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Abstract

Image classification is one of the fundamental tasks in the field of computer vision.

Although Artificial Neural Network (ANN) showed a lot of promise in this field, the

lack of efficient computer hardware subdued its potential to a great extent. In the early

2000s, advances in hardware coupled with better network design saw the dramatic rise

of Convolutional Neural Network (CNN). Deep CNNs pushed the State-of-The-Art

(SOTA) in a number of vision tasks, including image classification, object detection,

and segmentation. Presently, CNNs dominate these tasks.

Although CNNs exhibit impressive classification performance on clean images,

they are vulnerable to distortions, such as noise and blur. Fine-tuning a pre-trained

CNN on mutually exclusive or a union set of distortions is a brute-force solution. This

iterative fine-tuning process with all known types of distortion is, however, exhaustive

and the network struggles to handle unseen distortions.

CNNs are also vulnerable to image translation or shift, partly due to common Down-

Sampling (DS) layers, e.g., max-pooling and strided convolution. These operations

violate the Nyquist sampling rate and cause aliasing. The textbook solution is low-pass

filtering (blurring) before down-sampling, which can benefit deep networks as well.

Even so, non-linearity units, such as ReLU, often re-introduce the problem, suggesting

that blurring alone may not suffice.

Another important but under-explored issue for CNNs is unknown or Open Set

Recognition (OSR). CNNs are commonly designed for closed set arrangements, where

test instances only belong to some ‘Known Known’ (KK) classes used in training. As

such, they predict a class label for a test sample based on the distribution of the KK

classes. However, when used under the OSR setup (where an input may belong to an

‘Unknown Unknown’ or UU class), such a network will always classify a test instance

as one of the KK classes even if it is from a UU class.

Historically, CNNs have struggled with detecting objects in images with large

difference in scale, especially small objects. This is because the DS layers inside a CNN

vi
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often progressively wipe out the signal from small objects. As a result, the final layers

are left with no signature from these objects leading to degraded performance.

In this work, we propose solutions to the above four problems. First, we improve

CNN robustness against distortion by proposing DCT based augmentation, adaptive

regularisation, and noise suppressing Activation Functions (AF). Second, to ensure

further performance gain and robustness to image transformations, we introduce

anti-aliasing properties inside the AF and propose a novel DS method called blur-

pool. Third, to address the OSR problem, we propose a novel training paradigm that

ensures detection of UU classes and accurate classification of the KK classes. Finally, we

introduce a novel CNN that enables a deep detector to identify small objects with high

precision and recall. We evaluate our methods on a number of benchmark datasets and

demonstrate that they outperform contemporary methods in the respective problem

set-ups.
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Chapter 1

Introduction

Image classification is one of the fundamental tasks in computer vision and is at the

core of more complex tasks such as deep object detection. It is a process of assigning

target labels to an image based on the visual information available in the pixels. Real-

world applications such as autonomous driving, facial recognition, visual searching,

and medical diagnostics, use image classification in some form or another.

With the recent advances in deep learning and Convolutional Neural Network

(CNN), the State-of-The-Art (SOTA) in image classification is regularly reaching new

heights. However, CNNs are still vulnerable to a broad array of challenges including

distortion, transformation, and minuscule and unknown objects. Improving CNN

robustness to these challenges is, therefore, an important domain of research which we

address in this work.

1.1 Motivation

In pursuit of improving the classification accuracy on clean benchmark datasets such

as ImageNet [1], CNNs’ vulnerability to some common challenges is under-explored.

For example, for humans, the presence of minor distortion in an image does not affect

our classification ability. Therefore, intelligent classifier machines such as a CNN

are also expected to correctly classify images with minor distortion. However, in

practice, even SOTA CNNs falter and misclassify such images. Likewise, trivial image

transformations such as shift are another challenge that should not dramatically affect

CNNs’ performance. The presence of an unknown class image should not trigger

irrational output. Small-scale objects that are human recognisable should be recognised

1
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by a CNN as well. In reality, however, all of the above mentioned challenges occur

frequently and induce misclassification. This raises serious credibility concerns, which

motivate us to revisit the functional blocks of a CNN and its training paradigm to

increase its robustness.

One of the most popular ways of improving robustness against distortion is data

augmentation. At its core, it is a process of interpolating new data from the training

set to represent potential variations in the test set. This typically requires a heuristic

knowledge of the test set, e.g., if the test images are likely to be noisy, different types of

noise-based augmentation can be used during training. However, in reality, an image

can get distorted in numerous ways and in a conventional augmentation approach,

each of the distortion has to be explicitly introduced in the augmented dataset. This is

a time-consuming brute-force solution and requires prior knowledge of the expected

distortions. In this work, we propose a novel augmentation methodology based on

Discrete Cosine Transform (DCT) that can address a wide range of distortions without

any prior knowledge. We also improve an adaptive Drop-out regularisation technique

for further performance gains.

While augmentation improves robustness to some degree, our investigation shows

that the fundamental functional blocks of a CNN, such as Activation Functions (AFs)

and Down-Sampling (DS) layers lack noise suppression properties. For example,

Rectified Linear Unit (ReLU) is the most popular AF which is unbounded in nature

and does not suppress noisy signal. Max-pooling, a popular DS method, does not

account for the Nyquist sampling theorem and thus leads to signal aliasing. This

results in performance degradation not only on distortions but also on trivial image

transformations such as shift. Improving these fundamental functional blocks can

lead to substantially better performance against all these challenges. Based on our

observations, in this work, we strive to further improve the robustness of CNNs by

proposing novel AFs and redefining the DS methods.

Data augmentation and improved fundamental functional blocks enable CNNs

to achieve better classification results on challenging distorted datasets. However,

regardless of a model’s robustness, the closed set nature of conventional classification

completely ignores the open set samples or ‘Unknown Unknown’ (UU) classes. As a
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Figure 1.1: Illustration of research objectives. In this thesis, our aim is to develop a deep CNN
that can correctly classify not only clean images (1), but also images with distortion (2 and 3),
transformation (4), small scale object (5), and totally unknown images (6).

result, a CNN always assigns a ‘Known Known’ (KK) class to any input, even if it is

from a UU class. Training a network with ‘everything else’ in the world as one extra

‘other’ class is unrealistic. In this work, we design a novel training paradigm where a

network can identify unknowns while maintaining high classification accuracy for the

knowns.

As mentioned earlier, deep detectors use CNN classifiers as the backbone of the

network. Any vulnerability in a CNN classifier, by extension, is a vulnerability for

a detector. Our investigation in this work shows that a CNN trained to classify and

detect objects of moderate size performs well on medium to large objects but struggles

detecting smaller ones. Our experiments in this regard show that the signal from such

small objects often gets attenuated along the way in a typical feed-forward CNN. To

address this challenge, in this work, we design a novel backbone CNN that prevents

signal from getting lost, even if the source object is small in scale.
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1.2 Research Objectives

This research aims to develop a set of techniques for CNNs so that they:

• are robust to image distortions such as noise and blur.

• are robust to image transformations such as shift.

• show robustness in the presence of UU classes.

• show robustness in the presence of small objects.

1.3 Contribution Overview

As illustrated in Figure 1.1, our aim is to develop CNNs that are robust to a variety of

distortions, transformations, and object scales. In addition, unknown samples should

be detected at test time without compromising accuracy for the known samples. The

contributions made in this work can be summarised as follows:

• Develop a novel data augmentation method and improve regularisation to en-

hance CNN’s robustness against distortion. (Chapter 3)

• Further improve distortion robustness by proposing an AF with built-in low pass

filtering. This AF complements the DCT augmentation and provides robustness

against a wide array of distortions and perturbations. (Chapter 4)

• Propose a novel AF and DS method by instilling anti-aliasing properties in

them. This further improves performance on a variety of image distortions and

transformations. (Chapter 5)

• Develop a novel training paradigm capable of open set image recognition. This

includes a novel confidence sub-network (CS) that detects unknowns and enables

the base classifier to classify knowns with high accuracy. (Chapter 6)

• Analyse why CNNs are susceptible to detecting small objects and propose a

novel backbone CNN for deep detectors. This backbone enables a smooth signal

propagation for small objects and ensures even small objects are detected at test

time alongside medium and large ones. (Chapter 7)
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1.4 Publications

The following peer-reviewed and under-review publications arose from this thesis:

• M. T. Hossain, S. W. Teng, D. Zhang, S. Lim and G. Lu, "Enhancing the Ef-

fectiveness of Local Descriptor Based Image Matching," in 2018 Digital Image

Computing: Techniques and Applications (DICTA), 2018, pp. 1-8, doi: 10.1109/

DICTA.2018.8615800. [Link]

• M. T. Hossain, S. W. Teng, D. Zhang, S. Lim and G. Lu, "Distortion Robust Image

Classification Using Deep Convolutional Neural Network with Discrete Cosine

Transform," in 2019 IEEE International Conference on Image Processing (ICIP), 2019,

pp. 659-663, doi: 10.1109/ICIP.2019.8803787. [Link]

• M. T. Hossain, S. W. Teng, and G. Lu,"BackNet: An Enhanced Backbone Network

for Accurate Detection of Objects with Large Scale Variations," in 2019 Pacific-Rim

Symposium on Image and Video Technology (PSIVT), 2019, pp. 52-64, doi:10.1007/978-

3-030-34879-3_5. [Link]

• M. T. Hossain, S. W. Teng, F. Sohel and G. Lu, "Robust Image Classification Using

a Low-Pass Activation Function and DCT Augmentation," IEEE Access, vol. 9, pp.

86460-86474, 2021, doi: 10.1109/ACCESS.2021.3089598. [Link]

• M. T. Hossain, S. W. Teng, F. Sohel and G. Lu, "Anti-aliasing Deep Image Classi-

fiers using Novel Depth Adaptive Blurring and Activation Function." Submitted

to IEEE Transactions on Multimedia. [Under Review]

• M. T. Hossain, S. W. Teng, F. Sohel and G. Lu, "A novel network training ap-

proach for open set image recognition." Submitted to Computer Vision and Image

Understanding. [Under Review]

1.5 Thesis Structure

In this section, we outline the organisation of the thesis chapters. Chapter 2 contains

the relevant literature review. It first discusses two different approaches to image

https://ieeexplore.ieee.org/abstract/document/8615800
https://ieeexplore.ieee.org/abstract/document/8803787
https://link.springer.com/chapter/10.1007/978-3-030-34879-3_5
https://ieeexplore.ieee.org/abstract/document/9455411
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Figure 1.2: Contributions and structural overview of the thesis.

classification namely hand-crafted and machine learning. After providing a brief

details of two prominent hand-crafted methods, the basics of machine learning based

CNNs are discussed. To this end, an overview on the evolution of CNNs is provided to

highlight what challenges have influenced the design choices of these networks over

time. Next, we discuss four existing challenges that we want to address in this work.

A schematic diagram of our RO and the corresponding chapters are presented in

Figure 1.2. We address CNNs’ vulnerability to distortion in Chapters 3 and 4. While

Chapter 3 explores an augmentation and regularisation based solution, Chapter 4

investigates ways of improving existing AFs for improved robustness.

Chapter 5 puts emphasis on solving the aliasing problem in existing CNNs, which

is partially responsible for their vulnerability to distortion and corruption. Here,

conventional AF and DS are redefined to serve as anti-aliasing units.

Chapter 6 analyses the importance of Open Set Recognition (OSR) and presents a

novel network training paradigm to detect unknown samples at test time. To achieve

this, a novel network that we call OSRNet is proposed that has a dedicated Confidence

Sub-network (CS) to deal with UU classes.

Chapter 7 analyses the reasons behind CNN’s lack of accuracy in classifying small

scale objects. To this end, we analyse the feature map foot-prints from such objects

and propose a new network architecture with feature upsampling layers. We call this
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network BackNet as we only modify the backbone of the network. BackNet shows

demonstrated improvement in dealing with small scale objects.

Chapter 8 discusses our research outcomes and provides insight on the compatibil-

ity of the methodologies proposed in the preceding chapters.



Chapter 2

Literature Review

Image classification is an important computer vision problem that has been extensively

studied. Over the years, the methods used for image classification and the challenges

associated with these methods have evolved enormously. In this chapter, we discuss

a wide range of relevant methods in the literature. An outline of the content of this

chapter is presented in Figure 2.1. Accordingly, the rest of the chapter is organised as

follows:

Section 2.2 outlines the hand-crafted feature extraction based image classification.

This includes a detailed overview of two widely used feature extraction methods

namely Scale Invariant Feature Transform (SIFT) [2] and Speeded-Up Robust Features

(SURF) [3]. In Section 2.3, we highlight why machine learning-based methods are

receiving substantial attention followed by the details of a CNN-based classifier. This

section sheds light on the fundamental functional blocks of a CNN. Section 2.4 discusses

the evolution of CNNs over the last decade. This provides an overview of five popular

CNN architectures and the inspiration behind their design choices. Since the goal of

this thesis is to improve CNN’s robustness under challenging circumstances, Section 2.5

presents a number of such existing challenges and the solutions found in the literature.

We also outline the deficiencies in the existing solutions setting the context up for our

contribution chapters. We draw conclusions from the literature review of this chapter

in Section 2.6.

2.1 Image Classification

Image classification, i.e., categorisation of an image based on its content, has long

been an important research domain in the field of computer vision. Prior to 2010,

8
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Figure 2.1: Chapter content outline.

image classification was heavily reliant on hand-crafted features. In such an approach,

feature extraction is followed by classifying them in a conventional classifier, e.g.,

Support Vector Machine (SVM) or AdaBoost. Although hand-crafted features are

still commonly used to perform a variety of tasks, machine learning-based feature

extraction and classification has been proven to be more effective. In this chapter, we

first discuss the hand-crafted feature based approach and then delve deeper into the

machine learning-based approach for image classification.

2.2 Hand-crafted Approach

To classify an image, it has to be represented by a set of meaningful features. Hand-

crafted feature extraction process refers to a set of predefined rules that determines

how features are constructed from the raw pixels. What qualifies as a feature and the

design choices for their construction solely depend on the Architect of the method and

hence, these methods are collectively termed as hand-crafted. For example, Oliva et

al. [4] built features of a scene from global properties such as roughness, naturalness,

openness etc. Likewise, Hays et al. [5] used colour and texton histograms to build

global features. As opposed to global features, local features involve extraction and

description of small local patches of an image. These descriptors are hand-crafted as

well and encoded in high dimensional vectors, e.g., 128-dimensional features in SIFT.
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SIFT and SURF are two methods that have been widely used in a number of vision

tasks including image classification. In this section, we will first provide details of SIFT

and how it is used for classification. Later, we present a brief overview of SURF as well.

2.2.1 SIFT

Lowe et al. [2] proposed SIFT back in 2004. From a high level, SIFT extracts small

patches from an image and builds a descriptor around these. These descriptors can

be thought of as a set of features for a particular key point. Formally, building SIFT

features requires the following steps: key point detection and localisation, dominant

orientation assignment, and descriptor construction. These steps are described below.

Figure 2.2: Construction of SIFT scale-space.
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2.2.1.1 Detection and Localisation of Key Points

As depicted in Figure 2.2, in each octave, the initial image is repeatedly blurred using

Gaussian filters. After each octave, the images is down-sampled by removing every

alternate pixels making the resultant image half in the spatial dimensions. These sets

of octaves are called the scale space. In SIFT, the scale-space has four octaves each with

five increasing levels of blur. In order to find interesting points or key points in each

octave, the Laplacian of Gaussian (LoG) of the blurred images is required. However, the

computational overhead of LoG is too high and hence, instead of LoG, the Difference

of Gaussian (DoG) for two consecutive images in an octave is calculated. DoG is a

close approximation of LoG with substantially lesser computational complexity.

For each of the DoG image, a 3× 3 block is taken and each pixel is compared to its

26 adjacent neighbours. A pixel is treated as a key point if it is either the Maxima or

Minima of the neighbouring pixels. After iterating this process for rest of the pixels in

the scale space, a set of key points are extracted for further processing.

2.2.1.2 Dominant Orientation Assignment

A SIFT descriptor is a numerical summary of magnitude-weighted gradient histograms.

Gradients are found by observing the change of pixel intensity within an image. As

gradients are not rotation invariant, a dominant orientation is found from the histogram

and the descriptor is built with respect to that orientation. This enables the SIFT

descriptor to be rotation invariant.

2.2.1.3 Descriptor Construction

SIFT descriptor is built on a 4-by-4 cell square spatial grid. It is centered around the

corresponding key point and scale. The gradient and magnitude information of pixels

in each cell in the grid is represented by an 8-bin orientation histogram, leading to a

descriptor of 4× 4× 8 = 128 dimensions. These descriptors are the features used later

for classification and registration. SIFT also has a key point matching step, which we

improved in [6] by introducing an adaptive clustering-based matching technique. In

this thesis, we stick to our machine learning-based contributions and hence do not go

into details of our work in [6].
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2.2.1.4 Classification

Once an image is represented by a set of key points and their corresponding 128-

dimensional feature vectors, the next step is to train a classifier such as SVM or Ad-

aBoost to distinguish these features into different categories. However, in practice, the

raw features are usually further encoded in a Bag-of-Visual Words (BoV) model [7]

or Fisher Vector (FV) [8]. For example, Sanchez et al. [8] used SIFT-based FVs as final

features. They used linear SVMs as the classifier and trained them with the features

using Stochastic Gradient Descent (SGD). Kulkarni et al. [9] also used SIFT features

but employed AdaBoost instead of linear SVMs as the classifier.

2.2.2 Speeded-Up Robust Features (SURF)

SURF is another efficient way of detecting and describing key points proposed by Bay et

al. [3]. SURF has certain similarities with SIFT but differs in operational fundamentals.

It detects key points by approximating Gaussian second order derivatives with box

filters. SURF detector and descriptor operate on integral images to speed up the

calculation. Moreover, rather than using gradients, SURF harnesses Haar wavelet

response on a SIFT-like region of interest. SURF is computationally much faster than

SIFT and achieves impressive repeatability and distinctiveness. SURF features can be

used for classification in similar ways to SIFT. Nonetheless, it is not as robust as SIFT

in challenging conditions such as change in illumination or image transformation.

2.3 Machine Learning Approach: CNN

CNNs are deep learning models that do not need any explicit engineering to learn

what qualifies as a feature and what does not. A CNN, in pursuit of reducing error by

optimising the cost function, learns both global and local features [10]. This, in essence,

resembles how humans learn from mistakes, hence the name ‘machine learning’.

Interestingly, it extracts low level features such as colour, edge, and contours in the

shallower layers and high level features such as a human face and car wheel in the

deeper layers. In other words, a CNN initially learns low-level features and gradually
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learns more complex set of features as the depth increases. The final dense layer

features of a CNN are usually much higher in dimension compared to hand-crafted

features which gives them greater expressiveness and distinguishability. This is why

machine learning-based classifiers have started outperforming hand-crafted methods.

A CNN, in its simplest form, is a function that takes an image as input and maps it

to an output class. In other words, F(x)→ y can represent a CNN function, where x

represents the input image and y denotes the predicted class x belongs to.

From a functional point of view, a CNN is a composition of multiple modular

units that can extract features from images and classify the images in an end-to-end

fashion. At the core of the feature extraction process is the convolution operation

run by learnable filters. Once the features are extracted, an Artificial Neural Network

(ANN) performs the classification task.

Often, a CNN’s capacity is associated with the depth of these layers. Greater depth

usually results in richer features and better classification accuracy. However, a number

of other functional units play a vital role in the overall performance. In the following

section, we describe the fundamental functional blocks inside a CNN.

Figure 2.3: A standard CNN architecture outlining different fundamental functional blocks. In
a conventional CNN, each convolution layer is followed by an AF. DS is used in-between some
of the intermediate layers. FC layers are placed after the final convolution layer followed by
the loss function.

2.3.1 CNN Basics

A CNN consists of a number of fundamental functional blocks, as depicted in Figure

2.3 In this section, we briefly discuss five such blocks.
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2.3.1.1 Convolution

Convolution is a popular image processing technique that involves convolving an

image with a predefined filter or kernel. The convolution operation in CNN, however,

casts the fixed size kernel weights as learnable parameters. These parameters are

randomly initialised but over the course of the training, the parameters are updated

via back-propagation.

To put these in formal notation, let x be an input image and W be a kernel with a

resolution of m× n. Now we can define our convolution operation as follows:

O(i, j) =

m−1∑
p=1

n−1∑
q=1

(xi+p,j+q) · (Wp,q) (2.1)

where O(i, j) is the output at location (i, j).

2.3.1.2 Activation Function (AF)

Adding non-linearities in the form of AFs has been an integral part of CNNs learning

process. Initially, Sigmoidal functions were widely used but were later sidelined as

they suffer from the vanishing gradient problem1 [11]. Sigmoidal functions squash

values within a finite range (typically [0, 1] or [−1, 1]) which leaves saturation points

on both sides making it impossible to find a slope in these regions. This halts the error

backpropagation, and the network struggles to reach the global minima. This issue

becomes particularly severe in very deep networks where the loss has to travel back

a long way to have meaningful learning. ReLU does not suffer from the vanishing

gradient problem and has long been the ‘de-facto’ AF in deep networks. We will next

discuss the pros and cons of different AFs found in the literature. A pictorial depiction

of these AFs is presented in Figure 2.4

ReLU. ReLU [12, 13] is a piece-wise linear monotonic function. It simply does not

have any response on the negative side, and any positive value remains unchanged

(see Equation 2.2).

1When a first order derivative of the AF cannot be calculated for some input, it is called the vanishing
gradient problem.
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Figure 2.4: Activation functions

f(x) = max(0, x) (2.2)
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ReLU is easy to compute [14], a derivative is available everywhere along with the

positive range, which makes it a great choice for deep networks. It is also hypothesised

to mimic the biological neuron firing process to justify its effectiveness. This correlation,

however, is disputed in [15] based on the Integrate and Fire Model [16] in biological

neurons. Unlike ReLU, where the output slope is always constant (45◦, see Figure 2.4),

according to the Integrate and Fire Model, the biological neuron’s output slope varies

depending on the resistance present in the cell membrane.

Although widely used, ReLU’s unbounded nature leads to feature sparsity. This

lets a marginally distorted signal drift away from its true distribution. This results in

misclassification. Put simply, ReLU achieves impressive accuracy on clean data sets

but is vulnerable to data corruptions.

Leaky ReLU and Parametric ReLU. Because ReLU has a zero response for negative

values, a large number of neurons may never fire in the absence of proper initialisation,

and hyper-parameter setup [17] resulting in ‘dead neurons’. Leaky ReLU has been

proposed [17] to address the dead neuron problem by introducing a small constant

slope (α = .01) on the negative side (see Equation 2.3). Leaky ReLU has a derivative

on both sides of the origin (see Figure 2.4). In Parametric ReLU [18], the slope α is

set up as a learnable parameter rather than a constant and accuracy improvement is

reported [18]. However, leaky variants do not consistently outperform vanilla ReLU

across datasets.

f(x) =

 x, x > 0,

αx, otherwise
(2.3)

Clipped ReLU. Clipped ReLU (C-ReLU) [19] is simply vanilla ReLU clipped to a

constant based on a threshold A (Equation 2.4). C-ReLU was initially proposed in

speech recognition [19] to increase training stability by avoiding gradient explosion.

Later, it found its way into computer vision and other domains of deep learning as well.

For example, C-ReLU’s finite output range is found to be handy in applications where

number representation capability is limited [20]. Despite C-ReLU’s different set of

use-cases, it incorporates a hard low pass filtering which leaves large saturation points

in the bounded region (see Figure 2.4). Consequently, vanishing gradient remains a
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problem, and there is no way to discriminate features beyond the threshold A.

f(x) =

 max(0, x), 0 < x ≤ A,

A, x > A
(2.4)

Tent Function. Tent AF [21] is built from two ReLU units and it is symmetric around

the origin (see Equation 2.5). It is designed to resist adversarial attacks but unlike

ReLU, this AF is not monotonic and has large saturation regions on both sides beyond

a threshold δ (see Figure 2.4).

f(x; δ) = max(0, δ − |x|) (2.5)

Log-tailed ReLU. As the name suggests, Log-tailed ReLU [22] is identical to ReLU up

to a threshold A. The growth of the function is logarithmic thereafter [A,∞). However,

this tail part rapidly converges to C-ReLU with increasing x as can be seen from

Equation 2.6 and Figure 2.4.

f(x) =


0, x ≤ 0,

x, 0 < x ≤ A,

A+ log(x−A), x > A

(2.6)

Tanh Function. Hyperbolic tangent function or tanh is sigmoidal in shape and

squashes values inside a finite range of [−1, 1] (see Equation 2.7). tanh is centred

around the origin. It has faster convergence compared to other sigmoidal functions

because of the wider output range [23]. However, it still has large saturated regions on

both sides of the origin.

f(x) = tanh(x) =
sinh(x)

cosh(x)
=

1− e−2x

1 + e−2x
(2.7)

Swish. This AF [24] is represented by Equation 2.8. Here β is either a constant or a

trainable parameter that defines the final shape of the function. For example, when β

is close to 0, Swish becomes a scaled linear function f(x) = x
2 . For increasingly large β,

Swish starts imitating ReLU. However, regardless of the β value, the positive range of
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Swish remains unbounded.

f(x) = x · σ(βx), σ(z) = (1 + exp(−z))−1 (2.8)

2.3.1.3 Downsampling (DS)

In a typical CNN, the number of convolutional filters increase with network depth and

hence, the computational overhead increases too. One way to address this problem is

to periodically downsample the intermediate feature maps by reducing their spatial

dimensions. However, faster computation is not the sole purpose of DS. DS also

provides translation invariance to the network. Figure 2.5 presents three of the most

popular DS strategies in the literature– max-pooling (max-pool), average pooling

(avg-pool), and strided convolution.

Figure 2.5: Different DS strategies. A stride size of 2 is used in all three examples.

As shown in Figure 2.5, max-pool operation selects the largest value in a predefined

sub-grid. In max-pool, the degree of DS depends on the spatial dimension of the

sub-grid (2× 2 sub-grids are used in this example). Larger sub-grids result in a greater
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DS factor. On the other hand, strided convolution refers to convolving a kernel with a

stride greater than one. A stride of one preserves the original spatial dimension and

larger stride results in a proportionately greater DS factor. Avg-pool is another DS

method that operates in a similar way to max-pool. However, rather than choosing the

maximum value in each sub-grid, it outputs the average (see Figure 2.5). As discussed

later in Section 2.5.2, avg-pool does have some advantageous properties but cannot

match the task performance of max-pool and strided convolution.

2.3.1.4 Fully Connected Layer

Fully Connected (FC) layers consist of artificial neurons analogous to a ANN. FC layers

are usually followed by the last convolution layer in a CNN. ANNs with multiple hid-

den layers of neurons are called Multi-layer Perceptrons (MLP). One such perceptron

or neuron’s output can be represented as Equation 2.9.

y = σ(b0 +
n∑
i=1

xiwi) (2.9)

Here, xi denotes the inputs from the previous layer and wi denotes the corresponding

weights. n is the number of total neurons in the previous layer. b0 is the bias and σ

is the AF. An MLP has a number of these units connected to each of the units in the

previous and next layer.

From a high level, features extracted from the convolution layers enter the clas-

sification stage through the FC layer. The depth of FC layers is a design choice, e.g.,

AlexNet has two FC layers whereas ResNet has only one. It is worth noting that the

dense connections among the FC layers and the preceding convolution layer lead to

significantly high number of parameters. As a result, modern CNNs strive to keep FC

layer depth to a minimum.

2.3.1.5 Loss Function

Loss function is the end point in a CNN where the prediction of the network is

evaluated against the ground truth in a quantifiable manner. The task of the loss
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function is to determine how ‘far off’ the prediction is for a given input. Cross-

entropy loss is a popular choice for this task where the ground truth is one hot vector,

e.g., in a 10-way classification task, the ground truth vector for one sample has 0s

everywhere except in one index. The loss increases when the predicted probability

distribution diverges from the ground truth distribution and vice-versa. Based on

the back-propagation algorithm, higher loss transpires to greater change in the model

parameters or weights. Since the weights are updated in the backward fashion, it is

called back-propagation.

2.4 Evolution of CNN Architectures

Starting from AlexNet– the first deep CNN to win the ImageNet challenge, the ar-

chitecture and training paradigm of deep networks have evolved significantly. At

one point, CNN was able to surpass human level accuracy in the same classification

challenge. Presently, CNNs are used in increasingly complex tasks including object

detection and semantic segmentation. However, the improvements in classification

accuracy on clean datasets do not proportionately transpire to better performance

when datasets deviate from the original distributions– even when this deviation is

visually imperceptible. This calls for a more robust learning paradigm that leads to

CNNs capable of maintaining performance consistency even when the test distribution

is not identical to the train distribution.

Before delving deeper into the challenges and existing solutions in Section 2.5, we

provide an overview of five popular CNN architectures and their design principles.

Figure 2.6 provides a pictorial depiction of these five networks.

2.4.1 AlexNet

AlexNet [14] consists of five convolution layers followed by max-pool layers in layer

1,2, and 5. Two FC layers (each with 4,096 neurons) follow the last convolution layer. A

softmax layer takes in the input from the last FC layer and outputs a 1000-way class

probability for the designated 1000 classes in ImageNet. The first convolution layer

uses 11× 11 filters, the second layer 5× 5 filters, and the last three layers 3× 3 filters.
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For regularisation, the authors used data augmentation and drop-out. ReLU is used as

the AF as opposed to sigmoid function.

Figure 2.6: Architecture of AlexNet, VGGNet, ResNet/WRN, and DenseNet. The difference
between ResNet and WRN is the widening factor k. k = 1 denotes ResNet and k > 1, e.g.,
k = 8 denotes a WRN with eight times more learnable filters in each convolution layer.

