20 research outputs found

    A Novel Deep Convolutional Neural Network Architecture Based on Transfer Learning for Handwritten Urdu Character Recognition

    Get PDF
    Deep convolutional neural networks (CNN) have made a huge impact on computer vision and set the state-of-the-art in providing extremely definite classification results. For character recognition, where the training images are usually inadequate, mostly transfer learning of pre-trained CNN is often utilized. In this paper, we propose a novel deep convolutional neural network for handwritten Urdu character recognition by transfer learning three pre-trained CNN models. We fine-tuned the layers of these pre-trained CNNs so as to extract features considering both global and local details of the Urdu character structure. The extracted features from the three CNN models are concatenated to train with two fully connected layers for classification. The experiment is conducted on UNHD, EMILLE, DBAHCL, and CDB/Farsi dataset, and we achieve 97.18% average recognition accuracy which outperforms the individual CNNs and numerous conventional classification methods

    Defect classification of radius shaping in the tire curing process using Fine-Tuned Deep Neural Network

    Get PDF
    The curing process or vulcanization process is the final stage of the tire manufacturing process, where the properties of the tire compound change from rubber-plastic material to become elastic by forming cross-links in its molecular structure. The green tire is formed in the curing process, which is placed on the bottom mould. The inside of the green tire surrounds the bladder. The top mould will close to carry out the next curing process. In closing the mould, there is a shaping process of forming a green tire placed on the bladder and given a proportional pressure. Improper or abnormal radius shaping results cause seventy percent of product defects. This paper proposed abnormal detection of radius shaping in the curing process using Fine-tuned Deep Neural Network (DNN). Several DNN models have been examined to analyze an optimized DNN model for abnormal detection of radius shaping in the curing process. The fine-tuned DNN architecture has been exported for the curing system. The DNN was trained with a training accuracy of 97.88%, a validation accuracy of 95%, a testing accuracy of 100%, and a loss of 4.93%

    Towards robust convolutional neural networks in challenging environments

    Get PDF
    Image classification is one of the fundamental tasks in the field of computer vision. Although Artificial Neural Network (ANN) showed a lot of promise in this field, the lack of efficient computer hardware subdued its potential to a great extent. In the early 2000s, advances in hardware coupled with better network design saw the dramatic rise of Convolutional Neural Network (CNN). Deep CNNs pushed the State-of-The-Art (SOTA) in a number of vision tasks, including image classification, object detection, and segmentation. Presently, CNNs dominate these tasks. Although CNNs exhibit impressive classification performance on clean images, they are vulnerable to distortions, such as noise and blur. Fine-tuning a pre-trained CNN on mutually exclusive or a union set of distortions is a brute-force solution. This iterative fine-tuning process with all known types of distortion is, however, exhaustive and the network struggles to handle unseen distortions. CNNs are also vulnerable to image translation or shift, partly due to common Down-Sampling (DS) layers, e.g., max-pooling and strided convolution. These operations violate the Nyquist sampling rate and cause aliasing. The textbook solution is low-pass filtering (blurring) before down-sampling, which can benefit deep networks as well. Even so, non-linearity units, such as ReLU, often re-introduce the problem, suggesting that blurring alone may not suffice. Another important but under-explored issue for CNNs is unknown or Open Set Recognition (OSR). CNNs are commonly designed for closed set arrangements, where test instances only belong to some ‘Known Known’ (KK) classes used in training. As such, they predict a class label for a test sample based on the distribution of the KK classes. However, when used under the OSR setup (where an input may belong to an ‘Unknown Unknown’ or UU class), such a network will always classify a test instance as one of the KK classes even if it is from a UU class. Historically, CNNs have struggled with detecting objects in images with large difference in scale, especially small objects. This is because the DS layers inside a CNN often progressively wipe out the signal from small objects. As a result, the final layers are left with no signature from these objects leading to degraded performance. In this work, we propose solutions to the above four problems. First, we improve CNN robustness against distortion by proposing DCT based augmentation, adaptive regularisation, and noise suppressing Activation Functions (AF). Second, to ensure further performance gain and robustness to image transformations, we introduce anti-aliasing properties inside the AF and propose a novel DS method called blurpool. Third, to address the OSR problem, we propose a novel training paradigm that ensures detection of UU classes and accurate classification of the KK classes. Finally, we introduce a novel CNN that enables a deep detector to identify small objects with high precision and recall. We evaluate our methods on a number of benchmark datasets and demonstrate that they outperform contemporary methods in the respective problem set-ups.Doctor of Philosoph

