
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-017-0756-7

ORIGINAL ARTICLE

Clustering ensemble method

Tahani Alqurashi1 · Wenjia Wang1

Received: 28 September 2015 / Accepted: 20 October 2017
© The Author(s) 2018

Abstract
A clustering ensemble aims to combine multiple clustering models to produce a better result than that of the individual
clustering algorithms in terms of consistency and quality. In this paper, we propose a clustering ensemble algorithm with a
novel consensus function named Adaptive Clustering Ensemble. It employs two similarity measures, cluster similarity and
a newly defined membership similarity, and works adaptively through three stages. The first stage is to transform the initial
clusters into a binary representation, and the second is to aggregate the initial clusters that are most similar based on the
cluster similarity measure between clusters. This iterates itself adaptively until the intended candidate clusters are produced.
The third stage is to further refine the clusters by dealing with uncertain objects to produce an improved final clustering result
with the desired number of clusters. Our proposed method is tested on various real-world benchmark datasets and its perfor-
mance is compared with other state-of-the-art clustering ensemble methods, including the Co-association method and the
Meta-Clustering Algorithm. The experimental results indicate that on average our method is more accurate and more efficient.

Keywords Clustering ensemble · K-means · Similarity measurement · Machine learning · Data mining

1 Introduction

In the context of machine learning, an ensemble is generally
defined as “a machine learning system that is constructed
with a set of individual models working in parallel, whose
outputs are combined with a decision fusion strategy to pro-
duce a single answer for a given problem” [44]. The ensem-
ble method was firstly introduced and well-studied in super-
vised learning fields. Due to its successful applications in
classification tasks, in the past decade or so, researchers have
attempted to apply the same paradigm to unsupervised learn-
ing fields, particularly clustering problems, for two obvious
reasons. Firstly, in unsupervised learning, there is normally
no prior knowledge about the underlying structure or about
any particular properties that we want to find or about what
we consider good solutions for the data [23, 38]. Differ-
ent clustering algorithms may produce different clustering
results for the same data by imposing a particular structure

onto the data. Secondly, there is no single clustering algo-
rithm that can perform consistently well for different prob-
lems and there are no clear guidelines to follow for choosing
individual clustering algorithms for a given problem.

Conceptually speaking, a clustering ensemble, also
referred to as a consensus ensemble or clustering aggrega-
tion, can be simply defined in the same manner as for classi-
fication, that is, the process of combining multiple clustering
models (partitions) into a single consolidated partition [36].
In principle, an effective clustering ensemble should be able
to produce more consistent, reliable and accurate clustering
results compared with the individual clustering algorithms.

However, the transmission from supervised learning to
unsupervised learning is not as straightforward as this con-
ceptual definition because there are some unique and chal-
lenging issues when building an ensemble for clustering.
Out of these issues, the key and most difficult one is how
to combine the clusters that are generated by the individual
clustering models (members) in an ensemble, as this cannot
be done through simple voting or averaging as in classifica-
tion–it requires more complicated aggregating strategies and
mechanisms. There is no effective and scalable consensus
function in practical application yet, although many have
been proposed to date.

 * Tahani Alqurashi
 toand2@hotmail.com

 Wenjia Wang
 wenja.wang@uea.ac.uk

1 School of Computing Science, University of East Anglia,
Norwich Research Park, Norfolk, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-017-0756-7&domain=pdf

 International Journal of Machine Learning and Cybernetics

1 3

In this paper, we propose a three-staged adaptive consen-
sus function based on two similarity measures and use it to
build a clustering ensemble framework, named the Adaptive
Clustering Ensemble (ACE). The first stage is to transfer the
members into binary representation, the second stage is to
measure the similarity between the initial clusters and adap-
tively merge the most similar ones to produces k consensus
clusters. The third stage is to identify the candidate clusters
that contain only certain objects and to calculate their qual-
ity. The final clustering result is produced by an iterative
process assigning the uncertain objects to a cluster in a way
that has a minimum effect on its quality.

This is in fact an improved version of our earlier work [2],
where we developed a Dual-Similarity Clustering Ensemble
method (DSCE). The DSCE algorithm has been improved
in three aspects. Firstly, the stability of the DSCE has been
improved by producing the final clustering result with the
pre-defined k, even when the members have a different num-
ber of clusters. Secondly, the effect of its two parameters (�1
and �2) on the quality of the final result has been reduced by
applying an adaptive strategy for the value for these thresh-
olds. Finally, the object neighbourhood similarity for the
uncertain objects has been taken into account, in order not
to lose any information when we eliminate an inappropriate
cluster.

The rest of the paper is organised as follows. Section 2
introduces the clustering ensemble problem and the general
clustering ensemble framework. Section 3 summarises the
related work, while Sect. 4 details the proposed clustering
ensemble method with its different stages. Section 5 dis-
cusses the experimental studies and Sect. 6 shows the results
on real datasets. Section 7 presents the parameter analysis
and the time complexity analysis of the proposed method.
Finally, conclusions are given in Sect. 8.

2 Clustering ensemble methods

2.1 Clustering ensemble representation

For a dataset of n objects: X = {x1, x2,… , xn} , let
Pq = {c

q

1
, c

q

2
,… , c

q

kq
} be a clustering result of kq clusters pro-

duced by a clustering algorithm as qth partition, so that
c
q

i
∩ c

q

j
= � and ∪kq

j=1
c
q

j
= X . A clustering ensemble � can

then be built with m partitions � = {P1,P2,P3,… ,Pm} and
a consensus func t ion F , and deno ted by
�(F,�) = F(P1,P2,P3,… ,Pm) = F(�) . It should be noted
that the members may not necessarily have the same number
of clusters in their partitions, that is, kq may not be equal to
a pre-set value k.

The task of a clustering ensemble is to find a parti-
tion P∗ of dataset X by combining the ensemble members
{P1,P2,P3,… ,Pm} with F without accessing the original
features, so that P∗ is probably better in terms of consistency
and quality than the individual members in the ensemble.

2.2 A generic clustering ensemble framework

A common clustering ensemble framework is represented
in Figure 1, which consists of three components: ensemble
member generation, consensus function and evaluation. As
can be seen, the input of the clustering ensemble framework
is a given dataset to be clustered, and the output is the final
clustering result of this dataset.

2.2.1 Ensemble member generation

This is the first phase in the clustering ensemble frame-
work, and the main aim here is to generate m clustering
models as the members for building the ensemble. In prin-
ciple, any clustering algorithm could be used here as long
as it is suitable for the dataset. In addition, the generated
members should be different to each other as much as pos-
sible, because a high level of diversity among the members
means that they have captured different information about
the data and can potentially help to improve the performance
of the ensemble. Thus, it is important to apply one or sev-
eral appropriate generation techniques to achieve reasonable
quality as well as diversity.

Some researchers have selected techniques based on the
type of applications. For example, for high dimensional
data, Strehl and Ghosh [36] used random feature sub-
spaces and members are generated for each subspace. They

Fig. 1 A generic clustering
ensemble framework

International Journal of Machine Learning and Cybernetics

1 3

also generated members by selecting different subsets of
objects for each member, and they called this technique
object distribution. Fern and Brodley [8] generated mem-
bers based on random projections of objects into different
subspaces.

The resampling method was also used by [3, 30, 31]. In
particular Minaei-Bidgoli et al. [30] used bootstrap tech-
niques with a random restart of k-means, while Monti
et al. [31] used bootstrap techniques with different cluster-
ing algorithms, including k-means, model-based Bayesian
clustering and self-organising maps. Moreover, Ayad and
Kamel [3] used the bootstrap resampling in conjunction with
k-means to generate the ensemble members.

Arguably, the most commonly used clustering algorithm
for generating members is k-means because of its simplic-
ity and low computational complexity [4, 10–12, 20, 39].
For instance, Fred and Jain [11] used the k-means clustering
algorithm with random initialisations of cluster centres and a
randomly chosen k (number of clusters) from a pre-specified
interval for each member, and they used a large k value in
order to obtain a complex structure within the ensemble
members. They also ran k-means with a fixed k to compare
the two generation techniques, and they found that mem-
bers with a random k are more robust than other members.
Dimi-triadou et al. [6] and Sevillano et al. [34] applied fuzzy
clustering algorithms, and in particular c-means in order
to generate soft clustering members, while Hore et al. [14]
applied fuzzy k-means.

Strehl and Ghosh [36] used a graph-clustering algorithm
with different distance functions for each member. Topchy
et al. [40] used a weak clustering algorithm, which produces
a clustering result that is slightly better than a random result
in terms of accuracy due to the fact that it uses a random
projections on one dimension and splitting the data into a
random number of hyperplanes. Iam-on et al. [19] exam-
ined different techniques, which included a multiple run
of k-means with a fixed k for each member, and randomly
chosen k from an interval, where the maximum k was equal
to

√
n . Furthermore, Iam-On et al. [21] applied different

generation techniques to categorical data, and they ran a
k-mode algorithm with full space and random subspace with
a fixed k and random k. They found that these two techniques
allowed their ensemble method to achieve high performance,
compared to the k-mode clustering algorithm, as well as sev-
eral other ensemble method such as methods proposed by
Strehl and Ghosh [36].

Another strategy is to use a different clustering algorithm
for each member [12, 45] with a hope that different algo-
rithms may generate more diverse members. Yi et al. [45]
used some well-known clustering algorithms, such as hier-
archical clustering and k-means. Gionis et al. [12] used the
single, average, ward and complete linkage methods and
k-means to generate ensemble members.

In summary, as can be seen, there is no single clustering
algorithm that is universally used and there are no generally
agreed criteria for selecting the most suitable ones. In this
case, it is better to apply the principle of Occam’s razor [5]
and choose the one with the greatest simplicity and effi-
ciency, if there is no prior specific knowledge on a given
problem. This is why we chose k-means over others in our
experiments in this study.

2.2.2 Consensus function

A consensus function combines the outputs of the members
{P1,P2,P3,… ,Pm} to obtain the final clustering result P∗ ,
and can directly determine the quality of the final solution.
Therefore, it is considered the most important component
in an ensemble. A number of existing consensus functions
have been reviewed by Vega-Pons and Ruiz-Shulcloper [41]
and they are classified into two main approaches: object co-
occurrence and median partition.

The object co-occurrence approach: It firstly computes
the co-occurrence of objects in the members and then deter-
mines their cluster labels to produce a consensus result.
Simply, it counts the occurrence of an object in one cluster,
or the occurrence of a pair of objects in the same cluster,
and generates the final clustering result by a voting process
among the objects. Such methods are the Relabelling and
Voting method [4, 7, 47], the Co-association method [11]
and the Graph-based method [9, 36].

