.

(c) Compare the original quality and the current qual-
ity of the identified clusters.

(d) Assign the current object to the cluster that has a 
minimum effect on its original quality.

(e) Increase the size of the assigned cluster by 1.
(f) Update the original quality of the assigned cluster 

to be equal to the current quality.
(g) Repeat steps until all the uncertain objects are 

assigned.

   Generally, we assign uncertain objects to a cluster in 
such a way that this will have a minimum effect on the 
latter’s quality. By doing so, we aim to ensure that the 
original quality of the cluster has not been affected too 
much, as it is widely known that a small value for cluster 
quality indicates a compact cluster result.

Therefore, by assigning each object to only one cluster 
 we obtain the final clustering result P* of dataset X. A sim-
ple example for illustrating how the ACE works is given in 
“Appendix”.

(11)Var(c) =
1

| �⃖c|

|c⃖|∑

i=1

(Sx(xi, �⃖c) − pc⃖)
2
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Algorithm 1: The Pseudocode for the second
stage of the ACE Algorithm.
Input : Γ = {P1, P2, P3, . . . , Pm}, α1, α2,

α1min, ∆α, and k
Output: P ∗

1 θ1 ← Transform m members into binary vectors
of initial clusters;

2 Sc ← Compute cluster similarity Sc for clusters
in θ1 with equation 1;

3 while true do
4 θ1 ← MergeCls(initial clusters, Sc, α1);
5 if # clusters in θ1, λ >= k then
6 break;
7 else
8 Adapt α1 = α1 +∆α;

9 λ ← find # of clusters in θ1;
10 while λ >= k do
11 Update Sc with equation 1;
12 Adapt α1 ← maximum similarity value in Sc;
13 if α1 < α1min then
14 break;
15 else
16 newθ1 ← MergeCls(θ1, Sc, α1);

17 if # clusters in newθ1 < k then
18 break;
19 else
20 θ1 ← newθ1

21 Compute similarity measure Sx with equation 3;
22 nbcls ← find # clusters in Sx that contain at

least one certain object specified by α2;
23 if nbcls == k then
24 Consider these cluster as candidate clusters

in P ∗;
25 θ2 ← non-candidate clusters;
26 else
27 Compute cluster certainty in Sx with

equation 8;
28 Sort the cluster certainties in descend order;
29 Adapt α2 ← Sxmax{k};
30 Keep the top k clusters in Sx as the

candiadate clusters;
31 Remove the remaining clusters in Sx to θ2;

32 P ∗ ← AssignObjectToOnlyOneCluster(Sx,
θ2, α2);

5  Experiments

We test the effectiveness of the ACE algorithm using eight 
real-world datasets from the UCI Machine Leaning Reposi-
tory [32]: Iris, Wine, Thyroid, Multiple Features (Mfea-
tures), Glass, Breast Cancer Wisconsin (Bcw), Soybean and 

Ionosphere dataset. Table 1 shows the details of these datasets. 
Bcw has an attribute with missing values in some objects, 
which is removed. We also removed the second attribute in 
the Ionosphere dataset as only a single value (0) was present.

Two experiments were designed. In the first experiment, 
we set the number of clusters k equal to the true number of 
classes for each dataset which is fixed for all generated mem-
bers, whereas in the second experiment we set a different 
number of clusters k for each member chosen randomly from 
the interval [k − 2, k + 2] . We chose this interval because we 
already know the number of clusters in the tested datasets 
so the minimum of this interval is set to less than k by 2 and 
the maximum set to a value larger than k by 2.

In both experiments, we set �1 = 0.8 , �2 = 0.7 , �1min = 0.6 , 
and �� = 0.1 , and we followed the common clustering ensem-
ble framework as shown in Fig. 1. In the generation phase, we 
implemented the same techniques used by Ren et al. [33] in 
order to generate 10 diverse members. Thus, we used k-means 
to generate 5 members with a random sampling of 70% of the 
data, and we calculated the Euclidean distance between the 
remaining objects and the cluster centres and assigned them 
to the closest cluster. For each of the remaining members we 
ran k-means on 70% of randomly selected features.

The main aim of these experiments is to test the perfor-
mance of ACE in these two particular situations. Also to see 
how effective our algorithms are compared to other competi-
tive clustering ensemble algorithms, which include Co-asso-
ciation using the Average linkage method [11], ONCE also 
using the Average linkage method [1], DSCE [2], DICLENS 
[29] and MCLA [36]. We ran the algorithm 10 times, and 
each time the performance was measured by ARI and NMI.

When ARI and NMI are applied to evaluate the clustering 
results, one of the clustering partitions should be the ground 
“ true” partition of the data, Pt which, in practice, is nor-
mally assumed to be the class labels as there are no other true 
answers that can be used to verify the quality (accuracy) of the 
clustering result. The other partition is the clustering result of 
the ensemble that needs to be evaluated P∗.