    An enhanced gated recurrent unit with auto-encoder for solving text classification problems

    Get PDF
    Classification has become an important task for categorizing documents automatically based on their respective groups. Gated Recurrent Unit (GRU) is a type of Recurrent Neural Networks (RNNs), and a deep learning algorithm that contains update gate and reset gate. It is considered as one of the most efficient text classification techniques, specifically on sequential datasets. However, GRU suffered from three major issues when it is applied for solving the text classification problems. The first drawback is the failure in data dimensionality reduction, which leads to low quality solution for the classification problems. Secondly, GRU still has difficulty in training procedure due to redundancy between update and reset gates. The reset gate creates complexity and require high processing time. Thirdly, GRU also has a problem with informative features loss in each recurrence during the training phase and high computational cost. The reason behind this failure is due to a random selection of features from datasets (or previous outputs), when applied in its standard form. Therefore, in this research, a new model namely Encoder Simplified GRU (ES-GRU) is proposed to reduce dimension of data using an Auto-Encoder (AE). Accordingly, the reset gate is replaced with an update gate in order to reduce the redundancy and complexity in the standard GRU. Finally, a Batch Normalization method is incorporated in the GRU and AE for improving the performance of the proposed ES-GRU model. The proposed model has been evaluated on seven benchmark text datasets and compared with six baselines well-known multiclass text classification approaches included standard GRU, AE, Long Short Term Memory, Convolutional Neural Network, Support Vector Machine, and Naïve Bayes. Based on various types of performance evaluation parameters, a considerable amount of improvement has been observed in the performance of the proposed model as compared to other standard classification techniques, and showed better effectiveness and efficiency of the developed model

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information

    A Comprehensive Survey of Convolutions in Deep Learning: Applications, Challenges, and Future Trends

    Full text link
    In today's digital age, Convolutional Neural Networks (CNNs), a subset of Deep Learning (DL), are widely used for various computer vision tasks such as image classification, object detection, and image segmentation. There are numerous types of CNNs designed to meet specific needs and requirements, including 1D, 2D, and 3D CNNs, as well as dilated, grouped, attention, depthwise convolutions, and NAS, among others. Each type of CNN has its unique structure and characteristics, making it suitable for specific tasks. It's crucial to gain a thorough understanding and perform a comparative analysis of these different CNN types to understand their strengths and weaknesses. Furthermore, studying the performance, limitations, and practical applications of each type of CNN can aid in the development of new and improved architectures in the future. We also dive into the platforms and frameworks that researchers utilize for their research or development from various perspectives. Additionally, we explore the main research fields of CNN like 6D vision, generative models, and meta-learning. This survey paper provides a comprehensive examination and comparison of various CNN architectures, highlighting their architectural differences and emphasizing their respective advantages, disadvantages, applications, challenges, and future trends

    Artificial Intelligence for Multimedia Signal Processing

    Get PDF
    Artificial intelligence technologies are also actively applied to broadcasting and multimedia processing technologies. A lot of research has been conducted in a wide variety of fields, such as content creation, transmission, and security, and these attempts have been made in the past two to three years to improve image, video, speech, and other data compression efficiency in areas related to MPEG media processing technology. Additionally, technologies such as media creation, processing, editing, and creating scenarios are very important areas of research in multimedia processing and engineering. This book contains a collection of some topics broadly across advanced computational intelligence algorithms and technologies for emerging multimedia signal processing as: Computer vision field, speech/sound/text processing, and content analysis/information mining

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise
    corecore