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Preface to ”Artificial Intelligence for Multimedia

Signal Processing”

Recent developments in image/video-based deep learning technology have enabled new

services in the field of multimedia and recognition technology. Artificial intelligence technologies are

also actively applied to broadcasting and multimedia processing technologies. A substantial amount

of research has been conducted in a wide variety of fields, such as content creation, transmission, and

security, and these attempts have been made in the past two to three years to improve image, video,

speech, and other data compression efficiency in areas related to MPEG media processing technology.

Additionally, technologies such as media creation, processing, editing, and creating scenarios are

very important areas of research in multimedia processing and engineering. To accommodate these

needs, many researchers are studying various signal and image processing technologies to provide

a variety of new or future multimedia processing and services. In this issue, we have gathered

several well-written and researched papers for advanced signal/image, video data processing, and

text/content information mining including deep learning approaches. This book comprises thirteen

peer-reviewed articles covering a review of the development of deep learning-based approaches,

the original research articles for the learning mechanism and multimedia signal processing. This

book also covers topics including computer vision field, speech/sound/text processing, and content

analysis/information mining. This volume will be of good use to designers and engineers in both

academia and industry who would like to develop an understanding of emerging multimedia signal

processing, as well as to students.

Byung-Gyu Kim and Dongsan Jun

Editors
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1. Introduction

At the ImageNet Large Scale Visual Re-Conversion Challenge (ILSVRC), a 2012 global
image recognition contest, the University of Toronto Supervision team led by Prof. Geoffrey
Hinton took first and second place by a landslide, sparking an explosion of interest in
deep learning. Since then, global experts and companies such as Google, Microsoft, nVidia,
and Intel have been competing to lead artificial intelligence technologies, such as deep
learning. Now, they are developing deep-learning-based technologies that can applied to
all industries to solve many classification and recognition problems.

These artificial intelligence technologies are also actively applied to broadcasting and
multimedia processing technologies based on recognition and classification [1–3]. A vast
amount of research has been conducted in a wide variety of fields, such as content creation,
transmission, and security, and attempts have been made in the past two to three years
to improve image, video, speech, and other data compression efficiency in areas related
to MPEG media processing technology [4–6]. Additionally, technologies such as media
creation, processing, editing, and creating scenarios are very important areas of research
in multimedia processing and engineering. In this issue, we present excellent papers
related to advanced computational intelligence algorithms and technologies for emerging
multimedia processing.

2. Emerging Multimedia Signal Processing

Thirteen papers related to artificial intelligence for multimedia signal processing have
been published in this Special Issue. They deal with a broad range of topics concerning
advanced computational intelligence algorithms and technologies for emerging multimedia
signal processing.

We present the following works in relation to the computer vision field. Lee et al.
propose a densely cascading image restoration network (DCRN) consisting of an input layer,
a densely cascading feature extractor, a channel attention block, and an output layer [7].
The densely cascading feature extractor has three densely cascading (DC) blocks, and each
DC block contains two convolutional layers. From this design, they achieved better quality
measures for the compressed joint photographic experts group (JPEG) images compared
with the existing methods. In [8], an image de-raining approach is developed using the
generative capabilities of recently introduced conditional generative adversarial networks
(cGANs). This method could be very useful to recover visual quality when degraded due
to diverse weather conditions, recording conditions, or motion blur.

Additionally, Wu et al. suggest a framework to leverage the sentimental interaction
characteristic based on a graph convolutional network (GCN) [9]. They first utilize an
off-the-shelf tool to recognize the objects and build a graph over them. Visual features
are represented as nodes, and the emotional distances between the objects act as edges.
Then, they employ GCNs to obtain the interaction features among the objects, which are
fused with the CNN output of the whole image to predict the result. This approach is
very useful to analyze human sentiment analysis. In [10], two lightweight neural networks

Appl. Sci. 2022, 12, 7358. https://doi.org/10.3390/app12157358 https://www.mdpi.com/journal/applsci1
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with a hybrid residual and dense connection structure are suggested by Kim et al. to
improve super-resolution performance. They show that the proposed methods could
significantly reduce both the inference speed and the memory required to store parameters
and intermediate feature maps, while maintaining similar image quality compared to the
previous methods.

Kim et al. propose an efficient scene classification algorithm for three different classes
by detecting objects in the scene [11]. The authors utilize a pre-trained semantic segmenta-
tion model to extract objects from an image. After that, they construct a weighting matrix
to better determine the scene class. Finally, this classifies an image into one of three scene
classes (i.e., indoor, nature, city) using the designed weighting matrix. This technique can
be utilized for semantic searches in multimedia databases.

Lastly, an estimation method for human height is proposed by Lee et al. using color
and depth information [12]. They use color images for deep learning by mask R-CNN to
detect a human body and a human head separately. If color images are not available for
extracting the human body region due to a low light environment, then the human body
region is extracted by comparison with the current frame in the depth video.

For speech, sound, and text processing, Lin et al. improve the raw-signal-input
network from other research using deeper network architectures [13]. They also propose
a network architecture that can combine different kinds of network feeds with different
features. In the experiment, the proposed scheme achieves an accuracy of 73.55% in the
open audio dataset, “Dataset for Environmental Sound Classification 50” (ESC50). A
multi-scale discriminator that discriminates between real and generated speech at various
sampling rates is devised by Kim et al. to stabilize GAN training [14]. In this paper,
the proposed structure is compared with conventional GAN-based speech enhancement
algorithms using the VoiceBank-DEMAND dataset. They show that the proposed approach
can make the training faster and more stable.

To translate the speech, a multimodal unsupervised scheme is proposed by Lee and
Park [15]. They make a variational autoencoder (VAE)-based speech conversion network
by decomposing the spectral features of the speech into a speaker-invariant content factor
and a speaker-specific style factor to estimate diverse and robust speech styles. This
approach can help second language (L2) speech education. To develop a 3D avatar-based
sign language learning system, Chakladar et al. suggest a system that converts the input
speech/text into corresponding sign movements for Indian Sign Language (ISL) [16]. The
translation module achieves a 10.50 SER (sign error rate) score in the actual test.

Two papers concern content analysis and information mining. The first one, by
Krishna Kumar Thirukokaranam Chandrasekar and Steven Verstockt, regards a context-
based structure mining pipeline [17]. The proposed scheme not only attempts to enrich
the content, but also simultaneously splits it into shots and logical story units (LSU). They
demonstrate quantitatively that the pipeline outperforms existing state-of-the-art methods
for shot boundary detection, scene detection, and re-identification tasks. The other paper
outlines a framework which can learn the multimodal joint representation of pins, including
text representation, image representation, and multimodal fusion [18]. In this work, the
authors combine image representations and text representations in a multimodal form.
It is shown that the proposed multimodal joint representation outperforms unimodal
representation in different recommendation tasks.

For ECG signal processing, Tanoh and Napoletano propose a 1D convolutional neural
network (CNN) that exploits a novel analysis of the correlation between the two leads of the
noisy electrocardiogram (ECG) to classify heartbeats [19]. This approach is one-dimensional,
enabling complex structures while maintaining reasonable computational complexity.

I hope that the technical papers published in this Special Issue can help researchers and
readers to understand the emerging theories and technologies in the field of multimedia
signal processing.

Funding: This research received no external funding.
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Abstract: Since high quality realistic media are widely used in various computer vision applications,
image compression is one of the essential technologies to enable real-time applications. Image
compression generally causes undesired compression artifacts, such as blocking artifacts and ringing
effects. In this study, we propose a densely cascading image restoration network (DCRN), which
consists of an input layer, a densely cascading feature extractor, a channel attention block, and an
output layer. The densely cascading feature extractor has three densely cascading (DC) blocks,
and each DC block contains two convolutional layers, five dense layers, and a bottleneck layer.
To optimize the proposed network architectures, we investigated the trade-off between quality
enhancement and network complexity. Experimental results revealed that the proposed DCRN can
achieve a better peak signal-to-noise ratio and structural similarity index measure for compressed
joint photographic experts group (JPEG) images compared to the previous methods.