ARI is the corrected version of the Rand index (RI), and is 
defined as follows:

Table 1  Details of the datasets used in experiments

Dataset # Objects # Features # Clusters

Iris 150 4 3
Wine 178 13 3
Thyroid 215 5 3
Mfeatures 2000 2 10
Glass 214 9 6
Bcw 683 9 2
Soybean 47 35 4
Ionosphere 351 34 2
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Where RI is calculated by:

Where n11 denotes the number of object pairs assigned to 
the same clusters in both P∗ and Pt . n00 denotes the number 
of object pairs assigned to different clusters in P∗ and Pt . 
n10 denotes the number of object pairs assigned to the same 
cluster in P∗ and to different clusters in Pt . n01 denotes the 
number of object pairs assigned to different clusters P∗ and 
to the same cluster in Pt . With simple algebra, the Adjust 
Rand Index [18] can be simplified to:

where n is the total number of objects in X, nij is the number 
of objects in the intersection of clusters ci ∈ P∗ and cj ∈ Pt , 
ni and nj are the numbers of objects in clusters ci ∈ Pt and 

cj ∈ P∗ respectively, and 
(
n

2

)
 is the binomial coefficient 

n!

2!(n−2)!
 . The maximum value of ARI is equal to 1, which 

means that P∗ is identical to Pt , and it has an expected value 
0 for independent clusterings. It is not necessarily for the 
number of clusters in P∗ and Pt to be the same [25].

NMI is computed according to the average mutual informa-
tion between every pair of clusters and class labels. Consider 
P∗ the final clustering result of the ensemble and the ground-
truth clustering Pt for dataset X. The NMI of the two partitions 
is defined as follows:

The maximum value of NMI is equal to 1, which means 
that P∗ is identical to Pt and the minimum value is equal 
to 0, when P∗ is completely different from Pt . i.e. nij = 0 , 
( ∀i = {1,… , k∗} , and ∀j = {1,… , kt}).

6  Results and analysis

6.1  Results of ensembles built with fixed k

Tables 2 and 3 show the average value of ten runs of the com-
pared algorithms measured by ARI and NMI respectively, 

(12)
ARI(P∗,Pt) =

RI(P∗,Pt) − Expected[RI]

1 − Expected[RI]

(13)RI(P∗,Pt) =
n11 + n00

n00 + n11 + n10 + n01

(14)ARI =

∑k
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(15)NMI(P∗,Pt) =
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nij log(

n.nij

ni.nj
)

�
(
∑k∗

i=1
ni log(

ni

n
))(
∑kt

j=1
nj log(

nj

n
))

along with their corresponding standard deviations. The bold 
value in each row shows the best performance in each data-
set in terms of the quality of the clustering result and the 
underlined number shows the best value in terms of consist-
ency. The last column of Table 2 and 3 represent the average 
performance of the generated members, and the last two 
rows show the average accuracy for each ensemble method 
over all datasets, as well as the average consistency of each 
method.

6.1.1  Results of ARI index

There are a number of interesting observations. Firstly, the 
performance of ACE is better than CO-average and ONCE-
average in five datasets, whereas it performed very closely 

to them on other datasets. In particular, in the Iris, Thyroid 
and Glass datasets, ACE produced the highest results: 0.734, 
0.611 and 0.534 respectively. Secondly, we noticed that ACE 
achieved the same performance as CO, DSCE and MCLA 
algorithms in the Bcw dataset, and that is the highest accu-
rate result for this dataset. Thirdly, we noticed that ACE out-
performed DICLENS in all datasets except in the Soybeans 
dataset, and we will explain later this particular situation 
for DICLENS. However, on average the DSCE algorithm 
achieved the best performance compared with other algo-
rithms, followed closely by the ACE algorithm.

In terms of consistency measured by the standard devia-
tion, ACE was the most consistent algorithm in the thyroid 
dataset compared with the others, and it achieved a very 
close value to the most consistent algorithm in the most 
examined datasets such as the Bcw, Mfeatures and Wine 
datasets. The worst performance for the ACE algorithm 
was on the Soybean dataset, where it achieved a value equal 
to 0.081 compared with other algorithms, but this is still a 
small value.

Looking at the average performance of the generated 
members, we found that all the ensemble methods outper-
formed the average of members in all the datasets, except 
DICLENS which performed lower than the average mem-
bers in the Glass and Mfeatures datasets as well as ACE in 
the Soybeans dataset.

However, the ACE algorithm performed second-best on 
average compared with the others, and it is close to the best 
performing algorithm measured by the ARI index, which is 
DSCE under these experimental settings.
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6.1.2  Results of NMI index

In summary, these results are very similar to the results rep-
resented by ARI explained in the previous paragraph. The 
only difference is that on average the ACE achieved the best 
performance, along with the DSCE algorithm, measured by 
NMI.