The median partition approach: This treats the con-
sensus function as an optimisation problem of finding the
median partition with respect to the cluster ensemble. The
median partition is defined as “the partition that maximises
the similarity with all partitions in the clustering ensemble”
[41]. Examples of this approach include the Non-Negative
Matrix Factorisation based method [26], the Genetic-based
method [28, 46] and the Kernel-based method [42].

Vega-Pons and Ruiz-Shulcloper [41] pointed out that
consensus functions were primarily studied on a theoretical
basis, and as a result many consensus functions based on the
median partition approach were proposed in the literature,
whereas only a few studies focused on the object co-occur-
rence approach. Therefore we chose to develop a consensus
function based on the object co-occurrence approach, and
for this reason, we will only review the work related to this
approach in Sect. 3.

2.2.3 Evaluation

In this phase, the aim is to evaluate the quality of the final
clustering result. Evaluating the quality of clustering results
is a non-trivial task as there is no universally agreed standard
on what constitutes good quality clusters in the first place.
There are a number of aspects that need to be considered

 International Journal of Machine Learning and Cybernetics

1 3

when evaluating the clustering result, but in practice, the
most common ones are probably accuracy and consistency.
For measuring accuracy, there are many external validation
indexes or measures that can be used to evaluate the accu-
racy, but the most common ones used in clustering ensemble
research are the Adjust Rand Index (ARI) [18] and the Nor-
malised Mutual Information (NMI) [36]. For consistency,
it is usually represented by the average of a performance
measure and its variance (e.g. standard deviation) [1] from
repeated runs with different experimental set-up conditions.

3 Related work

The most popular method in the object co-occurrence
approach compares the cluster association of each object
and produces a pairwise object similarity matrix, called an
adjusted similarity matrix [36], consensus [31], agreement
[37] and Co-association matrix [11], then the final partition
is obtained by applying the hierarchical clustering algorithm.
But, perhaps, any similarity-based clustering algorithm can
be applied to this matrix.

The Co-association method (CO) avoids the label cor-
respondence problem by mapping the ensemble members
onto a new representation in which the similarity matrix is
calculated between a pair of objects in terms of how many
times a particular pair is clustered together in all ensemble
members [11]. Basically, CO calculates the percentage of
agreement between ensemble members in which a given pair
of objects is placed in the same cluster as follows:

Where xi and xj are objects, Pm is a partition, and � is defined
as:

In Fred and Jain [11], the final partition is obtained by apply-
ing Single and Average linkage hierarchical clustering algo-
rithms to the Co-association matrix. The CO seems ideal
for collecting all the information available in the clustering
ensemble, but in fact it takes into consideration just the pair-
wise relationship between objects in the ensemble members.
Strehl and Ghosh [36] proposed the Cluster-based Similar-
ity Partitioning Algorithm (CSPA), where also the object
pairwise similarity was taken into account by representing it
as a fully connected graph, where nodes correspond to data
objects and edge weights to their similarities. The final clus-
tering results are obtained by applying the METIS algorithm
[24] to the constructed graph.

CO(xi, xj) =
1

M

M∑

m=1

�(Pm(xi),Pm(xj))

� =

{
1, if xi and xj are placed in the same cluster.

0, otherwise.

An alternative method to the object pairwise similarity
matrix is to consider the association between object and
cluster, which is formulated as a binary membership matrix
[9, 36]. Fern and Brodley [9] represent this object-cluster
membership matrix as a bipartite graph, which is called a
Hybrid Bipartite Graph Formulation (HBGF) algorithm. In
this graph, there are two different types of nodes; one rep-
resents an object and the other represents a cluster, and an
edge exists between a cluster and an object belonging to that
cluster. Then a spectral clustering algorithm was applied to
obtain the final partition. Strehl and Ghosh [36] proposed
the hypergraph partitioning algorithm (HGPA), and the
Meta-CLustering Algorithm (MCLA). The hypergraph is
constructed in HGPA and MCLA, where each cluster is rep-
resented as a hyperedge. HGPA directly partitions the hyper-
graph by cutting a minimal possible number of hyperedges
into k connected nodes of approximately the same size using
the hypergraph partitioning package HMETIS [24]. MCLA
firstly defines the similarity between pair clusters in terms
of the shared objects between them, using the extended Jac-
card index [35]. The graph is then constructed where nodes
represent clusters and the edges represent the similarity
between pairs of clusters. The final partition, ‘meta-clus-
tering’, is obtained using METIS [24]. The complexity of
CSPA, HGPA and MCLA is estimated as O(kn2m),O(knm) ,
and O(k2nm2) respectively [36].

A further development by Iam-On et al. [20] aimed to
redefine the Co-association matrix to also take into account
the relationship between clusters estimated from a link net-
work model, and to interpret this matrix as feature vectors
or a Bipartite graph. It used an ordinary clustering algorithm
onto the new similarity matrix in order to generate the final
cluster result.

Another method named ‘Division Clustering Ensemble’
(DICLENS) was developed by Mimaroglu and Aksehirli
[29], based on minimum Spanning Tress Similarity, where
each vertex represents a cluster and the edge represents
the inter-cluster similarity between clusters. They are, in
fact, redefining the co-association matrix to be calculated
between two objects placed in two different clusters, which
represents the inter-cluster similarity. They then cut edges
with the lowest similarity to produce disjoining meta-clus-
ters, which represent the final clusters where each object is
assigned to the most associated cluster. It should be noted
that they ran the experiment just once using only manually
generated members. It is widely known that the generated
members have a direct and strong influence on the ensem-
ble performance and, in many real-world applications, it is
impossible or impractical to generate clusters manually, so
then a clustering algorithm has to be employed to generate
clustering members automatically.

Recently, Alqurashi and Wang [1] highlighted a prob-
lem relating to the uncertain agreement between members.

International Journal of Machine Learning and Cybernetics

1 3

A new method named ‘Object-Neighbourhood Clustering
Ensemble’ (ONCE) was proposed by taking into account
the neighbourhood relationship between object pairs, as
well as the relationship between the pair itself in the simi-
larity matrix calculation. The uncertain agreement prob-
lem was also tackled by Huang et al. [17], who applied a
sparse graph representation and the probability trajectory
analysis to propose two clustering ensemble algorithms,
named ‘Probability Trajectory accumulation’ (PTA) and
‘Probability Trajectory based graph partitioning’ (PTGP).
In both algorithms, they first constructed K-elite neighbour
sparse graph (K-ENG) and they calculated the probability
trajectory similarity matrix. The random walk process was
performed on the K-ENG graph to derive a dense similar-
ity matrix based on the probability of random walkers. In
PTA they applied hierarchal clustering algorithm to obtain
the final clustering results, whereas in PTGP they applied
the Tcut algorithm [27].

One of the main drawbacks of clustering ensemble
methods, based on object pairwise similarity, is that they
do not scale very well for a large dataset, as they work at
the object level, and they do not capture the relationship
between clusters. However, a clustering ensemble method
based on the similarity between clusters, such as MCLA, is
much faster than CO and CSPA. Another point is that most
of the clustering ensemble approaches transform the initial
clusters produced by the member into a new representa-
tion, and then produce the final clustering result by clus-
tering this new representation with an ordinary clustering
algorithm. When applying the same representation to a
different clustering algorithm, their performance can vary
considerably and it can be difficult to decide which clus-
tering algorithm is the best one to use. Huang et al. [16]
also highlighted this limitation and they proposed an algo-
rithm named ‘Ensemble Clustering using Factor Graph’
(ECFG), which redefines the ensemble clustering problem
into a binary linear programming problem and they solved
this optimisation problem with a factor graph. ECFG first
estimates the reliability of the clustering decisions of the
members using an EM algorithm, and it has the ability to
automatically generate the number of clusters in the final
clustering result. In their experiment, Huang et al. [16]
did not report the estimated number of clusters for each
tested datasets and they used NMI as an evaluation meas-
ure, which is suitable for comparing two partitions that
have equal number of clusters. We also think that they
should validate their results using more than one evalua-
tion measure.

Therefore, there is a gap in clustering ensemble meth-
ods with regard to considering the relationship between
initial clusters, as well as between clusters and objects,
and this is the motivation of this study.

4 The adaptive clustering ensemble (ACE)

As the consensus function plays a key role in a clustering
ensemble, directly influencing its performance, our aim is
to design a consensus function that is more effective and
efficient. The main idea of the proposed consensus func-
tion is that, instead of calculating the similarity between a
pair of objects (the object pairwise similarity) as in the CO
method, we calculate the similarity between pairs of clusters
generated by the members and we then derive the member-
ship similarity between newly formed clusters and objects.
The rationale is that we have already generated clusters in
the first phase of the ensemble process, so it is obviously
more efficient and possibly more effective to consider just
the similarity between the initial clusters instead of object
similarity. We can then extend the concept of shared-neigh-
bour information from the object level to the cluster level.
Therefore, two clusters are considered to be well-associated
if their objects resemble one another to a certain degree. If
two clusters have a high proportion of objects in common
as determined by the ensemble members, they should be
merged, whereas if two clusters have a smaller proportion
of objects in common, they should be kept separated.

However, instead of following some of the single cluster-
ing algorithm procedures in building a consensus function,
we are using the generated members as initial clusters of the
dataset and the final clustering is generated in three stages,
as shown in Fig. 2. The first stage is to transfer the members
into a binary vector representation. The second is to generate
the consensus clusters, where the similarity between initial
clusters is measured and the predefined k clusters are pro-
duced. The third stage is to solve uncertain objects, where
firstly a certain object is assigned to the cluster that has a
higher membership value and then the uncertain objects are
classified to the cluster in a way that has a minimum effect
on the cluster quality. The developed algorithm is called the
Adaptive Clustering Ensemble (ACE).

The following sections present the definitions of the
similarity measures and terminologies and then explain in
detail how the algorithm works in three stages.

4.1 Definitions of similarity measures

We define two similarity measures: similarity between clus-
ters and similarity between objects and clusters. The latter is
measured by the degree of membership by which an object
belongs to a cluster, hence it is called membership similar-
ity. Before defining these similarity measures, we introduce
some notations used throughout this paper as follows:

1. Sc: The cluster similarity measure between two clus-
ters.

 International Journal of Machine Learning and Cybernetics

1 3

2. Sx: The membership similarity measure.
3. θ1: The membership matrix, where the columns of this

matrix correspond to clusters and the rows correspond
to objects.

4. δ: A binary membership value of an object to a particu-
lar cluster, � ∈ {0, 1}.

5. α1: A threshold for merging clusters, its value is deter-
mined based on Sc.