2.4.2 VGGNet

VGGNet [25] is a family of networks offering CNNs of varying depth including 11,

13, 15, and 19 learnable layers. VGG16 is the most famous one in the family with 13

convolution layers and three FC layers, as shown in Figure 2.6. It has 2× 2 DS layers

in between convolutions with stride 2. As opposed to 11× 11 kernel with stride of 4

in the first convolution layer of AlexNet, VGGNet uses much smaller 3 × 3 kernels
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with stride 1. This enables VGGNet to form and sustain larger feature maps at greater

network depth. As a result, VGGNet is able to construct a richer and more complex

set of features. This network architecture lets VGGNet achieve greater classification

accuracy.

2.4.3 ResNet

The success of VGGNet prompted the realisation that deeper CNNs in general per-

form better than shallower ones. Thereafter, the focus shifted towards designing

networks with more convolution layers. However, vanishing gradient problem and un-

normalised features make it hard to train very deep CNNs and using smaller kernels

like VGG16 does not suffice. ResNet [26] is the first deep CNN that enabled training

networks with hundreds of layers with the help of skip connections and successful

adoption of Batch Normalisation. A skip connection, in simple words, is a short-cut or

direct path between two distant layers (see Figure 2.6). This path provides a way for

smooth feature propagation and prevents gradients from getting vanished during back

propagation. Batch Normalisation is used immediately after each convolution layer to

keep the feature values within a range.

2.4.4 Wide ResNet

ResNet laid the foundation to train CNNs with hundreds of convolution layers. How-

ever, it has to incur a significant computational overhead as each convolution layer has

to be followed by several other layers such as AF, DS, and Batch Normalization (BN).

Moreover, in [27], it is argued that greater depth, after a certain level, does not provide

substantial performance gain. To this end, they proposed Wide-ResNet (WRN) which

cuts down the depth and uses wider convolution layers – all while using the same

functional blocks as in a conventional ResNet (a widened layer has more convolution

filters). WRN-40-8, for example, has 40 convolution layers, and 8 is the widening factor

(considering ResNet has a widening factor 1). This means WRN-40-8 has eight times

more filters in each layer as opposed to its equivalent ResNet. WRNs are faster to train

and perform better.
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2.4.5 DenseNet

While ResNet, and by extension WRN, get around the vanishing gradient problem

by incorporating skip connections between two distant layers, DenseNet [28] goes

one step further and proposes a network with even denser skip connections among

the convolution layers. To be specific, in DenseNet, a dense block consists of several

convolutional sub-blocks. To maintain the feed-forward nature, feature maps within

a sub-block are concatenated and fed forward to all the subsequent sub-block layers.

This helps a smooth flow of features from shallow to deeper layers of the network.

During loss back-propagation, the dense connections ensure the gradients can easily

flow backwards with getting vanished.

2.5 Challenges in Image Classification

Most of the benchmark datasets in image classification provide clean samples for train-

ing and testing, e.g., ImageNet [1]. This paradigm, although led to rapid developments

in CNN architecture, left a caveat in the form of degraded performance on challenging

test samples. As discussed in Chapter 1, real world applications are expected to face

such challenges in the form of distortions, transformations, unknown samples, and

small-scale objects. In this section, we discuss the literature relevant to these challenges

and proposed methods to overcome them.

2.5.1 Noise and Blur

Dodge et al. [29] evaluated SOTA CNNs on distorted images. They found popular

CNNs such as VGG16, GoogleNet, and Resnet, despite high classification accuracy on

ImageNet, fail to perform well on distorted datasets. Nguyen et al. [30] further showed

that often these distortions are visually imperceptible but the network misclassifies

such samples as something else with surprisingly high confidence – some as high as

99.99%.

Upon realising CNNs’ susceptibility to distortions and corruptions, Hendrycks et

al. [31] recently published a range of benchmark datasets with 19 common corruptions.
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A simple fix to this problem is to train a CNN with all the expected distortions [32, 33].

Some works [31, 34] also explored adversarial training to strengthen CNN’s robustness

against such corruptions but it is argued in [35] that adversarial training does not

provide substantial defence against common corruptions. In this section, we provide

an overview of different proposed methods for improving CNN robustness to such

distortions and corruptions.

Data Augmentation. Vasiljevic et al. [32] followed the simplest augmentation ap-

proach for blur distortion and achieved reasonable performance after training a CNN

with half clean and half blurred images. Similarly, Zhou et al. [33] improved perfor-

mance by augmenting the dataset with both noisy and blurry images.

AutoAugment [36] is a more recent augmentation method, initially designed to

boost clean performance. It incorporates a dynamic choosing from a pool of image

processing policies during training. Recently, AutoAugment is found to be effective in

improving CNN’s robustness against common distortions as well [37, 38]. Hendrycks

et al. [38] improved on AutoAugment and proposed AugMix. In AugMix, a series

of different augmentation techniques (e.g., rotate, translate, and flip) is applied to an

image one after another. The number of steps in a particular series determines how far

an image drifts with respect to the original image. These images are argued to be closer

to the original images, unlike some of the other works [39, 40, 41, 42]. For instance, in

CutOut [42], a random portion of an image is occluded. In CutMix [40] and MixUp

[41], image patches are interchanged, i.e., a portion of one image is overlaid on another.

Images augmented via CutOut, MixUp, and CutMix appear quite unrealistic. It is

worth noting that some of the augmentation techniques overlap with the test set. For

instance, Gaussian and Speckle noise augmentations appear in [35, 33] despite their

presence in the test data. In Chapter 3, we propose a novel DCT-based augmentation

method and provide a detailed comparative performance evaluation.

Network Modification. Dodge et al. [43] proposed a mixture of experts-based model

called MixQualNet for robust image classification. It consists of independent expert

networks each trained on a particular type of distortion. A gating network is trained

to select the most appropriate expert network at test time. MixQualNet performs
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better compared to augmentation applied on a single CNN [33, 32]. However, it is an

ensemble of N identical CNNs where N is the number of distortion types the model is

trained on. Such ensembling makes the entire model parameter heavy. Moreover, it

has one million additional gating network parameters, all resulting in a slow training

process. Diamond et al. [44] and Yim et al. [45] took different routes and proposed

additional network layers to undistort the images by denoising and deblurring. To

undistort an input, one has to know the distortion characteristics in advance. This is

often unavailable, and such requirements limit the application scope. Self-supervised

training, in addition to conventional supervised training, has been reported to yield

promising results in [46]. In [46], an auxiliary 4-way head was trained to predict the

rotation angle of an input which is found to improve overall robustness as well. Sun

et al. [47] further improve on [46] and enable test time parameter update, i.e., online

learning. Some of the recent works [48, 49] treat CNN’s lack of robustness as a domain

adaptation problem and propose to use rectified Batch Normalization Statistics (BNS)

[48].

Activation Function. AFs are primarily designed to introduce non-linearity in a

CNN. The de-facto AF ReLU [13] is widely used for its impressive performance on

clean datasets. ReLU is unbounded by design and therefore, does not suffer from

the vanishing gradient problem. However, ReLU’s unbounded nature also allows

propagation of noise resulting in misclassification. The role of AFs in noise suppression

is an important but under-explored area of research. There are a number of bounded

AFs such as C-ReLU and sigmoidal functions that have the potential to mitigate this

issue but have not been thoroughly investigated in the literature. Rozsa et al. [21]

proposed Tent AF as part of a defence mechanism against adversarial attacks. This

AF bounds the input in a finite range but cannot maintain consistent classification

accuracy across datasets. In Chapter 4, we show how our proposed AF with built-in

low pass filtering can improve CNNs’ robustness to noise.
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2.5.2 Shift and Perturbation

Recently, CNNs’ robustness has been put to test in various ways, ranging from

adversarial attacks [50, 51, 52, 53, 54] to exposing CNNs to common corruptions

[43, 31, 46, 55, 37, 56, 57, 58]. For humans, trivial image transformations such as shift

does not affect our ability to classify an image so long as the key attributes of the image

remain intact. However, CNNs are often found to flip prediction on single pixel shifts

[59]. Any machine learning model capable of performing complex tasks is expected to

effortlessly perform basic tasks. Therefore, CNNs’ vulnerability to shift is concerning.

Commonly used DS methods and AFs are largely responsible for shift variance in

CNNs. The role of DS is discussed at length in [60] and [59].

Downsampling (DS). Spatial dimension reduction has been an integral part of CNNs

as it reduces the computational overhead and provides local translation invariance [61].

Lately, max-pooling and strided convolution have been predominantly used owing

to their superior task performance [62]. Nevertheless, these operations do not use a

blur-prefix, and in effect, violate the sampling theorem [60, 59]. Interestingly, average

pooling – a well known DS method [63], is effectively a moving blur-filter, and resists

aliasing, but cannot match max-pool’s superiority in vision tasks [62]. Upon realising

the potential, Zhang et al. [59] extended the notion of average pooling, and encouraged

the use of stronger filters, e.g., a bilinear or Laplacian [64]. Here, the authors also

provided ways to improve the task performance, and yet, used a single filter (MaxBlur-

Pool (MBP)) for all layers, which is sub-optimal. In Spatially Adaptive Blur Pooling

(SABP) [65], Zou et al. stressed the importance of an adaptive blur scheme but did not

explore the relation with network depth; instead, they used a separate kernel for each

local neighbourhood. While this method does alleviate performance, using too many

filters per feature map is computationally exhaustive, and more importantly, leads

to overfitting. Hypothetically, using a dataset without any location bias could avoid

such overfitting; however, in practice, a bias-less dataset hardly exists, e.g., 90% of

dog images in ImageNet have the main subject in the centre [60], due to a well-known

phenomenon – photographer’s bias [60]. Such bias is prevalent in almost all large-scale

datasets, as such, learning separate and spatially local filters do not generalise well.
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Kayhan et al. [66] argued that CNN filters exploit absolute spatial location due

to image boundary effect – a form of convolution irregularity at image borders, and

leads to shift variance. Here, an extension of the standard padding scheme is proposed

(termed Full-Convolution or F-Conv) to lessen the boundary effects. Nevertheless,

performance gain remains marginal.

As an alternative to blurring in the spatial domain, WaveCNet [67] does so in the

frequency domain via Discrete Wavelet Transform (DWT). Here, the authors replaced

common DS layers with the Low-Low (LL) DWT output. Although effective to some

extent, a single DWT low-pass filter is used throughout the network, limiting the

overall improvement. Moreover, the back-and-forth wavelet transforms add significant

computational overhead. Similar to WaveCNet, Ryu et al. [68] also operated in the

Fourier domain but only replaced the last average pooling layer with cropped Fourier

coefficients (in ResNet). To address this, in an upgraded variant (DFT+) [68], Fourier

features from shallower layers were extracted in a separate sub-network and fused

with the backbone features. Later, SVM was used for final prediction. Even so, DFT+

only marginally improves performance while incurring a lot of additional parameters.

In Chapter 5, we investigate layer-wise Fourier properties of the feature maps and

propose a depth adaptive DS mechanism that outperforms contemporary solutions.

Activation Function. AFs inject non-linearity in otherwise linear CNNs, and enable

a deep classifier to draw highly non-linear decision boundaries, in high dimensional

input space. ReLU is the de-facto AF in modern CNNs [25, 26, 28]. Although studied

for years [16, 13, 12], it came into light when Krizhevsky et al. [69, 14] successfully

replaced Sigmoidal functions with it. Unlike its predecessors, ReLU offers early sparsity

– a much-desired property that enables training very large and deep networks. Such

sparsity gives a network enough ‘room’ to draw accurate decision boundaries among

distinct classes. On the flip side though, it lets high frequency noise slip through –

leaving the network vulnerable to aliasing, even with blur routines in place [60]. C-

ReLU [69, 19] – a bounded variant of ReLU, could be used instead, as it caps the output

to a constant threshold α. However, C-ReLU leaves a sudden and large saturated

region beyond α, where a derivative is absent. Furthermore, finding an optimal α is
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difficult as the buffer between the signal and noise is unknown. This highlights the

importance of a ‘soft’ capping procedure – much like how signal rolls-off in a physical

low-pass filter [70]. Different to rectified units, Sigmoidal functions, e.g., hyperbolic

tangent (tanh [71] in Equation 2.10), squashes the input and keeps the output within a

finite range.

f(x) = tanh(x) =
sinh(x)

cosh(x)
=

1− e−2x

1 + e−2x
(2.10)

In tanh, the roll-off effect can be regulated as well, but ensuring early feature sparsity

remains a problem [69]. To strike the right balance between early sparsity and noise

filtering, in Chapter 5, we propose a novel anti-aliasing AF.

2.5.3 Open Set Samples

Theoretically, for any unknown input, a CNN classifier should uniformly diffuse the

prediction probability among the known classes. Such a uniform probability distri-

bution should act as a sign that the input might be unknown. In practice, however,

closed set CNNs trained to distinguish among a finite set of classes produce erratic

results on unknown class samples. This is also known as the Open Set Recognition

(OSR) problem. Here, we discuss the literature that addresses this issue.

OSR. OSR methods can be categorised into two main types: CNN-based and non-

CNN-based. Scheirer et al. [72, 73] first formalised the OSR problem and proposed

an SVM-based solution. Extreme Value Theory (EVT) is used in a number of works

[74, 75] to reject Unknown Unknown2 (UU) instances receiving probability score lower

than a threshold. Dang et al. [76] proposed an OSR model where edge exemplars are

selected for every class based on local geometrical and statistical properties [77]. Later,

EVT-based rejection rule is adopted to reject any UU input that lies outside the KK class

boundaries. Recently, deep learning-based networks are found to be more effective in

OSR.

OSR with Counterfactual Images (OSRCI) [78] uses GAN to produce Counterfactual

Images (CI) by morphing instances from a KK dataset (DKK) to an extent where they
2Unknown Unknown (UU) refers to a class that is only available in the testset. Known Known (KK)

refers to the known classes used in the trainset. Known Unknown (KU) refers to the unknown classes
used as unknown trainer but do not appear during testing.
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no longer are recognizable as a true class object. Later, these CI are used as the Known

Unknown Trainer dataset DKUT (i.e., CI ≈ DKUT). An additional (N + 1)th ‘other’ class

is introduced to accommodate images in DKUT during training. At inference time, the

classifier is expected to classify UU instances as the ‘other’ class. Although the network

is expected to classify real-world objects, CI used as DKUT lack visual characteristics of

natural images, thus limiting the effectiveness of OSRCI.

Bendale et al. [79] replaced the SoftMax function with OpenMax. It is argued

that forcing a network’s total output probability to sum up to 1 leads the network

to put undue probability score to UU instances at test time. It has been reported

that test instances from DKK put high prediction scores on the true class while the

leftover probability is distributed to visually similar classes. However, the output

probability distribution does not exhibit the same pattern for unknown instances.

Inspired from this observation, the penultimate layer features (Activation Vector or AV)

are extracted, and a mean vector (AVM) is calculated for each class (class-wise images

are fed to the CNN). At test time, the AV of an image is extracted, and its distances to

all the AVMs are calculated. Later, these distances are used with a threshold to detect

whether the image belongs to a KK class or not. Ge et al. [80] supplemented OpenMax

with Generative OpenMax (G-OpenMax) where they used GAN-generated data for

OSR training. Classification-Reconstruction learning for OSR (CROSR) [81] is also an

extension of OpenMax, but a different route is followed. A two-part deep network

is used: a KK classifier and a UU detector. Multiple intermediate layers of the main

CNN classifiers are treated as latent features, and a decoder is used to reconstruct the

input. The UU detector and the classifier, both exploit the latent space features jointly

to output detection decision and class label respectively.

Class Conditioned Auto-Encoder (C2AE) [82] also adopts an Encoder Decoder-

based reconstructive approach. An encoder network is first trained on DKK, and the

penultimate layer is used as the encoded vector (EV). For each class in DKK, one such

EV is stored as the class condition vector. A decoder is later used to reconstruct the

input from the EV. For each input to the encoder, the EV output is compared against all

the stored EVs. The decoder reconstructs the input as perfectly as possible whenever a

match is found between the output and stored EVs. However, for UU images (with

no EV matches), the decoder is designed to perform a poor reconstruction so that the
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reconstruction error is high at inference time. C2AE is not an end-to-end unit and

leaves room for further improvement.

Geng et al. [83] proposed a visual and semantic prototypes-jointly guided CNN

(VSG-CNN) to achieve the task of OSR. Instead of using conventional cross-entropy

loss, a distance-based cross-entropy loss is used to find out the probability of a test

instance belonging to each KK class. Once this probability set is at hand, the overall

entropy is calculated and based on a threshold, the test instance is either rejected as a

UU class or classified as one of the KK ones.

In Chapter 6, we propose a novel OSR training paradigm that produces high KK

classification accuracy and UU detection.

Out-of-Distribution Detection. Out-of-Distribution (OOD) or Anomaly Detection is

correlated to OSR. OSR deals with identifying real but UU images while classifying

any KK instance. On the other hand, OOD detectors focus on anomalous outlier de-

tection. Sometimes, these anomalies can be visually unrecognisable [30] or ‘rubbish’.

Some methods only detect the outliers first, and a separate classifier is used later for

classification only if an input is deemed as KK by the detector [84, 85].

A common way to tackle the OOD problem is to simply augment an additional

class to an existing CNN so that all OOD instances are classified as the ‘other’ class [86].

However, adding an additional class for all other images in the world does not perform

consistently well on different benchmark datasets [30]. Hendrycks et al. [87] used the

SoftMax probabilities as a heuristic to detect outlier images. A simple thresholding tech-

nique is applied based on the assumption that in distribution samples will always have

higher probabilities, and OOD instances would not trigger high confidence predictions.

However, this assumption is inaccurate. SoftMax thresholding does not work well

as CNNs often misclassify an OOD image with high probability. As a solution, some

detection methods introduce OOD samples in the training data and employ a custom

loss function to uniformly diffuse probability on OOD training samples [88, 89, 90, 91].

These loss functions constrain the CNN from wrong overconfident predictions, but

overall accuracy is compromised. Moreover, these methods use one benchmark dataset

as DKK and other entire publicly available benchmark datasets [88] (Dx) as DKUT (i.e.,
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Dx ≈ DKUT). We argue that mining only the hard Known Unknown (KU) negatives

from Dx into DKUT is a better option (i.e., DKUT ⊂Dx). This is the basis of our proposed

OSR method in Chapter 6.

Li et al. [92] investigated the statistical properties of different CNN layer features

to find a distinguishing pattern between In and Out of Distribution images. It was re-

ported that the convolution outputs for DKK and OOD instances have subtle difference.

The difference is so subtle that even the most impactful dimensions in PCA (PCA head)

fail to capture the difference. However, the tail (less informative eigen dimensions)

of PCA shows a difference in the pattern. These features are used to train a cascade

classifier for OOD detection.

GAN is used for OOD [89, 93, 90, 80, 78]. Lee et al. [90] used GAN to produce a

DKUT that neither belongs to DKK, nor lies far away. A custom loss function (L) based

on Kullback-Leibler divergence between a uniform distribution U and prediction on

OOD instances is used for probability diffusion.

2.5.4 Object Scale

While an image classifier only outputs the label of the input, a detector, in addition to

the label, outputs bounding boxes as well. However, the backbone of a detector is a

CNN classifier network and hence, detectors share the same challenges present in CNN

classifiers. For example, detectors are also vulnerable to distortions, transformations,

and open set samples. Another common challenge for any CNN-based network is

detecting objects with large variation in scale – especially small scale objects. This

vulnerability can be attributed to successive DS layers in a CNN where signal from

small objects can get progressively lost. Hence, detecting small objects has been

considered a challenging task for both one and two stage detectors. While one stage

detectors such as YOLO [94, 95, 96] and SSD [97] provide faster output, two stage

detectors such as [98] have shown better accuracy. In this section, we first give details

of the Region-based CNN (RCNN) family of two stage detectors and then present how

the relevant literature addresses this issue.
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2.5.4.1 RCNN and Fast RCNN

Girshick et al. [98] first proposed RCNN for object detection. Rather than brute force

cropping of image segments and feeding them to a trained deep classifier, RCNN

makes use of an external object proposal method (Selective Search [99]) to create 2,000

RoIs (Region of Interest) for each image. Since the input spatial dimension of a trained

CNN classifier is fixed, the regions provided by Selective Search are warped into a

fixed size and then fed to a CNN. RCNN is extremely slow in training and has high

inference time as each of the region proposals is processed by a CNN separately. It

means the feature extraction process is repeated 2,000 times for a single image. Instead

of repetitive feature extraction from scratch, Girshick et al. later proposed Fast RCNN

[100] that computes the convolution layers once per image and RoI pooling is done on

the last layer feature maps, based on the regions proposed by Selective Search.

2.5.4.2 Faster RCNN

RCNN and Fast RCNN rely on a slow external object proposal method which becomes

the detector bottleneck. To further speed up the detection process and improve the

overall accuracy, Ren et al. presented Faster RCNN [101], where a Region Proposal

Network (RPN) replaces Selective Search as the object proposal generator in Fast

RCNN. An overall work-flow of the Faster RCNN detector is depicted in Figure 2.7.

RPN shares the convolution layers with a conventional ImageNet pretrained backbone

for computational efficiency. It takes the last layer feature maps from the backbone

as input and outputs a set of object proposals. A predefined set of anchors are slid

over the original image to check against the ground truth bounding boxes. This is to

generate the object proposals and discard the backgrounds. Based on the proposals,

the RoI pooling layer pools with a fixed size from the same feature maps and feeds

the features to the fully connected layer. Finally, the class label and bounding box are

predicted.

2.5.4.3 Small Object Detection

Although detecting medium and large objects is relatively easy, detecting smaller ones

is extremely challenging for the detectors. Various techniques have been proposed to
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Figure 2.7: An overview of the Faster RCNN detector [101]. The final layer feature maps from
the backbone (ImageNet pretrained CNN) are fed to the RPN and it generates a set of object
proposals (red rectangles). The Region of Interest (RoI) pooling layer pools and warps the
features into a predefined fixed size compatible with the backbone network. These features
ultimately traverse through the FC layers and a class label and a bounding box are predicted as
the detector output.

alleviate this particular problem. Among these, feature pyramid representation and

contextual information embedding are two popular ways.

Feature Pyramid. Multi-scale feature pyramid representation is one way to im-

prove performance [102, 103, 104]. For example, Lin et al. proposed to use a Feature

Pyramid Network (FPN) [102] in Faster RCNN. This FPN exploits the inherent pyramid

representation in a CNN as the DS layers reduce the the size of feature maps at different

stages. For each training image, the lowest resolution feature maps are up-sampled

and merged laterally with the previous feature maps. This backward up-sampling

and merging process is repeated upto the first convolution layer to form a pyramid

of features. Finally, FPN produces predictions on each level of the pyramid. One

major drawback of FPN is that the shallower layer features are generic in nature and

combining them with the deeper ones can degrade the overall detection performance.

In [105], the detector is trained with images of different resolutions for each training

sample. For example, an input of size 224×224 is transformed into the following resolu-

tions: 224×224, 448×448, 896×896 and 1200×1200. Such a pyramid representation of

the input ensures variety in object scale during testing. The authors argued that while

this method adds variety, it also introduces domain shift since large objects become too

large in a high-resolution version of the original image and small objects become too
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small in a low-resolution version. They proposed a module to ensure that RPN does

not generate object proposals beyond a predefined limit to avoid the domain shift effect.

Contextual Information. Bell et al. [106] followed a different approach and con-

ducted RoI pooling from several layers at a time. Since smaller objects are harder to

detect, adding contextual information to these objects via multi-layer pooling may

improve performance. The pooled features are concatenated and 1× 1 convolution is

used to reduce depth. Using shallow features is a concern here as well.

Wang et al. [107] proposed a new expansion layer that helps the RoI pooling layer

to extract background context along with the small object. The surrounding area of the

object is used as a cue for accurate detection.However, inconsistent and ambiguous

background context can deteriorate the performance of these detectors.

Miscellaneous. Li et al. [108] subscribed to the idea of keeping large feature maps

intact. However, this is done by avoiding pooling and dimension reduction layers

which are pivotal for the detector’s translation invariance capability. Fattal et al. [109]

aimed to find the most informative and important feature maps for detecting small

objects by frequency spectrum analysis (small objects have high frequency). Gao et al.

[110] showed that in addition to the original three predefined anchors (9 in total) used

in Faster RCNN, two additional smaller anchor boxes with sizes 322 and 642 improve

the overall accuracy for tiny vehicles. Yang et al. [111] made use of scale-dependent

pooling in order to accurately detect objects of all sizes. VGG16-based Faster RCNN

is employed and the height of the RPN object proposals are used to choose the layer

for RoI pooling. Shorter object proposals make use of shallower layers for pooling

and larger ones use deeper layers for pooling. This can be attributed to the fact that

small objects’ information or activation is highly unlikely to reach the deeper layers

due to spatial dimension reduction. A cascaded rejection classifier is used to eliminate

negative proposals for better performance.

Cai et al. [112] combined several sub-networks in the backbone of a Faster RCNN

detector. Since relatively shallower layers retain the information of small objects,

multiple output layers from the subnetworks are used as the RPN input. Maintaining

several additional subnetworks heavily adds to the memory complexity.
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In Chapter 7, we propose a novel backbone network architecture for Faster RCNN

that preserves features from both small and large objects.

2.6 Conclusion

In this chapter, we have thoroughly reviewed existing image classification methods

found in the literature. A profound understanding of the history, evolution, and

recent advancements is a prerequisite to contribute to the research domain which we

presented in this chapter. We also highlighted a paradigm shift from hand-crafted

to machine learning-based solutions in the field of computer vision – to be more

specific in image classification. To this end, we outlined the weaknesses of modern

CNNs under a number of specific challenges and discussed how the existing literature

addressed these issues. We also pointed out notable deficiencies in these works that try

to provide robustness to CNNs against such challenges. This provides the basis for our

contributions in subsequent chapters.



Chapter 3

Distortion Robust CNN with DCT
Augmentation

In Chapter 2, we discussed a number of challenging conditions for CNNs including

distortion, shift, OSR, and small object detection. We also shed light on existing

solutions. In this chapter, we focus on making CNNs robust to common forms of

distortion. To this end, we first analyse the lack of robust and yet efficient augmentation

methods and then propose a novel method called DCT augmentation. We also devise

an adaptive regularisation method for further gains. Later, we conduct an in-depth

investigation to reveal why our method works better. The main contribution of this

work was accepted and presented at the 2019 IEEE International Conference on Image

Processing (ICIP) [55].

The rest of this chapter is organised as follows. Section 3.1 provides the chapter

introduction. In Section 3.2, we introduce and formulate the proposed DCT augmenta-

tion and adaptive dropout. In Section 3.3, we discuss the test datasets and provide a

performance comparison of existing works with our proposed approach. Section 3.4

investigates the underlying reasons behind DCT-Net’s success and why conventional

CNNs lack robustness against distortion. Section 3.5 concludes this chapter.

3.1 Introduction

Most of the CNNs’ test paradigms presume that the images are going to be artefact-free

and high quality. However, in real-life, images can get distorted during acquisition,

transmission or even by deliberation. For example, in low light conditions, the captured

36
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images can exhibit noise. Motion or Gaussian blur can occur if the camera or subject is

moving/shaking or due to focusing error. In transmission, packet-loss can potentially

result in missing regions of the image, noise, or missing frequencies, depending on

how the image is encoded. There are also situations where surveillance images are

taken in challenging weather conditions (e.g., rain and snow) or the device used is of

substandard quality resulting in degraded visual data. Additionally, with the advent

of a wide range of cellular phones and hand-held devices, the requirement of high-

quality images to perform different computer vision-related tasks may need to be

relaxed. Distortion or substandard image quality can also degrade the performance of

other CNN-based computer vision tasks as well, e.g. object detection, image retrieval,

registration, and segmentation. Real world applications like autonomous driving and

facial recognition-based security systems can also be affected by such distortions.

As outlined in Chapter 2, CNN architecture has evolved over the years starting

from relatively shallow AlexNet [14] to deeper networks like VGGNet [113], ResNet

[26], WRN [27], and DenseNet [28]. Despite increasing complexity and depth, CNNs

are still susceptible to distortion. Often, these distortions are visually imperceptible

[29, 43, 52, 45, 114, 115]. It is observed that a negligible amount of distortion can

lead the network to misclassify an object as something else with surprisingly high

confidence rate: some as high as 99.99% [52]. Figure 3.1 provides two examples of

how CNNs fare against increasing level of distortion. Both of these distorted images

are easily recognised by a human, whereas CNNs struggle. As can be seen, a WRN’s

correct class probability drops sharply and fluctuates inconsistently on both distorted

samples. Often, the misclassified labels are not even visually close to the true class

[43]. This indicates that misclassification due to distortion is not the same as common

misclassification events. For example, often look-alike objects like cat and dog are

misclassified as one another owing to their close proximity in the input space. However,

something deeper is at play in case of distortion which we investigate in Section 3.4.

Data augmentation based on predefined distortions is a potential way to tackle

distortion. However, knowing the types of distortions in advance is often unrealistic.

Even if we allow the pre-emptive knowledge, training a network on all possible

distortions separately makes it even more undesirable. All these facts culminate to an

intriguing question:
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Figure 3.1: A Wide ResNet (WRN) trained on ImageNet struggles in classifying images with
increasing Gaussian blur (Top) and noise (Bottom). Our proposed DCT augmentation and
adaptive dropout in WRN-DCT-Net result in greater accuracy. Sample images are taken from
ImageNet testset and scaled to fit inside the plots.