Under this experimental set-up, i.e. with a fixed value for 
k for each dataset, ACE does not show a superiority to its 
predecessor DSCE, although it does in comparison to the 
other methods. However, it is worth noting that its prede-
cessor DSCE has an obvious weakness, which is that it can 
only work with fixed k values, which limits its application 
on real-world problems when the true number of clusters, 
k, is not known in advance. That is why we extended DSCE 
to ACE to cope with variable numbers of clusters generated 
by the members. The next experiment is designed to dem-
onstrate and compare their capability.

6.2  Results of ensembles built with random 
variable k

We did not run the DSCE algorithm in this experimental 
set-up as it is not capable of dealing with variable numbers 
of clusters generated by the members in an ensemble. All 
the other methods were run for comparison.

6.2.1  Results of ARI index

Table 4 shows the average performance measured by the 
ARI index along with the standard deviation in each dataset, 
and the average performance of the generated members. The 
results indicate that the ACE algorithm mostly performs bet-
ter than the investigated collection of clustering ensemble 
algorithms. This is particularly true in five datasets, which 
are Wine, Glass, Bcw, Soybean and Ionosphere, whereas in 
Iris, Thyroid and Mfeatures it achieved a result close to the 

Table 2  First experiment results: The average performance and the standard deviation of ten runs for each dataset measured by ARI, including 
the average performance (Ave-P) of each ensemble method across 8 datasets as well as the average consistency (Ave-Con)

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number 
shows the best value in terms of consistency

CO-Average ONCE-Average DSCE ACE DICLENS MCLA Ave-mem

Iris 0.725 ± 0.012 0.726 ± 0.009 0.732 ± 0.021 �.��� ± 0.023 0.680 ± 0.077 0.723 ± 0.012 0.702 ± 0.038

Wine 0.369 ± 0.005 0.369 ± 0.005 �.��� ± 0.025 0.371 ± 0.008 0.369 ± 0.005 0.372 ± 0.002 0.366 ± 0.004

Thyroid 0.559 ± 0.024 0.584 ± 0.044 0.609 ± 0.032 �.��� ± 0.023 0.582 ± 0.044 0.563 ± 0.025 0.473 ± 0.036

Mfeatures 0.315 ± 0.006 �.��� ± 0.005 �.��� ± 0.004 0.314 ± 0.008 0.290 ± 0.069 0.308 ± 0.021 0.293 ± 0.029

Glass 0.509 ± 0.029 0.526 ± 0.030 0.528 ± 0.027 �.��� ± 0.029 0.392 ± 0.123 0.534±0.020 0.501 ± 0.009

Bcw �.��� ± 0.004 0.847 ± 0.003 �.��� ± 0.004 �.��� ± 0.004 0.842 ± 0.005 0.849  ±0.004 0.830 ± 0.021

Soybean 0.547 ± 0.006 0.550 ± 0.015 0.578 ± 0.052 0.532 ± 0.081 �.��� ± 0.046 0.548 ± 0.006 0.566 ± 0.025

Ionosphere 0.163 ± 0.014 0.166 ± 0.008 �.��� ± 0.005 0.165 ± 0.008 0.161 ± 0.009 0.166 ± 0.006 0.149 ± 0.007

Ave-P 0.505 0.511 �.��� 0.514 0.493 0.508 0.443
Ave-C 0.012 0.015 0.017 0.023 0.048 0.012 0.031

Table 3  First experiment results: The average performance and the standard deviation of ten runs for each dataset measured by NMI Index, 
including the average performance (Ave-P) of each ensemble method across 8 datasets as well as the average consistency (Ave-Con)

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number 
shows the best value in terms of consistency

CO-Average ONCE-Average DSCE ACE DICLENS MCLA Ave-mem

Iris 0.751 ± 0.015 0.752 ± 0.012 0.763 ± 0.024 �.��� ± 0.028 0.757 ± 0.008 0.749 ± 0.015 0.737 ± 0.025

Wine 0.428 ± 0.003 0.428 ± 0.003 �.��� ± 0.014 0.429 ± 0.006 0.427 ± 0.004 0.429 ± 0.001 0.428 ± 0.003

Thyroid 0.434 ± 0.047 0.473 ± 0.062 0.480 ± 0.056 �.��� ± 0.042 0.501 ± 0.053 0.418 ± 0.033 0.403 ± 0.026

Mfeatures �.��� ± 0.002 �.��� ± 0.003 �.��� ± 0.002 0.478 ± 0.007 0.468 ± 0.026 0.475 ± 0.009 0.460 ± 0.027

Glass 0.712 ± 0.027 0.725 ± 0.029 0.725 ± 0.021 0.726 ± 0.022 0.617 ± 0.107 �.��� ± 0.017 0.704 ± 0.007

Bcw 0.750 ± 0.005 0.749 ± 0.004 0.750 ± 0.005 �.��� ± 0.005 0.742 ± 0.006 �.��� ± 0.005 0.731 ± 0.023

Soybean 0.717 ± 0.002 0.723 ± 0.024 0.756 ± 0.064 0.712 ± 0.076 �.��� ± 0.056 0.717 ± 0.002 0.736 ± 0.019

Ionosphere 0.122 ± 0.014 0.124 ± 0.009 �.��� ± 0.005 0.123 ± 0.008 0.119 ± 0.009 0.124 ± 0.006 0.108 ± 0.006

Ave-P 0.549 0.557 �.��� �.��� 0.557 0.549
Ave-C 0.015 0.018 0.024 0.024 0.034 0.011
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highest performance in these datasets, which are ONCE in 
Mfeatures and MCLA in the other two datasets. However, 
the result on the Mfeatures dataset indicates that ACE is 
applicable to a large dataset.