6. α2: A certainty threshold for placing an object into a
cluster, its value is determined based on Sx: Number of
clusters in θ1.

7. C: The set of all the newly formed clusters after the
merging process has concluded.

8. Pc: Cluster certainty, only calculated for a newly formed
cluster.

Definition 1 Cluster similarity: Given an ensemble � that is
built with m clustering partitions � = {P1,P2,P3, … ,Pm} of
dataset X = {x1, x2,… , xn} , cluster similarity Sc is a measure
of how much overlap there is between two clusters from dif-
ferent partitions.

We employ the ‘set correlation’ as a cluster similar-
ity measurement, which measures the overlap between
two clusters and takes their size into account. It has been
developed in the Relevance-Set Correlation (RSC) [15]
model, as this measure is an equivalent of the Pearson cor-
relation in clustering analysis. After some simplification
and derivation, it can be represented as follows:

where q and � are two members, q ≠ � , and jq , j� are the
cluster index in q and � respectively. CM is the Cosine simi-
larity measurement [13]:

Sc is symmetric, i.e. Sc(ci, cj) = Sc(cj, ci) and its value is
bounded in [− 1, 1]. A value of 1 indicates that the two

(1)

Sc(c
q

jq
, c�

j
�

) =
|cq

jq
∩c�

j�
| −

|cq
jq
||c�

j�
|

n
√

|cq
jq
||c�

j
�

|
(
1 −

|cq
jq
|

n

)(
1 −

|c�
j�
|

n

)

=

n.CM(c
q

jq
, c�

j�
) −

√
|cq

jq
||c�

j�
|

√
(n − |cq

jq
|)(n − |c�

j
�

|)
,

(2)CM(c
q

jq
, c�

j
�

) =
|cq

jq
∩ c�

j
�

|
√

|cq
jq
||c�

j
�

|

clusters “are identical”, and a value of − 1 indicates that the
two clusters are “a complement of each other” [43].

Definition 2 Membership similarity In general, this is a
measure of similarity Sx between an object x and a cluster
c (when a soft clustering is allowed, i.e. an object x may be
placed in more than one cluster), and hence it is defined as
the membership similarity.

In this study, it is specifically used to measure the similar-
ity between objects xi ∈ X in a new cluster, �⃖cg , that is formed
by merging r (initial) clusters �⃖cg = {ci + cj +⋯ + cr} ∈ 𝛤 ,
so that Sc(ci, cj,… , cr) is higher than a pre-set threshold. It is
defined as follows:

where, �⃖�C is the set of all the newly formed clusters,
�⃖�C = { �⃖c1,… , �⃖cg, ...} ; 𝜃1(xi, �⃖cg) is the membership of xi belong-
ing to cluster �⃖cg and is defined as follows:

The value of membership similarity Sx is bounded between 0
and 1, and a higher value means a stronger membership or a
higher degree of certainty that an object belongs to a cluster.
Therefore, objects with different values of this measure can
be classified as certain, uncertain or totally uncertain for a
given threshold value �2 , as defined below.

Definition 3 Certain object: An object, xi , is defined as a
certain object if its maximum membership similarity Sx is
greater than a pre-set value �2 , i.e.

Definition 4 Uncertain object: An object is defined to be
an uncertain object if its maximum membership similarity
Sx is less than or equal to �2 , i.e.

Definition 5 Totally certain object: An object is defined as
a totally certain object if its maximum membership similar-
ity Sx is 1.

Definition 6 Totally uncertain object: An object is defined
as a totally uncertain object if its maximum membership
similarity Sx is 0.

(3)Sx(xi, �⃖cg) =
1

max{𝜃1(xi, �⃖�C)}
𝜃1(xi, �⃖cg),

(4)𝜃1(xi, �⃖cg) =

r∑

u=1

𝛿(xi, cu)

(5)max(Sx(xi, �⃖�C)) > 𝛼2.

(6)max(Sx(xi, �⃖�C)) <= 𝛼2.

International Journal of Machine Learning and Cybernetics

1 3

Definition 7 Cluster certainty: The cluster certainty, �cg , is

defined as the mean of the membership similarity of objects
in a cluster �⃖cg , i.e.

The cluster certainty is calculated for each newly formed
cluster ∈ �⃖�C.

Choosing an initial value for �2 is not so critical as our
ensemble algorithm adapts its value through its consensus
function during the iterations of the algorithm. It is therefore
reasonable to set the initial value for �2 to be 0.7, and to then
adapt it if necessary, according to the values of the updated
membership similarity matrix Sx as described in the algo-
rithm. The detailed investigation and analysis of its influence
will be given in Sect. 7.

4.2 The ACE algorithm

The diagram of the ACE algorithm is given in Fig. 2 and as
can be seen it works in three main stages: Transformation,
Generating Consensus Clusters and Resolving Uncertainty. We
will give a simple example to illustrate how this algorithm
works throughout these stages.

4.2.1 Stage 1: transformation

Having generated m members, which represent unmatched
clusters of objects, this stage transforms them into a new rep-
resentation. In order to avoid solving the relabelling problem
between clusters, we transform each cluster c to a column
binary characteristic vector where a value of 1 indicates that
the corresponding object belongs to that cluster, and 0 indi-
cates that the object does not belong to that cluster.

In general, for cluster cj in clustering member q, its corre-
sponding vector is represented as cq

j
= [�(x1),… , �(xn)]

T ,

(7)𝜌cg =
1

| �⃖cg|

|c⃖g|∑

i=1

Sx(xi, �⃖cg).

where �(xi) is the binary membership and takes the following
value:

Where i is the index of data objects; j(= 1,… , kq) , the index
of clusters in each of m members; q(= 1,… ,m) is the index
of members in an ensemble. There will be km vectors to form
an n × km cluster matrix �1 = [c1

1
, c1

2
,… ,… , c

q

km
] . Where

km =
m∑
q=1

kq , which is the total number of clusters in all

members.

4.2.2 Stage 2: generating new consensus clusters

In this stage, the aim is to find the most similar initial clus-
ters and to merge them to produce k clusters that are as dis-
similar from each other as possible. To achieve this, the fol-
lowing two steps are required:

1. Measuring similarity between initial clusters and merg-
ing the most similar ones

(a) Starting with km initial clusters, we measure the
cluster similarity Sc , defined in Eq. 1, between the
initial clusters that are placed in different mem-
bers in �.

(b) The merging process is performed based on the
following criterion:

(8)�(xi, cj) =

{
1, if xi ∈ cj,∀ i = 1,… , n.

0, if xi ∉ cj

(9)
if Sc(c

q

jq
, c�

j
�

) >= 𝛼1 ⇒ c
q

jq
and c�

j
�

are similar, hence merged.

(10)
if Sc(c

q

jq
, c�

j
�

) < 𝛼1 ⇒ c
q

jq
and c�

j
�

are dissimilar, not merged.

Fig. 2 The diagram of the ACE algorithm

 International Journal of Machine Learning and Cybernetics

1 3

Parameter �1 is the threshold for merging and is determined
adaptively based on the similarity values in the cluster simi-
larity matrix Sc.

Its influence and sensitivity on the quality of the final
clustering result are studied and the details are given later
in Sect. 7. Our empirical study indicates that it can usually
start with a relatively high value, e.g. 0.8, and then adapt its
value in accordance with the similarity values in the current
similarity matrix.

From Sc , any clusters that satisfy a criterion given in Eq. 9
will be merged by replacing them with a new cluster �⃖cj .
This continues until there remain no pairs of clusters that
are similar enough.

Then the membership similarity Sx between objects and
the newly formed clusters are calculated using Eq. (4).

To illustrate these steps, we measured the similarity
between the initial cluster vectors in our illustrative example
Fig. 3, and gained the similarity matrix Sc. We set �1 equal
to 0.8. Looking at Sc , we found that c1

1
 and c3

2
 were identical

and had a similarity greater than �1 with c2
2
 , so we merged

them. In addition, c1
2
 had a similarity greater than �1 with c2

3

and c3
1
 , so we merged them too. We also merged c1

3
 and c2

1
 . As

a result, we gained four clusters, �⃖c1 , �⃖c2 , �⃖c3 and �⃖c4 in �1 . Thus,
�1 become the input for the next step in this stage.

2. Producing k consensus clusters
 After the most similar initial clusters are merged, we

have �1 to represent newly formed clusters and perhaps
some remaining non-merged initial clusters. The next
step is to check if the number of the clusters in �1 is
exactly equal to k clusters, which will be taken as the
final candidate clusters. For convenience, let � be the
number of clusters in �1 . There are three possible sce-
narios: (1) � = k , (2) 𝜆 > k , and (3) 𝜆 < k , when check-
ing the number of clusters in �1.

(a) When � = k , i.e. the number of clusters in �1 is
equal to the pre-defined k, we then take the clus-
ters in �1 as the candidate clusters and adapt �2 to a
value based on Sx so that it can represent a specific
percentage of the membership certainty. Then we
move onto Stage 3.

(b) When 𝜆 > k , i.e. the number of clusters in �1 is
greater than the pre-defined k, which is the most
likely scenario in practice, there are two options:
(A) to terminate the process or (B) to forge ahead
with brutal merging or eliminating.

 Option A: Coming to this point, the clusters in �1 are
more dissimilar from each than the given threshold �1 .
If the value of �1 has reached the minimum acceptable
similarity, it indicates that the clusters in �1 for the given
dataset are too dissimilar from each other to be merged

to obtain the intended k number of clusters. We then
conclude that the pre-set value for k is unreasonable and
unachievable, and output the generated clusters.

 Option B: However, as there is no gold-standard for
setting up the minimum acceptable similarity threshold,
it is then also reasonable to go ahead with the process by
adapting the threshold value �1 to reflect the similarity
distribution in the current similarity matrix Sc , and then
merging the clusters with the above described step, or
eliminating the clusters with the following steps. The
elimination is carried out based on the cluster certainty.
The certainty of each cluster in �1 is calculated by Eq. 7
and their certainty values are ranked in a descending
order.

 i. If each of the top k clusters contains at least
one certain object based on the current value
of �2 , then these clusters are taken as the final
candidate clusters. For the remaining clusters,
they will be brutally “eliminated” by moving
them from �1 to a new matrix �2 in order to be
used in the next stage. The cluster similarity Sc
and membership similarity Sx will be updated
accordingly and �1 will be adapted. Then, we
move onto stage 3.

CD

6 5 4 3 2 1

1.75 DSCE

2.875 ACE

3.25 MCLA3.4375ONCE

4.5625CO

5.125DICLENS

(a) The critical difference diagram of the first experiment.

CD

5 4 3 2 1

1.625 ACE

3 MCLA

3.1875 CO

3.5DICLENS

3.6875ONCE

(b) The critical difference diagram of the second experiment.