Is it possible to attain a network that is blind to any explicit distortion type

and becomes robust against unseen distortions after being trained only once on the

training data?

In this chapter, we propose a DCT-based data augmentation, which significantly

increases the deep network’s robustness against a variety of unseen distortions. For

higher performance gain, we transform the input from spatial to frequency domain and

drop low-impact DCT coefficients in random order. This, in turn, discards information

from images and helps the deep network to learn from more diverse training data.
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DCT-Net1 no longer requires additional distortion information which is a much desired

property.

In addition to DCT augmentation, we account for another well-known issue with

CNNs, i.e., data overfitting. In this chapter, we further improve DCT-Net’s performance

by suppressing data overfitting. Rather than using conventional constant dropout [116]

probability throughout the entire training period, we incorporate an adaptive scheme

(adaptive dropout) for further performance gain.

Gaussian noise and blur are the two most common forms of image quality degrada-

tion. In addition to these two, we evaluate our network on salt and pepper noise, mo-

tion blur and speckle noise. Speckle noise is often inherent to sound/electromagnetic

wave-based imaging systems but has similarity to Gaussian granular noise [117].

CNN’s struggle in handling distortion and lack of proper explanation raise ques-

tions over our understanding of these networks. In this chapter, we provide insights

and theoretical justification behind the proposed DCT-Net’s success. We use manifold

approximation, Convolutional Autoencoders (CAEs) and signal-to-noise ratio analysis

to show why our proposed method works well.

To summarise, the main contributions of this chapter are as follows:

• We show that the current CNNs are indeed vulnerable to a number of common

distortions.

• We propose a novel DCT-based data augmentation method to enhance CNNs’

robustness against distortion.

• We also incorporate an adaptive dropout scheme to avoid overfitting to clean

training data.

• We demonstrate our method’s effectiveness through extensive experimental

analysis across several datasets and distortion types.

• We conduct an in-depth investigation to find out the challenges posed by dis-

torted images to conventional CNNs and provide insights to why DCT-Net works

so well in addressing such challenges.

1DCT-Net refers to a deep network that incorporates DCT augmentation and adaptive dropout. Later
in this chapter, we prefix the specific network backbone where required, e.g., VGG-DCT-Net denotes a
DCT-Net based on VGG16.
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Figure 3.2: Overview of the proposed DCT-Net. The input layer precedes the proposed DCT
module responsible for data augmentation. This module transforms input images from spatial
to frequency domain and vice versa according to Algorithm 3.1. While in frequency domain,
information is dropped based on DCT coefficients adding diversity in the training data. The
Adaptive Dropout (AD) scheme is used in both of the Fully Connected (FC) layers. VGG16
network is used here for a simplified illustration (layers inside the rectangular box are identical
to VGG16 layers).
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3.2 Proposed Method

In this section, first, we introduce our proposed augmentation method and later

elaborate on the adaptive dropout scheme.

3.2.1 Overview of DCT Augmentation

At training time, we simply incorporate a DCT module preceded by the input layer

and followed by the first convolution layer (see Figure 3.2 for details). The pictorial

depiction adopts a VGG16 [113] network because of its much simpler architecture

compared to residual block-based networks like ResNet [26] or WRN [27]. As shown

later in Section 3.3, WRN works even better with adaptive dropout. The ultimate goal

of DCT augmentation is to eliminate the need for distortion specific training data as it

might lead to cherry-picking distortions ahead of time. Rather, our classifier network

is trained on a generic set of images augmented by the DCT module. The DCT module

selects and eliminates a set of frequency coefficients from each of the training images.

It is worth noting that DCT augmentation is network agnostic and can be used in the

same way as shown in VGG16 or WRN networks.

3.2.2 Discrete Cosine Transform

DCT is a widely used technique to analyse the signal in the frequency domain. It

has found its way into numerous applications, from lossy compression of audio (e.g.

MP3) and image (e.g. JPEG) to spectral methods for the numerical solution of partial

differential equations. To perform the Forward DCT (FDCT) in a standard JPEG

compression [118], each image is divided into 8 × 8 blocks; effectively a 64-point

discrete signal. However, it is found that this block-wise DCT operation may lead to

undesired properties like blocking artefacts [119, 120]. Therefore, we consider only

one block with dimensions equivalent to the height (H) and width (W) of the original

input image. FDCT takes H ×W signals as its input and outputs the corresponding

basis-signal amplitudes or “DCT coefficients”. The DCT coefficient values can thereby

be regarded as the relative amount of the 2D spatial frequencies contained in the

original input signal, which in our case is an image. One of the most critical features
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of FDCT is that it concentrates most of the signal energy in a few transformed DCT

coefficients in the lower spatial frequencies [121, 118]. In other words, the number

of DCT coefficients with substantially high magnitude is very low, and the smaller

coefficients are far greater in number. More often than not, the bulk of the information

in a natural image is represented in lower frequencies. Higher frequencies generally

encode sharp changes that add extremely fine details to the image.

There are a number of ways to perform DCT [122]. We make use of Fast Cosine

Transform (FCT) [123, 124] because of its computational efficiency (NLogN). We make

use of Equation 3.1 on an input Image A for FDCT and Equation 3.2 for Inverse DCT

(IDCT) to obtain the reconstructed Image.

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Amn cos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
,

0 ≤ p ≤M − 1, 0 ≤ q ≤ N − 1

(3.1)

where,

αp =


√

1
M , p = 0.√
2
M , 1 ≤ p ≤M − 1

αq =


√

1
N , q = 0.√
2
N , 1 ≤ q ≤ N − 1

And the IDCT is performed by:

Amn =

M−1∑
p=0

N−1∑
q=0

αpαqBpq cos
π(2m+ 1)p

2M
cos

π(2n+ 1)q

2N
,

0 ≤ m ≤M − 1, 0 ≤ n ≤ N − 1

(3.2)

where,

αp =


√

1
M , p = 0.√
2
M , 1 ≤ p ≤M − 1

αq =


√

1
N , q = 0.√
2
N , 1 ≤ q ≤ N − 1

Here M and N are the row and column sizes respectively of the input and output

images.
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Algorithm 3.1 : Input to DCT Module: Image RGB (H ×W × C), and Output: DCT
augmented image D (H ×W × C)

1: I = rgb2Ycbcr(RGB)
2: for all channels c = 1 to C do
3: DCT_Coeffs[c] = DCT(I), using Eq. 3.1
4: Abs_DCT_Coeffs[c] = ABS (DCT_Coeffs[c])
5: Y =Uniform_Random_Threshold(0, b)
6: for all DCT_Coeffs[c] < Y do
7: DCT_Coeffs[c] = 0
8: end for
9: O[c] = IDCT (DCT_Coeffs[c]) using Eq. 3.2

10: end for
11: D = Ycbcr2rgb(O)

3.2.3 DCT Module Integration

DCT module (see Figure 3.2) transforms each of the training images using FDCT and

produces a set of DCT coefficients. A cut-off threshold Y is chosen for each training

image from a predefined range of [0, b] based on heuristics (grid size and image dimen-

sions) [118]. Y is effectively a random DCT coefficient threshold. All the coefficients

lying below Y are turned zero. From a high-level point of understanding, when Y is

equal to or close to 0, the input image undergoes no or minimal transformation, which

means there is hardly any loss of input information. On the other hand, if Y is a large

number close to b, this thresholding step removes most of the high frequencies from

an image. Since a large part of the signal strength is stored in the lower spectrum, the

loss of information takes away mostly sharp changes and finer details of the image

pertaining to different edges and contours. Along with the omission of most of the

high frequencies, some of the lower frequencies with little visual impact on the input

image get discarded as well in the process. It is worth noting that the thresholding

considers the absolute values of the coefficients. Inverse DCT or IDCT is performed on

the remaining DCT coefficients to reconstruct the transformed image. This DCT trans-

formed image is then fed forward to the first convolutional layer. The modus-operandi

of the proposed DCT module is presented in Algorithm 3.1. Based on heuristics [118],

we set the upper bound for Y , i.e., b as 40 for CIFAR10/100 and 60 for ImageNet.

The DCT module is free of trainable parameters, and no backpropagation based

learning takes place within this module. Once the deep network is trained, this module
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Figure 3.3: Sample output of DCT module. Each input is transformed into the frequency
domain via forward DCT. Later, (from left to right) information is discarded in increasing
magnitude with DCT coefficient threshold set to 0 (Left), 25 (Middle) and 50 (Right). Lower
and upper left ones are the original image. Inverse DCT reconstructs the image from remaining
coefficients. It should be noted that the images do not lose overall object structure. The sample
pair belongs to ImageNet with class label Banjo (Top) and Impala (Bottom).

is removed from the network and test images directly enter into the first convolutional

layer. Figure 3.3 depicts a sample image pair of DCT transformed training data from

ImageNet. It can be visually observed that higher the threshold value, the greater the

loss of information.

3.2.4 Implementation Details

VGG16 and WRN are widely used as the backbone network in the relevant literature

[43, 38, 36]. Therefore, we use these two particular CNNs as the backbone of our

DCT-Nets. VGG16 uses 3 × 3 filters in all 13 convolutional layers, ReLU is used as

activation function, and 2 × 2 max pooling with stride 2 is used. As for the other

network, we use WRN-40-2, where 40 is the number of convolution layers, and 2 is the

widening factor (considering ResNet has a widening factor of 1). Contrary to the single

FC layer used in conventional WRNs [26], we use two such layers as this configuration

maintains the clean classification accuracy and gives room to employ adaptive dropout.

The original 1,000-way softmax and classification output layers are replaced with 10

and 100 for CIFAR-10 and CIFAR-100 respectively for both networks. We use SGD

with momentum value 0.9 and data shuffling before every epoch. We train the network

for 200 epochs with minibatch size set to 128. The initial learning rate is set to 0.01 with
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a scheduled learn rate drop factor of 0.1 at 60, 120, and 160 epochs. We make use of

the proposed adaptive dropout (described in the next section) and L2 regularisation to

counter overfitting [125, 126].

3.2.5 Adaptive Dropout

Dropout is a well-known technique to counter the effect of data overfitting [116]. What

dropout essentially does is it deliberately ignores a random number of neurons in the

FC layers based on some constant probability P. The idea is not to let the network

become too reliant on a specific set of features and thereby avoiding overfitting. Even

so, the application of a constant P limits the deep network’s ability to adapt since

each training dataset is different and comes with its challenges. We extend the idea

of dropout and show that an adaptive scheme serves better. The dropout probability

P is initialised with 0.1 at the beginning of training and updated from a range of

[0.1,0.5] with the smallest increment unit of 0.1. The update only comes into effect

when the network seems to converge to training data, and the possibility of overfitting

is inevitable. P is updated when the minibatch training accuracy reaches and stays

above 80% for an entire epoch. The value of P depends on the remaining number of

epochs which is divided into five equal intervals. As the training proceeds forward, P

increases in each of the five epoch intervals by 0.1.

3.3 Performance Evaluation

In this section, we present a comparative performance analysis on several benchmark

datasets. In addition to the original test dataset, we evaluate the networks on five

different types of distortions, namely Gaussian noise, Gaussian blur, salt and pepper

noise, motion blur, and speckle noise.

3.3.1 Datasets

We consider CIFAR-10, CIFAR-100 [127] and ImageNet [1] as our benchmark datasets.

CIFAR-10 consists of 60,000 32×32×3 images in 10 classes, with 6,000 images per class.
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Table 3.1: Performance comparison of different networks on clean and distorted test datasets
of CIFAR-10/100 and ImageNet. Accuracy over each type of distortions is the average over all
distortion levels specified in Section 3.3.2. Overall accuracy is the network’s average accuracy
across clean and distorted datasets (best accuracy is highlighted in bold).

CIFAR-10
CNN Model VGG16 WRN Original Gaussian Salt & Speckle Noise Gaussian Motion Blur Overall

Noise Pepper Noise Blur Accuracy
Mclean (VGG16 [113]) X 88.43 40.53 42.60 45.10 61.43 56.35 55.74

MGblur [32] X 68.84 29.33 30.25 38.36 73.36 50.51 48.44
MBN [33] X 83.36 59.06 51.87 55.08 69.36 52.98 61.95

MixQualNet [43] X 81.56 60.69 58.99 57.36 70.26 62.89 65.29
DCT-Net (ours) X 86.97 57.06 61.23 62.05 77.15 70.91 69.23

Mclean (WRN [27]) X 96.00 38.42 39.87 42.11 58.50 52.77 54.61
AutoAugment [36] X 84.22 60.65 55.80 57.04 69.95 58.11 64.30

AugMix [38] X 94.10 62.10 61.15 64.45 76.54 70.36 71.45
DCT-Net (ours) X 95.78 65.08 62.14 66.32 78.05 71.55 73.15

CIFAR-100
CNN Model VGG16 WRN Original Gaussian Salt & Speckle Noise Gaussian Motion Blur Overall

Noise Pepper Noise Blur Accuracy
Mclean (VGG16 [113]) X 67.49 25.52 29.62 32.91 50.39 48.30 42.37

MGblur [32] X 56.81 19.69 22.26 27.35 62.37 42.77 38.54
MBN [33] X 62.44 46.08 38.28 33.03 52.46 35.88 44.70

MixQualNet [43] X 63.50 45.89 58.01 57.61 55.22 49.83 55.01
DCT-Net (ours) X 65.39 44.85 62.33 60.65 64.05 55.91 58.86

Mclean (WRN [27]) X 79.08 22.11 26.45 28.78 46.17 45.22 41.30
AutoAugment [36] X 72.10 45.22 55.25 54.06 51.36 45.12 53.85

AugMix [38] X 77.67 49.20 62.80 63.65 61.70 54.33 61.56
DCT-Net (ours) X 78.51 52.27 63.07 65.98 68.01 58.82 64.44

ImageNet
CNN Model VGG16 WRN Original Gaussian Salt & Speckle Noise Gaussian Motion Blur Overall

Noise Pepper Noise Blur Accuracy
Mclean (VGG16 [113]) X 92.60 32.45 15.32 24.98 29.53 25.67 36.76

MGblur [32] X 55.36 16.24 18.91 22.63 39.88 30.69 30.62
MBN [33] X 75.77 54.25 42.30 38.65 30.14 27.85 44.83

MixQualNet [43] X 82.22 51.88 49.73 48.45 42.10 37.35 51.96
DCT-Net (ours) X 87.50 52.98 51.30 50.98 43.90 41.32 54.66

Mclean (WRN [27]) X 95.89 30.22 15.09 22.54 26.45 22.98 35.53
AutoAugment [36] X 94.03 50.98 47.15 45.21 38.15 27.35 50.48

AugMix [38] X 94.46 52.10 51.90 52.30 45.33 41.01 56.18
DCT-Net (ours) X 95.26 54.87 53.02 56.05 48.25 44.16 58.60

The split is 50,000 training images and 10,000 test images. CIFAR-100 has 100 classes

containing 600 images each. There are 500 training images and 100 testing images per

class. Dimensions of these images are the same as CIFAR-10. In ImageNet, there are

1,000 object classes and approximately 1.2 million training images, 50,000 validation

images and 100,000 test images.

3.3.2 Test Data

Five types of distortions are introduced in the test dataset. A set of sample test image

pairs with increasing level of distortion can be seen in Figure 3.4. To prepare the
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Figure 3.4: Progressively distorted image pairs from ImageNet test dataset. From top to
bottom: (a) Gaussian Blur, (b) Gaussian Noise, (c) Motion Blur, (d) Speckle, and (e) Salt &
Pepper. Networks are tested against these five types of distortions.
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distorted test data, we follow the testing protocol in [43] for available distortions.

• Gaussian noise is added to an image with the standard deviation (σ) ranging

from 0 to 100.

• For the Gaussian blur kernel, σ is set between 0 to 5 for CIFAR-10/100 and 0 to

10 for ImageNet. σ is greater for ImageNet because of the higher resolution of

images in this dataset compared to CIFAR-10/100. A similarly high σ for CIFAR-

10/100 could render the objects visually unrecognisable. The above-mentioned

range of σ is enough to attain visually similar blur in lower resolution images.

• Salt and pepper noise are replicated by turning on and off pixels with a predefined

probability. We add salt and pepper noise to an image pixel with a probability

varying from 0 to 0.5.

• For motion blur kernel in CIFAR-10/100, we use motion angle ranging from 0

to 22.5 degree because of the small spatial dimension of these two datasets. The

number of pixels is set to 10 as linear motion parameter. As the spatial dimension

is greater in ImageNet, we use a motion angle range of 0 to 45 degree with the

number of pixels set to 15 as linear motion parameter.

• We add multiplicative speckle noise to Image I and produce noisy Image J, where

J = I + n ∗ I , n is a uniformly distributed random noise. Variance ranging from

0.1 to 0.5 is used for speckle noise.

• All the test images are tested at five increasing distortion levels. The levels are

chosen uniformly, i.e., the defined range for each distortion is divided into five

equally spaced ranges.

3.3.3 Performance Comparison

We denote Mclean as the network trained on the clean dataset. MBN [33] is the model

which is fine-tuned on both Gaussian blur and noise. MixQualNet is the ensemble of

individual distortion expert models with a gating network [43].

Table 3.1 compares the classification accuracy of DCT-Net with others. All of the

deep networks are tested against five increasing severity levels of the corresponding
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Figure 3.5: Comparative performance analysis over five increasing distortion levels (ImageNet)
specified in Section 3.3.2. WRN-DCT-Net exhibits better consistency across datasets compared
to VGG-DCT-Net and AugMix [38].

types of noise and blur. The levels are uniformly chosen between the minimum and

maximum distortion range specified in Section 3.3.2. Accuracy averaged over all sever-

ity levels is reported in Table 3.1. For a particular network, the original accuracy in

Table 3.1 is computed on the corresponding clean test dataset, whereas the overall

accuracy in the last column is the numerical average over all six individual accuracies.

We first discuss methods based on the VGG16 backbone. Later, we discuss methods

based on the more advanced WRN backbone. It is worth noting that we incorporated

adaptive dropout in all the networks in Table 3.1 for fair comparative performance

analysis. Understandably, WRN-based methods exhibit better robustness against dis-

tortions due to their much more complex and deeper network architecture.
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VGG16-based Networks. It is evident from Table 3.1 that a network trained on

one specific type of distortion (MGblur [32]) performs well on that distorted test dataset.

However, it struggles to generalise well to other types of distortion and also the

accuracy on the clean testset drops. On the other hand, MBN [33] has a mediocre

performance on all the test datasets. This is because MBN has exposure to both types

(noise and blur) of distortions.

WRN-based Networks. Our proposed DCT-Net based on WRN-40-2 (WRN-DCT-

Net) is found to outperform other networks. WRN-DCT-Net achieves the best overall

accuracy in all three datasets (73.15% in CIFAR-10, 64.44% in CIFAR-100 and 58.60% in

ImageNet). It also demonstrates consistent accuracy on each type of distortion while

maintaining competitive performance on the clean test dataset. AugMix also exhibits

comparable accuracy across distortions. However, in AugMix, a number of predefined

parametric transformations are performed in series. In contrast, DCT-Net simply trains

on one simple augmentation methodology.

Figure 3.5 compares the performance of WRN-DCT-Net, VGG-DCT-Net, and Aug-

Mix [38] on ImageNet over increasing level of distortions. It is evident that with

increasing distortion severity, all three networks struggle to maintain classification

accuracy. WRN-DCT-Net shows better consistency in each of the plots.

3.4 Explanation

From a data classification perspective, CNNs are nothing but a highly non-linear func-

tion F(x) → Ci, where x is the input and Ci denotes the output class label. Image

classification involves extremely high dimensional input space and distinguishing

different samples with a complex decision boundary in this vast space is indeed a

challenging task. Since CNNs are proven to be universal function approximators

[128], they are capable of producing impressive results, especially on the clean dataset.

However, as stated earlier in this chapter, images even with slight distortion lead the

network to predict one class object as something else with a surprisingly high probabil-

ity. Our proposed DCT augmentation improves the network’s accuracy significantly

on distorted dataset while maintaining impressive results on clean data. In this section,
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we argue that deep CNNs’ lack of robustness against distorted images has a lot to do

with the intriguing nature of high dimensional input space and the decision boundaries

learned by a CNN. We investigate the notion of data manifold and signal to noise ratio

analysis to gain more insight. We explain how DCT augmentation relates to all these

aforementioned concepts and improves overall classification performance.

3.4.1 High Dimensional Input Space and Data Manifold

CNN classifiers take raw image pixels as input. Each of these pixels is effectively

an independent variable and an axis in the input space. Therefore, the space that

accommodates all the training images is directly proportional to the image resolution,

and the input space increases rapidly with the image dimensions. ImageNet images,

for example, create an input space with a staggering 227 × 227 × 3 = 154, 587 axes.

Nonetheless, natural images cluster together in a relatively small sub-space. This

sub-space is also known as the data manifold [50, 129, 130].

To further clarify the notion of manifold, imagine a hypothetical set-up where

we have an image dataset DI (with 1,000 items) and each image in DI has a spatial

dimension of 4 × 4, i.e., 16 dimensions in total ([1, 2, 3, ..., 16]). Further assume only

the first two dimensions (1 and 2) have large variance across DI compared to the

remaining dimensions ([3, ..., 16]). This means images in DI cluster together in a

smaller subspace leaving large unknown space around it. This smaller subspace is

known as the manifold. Likewise, clean images of a large-scale dataset also reside in a

smaller subspace or manifold (sayMclean) surrounded by unknown space [131, 50]. The

decision boundary learned by a CNN during training is quite accurate inside Mclean

since the clean training data belongs to Mclean. At inference time, as long as a test

sample belongs to Mclean, a CNN is likely to classify it correctly. Interestingly, CNN’s

decision boundary is not confined within Mclean only. Rather, the learned decision

boundary is open-ended and extend infinitely [131, 50] into the unknown space. This

indicates an unreliable class prediction on a sample drawn from this unknown space

(see Figure 3.6 for a conceptual illustration of this phenomenon). Note that a distorted

image might still be classified correctly if it happens to be under the correct (extended)

decision boundary. CNN’s decision boundary extrapolation beyond the scope ofMclean
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Figure 3.6: Triangle, rectangle, and circle represent sample data points (images) of three
different classes in a hypothetical set-up. Cross represents rubbish images (images without any
meaningful object). (Left) Triangles just beyond the clean manifold (Mclean) are the distorted
duplicates. A CNN trained on Mclean does not account for the unknown space. Although the
decision boundary is quite robust inside Mclean, it is open-ended and extends beyond Mclean.
Such open decision boundaries may host unknown data points (e.g., triangles falling inside
the circle class decision boundary) resulting in misclassification. (Right) DCT augmentation
supposedly expands the manifold (Mclean → MDCT ). MDCT accommodates the distorted
duplicates previously lying outside Mclean and a CNN trained on MDCT can classify distorted
images with greater accuracy.

can be attributed to the piece-wise linear activation function, i.e., ReLU. ReLU’s linear

nature means that the open-ended learned decision boundary gets the chance to extend

into the unknown space. As distorted images are scattered in the unknown space, this

also answers why a visually unrecognisable image or rubbish image (far away from

Mclean) often gets misclassified with high probability.

Considering rubbish images lie outside ofMclean, one might ask where the distorted

images belong in this high dimensional space. As discussed by Goodfellow et al. [50],

and others [130, 132], even a tiny perturbation (e.g., noise or blur) can push an image

out ofMclean and the direction of this push is more important than the absolute distance

from Mclean. This means an image with visually imperceptible distortion can also get

classified into a wrong class despite residing close toMclean. In other words, a distorted

duplicate can be visually similar to the original image and yet misclassified if it is

outside of Mclean.

Each clean image (x) has multiple distorted duplicates (x’) outside Mclean. For

example, given a clean image of a dog, it is easily possible to reproduce a number of

duplicates by altering the pixels (e.g. Fast Gradient Sign Method (FGSM) [50]). These

duplicates (x’) would still look like a dog with minimal change in visual appearance.

However, such x’ reside in the unknown space and hence may be misclassified by

a CNN. Our proposed DCT module transforms each training image according to
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Figure 3.7: Overview of a CAE capable of reconstructing a cleaner version from a distorted
image.

Figure 3.8: DCT augmentation represents a variety of common distortions. As a result, an
Autoencoder trained with DCT transformed data as input and clean data as output can project
unseen distorted duplicates back to the clean manifold.

the process described in Section 3.2. The output of the DCT-module expands Mclean

(say MDCT is the expanded manifold). Consequently, a wide range of distortions

previously residing outside Mclean gets admission into MDCT . As a result, the re-

calibrated decision boundary of the DCT-Net (inside MDCT ) encompasses both the

clean and distorted images and can classify them with greater accuracy.

All the distortions considered in this chapter, i.e., Gaussian noise, blur, salt and

pepper, and speckle noise are simply distorted duplicates. They do not belong toMclean.

As a result, conventional CNNs struggle in classifying these images. The proposed

DCT-Net overcomes this challenge by expanding the clean manifold hosting clean and

most of the distorted images.
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3.4.2 Autoencoders and Manifold Approximation

The proposed DCT-Net’s ultimate goal is to correctly classify images having a variety

of distortions without knowing the specific attributes of a distortion type in advance.

This is achieved by a generic dataset augmented through the DCT module during

training. Section 3.3 has already shown the efficacy of our method. An in-depth

analysis of the data manifold in high dimensional space is used in the last section to

explain the proposed network’s superior performance. We now use CAE to provide

another perspective of DCT-Net.

CAE [133, 134] consists of an encoder and a decoder (see Figure 3.7). The encoder

has a set of conventional convolution steps that compresses the input into a latent

feature space. The decoder generally hosts a set of deconvolution or upsampling steps

to reconstruct the output from the latent representation. In CAE, when the output is

forced to be a clean version of a distorted input, the intermediate latent layer learns

meaningful features in a lower dimension like PCA [135] or t-SNE [136]. .

Let X be the set of all clean images xi ∈ X, i = {1, 2, 3, ....n} and let X ′d be the

corresponding distorted set where ∀x∃x′(x′i ∈ X ′d), i = {1, 2, 3, ....n} and d is the

distortion type.

An Autoencoder trained with DCT-transformed images becomes a function that

can project a distorted image (x′) back to the manifold (x), i.e., fDCT (x′i) → xi, i =

{1, 2, 3, ....n} (see Figure 3.8).

Our aim here is to demonstrate why the DCT transformed images are capable of

representing all five types of distortions. To show this, we do the following.

• A CAE is trained with a set of DCT transformed images (XDCT) as input and

the corresponding clean versions (X) as output ground truth. Once trained, if

the CAE becomes capable of producing clean images from the distorted input

X ′d (i.e., fDCT (X ′d)→ X), it can be implied that the DCT-transformed images in

XDCT indeed represented all those distortions.

• To test our hypothesis, the distorted dataset (X ′d) is fed to the CAE, and the

reconstructed images (XCAE) are analysed.
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Figure 3.9: The top row represents distorted images, and corresponding bottom row image
is the Convolutional Autoencoder (CAE) reconstruction. (a) Gaussian noise, (b) Gaussian
blur, (c) Motion blur, (d) Salt and Pepper noise, and (e) Speckle noise. CAE is trained to
reconstruct the original image from the corresponding DCT transformed image. Once trained,
CAE reconstructs cleaner images from distorted inputs. The reconstructions are not completely
distortion-free, but substantially cleaner. Intriguingly, all the distorted images (top row) are
misclassified by conventionally trained VGG16 and WRN, but the reconstructed ones (bottom
row) are classified correctly.

• XCAE appears to be much cleaner compared to its distorted counterpart (X ′d) as

depicted in Figure 3.9, i.e., fDCT (X ′d)→ X ≈ fDCT (X ′d)→ XCAE.

Interestingly, the distorted automobile images taken from (X ′d) in the first row of

Figure 3.9 are misclassified by a conventional CNN, but the corresponding reconstruc-

tions (XCAE) are correctly classified by the same CNN. This implies that (XDCT) was

able to represent all the distortion types present in (X ′d). This is the reason DCT-Net

performs well on distorted images without knowing in advance the explicit attributes

and type of distortions.

Peak Signal-to-Noise Ratio. Peak Signal-to-Noise Ratio or PSNR has long been used

as a metric to determine the quality of an image. For a given modified or transformed

image, PSNR is computed against a reference or original image. A higher value means

greater similarity for the image pair. To further explain our results aided by CAEs, we

resort to a PSNR-based comparison. PSNR is calculated for the following two pairs:

(a) The distorted image X ′d and the original image X .

(b) The CAE (fDCT ) reconstructed image XCAE from X ′d and the original image X .
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Table 3.2: PSNR comparison for the Original-CAE reconstructed pair and the Original-
Distorted pair across all three datasets. 1,000 images were randomly sampled for this ex-
periment.

Dataset PSNR
Original-CAE Original-
Reconstructed Distorted

CIFAR10 21.65 15.08
CIFAR100 22.87 16.42
ImageNet 20.28 16.15

Ideally, (b) should have higher PSNR than (a) if the reconstructed image is indeed more

similar to the clean image. This, in fact, is what we have observed from experimental

results. For this test, we randomly sample 1,000 images from each of the CIFAR-10,

CIFAR-100, and ImageNet datasets. We use these as the clean set X . A CAE is trained

following the steps in Section 3.4.2 with XDCT as input and X as the ground truth.

Once trained, PSNR is calculated for both (a) and (b) as mentioned above.

It is visible from Table 3.2 that the PSNR for the original-reconstructed (X-XCAE)

pair is consistently higher than the original-distorted (X-X ′d) pair. This justifies our

Autoencoder analogy and the effectiveness of XDCT in mimicking X ′d.