The ACE also enhances the performance of the generated 
members in all of the investigated datasets except the Ionosphere 
dataset, which is slightly better than the clustering ensemble 
algorithms; this may be due to random k in these members.

In terms of consistency, ACE was more consistent in two 
datasets, which are Glass and Bcw, while in the Iris, Wine 
and Ionosphere datasets it was the second most consistent 
algorithm compared with other algorithms. On average, 
three algorithms achieved very close results in terms of 
consistency; these are MCLA, ONCE and ACE, which are 
equal to 0.035, 0.037 and 0.038 respectively.

6.2.2  Results of NMI index

Similar experimental results are also observed using the 
NMI index shown in Table 5, where ACE achieved the 
highest performance on three datasets: Iris, Bcw, and Iono-
sphere. However, in Wine, Mfeatures and Glass it achieved 
very close results to the highest performance. In the Soy-
bean dataset the highest performance was achieved by the 
DICLENS algorithm, which also performed very well in 
the Wine and Mfeatures datasets. These results were only 
achieved by the NMI and not the ARI index, which leads us 
to investigate further the number of clusters discovered by 
DICLENS, as it has the ability to discover k automatically. 
This is in contrast to other examined clustering ensemble 
algorithms, in which k is provided by the user in advance.

6.2.3  Identifying the true number of clusters in DICLENS

Figure 4 shows the number of clusters discovered by the 
DICLENS algorithm in all tested datasets over ten runs. 

It is observed that the number of clusters in most datasets 
is unstable and changeable over the ten runs. This has an 
effect on the NMI index, which is an information theory 
based index that measures the shared information between 
two clustering results. Most of the DICLENS results in the 
majority of datasets have fewer clusters than the actual true 
labels in the data.

This means that when we compare the produced clusters 
with the actual clusters, it is clear that the produced clusters 
share more objects with the actual clusters, as each produced 
cluster can share with more than one cluster in the true label 
and that can lead the NMI result to be increased.

For example, it was highlighted in the Wine dataset over 
the ten runs that the discovered k was equal to 2 which is 
less than the number of the true labels, 3. Therefore, the 
NMI measure, as it is based on how much information 
the compared clustering results share, unfairly indicates 
that this result is more accurate than ACE. Moreover, in 
the Soybean dataset the discovered k is equal to 2 in three 
runs, 3 in four runs and 4 in the remaining three runs, 
whereas the number of the true labels is equal to 4. It is 
obvious that fewer clusters shared more objects with more 
true clusters in this case, and the NMI scored higher than 
ARI compared with other clustering results obtained by 
other algorithms. It is observed that when the number of 
clusters in the compared results is less than the number of 
true labels of the data, the NMI measure inappropriately 
indicates that this result is more accurate than others that 
have produced exactly the number of the true clusters.

Another important investigation is on the subject of rela-
tions between the performance of the experimented cluster-
ing ensemble methods and the two types of ensembles being 
explored. It has been demonstrated that on average the ACE 
is more accurate than CO, ONCE, DICLES and MCLA 
algorithms, across the two types of ensemble examined.

Table 4  Second experiment results: the average performance and the standard deviation of ten runs for each dataset measured by ARI, including 
the average performance of each ensemble method across 8 datasets

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number 
shows the best value in terms of consistency

CO-Average ONCE-Average ACE DICLENS MCLA Ave-mem

Iris 0.669 ± 0.065 0.674 ± 0.057 0.696 ± 0.038 0.565 ± 0.009 �.��� ± 0.043 0.605 ± 0.029

Wine 0.324 ± 0.045 0.344 ± 0.060 �.��� ± 0.014 0.367 ± 0.024 0.393 ± 0.008 0.326 ± 0.011

Thyroid 0.252 ± 0.175 0.189 ± 0.121 0.303 ± 0.032 0.308 ± 0.118 �.��� ± 0.119 0.285 ± 0.053

Mfeatures 0.325 ± 0.002 �.��� ± 0.001 0.325 ± 0.005 0.324 ± 0.006 0.277 ± 0.013 0.321 ± 0.005

Glass 0.265 ± 0.006 0.259 ± 0.008 �.��� ± 0.004 0.200 ± 0.048 0.152 ± 0.022 0.258 ± 0.005