Keywords: computer vision; deep learning; convolutional neural network; image processing; image
restoration; single image artifacts reduction; dense networks; residual networks; channel atten-
tion networks

1. Introduction

As realistic media are widespread in various image processing areas, image compres-
sion is one of the key technologies to enable real-time applications with limited network
bandwidth. While image compression techniques, such as joint photographic experts
group (JPEG) [1], web picture [2], and high-efficiency video coding main still picture [3],
can achieve significant compression performances for efficient image transmission and
storage [4], they lead to undesired compression artifacts due to lossy coding because
of quantization. These artifacts generally affect the performance of image restoration
methods in terms of super-resolution [5–10], contrast enhancement [11–14], and edge
detection [15–17].

Reduction methods for compression artifacts were initially studied by developing
a specific filter inside the compression process [18]. Although these approaches can effi-
ciently remove ringing artifacts [19], the improvement in image regions is limited at high
frequencies. Examples of such approaches include deblocking-oriented approaches [20,21],
wavelet transforms [22,23], and shape-adaptive discrete cosine transforms [24]. Recently,
artifacts reduction (AR) networks using deep learning have been developed with various
deep neural networks (DNNs), such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), long short-term memory (LSTM), and generative adversarial
networks (GANs). Because CNN [25] can efficiently extract feature maps with deep and

Appl. Sci. 2021, 11, 7803. https://doi.org/10.3390/app11177803 https://www.mdpi.com/journal/applsci5
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cascading structures, CNN-based artifact reduction (AR) methods can achieve visual en-
hancement in terms of peak signal-to-noise ratio (PSNR) [26], PSNR including blocking
effects (PSNR-B) [27,28], and structural similarity index measures (SSIM) [29].

Despite the developments of AR, most CNN-based approaches tend to design the
heavy network architecture by increasing the number of network parameters and opera-
tions. Because it is difficult to deploy such heavy models on hand-held devices operated
on low complexity environments, it is necessary to design the lightweight AR networks.
In this paper, we propose a lightweight CNN-based artifacts reduction model to reduce
the memory capacity as well as network parameters. The main works of this study are
summarized as follows:

To reduce the coding artifacts of the compressed images, we propose a CNN based
densely cascading image restoration network (DCRN) with two essential parts,
densely cascading feature extractor and channel attention block.
Through a various ablation study, the proposed network is designed to guarantee the
optimal trade-off between the PSNR and the network complexity.
Compared to the previous method, the proposed network is designed to obtain
comparable AR performance while utilizing the small number of network parameters
and memory size. In addition, it can provide the fastest inference speed, except for
initial AR network [30].
Compared to the latest methods to show the highest AR performances (PSNR, SSIM,
and PSNR-B), the proposed method can reduce the number of parameters and total
memory size maximum by 2% and 5%, respectively.

The remainder of this paper is organized as follows: in Section 2, we review previous
studies related to CNN-based artifact reduction methods. In Section 3, we describe the
proposed method. Finally, in Sections 4 and 5, we present the experimental results and
conclusions, respectively.

2. Related Works

Due to the advancements in deep learning technologies, research of low-level com-
puter vision, such as super-resolution (SR) and image denoising, has been combined with a
variety of CNN architectures to provide higher image restoration than that of conventional
image processing. Dong et al. proposed an artifact reduction convolutional neural net-
work (ARCNN) [30], which consists of four convolutional layers and trains an end-to-end
mapping from a compressed image to a reconstructed image. After the advent of ARCNN,
Mao et al. [31] proposed a residual encoder–decoder network, which conducts encoding
and decoding processes with symmetric skip connections in stacking convolutional and
deconvolutional layers. Chen et al. [32] proposed a trainable nonlinear reaction diffusion,
which is simultaneously learned from training data through a loss-based approach with
all parameters, including filters and influence functions. Zhang et al. [33] proposed a
denoising convolutional neural network (DnCNN), which is composed of a combination
of 17 convolutional layers with a rectified linear unit (ReLU) [34] activation function and
batch normalization for removing white Gaussian noise. Cavigelli et al. [35] proposed a
deep CNN for image compression artifact suppression, which consists of 12 convolutional
layers with hierarchical skip connections and a multi-scale loss function.

Guo et al. [36] proposed a one-to-many network, which is composed of many stacked
residual units, with each branch containing five residual units and the aggregation sub-
network comprising 10 residual units. Each residual unit uses batch normalization, ReLU
activation function, and convolutional layer twice. The architecture of residual units is
found to improve the recovery quality. Tau et al. [37] proposed a very deep persistent
memory network with a densely recursive residual architecture-based memory block that
adaptively learns the different weights of various memories. Dai et al. [38] proposed a
variable-filter-size residual-learning CNN, which contains six convolutional layers and
concatenates variable-filter-size convolutional layers. Zhang et al. [39] proposed a dual-
domain multi-scale CNN with an auto-encoder, dilated convolution, and discrete cosine
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transform (DCT) unit. Liu et al. [40] designed a multi-level wavelet CNN that builds a
u-net architecture with a four-layer fully convolutional network (FCN) without pooling
and takes all sub-images as inputs. Each layer of a CNN block is composed of 3 × 3 kernel
filters, batch normalization, and ReLU. A dual-pixel-wavelet domain deep CNN-based soft
decoding network for JPEG-compressed images [41] is composed of two parallel branches,
each serving as the pixel domain soft decoding branch and wavelet domain soft decoding
branch. Fu et al. [42] proposed a deep convolutional sparse coding (DCSC) network that
has dilated convolutions to extract multi-scale features with the same filter for three differ-
ent scales. The implicit dual-domain convolutional network (IDCN) for robust color image
compression AR [43] consists of a feature encoder, correction baseline and feature decoder.
Zhang et al. [44] proposed a residual dense network (RDN), which consists of 16 residual
dense blocks, and each dense block contains eight dense layers with local residual learning.

Although most of the aforementioned methods demonstrate better AR performance,
they tend to possess more complicated network structures on account of the large number
of network parameters needed and heavy memory consumption. Table 1 lists the properties
of the various AR networks and compares their advantages and disadvantages.

Table 1. Properties among the artifact reduction networks.

Method AR Performance Complexity

ARCNN [30] Low PSNR Low network complexity

DnCNN [33] Medium PSNR Medium network complexity

DCSC [42] Medium PSNR
(High PSNR-B) Medium network complexity

IDCN [43] High PSNR and PSNR-B High network complexity

RDN [44] High PSNR and PSNR-B High network complexity

For the network component, a residual network [45] was designed for shortcut con-
nections to simplify identity mapping, and outputs were added to the outputs of the
stacked layers. A densely connected convolutional network [46] directly connects all lay-
ers with one another based on equivalent feature map sizes. The squeeze-and-excitation
(SE) network [47] is composed of global average pooling and a 1 × 1 convolutional layer.
These networks use the weights of previous feature maps, and such weights are applied to
previous feature maps to generate the output of the SE block, which can be provided to
subsequent layers of the network. In this study, we propose an AR network to combine
with those networks [45–47] for better image restoration performance than the previous
methods.

3. Proposed Method

3.1. Overall Architecture of DCRN

Figure 1 shows the overall architecture of the proposed DCRN to remove compression
artifacts caused by JPEG compression. The DCRN consists of the input layer, a densely
cascading feature extractor, a channel attention block, and the output layer. In particular,
the densely cascading feature extractor contains three densely cascading blocks to exploit
the intermediate feature maps within sequential dense networks. In Figure 1, W × H and
C are the spatial two-dimensional filter size and the number of channels, respectively. The
convolution operation of the i-th layer is denoted as Hi and calculates the output feature
maps (Fi) from the previous feature maps (Fi−1), as shown in Equation (1):

Fi = Hi(Fi−1) = δ(Wi ∗ Fi−1 + Bi), (1)

where δ, Wi, Bi, and ∗ represent the parametric ReLU function as an activation function,
filter weights, biases, and the notation of convolution operation, respectively. After extract-
ing the feature maps of the input layer, densely cascading feature extractor generates F5,
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as expressed in Equation (2). As shown in Figure 2, a densely cascading (DC) block has
two convolutional layers, five dense layers, and a bottleneck layer. To train the network
effectively and reduce overfitting, we designed dense layers that consist of a variable
number of channels. Dense layers 1 to 4 consist of 16 channels and the final dense layer
consists of 64 channels. The DC block operation HDC

i is presented in Equation (2):

F3 = HDC
3 (F2) = HDC

3 (HDC
2 (HDC

1 (F0)). (2)

Figure 1. Overall architecture of the proposed DCRN. Symbol ‘+’ indicates the element-wise sum.