3.5 Conclusion

We proposed DCT-Net with an adaptive dropout and showed that discarding part of

the input signal based on DCT adds diversity to each of the training data. Since the

threshold used for discarding information is random for each image, every epoch is

likely to produce a different version of a training image. This way, the network gets

to learn a wide range of features from all the variants of an image. Our proposed

DCT-Net is capable of correctly classifying images even with substantial distortion or

degradation. DCT-Net is ‘blindly’ trained only once and shows impressive accuracy

on unseen distortions on several benchmark datasets. To unveil the reasons behind

DCT-Net’s robustness against distortion, we provided a theoretical justification with

the help of data manifold, CAE, and PSNR.

While data augmentation and network regularisation help in distortion robustness,

improving the fundamental functional blocks of CNNs can provide further gains. The
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next chapter, i.e., Chapter 4 presents a novel AF that complements DCT augmentation

to make CNNs even more robust to distortions.



Chapter 4

Improved Distortion Robustness
with a Novel Activation Function

In the previous chapter, we showed how the proposed DCT augmentation and adaptive

drop-out improve CNN’s performance on distorted datasets. In this chapter, we first

discuss what role AFs can play to keep the impact of distortions in check. Later, we shed

light on the deficiencies of existing AFs and argue that a built-in filtering mechanism

can largely solve the problem. To this end, we propose an AF with built-in signal

filtering called Low-Pass ReLU (LP-ReLU). We also show that LP-ReLU coupled with

DCT augmentation proposed in the last chapter can provide substantial performance

gain. The core contribution of this work has already been published in the IEEE

ACCESS [137].

The rest of this chapter is organised as follows. Section 5.1 provides an introduc-

tion of this chapter. The proposed AFs and the recommended augmentation method

are discussed in Section 4.2. Section 4.3 provides details on the benchmark datasets,

extensively evaluates the performance of different networks, and outlines the im-

plementation details. Section 4.4 presents the proposed decision space visualisation

process to deepen our understanding of CNN’s lack of robustness on distorted input.

Finally, Section 4.5 concludes the chapter.

4.1 Introduction

CNNs achieve high classification and recognition accuracy on clean benchmark datasets.

However, their performance deteriorates on corrupted datasets even when the cor-

58
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ruption1 is visually imperceptible. This is particularly concerning for real-world

safety-critical applications where the data may not always remain clean. For example,

a self-driving car should not presume to have ideal driving conditions at all times.

Optical sensors are expected to encounter a wide range of corruptions such as signal

noise, motion, and defocus blur. Variable weather conditions including sudden change

of brightness, snow, frost, and fog, can also pose challenges. Digital artefacts due to

transmission and compression can compound the challenges even further. Therefore,

accounting for corruptions at inference time and closing the performance gap between

clean and corrupted datasets are important.

Different data augmentation techniques [36, 55, 39, 38, 138] are widely used to

address this issue. In addition to data augmentation, adversarial training [31, 139,

34, 140, 141], self-supervised learning [46, 47], domain adaptation [48, 49], and loss

function optimisation [142, 46] are some of the other ways explored to enhance CNNs’

robustness against such corruptions.

In this chapter, we take a different approach and investigate corruptions from the

frequency domain. We emphasise on the role of AFs and argue that if designed prop-

erly, AFs can substantially enhance CNNs’ robustness against corruptions. Currently,

ReLU [14] is the most widely used AF because of its computational efficiency and

convergence ability compared to other AFs [20]. ReLU does not suffer from the vanish-

ing gradient problem [11] and it allows very deep networks to be optimised through

backpropagation. However, ReLU and a number of its variants lack robustness against

common corruptions (as shown later in Section 4.3).

By definition, ReLU blocks out any negative input but does not alter positive input

at all. Therefore, the intermediate layer features inside ReLU-based networks become

sparse. Sparse features maximise the inter-class distance to gain high classification

accuracy but could compromise the classification performance with their higher intra-

class dispersion (see Figure 4.1(a)). This compromise does not harm CNN’s overall

performance so long as the evaluation dataset is clean. However, the compromise

(i.e., feature sparsity) gets exposed in the presence of input corruptions - especially

High Frequency corruptions (HFc), e.g., Gaussian noise. HFc, even when visually

1We use the word distortion and corruption interchangeably in this work.
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Figure 4.1: Visualising deep feature characteristics for different network setting on the MNIST
dataset. (a) ReLU allows activations or features to flow through network layers without any
filtering. This introduces sparsity in the feature space. Such sparsity can cause shift in the
feature space in the presence of data corruption, even when corruption is visually imperceptible.
(b) Our proposed AF has low-pass filter built-in, which enforces feature compactness. This, in
effect, limits the internal feature shift and resists corrupted features from drifting away. (c)-(d)
As discussed later in Section 4.2.1, robustness against LFc demand better distinction for weak
features (weak features reside in the centre of the above plots). DCT data augmentation [55]
improves robustness for both AFs, i.e., ReLU (c), and LP-ReLU (d)- especially against LFc by
increasing the inter-class distance (distance among weak features) in the centre. See the zoomed
insets for comparison. Despite overall improvement, feature sparsity still exists in ReLU (c),
which makes it vulnerable to corruptions. All plots in this figure use features taken from a
CNN proposed to visualise deep features and decision boundary (details in Figure 4.10, Section
4.4).

imperceptible, can cause the corrupted data to drift away to a different part of the

feature space [50] in the absence of a low-pass filter. This leads to misclassification.

The classic signal processing fix to a HFc is low-pass filtering. For example, voice

recorders use low-pass filtering to cancel the ‘hiss’ noise originating from electromag-

netic interference. As shown by Campbell et al., [143], human visual system also has

limited sensitivity to abrupt or high frequency changes owing to an inherent low-pass
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filtering process. This particular property of human visual system is later exploited

in JPEG image compression as well [118]. Inspired by these observations, we incorpo-

rate a low-pass filtering mechanism inside the proposed AF, namely, Low-Pass ReLU

(LP-ReLU, see Figure 4.2) and show its efficacy against corruptions – especially HFc.

LP-ReLU resists features from drifting, even when there is HFc by enforcing a compact

feature space (see Figure 4.1(b)).

As for Low Frequency corruptions (LFc), one might think of AFs with high pass

filtering as a potential fix. However, corrupted features from LFc substantially overlap

with meaningful image features (details in Section 4.2). Using a high pass filter can

exacerbate the problem by discarding meaningful features along with the corrupted

ones. Therefore, LFc demand another way around. We find that a data augmentation

method based on DCT [55] can further boost overall robustness, especially against LFc.

DCT augmentation provides greater distinction for weak features (at the centre region

of the feature space) with LFc (see Figures 4.1(c) and 4.1(d)). Feature characteristics for

both HFc and LFc are discussed in details in Section 4.2.

We evaluate our method’s efficacy on benchmark datasets (CIFAR-10-C and Tiny

ImageNet-C [31]) containing common corruptions. We further conduct performance

stability tests on perturbed datasets (CIFAR-10-P and Tiny ImageNet-P [31]). Our

experimental results show that LP-ReLU provides better robustness and stability

against corruptions compared to contemporary works.

We also stress the importance of visualisation of the learned decision space to better

understand the dynamics of CNNs’ robustness against common corruptions. To this

end, we propose a way of visualising the learned decision space and how a corrupted

input triggers misclassification. We show that the learned decision boundaries extend

to infinity and extrapolate predictions in the space beyond the scope of the data

manifold. This observation reiterates the importance of a compact feature space to

suppress the detrimental effects of corruptions.

To summarise, we make the following contributions in this chapter:

• We analyse image corruptions from a frequency perspective and show that CNN’s

weakness against corrupted data can be addressed by using appropriate AFs and

augmentation techniques.
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Figure 4.2: Activation functions f(x) and their corresponding 1st derivatives D(x). The
proposed variants of AFs, i.e., LP-ReLU1 and LP-ReLU2 are highlighted in the lower right
panel.

• We propose novel AFs (LP-ReLU) by embedding low-pass filtering properties

into ReLU.

• To complement LP-ReLU in tackling LFc, we use DCT based augmentation [55].

• To better understand CNNs’ overall robustness against data corruptions, we

propose a method to visually illustrate CNNs’ decision boundaries and their

intermediate feature space.

• Finally, we extensively evaluate the accuracy and stability of our proposed

method on benchmark datasets and demonstrate the efficacy of our method

in improving CNNs’ robustness.

4.2 Proposed Approach

Achieving robustness against corruptions requires an in-depth understanding of their

properties. In this section, we set the foundation for our proposed approach by

analysing different corruptions from a Fourier perspective. For all our experiments

presented in Figures 4.3, 4.4, and 4.5, WRN-40-2 is used.
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4.2.1 Frequency Domain Analysis

Commonly found image corruptions can be broadly categorised into two types: HFc

and LFc [37]. We argue that successfully handling the entire corruption spectrum, i.e.,

both HFc and LFc, is at the core of achieving a desired level of robustness.

Noise introduces sudden spikes in the signal and thereby falls in the HFc category

[37]. Blur, on the other hand, is another common form of corruption that removes high

frequency information and thereby falls in the LFc category (e.g. Gaussian blur) [37].

High Frequency Corruptions. In signal processing applications, low-pass filter-

ing is a common operator to remove nuisance frequencies beyond a cut-off threshold.

From experimental analysis, we observe that an image with HFc induces activations

with a higher magnitude compared to its clean counterpart (see Figure 4.3). In other

words, convolution kernels fire strongly on ‘noisy’ parts of an input with HFc. These

hyperactive features coming out of the noise rather than the signal are also fed to ReLU.

As ReLU does not filter input in the positive domain, i.e., for x > 0, such features are

allowed to flow through the network layers. Consequently, these corrupted features

exploit the sparsity offered by ReLU and trigger heavy shift in the feature space. This

way, the features easily end up on the wrong side of the decision boundary, causing

misclassification (details in Section 4.3.5).

Low Frequency Corruptions. As stated earlier, LFc do not have an easy filtering

fix. The underlying reasons can be better understood if we move from spatial to

frequency domain.

As observed in Figure 4.3, convolution kernels fire weakly on images with LFc as

such corruptions usually blunt the visual features. Contrary to HFc, this implies that

the LFc induce relatively weaker features2 that congregate in the centre region of the

feature space (as shown in Figure 4.1). For example, a vertical edge detector kernel

would produce strong output features each time it convolves over a sharp vertical edge

present in an image. However, the same kernel would produce weaker features if the

vertical edge is not sharp enough (e.g., loss of sharpness due to LFc).
2By weak activation or feature, we refer to the smaller magnitude of absolute values produced from

each convolution operation.
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Figure 4.3: Histograms of ReLU output, averaged across all the layers in WRN-40-2, from clean
images in CIFAR-10 and Tiny ImageNet (Left), images with LFc (Middle), and images with
HFc (Right) from CIFAR-10-C and Tiny ImageNet-C. Horizontal axis denotes the magnitude of
a feature or activation and the vertical axis denotes the number of activations having a certain
magnitude. These plots show that the HFc indeed induce hyperactive features with large
output magnitude (Right) and LFc induce relatively weak features (Middle). The histogram
with weak features (LFc) overlaps with the clean one (Left) and hence LFc are harder to
distinguish. These plots on clean, LFc and HFc also provide a heuristic on the potential cut-off
point initialisation values (A and B) in the proposed LP-ReLU as discussed in Section 4.2.5.

It is known from DCT analysis that most of the energy (of a natural image) is

concentrated on the low frequency spectrum [118]. Unlike HFc, features from LFc

substantially overlap with meaningful features. Consequently, the classic fix, i.e., using

a high-pass filter, is not a viable option as such a filtering might eliminate legitimate

features as well as corrupted ones. This loss of information would not be recoverable

and result in performance deterioration.

We argue that a data augmentation technique capable of mimicking LFc can signifi-

cantly boost robustness not only against LFc but also against HFc.

4.2.2 Proposed Activation Function: LP-ReLU

Inspired by the human visual system and conventional signal processing fix for HFc,

we design two variants of low pass filters for our proposed AFs. Before explaining

further, there are a couple of key differences between the proposed and conventional

low-pass filtering we would like to highlight:

• Unlike the conventional fix, where everything beyond a cut off frequency is

completely ignored, we use a soft filtering technique with a signal attenuation
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factor that we call Filtering Factor. Note that completely cutting off the signal

beyond a threshold would resurface the vanishing gradient problem (similar to

C-ReLU).

• In a conventional low-pass filtering operator, a cut-off frequency is chosen based

on the maximum frequency available in the signal of interest (following Nyquist

Theorem [144]). However, computing such a cut-off frequency is complicated

for visual datasets like images. Hence, we design two low pass filter variants in

our AFs namely, LP-ReLU1 (one cut-off point) and LP-ReLU2 (two cut-off points)

with different cut-off point selection strategies.

4.2.3 LP-ReLU1

Equation 4.1 represents the first variant of our proposed AF, i.e., LP-ReLU1. A closer

look into Equation 4.1 reveals that LP-ReLU1, upto a threshold A, is equivalent to

ReLU. Beyond this threshold, the input features get attenuated by a Filtering Factor

α (α ∈ [0, 1]). Note that α = 0 will make LP-ReLU1 equivalent to C-ReLU. α = 1, on

the other hand, would make LP-ReLU1 equivalent to ReLU.

F (x) =


0, x ≤ 0,

x, x ∈ (0, A],

A+ α(x−A), x > A

(4.1)

Equation 4.2 denotes the derivative of LP-ReLU1 at each piece-wise linear stage. It

is evident that LP-ReLU1 has a slope at every point beyond the origin, which is a much-

desired property for training any neural network. See the graphical representations of

LP-ReLU1 and its derivative in Figure 4.2.

D(x) =


0, x ≤ 0,

1, x ∈ (0, A],

α, x > A

(4.2)
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4.2.4 LP-ReLU2

In contrast to LP-ReLU1, LP-ReLU2 has two cut-off points A, and B (where A < B) in

series and two corresponding Filtering Factors α, and β (where α > β) as can be seen

from Equation 4.3. The graphical representations of LP-ReLU2 and its derivative are

shown in Figure 4.2.

LP-ReLU2’s effectiveness against corruptions can be attributed to the following

reasons:

• Phase 1 (soft) filtering. A relatively larger α, i.e., α→ 1 (for x ∈ (A,B]) allows

greater feature sparsity in the centre, i.e., sparsity for weak features in the centre

region where LFc congregate (as shown in Figure 4.1). This initial soft filtering

gives our network enough sparsity in the centre to accommodate weak features

in distinct regions.

• Phase 2 (hard) filtering. A relatively smaller β, i.e., β → 0 (for x > B) means

hard suppression for large x, i.e., towards the perimeter of the feature space. This

hard filtering stage suppresses noise in the signal, and limits feature shift by

ensuring a compact feature space.

F (x) =



f1(x) = 0, x ≤ 0,

f2(x) = x, x ∈ (0, A],

f3(x) = A+ α(x−A), x ∈ (A,B],

f4(x) = max(f3(x))+

β(x−max(f3(x)), x > B

(4.3)

Equation 4.4 represents the derivative of LP-ReLU2. Much like LP-ReLU1, LP-

ReLU2 also has a slope at every piece-wise linear stage.

D(x) =



0, x ≤ 0,

1, x ∈ (0, A],

α, x ∈ (A,B],

β, x > B

(4.4)
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Figure 4.4: Empirical analysis for a suitable Filtering Factor α in LP-ReLU1. Notice that
α ≈ 0.05 yields the best results and α = 1 simply replicates the results of ReLU. WRN-40-2 is
used as the backbone for these experiments.

Overall, LP-ReLU2 shows us that successfully handling the entire corruption spec-

trum requires separate approaches, i.e., sparsity for LFc and compactness for HFc.

As shown later in this chapter, LP-ReLU2 has a slight advantage over LP-ReLU1 in

accuracy but LP-ReLU1 is faster to train.

4.2.5 Cut-off Point and Filtering Factor

For LP-ReLU1, the cut-off value A is set as a learnable parameter initialised with

the value 6 based on heuristic [69]. Filtering Factor α can be a constant or cast as

a trainable parameter. In this chapter, based on the analysis in Figure 4.4, we use

α = 0.05 as it yields the best performance as a constant parameter. When cast as a

trainable parameter, we encourage using 0.05 as the initial value while making sure

α < 1 at all times.

For LP-ReLU2, we cast the cut-off values A and B as learnable parameters and

ensure at all times during training they maintain a buffer in between, i.e., A < B.

We investigate a histogram-based approach to initialise these hyperparameters (with

A = 5 and B = 8.1). In Figure 4.3, we plot the ReLU output (averaged over all layers)

histograms for the clean, LFc, and HFc. It can be derived that ReLU output beyond B is

likely to be noise. On the other hand, output under the threshold A could either be the

true signal or LFc. This is why to initialise, we choose A as the first cut-off point (with

a soft Filtering Factor α) and B as the second cut-off point (with a hard Filtering
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Figure 4.5: Empirical analysis of β as a function of decreasing α in LP-ReLU2. Here, α is the
phase 1 and β is the phase 2 Filtering Factor. In this experiment, WRN-40-2 is used as the
backbone and CIFAR-10-C test fold as the dataset. This experiment serves as a heuristic to
initialise β regardless of the dataset to avoid data dependency.

Factor β). For the experiments in Figures 4.3, 4.4, and 4.5, 15% of the training set is

used as the validation subset on which the statistics are derived.

Both Filtering Factors, α and β are learnable parameters. α is initialised in the

same way as described in LP-ReLU1, and β is cast as a function of α. At all times

during training, the α > β relation is maintained. From empirical analysis (see Figure

4.5), we initialise with β = α
3 . During training, we observed that the performance

variance with different initialisations is marginal as long as these hyperparameters

oscillate between optimal and near-optimal values. This allows the hyperparameter

initialisation to be flexible and transferable to other datasets.

4.2.6 DCT Augmentation

To further strengthen CNN’s robustness against corruptions, especially LFc, we in-

corporate DCT data augmentation [55] alongside LP-ReLU. DCT data augmentation

randomly drops low impact high frequency information based on DCT coefficients.

Because of the randomness, some low frequency information gets dropped as well,

which is found to be more effective as it introduces data diversity [55]. Unlike JPEG

compression [118], a block size equal to the input’s spatial resolution is used. DCT data

augmentation is corruption agnostic but generalises well to a wide array of common

corruptions, especially LFc. The impact of DCT data augmentation coupled with
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Figure 4.6: Sample images from DCT augmentation [55]. The first image in each row is the
clean one and drop of information based on DC coefficient intensifies from left to right.

LP-ReLU, can be visually observed in Figure 4.1 as the centre region (LFc) becomes

much more distinct. Samples derived from DCT augmentation can be seen in Figure

4.6.

4.3 Performance Analysis

In this section, we introduce the datasets, provide details on implementation and

evaluation metrics and then discuss how the proposed network fares against the

existing ones.

4.3.1 Datasets

To evaluate robustness of a deep classifier, the following datasets are used:

CIFAR-10 and Tiny ImageNet3. CIFAR-10 [127] has 50,000 32× 32× 3 clean images

equally distributed in 10 classes. The split is 50,000 training images and 10,000 test

images. Tiny ImageNet [145] is an ImageNet [1] subset comprising of 100,000 clean

training images with 200 classes. Each image has a spatial resolution of 64 × 64 × 3.

Each of the classes has 500 training and 50 test images (total 10,000 test images).

3From here on, whenever we mention clean data set or clean accuracy, we refer to the original dataset
contained in either CIFAR-10 or Tiny ImageNet.
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CIFAR-10-C and Tiny ImageNet-C. CIFAR-10-C [31] is effectively the corrupted vari-

ant of the CIFAR-10 test set. There are a total of 19 corruption types categorised into

noise, blur, weather, and digital corruptions. Each image within a particular corrup-

tion type undergoes five increasing levels of severity to ensure a thorough evaluation.

Thereby, CIFAR-10-C has 19× 10, 000× 5 or 950, 000 test images in total.

The corruption induction process for Tiny ImageNet-C [31] is identical to that of

CIFAR-10-C. In total, Tiny ImageNet also has 19× 10, 000× 5 or 950, 000 test images.

CIFAR-10-P and Tiny ImageNet-P. Both these datasets contain perturbed images

of the clean datasets to test the performance stability. Each example here is a short

video of about 30 frames containing 10 perturbations, including noise (Gaussian and

shot), blur (motion and zoom), weather conditions (snow and brightness), and affine

transformations (translate, rotation, scaling, and tilt). Frames within a video clip

contain progressively increasing perturbations to challenge network stability. Unlike

corruptions, stability is not measured with classification accuracy. Rather, the mean Flip

Probability (mFP ) is calculated over all perturbation categories. A flip event occurs

when two consecutive frames’ predictions mismatch. A lower mFP score indicates a

more robust network.

4.3.2 Implementation and Training Details

For an in-depth evaluation of the proposed method, we use ResNet-based [26] WRN

[27] as the base model. Unlike ResNet, where performance gain comes with increasing

depth, WRN’s architecture pivots around a central argument that shallower networks

with greater width lead to higher performance gain. WRNs are denoted as WRN-d-k

where d is the number of convolutional units and k is the widening factor considering

ResNet has a widening factor of 1, i.e., k = 1. We use WRN-40-2 with ReLU for the base

model and replace ReLU with LP-ReLU for the proposed network. We use SGD with

Momentum 0.9. We train the network for 160 epochs with initial learning rate set to

0.1. The initial learning rate is dropped by a factor of 0.2 after 50, 100, and 140 epochs.



§4.3 Performance Analysis 71

Batch − size is set to 128 with an L2Regularisation factor of 0.0005. Zero − centre

input image normalisation is used for all experiments.

For training variants with DCT data augmentation, we follow the training protocol

described in [55]. In DCT augmentation, each image is first transformed into the

frequency domain. Later, frequency components with relatively less impact on the

image are dropped based on a chosen threshold. Inverse DCT is performed afterwards

with the remaining DCT coefficients for reconstructing the image in spatial domain.

These reconstructed images are fed to train the deep network.

4.3.3 Evaluation Metrics

We follow the protocol outlined in [31] for evaluating robustness against corruption

and performance stability on perturbations. The protocol is briefly described below:

Corruption Robustness on CIFAR-10-C and Tiny ImageNet-C. To evaluate robust-

ness against corruption, we calculate the Top-1 classification accuracy as in [31]. This

involves validating the class prediction with the highest probability (for each test

sample) against the ground truth. The ratio of correct predictions and total test samples

is used as the Top-1 accuracy.

Perturbation Stability on CIFAR-10-P and Tiny ImageNet-P. Instead of Top-1 ac-

curacy, as proposed in [31] stability is measured against Flip Probability (FP ) which

provides us a quantitative insight of a network’s tendency to flip prediction with

increasing perturbation. To calculate FP , let us denote k perturbation sequences (each

with v number of frames) with S =
{(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
v

)}k
i=1

. For a fixed i, i.e., pertur-

bation type k, x(i)
1 denotes the clean image (no perturbation) and x(i)

v denotes a frame

with maximum (k type) perturbation. Considering our CNN classifier as a function F ,

the Flip Probability of Network F : x → {class1, class2, . . . , classn} on perturbation

sequence S is:

FPFp =
1

k(l − 1)

k∑
i=1

v∑
j=2

1
(
F
(
x

(i)
j

)
6= F

(
x

(i)
j−1

))
(4.5)



§4.3 Performance Analysis 72

Taking the mFP across all perturbations denotes the stability metric used in this chap-

ter.

Clean Accuracy on CIFAR-10 and Tiny ImageNet. Besides evaluating on distor-

tions and perturbations, we evaluate the networks on the clean dataset as well. To

compare the performance on clean datasets, we calculate the Top-1 accuracy.

Table 4.1: Top-1 classification accuracy (%) for different network configurations.

Network AF DCT CIFAR-10-C Tiny Imagenet-C
VGG-19 ReLU X 76.6 40.1

ResNet-101 ReLU X 78.5 42.9
WRN-40-2 ReLU X 79.1 43.2

VGG-19 ReLU 5 68.5 35.9
ResNet-101 ReLU 5 70.2 37.8
WRN-40-2 ReLU 5 72.7 38.6

VGG-19 LP-ReLU2 X 84.2 45.5
ResNet-101 LP-ReLU2 X 86.5 47.7
WRN-40-2 LP-ReLU2 X 89.2 51.9

Table 4.2: Top-1 classification accuracy (%) for different hyperparameter configurations (Net-
work: WRN-40-2 with LP-ReLU2 + DCT).

A, α B, β CIFAR-10-C Tiny Imagenet-C
Learnable Learnable 89.2 51.9
Learnable Frozen 88.1 50.3

Frozen Learnable 88.4 50.1
Frozen Frozen 87.9 49.8

4.3.4 Comparative Performance Evaluation

WRN-40-2 architecture performs better than VGG-19 and ResNet-101 on both of the

corrupted datasets (Table 4.1), and therefore we use it as the backbone network for our

proposed method. As Table 4.2 shows, learnable hyperparameters perform better as

opposed to freezing them at the initialisation values. For all our experiments, we cast

the hyperparameters as learnable unless mentioned otherwise.
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Table 4.3: Top-1 classification accuracy (%) on 19 individual corruptions from CIFAR-10-C
and Tiny ImageNet-C with different network configurations. WRN-40-2 architecture is used
in all these networks as it performs best as shown in Table 4.1. LP-ReLU2 coupled with DCT
augmentation performs best. Accuracy is averaged over all five severity levels and reported in
the last row. The penultimate row (Clean) reports accuracy on the respective distortion-free
dataset. Best in each row is highlighted in bold.

CIFAR-10-C Tiny ImageNet-C
Corruption ReLU LP-ReLU1 LP-ReLU1+DCT LP-ReLU2 LP-ReLU2+DCT ReLU LP-ReLU1 LP-ReLU1+DCT LP-ReLU2 LP-ReLU2+DCT
Brightness 93.8 90.3 89.2 95.4 94.0 58.3 58.1 57.3 59.3 58.6
Contrast 74.1 74.2 75.1 75.3 80.7 33.4 29.3 34.1 30.2 33.2

Defocus_blur 88.1 85.3 86.3 80.3 94.5 44.2 45.9 52.6 48.6 56.2
Elastic 81.3 79.6 82.5 79.9 90.5 45.9 45.1 48.3 45.3 51.5

Fog 81.7 84.5 85.2 85.6 91.2 48.5 49.1 52.4 49.1 53.7
Frost 64.4 74.8 84.6 75.9 90.4 35.2 39.4 48.1 40.2 49.8

Gauss_blur 84.1 85.9 91.3 88.4 93.2 35.6 38.3 51.6 40.8 56.7
Gauss_noise 51.1 69.5 88.4 69.4 85.1 15.1 23 38.9 22.9 42.5

Glass 47.8 53.7 73.8 53.4 78.6 21.5 23.2 37.4 23.4 40.6
Impulse_noise 53.6 78.8 88.3 77.6 86.3 27.3 48.2 52.8 48.2 54.3

Jpeg 75.8 82.6 86.2 84.5 94.2 41.2 48.5 52.9 50.9 56.1
Motion_blur 80.2 78.3 82.6 81.2 90.2 46.8 47.9 55.5 50.8 57.9

Pixelate 73.6 72.9 84.1 73.4 91.7 41.7 43.2 48.9 44.6 51.2
Saturate 88.1 91.7 89.9 91.9 91.6 55.4 56.1 56.4 56.5 57.7

Shot_noise 59.2 76.8 86.3 77.2 88.9 33.5 45 52.3 45.2 55.1
Snow 73.3 78.3 81.1 77.9 89.3 45.2 46.7 52.9 45.3 55.2

Spatter 73.5 84.9 84.6 85.6 86.9 44.9 46.2 46.8 46.8 47.6
Speckle 56.7 77.8 85.3 76.9 88.3 21.5 33.4 45.2 33.6 49.9

Zoom_blur 80.6 76.2 92.6 78.5 91.6 37.7 38.3 54.3 41.6 58.1
Clean 96.0 96.1 96.3 96.2 96.4 61.1 61.3 61.2 61.3 61.5

Average Accuracy 72.7 78.7 85.1 79.5 89.2 38.6 42.4 49.4 43.3 51.9

CIFAR-10-C and Tiny ImageNet-C. According to Table 4.3, WRN-40-2 with ReLU

as the AF achieves an average accuracy of 72.7% over all corruptions on CIFAR-10-C.

When LP-ReLU1 replaces ReLU, overall corruption accuracy stands at 78.7% (an im-

provement by 6%). A closer inspection reveals that LP-ReLU1 invokes greater gains on

HFc compared to the baseline (the baseline has 77.4% and 55.1% while LP-ReLU1 has

79.5% and 75.7% accuracy on LFc and HFc, respectively). This complements the role

low-pass filtering plays in limiting the misclassification against HFc.

LP-ReLU2 which is specifically designed to allow greater sparsity for weaker acti-

vations, achieves 80.5% LFc and 75.15% HFc accuracy.

DCT augmentation complements both LP-ReLU variants by boosting overall

robustness- especially against LFc. LP-ReLU1 coupled with DCT augmentation achieves

84.6% accuracy on LFc and 87% accuracy on HFc. LP-ReLU2 coupled with DCT aug-

mentation achieves 89.9% accuracy on LFc and 87.1% accuracy on HFc.

It is worth noting that the soft phase 1 filtering in LP-ReLU2 actually allows DCT

augmentation to take full effect and improve performance, especially against LFc. To

be specific, the soft phase 1 filtering provides weak features (in the centre, as shown in
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Table 4.4: Average Top-1 classification accuracy (%) comparison. LP-ReLU variants along with
DCT augmentation demonstrate better robustness on both CIFAR-10-C and Tiny Imagenet-C.
LP-ReLU1 + DCT obtains 0.9% and 4.8% improvement over AugMix on CIFAR-10-C and Tiny
Imagenet-C respectively. LP-ReLU2 + DCT obtains 5% and 7.3% improvement over AugMix
on CIFAR-10-C and Tiny Imagenet-C, respectively. Best combination is highlighted in blue.