Fig. 3 The Critical difference diagram of the critical level of 0.1 in
which it shows the comparison of six ensemble methods using eight
datasets. a The critical difference diagram of the first experiment. b
The critical difference diagram of the second experiment

International Journal of Machine Learning and Cybernetics

1 3

 ii. Otherwise, we adapt �2 to be the maximum
membership similarity to the kth cluster and
consider the first k clusters as the final candi-
date clusters.

(c) When 𝜆 < k , i.e. the number of clusters in �1 is less than
the pre-chosen k, then we consider if any clusters in �1
can be divided by adapting the value of �1 . In this case,
it is possible that �1 is unreasonably low and should
be adapted incrementally to an appropriate value, then
we should go back the beginning of this stage until the
number of the clusters in �1 reaches k and move onto
the next stage.

4.2.3 Stage 3: enforce hard clustering

The aim here is to ensure that each object is assigned to
only one cluster. So, the inputs of this stage are: Sx, which
is the membership similarity matrix; θ2, which contains the
membership similarity of the eliminated.

As defined earlier, for an object, if its maximum member-
ship value Sx(xi, cj) <= 𝛼2 (∀j = 1,… , k) , it is considered as
an uncertain object, and as a totally uncertain object if its
maximum membership value is zero. Four main steps are
required as follows:

1. Check whether �1 contains any totally uncertain
objects.

 There is a possibility that the previous stage may have
resulted in totally uncertain objects in �1 . This is of a
particular concern during the elimination process, as this
may have caused information to be lost for some objects,
so we verify that each object in �1 has a membership
value associated with at least one cluster. If �1 con-
tains some totally uncertain objects, we calculate their
neighbourhood similarity with clusters in �2 . We are in
fact modifying our early definition of neighbourhood
similarity [1], by calculating the average occurrence of
their objects’ neighbours and the other objects placed
in the candidate clusters. In other words, we calculate
the similarity between the totally uncertain object and
the candidate clusters in �1 as the average of how many
times they are classified in the same cluster in �2 with
other objects that are already placed in the candidate
clusters in �1.

2. Identify totally certain and certain objects in �1 as in
definitions 5 and3.

 As certain objects have a higher similarity value than
�2 , we assign them to the cluster that has a maximum
membership similarity among other clusters in �1.

3. Measure the quality of each candidate cluster in �1.
In principle, any cluster quality measure can be used, so
in this study we measure the compactness of the certain

objects in a cluster as the quality metric, and here we call
it the original quality of each cluster.

 The compactness of a cluster is usually measured by
the variance, Var, which is the average of the squared
differences from the mean, as follows:

It is basically the absolute value of the difference between
the membership similarity value of object xi in cluster �⃖c ,
and the mean of the objects similarity in cluster �⃖c (cluster
certainty pc⃖ calculated by Eq. 7).

At the beginning, the size of each candidate cluster equals
the total number of classified objects, and these objects are
the only ones that we can assign to a candidate cluster with
certainty, as they have the maximum membership similarity
with the classified candidate clusters.

4. Identify uncertain objects in �1 as in equation 6.
 For each uncertain object the following steps are per-

formed:

(a) Identify the clusters of the current uncertain object
in �1

(b) For each identified cluster, we recalculate its
quality using the Eq. 11 by including the current
object membership similarity with the identified
cluster.

(c) Compare the original quality and the current qual-
ity of the identified clusters.

(d) Assign the current object to the cluster that has a
minimum effect on its original quality.

(e) Increase the size of the assigned cluster by 1.
(f) Update the original quality of the assigned cluster

to be equal to the current quality.
(g) Repeat steps until all the uncertain objects are

assigned.

 Generally, we assign uncertain objects to a cluster in
such a way that this will have a minimum effect on the
latter’s quality. By doing so, we aim to ensure that the
original quality of the cluster has not been affected too
much, as it is widely known that a small value for cluster
quality indicates a compact cluster result.

Therefore, by assigning each object to only one cluster
 we obtain the final clustering result P* of dataset X. A sim-
ple example for illustrating how the ACE works is given in
“Appendix”.

(11)Var(c) =
1

| �⃖c|

|c⃖|∑

i=1

(Sx(xi, �⃖c) − pc⃖)
2

 International Journal of Machine Learning and Cybernetics

1 3

Algorithm 1: The Pseudocode for the second
stage of the ACE Algorithm.
Input : Γ = {P1, P2, P3, . . . , Pm}, α1, α2,

α1min, ∆α, and k
Output: P ∗

1 θ1 ← Transform m members into binary vectors
of initial clusters;

2 Sc ← Compute cluster similarity Sc for clusters
in θ1 with equation 1;

3 while true do
4 θ1 ← MergeCls(initial clusters, Sc, α1);
5 if # clusters in θ1, λ >= k then
6 break;
7 else
8 Adapt α1 = α1 +∆α;

9 λ ← find # of clusters in θ1;
10 while λ >= k do
11 Update Sc with equation 1;
12 Adapt α1 ← maximum similarity value in Sc;
13 if α1 < α1min then
14 break;
15 else
16 newθ1 ← MergeCls(θ1, Sc, α1);

17 if # clusters in newθ1 < k then
18 break;
19 else
20 θ1 ← newθ1

21 Compute similarity measure Sx with equation 3;
22 nbcls ← find # clusters in Sx that contain at

least one certain object specified by α2;
23 if nbcls == k then
24 Consider these cluster as candidate clusters

in P ∗;
25 θ2 ← non-candidate clusters;
26 else
27 Compute cluster certainty in Sx with

equation 8;
28 Sort the cluster certainties in descend order;
29 Adapt α2 ← Sxmax{k};
30 Keep the top k clusters in Sx as the

candiadate clusters;
31 Remove the remaining clusters in Sx to θ2;

32 P ∗ ← AssignObjectToOnlyOneCluster(Sx,
θ2, α2);

5 Experiments

We test the effectiveness of the ACE algorithm using eight
real-world datasets from the UCI Machine Leaning Reposi-
tory [32]: Iris, Wine, Thyroid, Multiple Features (Mfea-
tures), Glass, Breast Cancer Wisconsin (Bcw), Soybean and

Ionosphere dataset. Table 1 shows the details of these datasets.
Bcw has an attribute with missing values in some objects,
which is removed. We also removed the second attribute in
the Ionosphere dataset as only a single value (0) was present.

Two experiments were designed. In the first experiment,
we set the number of clusters k equal to the true number of
classes for each dataset which is fixed for all generated mem-
bers, whereas in the second experiment we set a different
number of clusters k for each member chosen randomly from
the interval [k − 2, k + 2] . We chose this interval because we
already know the number of clusters in the tested datasets
so the minimum of this interval is set to less than k by 2 and
the maximum set to a value larger than k by 2.

In both experiments, we set �1 = 0.8 , �2 = 0.7 , �1min = 0.6 ,
and �� = 0.1 , and we followed the common clustering ensem-
ble framework as shown in Fig. 1. In the generation phase, we
implemented the same techniques used by Ren et al. [33] in
order to generate 10 diverse members. Thus, we used k-means
to generate 5 members with a random sampling of 70% of the
data, and we calculated the Euclidean distance between the
remaining objects and the cluster centres and assigned them
to the closest cluster. For each of the remaining members we
ran k-means on 70% of randomly selected features.

The main aim of these experiments is to test the perfor-
mance of ACE in these two particular situations. Also to see
how effective our algorithms are compared to other competi-
tive clustering ensemble algorithms, which include Co-asso-
ciation using the Average linkage method [11], ONCE also
using the Average linkage method [1], DSCE [2], DICLENS
[29] and MCLA [36]. We ran the algorithm 10 times, and
each time the performance was measured by ARI and NMI.

When ARI and NMI are applied to evaluate the clustering
results, one of the clustering partitions should be the ground
“ true” partition of the data, Pt which, in practice, is nor-
mally assumed to be the class labels as there are no other true
answers that can be used to verify the quality (accuracy) of the
clustering result. The other partition is the clustering result of
the ensemble that needs to be evaluated P∗.

ARI is the corrected version of the Rand index (RI), and is
defined as follows:

Table 1 Details of the datasets used in experiments

Dataset # Objects # Features # Clusters

Iris 150 4 3
Wine 178 13 3
Thyroid 215 5 3
Mfeatures 2000 2 10
Glass 214 9 6
Bcw 683 9 2
Soybean 47 35 4
Ionosphere 351 34 2

International Journal of Machine Learning and Cybernetics

1 3

Where RI is calculated by:

Where n11 denotes the number of object pairs assigned to
the same clusters in both P∗ and Pt . n00 denotes the number
of object pairs assigned to different clusters in P∗ and Pt .
n10 denotes the number of object pairs assigned to the same
cluster in P∗ and to different clusters in Pt . n01 denotes the
number of object pairs assigned to different clusters P∗ and
to the same cluster in Pt . With simple algebra, the Adjust
Rand Index [18] can be simplified to:

where n is the total number of objects in X, nij is the number
of objects in the intersection of clusters ci ∈ P∗ and cj ∈ Pt ,
ni and nj are the numbers of objects in clusters ci ∈ Pt and

cj ∈ P∗ respectively, and
(
n

2

)
 is the binomial coefficient

n!

2!(n−2)!
 . The maximum value of ARI is equal to 1, which

means that P∗ is identical to Pt , and it has an expected value
0 for independent clusterings. It is not necessarily for the
number of clusters in P∗ and Pt to be the same [25].

NMI is computed according to the average mutual informa-
tion between every pair of clusters and class labels. Consider
P∗ the final clustering result of the ensemble and the ground-
truth clustering Pt for dataset X. The NMI of the two partitions
is defined as follows:

The maximum value of NMI is equal to 1, which means
that P∗ is identical to Pt and the minimum value is equal
to 0, when P∗ is completely different from Pt . i.e. nij = 0 ,
(∀i = {1,… , k∗} , and ∀j = {1,… , kt}).