Figure 2. The architecture of a DC block.

Then, each DC block output is concatenated with the output of the input layer feature
map operations. After concatenating both the output feature maps from all DC blocks and
the input layer, the bottleneck layer calculates F5 to reduce the number of channels of F4, as
in Equation (3):

F5 = H5(F4) = H5([F3, F2, F1, F0]). (3)

As shown in Figure 3, a channel attention (CA) block performs the global average
pooling (GAP) followed by two convolutional layers and the sigmoid function after the
output from the densely cascading feature extractor is passed to it. The CA block can
discriminate the more important feature maps, and it assigns different weights to each
feature map in order to adapt feature responses. After generating F6 through the CA block,
an output image is generated from the element-wise sum between the skip connection (F0)
and the feature maps (F6).
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Figure 3. The architecture of a CA-block. ‘σ’ and ‘ ⊗’ indicate sigmoid function and channel-wise
product, respectively.

3.2. Network Training

In the proposed DCRN, we set the filter size as 3 × 3 except for the CA block, whose
kernel size is 1 × 1. Table 2 shows the selected hyper parameters in the DCRN. We used
zero padding to allow all feature maps to have the same spatial resolution between the
different convolutional layers. We defined L1 loss [48] as the loss function using Adam
optimizer [49] with a batch size of 128. The learning rate was decreased from 10−3 to 10−5

for 50 epochs.

Table 2. Hyper parameters of the proposed DCRN.

Hyper Parameters Options

Loss function L1 loss
Optimizer Adam
Batch size 128

Num. of epochs 50
Learning rate 10−3 to 10−5

Initial weight Xavier
Activation function Parametric ReLU

Padding mode Zero padding

To design a lightweight architecture, we first studied the relationship between network
complexity and performance according to the number of dense layer feature maps within
the DC block. Second, we checked the performance of various activation functions. Third,
we studied the performance of loss functions. Fourth, we investigated the relationship
between network complexity and performance based on the number in each dense layers
of DC block and the number of DC blocks. Finally, we studied the performance of the
tool-off test (skip connection, channel attention block).

Table 3 lists the PSNR obtained according to the number of concatenated feature
maps within the DC block. We set the optimal number of concatenated feature maps to
16 channels. Moreover, we conducted verification tests to determine the most suitable
activation function for the proposed network, the results of which are shown in Figure 4.
After measuring the PSNR and SSIM obtained via various activation functions, such as
ReLU [34], leaky ReLU [50], and parametric ReLU [51], parametric ReLU was chosen for
the proposed DCRN. Table 4 summarizes the results of the verification tests concerning
loss functions, in terms of the L1 and mean square error (MSE) losses. As shown in
Table 4, the L1 loss exhibits marginally improved PSNR, SSIM, and PSNR-B compared
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to those exhibited by the MSE loss. In addition, we verified the effectiveness the of skip
connection and channel attention block mechanisms. Through the results of tool-off tests
on the proposed DCRN, which are summarized in Figure 5, we confirmed that both skip
connection and channel attention block affect the AR performance of the proposed method.

Table 3. Verification test on the number of concatenated feature maps within the DC block.

Category PSNR (dB) Num of Parameter Total Memory Size (MB)

4 channel 29.58 316 K 33.56
8 channel 29.61 366 K 36.39
16 channel 29.64 479 K 42.10
32 channel 29.68 770 K 53.75
64 channel 29.69 1600 K 78.01

Figure 4. Verification of activation functions. (a) PSNR per epoch. (b) L1 loss per epoch.

Table 4. Verification tests for loss functions.

Category PSNR (dB) SSIM PSNR-B (dB)

L1 loss 29.64 0.825 29.35
MSE loss 29.62 0.824 29.33

Figure 5. Verification of the skip connection off (skip-off), channel attention blocks off (CA-off) and proposed method in
terms of AR performance. (a) PSNR per epoch. (b) L1 loss per epoch.

Note that the higher the number of DC blocks and dense layers, the more the memory
required to store the network parameters. Finally, we performed a variety of verification
tests on the validation dataset to optimize the proposed method. In this paper, we denote
the number of DC blocks and the number of dense layers per DC block as DC and L,
respectively. The performance comparison between the proposed and existing methods
in terms of the AR performance (i.e., PSNR), model size (i.e., number of parameters), and
total memory size is displayed in Figures 6 and 7. We set the value of DC and L to three
and five, respectively.
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Figure 6. Verification of the number of DC blocks (DC) in terms of AR performance and complexity
by using the Classic5 dataset. The circle size represents the number of parameters. The x and y-axis
denote the total memory size and PSNR, respectively.

Figure 7. Verification of the number of dense layers (L) per DC block (DC) in terms of AR performance
and complexity by using the Classic5 dataset. The circle size represents the number of parameters.
The x and y-axis denote the total memory size and PSNR, respectively.

4. Experimental Results

We used 800 images from DIV2K [52] as the training images. After they were converted
into YUV color format, only Y components were encoded and decoded by the JPEG codec
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under three image quality factors (10, 20, and 30). Through this process, we collected
1,364,992 patches of a 40 × 40 size from the original and reconstructed images. To evaluate
the proposed method, we used Classic5 [24] (five images) and LIVE1 [53] (29 images) as
the test datasets and Classic5 as the validation dataset.

All experiments were performed on an Intel Xeon Gold 5120 (14 cores @ 2.20 GHz)
with 177 GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environment
described in Table 5.

Table 5. Experimental environments.

Experimental Environments Options

Input size (FIn) 40 × 40 × 1
Label size (FOut) 40 × 40 × 1
CUDA version 10.1
Linux version Ubuntu 16.04

Deep learning frameworks Pytorch 1.4.0

In terms of the performance of image restoration, we compared the proposed DCRN
with JPEG, ARCNN [30], DnCNN [33], DCSC [42], IDCN [43] and RDN [44]. In terms of the
AR performance (i.e., PSNR and SSIM), the number of parameters and total memory size,
the performance comparisons between the proposed and existing methods are depicted in
Figure 8.

Figure 8. Comparisons of the network performance and complexity between the proposed DCRN and existing methods for
the LIVE1 dataset. The circle size represents the number of parameters. (a) The x and y-axis denote the total memory size
and PSNR, respectively. (b) The x and y-axis denote the total memory size and SSIM, respectively.

Tables 6–8 enumerate the results of PSNR, SSIM, and PSNR-B, respectively, for each
of the methods studied. As per the results in Table 7, it is evident that the proposed
method is superior to the others in terms of SSIM. However, RDN [44] demonstrate higher
PSNR values. While DCRN shows a better PSNR-B compared to that of DnCNN, it has
comparable performance with DCSC in terms of PSNR-B using the Classic5 dataset. While
the RDN was likely to improve AR performance by increasing the number of network
parameters, the proposed method was focused to design the lightweight network with the
small number of network parameters.
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Table 6. PSNR (dB) comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] RDN [44] Ours

Classic5
10 27.82 29.03 29.40 29.25 30.00 29.64
20 30.12 31.15 31.63 31.43 32.15 31.87
30 31.48 32.51 32.91 32.68 33.43 33.15

LIVE1
10 27.77 28.96 29.19 29.17 29.67 29.34
20 30.07 31.29 31.59 31.48 32.07 31.74
30 31.41 32.67 32.98 32.83 33.51 33.16

Table 7. SSIM comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] RDN [44] Ours

Classic5
10 0.780 0.793 0.803 0.803 0.819 0.825
20 0.854 0.852 0.861 0.860 0.867 0.880
30 0.884 0.881 0.886 0.885 0.893 0.903

LIVE1
10 0.791 0.808 0.812 0.815 0.825 0.830
20 0.869 0.873 0.880 0.880 0.888 0.895
30 0.900 0.904 0.909 0.909 0.915 0.922

Table 8. PSNR-B (dB) comparisons on the test datasets. The best results of dataset are shown in bold.