Bcw 0.866 ± 0.018 0.860 ± 0.016 �.��� ± 0.014 0.853 ± 0.031 0.864 ± 0.014 0.773 ± 0.037

Soybean 0.534 ± 0.000 0.534 ± 0.000 �.��� ± 0.160 0.575 ± 0.070 0.547 ± 0.039 0.547 ± 0.036

Ionosphere 0.076 ± 0.047 0.037 ± 0.035 �.��� ± 0.034 0.076 ± 0.039 0.061 ± 0.019 0.117 ± 0.014

Ave-P 0.414 0.403 �.��� 0.409 0.433 0.404
Ave-C 0.045 0.037 0.038 0.043 �.��� 0.024
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6.3  Test of improvement significance

We tested the statistical significance of the results of the two 
experiments that we have done in Sects. 6.1 and 6.2 on the 
two types of ensembles.

We applied the Iman-Davenport test [22] to the results 
in Table 2 and Table 4 under the null hypothesis that the 
mean ranks are equal for all the examined algorithms. The 
significant level is set to 0.1 by default. For the first experi-
ment, we can reject the null hypothesis of the mean rank of 
the performance being equal for all algorithms (the Iman-
Davenport test result is equal to 4.4051 which gives a small 
p-value equal to 0.0032, which indicates that there is a sig-
nificant difference). For the second experiment in Table 4, 
the Iman-Davenport test result is equal to 2.5434, which 
gave a small p-value equal to 0.0617, indicating that there 
is a significant difference.

Therefore, we proceeded with the Nemenyi test as a post-
hoc test for a pairwise comparison to discover where the 

differences lie. Figure 5a shows the critical difference diagram 
of the critical level of 0.1 for the results presented in Table 2, 
and the critical difference CD is equal to 2.4218. As we can 
see from the diagram, we have two solid bars which show two 
groups of algorithms in cliques, indicating that there is no 
statistically significant difference between algorithms in the 
same group, whereas there is a significant difference between 
algorithms in the different groups. We observed that, based 
on the average ranks, DSCE was first followed by ACE and 
then MCLA. Moreover, DICLENS was last in this average 
ranking. This demonstrated that there is a significant differ-
ence between ACE and DICLENS and CO algorithms, but 
not between ACE and DSCE, MCLA and ONCE based on 
this experimental set-up.

Figure 5b shows the critical difference diagram of the 
results presented in Table 4. As we can see, there are two 
groups of algorithms in two cliques. The first group includes 
ACE, MCLA, CO and DICLENS, whereas the second group 
includes MCLA, CO, DICLENS and ONCE. The results 
indicate that there is a significant difference between algo-
rithms placed in different groups and in this case between 
the ACE and ONCE algorithms in this experimental set-up, 
although ACE is ranked the first with a considerable distance 
from the second algorithm MCLA.

7  Analysis of parameters and time 
complexity

There are two parameters in ACE which are �1 and �2 . �1 , as 
stated previously, is the minimum similarity allowed between 
initial clusters, whereas �2 is the relative membership cer-
tainty threshold for classifying objects in candidate clusters.

To find out how these parameters can affect the quality of 
the final clustering result of the ACE, we analyse them with 

Table 5  Second experiment results: the average performance and the standard deviation of ten runs for each dataset measured by NMI, including 
the average performance of each ensemble method across 8 datasets

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number 
shows the best value in terms of consistency

CO-Average ONCE-Average ACE DICLENS MCLA Ave-mem

Iris 0.753 ± 0.017 0.749 ± 0.027 �.��� ± 0.032 0.753 ± 0.026 0.755 ± 0.037 0.706 ± 0.012

Wine 0.406 ± 0.010 0.415 ± 0.022 0.421 ± 0.014 �.��� ± 0.018 0.415 ± 0.005 0.410 ± 0.010

Thyroid 0.293 ± 0.077 0.250 ± 0.066 0.308 ± 0.050 0.331 ± 0.040 �.��� ± 0.048 0.302 ± 0.035

Mfeatures 0.486 ± 0.002 0.487 ± 0.002 0.490 ± 0.008 �.��� ± 0.005 0.464 ± 0.007 0.484 ± 0.005

Glass 0.441 ± 0.018 �.��� ± 0.016 0.430 ± 0.016 0.389 ± 0.032 0.307 ± 0.032 0.423 ± 0.011

Bcw 0.773 ± 0.024 0.765 ± 0.021 �.��� ± 0.019 0.759 ± 0.032 0.770 ± 0.019 0.687 ± 0.028

Soybeans 0.710 ± 0.000 0.710 ± 0.000 0.722 ± 0.127 �.��� ± 0.070 0.716 ± 0.018 0.734 ± 0.020

Ionosphere 0.043 ± 0.035 0.023 ± 0.012 �.��� ± 0.026 0.043 ± 0.029 0.030 ± 0.013 0.099 ± 0.016

Ave-P 0.488 0.481 0.495 0.496 0.477 0.480
Ave-C 0.023  0.021 0.036 0.032 0.022 0.017
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Fig. 4  Number of clusters produced by DICLENS algorithm for each 
dataset in ten runs for the result in the second experiment
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the two types of ensembles as we did in Sect. 5, using Wine, 
Mfeatures and Glass datasets as an illustration. For the sec-
ond type of ensemble, we allow for �1 to take a higher value 
than its value in the first experiment, due to the fact that 
when the members have different k from one another they 
are more dissimilar than when they have fixed k. Therefore �1 
can take a value between 0.5 and 0.9 in the first experiment, 
whereas in the second experiment it takes a value between 
0.3 and 0.9.

