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ABSTRACT 

Classification has become an important task for categorizing documents 

automatically based on their respective groups. Gated Recurrent Unit (GRU) is a 

type of Recurrent Neural Networks (RNNs), and a deep learning algorithm that 

contains update gate and reset gate. It is considered as one of the most efficient text 

classification techniques, specifically on sequential datasets. However, GRU suffered 

from three major issues when it is applied for solving the text classification 

problems. The first drawback is the failure in data dimensionality reduction, which 

leads to low quality solution for the classification problems. Secondly, GRU still has 

difficulty in training procedure due to redundancy between update and reset gates. 

The reset gate creates complexity and require high processing time. Thirdly, GRU 

also has a problem with informative features loss in each recurrence during the 

training phase and high computational cost. The reason behind this failure is due to a 

random selection of features from datasets (or previous outputs), when applied in its 

standard form. Therefore, in this research, a new model namely Encoder Simplified 

GRU (ES-GRU) is proposed to reduce dimension of data using an Auto-Encoder 

(AE). Accordingly, the reset gate is replaced with an update gate in order to reduce 

the redundancy and complexity in the standard GRU. Finally, a Batch Normalization 

method is incorporated in the GRU and AE for improving the performance of the 

proposed ES-GRU model. The proposed model has been evaluated on seven 

benchmark text datasets and compared with six baselines well-known multiclass text 

classification approaches included standard GRU, AE, Long Short Term Memory, 

Convolutional Neural Network, Support Vector Machine, and Naïve Bayes. Based 

on various types of performance evaluation parameters, a considerable amount of 

improvement has been observed in the performance of the proposed model as 

compared to other standard classification techniques, and showed better effectiveness 

and efficiency of the developed model. 
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ABSTRAK 

Pengelasan telah menjadi tugas penting untuk mengklasifikasikan dokumen secara 

automatik ke kategori masing-masing. Gated recurrent unit (GRU) adalah sejenis 

Rangkaian Neural Berulang (RNNs), dan algoritma pembelajaran mendalam yang 

mengandungi gerbang kemas kini dan gerbang penetapan semula, yang dianggap 

sebagai teknik klasifikasi teks yang paling efisyen, khususnya pada kumpulan data 

yang berjujukan. Walau bagaimanapun, GRU mempunyai tiga kelemahan utama 

apabila ia digunakan untuk menyelesaikan masalah klasifikasi teks pelbagai kelas. 

Kelemahan pertama adalah kegagalan dalam pengurangan dimensi data, yang 

membawa kepada penyelesaian berkualiti rendah bagi masalah klasifikasi. Kedua, 

GRU masih mempunyai kesukaran dalam prosedur latihan disebabkan oleh 

penindanan antara gerbang kemaskini dan penetapan semula. Gerbang penetapan 

semula membentuk kekompleksan dan menghasilkan masa pemprosesan yang tinggi. 

Ketiga, GRU juga mempunyai masalah dalam kehilangan ciri-ciri maklumat pada 

setiap pengulangan semasa fasa latihan untuk menyelesaikan masalah pengelasan 

pelbagi kelas. Punca disebalik kegagalan ini adalah pemilihan ciri-ciri input dari 

dataset (atau output sebelumnya), secara rawak, apabila ia digunakan dalam bentuk 

piawai. Oleh itu, di dalam kajian ini model GRU baru, iaitu GRU Encoder Simplified 

(ES-GRU) dicadangkan untuk mengurangkan dimensi dari data input berdasarkan 

Auto-Encoder (AE). Setelah itu, gerbang penetapan semula digantikan dengan 

gerbang kemas kini untuk mengurangkan penindanan dan kerumitan bagi GRU 

piawai. Akhirnya, kaedah normalisasi berkumpulan digabungkan dalam GRU dan 

AE untuk meningkatkan prestasi dan ketepatan model ES-GRU yang dicadangkan. 