6 Results and analysis

6.1 Results of ensembles built with fixed k

Tables 2 and 3 show the average value of ten runs of the com-
pared algorithms measured by ARI and NMI respectively,

(12)
ARI(P∗,Pt) =

RI(P∗,Pt) − Expected[RI]

1 − Expected[RI]

(13)RI(P∗,Pt) =
n11 + n00

n00 + n11 + n10 + n01

(14)ARI =

∑k

i=1

∑k

j=1

�
nij
2

�
− [

∑k

i=1

�
ni
2

�
∑k

j=1

�
nj
2

�
]∕

�
n

2

�

1

2
[
∑k

i=1

�
ni
2

�
+
∑k

j=1

�
nj
2

�
] − [

∑k

i=1

�
ni
2

�
∑k

j=1

�
nj
2

�
]∕

�
n

2

�

(15)NMI(P∗,Pt) =

∑k∗

i=1

∑kt

j=1
nij log(

n.nij

ni.nj
)

�
(
∑k∗

i=1
ni log(

ni

n
))(
∑kt

j=1
nj log(

nj

n
))

along with their corresponding standard deviations. The bold
value in each row shows the best performance in each data-
set in terms of the quality of the clustering result and the
underlined number shows the best value in terms of consist-
ency. The last column of Table 2 and 3 represent the average
performance of the generated members, and the last two
rows show the average accuracy for each ensemble method
over all datasets, as well as the average consistency of each
method.

6.1.1 Results of ARI index

There are a number of interesting observations. Firstly, the
performance of ACE is better than CO-average and ONCE-
average in five datasets, whereas it performed very closely

to them on other datasets. In particular, in the Iris, Thyroid
and Glass datasets, ACE produced the highest results: 0.734,
0.611 and 0.534 respectively. Secondly, we noticed that ACE
achieved the same performance as CO, DSCE and MCLA
algorithms in the Bcw dataset, and that is the highest accu-
rate result for this dataset. Thirdly, we noticed that ACE out-
performed DICLENS in all datasets except in the Soybeans
dataset, and we will explain later this particular situation
for DICLENS. However, on average the DSCE algorithm
achieved the best performance compared with other algo-
rithms, followed closely by the ACE algorithm.

In terms of consistency measured by the standard devia-
tion, ACE was the most consistent algorithm in the thyroid
dataset compared with the others, and it achieved a very
close value to the most consistent algorithm in the most
examined datasets such as the Bcw, Mfeatures and Wine
datasets. The worst performance for the ACE algorithm
was on the Soybean dataset, where it achieved a value equal
to 0.081 compared with other algorithms, but this is still a
small value.

Looking at the average performance of the generated
members, we found that all the ensemble methods outper-
formed the average of members in all the datasets, except
DICLENS which performed lower than the average mem-
bers in the Glass and Mfeatures datasets as well as ACE in
the Soybeans dataset.

However, the ACE algorithm performed second-best on
average compared with the others, and it is close to the best
performing algorithm measured by the ARI index, which is
DSCE under these experimental settings.

 International Journal of Machine Learning and Cybernetics

1 3

6.1.2 Results of NMI index

In summary, these results are very similar to the results rep-
resented by ARI explained in the previous paragraph. The
only difference is that on average the ACE achieved the best
performance, along with the DSCE algorithm, measured by
NMI.

Under this experimental set-up, i.e. with a fixed value for
k for each dataset, ACE does not show a superiority to its
predecessor DSCE, although it does in comparison to the
other methods. However, it is worth noting that its prede-
cessor DSCE has an obvious weakness, which is that it can
only work with fixed k values, which limits its application
on real-world problems when the true number of clusters,
k, is not known in advance. That is why we extended DSCE
to ACE to cope with variable numbers of clusters generated
by the members. The next experiment is designed to dem-
onstrate and compare their capability.

6.2 Results of ensembles built with random
variable k

We did not run the DSCE algorithm in this experimental
set-up as it is not capable of dealing with variable numbers
of clusters generated by the members in an ensemble. All
the other methods were run for comparison.

6.2.1 Results of ARI index

Table 4 shows the average performance measured by the
ARI index along with the standard deviation in each dataset,
and the average performance of the generated members. The
results indicate that the ACE algorithm mostly performs bet-
ter than the investigated collection of clustering ensemble
algorithms. This is particularly true in five datasets, which
are Wine, Glass, Bcw, Soybean and Ionosphere, whereas in
Iris, Thyroid and Mfeatures it achieved a result close to the

Table 2 First experiment results: The average performance and the standard deviation of ten runs for each dataset measured by ARI, including
the average performance (Ave-P) of each ensemble method across 8 datasets as well as the average consistency (Ave-Con)

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number
shows the best value in terms of consistency

CO-Average ONCE-Average DSCE ACE DICLENS MCLA Ave-mem

Iris 0.725 ± 0.012 0.726 ± 0.009 0.732 ± 0.021 �.��� ± 0.023 0.680 ± 0.077 0.723 ± 0.012 0.702 ± 0.038

Wine 0.369 ± 0.005 0.369 ± 0.005 �.��� ± 0.025 0.371 ± 0.008 0.369 ± 0.005 0.372 ± 0.002 0.366 ± 0.004

Thyroid 0.559 ± 0.024 0.584 ± 0.044 0.609 ± 0.032 �.��� ± 0.023 0.582 ± 0.044 0.563 ± 0.025 0.473 ± 0.036

Mfeatures 0.315 ± 0.006 �.��� ± 0.005 �.��� ± 0.004 0.314 ± 0.008 0.290 ± 0.069 0.308 ± 0.021 0.293 ± 0.029

Glass 0.509 ± 0.029 0.526 ± 0.030 0.528 ± 0.027 �.��� ± 0.029 0.392 ± 0.123 0.534±0.020 0.501 ± 0.009

Bcw �.��� ± 0.004 0.847 ± 0.003 �.��� ± 0.004 �.��� ± 0.004 0.842 ± 0.005 0.849 ±0.004 0.830 ± 0.021

Soybean 0.547 ± 0.006 0.550 ± 0.015 0.578 ± 0.052 0.532 ± 0.081 �.��� ± 0.046 0.548 ± 0.006 0.566 ± 0.025

Ionosphere 0.163 ± 0.014 0.166 ± 0.008 �.��� ± 0.005 0.165 ± 0.008 0.161 ± 0.009 0.166 ± 0.006 0.149 ± 0.007

Ave-P 0.505 0.511 �.��� 0.514 0.493 0.508 0.443
Ave-C 0.012 0.015 0.017 0.023 0.048 0.012 0.031

Table 3 First experiment results: The average performance and the standard deviation of ten runs for each dataset measured by NMI Index,
including the average performance (Ave-P) of each ensemble method across 8 datasets as well as the average consistency (Ave-Con)

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number
shows the best value in terms of consistency

CO-Average ONCE-Average DSCE ACE DICLENS MCLA Ave-mem

Iris 0.751 ± 0.015 0.752 ± 0.012 0.763 ± 0.024 �.��� ± 0.028 0.757 ± 0.008 0.749 ± 0.015 0.737 ± 0.025

Wine 0.428 ± 0.003 0.428 ± 0.003 �.��� ± 0.014 0.429 ± 0.006 0.427 ± 0.004 0.429 ± 0.001 0.428 ± 0.003

Thyroid 0.434 ± 0.047 0.473 ± 0.062 0.480 ± 0.056 �.��� ± 0.042 0.501 ± 0.053 0.418 ± 0.033 0.403 ± 0.026

Mfeatures �.��� ± 0.002 �.��� ± 0.003 �.��� ± 0.002 0.478 ± 0.007 0.468 ± 0.026 0.475 ± 0.009 0.460 ± 0.027

Glass 0.712 ± 0.027 0.725 ± 0.029 0.725 ± 0.021 0.726 ± 0.022 0.617 ± 0.107 �.��� ± 0.017 0.704 ± 0.007

Bcw 0.750 ± 0.005 0.749 ± 0.004 0.750 ± 0.005 �.��� ± 0.005 0.742 ± 0.006 �.��� ± 0.005 0.731 ± 0.023

Soybean 0.717 ± 0.002 0.723 ± 0.024 0.756 ± 0.064 0.712 ± 0.076 �.��� ± 0.056 0.717 ± 0.002 0.736 ± 0.019

Ionosphere 0.122 ± 0.014 0.124 ± 0.009 �.��� ± 0.005 0.123 ± 0.008 0.119 ± 0.009 0.124 ± 0.006 0.108 ± 0.006

Ave-P 0.549 0.557 �.��� �.��� 0.557 0.549
Ave-C 0.015 0.018 0.024 0.024 0.034 0.011

International Journal of Machine Learning and Cybernetics

1 3

highest performance in these datasets, which are ONCE in
Mfeatures and MCLA in the other two datasets. However,
the result on the Mfeatures dataset indicates that ACE is
applicable to a large dataset.

The ACE also enhances the performance of the generated
members in all of the investigated datasets except the Ionosphere
dataset, which is slightly better than the clustering ensemble
algorithms; this may be due to random k in these members.

In terms of consistency, ACE was more consistent in two
datasets, which are Glass and Bcw, while in the Iris, Wine
and Ionosphere datasets it was the second most consistent
algorithm compared with other algorithms. On average,
three algorithms achieved very close results in terms of
consistency; these are MCLA, ONCE and ACE, which are
equal to 0.035, 0.037 and 0.038 respectively.

6.2.2 Results of NMI index

Similar experimental results are also observed using the
NMI index shown in Table 5, where ACE achieved the
highest performance on three datasets: Iris, Bcw, and Iono-
sphere. However, in Wine, Mfeatures and Glass it achieved
very close results to the highest performance. In the Soy-
bean dataset the highest performance was achieved by the
DICLENS algorithm, which also performed very well in
the Wine and Mfeatures datasets. These results were only
achieved by the NMI and not the ARI index, which leads us
to investigate further the number of clusters discovered by
DICLENS, as it has the ability to discover k automatically.
This is in contrast to other examined clustering ensemble
algorithms, in which k is provided by the user in advance.

6.2.3 Identifying the true number of clusters in DICLENS

Figure 4 shows the number of clusters discovered by the
DICLENS algorithm in all tested datasets over ten runs.

It is observed that the number of clusters in most datasets
is unstable and changeable over the ten runs. This has an
effect on the NMI index, which is an information theory
based index that measures the shared information between
two clustering results. Most of the DICLENS results in the
majority of datasets have fewer clusters than the actual true
labels in the data.

This means that when we compare the produced clusters
with the actual clusters, it is clear that the produced clusters
share more objects with the actual clusters, as each produced
cluster can share with more than one cluster in the true label
and that can lead the NMI result to be increased.

For example, it was highlighted in the Wine dataset over
the ten runs that the discovered k was equal to 2 which is
less than the number of the true labels, 3. Therefore, the
NMI measure, as it is based on how much information
the compared clustering results share, unfairly indicates
that this result is more accurate than ACE. Moreover, in
the Soybean dataset the discovered k is equal to 2 in three
runs, 3 in four runs and 4 in the remaining three runs,
whereas the number of the true labels is equal to 4. It is
obvious that fewer clusters shared more objects with more
true clusters in this case, and the NMI scored higher than
ARI compared with other clustering results obtained by
other algorithms. It is observed that when the number of
clusters in the compared results is less than the number of
true labels of the data, the NMI measure inappropriately
indicates that this result is more accurate than others that
have produced exactly the number of the true clusters.