Network CIFAR-10-C Tiny Imagenet-C
ReLU 72.7± 0.82 38.6± 0.91

Leaky-ReLU 67.2± 0.66 32.9± 0.72
P-ReLU 68.8± 0.45 33.3± 0.53

Clipped-ReLU 73.2± 0.60 39.7± 0.66
Tanh 66.9± 0.79 32.3± 0.84
Tent 73.9± 0.29 40.5± 0.33

Cutout [42] 70.1± 0.39 40.1± 0.44
Mixup [41] 72.5± 0.45 40.8± 0.49
CutMix [40] 70.8± 0.36 39.7± 0.40

AutoAugment [36] 78.8± 0.34 42.5± 0.37
AugMix [38] 84.2± 0.28 44.6± 0.30

DeepAugment [138] 78.5± 0.11 42.9± 0.20
BNS [48] 78.4± 0.25 44.3± 0.39

LP-ReLU1 78.7± 0.27 42.4± 0.29
LP-ReLU1 + DCT 85.1± 0.25 49.4± 0.28

LP-ReLU2 79.5± 0.28 43.3± 0.32
LP-ReLU2 + DCT 89.2± 0.24 51.9± 0.30

Table 4.5: Comparison of average Top-1 classification accuracy (%). The combination of
LP-ReLU2 and DCT augmentation outperforms others. Best combination is highlighted in blue.

Network CIFAR-10-C Tiny Imagenet-C
ReLU + DCT 77.1± 0.55 41.2± 0.61

Clipped-ReLU + DCT 78.2± 0.37 42.2± 0.72

LP-ReLU2 + AutoAugment 85.3± 0.36 45.2± 0.28
LP-ReLU2 + AugMix 86.5± 0.46 47.9± 0.50

LP-ReLU2 + DCT 89.2± 0.24 51.9± 0.28

Figure 4.1) room to be relatively sparser. This sparsity is vital for distinguishing weak

features, which otherwise congregate together. On the other hand, the hard phase 2

filtering constrains hyperactive HFc feature space and limits features from drifting

away.

For a more in-depth quantitative analysis, Figure 4.7 compiles performance on

each type of corruption present in CIFAR-10-C at each available corruption severity

level. LP-ReLU (LP-ReLU2 + DCT augmentation) exhibits the best consistency across
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Figure 4.7: Performance comparison between LP-ReLU (LP-ReLU2 + DCT) and contemporary
methods with progressively increasing corruption in CIFAR-10-C. 1 and 5 denote lowest and
highest level of corruption respectively. LP-ReLU exhibits consistently better performance
across all severity levels.

severity levels. The performance of ReLU network generally drops at a much faster

rate with increasing severity compared to LP-ReLU.

As can be seen from Table 4.4, LP-ReLU2 + DCT augmentation achieves SOTA

Top-1 classification accuracy on both the corrupted datasets (89.2% on CIFAR-10-C

and 51.9% on Tiny ImageNet-C). These are 5% and 7.3% better than AugMix [38] on

CIFAR-10-C and Tiny ImageNet-C respectively. LP-ReLU2 + DCT outperforms other

combinations of AF and augmentation methods as shown in Table 4.5. We attribute

the performance gain to the method’s (LP-ReLU2 + DCT) ability to address both HFc

and LFc.
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CIFAR-10-P and Tiny ImageNet-P. While the corrupted datasets test the overall ro-

bustness, progressively increasing perturbations in CIFAR-10-P and Tiny ImageNet-P

test the stability of network performance. Networks suffering from robustness de-

ficiency provide erratic predictions with marginally varying perturbations. Robust

networks, on the other hand, do not flip predictions unless the input corruption is

substantial. As can be seen from Figure 4.8, our proposed method, i.e., LP-ReLU2 +

DCT augmentation, achieves SOTA mFP both on CIFAR-10-P (mFP 1.08%) and Tiny

ImageNet-P (mFP 2.88%). This is lower than the baseline (mFP 4.09% on CIFAR-10-P

and mFP 11.8% on Tiny ImageNet-P) and the next best AugMix [38] (mFP 1.49% on

CIFAR-10-P and mFP 4.1% on Tiny ImageNet-P).

CIFAR-10 and Tiny ImageNet (clean). Although the proposed LP-ReLU has been

designed to deal with corrupted images, both LP-ReLU variants maintain compara-

ble results on the clean datasets with small but consistent improvements over ReLU.

ReLU achieves an accuracy of 96% on clean CIFAR-10 whereas LP-ReLU1 and LP-

ReLU2 achieve 96.1% and 96.2% clean accuracy respectively. DCT augmentation

slightly improves clean accuracy for both LP-ReLU variants (see Table 4.3). As for Tiny

ImageNet-C, similar performance gain trend is observed (see Table 4.3).

We attribute our method’s better robustness and stability across corruptions and

perturbations to our separate approaches in handling LFc and HFc. Contemporary

data augmentation-based methods [38, 40, 42, 41, 138] do not account for the specific

demands from corruptions residing in opposite ends of the frequency spectrum. To

the best of our knowledge, only [37] stresses the importance of understanding the

robustness issue from a Fourier perspective. Nonetheless, they resort to a pre-existing

augmentation technique (AutoAugment[36]) that was originally proposed to improve

clean accuracy – not robustness. AutoAugment does improve robustness as well

(as reported in [37]), but the improvement does not catch up with ours. AugMix [38]

further builds on AutoAugment and likewise – do not consider the corruptions through

the lens of Fourier transform. DeepAugment [138] resorts to auto-encoder models for

augmentation, but the synthetic data alone is not enough for significant performance

gain.
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Figure 4.8: LP-ReLU2 + DCT has the lowest mFP on both CIFAR-10-P (top) and Tiny Imagenet-
P (bottom,) which is a testament to its performance stability across 10 perturbations present in
these benchmark datasets.

4.3.5 Comparing Shift in Feature Space

In this section, we analyse the impact of input corruption in the intermediate feature

space of a CNN. To be more specific, we demonstrate how a ReLU network fares

against an LP-ReLU network in terms of feature shift due to corruption.

Let us assume a CNN as a feature extractor function F(x)→ CL where CL denotes

the feature set C at layer L. The input to F , i.e., x can either be an image from the

clean set X (x ∈ X) or from a corrupted set X̂ . X̂ consists of elements from X that has

undergone a certain corruption operation, i.e., Corruption∆m(X)→ X̂ (x ∈ X̂) where

∆m is the corruption magnitude. For a particular CNN, i.e., F to be robust against

input corruption, F has to produce similar CL for an input from X and its corrupted

counterpart X̂ (ideally exactly same) as shown in Equation 4.6.
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Figure 4.9: (Top Left) With increasing corruption severity, similarity between the clean (level
1) and corrupted (level [2, 6]) features fall sharply in ReLU network suggesting heavy shift in
the intermediate feature space (lower similarity score refers to higher shift in feature space).
Similarity score is calculated in the following severity order: (1 → 1), (1 → 2), (1 → 3), (1 →
4), (1 → 5), (1 → 6). Note that similarity between the clean image and itself (1 → 1) is 1.
(Bottom Left) The impact of corruption magnifies as similarity falls sharply with increasing
network depth in ReLU network. Networks are divided into four depth levels ([1, 2, 3, 4]) and
similarity is then calculated between the corresponding depth levels, i.e., (1→ 1), (2→ 2), (3→
3), (4→ 4) on clean and corrupted datasets. (Right) With increasing input corruption (Gaussian
noise in this case), features drift far away in ReLU network resulting in misclassification of the
digit ‘2’. Because of a compact feature representation in LP-ReLU networks, shift in feature
space is constrained and features stay close to where they belong. It is worth noticing the scale
in X and Y axes to perceive the relative feature compactness.

F(X) ≈ F(Corruption∆m(X)), ∆m→ small

F(X) ≈ F(X̂),
(4.6)

We use the Cosine Similarity (CS) [146] to evaluate the effects of shift in feature

space on increasing corruption severity. CS is widely used to calculate distance in high

dimensional space where Euclidean or L2 distance does not work well [146]. CS gives

a measure of the angular distance between two high dimensional vectors. We measure

CS on six severity levels of corruptions as annotated in CIFAR-10-C (see Figure 4.9). CS

is measured between clean and corrupted features, one severity level at a time (average

CS across layers is reported in Figure 4.9). Level 1 represents zero corruption, i.e.,

clean image and level 6 represents maximum corruption. Compared to the baseline,
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both LP-ReLU1 and LP-ReLU2 maintain higher CS across severity levels. To put it in

simple words, even in the presence of input corruption, LP-ReLU coupled with DCT

augmentation produces features similar to those produced for corresponding clean

images.

In addition to different severity levels, we also measure shift at four increasing

network depth levels as well. Figure 4.9 shows that our LP-ReLU based networks

maintain the lowest average shift at all levels. It is also evident from Figure 4.9 that

the shift is benign in the initial layers for ReLU network and becomes malignant in the

deeper layers to a point where misclassification is inevitable.

As illustrated in the qualitative example in Figure 4.9, features from a noisy digit

(‘2’) remain within the true class perimeter in LP-ReLU networks even with increasing

magnitude of corruption. This is because of the compactness enforced by the low-pass

filtering property inside LP-ReLU. However, sparsity in ReLU networks means features

start drifting away even with negligible corruption resulting in misclassification.

4.3.6 Training Time

Unlike ReLU, both variants of the proposed LP-ReLU execute conditional statements

during training and hence require marginally greater time per training epoch. As

can be seen from Table 4.6, ReLU is the fastest with 50.3 s/epoch. LP-ReLU1 turns

out to be slightly faster than LP-ReLU2 because of lesser parameters. However, we

found both LP-ReLU networks to converge to training with fewer epochs compared

to ReLU networks. For example, ReLU requires [180, 190] training epochs to reach

optimal performance, whereas both LP-ReLU variants perform optimally at 150 epochs.

We observed that the overall training time for ReLU and LP-ReLU variants are quite

similar. We argue that the sparsely represented data in ReLU requires additional

training iterations to reach the global minima (with respect to the cost function). On

the other hand, LP-ReLU’s data representation is compact by nature and, therefore,

requires fewer iterations to reach the global minima.
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Table 4.6: Comparison of training time with different AFs (on CIFAR-10). Average time per
epoch is reported in seconds. Number of epochs required to reach convergence is provided in
a range. Training protocol is same as described in Section 4.3.2.

Network Time/epoch (s) No. of epochs
ReLU 50.3 [180, 190]

Leaky-ReLU 55.0 [185, 190]
P-ReLU 54.5 [180, 190]
C-ReLU 55.9 [140, 145]

LP-ReLU1 58.1 [145, 150]
LP-ReLU2 59.6 [140, 145]

4.4 Visualising Features and Decision Space

Visualising features and learned decision boundaries could deepen our understand-

ing of CNN’s robustness issues. Unfortunately, high dimensional features are hard

to visualise. Dimensionality reduction algorithms based on statistical properties of

features, e.g., PCA [135] and t-SNE [136], are often used in such cases. However, they

do not provide an absolute feature space and the true decision space remains unknown.

MLPs could be used as binary classifiers for a visual explanation, but the notion of

data corruption is hard to replicate in such setups. In this chapter, rather than using

statistical properties from a high dimensional feature vector extracted from a CNN’s

FC layer, we use a two dimensional FC layer to reduce the dimensions during training.

This way, the network itself provides us with a lower-dimensional feature set (without

using PCA or t-SNE) that is absolute in nature. In the following section, we provide

details on this feature extraction process and how we can approximate the learned

decision boundary.

To train a CNN on the MNIST dataset, first, we design a simple three-convolution

layer CNN that achieves ≈ 99% accuracy on MNIST (see Figure 4.10(a)). Keeping

visualisation in mind, we augment another FC layer (FC2) right before the already

existing FC1 layer with only two neurons (see Figure 4.10(b)). Such a low dimensional

FC layer is rarely used in complex tasks. However, our FC2 augmented network

maintains the same classification accuracy (≈ 99%) on the MNIST test set which

confirms the network does not overfit or underfit because of the additional layer. This
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Figure 4.10: (a)-(c) To visualise a CNN’s learned decision space on MNIST, a FC layer with two
neurons is added as the penultimate FC layer (we call it FC2). Once this network is trained,
all the layers upto FC2 are pruned and a tiny three-layer network is formed (FC2-net). (d)
Following Algorithm 4.1, (X,Y ) values (generated image features) are systematically fed to
FC2-net and a decision space map is created from the class response.

can be attributed to MNIST’s low complexity as a dataset. We argue that it is still a high

dimensional dataset (28× 28 images) and it presents an opportunity to understand the

decision landscape learned by CNNs trained on any image dataset. Plots in Figures

4.1, 4.9, and 4.10 are produced from the FC2 layer features from their respective CNNs

(ReLU is used in one network (ReLU-net) and LP-ReLU variants in two other networks).

No conventional dimensionality reduction is used as the features themselves are only

two dimensional.
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Algorithm 4.1 : Decision Space Mapping
Input: Generated Features (Xi, Yi)
Output: Learned Decision Landscape.

1: Init Polar(r, θ) and i = 1
2: where, r ∈ [1 : 1 : N ], θ ∈ [0 : .01 : 2π]
3: for r = 1 to N do
4: for θ = 0 to 2π do
5: (Xi, Yi) = Cartesian(Polar(r, θ))
6: [classiscoresi] = classify(2FCnet, (Xi, Yi))
7: if scoresi > 50% then
8: Flagi = 1
9: end if

10: i = i+ 1
11: end for
12: end for
13: Connect ∀(Xi)∃(Yi) (Flag == 1)

4.4.1 Decision Space Mapping

From the trained ReLU-net, we prune all the layers up to the FC2 layer and call this

tiny network FC2-net (see Figure 4.10(c)). FC2-net gives us the opportunity to directly

mimic absolute image (digits from 0 to 9) features with simple two dimensional values

(X,Y ).

To map the decision boundary in the feature space, the following steps are followed:

1. First, we plot FC2 features from ReLU-net, compute the origin, and fix an initial

point in the Polar co-ordinate P (r, θ) with r = 1 and θ = 0.

2. Next, we keep r unchanged but increase θ by 0.01 up to 2π and complete a full

circle traversal. We start over this process by incrementing r by 1.

3. While traversing, we move back to Cartesian co-ordinate and feed the values

(FC2 features) to the ReLU-net. We keep a note of the points where classification

score trips over from one class to another adjacent class (< 50%).

4. Intriguingly, the class label does not alter regardless of increasing r value as long

as θ stays fixed. This means the decision boundaries are linear and extend to

infinity.
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5. Interestingly, all inter-class trip over points from Step 2 fall in a straight line (with

negligible deviation). This complements the finding in the last step, and joining

these trip over points reveals the true decision boundary (see Figure 4.10 for a

visual representation).

The entire decision space mapping process is summarised in Algorithm 4.1, and

visually depicted in Figure 4.10(d).

While experimenting, we found that classification scores become increasingly

extreme with features moving further away from the manifold. This explains why

corrupted instances often induce unusually high misclassification score in ReLU-based

networks as corrupted features often drift away from true class. LP-ReLU effectively

reduces the open space risk by enforcing compactness and limiting sensitivity to

corruptions.

4.5 Conclusion

In this chapter, we investigated why unbounded AFs such as ReLU is a weak link

in modern CNNs, especially against corruptions and perturbations. To this end, we

analysed common corruptions from the frequency domain and proposed an AF with

built-in low-pass filtering called LP-ReLU. LP-ReLU’s design correlates with the human

visual system and complies with the classic signal processing fix for HFc. LP-ReLU

complements DCT augmentation and improves CNNs’ robustness to corrupted input.

While the proposed AF improves distortion robustness by suppressing noise, alias-

ing in conventional DS layers such as max-pool can create additional forms of vulnera-

bilities in CNNs. For example, signal aliasing leaves CNNs vulnerable to benign image

transformations such as shift and scale. In the next chapter, we propose an anti-aliasing

AF and DS method to ensure further robustness against such vulnerabilities.



Chapter 5

Robustness to Shift and
Perturbation with Anti-Aliasing
CNN

In the previous chapter, we discussed the role of AFs in suppressing spurious signal

and proposed LP-ReLU for improved robustness against corruption. In this chapter,

we first discuss why conventional down-sampling (DS) suffers from signal aliasing

and how it impacts performance on transformed images, such as shift and common

corruptions, discussed in the previous chapters. To this end, we have proposed a novel

DS method to mitigate the problem. However, fixing only the DS does not suffice

since aliasing reappears through conventional AFs. As a solution, we propose a novel

anti-aliasing AF in this chapter. Our proposed methods not only provide robustness

against image transformation but also distortion. This work is currently under review

in the IEEE Transactions on Multimedia.

The rest of this chapter is organised as follows. Section 5.1 provides an introduction.

In Section 5.2, we introduce and formulate the proposed DS method and AF. In Section

5.3, we outline the datasets used for training and testing and then provide a compara-

tive performance evaluation. Section 5.4 provides an ablation study for different design

choices of our proposed network. Finally, Section 5.5 concludes this chapter.

5.1 Introduction

CNNs have achieved SOTA results in a wide range of vision tasks, including large-scale

image classification [1]. To understand the extent of CNNs’ robustness, researchers

84
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Figure 5.1: Features from an original image (top), and its shifted variant (bottom). The baseline
(ResNet-101) – without any low-pass filtering, and MaxBlurPool (MBP) [59] – with monotonic
blurring, both experience signal degeneration due to aliasing. Our method retains bulk of the
expected signal. Here, 28× 28 features are taken from the res3 block.

have started looking beyond performance on i.i.d. (independent and identically dis-

tributed) datasets only. Recent studies reveal that CNNs are vulnerable to subtle

changes in input, e.g., simple one pixel shift [60, 59, 147], quasi-imperceptible noise

[43, 29, 31, 55, 33], blur [148, 38], and adversarial attacks [149, 150, 151]. This is con-

cerning for real-world multimedia applications, where the i.i.d. assumption does not

always hold. For instance, an autonomous car should not flip predictions for the same

object between consecutive video frames due to marginal spatial shift or image noise

[152, 153]. Recently, aliasing – a process whereby signal degenerates while DS before

adequate blurring, has been identified as one of the main reasons behind CNNs’ lack

of robustness, especially against small image transformations such as shift [60, 59].

In CNNs, aliasing occurs when DS operations do not satisfy the Nyquist sampling

rate [144, 60]. The theorem states that if the DS factor is not at least double of the

maximum signal frequency, the output will be corrupted. In the context of CNNs,

the problem aggravates with increasing network depth, leading to loss of the feature

structure, and in effect, loss of shift-invariance. Blurring before subsampling, a well-

known signal processing fix, could be effective here [59], but naively using the same

blur kernel across the network, as used in MBP [59] or using separate ones for each

spatial location [65], does not yield satisfactory performance. In Figure 5.1, we compare

feature maps from three different networks, and find that the baseline (ResNet-101), as

well as MBP suffer from signal degeneration.
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Figure 5.2: (a) Fourier energy at different network depths (lower frequencies are in the centre).
Heat maps are generated using feature maps, at different network depths, belonging to the
ImageNet validation set. For all three networks, deeper feature maps have greater high
frequency energy, suggesting the importance of depth adaptive blurring. (b) Our proposed
method ensures better anti-aliasing by learning stronger blur filters for deeper layers, in this
instance, using a ResNet-101 backbone.

In this chapter, we propose a Depth Adaptive Blur-pool (DAB-pool) module and

recommend replacing common DS methods with it (details in Section 5.2.1). DAB

is inspired by the Fourier analysis, where we find that the feature maps – belonging

to deeper CNN layers become increasingly higher frequency in nature. This can

be visualised in Figure 5.2(a) which plots the Fourier energy heat maps at different

network depths. Lower frequencies from the feature maps are in the centre of each

square block. This heuristic motivates us to let the network learn progressively stronger

blur kernels, and Figure 5.2(b) shows such a set of learned kernels.

Recently, Azulay et al. [60] have pointed out that aliasing persists even after

blurring, as AFs often allow high frequency noise to alias back into the signal, and yet,

this remains largely unaddressed. As a solution, in this chapter, we propose a novel

AF that not only serves as an effective non-linearity unit, but also acts as a secondary

low-pass filter (see Figure 5.3). Similar to DAB-pool, this can also be readily used in

existing CNNs for further performance gain.

To assess shift-invariance, we follow benchmark evaluation protocols in [60, 66, 59].

We also test our defence against recent (translation-based) adversarial attacks [150],



§5.2 Proposed Method 87

Figure 5.3: Our proposed AF (AA-ReLU) gates between ReLU and C-ReLU by exploiting the
roll-off phase in sinx.

covering both black-box and white-box settings. Although primarily pursuing shift-

invariance, we assess performance generalisation on a variety of corruptions and

spatial perturbations on ImageNet-C and ImageNet-P respectively [31]. In summary,

we make the following contributions:

• Inspired by the sampling theorem [144], we investigate ways of instilling anti-

aliasing properties in CNNs. Since CNNs host a variety of layers, simply inserting

a low-pass filter does not suffice. To this end, we propose to redefine the conven-

tional DS and AFs as potential anti-aliasing units.

• We analyse the spectral properties of deep features and propose to use DAB-pool

for DS as the primary anti-aliasing unit.

• We propose a novel AF with a built-in low-pass filter as a secondary anti-aliasing

unit.

• We use the proposed DS method and AF in VGG16, ResNet-101, and DenseNet-

121 to demonstrate their effectiveness across architectures.

• In addition to shift and shift-based perturbations, we also evaluate on adversarial

attacks, data corruptions, and image transformations. Our method consistently

produces results better than existing methods.

5.2 Proposed Method

In this section, we first define the problem setup. Then we describe DAB-pool and how

to integrate it into modern CNNs, followed by the details of our anti-aliasing AF.
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Problem Formulation. Let a CNN classifier be G – a function that takes X as the input

and maps it to an output classOc. ConsideringX has a spatial resolution ofH×W ×C,

G can be expressed as G(XH×W×C)→ Oc. For translation invariance to hold, G should

predict the same class label for X , and its translated variant as Equation 5.1 shows.

G(XH×W×C) = G(XH×W×C + ∆T ) = Oc (5.1)

where, ∆T represents a marginal input translation.

5.2.1 Depth Adaptive Blur-pool (DAB-pool)

For effective anti-aliasing, a blur kernel has to obey the sampling theorem, i.e., sufficient

high frequencies should be removed before sub-sampling. A signal, containing mostly

high frequencies, needs stronger blurring, as opposed to a low frequency signal. This is

because a weaker than needed filter might leave frequencies beyond the limit imposed

by the Nyquist theorem. On the other hand, using over-aggressive blurring might

remove the meaningful part of the signal.

Our spectral analysis, according to Figure 5.2(a), reveals that the feature maps in

deeper layers have greater energy quotient for high frequencies. A similar trend is

observed in all three networks, which reinforces the consistency of this observation. It

also suggests that a ‘one size fits all’ approach, i.e., using the same blur kernel for all

layers would be sub-optimal, hence, we propose DAB-pool.

To put these in formal notation, let the feature map for an input X at layer L be xL,

a Gaussian blur kernel at depth level D be GσD, and the output of the convolutional

DAB be YDAB . Here, σ is the standard deviation of the kernel, and a higher σ denotes

stronger blurring. Depth level denotes the number of DS layers, e.g., a network with

four DS layers has four depth levels, i.e., D ∈ {1, 2, 3, 4}. Also let the (L+ 1)th layer be

a DS layer and hence we aim to blur xL. Now, we can define our convolutional DAB

operation as Equation 5.2:

YDAB(i, j) =

m−1∑
p=1

n−1∑
q=1

xLi+p,j+q · (GσD)p,q (5.2)
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where YDAB(i, j) is the output at location (i, j) and the Gaussian kernel resolution is

m× n.

Rather than using pre-fixed filters [59], we let the network learn them by casting σ as

a learnable parameter. To ensure progressively stronger blurring with increasing depth

D, we enforce the following learning constraints: Gσ1 < Gσ2 < Gσ3 < Gσ4 . . . < GσM ,

where M = max(D). It is worth mentioning that Equation 5.2 closely resembles con-

ventional convolution operation. The only difference is in the filter. GσD in Equation

5.2 is the filter that performs a blur operation and the only learnable parameter is σ.

However, conventional convolution involves a fully parameterised filter that learns to

recognise object level features.

Replacing DS Layers. We replace max-pool, strided convolution (S-conv), and avg-

pool as follows:

Max-poolk,s → Subsamplek,s ◦ DABk,s ◦ DenseMaxk,s=1

= DAB-poolk,s ◦ DenseMaxk,s=1

(5.3)

Convk,s>1 → Subsamplek,s◦ DABk,s ◦ Convk,s=1

= DAB-poolk,s ◦ Convk,s=1

(5.4)

AvgPoolk,s → Subsamplek,s ◦ DABk,s

= DAB-poolk,s

(5.5)

Here, k and s refer to kernel dimensions and stride respectively. DenseMax is simply

stride one max-pooling, found effective in improving task performance [59]. Each

sub-sampling operation, in Equations 5.3, 5.4, and 5.5, can be easily combined with

DAB as a single operation for efficiency, and hence, jointly represented as DAB-pool in

the equations.

Gradient Backpropagation. In a CNN, partial derivatives of the final cost func-

tion are propagated backwards and the learnable parameters are updated accordingly.

Here, we demonstrate backpropagation through our proposed DAB layer.
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As shown in Equation 5.2, xL is the input, GσD is the kernel, and YDAB is the output.

Assume dy is the error that has already backpropagated up to YDAB . From Equation

5.2, we can further derive the following as Equation 5.6.

YDAB(i, j) =
m−1∑
p=1

n−1∑
q=1

xLi+p,j+q · (GσD)p,q

Where, (GσD)p,q =
Hg (p, q)∑
p

∑
qHg

and Hg (p, q) = e
−(p2+q2)

2σ2

(5.6)

As shown later in Section IV, we use a fixed 3× 3 blur kernel for all DAB layers and

hence, p and q always have the same size, i.e., m = 3 and n = 3. Standard deviation σ

is the only learnable parameter here that gets updated during training.

During backpropagation, partial derivatives can be calculated by applying the

chain rule [154]. However, replicating the chain rule via convolution is a more efficient

way [155]. Partial derivatives of the weight matrix GσD are calculated by convolving the

input xL with the error matrix dy [155] and represented as dGσD. Equation 5.7 shows

the calculation of dGσD. Similarly, error dy is dispersed backwards by convolving it

with GσD [155] as shown in Equation 5.8.

dGσD(p, q) =

m−1∑
p=1

n−1∑
q=1

xLi+p,j+q · (dy)i,j (5.7)

dxL(i+ p, j + q) =

m−1∑
p=1

n−1∑
q=1

(dy)i,j · (GσD)p,q (5.8)

5.2.2 Anti-Aliasing ReLU (AA-ReLU)

In common signal processing tasks, low pass filtering is theoretically sufficient to

avoid aliasing. For example, an analogue to digital sound converter inside a voice

recorder can guarantee alias-free output, as long as an optimal low-pass filter is used.

In contrast, blurring before sub-sampling cannot provide such guarantee in CNNs due

to non-linearities in the form of AFs [60]. We argue that an AF can largely address this
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by acting as a secondary AA unit that complements DAB-pool by resisting noise. Such

an AF should: allow the signal to go through and have a low-pass filtering or function

roll-off mechanism, as well as continuity described as below:

I. Early feature sparsity: [69] Small positive features are mostly true signal [137]

and hence should be allowed to propagate forward – similar to what C-ReLU

offers prior to the clipping point.

II. Smooth roll-off: This is required to complement DAB-pool by high frequency

noise suppression. Contrary to a hard-clipping used in C-ReLU, a smooth roll-off

is a better choice as the buffer between the signal and noise is unknown. A

hard early clipping might affect the original signal, as well as deny early feature

sparsity.

III. Function continuity: For any AF to be effective, it has to be continuous so that

there is no point in the function without a derivative.

Considering these, we propose an AF in Equation 5.9 and subsequently describe how

it satisfies all three properties.

F (x) =



0, x ∈ (−∞, 0]

x, x ∈ (0, α)

fx1 = α sin (ln x
α) + α, x ∈

[
α, α exp

(
π
2

)]
fx2 = max(fx1 ) = 2α, x ∈

(
α exp

(
π
2

)
,+∞

)
(5.9)

where α is a learnable parameter representing the roll-off start point, as well as the

amplitude, frequency, and phase shift parameter of our sinusoidal roll-off function fx1 .

To ensure early feature sparsity (I), the proposed AA-ReLU, as in Equation 5.9, is

identical to ReLU for x ∈ [−∞, α), however, for x ≥ α, the signal starts to smoothly

roll-off (II). fx1 dictates the roll-off severity and span, whereas fx2 = 2α denotes the

capping value as shown in Equation 5.9. For further analysis, let fx1 in Equation 5.9 be

represented as Equation 5.10:

fx1 = α sin
(

ln
x

α

)
+ α

= α sin(g (x)) + α, here, g(x) = ln
x

α

(5.10)
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Unlike the linear growth in ReLU, we aim to roll-off after a certain α. To ensure

that happens, fx1 starts by marginally suppressing the output for inputs slightly greater

than α, i.e., x > α. Harder suppression takes effect for sufficiently large x, i.e., x� α.