Model yang dicadangkan telah dinilai dengan tujuh kumpulan data penandaaras dan 

dibandingkan dengan enam pendekatan klasifikasi teks pelbagai kelas yang terkenal, 

termasuk GRU piawai, AE, memori jangka pendek panjang, rangkaian neural 

convolutional, support vector machine (SVM), dan Naïve Bayes. Berdasarkan 

pelbagai jenis parameter penilaian prestasi, sejumlah besar penambahbaikan telah 
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dilihat dalam prestasi model yang dicadangkan berbanding dengan teknik-teknik 

klasifikasi piawai lain yang menunjukkan keberkesanan dan kecekapan model yang 

dibangunkan.  
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CHAPTER 1 

INTRODUCTION 

1.1       Research Background  

The rapid development of computer technologies and internet usage caused to 

generate huge amount of digital textual data (Wang & Qu, 2017), and to retrieve the 

required content from the great deal of information fast and accurately has become a 

common concern. Textual data are highly dimensional data, it has irrelevant and 

unwanted features which are difficult to manage and maintain (Sharif et al., 2017). In 

the early sixties of the 20
th

 century, generation of excessive data was observed. A lot 

of online information exists in the form of texts, which is in both structured and 

unstructured form. The unstructured text has become fundamental problem for big 

organization to manage the large amount of data (Ahmed et al., 2016). However, 

machine learning helps to analyses automatically the data by identifying the patterns 

for making classification with minimal human intervention. In machine learning, to 

extract useful information and interested information from constantly increasing 

documents becomes a vital task. Documents can be in various formats such as word, 

phrase, term, pattern, concept, sentence, paragraph and text (Wang et al., 2018). This 

excessive information requires some proficient classification algorithms which can 

be used to assign texts into one or more classes (labels). The classification algorithms 

are applied on different text applications such as sentiment analysis (Do et al., 2019), 

text clustering (Yi et al., 2017), spam filtering (Barushka & Hajek, 2018), website 

classification (Wang & Qu, 2017), disease report finding (Jadhav et al., 2019), 

document summarization and text classification (Sharif et al., 2019).   
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 3 

Text classification has become an active research area over the last decade. 

Past studies (Kowsari et al., 2017), (Dawar, 2012) indicated that information retrieval 

plays an important role to improve accuracy in text classification. Textual data are 

highly dimensional and must be pre-processed before applying classification 

algorithms (Onan et al., 2016). Therefore, it takes much time to discover the 

knowledge of interest from textual data (Nam et al., 2014). The advent of high 

dimensional data has carried unprecedented challenges to machine learning 

researchers, making the learning task more complex and demanding computationally.  

Text classification has become more active and commonly encountered 

decision making activity in the area of machine learning. Application of machine 

learning (ML) techniques for solving text classification issues is one of the basic 

concerns of researchers. All the classification issues are distributed into two main 

parts, i.e. Binary class classification and multiclass classification problems (Yeh et 

al., 2017). When the entire data is divided into two classes, is known binary 

classification. In contrast, a classification issue is regarded as multiclass 

classification issue if the dataset has more than two distinct classes. Binary 

classification is considered to be simpler as compared to multiclass classification 

problem (Don & Iacob, 2018). It is due to the fact that multiclass data has many 

similarities in the features set, that makes it more complicated for the classifier to 

distinguish them from other classes. Based on the literature studies, the well-known 

machine learning techniques for solving text classification issues are: Support Vector 

Machine (SVM) (Xu et al., 2019), Naïve Bayes (Xu, 2018) and Artificial Neural 

Network (ANN) (Ghiassi et al., 2012). Furthermore, a group of techniques known as 

deep learning (DL) approaches has been introduce recently for solving these 

complicated issues.  

Deep learning algorithms are the advanced versions of existing ANNs which 

process some complicated problems. In existing neural networks, if there are more 

layers and units, there will be a higher expressional power of the network which 

leads to more complexity of cost functions. In order to overcome the limitations 

associated with traditional neural networks, deep learning algorithms have been 

introduced. It is an advanced approach and has been used in many applications for 

example transfer learning (Long et al., 2017), medical text classification (Hughes et 

al., 2017), computer vision (Voulodimos et al., 2018), natural language processing 

(Feature & Joseph, 2017) and many other complex applications. The reasons behind 
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 4 

the usage of deep learning algorithms are the low cost of computing hardware, 

powerful processing abilities and high level of advancement in the machine learning 

techniques. There are three well-known DL algorithms found in the most recent 

research namely Convolution Neural Network (CNN), Auto Encoder (AE) and 

Recurrent Neural Networks (RNNs). All of these deep learning approaches have 

further several variants appropriate for different kinds of applications (Ahmed et al., 

2017).  

Convolution neural networks fall under the most essential deep learning 

algorithms based on multiple layers training approach in an efficient manner (Shone 

et al., 2018). There are mainly three layers of convolution neural network such as 

convolution layer, pooling layer and fully connected layer. All these layers have 

different roles in the general function of a neural network. Convolutions layer of 

CNN uses various kinds of kernels to convolve the two-dimensional data set as well 

as the intermediate feature map. Pooling layer works on data to compresses and 

makes smooth data. Max-layer selects the maximum value of the receptive field and 

makes data invariant to small translational changes. However, the fully connected 

layer converts the two dimensional feature spaces into one dimensional feature 

space. 