Dataset Quality Factor JPEG ARCNN [30] DnCNN [33] DCSC [42] Ours

Classic5
10 25.20 28.78 29.10 29.24 29.35
20 27.50 30.60 31.19 31.41 31.40
30 28.93 32.00 32.36 32.66 32.52

LIVE1
10 25.33 28.77 28.91 29.17 29.03
20 27.56 30.79 31.08 31.47 31.21
30 28.92 32.22 32.35 32.81 32.43

Table 9 classifies the network complexity in terms of the number of network parame-
ters and total memory size (MB). The proposed DCRN reduced the number of parameters
to as low as 72%, 5% and 2% of those needed in DnCNN, IDCN and RDN, respectively. In
addition, the total memory size was as low as 91%, 41%, 17% and 5% of that required for
DnCNN, DCSC, IDCN and RDN, respectively. Since the same network parameters were
repeated 40 times in DCSC, the total memory size was large even though the number of
network parameters was smaller than that of the other methods. As shown in Figure 9,
the inference speed of the proposed method is greater than that of all networks, except for
ARCNN. Although the proposed method is slower than ARCNN, it is clearly better than
ARCNN in terms of PSNR, SSIM, and PSNR-B, as per the results in Tables 6–8. Figure 10
shows examples of the visual results of DCRN and the other methods on the test datasets.
Based on the results, we were able to confirm that DCRN can recover more accurate textures
than other methods.

Table 9. Comparisons of the network complexity between the proposed DCRN and the previous
methods.

Category Number of Parameters Total Memory Size (MB)

ARCNN [30] 106 K 3.16
DnCNN [33] 667 K 46.31

DCSC [42] 93 K 102.34
IDCN [43] 11 M 254.13
RDN [44] 22 M 861.97

Ours 479 K 42.10

13



Appl. Sci. 2021, 11, 7803

Figure 9. Inference speed on Classic5.

 
Figure 10. Cont.
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Figure 10. Visual comparisons on a JPEG compressed images where the figures of the second row represent the zoom-in for
the area represented by the red box.

5. Conclusions

Image compression leads to undesired compression artifacts due to the lossy coding
that occurs through quantization. These artifacts generally degrade the performance of
image restoration techniques, such as super-resolution and object detection. In this study,
we propose a DCRN, which consists of the input layer, a densely cascading feature extractor,
a channel attention block, and the output layer. The DCRN aims to recover compression
artifacts. To optimize the proposed network architecture, we extracted 800 training images
from the DIV2K dataset and investigated the trade-off between the network complexity
and quality enhancement achieved. Experimental results showed that the proposed DCRN
can lead to the best SSIM for compressed JPEG images compared to that of other existing
methods, except for IDCN. In terms of network complexity, the proposed DCRN reduced
the number of parameters by as low as 72%, 5% and 2% compared to DnCNN, IDCN
and RDN, respectively. In addition, the total memory size was as low as 91%, 41%, 17%
and 5% of that required for DnCNN, DCSC, IDCN and RDN, respectively. Even though
the proposed method was slower than ARCNN, it’s PSNR, SSIM, and PSNR-B are clearly
better than those of ARCNN.
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Abstract: Rapid developments in urbanization and smart city environments have accelerated the need
to deliver safe, sustainable, and effective resource utilization and service provision and have thereby
enhanced the need for intelligent, real-time video surveillance. Recent advances in machine learning
and deep learning have the capability to detect and localize salient objects in surveillance video
streams; however, several practical issues remain unaddressed, such as diverse weather conditions,
recording conditions, and motion blur. In this context, image de-raining is an important issue that
has been investigated extensively in recent years to provide accurate and quality surveillance in
the smart city domain. Existing deep convolutional neural networks have obtained great success in
image translation and other computer vision tasks; however, image de-raining is ill posed and has
not been addressed in real-time, intelligent video surveillance systems. In this work, we propose to
utilize the generative capabilities of recently introduced conditional generative adversarial networks
(cGANs) as an image de-raining approach. We utilize the adversarial loss in GANs that provides
an additional component to the loss function, which in turn regulates the final output and helps to
yield better results. Experiments on both real and synthetic data show that the proposed method
outperforms most of the existing state-of-the-art models in terms of quantitative evaluations and
visual appearance.

Keywords: deep learning; generative adversarial networks; traffic surveillance image processing;
image de-raining

1. Introduction

Rain is a common weather condition that negatively impacts computer vision systems.
Raindrops appear as bright streaks in images due to their high velocity and light scattering.
Since image recognition and detection algorithms are designed for clean inputs, it is
essential to develop an effective mechanism for rain streak removal.

A number of research efforts have been reported in the literature focusing on restoring
rain images, and different approaches have been taken. Some have attempted to remove
rain streaks using video [1–3], while other researchers have focused on rain image recovery
from a single image by considering the image as a signal separation task [4–6].

Since rain streaks overlap with background texture patterns, it is quite a challenging
task to remove the rain streaks while maintaining the original texture in the background.
Most of the times, this results in over-smoothed regions that are visible in the background
after the de-raining process. De-raining algorithms [7,8] tend to over de-rain or under
de-rain the original image. A key limitation in the traditional, handcrafted methods is that
the feature learning is manual and designed to deal only with certain types of rain streaks,
and they do not perform well with varying scales, shapes, orientations, and densities
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of raindrops [9,10]. In contrast, by using convolutional neural networks (CNNs), the
feature learning process becomes an integral part of the algorithm and is able to unveil
many hidden features. Convolutional neural network-based methods [11–13] have gained
huge improvements in image de-raining during the last few years. These methods try to
figure out a nonlinear mapping between the input rainy image and the expected ground
truth image.

Still, there is potential for improvements and optimizations within CNN-based image
de-raining algorithms, which could lead to more visually appealing and accurate results.
Instead of being just constrained to characterizing rain streaks, visual quality should also
be considered when defining the optimization functions, which will result in improving the
visual appeal of test results. When defining the objective function, it should consider the
fact that the performance of vision algorithms, such as classification/detection, should not
be affected by the presence of rain streaks. The addition of this discriminative information
ensures that the output is indistinguishable from its original counterpart.

Generative modeling is an unsupervised learning task in machine learning that in-
volves automatically discovering and learning the patterns in input data in such a way that
the model can be used to generate new examples that are indistinguishable from reality.
The concept of generative adversarial networks (GANs) was originally presented in [14]
and has gained a high level of interest, with several successful applications and directions
reported within a short period in the machine learning community. Existing CNN-based
mechanisms only consider either L1(Least Absolute Deviations) or L2 (Least Square Errors)
errors, whereas in conditional GANs, they have additional adversarial loss components,
which result in very good, qualitative, visually appealing image outputs.

In our approach, we propose a conditional generative adversarial network-based
framework for rain streak removal. Our model consists of a densely connected generator
(G) network and a CNN-based discriminator (D) network. The generator network converts
rainy images to de-rained images in such a way that it fools the discriminator network. In
certain scenarios, traditional GANs tend to make output images more artificial and visually
displeasing. To mitigate this issue, we have introduced a conditional CNN with skip
connections for the generator. Skip connections guarantee better convergence by efficiently
leveraging features from different layers of the network. The proposed model is based
on the Pix2Pix framework by Isola et al. [15] and the conditional generative adversarial
networks originally proposed by Fu et al. [16]. We have also used the source codes provided
by authors of LPNet [17] and GMM [18] for quantitative and qualitative comparisons of
the proposed model.

This paper makes the following contributions:

1. Propose a conditional, GAN-based deep learning architecture to remove rain streaks
from images by adapting U-Net architecture-based CNN for single image de-raining.

2. Develop a classifier to identify whether the generated image is real or fake based on
intra-convolutional “PatchGAN” architecture.

3. Due to the lack of access to the ground truth of rainy images, we present a new
dataset synthesizing rainy images using real-world clean images, which are used as
the ground truth counterpart in this research.