However, in the first experiment, we ran ACE with a dif-
ferent initial values of �1 , and each one of them with all the 
possible values for �2 ten times. We firstly ran the k-means 

algorithm to generate 10 members all with the fixed k equal 
to the true number of classes for each dataset.

Figure 6 illustrates the effect of different values of �1 
and �2 on the average performance of the ensemble built by 
members with a fixed k, this average is for ten runs measured 
by the ARI index. We noticed that on the Wine dataset the 
average performance of ADCE is the same for all values of 
�1 and �2 ; this indicates that the ACE is not sensitive to its 
parameters.

In the Mfeatures dataset, the average performance of 
ACE is slightly improved when �1 is equal to 0.8 and 0.9. 
It is noticed that all the values of �2 have the same perfor-
mance with all the values of �1 . The average performance 
of ACE in the Glass dataset is the same when �1 is equal 
to 0.5 and 0.6, which is slightly improved when �1 is equal 
to 0.7 and 0.9; when it is equal to 0.8 it reaches its highest 
performance.

It is noticed that all values of �2 achieved the same per-
formance with all values of �1 in all the examined datasets, 
indicating that the different values of �2 have no effect on 
the performance of the ACE when it is built with members 
that have fixed k.

On the other hand, Fig. 7 illustrates the effect of the dif-
ferent values of two parameters on the average performance 
of the ACE ensemble built with members having a random 
variable k. We can see that in the Wine dataset the ACE 
performance is decreased a little when �1 is equal to 0.7 
in which the performance remains stable with 0.8 and 0.9 
in all possible values of �2 . In the Mfeatures dataset, the 
ACE performance is slightly improved when �1 is less than 
0.7. However, in the Glass dataset the ACE performance 
fluctuates with a slight increase to reach a value of 0.6 and 
then a slight drop when �1 is equal to 0.7 after a stable per-
formance. It is noticed that with all the possible values of 
�2 that the average performance of ACE remains the same 
in almost all cases for �1 . Therefore, the results suggested 
that �2 has no effect on the performance of ACE, and �1 has 
a slight effect on ACE performance. A value between 0.6 
and 0.8 is better for an ensemble built with fixed k, whereas 
a value between 0.3 and 0.5 is better for an ensemble built 
with different k and when �2 is between 0.5 to 0.9, as these 
values have no effect on the ACE performance.

The time complexity for the worst-case scenario of 
ACE algorithm is estimated to be equal to O(k2

m
(km + nu)) , 

where km is the total number of clusters in all the generated 
members, and nu is the number of uncertain objects which 
is in the worst case scenario equal to (nu = n − k) , and k is 
the number of pre-defined clusters for the dataset.
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8  Conclusion

In this paper, we have proposed a new clustering ensemble 
algorithm, named the Adaptive Dual-Similarity Clustering 
Ensemble, which is capable of dealing with different and vari-
able numbers of clusters generated by the members of the same 
dataset. The novelty is the consensus function that measures the 
similarity between the clusters themselves, and between clusters 
and their assigned objects. It works in three stages. The first is 
the transformation stage, where the initial clusters are trans-
formed into binary vector representation, and the second stage 
calculates the similarity between initial clusters; this captures 
the relationship between clusters and merges the most similar 
clusters to produce the intended k consensus clusters. The final 

stage identifies the object’s certainty of being assigned in the 
initial clusters. It focuses on the cluster quality and resolves the 
uncertain objects by assigning them to a cluster in a way that 
has a minimum effect on its quality. We tested our proposed 
method on eight real-world benchmark datasets. The results 
show that on average our proposed ensemble algorithm outper-
forms the state-of-the-art cluster ensemble algorithms, which 
include the MCLA, CO, ONCE and DICLENS algorithms. 
There are a number of advantages to the proposed method; 
firstly, it avoids relabelling problems when aggregating multiple 
clustering results. Secondly, it utilises the information of simi-
larity between clusters and membership of objects to clusters to 
generate consensus clusters. Thirdly, it is able to deal with the 
clustering members that have different numbers of clusters and 
convert them exactly or very closely to the true number of clus-
ters in the final clustering result. Finally and more noticeably, it 
is more efficient–instead of calculating the similarity between 
objects like others do, it calculates the similarity between the 
initial clusters of the ensemble members, which is much smaller 
than the number of objects, hence the proposed method has the 
potential to be applied in big data clustering problems.