Another important investigation is on the subject of rela-
tions between the performance of the experimented cluster-
ing ensemble methods and the two types of ensembles being
explored. It has been demonstrated that on average the ACE
is more accurate than CO, ONCE, DICLES and MCLA
algorithms, across the two types of ensemble examined.

Table 4 Second experiment results: the average performance and the standard deviation of ten runs for each dataset measured by ARI, including
the average performance of each ensemble method across 8 datasets

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number
shows the best value in terms of consistency

CO-Average ONCE-Average ACE DICLENS MCLA Ave-mem

Iris 0.669 ± 0.065 0.674 ± 0.057 0.696 ± 0.038 0.565 ± 0.009 �.��� ± 0.043 0.605 ± 0.029

Wine 0.324 ± 0.045 0.344 ± 0.060 �.��� ± 0.014 0.367 ± 0.024 0.393 ± 0.008 0.326 ± 0.011

Thyroid 0.252 ± 0.175 0.189 ± 0.121 0.303 ± 0.032 0.308 ± 0.118 �.��� ± 0.119 0.285 ± 0.053

Mfeatures 0.325 ± 0.002 �.��� ± 0.001 0.325 ± 0.005 0.324 ± 0.006 0.277 ± 0.013 0.321 ± 0.005

Glass 0.265 ± 0.006 0.259 ± 0.008 �.��� ± 0.004 0.200 ± 0.048 0.152 ± 0.022 0.258 ± 0.005

Bcw 0.866 ± 0.018 0.860 ± 0.016 �.��� ± 0.014 0.853 ± 0.031 0.864 ± 0.014 0.773 ± 0.037

Soybean 0.534 ± 0.000 0.534 ± 0.000 �.��� ± 0.160 0.575 ± 0.070 0.547 ± 0.039 0.547 ± 0.036

Ionosphere 0.076 ± 0.047 0.037 ± 0.035 �.��� ± 0.034 0.076 ± 0.039 0.061 ± 0.019 0.117 ± 0.014

Ave-P 0.414 0.403 �.��� 0.409 0.433 0.404
Ave-C 0.045 0.037 0.038 0.043 �.��� 0.024

 International Journal of Machine Learning and Cybernetics

1 3

6.3 Test of improvement significance

We tested the statistical significance of the results of the two
experiments that we have done in Sects. 6.1 and 6.2 on the
two types of ensembles.

We applied the Iman-Davenport test [22] to the results
in Table 2 and Table 4 under the null hypothesis that the
mean ranks are equal for all the examined algorithms. The
significant level is set to 0.1 by default. For the first experi-
ment, we can reject the null hypothesis of the mean rank of
the performance being equal for all algorithms (the Iman-
Davenport test result is equal to 4.4051 which gives a small
p-value equal to 0.0032, which indicates that there is a sig-
nificant difference). For the second experiment in Table 4,
the Iman-Davenport test result is equal to 2.5434, which
gave a small p-value equal to 0.0617, indicating that there
is a significant difference.

Therefore, we proceeded with the Nemenyi test as a post-
hoc test for a pairwise comparison to discover where the

differences lie. Figure 5a shows the critical difference diagram
of the critical level of 0.1 for the results presented in Table 2,
and the critical difference CD is equal to 2.4218. As we can
see from the diagram, we have two solid bars which show two
groups of algorithms in cliques, indicating that there is no
statistically significant difference between algorithms in the
same group, whereas there is a significant difference between
algorithms in the different groups. We observed that, based
on the average ranks, DSCE was first followed by ACE and
then MCLA. Moreover, DICLENS was last in this average
ranking. This demonstrated that there is a significant differ-
ence between ACE and DICLENS and CO algorithms, but
not between ACE and DSCE, MCLA and ONCE based on
this experimental set-up.

Figure 5b shows the critical difference diagram of the
results presented in Table 4. As we can see, there are two
groups of algorithms in two cliques. The first group includes
ACE, MCLA, CO and DICLENS, whereas the second group
includes MCLA, CO, DICLENS and ONCE. The results
indicate that there is a significant difference between algo-
rithms placed in different groups and in this case between
the ACE and ONCE algorithms in this experimental set-up,
although ACE is ranked the first with a considerable distance
from the second algorithm MCLA.

7 Analysis of parameters and time
complexity

There are two parameters in ACE which are �1 and �2 . �1 , as
stated previously, is the minimum similarity allowed between
initial clusters, whereas �2 is the relative membership cer-
tainty threshold for classifying objects in candidate clusters.

To find out how these parameters can affect the quality of
the final clustering result of the ACE, we analyse them with

Table 5 Second experiment results: the average performance and the standard deviation of ten runs for each dataset measured by NMI, including
the average performance of each ensemble method across 8 datasets

The bold value in each row shows the best performance in each dataset in terms of the quality of the clustering result and the underlined number
shows the best value in terms of consistency

CO-Average ONCE-Average ACE DICLENS MCLA Ave-mem

Iris 0.753 ± 0.017 0.749 ± 0.027 �.��� ± 0.032 0.753 ± 0.026 0.755 ± 0.037 0.706 ± 0.012

Wine 0.406 ± 0.010 0.415 ± 0.022 0.421 ± 0.014 �.��� ± 0.018 0.415 ± 0.005 0.410 ± 0.010

Thyroid 0.293 ± 0.077 0.250 ± 0.066 0.308 ± 0.050 0.331 ± 0.040 �.��� ± 0.048 0.302 ± 0.035

Mfeatures 0.486 ± 0.002 0.487 ± 0.002 0.490 ± 0.008 �.��� ± 0.005 0.464 ± 0.007 0.484 ± 0.005

Glass 0.441 ± 0.018 �.��� ± 0.016 0.430 ± 0.016 0.389 ± 0.032 0.307 ± 0.032 0.423 ± 0.011

Bcw 0.773 ± 0.024 0.765 ± 0.021 �.��� ± 0.019 0.759 ± 0.032 0.770 ± 0.019 0.687 ± 0.028

Soybeans 0.710 ± 0.000 0.710 ± 0.000 0.722 ± 0.127 �.��� ± 0.070 0.716 ± 0.018 0.734 ± 0.020

Ionosphere 0.043 ± 0.035 0.023 ± 0.012 �.��� ± 0.026 0.043 ± 0.029 0.030 ± 0.013 0.099 ± 0.016

Ave-P 0.488 0.481 0.495 0.496 0.477 0.480
Ave-C 0.023 0.021 0.036 0.032 0.022 0.017

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Number of Runs

N
um

be
r

of
 C

lu
st

er
s

Iris
Wine
Thyroid
Mfeatmor
Glass
Bcw
Soybean
Ionospere

Fig. 4 Number of clusters produced by DICLENS algorithm for each
dataset in ten runs for the result in the second experiment

International Journal of Machine Learning and Cybernetics

1 3

the two types of ensembles as we did in Sect. 5, using Wine,
Mfeatures and Glass datasets as an illustration. For the sec-
ond type of ensemble, we allow for �1 to take a higher value
than its value in the first experiment, due to the fact that
when the members have different k from one another they
are more dissimilar than when they have fixed k. Therefore �1
can take a value between 0.5 and 0.9 in the first experiment,
whereas in the second experiment it takes a value between
0.3 and 0.9.

However, in the first experiment, we ran ACE with a dif-
ferent initial values of �1 , and each one of them with all the
possible values for �2 ten times. We firstly ran the k-means

algorithm to generate 10 members all with the fixed k equal
to the true number of classes for each dataset.

Figure 6 illustrates the effect of different values of �1
and �2 on the average performance of the ensemble built by
members with a fixed k, this average is for ten runs measured
by the ARI index. We noticed that on the Wine dataset the
average performance of ADCE is the same for all values of
�1 and �2 ; this indicates that the ACE is not sensitive to its
parameters.

In the Mfeatures dataset, the average performance of
ACE is slightly improved when �1 is equal to 0.8 and 0.9.
It is noticed that all the values of �2 have the same perfor-
mance with all the values of �1 . The average performance
of ACE in the Glass dataset is the same when �1 is equal
to 0.5 and 0.6, which is slightly improved when �1 is equal
to 0.7 and 0.9; when it is equal to 0.8 it reaches its highest
performance.

It is noticed that all values of �2 achieved the same per-
formance with all values of �1 in all the examined datasets,
indicating that the different values of �2 have no effect on
the performance of the ACE when it is built with members
that have fixed k.

On the other hand, Fig. 7 illustrates the effect of the dif-
ferent values of two parameters on the average performance
of the ACE ensemble built with members having a random
variable k. We can see that in the Wine dataset the ACE
performance is decreased a little when �1 is equal to 0.7
in which the performance remains stable with 0.8 and 0.9
in all possible values of �2 . In the Mfeatures dataset, the
ACE performance is slightly improved when �1 is less than
0.7. However, in the Glass dataset the ACE performance
fluctuates with a slight increase to reach a value of 0.6 and
then a slight drop when �1 is equal to 0.7 after a stable per-
formance. It is noticed that with all the possible values of
�2 that the average performance of ACE remains the same
in almost all cases for �1 . Therefore, the results suggested
that �2 has no effect on the performance of ACE, and �1 has
a slight effect on ACE performance. A value between 0.6
and 0.8 is better for an ensemble built with fixed k, whereas
a value between 0.3 and 0.5 is better for an ensemble built
with different k and when �2 is between 0.5 to 0.9, as these
values have no effect on the ACE performance.

The time complexity for the worst-case scenario of
ACE algorithm is estimated to be equal to O(k2

m
(km + nu)) ,

where km is the total number of clusters in all the generated
members, and nu is the number of uncertain objects which
is in the worst case scenario equal to (nu = n − k) , and k is
the number of pre-defined clusters for the dataset.

0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

0.35

0.4

α1

A
R

I I
nd

ex
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Wine Dataset.

0.5 0.6 0.7 0.8 0.9

0.3

0.32

0.34

α1

A
R

I I
nd

ex

0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) Mfeathures Dataset.

0.5 0.6 0.7 0.8 0.9
0.4

0.45

0.5

0.55

α1

A
R

I I
nd

ex

0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) Glass Dataset.