The paper is organized as follows: In Section 2, we provide an overview of related
methods for image de-raining and the basic concepts behind cGANs. Section 3 describes
the proposed model (CGANet—Conditional Generative Adversarial Network model) in
detail with its architecture. Section 4 describes the experimental details with evaluation
results. Section 5 provides the conclusion. Implementation details and the dataset used for
the experiments are publicly available at GitHub (https://github.com/prasadmaduranga/
CGANet (accessed on 11 December 2020)).

2. Related Work

In the past, numerous methods and research approaches have been proposed for
image de-raining. These methods can be categorized as single image-based methods and
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video-based methods. With the evolution of neural networks, deep learning-based methods
have become more dominant and efficient compared to past state-of-the-art methods.

2.1. Single Image-based Methods

Single image-based methods have limited access to information compared to video-
based methods, which makes it more challenging to remove the rain streaks. Single image-
based methods include low-rank approximations [3,19], dictionary learning [4,5,20], and
kernel-based methods [21]. In [4], the authors decomposed the image into high- and low-
frequency components and recognized the rain streaks by processing the high-frequency
components. Other mechanisms have used gradients [22] and mixture models [18] to
model and remove rain streaks. In [18], the authors introduced a patch-based prior for
both clean and rainy layers using Gaussian mixture models (GMM). The GMM prior for
rainy layers was learned from rainy images, while for the clean images, it was learned from
natural images. Nonlocal mean filtering and kernel regression were used to identify rain
streaks in [21].

2.2. Video-based Methods

With the availability of inter-frame information, video-based image de-raining is
relatively more effective and easier compared to single image de-raining. Most research
studies [1,23,24] have focused on detecting potential rain streaks using their physical
characteristics and removing them using image restoration algorithms. In [25], the authors
divided rain streaks into dense and sparse groups and removed the streaks using a matrix
decomposition algorithm. Other methods have focused on de-raining in the Fourier
domain [1] using Gaussian mixture models [23], matrix completions [24], and low-rank
approximations [3].

2.3. Deep Learning based Methods

Deep learning-based methods have gained much popularity and success in a variety
of high-level computer vision tasks in the recent past [26–28] as well as in image processing
problems [29–31]. Deep learning was introduced for de-raining in [11] where a three-layer
CNN was used for removing rain streaks and dirt spots in an image that had been taken
through glass. In [12], a CNN was proposed for video-based de-raining, while a recurrent
neural network was adopted by Liu in [32]. The authors in [33] proposed a residual-guide
feature fusion network for single image de-raining. A pyramid of networks was proposed
in [17], which used the domain-specific knowledge to reinforce the learning process.

CNNs learn to minimize a loss function, and the loss value itself decides the quality
of output results. Significant design efforts and domain expertise are required to define an
effective loss function. In other words, it is necessary to provide the CNN with what the
user requires to minimize. Instead, if it is possible to set a high-level, general goal such
as “make the output image indistinguishable from the target images”, then the CNN can
automatically learn a loss function to satisfy the goal. This is the basic underlying concept
behind generative adversarial networks (GANs).

2.4. Generative Adversarial Networks

Generative adversarial networks [14] are unsupervised generative models that contain
two deep neural networks. The two neural networks are named as the generator (G) and
discriminator (D) and are trained parallelly during the training process. GAN training can
be considered to be a two-player min-max game where the generator and discriminator
compete with each other to achieve each other’s targeted goal. The generator is trained
to learn a mapping from a random noise vector (z) in latent space to an image (x) in a
target domain: G(z) → x. The discriminator (D) learns to classify a given image as a real
(output close to 1) image or a fake (output close to 0) image from the generator (G): D(x) →
[0.1]. Both the generator and decimator can be considered as two separate neural networks
trained from backpropagation, and they have separate loss functions. Figure 1 shows

21



Appl. Sci. 2021, 11, 2214

the high-level architecture of the proposed conditional GAN model. The generator will
try to generate synthetic images that resemble real images to fool the discriminator. The
discriminator learns how to identify the real images from the generated synthetic images
from the generator.

Figure 1. High-level architecture of the proposed model (CGANet).

The widest adaptation of GANs is for data augmentation, or that is to say, to learn from
existing real-world samples and generate new samples consistent with the distribution.
Generative modeling has been used in a wide range of application domains including
computer vision, natural language processing, computer security, medicine, etc.

Xu et al. [34] used GANs for synthesizing image data to train and validate perception
systems for autonomous vehicles. In addition to that, [35,36] used GANs for data fusion
for developing image classification models while mitigating the issue of having smaller
datasets. Furthermore, GANs were used for augmenting datasets for adversarial training
in [37]. To increase the resolution of images, a super-resolution GAN was proposed by
Ledig et al. [38], which took a low-resolution image as the input and generated a high-
resolution image with 4× upscaling. To convert the image content from one domain
to another, an image-to-image translation approach was proposed by Isola et al. [15]
using CGANs. Roy et al. [39] proposed a TriGAN, which could solve the problem of
image translation by adapting multiple source domains. Experiments showed that the
SeqGAN proposed in [40] outperformed the traditional methods used for music and speech
generation. In the computer security domain, Hu and Tan [41] proposed a GAN-based
model to generate malware. For private product customization, Hwang et al. [42] proposed
GANs to manufacture medical products.

3. Proposed Model

The proposed approach uses image-to-image translation for the image de-raining
task. In a GAN, the generator produces the output based on the latent variable or the
noise variable (z). However, in the proposed approach, it is necessary for a correlation
to exist between the source image and the generator output image. We have applied the
conditional GAN [16], which is a variant of the traditional GAN that takes additional
information, y, as the input. In this case, we provide a source image with rain streaks as
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additional information for both the generator and discriminator. x represents the target
image.

The objective of a conditional GAN is as follows:

LcGAN (G. D) = Ex~pdata(X)[log(D(x. y))] + Ez~pz(Z)[log(1 − D(G(z. y). y)) (1)

where pdata(X) denotes the real data probability distribution defined in the data space
X, and pz(Z) denotes the probability distribution of the latent variable z defined on the
latent space Z. Ex~pdata(X) and Ez~pz(Z) represent the expectations over the data spaces X
and Z respectively. G(.) and D(.) represent the non-linear mappings of the generator and
discriminator networks respectively.

In an image de-raining task, the higher-order color and texture information has to
be preserved during the image translation. This has a significant impact on the visual
performance of the output. Adversarial loss alone is not sufficient for this task. The loss
function should be optimized so that it penalizes the perceptual differences between the
output image and the target image.

Our implementation architecture is based on the work of Isola’s [15] Pix2Pix frame-
work. It learns a mapping from an input image to an output image along with the objective
function to train the model. In Pix2Pix, it suggests L1 (mean absolute error) loss instead of
L2 (mean squared error) loss for the GAN objective function, since it encourages less blur-
ring in the generator output. L1 loss averages the pixel level absolute difference between
the target image and the generated image G(z. y) over the image space x.y.z.

L1(G) = Ex.y.z[‖ x − G(z. y) ‖] (2)

Finally, the loss function for this work is as follows:

L(G. D) = LcGAN (G. D) + λ L1(G) (3)

Lambda (λ) is a hyperparameter that controls the weights of the terms. In this case,
we kept lambda = 100 [15]. When training the model, lambda was increased to train a
discriminator and minimized to train a generator. The final objective was to identify the
generator G* by solving the following optimization problem:

G∗ = arg minG maxD (LcGAN(G, D) + λL1(G)) (4)

Model Overview

• Generator Network

In image-to-image translations, it is necessary to map a high-resolution input grid to a
high-resolution output grid. Though the input and output images differ in appearance,
they share the same underlying structure, and as such, it is necessary to consider this factor
when designing the generator architecture. Most previous work used the encoder-decoder
network [43] for such scenarios. In encoder-decoder CNN, the input is progressively
downsampled until the bottleneck layer, where the process gets reversed and starts to
upsample the input data. Convolutional layers use 4 × 4 filters and strides with size
2 for downsampling. The same size of kernel is used for transpose convolution operation
during upsampling. Each convolution/deconvolution operation is followed by batch
normalization and Rectified Linear Unit (ReLU) activation. Weights of the generator are
updated depending on the adversarial loss of the discriminator and the L1 loss of the
generator. Architecture details are shown in Table 1.
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Table 1. Generator architecture of the CGANet model.