Further work should include investigating the different 
factors affecting the ensemble performance, such as member 
diversity and quality. This might help to identify a suitable 
selective strategy to be incorporated into ACE in order to 
improve its performance further.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

Appendix A: An illustrating example 
for the ACE

We illustrate how the ACE works with a simple exam-
ple. Suppose we have a dataset X that contains 10 objects, 
X = {x1, x2,… , x10} and that we have generated 3 mem-
bers ( m = 3 ), each of which has 3 clusters ( k = 3 ). We set 
�1 = 0.8 , �2 = 0.5 , and k = 3 , and we run the ACE algorithm 
in three stages as follows:

Stage 1: Transformation. We transform the members into 
a binary vector representation as shown in Figure 7, in which 
each cluster in the generated member is represented by a 
binary vector with 9 binary vectors in total. For example, 
vector c2

3
 is the third cluster in the second member m2 . Four 

objects x1, x2, x6, x9 were assigned to cluster c2
3
 , so we set 

their value equal to 1, whereas for other objects in c2
3
 we set 

a value of 0. These vectors are the input of the second stage.
Stage2: Generating Consensus Cluster Stage. In this 

stage, we first measure the similarity between the initial 
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clusters, and generate the similarity matrix Sc as shown in 
Table 6. Then we perform the merging process as follows:

Firstly, we set �1 equal to 0.8. Looking at Sc , we find that 
c1
1
 and c3

2
 are identical and have a similarity greater than �1 

with c2
2
 , so we merge them by replacing them with �⃖�c1 , which 

contains the summation of their object membership. In addi-
tion, c1

2
 have a similarity greater than �1 with c2

3
 and c3

1
 , so we 

merge them too as �⃖�c2 . We also merge c1
3
 and c2

1
 as �⃖�c3 . As a 

result, we gain four clusters, �⃖c1 , �⃖c2 , �⃖c3 and �⃖c4 in the updated 
�1 , as shown in Table 7. Then we recalculate the similarity 
measures Sc for the updated �1 as shown in Table 8.

Based on �1 , we find that there are no more similar clus-
ters to be merged in the updated similarity matrix Sc . For the 
third step in stage 2, we first check the number of clusters 
( � ) in �1 , and we find that � = 4 , which is larger than k. Then 
we apply Option B by measuring the cluster similarity Sc 
for clusters in �1 as shown in Table 9 and we adapt �2 to 
the maximum similarity in Sc , which is equal to 0.764. We 
merge �⃖c3 and �⃖c4 and we updated �1 as shown in Table 12. As 
a result we obtain � = k = 3 . Then we calculate the mem-
bership similarity Sx as shown in Table 10, and we move to 
stage 3

Stage 3: Enforce Hard Clustering. This stage start by first 
identifying totally certain and certain objects. So, based on 
�2 , we identify x1, x2, x4, x5, x7, x8, x9 and x10 as totally certain 
objects, while we identify x3 and x6 as certain objects. Then 
we assign them to the candidate cluster that has a maximum 
membership similarity among other candidates, and Sx is 
updated as shown in table 11.

Then we check whether Sx contains any uncertain objects 
and it does not, so we produce the final clustering result 
P∗ = {2, 2, 3, 3, 3, 1, 1, 1, 1, 2}.

Fig. 7  An illustrative example of three clustering members for dataset 
X of 10 objects, and the transformation from members into a binary 
matrix representation

Table 6  The Similarity Matrix S
c
 , which is the result of measuring the similarity between initials cluster vectors in our illustrative example (Fig-

ure 7) using S
c
 measure. − − − cells indicates that this similarity is not calculated as they are placed in the same member

c
1

1
c
1

2
c
1

3
c
2

1
c
2

2
c
2

3
c
3

1
c
3

2
c
3

3

c
1

1
– – – −0.535 0.802 −0.250 −0.667 1 −0.408

c
1

2
– – – −0.429 −0.429 0.802 0.802 −0.535 −0.327

c
1

3
– – – 1 −0.429 −0.535 −0.089 −0.535 0.764

c
2

1
−0.535 −0.429 1 – – – −0.089 −0.535 0.764

c
2

2
0.802 −0.429 −0.429 – – – −0.535 0.802 −0.327

c
2

3
−0.250 0.802 −0.535 – – – 0.583 −0.250 −0.408

c
3

1
−0.667 0.802 −0.089 −0.089 −0.535 0.583 – – –

c
3

2
1 −0.535 −0.535 −0.535 0.802 −0.250 – – –

c
3

3
−0.408 −0.327 0.764 0.764 −0.327 −0.408 – – –

Table 7  The result of �
1
 after we merge the most similar clusters, 

which are �⃖c1 = {c1
1
+ c

2

2
+ c

3

2
} , �⃖c2 = {c1

2
+ c

2

3
+ c

3

1
} , �⃖c3 = {c1

3
+ c

2

1
} 

and �⃖c4 = {c3
3
}

�⃖c1 �⃖c2 �⃖c3 �⃖c4

x
1

0 3 0 0
x
2

0 3 0 0
x
3

0 1 2 0
x
4

0 0 2 1
x
5

0 0 2 1
x
6

2 1 0 0
x
7

3 0 0 0
x
8

3 0 0 0
x
9

3 0 0 0
x
10

0 3 0 0

Table 8  The updated Similarity Matrix S
c
 after the first step of the 

merging process is performed, which is the result of measuring the 
similarity between four clusters in �

1
 (in Table 7)

�⃖c1 �⃖c2 �⃖c3 �⃖c4

�⃖c1 – −0.408 −0.535 −0.408
�⃖c2 −0.408 – −0.218 −0.500

�⃖c3 −0.535 −0.218 – 0.764
�⃖c4 −0.408 −0.500 0.764 –
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Assume that we set �2 = 0.9 , which is a high value. The 
number of clusters ( nbcls ) in Sx that contain at least one 
certain object is equal to 2. As there is no further merg-
ing process to be done, we calculate Sx , which is shown in 
Table 11. Then we implement the elimination process that 
is described in Option B (steps i to iv). So, for each cluster 
in Sx , we calculate their certainties (using equation 8), and 
we obtain 𝜌 �⃖c1 = 0.9 , 𝜌 �⃖c2 = 0.85 , 𝜌 �⃖c3 = 0.6 , 𝜌 �⃖c4 = 0.3 . We 
rank these certainties in descending order and we obtain 
{0.9, 0.72, 0.6, 0.3} . Then we adapt �2 to the maximum cer-
tainties of the kth clusters in this ranked list, which is equal 

0.6. As result, we identify �⃖�c1, �⃖�c2 and �⃖�c3 as candidate clusters 
and we eliminate �⃖�c4 . We update Sx accordingly as shown in 
Table 12.

Then we move onto stage 3, and based on �1 we iden-
tify x1, x2, x7, x8, x9 and x10 as totally certain objects, and 
we identify other objects as uncertain objects. We measure 
the quality of the candidate clusters using equation 12 as 
follows:

Then, we iterate on uncertain objects, and we proceed with 
steps (a) to (e). The detailed results of these steps for object 
x3 are as follows:

(a) For each candidate cluster we recalculate its quality by 
including this time x3 : 

(b) We compare for each cluster the original quality and 
the current quality: 

Var( �⃖�c1) =
1

3
((1 − 0.9)2 + (1 − 0.9)2 + (1 − 0.9)2) = 0.01

Var( �⃖�c2) =
1

3
((1 − 0.72)2 + (1 − 0.72)2 + (1 − 0.72)2) = 0.0784

Var( �⃖�c3) = 0

Var( �⃖�c1) =
1

4
((1 − 0.9)2 + (1 − 0.9)2 + (1 − 0.9)2

+ (0 − 0.9)2) = 0.21

Var( �⃖�c2) =
1

4
((1 − 0.72)2 + (1 − 0.72)2 + (1 − 0.72)2

+ (0.3 − 0.72)2) = 0.1029

Var( �⃖�c3) =
1

1
((0.6 − 0.6)2) = 0

Var( �⃖�c1) = 0.21 − 0.01 = 0.2,

Var( �⃖�c2) = 0.1029 − 0.0784 = 0.0245,

Var( �⃖�c3) = 0 − 0 = 0

Table 9  The result of updating 
�
1
 after we merge �⃖c3 and �⃖c4 

by summing their objects 
membership similarity and 
result in �⃖c3

�⃖c1 �⃖c2 �⃖c3

x
1

0 3 0
x
2

0 3 0
x
3

0 1 2
x
4

0 0 3
x
5

0 0 3
x
6

2 1 0
x
7

3 0 0
x
8

3 0 0
x
9

3 0 0
x
10

0 3 0

Table 10  The results of S
x
 after 

no more merging step is needed
�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0.33 0.67
x
4

0 0 1
x
5

0 0 1
x
6

0.67 0.33 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0

Table 11  The results of 
assigning totally certain and 
certain objects to the candidate 
cluster

�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0 0.6
x
4

0 0 1
x
5

0 0 1
x
6

0.6 0 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0

Table 12  The result of S
x
 after 

we perform the second stage
�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0.3 0.6
x
4

0 0 0.6
x
5

0 0 0.6
x
6

0.6 0.3 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0
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(c) We assign x3 to the cluster that has a mini-
mum effect on its quality, that is done as follows: 
min{0.2, 0.0245, 0} = 0. So, we assign x3 to cluster �⃖�c3.

(d) We increase the size of �⃖�c3 by 1.
(e) We update the original quality of �⃖�c3 to be equal to the 

current quality.

After all the uncertain objects are assigned, we pro-
duce the final clustering result, which is : P∗ = {2, 2, 3, 3, 
3, 1, 1, 1, 1, 2}.
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