Fig. 5 The Average of ARI index of ten runs for analysing the two
parameters �

1
 and �

2
 using members with fixed k a Wine Dataset, b

Mfeathures Dataset and c Glass Dataset

 International Journal of Machine Learning and Cybernetics

1 3

8 Conclusion

In this paper, we have proposed a new clustering ensemble
algorithm, named the Adaptive Dual-Similarity Clustering
Ensemble, which is capable of dealing with different and vari-
able numbers of clusters generated by the members of the same
dataset. The novelty is the consensus function that measures the
similarity between the clusters themselves, and between clusters
and their assigned objects. It works in three stages. The first is
the transformation stage, where the initial clusters are trans-
formed into binary vector representation, and the second stage
calculates the similarity between initial clusters; this captures
the relationship between clusters and merges the most similar
clusters to produce the intended k consensus clusters. The final

stage identifies the object’s certainty of being assigned in the
initial clusters. It focuses on the cluster quality and resolves the
uncertain objects by assigning them to a cluster in a way that
has a minimum effect on its quality. We tested our proposed
method on eight real-world benchmark datasets. The results
show that on average our proposed ensemble algorithm outper-
forms the state-of-the-art cluster ensemble algorithms, which
include the MCLA, CO, ONCE and DICLENS algorithms.
There are a number of advantages to the proposed method;
firstly, it avoids relabelling problems when aggregating multiple
clustering results. Secondly, it utilises the information of simi-
larity between clusters and membership of objects to clusters to
generate consensus clusters. Thirdly, it is able to deal with the
clustering members that have different numbers of clusters and
convert them exactly or very closely to the true number of clus-
ters in the final clustering result. Finally and more noticeably, it
is more efficient–instead of calculating the similarity between
objects like others do, it calculates the similarity between the
initial clusters of the ensemble members, which is much smaller
than the number of objects, hence the proposed method has the
potential to be applied in big data clustering problems.

Further work should include investigating the different
factors affecting the ensemble performance, such as member
diversity and quality. This might help to identify a suitable
selective strategy to be incorporated into ACE in order to
improve its performance further.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Appendix A: An illustrating example
for the ACE

We illustrate how the ACE works with a simple exam-
ple. Suppose we have a dataset X that contains 10 objects,
X = {x1, x2,… , x10} and that we have generated 3 mem-
bers (m = 3), each of which has 3 clusters (k = 3). We set
�1 = 0.8 , �2 = 0.5 , and k = 3 , and we run the ACE algorithm
in three stages as follows:

Stage 1: Transformation. We transform the members into
a binary vector representation as shown in Figure 7, in which
each cluster in the generated member is represented by a
binary vector with 9 binary vectors in total. For example,
vector c2

3
 is the third cluster in the second member m2 . Four

objects x1, x2, x6, x9 were assigned to cluster c2
3
 , so we set

their value equal to 1, whereas for other objects in c2
3
 we set

a value of 0. These vectors are the input of the second stage.
Stage2: Generating Consensus Cluster Stage. In this

stage, we first measure the similarity between the initial

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

0.35

0.4

0.45

α1

A
R

I I
nd

ex

0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) Wine Dataset.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

α1

A
R

I I
nd

ex

0.3
0.4
0.5
0.6
0.7
0.8
0.9

(b) Mfeathures Dataset.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.25

0.3

α1

A
R

I I
nd

ex

0.3
0.4
0.5
0.6
0.7
0.8
0.9

(c) Glass Dataset.

Fig. 6 The Average of ARI index of ten runs for analysing the two
parameters �

1
 and �

2
 using members with random k a Wine Dataset, b

Mfeathures Dataset and c Glass Dataset

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

International Journal of Machine Learning and Cybernetics

1 3

clusters, and generate the similarity matrix Sc as shown in
Table 6. Then we perform the merging process as follows:

Firstly, we set �1 equal to 0.8. Looking at Sc , we find that
c1
1
 and c3

2
 are identical and have a similarity greater than �1

with c2
2
 , so we merge them by replacing them with �⃖�c1 , which

contains the summation of their object membership. In addi-
tion, c1

2
 have a similarity greater than �1 with c2

3
 and c3

1
 , so we

merge them too as �⃖�c2 . We also merge c1
3
 and c2

1
 as �⃖�c3 . As a

result, we gain four clusters, �⃖c1 , �⃖c2 , �⃖c3 and �⃖c4 in the updated
�1 , as shown in Table 7. Then we recalculate the similarity
measures Sc for the updated �1 as shown in Table 8.

Based on �1 , we find that there are no more similar clus-
ters to be merged in the updated similarity matrix Sc . For the
third step in stage 2, we first check the number of clusters
(�) in �1 , and we find that � = 4 , which is larger than k. Then
we apply Option B by measuring the cluster similarity Sc
for clusters in �1 as shown in Table 9 and we adapt �2 to
the maximum similarity in Sc , which is equal to 0.764. We
merge �⃖c3 and �⃖c4 and we updated �1 as shown in Table 12. As
a result we obtain � = k = 3 . Then we calculate the mem-
bership similarity Sx as shown in Table 10, and we move to
stage 3

Stage 3: Enforce Hard Clustering. This stage start by first
identifying totally certain and certain objects. So, based on
�2 , we identify x1, x2, x4, x5, x7, x8, x9 and x10 as totally certain
objects, while we identify x3 and x6 as certain objects. Then
we assign them to the candidate cluster that has a maximum
membership similarity among other candidates, and Sx is
updated as shown in table 11.

Then we check whether Sx contains any uncertain objects
and it does not, so we produce the final clustering result
P∗ = {2, 2, 3, 3, 3, 1, 1, 1, 1, 2}.

Fig. 7 An illustrative example of three clustering members for dataset
X of 10 objects, and the transformation from members into a binary
matrix representation

Table 6 The Similarity Matrix S
c
 , which is the result of measuring the similarity between initials cluster vectors in our illustrative example (Fig-

ure 7) using S
c
 measure. − − − cells indicates that this similarity is not calculated as they are placed in the same member

c
1

1
c
1

2
c
1

3
c
2

1
c
2

2
c
2

3
c
3

1
c
3

2
c
3

3

c
1

1
– – – −0.535 0.802 −0.250 −0.667 1 −0.408

c
1

2
– – – −0.429 −0.429 0.802 0.802 −0.535 −0.327

c
1

3
– – – 1 −0.429 −0.535 −0.089 −0.535 0.764

c
2

1
−0.535 −0.429 1 – – – −0.089 −0.535 0.764

c
2

2
0.802 −0.429 −0.429 – – – −0.535 0.802 −0.327

c
2

3
−0.250 0.802 −0.535 – – – 0.583 −0.250 −0.408

c
3

1
−0.667 0.802 −0.089 −0.089 −0.535 0.583 – – –

c
3

2
1 −0.535 −0.535 −0.535 0.802 −0.250 – – –

c
3

3
−0.408 −0.327 0.764 0.764 −0.327 −0.408 – – –

Table 7 The result of �
1
 after we merge the most similar clusters,

which are �⃖c1 = {c1
1
+ c

2

2
+ c

3

2
} , �⃖c2 = {c1

2
+ c

2

3
+ c

3

1
} , �⃖c3 = {c1

3
+ c

2

1
}

and �⃖c4 = {c3
3
}

�⃖c1 �⃖c2 �⃖c3 �⃖c4

x
1

0 3 0 0
x
2

0 3 0 0
x
3

0 1 2 0
x
4

0 0 2 1
x
5

0 0 2 1
x
6

2 1 0 0
x
7

3 0 0 0
x
8

3 0 0 0
x
9

3 0 0 0
x
10

0 3 0 0

Table 8 The updated Similarity Matrix S
c
 after the first step of the

merging process is performed, which is the result of measuring the
similarity between four clusters in �

1
 (in Table 7)

�⃖c1 �⃖c2 �⃖c3 �⃖c4

�⃖c1 – −0.408 −0.535 −0.408
�⃖c2 −0.408 – −0.218 −0.500

�⃖c3 −0.535 −0.218 – 0.764
�⃖c4 −0.408 −0.500 0.764 –

 International Journal of Machine Learning and Cybernetics

1 3

Assume that we set �2 = 0.9 , which is a high value. The
number of clusters (nbcls) in Sx that contain at least one
certain object is equal to 2. As there is no further merg-
ing process to be done, we calculate Sx , which is shown in
Table 11. Then we implement the elimination process that
is described in Option B (steps i to iv). So, for each cluster
in Sx , we calculate their certainties (using equation 8), and
we obtain 𝜌 �⃖c1 = 0.9 , 𝜌 �⃖c2 = 0.85 , 𝜌 �⃖c3 = 0.6 , 𝜌 �⃖c4 = 0.3 . We
rank these certainties in descending order and we obtain
{0.9, 0.72, 0.6, 0.3} . Then we adapt �2 to the maximum cer-
tainties of the kth clusters in this ranked list, which is equal

0.6. As result, we identify �⃖�c1, �⃖�c2 and �⃖�c3 as candidate clusters
and we eliminate �⃖�c4 . We update Sx accordingly as shown in
Table 12.

Then we move onto stage 3, and based on �1 we iden-
tify x1, x2, x7, x8, x9 and x10 as totally certain objects, and
we identify other objects as uncertain objects. We measure
the quality of the candidate clusters using equation 12 as
follows:

Then, we iterate on uncertain objects, and we proceed with
steps (a) to (e). The detailed results of these steps for object
x3 are as follows:

(a) For each candidate cluster we recalculate its quality by
including this time x3 :

(b) We compare for each cluster the original quality and
the current quality:

Var(�⃖�c1) =
1

3
((1 − 0.9)2 + (1 − 0.9)2 + (1 − 0.9)2) = 0.01

Var(�⃖�c2) =
1

3
((1 − 0.72)2 + (1 − 0.72)2 + (1 − 0.72)2) = 0.0784

Var(�⃖�c3) = 0

Var(�⃖�c1) =
1

4
((1 − 0.9)2 + (1 − 0.9)2 + (1 − 0.9)2

+ (0 − 0.9)2) = 0.21

Var(�⃖�c2) =
1

4
((1 − 0.72)2 + (1 − 0.72)2 + (1 − 0.72)2

+ (0.3 − 0.72)2) = 0.1029

Var(�⃖�c3) =
1

1
((0.6 − 0.6)2) = 0

Var(�⃖�c1) = 0.21 − 0.01 = 0.2,

Var(�⃖�c2) = 0.1029 − 0.0784 = 0.0245,

Var(�⃖�c3) = 0 − 0 = 0

Table 9 The result of updating
�
1
 after we merge �⃖c3 and �⃖c4

by summing their objects
membership similarity and
result in �⃖c3

�⃖c1 �⃖c2 �⃖c3

x
1

0 3 0
x
2

0 3 0
x
3

0 1 2
x
4

0 0 3
x
5

0 0 3
x
6

2 1 0
x
7

3 0 0
x
8

3 0 0
x
9

3 0 0
x
10

0 3 0

Table 10 The results of S
x
 after

no more merging step is needed
�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0.33 0.67
x
4

0 0 1
x
5

0 0 1
x
6

0.67 0.33 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0

Table 11 The results of
assigning totally certain and
certain objects to the candidate
cluster

�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0 0.6
x
4

0 0 1
x
5

0 0 1
x
6

0.6 0 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0

Table 12 The result of S
x
 after

we perform the second stage
�⃖c1 �⃖c2 �⃖c3

x
1

0 1 0
x
2

0 1 0
x
3

0 0.3 0.6
x
4

0 0 0.6
x
5

0 0 0.6
x
6

0.6 0.3 0
x
7

1 0 0
x
8

1 0 0
x
9

1 0 0
x
10

0 1 0

International Journal of Machine Learning and Cybernetics

1 3

(c) We assign x3 to the cluster that has a mini-
mum effect on its quality, that is done as follows:
min{0.2, 0.0245, 0} = 0. So, we assign x3 to cluster �⃖�c3.