Generator Architecture

Input(256 × 256), Num_c = 3

Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128

Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256

Downsampling: 4 × 4 Convolution + BN + ReLu, Output: 16 × 16, Num_c: 512

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 512

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 8×8, Num_c: 512

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 4 × 4, Num_c: 512

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 2 × 2, Num_c: 512

Downsampling 4 × 4 Convolution + BN + ReLu, Output: 1 × 1, Num_c: 512

Upsampling 4 × 4 Convolution + BN + ReLu, Output: 2 × 2, Num_c: 512

Concatenation: Input (2×2×512), (2 × 2 × 512), Output (2 × 2 × 1024)

Upsampling 4 × 4 Convolution + BN + ReLu, Output: 4 × 4, Num_c: 512

Concatenation: Input (4 × 4 × 512), (4 × 4 × 512), Output (4 × 4 × 1024)

Upsampling 4 × 4 Convolution + BN + ReLu, Output: 8 × 8, Num_c: 512

Concatenation: Input (8×8×512), (8×8×512), Output (8 × 8 × 1024)

Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 16 × 16, Num_c: 512

Concatenation: Input (16 × 16 × 512), (16 × 16 × 512), Output (16 × 16 × 1024)

Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256

Concatenation: Input (32 × 32 × 256), (32 × 32 × 256), Output (32 × 32 × 512)

Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128

Concatenation: Input (64 × 64 × 128), (64 × 64 × 128), Output (64 × 64 × 256)

Upsampling: 4 × 4 Transpose Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64

Concatenation: Input (128 × 128 × 64), (128 × 128 × 64), Output (128 × 128 × 128)

Upsampling: 4 × 4 Transpose Convolution, Output: 256×256, Num_c: 3

These networks require all the input information to pass through each of the middle
layers. In most of the image-to-image translation problems, it is desirable to share the
feature maps across the network since both input and output images represent the same
underlying structure. For this purpose, we added a skip connection while following the
general configuration of a “U-Net” [44]. Skip connections simply concatenate the channels
at the ith layer with the channels at the (n–i)th layer.

• Discriminator Network

We adapted PatchGAN architecture [45] for the discriminator, which penalized the
structure at the scale of patches. It tried to classify each N × N patch as either real or fake.
Final output of the discriminator (D) was calculated by averaging the received responses
by running the discriminator convolutionally across the image. In this case, the patch was
30 × 30 in size, and each convolutional layer was followed by a ReLU activation and batch
normalization. Zero-padding layers were used to preserve the edge details of the input
feature maps during the convolution. Discriminator architecture is described in Table 2.
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Table 2. Discriminator architecture of the CGANet model.

Discriminator Architecture

Input Image (256 × 256 × 3) + Target Image (256 × 256 × 3)

Concatenation: Input (256 × 256 × 3), (256 × 256 × 3), Output (2 × 2 × 1024)

Downsample 4 × 4 Convolution + BN + ReLu, Output: 128 × 128, Num_c: 64

Downsample 4 × 4 Convolution + BN + ReLu, Output: 64 × 64, Num_c: 128

Downsample 4 × 4 Convolution + BN + ReLu, Output: 32 × 32, Num_c: 256

Zero Padding 2D: Output: 34 × 34, Num_c: 256

Downsample 4 × 4 Convolution + BN + ReLu, Output: 31 × 31, Num_c: 512

Zero Padding 2D: Output: 33×33, Num_c: 512

Downsample 4 × 4 Convolution + BN + ReLu, Output: 30 × 30, Num_c: 1

4. Experimental Details

This section discusses the experimental details of our proposed CGANet model and
the quality matrices used to evaluate the performance of the proposed model. CGANet
performance is compared with two other state-of-the-art methods: the Gaussian mixture
model [18] and lightweight pyramid networks [17]. The algorithm implementation was
conducted using Python and TensorFlow 2.0 [46]. CGANet was trained on a computer
with a 2.2 GHz, 6-core Intel core i7 processor, 16 GB memory, and an AMD Radeon Pro
555X GPU.

4.1. Dataset

The training set consisting of 1500 images was chosen from a global road damage
detection challenge dataset [47]. Rain streaks of different angles and intensities have
been added to those images using Photoshop to create a synthesized rainy image set.
Corresponding clean images become the target ground truth image set for the synthesized
rainy image set. The test set consists of both synthesized and real-world rainy images.
Three hundred synthesized images were chosen from the global road damage detection
challenge dataset and pre-processed similarly when preparing the training set. Test dataset
outputs are shown in Figure 2 as a comparison between the proposed CGANet model
and the state-of-the-art de-raining methods. Real-world rainy images were taken from the
internet, and they were considered only for demonstrating the effectiveness of the CGANet
model. Since ground truth images were not available for the real-world rainy images, they
were not taken into the account when training the model. Test results of real-world images
are shown in Figure 3.

4.2. Evaluation Matrix and Results

The peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [48] were
used to evaluate and compare the performance of the model. PSNR measures how far the
de-rained image is distorted from its real ground truth image by using the mean squared
error at the pixel level. As shown in Table 1, the proposed CGANet model obtained the
best PSNR value compared to the other two methods. The structural similarity index
(SSIM) is a perception-based index that evaluates image degradation as the perceived
difference in structural information while also incorporating both luminance masking and
contrast masking terms. Table 3 shows the SSIM value comparison between the proposed
CGANet model and the other two state-of-the art methods. By referring to this comparison,
we could verify that the proposed method performed well compared to other de-raining
mechanisms, and this is also visually verifiable in Figures 2 and 3.
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Figure 2. Qualitative comparison between GMM, pyramid networks, and proposed CGANet methods.

  

  

  

Figure 3. CGANet on real-world dataset ((Left) Input image; (Right) de-rained output).
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Table 3. Quantitative comparison between different de-raining methods (mean ± STD).

Index Pyramid GMM CGANet

PSNR 23.48 ± 2.09 24.37 ± 2.15 25.85 ± 1.57
SSIM 0.731 ± 0.06 0.762 ± 0.06 0.768 ± 0.04

4.3. Parameter Settings

To optimize the proposed model, we followed the findings provided in the original
GAN paper [14]. Instead of training the generator to minimize log(1 − D(x; G(x; z)), we
trained it to maximize log D(x; G(x; z)). Since the discriminator could be trained much
faster compared to the generator, we divided the discriminator loss by 2 while optimizing
the discriminator. As such, the discriminator training speed slowed down compared to
the generator. Both the discriminator and generator models were trained with an Adam
optimizer [49] with a learning rate of 0.0002 and a momentum parameter β1 of 0.5 [15].
The model was trained using 150 epochs and updated after each image, and as such, the
batch size was 1.

5. Conclusions

In this paper, we have proposed a single image de-raining model based on conditional
generative adversarial networks and a Pix2Pix framework. The model consists of two
neural networks: a generator network to map rainy images to de-rained images, and a dis-
criminator network to classify real and generated de-rained images. Different performance
matrices were used to evaluate the performance of the new model using both synthesized
and real-world image data. The evaluations proved that the proposed CGANet model
outperformed the state-of-the-art methods for image de-raining. The new CGANet model
is presented as a high-potential approach for successful de-raining of images.

This paper is focused on image de-raining; however, the proposed model applies
equally well to any other image translation problem in a different domain. In future devel-
opments, further analysis can be carried out to optimize the loss function by incorporating
more comprehensive components with local and global perceptual information.
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Abstract: With the popularity of online opinion expressing, automatic sentiment analysis of images
has gained considerable attention. Most methods focus on effectively extracting the sentimental
features of images, such as enhancing local features through saliency detection or instance segmen-
tation tools. However, as a high-level abstraction, the sentiment is difficult to accurately capture
with the visual element because of the “affective gap”. Previous works have overlooked the con-
tribution of the interaction among objects to the image sentiment. We aim to utilize interactive
characteristics of objects in the sentimental space, inspired by human sentimental principles that
each object contributes to the sentiment. To achieve this goal, we propose a framework to leverage
the sentimental interaction characteristic based on a Graph Convolutional Network (GCN). We first
utilize an off-the-shelf tool to recognize objects and build a graph over them. Visual features represent
nodes, and the emotional distances between objects act as edges. Then, we employ GCNs to obtain
the interaction features among objects, which are fused with the CNN output of the whole image
to predict the final results. Experimental results show that our method exceeds the state-of-the-art
algorithm. Demonstrating that the rational use of interaction features can improve performance for
sentiment analysis.