Contrary to the oscillating property of a typical sin function, F (x), for x� α, should

plateau, i.e., it should reach and stay at the function maximum such that F (x) =

max(F (x)){∀x|x � α}. A sinx function in the interval of (0, π2 ] has these desirable

roll-off properties and our proposed AF in Equation 5.9 exploits it.

It is worth noting that the input to fx1 can be large real numbers, i.e., x ∈ R>0.

Therefore, plugging x directly in a sinx function would be impractical, as we do not

want our sinusoidal output to oscillate periodically. Rather, we want a substantially

lower sin frequency f , so that we have access to a wider and smoother roll-off region.

This is why we use a natural logarithmic function g(x) in Equation 5.10, and in effect,

inside our proposed AF in Equation 5.9.

In addition to denoting the roll-off start point, α also increases the amplitude of

fx1 (since α ∈ Z>0), which allows early sparsity in F (x), as Figure 4.2 shows. α also

vertically shifts fx1 , and further modulates the frequency (by dividing x inside the log

function) such that F (x) remains continuous at each point.

To show AA-ReLU is continuous (III), we prove that F (x) in Equation 5.9 is

continuous everywhere as follows:

• F (x) = 0 and F (x) = x are continuous since constant and identity functions are

continuous everywhere [156]. At the joining point, i.e., for x = 0, both function

pieces produce 0 and hence they are jointly continuous as well.

• fx1 is continuous in the given domain as it is a function of sin [156]. At the joining

point with F (x) = x, i.e., for x = α, both functions produce the same output

since fx1 = α sin (ln α
α) + α = α and F (x) = x is an identity function.

• fx2 is another (constant) continuous function and at the joining point with fx1 , i.e.,

for x = α exp
(
π
2

)
, fx1 = α sin (ln

α exp(π2 )
α ) + α = 2α = fx2 , and hence, they are

also jointly continuous.

A case study is presented below for further understanding.



§5.2 Proposed Method 93

Case Study. Let a 1D sample signal be x = [-9, 3, 8.9, 9, 10, 43.3, 81]. Assuming

x as the input to Equation 5.9, and considering α = 9, F (x) is evaluated as follows:

• F (−9), F (3), and F (8.9) output 0, 3, and 8.9 respectively. By definition, these

outputs are identical to ReLU as x < α.

• F (9) = f9
1 = 9 · sin (ln 9

9) + 9 = 9 · 0 + 9 = 9 (note x == α). From here on, the

roll-off function smoothly takes over from ReLU. Notice that using the same α as

the amplitude, frequency, and phase shift parameter ensures function continuity.

• F (10) = f10
1 = 9.95. x has been slightly suppressed since x > α.

• F (43.3) = f43.3
1 = 9 · sin (ln 43.30

9 ) + 9 = 9 · sin (ln e1.57) + 9 = 9 · sin π
2 + 9 = 18. x

has been heavily suppressed since x >> α.

By calculating the second order derivative of fx1 , we can calculate the function

maximum. For this example, solving Equation 5.11 yields max(F (x)) = 18.

fx
′′

1 = −
α
(
sin
(
ln
(
x
α

))
+ cos

(
ln
(
x
α

)))
x2

(5.11)

• F (81) = f81
2 = max(fx1 ) = max(F (x)) = 18. As shown in Equation 5.11, x = 43.3

induces F(x) to reach its maximum value, and therefore, according to Equation

5.9, F (81) = F (x > 43.3) = 18.

Gradient. Equation 5.12 shows the derivatives of F (x).

d

dx
F (x) =



0, x ∈ (−∞, 0],

1, x ∈ (0, α),

α
x cos

(
ln x

α

)
, x ∈

[
α, α exp

(
π
2

)]
0, x ∈

(
α exp

(
π
2

)
,+∞

)
(5.12)

Here, beyond α, saturated points exist, but an optimally learned α accounts for this

issue.
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Shift Consistency (higher is better)

Backbone Methods Clean Accuracy Diagonal Shift Rescale Shift Double Rescaling

Abs ∆ Abs ∆ Abs ∆ Abs ∆

Baseline (VGG16) 71.66 - 88.52 - 83.89 - 85.04 -
MBP [59] (ICML ’19) 72.29 +0.63 90.11 +1.59 83.99 +0.10 86.98 +1.94

SABP [65] (BMVC ’20) 72.95 +1.29 90.36 +1.84 84.20 +0.31 87.10 +2.06
VGG16 BNS [48] (WACV ’21) 71.75 +0.09 90.36 +1.84 84.06 +0.17 85.24 +0.20

WaveCNet [67] (CVPR ’20) 71.96 +0.30 90.42 +1.90 85.35 +1.46 86.05 +1.01
F-Conv [66] (CVPR ’20) 70.65 -1.01 90.01 +1.49 81.15 -2.74 84.78 +0.74

DABP + AA-ReLU (ours) 73.91 +2.25 91.85 +3.33 87.47 +3.58 90.25 +5.21

Baseline (ResNet-101) 77.37 - 89.95 - 80.20 - 83.54 -
MBP ([59]) 77.40 +0.03 91.31 +1.36 86.10 +5.90 83.97 +0.43
SABP ([65]) 79.32 +1.95 92.19 +2.24 85.94 +5.74 83.81 +0.27

ResNet-101 BNS [48] 77.25 -0.12 90.05 +0.10 84.11 +3.91 82.89 -0.65
WaveCNet [67] 78.21 +0.84 90.89 +0.94 85.95 +5.75 83.15 -0.39
F-Conv ([66]) 78.31 +0.94 90.05 +0.10 84.66 +4.46 82.23 -1.31

DABP + AA-ReLU (ours) 81.45 +4.08 94.11 +4.16 91.36 +11.16 86.45 +2.91

Baseline (DenseNet-121) 74.44 - 88.81 - 82.35 - 84.25 -
MBP ([59]) 75.03 +0.59 90.39 +1.58 84.21 +1.86 85.74 +1.49
SABP ([65]) 75.36 +0.92 88.85 +0.04 83.55 +1.20 85.77 +1.52

DenseNet-121 BNS [48] 74.65 +0.21 88.96 +0.15 82.46 +0.11 85.09 +0.16
WaveCNet [67] 74.75 +0.31 89.02 +0.21 83.50 +1.15 85.16 +0.91
F-Conv ([66]) 74.09 -0.35 88.84 +0.03 80.88 -1.47 84.55 +0.03

DABP + AA-ReLU (ours) 77.44 +3.00 92.85 +4.04 88.25 +5.90 88.08 +3.83

Table 5.1: Top-1 clean accuracy (%) and shift consistency (%) on ImageNet. Our method
outperforms others under different types of shift. Here, ∆ represents the improvements over
baseline and the best result is highlighted in bold.

5.3 Experiments and Results

In this section, we first outline the training details and hyper-parameter settings.

Later, for evaluation, we test using (1) three shift-based perturbations, (2) three recent

translation-based adversarial attacks [150, 151], and (3) a range of corruptions and per-

turbations. In each set-ups, we refer to the following works for comparison: MBP [59],

Spatially Adaptive Blur Pooling (SABP) [65], Wavelet Integrated CNN (WaveCNet)

[67], Batch Normalisation Statistics (BNS) [48], and Full-Convolution (F-Conv) [66].

5.3.1 Implementation and Training Details

We train and test with three baseline networks – VGG16 [25], ResNet-101 [26], and

DenseNet-121 [28], following the original network architectures presented in respective
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papers. We use SGD with Momentum = 0.9, and train for 100 epochs, while using

an initial learning rate Lr = 0.1. Lr is dropped by a factor of 0.2 after 30, 60, and 90

epochs and a batch-size of 128 is maintained. Zero-centre input normalisation is used

for all experiments, with an L2 Regularisation factor of 0.0005.

For our learnable parameter σ, i.e., the standard deviation of Gaussian blur filters,

we initialise based on their depth and set σD = D
2 . Take for example ResNet-101: it has

five DS layers and hence, has five depth levels, yielding the following initialisations:

σ1 = 0.5, σ2 = 1, σ3 = 1.5, σ4 = 2, and σ5 = 2.5. For all the depth levels, we use 3× 3

blur kernels (see ablation study in Section 5.4).

To initialise the other learnable parameter α, placed inside AA-ReLU, we start off

with 6 based on heuristic [69].

5.3.2 Shift Invariance on ImageNet

ImageNet has 1,000 classes with 1.2 million training and 50,000 test images. We follow

three shift evaluation protocols from [60, 59]. A network G’s consistency (evaluation

metric) is the measure of stable Top-1 predictions for an input X , and a translated X∆T ,

formally put in Equation 5.13.

consistency = EXJ{G (X) == G (X∆T )}K (5.13)

where J·K denotes Iverson Bracket that outputs 1 if the proposition inside is true and 0

otherwise. A summary of all three shift perturbation protocols is provided below:

Diagonal Shift. Here, each X from the validation set is diagonally shifted by N pixels,

where N ∈ [1, 64], and N is random.

Rescale Shift. Here, each X is first down-scaled to a 100 × 100 image, and later,

embedded in a 224× 224 canvas, filling rest of the blank space with black pixels. Fi-

nally, the resultant image is diagonally shifted by a single pixel to obtain the perturbed

variant, i.e., X∆T .

Double Rescaling. Here, X is first down-scaled and embedded, similar to Rescale

Shift. However, rather than shifting the rescaled embedding itself, it is spatially altered
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by ±1 pixel to obtain X∆T (e.g., from an embedding of 100× 100 to 101× 101).

Results. Compared to the baselines VGG16, ResNet-101 and DenseNet-121 (pictorial

depiction in Figure 2.6), DABP+AA-ReLU improves shift-invariance across all three

deep networks in Table 5.1 despite substantial architectural difference. For instance,

VGG16 has four intermediate max-pool layers as opposed to three average pooling

layers in DenseNet-121. On the other hand, ResNet-101 and DenseNet-121 use residual

block and depth concatenation, respectively, whereas VGG16’s architecture is much

simpler with sequential input and output layers. Interestingly, our method improves

the clean Top-1 accuracy as well exceeding the baseline by +2.25% in VGG16, by

+4.08% in ResNet-101, and by +3% in DenseNet-121. Compared to a fixed blur kernel

in MBP [59] and a spatially adaptive blur kernel in SABP [65], DABP+AA-ReLU shows

better consistency in each of the evaluation protocols in Table 5.1. Unlike other methods,

it addresses the role of AFs as well, which complements DAB-pool in achieving strong

shift-invariance.

5.3.3 Robustness Against Adversarial Attacks

By definition, an image X ′ is an adversarial variant of some valid image X , if both

appear visually similar to a human, and yet, a network misclassifies X ′. Although

visual perception is subjective and similarity between images is hard to quantify, the

relevant literature presumes that X ′ is adversarial if and only if ‖X −X ′‖p ≤ ε, where

p ∈ [1,∞) and ε is small. Conventional first-order attacks, e.g., Fast Gradient Sign

Method (FGSM [50]), operate in pixel space and generate adversaries from a bounded

`p ball. As recently pointed out in [150], spatial adversarial vulnerability, e.g., due to

translation, do not obey the bounded protocol. This is because a translated image X∆T

can still appear visually similar, and yet, have a substantially large norm ‖X −X ′‖p,

compared to the norms allowed in `p. Hence, finding adversaries within a confined

`p space is difficult with first-order methods. In this chapter, we adhere to the spatial

attacks outlined in [150] and summarised below:

First Order Method (FO). FO is a white-box attack, meaning it requires access to
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the target network architecture, and in effect, to its gradients. In `p based adversaries,

each input pixel is cast as a learnable parameter in a bid to maximise loss for a particular

class (to inflict misclassification). However, here, FO has to perturb the spatial tuning

of an image X to generate a translated adversary X ′. This is why input translation is

parameterised in FO, and the loss for the correct class is maximised by iteratively up-

dating these parameters. Following [150], the maximum perturbation, i.e., translation,

allowed in this attack is 25 pixels, and in terms of implementation, it is 200 steps of

projected gradient descent with step size 0.24.

Grid Search Attack (GSA). This is a black-box attack and requires only a few queries

to the target model. GSA attacks the network by exhaustively translating X in each

spatial direction until X becomes an adversary X ′ (if such an X ′ exists in the search

grid). Here, maximum translation allowed in each direction is five pixels.

Worst-of-k. Here, to attack a target, X is translated randomly k times by keeping the

translation parameters within the allowed limit, i.e., 25 pixels. An X ′, within this limit,

inducing the worst classification performance is the one chosen as the adversary. For

example, in worst-of-10 attack, it performs 10 random translations per X and feeds the

corresponding X ′s to find the most effective adversary. It is a black-box attack as well.

Results. As Table 5.2 shows, our method exhibits better resistance against all three

attacks in terms of Top-1 accuracy. Interestingly, DABP+AA-ReLU performs best

against FO – the most effective attack in pixel-level `p bounded space, performing 1.5%

over baseline (from here on, we refer to ResNet-101 as the baseline unless mentioned

otherwise). This can be attributed to different loss landscapes in natural image transfor-

mations versus typical `p settings [150]. In `p loss landscape, the maxima are consistent

and concentrate well in a locality, making it easier to find adversaries by taking small

iterative steps towards it [51, 149]. However, the loss landscape of translation is non-

convex and tend to have multiple scattered local maxima [150], meaning there is no

guarantee that taking small steps would lead to translated adversaries, and hence, it

is sub-optimal. GSA, on the other hand, turns out to be more challenging, and the

baseline accuracy drops from 77.4% to 61.5%. DABP+AA-ReLU performs better than
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Top-1 Accuracy (higher is better)

Adversarial Attack

Methods Clean First Order Grid Search Worst-of-10

Baseline 77.37 74.78 61.50 73.39
MBP([59]) 77.40 74.90 63.29 73.85
SABP([65]) 79.32 74.96 63.55 73.44
BNS([48]) 77.89 72.70 61.65 73.45

WaveCNet([67]) 78.05 75.05 62.30 73.66
F-Conv([66]) 78.31 73.85 62.60 72.88

DABP+AA-ReLU 81.45 76.28 65.05 74.70

Table 5.2: Top-1 classification accuracy (%) against different adversarial attacks (Baseline:
ResNet-101).

MBP by 1.76%, SABP by 1.50%, BNS by 3.40%, WaveCNet by 2.75%, and F-Conv by

2.45% under GSA. A similar improvement trend is observed against Worst-of-10 attack

as well.

5.3.4 Corruption and Perturbation Robustness

In this section, we test our corruption and perturbation stability on ImageNet-C and

ImageNet-P respectively.

ImageNet-C. ImageNet-C [31] contains images from the ImageNet validation set with

17 different corruptions, broadly falling into the following four categories: noise, blur,

weather, and digital. Each of the 17 corruptions has five severity levels and mean

Corruption Error (mCE) is used as the evaluation metric.

Results. Table 5.3 shows that DABP+AA-ReLU achieves SOTA robustness against

a variety of corruptions in ImageNet-C with an mCE 4.71% lower than the Baseline,

2.12% lower than MBP [59], 1.68% lower than SABP [65], 5.79% lower than BNS [48],

4.58% lower than WaveCNet, and 2.53% lower than F-Conv. Our method exhibits

marked robustness in the noise category consisting of Gaussian, shot, impulse, and

speckle noise, achieving an overall 7.83% lower mCE than the baseline. Compared to

competing methods, our overall noise mCE is 3.28% lower than MBP [59] and 3.47%

lower than SABP [65]. This is an expected by-product of blurred DS as most of the

high frequency noise gets neutralised in this step. However, signal noise – much like
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aliasing, can reappear in the non-linear AFs, which we believe is the case in the baseline

and in [59, 65]. Our method is better suited to counter this challenge as AA-ReLU itself

acts as a secondary low-pass filter. The baseline often performs well under level-1

corruption severity, but struggles beyond level 2 and 3 (see Figure 5.4).
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Figure 5.4: Mean Corruption Error (%) on increasing corruption severity levels in ImageNet-C
(lower is better).

Our method shows better consistency, even with increasing corruptions.

ImageNet-P. ImageNet-P [31] introduces a range of perturbations in the valida-

tion set to test performance stability. In this chapter, we evaluate on four affine

transformation-based perturbations involving translation, rotation, scaling, and tilt.

In ImageNet-P, each test instance is a short video of about 30 frames with increasing

perturbation severity. Flip Probability FP is used as the stability evaluation metric.

A flip event occurs when two consecutive frames’ predictions mismatch. To put it

formally, let us denote k perturbation sequences (each with v number of frames) with

S =
{(
x

(i)
1 , x

(i)
2 , . . . , x

(i)
v

)}k
i=1

. For a fixed i, i.e., perturbation type k, x(i)
1 denotes the

clean image (no perturbation) and x
(i)
v denotes a frame with maximum (k type) per-

turbation. The Flip Probability (FP) of a deep classifier G on perturbation sequence S

is:

FP Gp =
1

k(l − 1)

k∑
i=1

v∑
j=2

1
(
G
(
x

(i)
j

)
6= G

(
x

(i)
j−1

))
(5.14)

Results. As Table 5.4 shows, our method shows better stability (0.87% lower mFP

than the next best SABP), and interestingly, it generalises to perturbations other than

translation as well, e.g., in rotation perturbation, our FP is 2.27% lower than the

baseline, 1.34% lower than MBP, and 1.17% lower than SABP; gain is observed for tilt

and scale as well.
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ImageNet-P Flip Probability FP (lower is better)

Affine Transform Perturbation

Methods Translate Rotate Tilt Scale mFP

Baseline 4.15 6.39 3.96 10.85 6.34
MBP ([59]) 3.70 5.46 3.37 8.41 5.24
SABP ([65]) 3.42 5.29 3.32 8.06 5.02
BNS ([48]) 4.46 5.98 4.20 9.35 6.00

WaveCNet ([67]) 3.58 5.87 3.68 8.89 5.51
F-Conv ([66]) 4.15 6.74 4.25 9.01 6.04

DABP+AA-ReLU 2.26 4.12 3.22 6.98 4.15

Table 5.4: Flip Probability rate (%) on transformation-based perturbations in ImageNet-P [31]
(Baseline: ResNet-101). mFP denotes mean Flip Probability.

Network Time/epoch (mins) No. of epochs
ReLU+(S-conv, Max-pool) (baseline) 16.3 [105, 115]

C-ReLU+(S-conv, Max-pool) 18.2 [85, 95]
ReLU+SABP [65] 24.9 [100, 110]

AA-ReLU+DAB-pool (Ours) 22.6 [90, 100]

Table 5.5: Comparison of training time (on ImageNet). Average time required to complete an
epoch is presented in minutes and the corresponding number of epochs for convergence is
shown within a range. ResNet-101 is used as the baseline in all the networks.

5.3.5 Training Time

By definition, AA-ReLU executes more conditional statements than ReLU during

training. Similarly, our proposed DAB-pool layer has an additional blurring operation

compared to S-conv or max-pool with a single operational stage. Therefore, our CNN

requires more training time compared to the baseline, i.e., vanilla ResNet-101 with

ReLU + (S-conv and max-pool). As can be seen from Table 5.5, this baseline is the

fastest with 16.3 mins/epoch. ResNet-101 with C-ReLU is slightly slower with 18.2

mins/epoch. Our network takes 22.6 mins/epoch which is 2.3 minutes lesser than

the SABP network. It is worth noticing that our method requires [90, 100] training

epochs to converge, whereas SABP and the baseline require more epochs to converge.

We argue that the unbounded nature of ReLU results in additional training iterations

for convergence. In contrast, AA-ReLU has a bounded output and hence, the search

space for the global minima is much smaller. This means our network requires fewer

iterations of weight updating to reach this minima resulting in a reduced convergence

time. Similar to AA-ReLU, C-ReLU also has faster convergence due to its bounded
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Ablation Study (ImageNet)

Shift Consistency (higher is better)

Clean Diagonal Rescale Double
Methods Accuracy shift shift Rescaling

DABP3*3+ReLU 79.95 91.19 88.41 84.15
DABP5*5+ReLU 78.85 88.54 87.37 83.15
DABP7*7+ReLU 77.03 85.21 83.87 81.29

DABP3*3+C-ReLU 79.03 91.58 88.80 84.33
DABP5*5+C-ReLU 78.25 88.75 87.54 83.36
DABP7*7+C-ReLU 74.87 87.25 86.66 81.89

DABP3*3+AA-ReLU 81.45 94.11 91.36 86.45
DABP5*5+AA-ReLU 78.94 90.66 88.96 84.90
DABP7*7+AA-ReLU 76.15 88.96 87.32 83.08

Max-pool+ReLU 76.37 88.95 79.20 82.54
Max-pool+C-ReLU 75.01 88.98 79.89 83.04

Max-pool+AA-ReLU 76.90 89.06 89.23 83.85

Table 5.6: Ablation study under varying architectural settings.

nature.

All the training hyper-parameters are the same as discussed earlier in Section 5.3.1.

5.4 Ablation Study

To justify our design choices, we conduct an ablation study on ImageNet using ResNet-

101 backbone. All the other settings remain identical to that of Section 5.3.

As Table 5.6 shows, a 3 × 3 Gaussian blur filter performs better than 5 × 5 and

7× 7 filters. We hypothesise that too big of a blur kernel spreads the features across

an unnecessarily large region. This is particularly concerning for deeper layers where

filters have large receptive fields, e.g., in ResNet-101, a 224× 224 input reduces down

to 14× 14 feature maps in the last DS layer. Using a 7× 7 filter which is half as big as

the feature map dimension turns out to be sub-optimal.

We also test the compatibility of different AFs with DAB-pool and max-pool. Al-

though C-ReLU performs better than ReLU under all three shifts, it lags behind in

clean accuracy. We argue that because of C-ReLU’s bounded nature, it has some anti-

aliasing property, but a large saturated region prevents it from achieving higher clean
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accuracy. Overall, DABP3*3+AA-ReLU is the best configuration achieving 2.41% and

2.42% higher average accuracy than DABP3*3+C-ReLU and DAB3*3+ReLU respectively.

5.5 Conclusion

To make CNNs robust to small image transformations and corruptions, we have shown

that better anti-aliasing is achievable if depth is considered for blurred DS. To this end,

we have introduced DAB-pool, and outlined ways to replace common DS operations

with it. To stop reappearance of aliasing, we have proposed a new AF, i.e., AA-ReLU.

We have evaluated our method against a broad array of shift, adversarial attack,

corruption, and perturbation, and demonstrated the efficacy of our method under chal-

lenging conditions. In doing so, we have also integrated our modules in three different

networks and shown that the benefits generalise well despite architectural differences.

Since classification network backbones are an integral part of many more vision tasks

such as object detection and semantic segmentation, we believe our proposed methods

are easily transferable to these tasks as well.

Leading to this point, we have discussed ways of making CNNs robust to challenges

such as image distortions and transformations. However, none of these paradigms

consider the possibility of an unknown class’s presence in the test environment. In the

next chapter, we will discuss why it is important to consider such unknown or open

set images in the test set-up and how we improve the existing methods for OSR.



Chapter 6

A Novel Training Paradigm for
Open Set Recognition

In the previous chapter, we discussed how AA-ReLU coupled with DAB-pool can

improve CNN’s robustness against different image transformations, perturbations,

and distortions. In addition to the challenges covered in the previous chapters, CNNs

are vulnerable to open set or unknown class images also known as the Open Set

Recognition problem (OSR). Open set images are samples belonging to classes a CNN

has not seen during training.

CNNs are commonly trained and tested in closed set arrangements. Test instances

are unseen samples but belong to one of the ‘Known Known’ (KK) classes used in

training. In OSR, an input may belong to a completely ‘Unknown Unknown’ (UU)

class. However, a closed set CNN will classify such an UU sample as one of the KK

classes. In simple words, conventional CNNs cannot detect classes it is not trained on.

In this chapter, we propose a novel OSR network (OSRNet) that relies on a hard

known unknown data mining method to recognise unknowns. We show in Section

6.4 that the proposed methods substantially improve the robustness of CNNs in OSR.

The core contributions of this chapter are currently under review in the journal of

Computer Vision and Image Understanding.

The rest of this chapter is organised as follows. Section 6.1 presents an introduction

of this chapter. In Section 6.2, we present the architecture of the proposed OSRNet,

a systematic process for mining a training set for OSRNet, and then explain why it

works so well. In Section 6.3, we outline the datasets used for training and testing

and implementation details. Section 6.4 provides an experimental evaluation of the

105
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Figure 6.1: Conceptual illustration of a 4-class classifier decision boundary. A CNN can produce
high-precision classification results as long as a novel test instance belongs to one of the KK
classes. However, when the CNN is exposed to UU instances, it misclassifies such images as
one of the KK classes because of its lack of precision outside the KK distribution.

proposed and existing methods. Section 6.5 provides a discussion on the Known

Unknown Trainer (KUT) image set. Finally, Section 6.6 concludes this chapter.

6.1 Introduction

An image classifier is expected to correctly classify images belonging to the KK1 classes

seen during training. However, during inference, UU2 instances might trigger incorrect

classification. As the training set comprises a finite number of classes, identifying a

UU instance is a challenge (see Figure 6.1). This is referred to as the OSR problem.

To better understand the importance of OSR, let us consider an example. Imagine an

autonomous car is trained to recognise 10 different street signs, and the car responds

according to a pre-defined set of rules. The on-board sensors perceive the environment

and feed data to the trained classifier (e.g., CNN). In an environment full of objects

beyond the closed set training classes, it is likely for a CNN to classify a non-street sign

1KK refers to a standard training dataset of known classes.
KU refers to the Known Unknown classes used to represent the unknown world during training.
UU is the unknown dataset used only for testing.

2Note that we refer to the collection of Known Unknowns (KUs) and Unknown Unknowns (UUs) as
unknowns.
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object as one of the 10 street signs (e.g., a commercial billboard might be incorrectly

perceived as a stop sign). Such an event and the consequent pre-programmed response

of the autonomous car can lead to an undesired situation, even to a fatal accident.

In conventional classification tasks, a deep network is usually trained only on a

KK dataset DKK without considering the unknowns. For an effective OSR, training a

network with ‘everything else’ in the world as the unknown is unrealistic. Therefore,

a KUT dataset (referred to as DKUT hereafter) is required for this task. Generative

Adversarial Network (GAN)-based artificial images have often been used as a data

augmentation-based solution in a number of contemporary works [157, 78, 80]. How-

ever, being trained on only KK samples, the distribution of the augmented data is not

always compatible with the UU distribution present in the test set. Moreover, GANs

suffer from a number of issues stemming from the generation techniques themselves,

such as unwanted artefacts, and mode collapse [158]. These deteriorate the network’s

performance and increase training time. Another way to address the OSR problem is

to find an effective SoftMax threshold to reject UUs [79, 82, 80].

In this chapter, we argue that drawing a boundary between the KK and the un-

known is the key to effectively handling the OSR task and aim to approximate such

a decision boundary by collecting a DKUT. To accomplish this, we propose a way of

mining the hard KU negatives into DKUT and design a deep network to be trained on

this dataset. DKUT is mined from publicly available benchmark datasets (Dx) (where,

DKUT ⊂ Dx). Images from Dx inducing high probability (P > some threshold T ) for

one of the KK classes are admitted into DKUT (calculation of T is explained in Section

3). We demonstrate that OSRNet, which is trained to distinguish DKUT from DKK can

identify novel UU instances at test time. DKUT does not include any of the classes

present in the UU test fold to ensure a fair evaluation.

The proposed OSRNet has two parts: a conventional CNN as the base and a

Confidence Subnetwork (CS). The CNN is trained conventionally to classify a given

DKK. The CS, which effectively is an ANN, is separately trained to identify UUs. Once

the CS is trained, it is augmented to the trained CNN, and OSRNet is formed (details

in Section 6.2). At inference time, the newly formed network works as one single

end-to-end unit. Inside OSRNet, the CNN produces class predictions and at the same
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Figure 6.2: Behavioural difference of a trained CNN on classes it has and has not seen during
training. For a KK test instance, usually, the correct class receives maximum probability, and
the leftover energy is distributed to visually similar classes. In contrast, no such pattern is
found for an unknown test instance. (a) denotes the probability heat map for CIFAR-10 dog
class (test set). Most of the energy is distributed to either dog or among classes visually similar
to dog, e.g., cat, deer, and horse. In (b), when unknown instances (taken from CIFAR-100) are
misclassified as dog, the leftover energy is distributed almost randomly to other classes.

time, the CS outputs a single confidence score S = [0, 1] to indicate whether an instance

belongs to one of the KKs or not (S −→ 1 denotes a high chance of the input being

UU). A cut-off value δ is used on S to determine the final outcome, i.e., whether to

accept or reject the class label produced by the base CNN. OSRNet does not require

any additional computation module (e.g., EVT) outside the deep network’s perimeter.

The entire inference process is end-to-end without any bottleneck.

The OSRNet architecture is inspired from the observation by Bendale et al. [79]

depicted in Figure 6.2. It is reported that when classifying an image from DKK, conven-

tional CNNs generally produce a high probability score for the correct class while the

leftover probability is usually distributed across visually similar classes. Even when

a CNN is unsure or misclassifies a KK instance, the probability scores mostly remain

concentrated to visually similar classes. In contrast, when an unknown instance gets

classified as one of the KK classes, the leftover probability distribution does not usually

follow such a pattern [79]. For illustration (in Figure 6.2), we train a simple CNN on

CIFAR-10 and generate a probability heat map for the dog class test set. It is evident

in Figure 6.2(a) that either dog or classes visually similar to dog receives most of the

energy. In Figure 6.2(b), we feed the same CNN instances from unseen CIFAR-100

classes and produce the heat map with 1,000 samples misclassified as dog. The leftover

probability distribution has marked contrast to Figure 6.2(a). This is the pattern we

aim to exploit in this chapter for OSR. Because of the above-mentioned behavioural
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Figure 6.3: (a) An overview of the dataset splits in this chapter. (b) The Known Unknown
Trainer dataset DKUT is a subset of Dx mined following our proposed method. DKUT does not
contain any of the DT

UU/DUU classes. As a result, OSRNet remains blind regarding the classes
it is going to encounter during evaluation.

difference on KKs and any unknown instances, we expect the intermediate FC layer

features of a CNN (trained on DKK) to reflect this difference. Therefore, FC features

should be distinct for KK and unknown samples. Collecting such FC features for DKK

is straightforward from our base CNN. However, mining an appropriate DKUT set to

collect FC features is challenging. Our proposed method addresses both issues.