Auto encoders (AEs) are a kind of artificial neural network consists of three 

layers such as input layer, hidden layer and output layer. These layers use the back-

propagation behaviour via setting up the high-dimensional input feature set to a low-

dimensional output feature set. And by doing so recover the original feature set from 

the output for efficient learning (Aamir et al., 2020). Basically, AE usually performs 

in two stages namely encoding and decoding. The encoding stage converts the input 

features to a new representation while decoding stage tries to convert this new 

representation back as near as possibly to its original inputs. Moreover, AE 

reconstructs its own inputs instead of predicting outputs from the inputs. In auto 

encoder, the output vector has the same dimension as the inputs. During the 

reduction process in auto encoder, the purpose is to minimize the reconstruction error 

and learned features are actually the code generated by the encoder (Ahmed et al., 

2017).  However, the novelty of the research and powerful deep RNN models is very 

active research area topic in deep learning community.  

In recent years, RNN has been extremely used in several data mining 

applications to show the better performance on classification issues. RNNs are 
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capable to capture temporal dependencies in sequence information and have shown 

strong semantic composition approaches for sentiment classification (Liu et al., 

2016). The key benefit of RNNs is that they can be applied to extracts temporal 

sequential data with variable-length, which generates flexibilities in evaluating 

reviews of various lengths. RNNs have various types such as Recursive Neural 

Network (Cardie et al., 2014), Matrix Vector-RNN (Baly et al., 2017), Recursive 

Neural Tensor Network (Socher et al., 2013), Long Short Term Memory (LSTMs) 

(Hochreiter, 1997), and Gated Recurrent Unit (GRU) (Cho et al., 2014). GRU is a 

variant of RNN family that consist of two gates such as update gate and reset gate 

was proposed by (Cho et al., 2014) and is the latest version of complex LSTM cell 

architecture. GRU contains three layers and fewer parameters that explained by very 

simple set of equations, thus need significantly less computational power. These 

layers are input layer, hidden layer and output layer, which are used for learning 

statistical features more efficiently (Xing et al., 2019). Text data is high dimensional 

data that has lot of features. A single layer cannot extract informative features from 

the raw data. Therefore, in recent studies on deep learning, researchers have used 

multiple layers to extract the most useful features from the raw data. GRU are 

commonly used as the similar to other types of RNN nodes, particularly when there 

exist some noise in the input data where usually other algorithms fail to classify the 

data points.  

The aim of LSTM and GRU is to classify data based on previous time step 

but the working mechanism is very minor different in both. LSTM structure consists 

of three gates and more complex than GRU while the GRU is a latest and simple 

model that consists of two gates such as update gate and reset gate. Update gate 

decides to help the model that how much of the past information through previous 

time step t should be updated and pass to the future. While reset gate has the opposite 

functionality as compared to update gate, it applies to decide how much of the past 

information from the previous hidden state can be ignore in the conventional GRU 

model. In the natural language processing, reset gate may occur when transferring 

from one text to another one which is not found the semantically interrelated values. 

In these conditions, it is convenient to reset the stored memory in order to prevent 

taking a decision regarding an unrelated history. Although, GRU is one of the most 

effective approach has applied for solving various types of text classification 

problems. Many previous researchers have worked on accuracy and performance for 
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 6 

text classification using GRU but still there are some gaps and drawbacks associated 

with standard GRU and there is much work needed to improve the existing GRU.  

The main purpose of this research is to modify the standard GRU structure in 

order to reduce the complexity and improve the performance. Particularly, the main 

contribution of this research is three-folded: Firstly, to enhance the performance of 

GRU model with Auto Encoder for dimensionality reduction to solve text 

classification problems. This problem is the incapability of the GRU to capture the 

features set with some useful information. Secondly, this research evaluates to 

replace the reset gate with update gate in the standard GRU network design. 

Similarly to (Zhou et al., 2016), have found that to removing reset gate does not 

significantly impact the system performance. Thirdly, the integration of Batch 

Normalization method in the training phase of the model refers to normalize the 

fluctuations in the nodes values during each iteration and minimize the loss function. 

Finally this research replaces the hyperbolic tangent activation function (tanh) with 

Rectified Linear Unit (Relu) activation in candidate equation. Relu units have been 

demonstrated to be better performance than sigmoid non-linearities for deep learning 

approaches.    