Keywords: visual sentiment analysis; sentiment classification; convolutional neural networks; graph
convolutional networks

1. Introduction

With the vast popularity of social networks, people tend to express their emotions
and share their experiences online through posting images [1], which promotes the study
of the principles of human emotion and the analysis and estimation of human behavior.
Recently, with the wide application of convolution neural networks (CNNs) in emotion
prediction, numerous studies [2–4] have proved the excellent ability of CNN to recognize
the emotional features of images.

Based on the theory that the emotional cognition of a stimulus attracts more human
attention [5], some researchers enriched emotional prediction with saliency detection or
instance segmentation to extract more concrete emotional features [6–8]. Yang et al. [9] put
forward the “Affective Regions” which are objects that convey significant sentiments, and
proposed three fusion strategies for image features from the original image and “Affective
Regions”. Alternatively, Wu et al. [8] utilized saliency detection to enhance the local
features, improving the classification performance to a large margin.

“Affective Regions” or Local features in images play a crucial role in image emotion,
and the above methods can effectively improve classification accuracy. However, although
these methods have achieved great success, there are still some drawbacks. They focused
on improving visual representations and ignored emotional effectiveness of objects, which
leads to a non-tendential feature enhancement. For example, in an image expressing a
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positive sentiment, positivity is generated by interaction among objects. Separating objects
and directly merging the features will lose much of the critical information of image.

Besides, they also introduce a certain degree of noise, which leads to the limited perfor-
mance improvement obtained through visual feature enhancement. For example, in human
common sense, “cat” tends to be a positive categorical word. As shown in Figure 1a,b,
when “cat” forms the image with other neutral or positive objects, the image tends to be
more positive, consistent with the conclusion that local features can improve accuracy. In
the real world, however, there are complex images, as shown in Figure 1c,d, “cat” can be
combined with other objects to express opposite emotional polarity, reflecting the effect of
objects on emotional interactions. Specifically, in Figure 1d, the negative sentiment is not
directly generated by the “cat” and “injector”, but the result of the interaction between the
two in the emotional space. Indiscriminate feature fusion of such images will affect the
performance of the classifier.

(a) A Cat is licking a Strawberry (b) A Cat is licking a Gift

(c) A Cat in Cage (d) A Cat is being Injected

Figure 1. Examples from EmotionROI dataset and social media: We use a graph model to describe the sentimental
interaction between objects and the double arrow means the interaction in the process of human emotion reflection.

To address the abovementioned problems, we design a framework with two branches,
one of which uses a deep network to extract visual emotional features in images. The
other branch uses GCN to extract emotional interaction features of objects. Specially,
we utilize Detectron2 to obtain the object category, location, and additional information
in images. And then, SentiWordNet [10] is selected as an emotional dictionary to mark
each category word with emotional intensity value. Based on the above information,
we use the sentimental value of objects and visual characteristics in each image to build
the corresponding graph model. Finally, we employ GCN to update and transmit node
features, generate features after object interaction, which, together with visual components,
serve as the basis for sentiment classification.

The contributions of this paper can be summarized as follows:
1. We propose an end-to-end image sentiment analysis framework that employs GCN

to extract sentimental interaction characteristics among objects. The proposed model makes
extensive use of the interaction between objects in the emotional space rather than directly
integrating the visual features.

2. We design a method to construct graphs over images by utilizing Detectron2 and
SentiWordNet. Based on the public datasets analysis, we leverage brightness and texture as
the features of nodes and the distances in emotional space as edges, which can effectively
describe the appearance characteristics of objects.

3. We evaluate our method on five affective datasets, and our method outperforms
previous high-performing approaches.

We make all programs of our model publicly available for research purposes https:
//github.com/Vander111/Sentimental-Interaction-Network.
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2. Related Work

2.1. Visual Sentiment Prediction

Existing methods can be classified into two groups: dimensional spaces and categorical
states. Dimensional spaces methods employ valence-arousal space [11] or activity-weight-
heat space [12] to represent emotions. On the contrary, categorical states methods classify
emotions into corresponding categories [13,14], which is easier for people to understand,
and our work falls into categorical states group.

Feature extraction is of vital importance to emotion analysis, various kinds of features
may contribute to the emotion of images [15]. Some researchers have been devoting
themselves to exploring emotional features and bridging the “affective gap”, which can be
defined as the lack of coincidence between image features and user emotional response
to the image [16]. Inspired by art and psychology, Machajdik and Hanbury [14] designed
low-level features such as color, texture, and composition. Zhao et al. [17] proposed
extensive use of visual image information, social context related to the corresponding
users, the temporal evolution of emotion, and the location information of images to predict
personalized emotions of a specified social media user.

With the availability of large-scale image datasets such as ImageNet and the wide
application of deep learning, the ability of convolutional neural networks to learn discrimi-
native features has been recognized. You et al. [3] fine-tuned the pre-trained AlexNet on
ImageNet to classify emotions into eight categories. Yang et al. [18] integrated deep metric
learning with sentiment classification and proposed a multi-task framework for affective
image classification and retrieval.

Sun et al. [19] discovered affective regions based on an object proposal algorithm and
extracted corresponding in-depth features for classification. Later, You et al. [20] adopted an
attention algorithm to utilize localized visual features and got better emotional classification
performance than using global visual features. To mine emotional features in images more
accurately, Zheng et al. [6] combined the saliency detection method with image sentiment
analysis. They concluded that images containing prominent artificial objects or faces, or
indoor and low depth of field images, often express emotions through their saliency regions.
To enhance the work theme, photographers blurred the background to emphasize the main
body of the picture [14], which led to the birth of close-up or low-depth photographs.
Therefore, the focus area in low-depth images fully expresses the information that the
photographer and forwarder want to tell, especially emotional information.

On the other hand, when natural objects are more prominent than artificial objects or
do not contain faces, or open-field images, emotional information is usually not transmitted
only through their saliency areas. Based on these studies, Fan et al. [7] established an
image dataset labeled with statistical data of eye-trackers on human attention to exploring
the relationship between human attention mechanisms and emotional characteristics.
Yang et al. [9] synthetically considered image objects and emotional factors and obtained
better sentiment analysis results by combining the two pieces of information.

Such methods make efforts in extracting emotional features accurately to improve
classification accuracy. However, as an integral part of an image, objects may carry emo-
tional information. Ignoring the interaction between objects is unreliable and insufficient.
This paper selects the graph model and graph convolution network to generate sentimental
interaction information and realize the sentiment analysis task.

2.2. Graph Convolutional Network(GCN)

The notion of graph neural networks was first outlined in Gori et al. [21] and further
expound in Scarselli et al. [22]. However, these initial methods required costly neural
“message-passing” algorithms to convergence, which was prohibitively expensive on mas-
sive data. More recently, there have been many methods based on the notion of GCN,
which originated from the graph convolutions based on the spectral graph theory of
Bruna et al. [23]. Based on this work, a significant number of jobs were published and
attracted the attention of researchers.
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Compared with the deep learning model introduced above, the graph model virtually
constructs relational models. Chen et al. [24] combined GCN with multi-label image
recognition to learn inter-dependent object information from labels. A novel re-weighted
strategy was designed to construct the correlation matrix for GCN, and they got a higher
accuracy compared with many previous works. However, this method is based on the
labeled objects information from the dataset, which needs many human resources.