In this chapter, we make the following contributions:

• We propose a way of building the KUT dataset DKUT for OSR.

• To effectively distinguish between the KKs from the UUs at test time, a novel

deep network (OSRNet) is proposed.

• We extensively evaluate OSRNet and compare with contemporary OSR methods

on six benchmark datasets. OSRNet not only detects UUs with higher precision

but also exhibits impressive discriminative power within DKK.

• Finally, we discuss the underlying reasons behind the effectiveness of the pro-

posed DKUT and OSRNet in OSR.
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Figure 6.4: An overview of OSRNet training process. A CNN (ResNet2FC) is trained on the KK
split (DKK) of a dataset. Images from DKK and a DKUT mined from another benchmark dataset
Dx are fed to this already trained CNN. FC1 features are extracted for both DKK and DKUT and
the CS is trained with these features and binary labels. Once trained, this CS is augmented to
the corresponding CNN layer (FC1) and the proposed OSRNet is formed. At inference time,
OSRNet works as one single end-to-end unit. The augmented CS receives FC1 features from
the CNN and detects whether the input belongs to one of the DKK classes or not. The CNN, on
the other hand, simultaneously classifies an instance without any interference from the CS.

6.2 Proposed Method

In this section, we first present the architecture of the proposed OSRNet. Then we

provide details on how DKUT is mined. Lastly, we provide training details for OSRNet

and outline why it works better.

6.2.1 OSRNet

Before elaborating on the proposed method, we outline the notations of the dataset

splits:

• (Training) One KK set DKK.

• (Training) One KUT set DKUT mined from a Dx following our proposed method

(details in Section 6.2.2).

• (Test) One KK test set DT
KK.

• (Test) One UU test set DT
UU.

Following the evaluation process defined in [78, 82], we split a standard classifica-

tion dataset (e.g., CIFAR10) into a KK part DKK and a UU part DUU. DUU is left aside



§6.2 Proposed Method 111

and only its test set counterpart DT
UU is used for evaluation along with DT

KK. DT
UU

is used only for testing and our network remains unaware of the classes contained in

DT
UU. A KUT set DKUT is mined from another publicly available benchmark dataset

Dx. Classes contained in either DKK or DT
UU are removed from Dx so that DKUT does

not contain any overlapping classes (DKK ∩DT
UU ∩DKUT = ∅). Figure 6.3 provides an

overview of the dataset splits.

OSRNet has two parts: a base CNN responsible for classifying an instance (x)

regardless of its distribution, i.e., KK or UU and the CS augmented to the base CNN

outputing a score indicating whether x ∈ DKK or x /∈ DKK (see Figure 6.4). In other

words, even if an input belongs to a class that our network has not seen during training,

the CNN will output a label. It is up to the CS to decide whether to accept or reject it.

Formally, an input image x triggers the N -way CNN in OSRNet (N is the number of

classes) to produce a probability yi (i ∈ {1...N }) for each of the classes. The CS outputs

a score S for each x, indicating the confidence of the input being a UU instance. The

final OSRNet output OP can be expressed using Equation 6.1.

OP =

 maxP (yi|x) if S < δ,

x /∈ DKK else
where, i ∈ {1...N} (6.1)

As shown later, an optimally chosen cut-off value δ can be applied on S to reject

UU instances.

As discussed in Section 6.1 and depicted in Figure 6.2, the probability scores of a

CNN are confined within the visually similar classes when the input belongs to DKK.

However, the probability distribution does not follow the same trend for unknown in-

stances. Therefore, the intermediate layer features of a CNN should exhibit differences

for the KK and unknown classes. Since we aim to exploit this behavioural distinction,

the choice of the feature layer is important. In contrast to a single FC layer (FCSoft)

used in conventional ResNet (we call it ResNet1FC) [26], we add one additional FC

layer (FC1) prior to FCSoft and train this ResNet (we call it ResNet2FC) on DKK from

scratch. A detailed analysis on the impact of different ResNet variants and OSRNet’s

performance is provided in Section 6.4.
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Figure 6.5: t-SNE plots of (a) FC1 features from all images in DKK (cyan) and those in Dx (red)
inducing probability P < some threshold T and (b) P ≥ T . It is visually evident that separating
KKs from KUs in (b) is more difficult. OSRNet trained to separate KKs from KUs in (b) can
identify relatively easier KUs in (a) as well. An effective probability threshold T is chosen based
on finding the maximum point on a cubic polynomial curve (see Figure 6.6).

Figure 6.6: AUROC vs T curve based on sample points for Tiny ImageNet as DKK and Cal-
tech256 as Dx. A probability threshold T is calculated from the maximum point on the curve.
This threshold T calculation is repeated for each DKK reported in this chapter.
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Table 6.1: An empirical analysis of OSRNet’s performance on different DKUT selection criteria
or probability threshold T. It is evident that images from Dx with P ≥ 80% perform best as
DKUT. The average entropy is also the lowest around this point.

KK
Dx (AUROC %)

Probability Entropy CIFAR100 Indoor67 Caltech256 T- F-MNIST
Threshold T (%) H(X) ImageNet + ADBase

CIFAR10

60 1.65 75.60 69.25 78.65 78.23 -
70 1.41 78.85 75.02 84.30 82.30 -
80 1.10 89.25 83.82 93.15 88.40 -
90 1.21 86.32 81.40 89.66 85.49 -

CIFAR+10

60 1.71 - 72.69 80.20 80.60 -
70 1.45 - 79.05 88.54 84.25 -
80 0.98 - 85.76 95.69 91.40 -
90 1.16 - 82.85 92.36 88.71 -

CIFAR+50

60 1.55 - 71.15 83.69 77.06 -
70 1.51 - 79.30 90.04 84.55 -
80 1.18 - 83.60 94.60 89.78 -
90 1.24 - 80.95 92.69 87.45 -

T-ImageNet

60 1.92 60.88 55.01 62.22 - -
70 1.64 69.35 65.25 73.41 - -
80 1.36 74.55 70.95 77.10 - -
90 1.48 72.98 68.07 75.94 - -

MNIST

60 1.33 - - - - 93.42
70 1.18 - - - - 95.36
80 0.91 - - - - 98.96
90 1.08 - - - - 96.25

SVHN

60 1.47 - - - - 88.40
70 1.21 - - - - 91.13
80 1.02 - - - - 92.66
90 1.14 - - - - 90.69
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6.2.2 KUT Dataset Mining

After splitting a standard classification dataset into DKK and DUU, ResNet2FC is trained

on DKK and remains completely unaware of the classes in DUU. To mine DKUT, another

publicly available benchmark dataset Dx is fed to a ResNet2FC trained on DKK. From

all the images in Dx, only the ones inducing probability greater than a threshold are

mined for DKUT, i.e., ∀x ∃(x) (P (x) > T ) (see Figure 6.5). Choosing an effective T is

vital for OSRNet’s performance. To select such a T , it is important to analyse how

different T values fare against OSRNet’s performance. Table 6.1 has a compilation of

increasing T against Area Under ROC curve (AUROC) score of OSRNet. It is evident

that for the given sample points, T ≈ 80% is a good choice across datasets. Calculating

OSRNet’s performance on every possible T is tedious. Therefore, to pick a T , we

fit a cubic polynomial curve for all the collected sample points across datasets (e.g.,

(70, 78.85) is a data point for CIFAR10 (DKK)-CIFAR100 (DKU) combination). The

curve is represented by Equation 6.2 (A, B, C, and D are coefficients).

F (T ) = A+BT + CT 2 +DT 3 (6.2)

A degree two quadratic function has a higher error rate than a cubic one and hence

we fit a cubic curve approximated by Equation 6.2 (see Figure 6.6). With the help of

first and second-order derivatives, the maximum point on the curve is found where the

gradient of a tangent to the curve F (T ) is 0. We fit an AUROC vs T curve for all the

DKKs with Caltech256 as the Dx (as will be explained in the next section, Caltech256 is

the best Dx). For each DKK and Dx, a threshold T is calculated from the curve.

Key characteristics of this curve (Figure 6.6) are explained as follows:

• A smaller T allows a large number of images from Dx to qualify for DKUT. A

considerably small T might allow the entire Dx set to qualify for DKUT (i.e.,

Dx ≈ DKUT if T → 0). As a result, DKUT gets populated with sub-optimal

imagery along with high probability inducing ones. OSRNet’s performance

(AUROC), upto a certain point, improves with increasing T .

• OSRNet’s performance experiences a downward trend followed by the peak

(T ≈ 80%). This is because too high of a T value leaves very few images from Dx
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to be eligible for DKUT. Such a DKUT is inadequate as training dataset for OSRNet.

Hence, OSRNet’s performance drops as the meagre training data in DKUT leads

to overfitting.

• OSRNet’s performance peaks around T ≈ 80% for all the datasets. Such a T

offers the best trade-off between the number and quality of images mined for

DKUT.

Algorithm 6.1 : DKUT Construction Process
Input: Images (xn) from Dx, n ∈ N , N is the total number of images in Dx.
Output: xn either selected or discarded for DKUT .

1: Choose a benchmark dataset as the base Dx

2: for all xn ∈ Dx, where n = {1, 2, ...N} do
3: Feed xn to ResNet2FC
4: p = max(Probability(xn))
5: if p > T, where T is an optimal threshold found from the curve in Equ. 6.2 then
6: DKUT ← xn
7: else
8: Discard xn
9: end if

10: end for

Algorithm 6.1 summarises the overall DKUT mining process, which is used to teach

OSRNet the essence of the UU world. For numeric datasets such as MNIST and SVHN

as DKK, the options for an ideal Dx are limited because natural object classes do not

work well as Dx for such numeric DKKs. In this chapter, Fashion MNIST [159] and

ADBase [160] are used in conjunction as the base Dx.

6.2.3 Training OSRNet

Training OSRNet involves a series of steps. The overall training workflow is depicted

in Figure 6.4, and the steps are explained as follows.

• ResNet2FC is used to extract FC1 features from the same DKK it was initially

trained on. All these features are labelled as 0.

• DKUT images (mined following the process in Section 6.2.2) are fed to the same

ResNet2FC and FC1 features are extracted. These features are labelled as 1.
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• The CS (an ANN with one output node) is trained with these two sets of FC1

features (from DKK and DKUT) to teach the difference between KKs and UUs. As

the CS is capable of distinguishing relatively difficult borderline DKUT features

from DKK features, it can identify rest of the relatively easier KUs in Dx.

• Finally, this trained CS is augmented to the corresponding (FC1) layer of the

pre-trained ResNet2FC. OSRNet functions as a single unit at inference time.

Algorithm 6.2 summarises the OSRNet training process. As the CS takes care of UU

detection, ResNet2FC within OSRNet maintains the original classification accuracy on

the test fold of DKK. At test time, OSRNet not only produces a class label but also

provides a confidence score suggesting how likely an input is to be UU.

Algorithm 6.2 : OSRNet Training
Input: Individual images from DKUT (referred xi) and DKK (referred xj).
Output: Trained OSRNet .

1: for all xi ∈ DKUT , where i = {1, 2, ....N} do
2: Feed xi to ResNet2FC
3: FeatureKUT [i]← FC1

4: FeatureKUT_label[i]← 0
5: end for
6: for all xj ∈ DKK , where j = {1, 2, ....N} do
7: Feed xj to ResNet2FC
8: FeatureKK [j]← FC1

9: FeatureKK_label[j]← 1
10: end for
11: Train Confidence Subnetwork (CS) with {FeatureKUT , F eatureKUT_label} and
{FeatureKK , FeatureKK_label}

12: Augment CS to ResNet2FC

6.2.4 Why OSRNet works?

Since perceiving high dimensional space is difficult for humans, conceptual illustrations

are widely used for better understanding [131, 161]. Here, with the help of Figure 6.7,

we explain why the proposed DKUT and OSRNet work well in OSR.

The asterisks within the dotted oval resemble DKK, and classification within this

oval is quite accurate. The negative space or the region beyond the encapsulating
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Figure 6.7: A conceptual illustration of the DKUT image characteristics. DKUT consists of only
the nearby unknowns and OSRNet is trained to detect these difficult to identify unknowns.
This way, the far-away unknowns are automatically detected without being used as part of the
training. For OSRNet, less training data is required and better accuracy is achieved.

oval accommodates all the unknown images (as mentioned earlier, we refer to KUs

and UUs as unknowns), i.e., nearby unknowns (circle), and far away unknowns

(triangle). Conventional CNN’s performance lack robustness in the negative space

since the decision boundaries (dotted red) extrapolate to infinity [50] without any

precision. In this chapter, we only use high probability (P > T ) inducing images in

DKUT to represent the UU. Such images (blue circles) in DKUT reside close to the KK

distribution (the dotted oval). We argue that a deep classifier capable of treating the

borderlineDKUT instances (blue circles) as unknown can easily identify relatively easier

far-away unknowns (triangles). It is understandably a challenging task to collect all

the borderline unknowns perfectly encapsulating the KK distribution.

In this chapter, we strive to maximise the participation of such borderline images

in DKUT. Two follow-up questions remain:

• (Q1) For a certain DKK, which Dx should we choose to mine DKUT?

• (Q2) Can a DKUT with fewer data outperform some Dx it was mined from (al-

though DKUT ⊂ Dx)?

Answer to Q1. We experimented with four public datasets: CIFAR100, Indoor67,

Clatech256, and Tiny ImageNet as Dx. It is evident from Table 6.1 that Caltech256
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performs best as Dx across datasets and Indoor67 performs worst. One intriguing

aspect is comparing the visual characteristics of the best performing Dx against others.

Is it visually similar to DKK (Dx ≈ DKK) or is it quite different (we show quantitative

distance between different data distributions in Section 6.5)? For example, bus is a

visually similar class to truck compared to some indoor images. It turns out, Indoor67

is not a good candidate for Dx as it consists of only interior images (e.g., office room,

bedroom, and auditorium) with little to no visual similarity to the DKKs. On the other

hand, Caltech256 performs better as it consists of classes ranging from a variety of

animals to different vehicles having greater visual similarity to the DKKs.

Our suggestion is to use a Dx that has classes similar to DKK. For example, if a

certain DKK consists of different dog breeds, a dataset containing different cat breeds

could be a better option as Dx rather than using some indoor images like Indoor67

as the Dx. We argue that training to separate an apparently more difficult Dx, like

Caltech256, from DKK enables OSRNet to automatically distinguish relatively easier

instances at test time.

Answer to Q2. Experimental analysis shows that the type of images in DKUT is more

important than the number of images. It is intriguing that despite being a subset of Dx,

DKUT teaches OSRNet the essence of the unknown world better than a much larger in

size Dx. A detailed explanation of this observation is provided in Section 6.5.

To further understand the conceptual explanation and why mining only high

probability inducing KUs for DKUT makes sense, we resort to entropy comparison. In

multi-class classification tasks such as ours, a trained CNN provides a class probability

for each of the output nodes. The probability distribution (DP ) generated by the CNN

portrays how certain the network is about the classification. When a test instance is

classified confidently, one output node exhibits higher (≈ 1) probability than the rest.

The uncertainty factor is low here as is the entropy. Conversely, when the classifier is

susceptible to the input and does not provide a confident probability distribution (e.g.,

a Uniform distribution), the uncertainty is high and hence the entropy as well. This

suggests that for an input, lower the DP uncertainty, closer the input is to DKK. This

uncertainty can be quantified from DP entropy using Equation 6.3.
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H(X) = H (p1, . . . , pn) = −
n∑
i=1

pi log2 pi (6.3)

In a number of cases, when a trained CNN faces UU instances, the entropy or

H(X) stays low. This generally means those images are adjacent to the KK distribution

despite actually being UU. On the other hand, the rest of the images induce high H(X)

which implies such images are generally not adjacent to DKK and rightly so. As can

be seen from Table 6.1, the lowest entropy co-occurs with the best performing T . This

supports the usage of only high probability inducing images (P > T ) in DKUT since

such a DKUT would be closer to DKK and harder to distinguish resulting in a tight but

efficient decision boundary.

6.3 Experiments

6.3.1 Datasets and Splits

MNIST, SVHN, and CIFAR10. MNIST [162] is a digits dataset containing 60,000

training and 10,000 test images. Each digit from 0 to 9 denotes a class. All the images

are grayscale and have a resolution of 28× 28. SVHN [163] is also a digits dataset, but

the images are collected from Google Street View cameras capturing house numbers

(from 0 to 9 as well). This dataset is considered harder than MNIST and contains

32× 32 colour images. It has 73,257 training and 26,032 test instances. CIFAR10 [127]

also has 10 classes with 32× 32 colour images. It has 50,000 training and 10,000 test

images of different objects (e.g., cat and dog). To train OSRNet individually, each

of these three datasets is split into DKK with six classes and DUU with four classes.

The split for corresponding test set is same as the training set, i.e., DT
KK and DT

UU

contain same classes as their training split. For example, while training on MNIST, six

randomly selected classes are used as DKK and the other four classes are considered

as DUU. For each dataset, the ‘openness’ is estimated by Equation 6.4 [72, 78]. Greater

openness value implies higher difference in the number of classes between DUU/DT
UU

and DKK/DT
KK, i.e., the UU to KK class ratio is higher. It is worth reinstating that no

images from DUU are used in training OSRNet. Only the test fold DT
UU is used for

testing.
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openness = 1−

√
| N |
| Q|

(6.4)

Here, |N | and |Q| denote the number of DKK classes and the number of total test classes

(DT
UU + DT

KK) respectively. The term openness is measured in percentage where

higher value represents greater openness. According to Equation 6.4, openness of

CIFAR10, MNIST and SVHN is 22.50%.

CIFAR+10. Four classes from CIFAR10 are selected as DKK and 10 non-overlapping

classes from CIFAR100 are selected as DUU. openness is 46.50%.

CIFAR+50. Four classes from CIFAR10 are selected as DKK and 50 non-overlapping

classes from CIFAR100 are selected as DUU. openness is 72.78%.

Tiny ImageNet. Tiny ImageNet is a subset of ImageNet [1] comprising 200 classes

with 64 × 64 colour images. Each of the classes has 500 training and 50 test images.

We randomly select 20 classes as DKK and 180 classes as DUU. openness is 68.38% The

class selection process is random, and for each benchmark dataset, we experiment with

five iterations and the average is reported (Section 6.4).

6.3.2 KUT Datasets

We use publicly available benchmark datasets (Dx) to mine DKUT.

Caltech256. As explained earlier, Caltech256 performs best as Dx for all non-digit

DKKs. It has 256 object categories containing 30,607 images. All the overlapping classes

among Dx, DKK, DUU are removed to achieve a fair (no prior knowledge about DT
UU)

and sane (no DKK class is used later in training as UU) DKUT.

Fashion MNIST, ADBase. Fashion MNIST [159] has exactly the same attributes as

MNIST but contains 10 classes of fashion products. ADBase [160] is the Arabic version

of MNIST. Images in both of these datasets are of resolution 28 × 28 and grayscale.

These two datasets are used collectively as the Dx for both of the numeric datasets, i.e.,

when DKK belongs to either MNIST or SVHN.

6.3.3 Training CNN

CIFAR10, CIFAR+10, CIFAR+50, SVHN. Each of these datasets has 32 × 32 colour

images. After splitting the datasets into DKK and DUU following the process described
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in the previous section, a CNN classifier is trained on DKK. ResNet2FC (with depth 20

[26]) is used as the CNN in OSRNet. The first 3× 3 convolution layer is followed by

six 3× 3× 16, six 3× 3× 32 and six 3× 3× 64 convolution layers where the first two

dimensions represent the filter size and the third dimension stands for the number of

filters. The SoftMax output is preceded by an N -way (N is the number of classes in

DKK) FCSoft layer. FCSoft layer in turn is preceded by the additional FC1 layer.

Tiny ImageNet. ResNet2FC (with depth 32 [26]) is used to train on DKK of Tiny

ImageNet. It has six 3× 3× 16, 3× 3× 32, six 3× 3× 64, six 3× 3× 128, and 3× 3× 256

convolution layers. The FCSoft layer here as well, is preceded by an additional FC1

layer. Since images in this dataset have a higher spatial resolution, a deeper variant of

ResNet2FC is used.

The greater distinctiveness of the additional FC1 features from ResNet2FC compared

to solitaire FCSoft features in ResNet aids OSRNet’s OSR performance. The benefits

come at a negligible increase in the total number of network parameters (≈ 3.5%).

Detailed results are provided in Section 6.4.

MNIST. For MNIST, we train a plain CNN onDKK consisting of three 3×3 convolution

blocks with respective filter numbers of 8, 16, and 32. These layers are followed by

two FC layers (128 unit FC1 and N -way FCSoft) and the SoftMax output layer. ResNet

architecture is not adopted for MNIST as a plain CNN network works just fine with

competitive classification accuracy (99.66%).

We adopted SGD, data shuffling before every epoch while training and data aug-

mentation (horizontal flip and translation). Minibatch size of 128 is used for all the

datasets except MNIST (8,192). Adaptive dropout [55] is followed to avoid overfitting.

A multi-class cross-entropy loss (Lm) is used as the objective function (see Equation

6.5).

Lm = −
N∑
i=1

K∑
j=1

tij ln yij (6.5)

where N is the number of samples, K is the number of classes, tij denotes that the ith

sample belongs to the jth class, and yij is the output for sample i for class j, which
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Table 6.2: AUROC performance (%) comparison of different OSR and OOD methods.

Method CIFAR10 CIFAR+10 CIFAR+50 MNIST SVHN Tiny ImageNet
SoftMax 67.70 81.60 80.50 97.80 88.60 57.70

OpenMax (Bendale et al. [79]) 69.50 81.70 79.60 98.10 89.40 57.60
G-OpenMax (Ge et al. [80]) 67.50 82.70 81.90 98.40 89.60 58.00

OSRCI (Neal et al. [78]) 69.90 83.80 82.70 98.80 91.00 58.60
C2AE (Oza et al. [82]) 89.50 95.50 93.70 98.90 92.20 74.80

OE ([88]) 63.50 73.40 71.20 93.11 81.40 44.90
ODIN ([84]) 64.10 75.10 72.20 96.10 81.30 47.10

G-ODIN ([164]) 68.80 79.10 73.20 97.40 84.70 47.30
Proposed Method (Dx) 90.40± 0.08 94.88± 0.12 93.50± 0.11 98.35± 0.09 91.22± 0.14 75.70± 0..20

Proposed Method (DKUT-ResNet1FC) 91.66± 0.05 94.95± 0.08 94.03± 0.10 98.44± 0.05 91.45± 0.10 76.80± 0.16
Proposed Method (DKUT-ResNet2FC) 93.15± 0.04 95.69± 0.06 94.60± 0.07 98.96± 0.04 92.66± 0.09 77.10± 0.13

effectively is the value from the SoftMax function, i.e., it is the probability that the

network associates the ith input with class j.

6.3.4 Training CS

As depicted earlier in Figure 6.4, CS is an ANN subnetwork within OSRNet and is

responsible for detecting UUs while ResNet2FC classifies the instance. Features (for

DKK and DKUT) extracted from ResNet2FC’s FC1 layer are fed to CS as the training data.

Binary class labels are supplied as the ground truth and variable learning rate gradient

descent (GDX) with momentum is used as the training method. We train CS with two

hidden layers and the number of hidden units (H) per layer is between the number

of inputs and outputs [165]. For 128 dimensional FC1 features, H is set to 64, 128, and

256 while for 256 dimensional FC1 features, H is set to 128, 256, and 512. A binary

cross-entropy loss function (Lb) is used following Equation 6.6.

Lb = − 1

N

M∑
i=1

Ti log (Yi) (6.6)

where M is the total number of responses in Y , N is the total number of observations

in Y , Yi is the network output, and Ti is the target value.

For each configuration, 10-fold training is conducted. Later, the best average score

yielding CS is augmented to the corresponding ResNet2FC to form OSRNet. It is

observed that, CS with H as 64 performs best for 20-depth ResNet2FC and CS with H

as 128 performs best for 32-depth ResNet2FC. Hence the reported results in Table 6.2

are derived using these two ensembles.
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6.3.5 Optimum Confidence Cut-Off δ Estimation

AUROC provides an overview of a binary classifier’s performance. A greater AUROC

magnitude indicates better performance. However, when the classifier is deployed in a

real-life application, it is expected to rule out negative samples based on a cut-off value

δ. A classifier’s ultimate accuracy largely depends on the choice of δ. An optimal δ

ensures maximum correct classification with minimum error. Such a δ can be estimated

from the optimal operative point on the ROC curve. There are multiple ways of finding

such a point on ROC curve that will provide a good compromise between FPR (1 –

specificity) and TPR (sensitivity). However, in this chapter, we follow the optimal slope

intersection method [166, 167] where an initial slope Sop is calculated in the ROC curve

from the misclassification cost using Equation 6.7.

Sop =
C(P |N)− C(N |N)

C(N |P )− C(P |P )
× N

P
(6.7)

C(N |P ) is the cost of misclassifying a positive class as a negative class. C(P |N) is the

cost of misclassifying a negative class as a positive class. In our case, the cost of any

form of misclassification is equally penalised (C(N |P ) = C(P |N) = 0.5). On the other

hand, there is no penalty for a correct classification (C(N |N) = C(P |P ) = 0).

P = TruePositive+ FalseNegative

N = TrueNegative+ FalsePositive.

A line with the slope Sop is dragged from the upper-left corner of the ROC plot

(where FPR = 0, TPR = 1) down and to the right. The first intersection point of the

slope line and the ROC curve is the optimal operating point. The value which ensures

the optimal cut-off point is selected as the δ when OSRNet is deployed.

6.4 Performance Comparison

An open set recogniser performs two tasks simultaneously: it has to identify an input

either as KK or UU and classify it correctly if KK. While accuracy is a good metric to

gauge classification performance, UU detection performance should be evaluated on a

metric that takes True Positive Rate (TPR) and False Positive Rate (FPR) into account.
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Table 6.3: Classification accuracy (%) comparison of contemporary OSR methods. OSRNet1 is
the variant of OSRNet with ResNet1FC.

CIFAR10 DKK
OSRNet1 OSRNet OpenMax G-OpenMax OSRCI

80.20 82.91 80.10 81.60 82.10
MNIST DKK

99.50 99.72 99.50 99.60 99.60
SVHN DKK

94.61 95.95 94.70 94.80 95.10

Table 6.4: Classification accuracy (%) comparison among conventional ResNet1FC, ResNet2FC,
and ResNet3FC. ResNet2FC performs better on the benchmark classification task (without
KK-UU split). Tiny ImageNet does not have labelled test set hence not shown here.

CIFAR10

Classification Accuracy (%)

ResNet1FC ResNet2FC ResNet3FC
90.24 90.27 88.95

MNIST
PlainCNN1FC PlainCNN2FC ResNet3FC

98.87 99.66 98.66
SVHN

ResNet1FC ResNet2FC ResNet3FC
94.77 95.29 93.05

Therefore, we provide evaluation results separately with AUROC as the detection

metric and TOP-1 accuracy as the classification metric. OSRNet outperforms other

works in the literature under both metrics- AUROC (see Table 6.2 and Figure 6.8) and

classification accuracy (see Table 6.3).

Class Conditioned Auto-Encoder (C2AE) [82] comes close to OSRNet in terms of

AUROC performance on a number of datasets. C2AE follows a three-stage training

scheme. First, a dataset is randomly divided into DKK and DUU. An encoder (a CNN

minus the SoftMax output) is trained on DKK. A decoder is augmented to the encoder

output and is trained to reconstruct any given input. The entire network (when the

encoder-decoder ensemble works as one unit) is designed to reconstruct any DKK

instance as precisely as possible. However, it is designed to poorly reconstruct DUU

instances so that the reconstruction error is high for UUs at inference time. Finally,

at inference time, reconstruction error is calculated for each input. DKK inputs are

expected to be correctly reconstructed. Therefore, the reconstruction error for DKK

instances should be close to zero. For DUU instances, however, the reconstruction will



§6.4 Performance Comparison 125

have a significant error compared to its DKK counterpart. This way, the magnitude

of the error is exploited to determine whether an instance belongs to the UU or not.

As advocated in [88], we attribute OSRNet’s better task performance to the use of

an effective, diverse, and real KUT dataset over encoder-decoder-based generative

models.

Table 6.5: AUROC performance (%) comparison of different benchmark datasets as the base
Dx for choosing DKUT. The number of images inside Dx is listed in the column header and the
number of images ultimately qualifying for DKUT is provided inside the parenthesis in each
row. Interestingly, DKUT - although a subset of Dx and much smaller in size, works consistently
better than using entire Dx as DKUT across all four datasets.