1.2       Problem Statement 

Examining multiclass text classification issue is one of the most complex problems 

in machine learning. It is mainly due to the fact that there are several similarities in 

the feature set of all the targeted classes ("Raziff et al., 2017). This similar behavior 

in different classes of the text data make it a difficult task for classifiers to 

distinguish between different classes. Several approaches have been proposed and 

methods have been developed but all of these algorithms suffer from different types 

of drawbacks and still there is much work needed to be done in this area to develop 

issue independent and efficient algorithms for solving classification issues (Nikam, 

2015). In order to improve the capability of text classification algorithms, the 

properties of feature reduction and classification stage are targeted. In the most 

specific format, the motivational factors for this research are those properties of 

multiclass classification algorithms that directly affect the solution quality of a 

technique when solving these issues.  
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Additionally, this research work has targeted different issues associated with 

a text classification technique in order to enhance its performance. Although GRU is 

one of the most powerful approach applied for solving various types of text 

classification problems, but still some drawbacks are associated with this algorithm 

which needs proper attention to develop a technique that leads to a problem 

independent and high quality solution generation for solving these complicated 

issues. Same as other text classification models, GRU perform the text classification 

task in three major stages namely features extraction, feature reduction and 

classification. The first drawback associated with standard GRU is its failure in 

application independent data dimensionality reduction according to input data (Hao 

et al., 2019). The result of this failure is the incapability of the technique to captures 

the finer details for possessing the useful information. Resultantly, it leads to low 

quality solution of the text classification issue. Secondly, based on experiment, the 

drawback was found to addresses the redundancy and complexity in the standard 

GRU structure for solving the multiclass text classification. The main reason behind 

this failure is the redundancy between the update gate and reset gate during the 

training phase. Similarly (Zhou et al., 2016),” found that removing reset gate does not 

significantly impact the system accuracy, due to the redundancy between the 

functionality of update and reset gates. This issue is the incapability of the GRU to 

the repetition of function in both reset and update gate. Finally, the third issue is 

concerned to RNN such as GRU when it combines with other classification 

techniques for solving text classification problems, the technique may still find 

difficulty in providing the most accurate results. The reason behind of this failure is 

the high computational cost and loss of informative features in the training process, 

when they are applied in their standard form “(Davidson, 2016), (Justus et al., 2019).   

Therefore, three problems are the target of this research activity that are 

related to the standard operational steps of GRU that include: a) the failure in data 

dimensionality reduction that cause difficulty for the technique to capture the finer 

details possessing the useful information: b) redundancy and complexity between the 

update gate and reset gate in the standard GRU design and c) The failure of the nodes 

complexity and loss of informatics features in the training process. These three 

problems result in low quality solution of the multi class classification issues in the 

terms of accuracy. 
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1.3       Research Objectives  

The main purpose of this research is to enhance and develop GRU based on AE for 

solving the text classification problems. This research focuses on Auto Encoder, 

Batch Normalization (BN) and replacing the reset gate with update gate in GRU 

design. In addition, this research work also seeks to find a better network architecture 

in order to improve the accuracy, with less execution time and computational cost. 

In order to solve the aforementioned issues associated with standard GRU, 

following objectives have been set to achieve from the proposed work:  

 

(i) To propose an enhanced Gated Recurrent Unit (GRU) with an Auto Encoder 

(E-GRU) for solving dimensionality reduction problems.  

(ii) To replace reset gate with an update gate in (i) in order to reduce its 

complexity and redundancy, and called as ES-GRU. 

(iii) To integrate batch normalization in the training phase of ES-GRU in order to 

boost up the training for improving the performance of ES-GRU. 

(iv) To evaluate and compare the out-of-sample performance of the proposed ES-

GRU with the baseline approaches for text classification 

1.4       Research Scope 

The proposed Gated Recurrent Unit with Auto Encoder method of this research work 

applied for solving multiclass text classification issues. The proposed model 

evaluated on seven benchmark texts datasets including: 20newsgroup, Reuters21578, 

Amazon reviews, AG‟s news, IMDB, yahoo answers and Yelp reviews. All the 

benchmark datasets are available online repositories (Zhang et al., 2018). For 

analyzing and testing, Softmax classifier was used as a final classification layer in 

the proposed model. In the comparative analysis of the proposed model, six well-

known standard text classification approaches including standard GRU, standard AE, 

LSTM, CNN, SVM and Naïve Bayes were used. 
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