(d) We increase the size of �⃖�c3 by 1.
(e) We update the original quality of �⃖�c3 to be equal to the

current quality.

After all the uncertain objects are assigned, we pro-
duce the final clustering result, which is : P∗ = {2, 2, 3, 3,
3, 1, 1, 1, 1, 2}.

References

 1. Alqurashi T, Wang W (2014) Object-neighbourhood clustering
ensemble method. In: International conference on intelligent data
engineering and automated learning (IDEAL). Springer, Spain, pp
142–149

 2. Alqurashi T, Wang W (2015) A new consensus function based on
dual-similarity measurements for clustering ensemble. In: Interna-
tional conference of data science and advanced analytics (DSAA).
IEEE/ACM, pp 149–155

 3. Ayad HG, Kamel MS (2005) Cluster-based cumulative ensembles.
Multiple Classifier Systems. Springer, New York, pp 236–245

 4. Ayad HG, Kamel MS (2010) On voting-based consensus of cluster
ensembles. Pattern Recogn 43(5):1943–1953

 5. Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK (1987)
Occam’s razor. Inf Process Lett 24(6):377–380

 6. Dimitriadou E, Weingessel A, Hornik K (2002) A combination
scheme for fuzzy clustering. Int J Pattern Recogn Artif Intell
16(07):901–912

 7. Dudoit S, Fridlyand J (2003) Bagging to improve the accuracy of
a clustering procedure. Bioinformatics 19(9):1090–1099

 8. Fern XZ, Brodley CE (2003) Random projection for high dimen-
sional data clustering: a cluster ensemble approach. In: Proceed-
ings of the 20th international conference on machine learning, pp
186–193. http://www.aaai.org/Paper s/ICML/2003/ICML0 3-027.
pdf. Accessed 10 Mar 2014

 9. Fern XZ, Brodley CE (2004) Solving cluster ensemble problems
by bipartite graph partitioning. In: Proceedings of the 21st Inter-
national Conference on Machine learning. ACM, New York, p 36

 10. Fred AL, Jain AK (2002) Data clustering using evidence accu-
mulation. In: Proceedings of the16th International Conference on
Pattern Recognition, vol 4. IEEE, pp 276–280

 11. Fred AL, Jain AK (2005) Combining multiple clusterings using
evidence accumulation. IEEE Trans Pattern Anal Mach Intell
27(6):835–850

 12. Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation.
ACM Trans Knowl Discov Data (TKDD) 1(1):4

 13. Han J, Kamber M, Pei J (2006) Data mining: Concepts and tech-
niques. Morgan Kaufmann, Burlington

 14. Hore P, Hall LO, Goldgof DB (2009) A scalable framework for
cluster ensembles. Pattern Recogn 42(5):676–688

 15. Houle ME (2008) The relevant-set correlation model for data clus-
tering. Stat Anal Data Mining 1(3):157–176

 16. Huang D, Lai J, Wang CD (2016a) Ensemble clustering using
factor graph. Pattern Recogn 50:131–142

 17. Huang D, Lai J, Wang CD (2016b) Robust ensemble cluster-
ing using probability trajectories. IEEE Trans Knowl Data Eng
28:1312–1326

 18. Hubert L, Arabie P (1985) Comparing partitions. J
Classif 2(1):193–218

 19. Iam-on N, Boongoen T, Garrett S (2010) LCE: a link-based clus-
ter ensemble method for improved gene expression data analysis.
Bioinformatics 26(12):1513–1519

 20. Iam-On N, Boongoen T, Garrett S, Price C (2011) A link-based
approach to the cluster ensemble problem. IEEE Trans Pattern
Anal Mach Intell 33(12):2396–2409

 21. Iam-On N, Boongeon T, Garrett S, Price C (2012) A link-based
cluster ensemble approach for categorical data clustering. IEEE
Trans Knowl Data Eng 24(3):413–425

 22. Iman RL, Davenport JM (1980) Approximations of the critical
region of the fbietkan statistic. Commun Stat Theory Methods
9(6):571–595

 23. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review.
ACM Comput Surv (CSUR) 31(3):264–323

 24. Karypis G, Kumar V (1998) A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J Sci Comput
20(1):359–392

 25. Kuncheva LI, Hadjitodorov ST (2004) Using diversity in cluster
ensembles. In: Proceedings of the IEEE international conference
on systems, man and cybernetics, vol 2, pp 1214–1219

 26. Li T, Ding C, Jordan M et al (2007) Solving consensus and semi-
supervised clustering problems using nonnegative matrix factori-
zation. In: Proceedings of the IEEE International Conference on
Data Mining (ICDM). IEEE, pp 577–582

 27. Li Z, Wu XM, Chang SF (2012) Segmentation using superpixels:
a bipartite graph partitioning approach. In: The IEEE conference
on computer vision and pattern recognition (CVPR), pp 789–796

 28. Luo H, Jing F, Xie X (2006) Combining multiple clusterings using
information theory based genetic algorithm. In: Proceedings of
the International Conference on Computational Intelligence and
Security, vol 1. IEEE, pp 84–89

 29. Mimaroglu S, Aksehirli E (2012) DICLENS: divisive clustering
ensemble with automatic cluster number. IEEE/ACM Trans Com-
put Biol Bioinform (TCBB) 9(2):408–420

 30. Minaei-Bidgoli B, Topchy A, Punch WF (2004) Ensembles of
partitions via data resampling. In: Proceedings of the International
Conference on Information Technology: coding and computing
ITCC, vol 2. IEEE, pp 188–192

 31. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus
clustering: a resampling-based method for class discovery and
visualization of gene expression microarray data. Mach Learn
52(1–2):91–118

 32. Moshe L (2013) UCI machine learning repository. http://archi
ve.ics.uci.edu/ml. Accessed 2 Oct 2013

 33. Ren Y, Zhang G, Domeniconi C, Yu G (2013) Weighted-object
ensemble clustering. In: Proceedings of the IEEE 13th Interna-
tional Conference on Data Mining (ICDM). IEEE, pp 627–636

 34. Sevillano X, Socoró JC, Alıas F (2009) Fuzzy clusterers combina-
tion by positional voting for robust document clustering. Proc del
lenguaje Nat 43:245–253

 35. Strehl A, Ghosh J (2000) Value-based customer grouping from
large retail data sets. In: AeroSense, International Society for
Optics and Photonics, pp 33–42

 36. Strehl A, Ghosh J (2003) Cluster ensembles–a knowledge reuse
framework for multiple partitions. J Mach Learn Res 3:583–617

 37. Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kel-
lam P (2004) Consensus clustering and functional interpretation
of gene-expression data. Genome Biol 5(11):R94

 38. Tan PN, Steinbach M, Kumar V (2006) Introduction to data min-
ing. Pearson Addison Wesley, Boston

 39. Topchy A, Jain AK, Punch W (2004) A mixture model of cluster-
ing ensembles. In: Proceedings of the SIAM International Confer-
ence of Data Mining. Citeseer

http://www.aaai.org/Papers/ICML/2003/ICML03-027.pdf
http://www.aaai.org/Papers/ICML/2003/ICML03-027.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

 International Journal of Machine Learning and Cybernetics

1 3

 40. Topchy A, Jain AK, Punch W (2005) Clustering ensembles: mod-
els of consensus and weak partitions. IEEE Trans Pattern Anal
Mach Intell 27(12):1866–1881

 41. Vega-Pons S, Ruiz-Shulcloper J (2011) A survey of cluster-
ing ensemble algorithms. Int J Pattern Recogn Artif Intell
25(03):337–372

 42. Vega-Pons S, Correa-Morris J, Ruiz-Shulcloper J (2010) Weighted
partition consensus via kernels. Pattern Recogn 43(8):2712–2724

 43. Vinh NX, Houle ME (2010) A set correlation model for partitional
clustering. In: Advances in Knowledge Discovery and Data Min-
ing. Springer, New York, pp 4–15

 44. Wang W (2008) Some fundamental issues in ensemble methods.
In: Proceedings of the IEEE international joint conference on neu-
ral networks, pp 2243–2250

 45. Yi J, Yang T, Jin R, Jain AK, Mahdavi M (2012) Robust ensem-
ble clustering by matrix completion. In: Proceedings of the IEEE
12th International Conference on Data Mining (ICDM). IEEE, pp
1176–1181

 46. Yoon HS, Ahn SY, Lee SH, Cho SB, Kim JH (2006) Heterogene-
ous clustering ensemble method for combining different cluster
results. In: Data Mining for Biomedical Applications. Springer,
New York, pp 82–92

 47. Zhou ZH, Tang W (2006) Clusterer ensemble. Knowl-Based Syst
19(1):77–83

	Clustering ensemble method
	Abstract
	1 Introduction
	2 Clustering ensemble methods
	2.1 Clustering ensemble representation
	2.2 A generic clustering ensemble framework
	2.2.1 Ensemble member generation
	2.2.2 Consensus function
	2.2.3 Evaluation

	3 Related work
	4 The adaptive clustering ensemble (ACE)
	4.1 Definitions of similarity measures
	4.2 The ACE algorithm
	4.2.1 Stage 1: transformation
	4.2.2 Stage 2: generating new consensus clusters
	4.2.3 Stage 3: enforce hard clustering

	5 Experiments
	6 Results and analysis
	6.1 Results of ensembles built with fixed k
	6.1.1 Results of ARI index
	6.1.2 Results of NMI index

	6.2 Results of ensembles built with random variable k
	6.2.1 Results of ARI index
	6.2.2 Results of NMI index
	6.2.3 Identifying the true number of clusters in DICLENS

	6.3 Test of improvement significance

	7 Analysis of parameters and time complexity
	8 Conclusion
	References