KK
UU

CIFAR100 Indoor67 Caltech256 Tiny ImageNet
Dx DKUT (> T) Dx DKUT (> T) Dx DKUT (> T) Dx DKUT (> T)

(all 46k) (all 16k) (all 28k) (all 100k)
CIFAR10 86.10 89.25 (25k) 82.03 83.82 (9k) 90.40 93.15 (18k) 87.54 88.40 (64k)

CIFAR+10 - - 83.65 85.76 (9.5k) 94.88 95.69 (19k) 88.45 91.40 (62k)
CIFAR+50 - - 82.33 83.60 (9k) 93.50 94.60 (18k) 86.94 89.78 (60k)

Tiny ImageNet 72.06 74.55 (23k) 69.50 70.95 (7.5k) 75.70 77.10 (16k) - -

As mentioned earlier, detecting UUs is one side of OSR, while maintaining accu-

racy on classifying DKK images is the other side of it. Compared to the conventional

ResNet1FC, our modified ResNet with two FC layers (ResNet2FC) performs better on

OSR task (see Table 6.2). ResNet2FC not only benefits our OSR performance but also

ameliorates the classification accuracy (see Table 6.3). ResNet2FC performs better than

ResNet1FC on the standard classification task (see Table 6.4). We argue that the increased

depth of the FC layers in ResNet2FC provides richer features and boosts classification

accuracy as well. However, using more than two FC layers does not work as well as

using two (see our empirical analysis in Table 6.4).

Comparison with OOD methods. Outlier Exposure (OE) proposed in [88] emphasises

on training with real and diverse KU datasets. To represent outliers (when DKK ⊂

CIFAR10), [84] trains on all the images in the ‘80 million tiny image’ dataset [168]

while we only use 18,000 images. In this case, our novelty lies in not naively using

entire datasets as outliers. As for ODIN [84] and Generalised ODIN [164], both use

temperature scaling while the latter not requiring any additional outlier training data.

However, as shown in Table 6.2, OSRNet performs better than the above-mentioned
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Figure 6.8: AUROC performance comparison between proposed OSRNet and other methods
in the literature. OSRNet outperforms all the existing methods on all six benchmark datasets.

OOD methods under the OSR evaluation protocol. We attribute this to the different

loss landscapes for these two paradigms which although similar, are not exactly same

[150].

6.5 Discussion

To perform the OSR task, OSRNet is trained with a specially mined dataset DKUT. We

discussed in Section 6.2.2 the mining process of DKUT and the type of images that work

well as Dx. However, the significance of the size of DKUT (or the number of images)

is also worth discussing. Our experimental results show that the type of images is

more important than the number of images. Our proposed method leaves only around

half of the images (16,000) from Caltech256 (Dx) into DKUT. However, it performs

better than using the entire Caltech256 (28,000) as the DKUT (Table 6.5). To understand

the underlying reason behind this, we need to go back to the conceptual illustration

provided in Figure 6.7. In order to detect UUs at test time, the best way is to collect a

set of borderline KUs and train the classifier to draw a decision boundary between this
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and DKK. Anything beyond this decision line should be treated as unknown. Using

an entire Dx set as DKUT ([169]) is not a good idea since such a DKUT would contain

both the borderline (circles) and far-away (triangles) images. We argue that most of the

KU instances from Dx that do not make it to the DKUT can be automatically detected at

test time if our classifier draws a line in between DKUT (borderline ones) and DKK. The

following section elaborates on the experimental analysis.

CIFAR100. If we use all 46,000 images from CIFAR100 as the DKUT, the AUROC

scores come out as 86.10% and 72.06% for CIFAR10 and Tiny ImageNet respectively.

Whereas, if the images inducing probability greater than 80% are used in DKUT, the

score becomes 89.25% (25,000) and 74.55% (23,000) for CIFAR10 and Tiny ImageNet

respectively.

Indoor67. If we use all 16,000 images from Indoor67 as the DKUT, the AUROC scores

come out as 82.03%, 83.65%, 82.33%, and 69.50% for CIFAR10, CIFAR+10, CIFAR+50,

and Tiny ImageNet respectively. Whereas, if the images inducing probability greater

than 80% are used as DKUT, the score becomes 83.82% (9,000), 85.76% (9,500), 83.60%

(9,000), and 70.95% (7,500) for CIFAR10, CIFAR+10, CIFAR+50, and Tiny ImageNet

respectively.

Caltech256. If we use all 28,000 images from Caltech256 as the DKUT, the AUROC

scores come out as 90.40%, 94.88%, 93.50%, and 75.70% for CIFAR10, CIFAR+10, CI-

FAR+50, and Tiny ImageNet respectively. Whereas, if the images inducing probability

greater than 80% are used as the DKUT, the score becomes 93.15% (18,000), 95.69%

(19,000), 94.60% (18,000), and 77.10% (16,000) for CIFAR10, CIFAR+10, CIFAR+50, and

Tiny ImageNet respectively.

Tiny ImageNet. If we use all 100,000 images from Tiny ImageNet as the DKUT,

the AUROC scores come out as 87.54%, 88.45%, and 86.94% for CIFAR10, CIFAR+10

and CIFAR+50 respectively. Whereas, if the images inducing probability greater than

80% are used as the DKUT, the score becomes 88.40% (64,000), 91.40% (62,000), and

89.78% (60,000) for CIFAR10, CIFAR+10, and CIFAR+50 respectively.
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Table 6.5 does not include digit-based MNIST and SVHN datasets in the KK column

as such other datasets are scarcer. Non-digit datasets with natural images (e.g., Cal-

tech256) do not work well at all as the Dx for MNIST and SVHN. It can be summarised

that Caltech256 performs best as Dx for mining DKUT because of its similarity with

DKK along with class diversity.

Train and Test Data Distributions. It is possible that even after explicitly removing

all the overlapping classes, there could still be an implicit overlap between DT
UU and

DKUT because of the nature of these datasets. However, the core of our proposed

method revolves around the fact that DKUT lies close to the DKK distribution. Therefore,

our network’s decision boundary around the DKK distribution is fairly tight. Hence,

OSRNet is capable of successfully identifying UUs regardless of the distribution of

DT
UU. A conceptual illustration is provided in Figure 6.7. To show OSRNet performs

consistently with or without any implicit overlap betweenDKUT andDT
UU, we expand

our test datasets for further experimentations. In addition to the default DT
UU, we test

on two separate DT
UUs according to the following setup:

• DKK ⊂ CIFAR10 (default train split).

• DT
UU_S = SVHN testset.

• DT
UU_I = Indoor67 testset.

• DT
UU_C ⊂ CIFAR10 testset (default unknown test split).

• DT
UU_C ∩DKK = ∅.

CIFAR10 contains 10 different classes (such as bird and dog) and six randomly

selected classes are used as the DKK. Indoor67 dataset contains 67 interior classes,

e.g., bedroom, office, and garage, while SVHN contains 10 classes belonging to digits

(0-9). These two datasets do not visually or semantically overlap with the DT
UU_C.

In fact, samples from both DT
UU_S and DT

UU_I are easier to identify as outliers

compared to DT
UU_C owing to their greater distance from DKK. Table 6.6 supports

our claim, i.e., OSRNet performs better on distant and non-overlapping unknowns.

On DT
UU_S and DT

UU_I, OSRNet produces 5.15% and 1.80% greater AUROC score
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Table 6.6: DT
UU from the left out set of CIFAR-10 is the most challenging testset compared to

DT
UUs drawn from non-overlapping SVHN and Indoor67 testsets.

DKK ⊂ CIFAR10

AUROC (%)

DT
UU_C DT

UU_S DT
UU_I

C2AE ([82]) 89.50 92.88 88.59
OSRNet 93.15 98.30 94.95

Table 6.7: Both DT
UU_S and DT

UU_I have greater distance from DKK compared to the default
testset DT

UU_C. This complements our findings in Table 6.6 where OSRNet performs better on
distant testsets.

DKK ⊂ CIFAR10

DKK → DKUT DKK → DT
UU_C DKK→ DT

UU_S DKK → DT
UU_I

CIFAR10 SVHN Indoor67

MMD 0.18 0.23 0.59 0.44

respectively compared to DT
UU_C. Table 6.7 reinforces our argument regarding the

inter distribution distance measured using Maximum Mean Discrepancy (MMD) [170].

MMD can approximate the distance between the underlying distribution of two

image datasets based on the Reproducing Kernel Hilbert Space (RKHS) [171, 172].

We used the final FC layer features from OSRNet backbone to represent the dataset

distributions. Let X = {x1, . . . , xn1} and Y = {y1, . . . , yn2} be two datasets with

distributions P andQ. The empirical distance between P andQ, according to MMD, is

Dist(X,Y) =

∥∥∥∥∥ 1

n1

n1∑
i=1

φ (xi)−
1

n2

n2∑
i=1

φ (yi)

∥∥∥∥∥
H

whereH is a universal RKHS [173], and φ : X → H

It is evident from Table 6.7 thatDKUT indeed resides close toDKK. It is also apparent

that visually and semantically distant datasets are indeed far away fromDKK and hence,

easier to detect. This is analogous to our findings in Table 6.6 where OSRNet performs

better on both DT
UU_S and DT

UU_I than DT
UU_C. Our experimental results also

complement the conceptual visualisation in Figure 6.7.
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6.6 Conclusion

OSR is one of the pressing issues deep image classifiers are faced with. In this chapter,

we analysed CNNs’ behaviour on both KK and UU datasets and proposed a network

that is adept at the OSR task. Instead of using synthetic images, we have demonstrated

that a trainer dataset mined from publicly available datasets can represent the unknown

better. OSRNet functions as a single end-to-end unit at inference time. It outperforms

contemporary OSR methods on a number of benchmark datasets. We have also

discussed the reasons behind OSRNet’s success in the given task through conceptual

decision boundaries and comparative entropy analysis.

So far, we have discussed several vulnerabilities of modern CNNs and showed

novel ways of mitigating these issues. In the next chapter, we address why CNNs often

struggle in detecting small objects and propose a novel network architecture to address

this problem.



Chapter 7

Detecting Small Objects with a
Faster RCNN based Novel
Backbone Network

In the previous chapter, we discussed the challenges posed by open set samples,

developed a novel OSR network architecture, and proposed an unknown trainer data

mining algorithm for a more accurate OSR compared to other benchmark methods.

In this chapter, we discuss the role of a CNN classifier in deep detection networks

and discuss why detecting objects with large variation in scale – especially small

objects, still remains a challenging task. To solve this problem, we propose a novel

backbone network for Faster RCNN that can successfully detect small scale objects

with high accuracy while maintaining high performance on larger objects as well. The

main contribution of this work was accepted and presented at the 2019 Pacific-Rim

Symposium on Image and Video Technology (PSIVT) [174].

The rest of this chapter is organized as follows. Section 7.1 provides an introduction

of this chapter. In Section 7.2, we introduce the proposed backbone network BackNet

and the design rationales. In Section 7.3, we discuss the training and test datasets and

then provide a performance comparison of existing works with our proposed approach.

Section 7.4 concludes this chapter.

7.1 Introduction

Object detection has long been a fundamental task in the field of computer vision.

With the emergence of self-driving cars, intelligent surveillance systems, autonomous

131
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Figure 7.1: Proposed BackNet-based Faster RCNN is capable of detecting objects with large
variations in scale within the same image.

traffic monitoring, and other smart applications, the demand for an accurate detection

system is on the rise. Handcrafted features like SIFT [2, 175], SURF [3], HOG [176] and

Deformable Part models [177, 178, 179] have long been used as conventional object

detectors. The momentum has shifted towards CNN based detectors since the success

of AlexNet [14] and other deep networks [10, 113, 26, 180] in a variety of tasks. SOTA

detectors employ pretrained classification network as the detector backbone. Although

classification networks have achieved superhuman level performance in a number of

competitions, object detection still remains to be a much more difficult problem to solve

[108, 105, 145]. There is a difference between the tasks of a detector and a classification

network [108]. One distinct dissimilarity between the two is that classification datasets

contain one prominent object per image, whereas multiple-class objects with large

scale variations may appear within the same image in detection. An image with high

resolution may contain extremely small objects which adds to the complexity.

Two-stage detectors like Faster RCNN host a pretrained classification network as

the backbone and a Region Proposal Network (RPN). The last layer feature maps of

the backbone network act as the input to the RPN. The spatial dimension of an input

image is iteratively reduced in the intermediate convolution and pooling layers of

a classification network. These layers are particularly helpful for keeping memory
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requirement low and according to recent studies [181, 182], pooling also helps in ensur-

ing the network’s invariance to the small translation of the input. As a side effect of DS

the original image, signals from small objects fades away in the intermediate layers

and the deeper layer feature maps cannot retain enough information for these small

objects. Consequently, detectors using such classification networks as the backbone

struggle with small objects in the images.

One simple solution is to maintain high-resolution feature maps by avoiding several

pooling/DS steps [108]. However, the loss of translation invariance has adverse

effects on the detector’s overall accuracy [181, 182]. Another solution is to incorporate

shallower layer features with the deeper ones [102, 103, 104]. However, the shallow

layer features lack in semantic meaning resulting in a weak set of feature maps when

combined with the semantically strong deeper ones. In this chapter, we propose a

novel backbone network that we call BackNet for Faster RCNN. We argue that it is

extremely difficult for RPN to generate accurate object proposals for small objects if the

feature maps fed to the RPN do not contain enough signals from those small objects.

BackNet is based on the VGG16 network [113] with an additional subnetwork that

maintains high-resolution feature maps up to the last layer. The final layer output of

the VGG16 network is upsampled and merged with the corresponding subnetwork

output to form a robust set of feature maps. These strong feature maps act as the RPN

input and boost the overall detector performance (see Figure 7.1).

7.2 BackNet: Proposed Backbone Network

In this section, we first explain the impact of an effective backbone CNN in Faster

RCNN architecture and then discuss the architecture and design rationales of BackNet.

7.2.1 Backbone Network

Starting from RCNN, it has taken a number of iterations to reach the upgraded vari-

ant Faster RCNN. Despite the evolutionary steps, the use of an ImageNet pretrained

backbone network has been a constant. It highlights the important role a strong back-

bone network plays in the detection setup. The RPN takes the last layer feature maps
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Figure 7.2: Feature maps are extracted after each of the five pooling layers in VGG16. The
original image contains three instances of vehicle-one relatively large in the front and two
smaller vehicles in the back (inside red box). It is intriguing to see that the large vehicle’s
activation signal can be found even in the deepest layer (Pool-5). However, activations from
the small vehicles fade away with increasing depth. Pool-4 has very few weak activations and
Pool-5 retains even lesser (almost nothing) information. Feature maps are enlarged from their
original size for better visibility. Successive spatial dimension reductions from left to right is
for illustration only (exact DS factor in VGG16 is 2.)

Figure 7.3: VGG16 is used as the base of our backbone network. BackNet is identical to VGG16
up to stage 3 (Conv_3), hence, stages 1-3 are not shown here. Dashed green boxes represent
the additional operation introduced in BackNet. Solid boxes are the original components of
a Faster RCNN network. Newly introduced subnetwork originating from Conv_3 maintains
the same spatial resolution of 56 × 56 whereas the main network goes through multiple
subsampling layers resulting in 14× 14 feature maps. These Conv_5 feature maps go through a
4x upsampling layer and are merged with Conv_5_b feature maps. The merged feature map’s
spatial dimension is reduced to half and fed forward to the RPN. RPN yields object proposals
and RoI pooling extracts feature from RPN input feature maps. Pooled features are warped to
a fixed size (14× 14) as they proceeds further inside the network.
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produced by the backbone as input. The RPN then processes this input within its own

network and outputs a set of object proposals. If the RPN is not supplied with strong

feature maps containing ample signals from both small and large objects, it becomes

extremely difficult for it to produce accurate object proposals. ImageNet classifica-

tion networks are explicitly designed for optimum classification performance. Spatial

dimension reduction through pooling and longer stride convolution are common char-

acteristics for these networks. Unlike classification tasks where one prominent object

is present per image, object detectors need to identify multiple object instances in the

same image. The variety of object shape and scale adds to the complexity and the

challenges here are far greater than classification. To design an effective backbone

network, two factors should be considered.

1. Dimension reduction layers of a backbone network are important for translation

invariance and efficient memory utilisation, but the loss of activation signals from

small objects is a critical drawback for any detector.

2. A number of contemporary research works build feature pyramids by combining

deep layer information with shallower ones. Even so, the semantic meaning of

the shallower features is weak and combining these layers with deeper ones may

not yield expected results.

7.2.2 BackNet Architecture

We consider VGG16 as the base of our backbone network with the introduction of an

additional subnetwork originating from Conv_3 (see Figure 7.3). VGG16 generates

a series of features at several stages (downsampled with a factor of 2 at each stage

and layers producing feature maps of the same size are considered to be in the same

network stage). VGG16 has five such stages where the original input of 224× 224 is

reduced to 14 × 14. We refer these five stages as Conv_1, Conv_2, Conv_3, Conv_4,

and Conv_5.

We observed from our experimental studies that most of the small objects’ (≈ 30×30

pixels) signals start getting attenuated beyond Conv_3 stage (see Figure 7.2 for a visual

interpretation). Therefore, a subnetwork originating from Conv_3 is introduced that
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computes the convolution layers with the same configuration as the corresponding

VGG16 layers (Figure 7.3). However, this subnetwork does not downsample the feature

maps and maintains the same resolution throughout the rest of the network. On the

other hand, Conv_3 feature maps in the VGG16 network are downsampled twice

resulting in 14× 14 feature maps in the Conv_5 stage. Adding Conv_5 feature maps

with the output (Conv_5_b) of the subnetwork will form one set of merged features

that contain activation signals from both small and large objects. Conv_5 feature maps

are upsampled by a factor of 4 to match the spatial dimension of Conv_5_b before

element-wise addition. Feature maps are upsampled using the two-dimensional cubic

convolution interpolation function [183]. When (x, y) is a point in the rectangular

subdivision [xj , xj+1]× [yk, yk+1], the two-dimensional cubic convolution interpolation

function is expressed using Equation 7.1.

g(x, y) =

2∑
l=−1

2∑
m=−1

cj+l,k+mu(
x− xj+l

hx
)u(

y − yk+m

hy
) (7.1)

where u is the one dimensional interpolation kernel and hx, and hy, are the x and y

coordinate sampling increments. Cj,k’s are derived using Taylor’s Expansion.

Both outputs from Conv_5 (upsampled) and Conv_5_b (subnetwork) are L2 Nor-

malised before merging. Merged feature maps then undergo 1× 1× 512 convolution

with stride 2 resulting in 28× 28× 512 feature maps; these act as the input to the RPN.

We employ 14× 14 RoI pooling rather than original 7× 7 with a view to incorporating

sufficient object features. The pooled features are propagated through to the regular

Faster RCNN layers for a class label and a bounding box.

7.3 Performance Evaluation

In this section, we evaluate the performance of BackNet with five contemporary

detectors based on a benchmark dataset. Table 7.1 compares different configurations

of our proposed BackNet while Tables 7.2 and 7.3 illustrate how the BackNet-based

Faster RCNN detector fares against other detectors for detecting objects with large

scale difference. Table 7.2 focuses on the Precision and Table 7.3 focuses on the Recall

values on the MS COCO dataset.
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Table 7.1: Performance comparison among different configurations for the proposed BackNet.
The detector performs best when the newly introduced subnetwork originates from Conv_3.
Best Precision and Recall values are presented in Bold.

MS COCO
Conv_3
(56×
56)

Conv_4
(28×
28)

2x
Up-
sam-
ple

4x
Up-
sam-
ple

B
Norm

mAP APS APM APL ARS ARM ARL

X X 38.15 22.58 42.11 49.76 34.16 62.05 71.49
X X X 38.55 22.88 42.46 50.31 34.95 62.30 72.85

X X X 37.45 19.90 41.77 50.68 30.01 59.26 73.96
X X 37.15 19.60 41.45 50.40 29.62 58.85 73.56

Table 7.2: Proposed BackNet based Faster RCNN improves Precision on small objects while
maintaining stable performance on medium and large objects. Best Precision values are
presented in Bold.

MS COCO
Method Mean Average Precision (mAP) APS APM APL

Faster RCNN [101] 24.20 7.20 26.40 36.90
Faster RCNN + RS [185] 29.50 11.90 32.70 41.80

Faster RCNN + FPN [102] 35.80 17.50 38.70 47.80
ION [106] 30.70 11.82 32.78 44.80

DetNet [108] 38.20 22.05 42.10 50.45
BackNet-Faster RCNN 38.55 22.88 42.46 50.31

7.3.1 Dataset

We train and test our proposed method on MS COCO [184] dataset. It consists of

123,000 images which belong to a total of 80 object classes. We follow the standard

split of 118,000/5,000 for training/validation. We use the standard metric of mean

Average Precision (mAP) at Intersection over Union IoU = 0.50 : 0.05 : 0.95. Average

Precision is also calculated for small (APS), medium (APM) and large (APL) objects

separately with the specified IoU . According to MS COCO definition, objects with

spatial dimension less than 32× 32 are small, objects ranging from 32× 32 to 96× 96

are medium and objects with spatial dimension greater than 96 × 96 are considered

large. Average Recall (AR) is computed at 1, 10 and 100 detections per image denoted

by AR1, AR10 and AR100 respectively.
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Table 7.3: Proposed BackNet based Faster RCNN improves Recall on small objects while
maintaining stable performance on medium and large objects. Best Recall values are presented
in Bold.

MS COCO
Method AR1 AR10 AR100 ARS ARM ARL

Faster RCNN [101] 23.80 34.10 34.70 11.50 38.90 54.40
Faster RCNN + RS [185] 27.30 40.00 40.90 17.90 45.50 58.60

Faster RCNN + FPN [102] 30.90 46.30 47.90 26.40 52.40 63.00
ION [106] 27.70 42.80 45.40 23.00 50.08 63.02

DetNet [108] 32.00 58.33 49.35 28.80 52.10 67.15
BackNet-Faster RCNN 32.40 59.64 56.70 34.95 62.30 72.85

7.3.2 Experimental Setup

We use the ImageNet pretrained novel BackNet as the detector backbone. We follow

the pragmatic four-step detector training scheme adopted in Faster RCNN[101]. First,

the RPN is trained and it is allowed to output a maximum of 2,000 object proposals

per image. Among these 2,000, 256 regions are randomly chosen to form a minibatch

and calculate the loss. The RPN weights are initialised from a zero-mean Gaussian

distribution with standard deviation of 0.01. In the second step, BackNet-based Fast

RCNN network is trained using the RPN output (object proposals) from Step 1. In the

third step, BackNet and RPN are trained together and the shared convolution layers

along with the RPN layers are fine-tuned. In the last step, only the unique Fast RCNN

layers are fine-tuned while the shared layer weights are frozen. Initial learning rate

used for all four steps is 0.0001. SGD is used with a momentum value set to 0.9 and

a weight decay of 0.0005 with adaptive dropout [55]. Minibatch size of one and a

maximum of 40 epochs are used for each of the aforementioned training stages.

7.3.3 Quantitative Results Analysis

We experimented with different configurations of the proposed BackNet components.

Table 7.1 provides a summary of the detectors overall performance on the MS COCO

dataset. As stated earlier, VGG16 is used as the base network with upsampled last

layer features. A new subnetwork is introduced which maintains the same feature

map spatial dimension from its stage of origin. When the subnetwork originates from
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Conv_3 stage (56× 56), the detector performs the best both in terms of Precision and

Recall; it scores an mAP of 38.55 and AR of 56.70. Note that this particular network

configuration outperforms others on small object dataset with APS 22.88% and ARS

34.95%. On the contrary, the subnetwork originating from Conv_4 stage improves the

detector’s performance on large objects (28×28), but both Precision and Recall drop on

small objects. The reason can be explained by observing the lower resolution feature

maps in Conv_4 (28 × 28) compared to Conv_3 (56 × 56). Some of the small object

activations are lost when Conv_3 features are downsampled by a factor of 2 in the

main branch and the Conv_4 origin subnetwork is also deprived of these activations.

Consequently, the detector’s performance does not degrade on large objects but its

performance does degrade for smaller ones. Using Batch Normalisation before adding

the upsampled and subnetwork feature maps is found to increase detector Precision

(mAP) and Recall (AR) for both configurations.

Tables 7.2 and 7.3 compare the performance of the proposed and five contemporary

object detectors in terms of Precision and Recall respectively. AR is calculated at 1, 10

and 100 detections per image denoted by AR1, AR10 and AR100 respectively. AR100 is

the mean Recall and mAP is the mean Precision across all object shapes available in

the dataset. BackNet-based Faster RCNN achieves the highest mAP of 38.55% while

securing an AP of 22.88% on small objects (second best DetNet 22.05%). Although

DetNet produces the maximum AP for large objects (50.45%), our proposed method is

comparable (50.31%). Since BackNet is capable of retaining both small and large object

information in the final layer feature maps, the AR for BackNet-Faster RCNN is also

better than other detectors on all three different sizes of objects.

7.4 Conclusion

Compared to the methods applied in the relevant literature to deal with the challenge

posed by objects of small scale, our approach is theoretically straight forward and

yields better results. The motif behind deploying the proposed BackNet subnetwork

is to prevent the signals of small object from dying down across a number of down-

sampling layers within a CNN. While the subnetwork takes care of the small objects,

the regular objects cascade through the conventional VGG16 layers and the merging
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layer still ensure a robust set of features inclusive of objects with all possible shapes

and sizes. Although VGG16 is used as the base of the proposed method, BackNet can

be incorporated with other conventional pretrained networks as well which further

strengthens our contribution.

In the next chapter, we summarise our contributions presented throughout this

thesis and discuss their compatibility with each other. We also provide potential

directions for future research.
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Conclusion

Image classification is an important vision task with a diverge range of applications.

CNNs have closed the gap between machine and human in image classification and

off-the-shelf CNN classifiers are regularly used as the backbone network in more

complex tasks including object detection and semantic segmentation. Therefore, any

improvement in the backbone classifier, by extension, also improves performance in

detection and segmentation. In this thesis, we aimed to develop a set of methods that

improves the robustness of a CNN classifier on challenging datasets. Before we discuss

the inter-compatibility of our methods, the key achievements of this thesis, along with

their significance, are summarised below.

Improving Distortion Robustness with DCT Augmentation

In Chapter 3, we investigated CNN’s vulnerability to a number of distortions in-

cluding noise and blur. We showed that visually imperceptible distortion leads to

misclassification even in SOTA CNNs. To this end, we proposed a distortion agnostic

DCT augmentation method that can boost CNN’s robustness against such challenges.

Our method does not require any prior knowledge about the potential distortions

which sets it apart from contemporary works. We also proposed an adaptive dropout

based regularisation technique that prevents a CNN from overfitting to the clean

training data. With the help of autoencoders, we also visually illustrated why and

how DCT augmentation works.

Improving Distortion Robustness with LP-ReLU

In Chapter 4, we further improved CNN’s robustness against distortion and per-

turbation by proposing a novel AF called LP-ReLU. Besides the primary objective
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to introduce non-linearity in CNN, we cast LP-ReLU as a noise suppression unit

by incorporating a low-pass filter in it. We also showed that DCT augmentation

largely complements LP-ReLU in classifying distorted and perturbed images. At

the end of Chapter 5, we proposed a novel method to visualise how CNNs draw

classification boundaries. This strengthens our understanding behind CNN’s vulner-

ability to imperceptible distortions and shows how our proposed methods improve

robustness.

Making CNNs Invariant to Shift

In Chapter 5, we investigated the impact of signal aliasing in CNN and proposed a

novel DS method called DAB-pool and AF called AA-ReLU. Our solution is based on

the Nyquist sampling theorem which states that any signal should undergo low-pass

filtering before DS to avoid aliasing. Aliasing largely impacts CNN’s transformation

invariance, especially against shift. Vulnerability to such trivial transformation can

expose CNNs to adversarial attacks as well. Our proposed network with DAB-pool

as the DS method and AA-ReLU as the AF can provide robustness and defence

against such vulnerabilities.

Open Set Recognition

In Chapter 6, we highlighted conventional CNN’s inability to deal with unknown

samples. Since CNN classifiers are trained on a finite image set with an obligation to

provide an output, such unknowns are bound to result in misclassification. To avoid

such vulnerability, we proposed a novel training paradigm where our proposed

OSRNet is trained using a novel KU data mining method.

Small Object Detection

In Chapter 7, we investigated deep detector’s performance on detecting objects with

large variation in scale. Our investigation showed that even SOTA detectors struggle

to detect small objects as iterative DS in the intermediate layers wipe out the small

object features. To this end, we proposed a novel backbone for Faster RCNN which

can detect small objects with greater accuracy while maintaining stable performance

on larger objects.
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Figure 8.1: (a) Compatibility between proposed methods and tasks. (b) An illustration of a
CNN hosting the proposed methods.

Relationship Among the Proposed Methods and Future Research Directions

Based on the requirements, most of the methods proposed in this thesis can be

integrated in classification as well as detection and segmentation networks as depicted

in Figure 8.1. Our proposed CS in OSRNet for OSR is the only method tailored for

classification networks (see Figure 8.1(a)). This is because unlike classifiers, CNN

detectors can abstain from making any prediction if there is no known object in an

image and, hence, dealing with unknown class is not a major issue here. It is worth

noting that in Figure 8.1, a solid line between a method and task pair indicates it has

already been presented in the corresponding chapter of this thesis. A dashed line

denotes a compatible pair but we leave further investigation of these pairs as future

works.

One potential research direction could be investigating the impact of our novel
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anti-aliasing units in detecting small objects. It would also be intriguing to study the

role these units can play across diverse network architectures, such as the Transformers.

Deep learning based computer vision is seeing diverse applications coupled with

mass adoption at an impressive rate. CNNs are at the core of this advancement and

ensuring such powerful networks do not falter due to trivial challenges is of paramount

importance. We believe our work on improving CNN’s robustness on challenging

datasets is a step towards further advancing the use of CNNs in more complex real-

world applications.
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