In this paper, we employ the graph structure to capture and explore the object sen-
timental correlation dependency. Specifically, based on the graph, we utilize GCN to
propagate sentimental information between objects and generate corresponding interaction
features, which is further applied to the global image representation for the final image sen-
timent prediction. Simultaneously, we also designed a method to build graph models from
images based on existing image emotion datasets and describe the relationship features of
objects in the emotional space, which can save a lot of workforce annotation.

3. Method

3.1. Framework

This section aims to develop an algorithm to extract interaction feature without man-
ual annotation and combine it with holistic representation for image sentiment analysis.
As shown in Figure 2, given an image with sentiment label, we employ a panoptic seg-
mentation model, i.e., Detectron2, to obtain category information of objects and based on
which we build a graph to represent the relationships among objects. Then, we utilize the
GCN to leverage the interaction feature of objects in the emotional space. Finally, the inter-
active features of objects are concatenated with the holistic representation (CNN branch) to
generate the final predictions. In the application scenario, given an image, we first use the
panoramic segmentation model for data preprocessing to obtain the object categories and
location information and establish the graph model. The graph model and the image are
input into the corresponding branch to get the final sentiment prediction result.

Graph Convolutional Network (GCN)

…

Convolutional Neural Network (CNN)

+

Figure 2. Pipline of proposed approach framework.

3.2. Graph Construction
3.2.1. Objects Recognition

Sentiment is a complex logical response, to which the relations among objects in
the image have a vital contribution. To deeply comprehend the interaction, we build a
graph structure (relations among objects) to realize interaction features. And we take the
categories of objects as the node and the hand-crafted feature as the representation of the
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object. However, existing image sentiment datasets, such as Flickr and Instagram (FI) [3],
EmotionROI [25], etc., do not contain the object annotations. Inspired by the previous
work [9], we employ the panoptic segmentation algorithm to detect objects.

We choose the R101-FPN model of Detectron2, containing 131 common object cat-
egories, such as “person”, “cat”,“bird”, “tree” etc., to realize recognition automatically.
As shown in Figure 3, through the panoptic segmentation model, we process the orig-
inal image Figure 3a to obtain the image Figure 3b containing the object category and
location information.

Fence

Person

Tree
Bench

Pavement
Bird

a

b c
Figure 3. Example of building graph model. Given the input image (a), Detectron2 can detect the region and categories of objects
and (b) is the segmentation result. Based on the detection information, we build a graph (c) over the corresponding image.

3.2.2. Graph Representation

As a critical part of the graph structure, edges determine the weights of node infor-
mation propagation and aggregation. In other fields, some researchers regard semantic
relationship or co-occurrence frequency of objects as edges [1,26]. However, as a basic
feature, there is still a gap between object semantics and sentiment, making it hard to
accurately describe the sentimental relationship. Further, it is challenging to label abstract
sentiments non-artificially due to the “affective gap” between low-level visual features and
high-level sentiment. To solve this problem, we use the semantic relationship of objects
in emotional space as the edges of the graph structure. Given the object category, we
employ SentiWordNet as a sentiment annotation to label each category with sentimental
information. SentiWordNet is a lexical resource for opinion mining that annotates the
positive and negative values in the range [0,1] to words.

As shown in Equations (1) and (2), we retrieve words related to the object category in
SentiWordNet, and judge the sentimental strength of the current word W with the average
value of related words W

′
, where Wp is the positive emotional strength, Wn is the negative

emotion strength.

Wn =
∑n

i=1 W
′
in

n
(1)

Wp =
∑n

i=1 W
′
ip

n
(2)
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In particular, we stipulate that sentimental polarity of a word is determined by positive
and negative strength. As shown in Equation (3), sentiment value S is the difference
between the two sentimental intensity of words. In this way, positive words have a positive
sentiment value, and negative words are the opposite. And S is in [−1, 1] because of the
intensity of sentiments is between 0–1 in SentiWordNet.

S = Wp − Wn (3)

Based on this, we design the method described in Equation (4). We can use a sentimen-
tal tendency of objects to measure the sentimental distance Lij between words Wi and Wj.
When two words have the same sentimental tendency, we define the difference between the
two sentiment values Si and Sj as the distance in the sentimental space. On the contrary, we
specify that two words with opposite emotional tendencies are added by one to enhance
the sentimental difference. Further, we build the graph over the sentimental values and
the object information. In Figure 3c, we show the relationship among node “person” and
adjacent nodes, and the length of the edge reflects the distance between nodes.

Lij =

⎧⎨⎩
∣∣|Si| −

∣∣Sj
∣∣∣∣+ 1, i f Si ∗ Sj > 0

0.5, i f Si = 0, Sj = 0∣∣|Si| −
∣∣Sj

∣∣∣∣, otherwise
(4)

3.2.3. Feature Representation

The graph structure describes the relationship between objects. And the nodes of the
graph aim to describe the features of each object, where we select hand-crafted feature,
intensity distribution, and texture feature as the representation of objects. Inspired by
Machajdik [14], we calculate and analyze the image intensity characteristics on image
datasets EmotionROI and FI. In detail, we quantify the intensity of each pixel to 0–10 and
make histograms of intensity distribution. As shown in Figure 4, we find that the intensity
of positive emotions (joy, surprise, etc.) is higher than that of negative emotions (anger,
sadness, etc.) when the brightness is 4–6, while the intensity of negative emotions is higher
on 1–2.
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Figure 4. The distribution curve of the number of brightness pixels of different emotion categories in the EmotionROI and
Flickr and Instagram (FI) dataset.

The result shows that the intensity distribution can distinguish the sentimental polarity
of the images to some extent. At the same time, we use the Gray Level Co-occurrence
Matrix(GLCM) to describe the texture feature of each object in the image as a supplement
to the image detail feature. Specifically, we quantified the luminance values as 0–255 and
calculated a 256-dimensional eigenvector with 45 degrees as the parameter of GLCM. The
node feature in the final graph model is a 512-dimensional eigenvector.
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3.3. Interaction Graph Inference

Sentiment contains implicit relationships among the objects. Graph structure expresses
low-level visual features and the relationship among objects, which is the source of interac-
tion features, and inference is the process of generating interaction features. To simulate
the interaction process, we employ GCN to propagate and aggregate the low-level features
of objects under the supervision of sentimental distances. We select the stacked GCNs, in
which the input of each layer is the output Hl from the previous layer, and generate the
new node feature Hl+1.

The feature update process of the layer l is shown in Equation (5), Ã is obtained by
adding the edges of the graph model, namely the adjacency matrix and the identity matrix.
Hl is the output feature of the previous layer, Hl+1 is the output feature of the current layer,
Wl is the weight matrix of the current layer, and σ is the nonlinear activation function.
D̃ is the degree matrix of Ã, which is obtained by Equation (6).The first layer’s input is
the initial node feature H0 of 512 dimensions generated from the brightness histogram
and GLCM introduced above. Also, the final output of the model is the feature vector of
2048 dimensions.

Hl+1 = σ(D̃− 1
2 ÃD̃− 1

2 HlWl) (5)

D̃ii = ∑
j

Ãij (6)

3.4. Visual Feature Representation

As a branch of machine learning, deep learning has been widely used in many fields,
including sentiment image classification. Previous studies have proved that CNN network
can effectively extract visual features in images, such as appearance and position, and map
them to emotional space. In this work, we utilize CNN to realize the expression of visual
image features. To make a fair comparison with previous works, we select the popularly
used model VGGNet [27] as the backbone to verify the effectiveness of our method. For
VGGNet, we adopt a fine-tuning strategy based on a pre-trained model on ImageNet and
change the output number of the last fully connected layer from 4096 to 2048.

3.5. Gcn Based Classifier Learning

In the training process, we adopt the widely used concatenation method for feature
fusion. In the visual feature branch, we change the last fully connected layer output of the
VGG model to 2048 to describe the visual features extracted by the deep learning model.
For the other branch, we process the graph model features in an average operation. In
detail, the Equation (7) is used to calculate interaction feature Fg, where n is the number of
nodes in a graph model, F

′
is the feature of each node after graph convolution.

Fg =
∑n

i=1 F
′

n
(7)

After the above processing, we employ the fusion method described in Equation (8)
to calculate the fusion feature of visual and relationship, which is fed into the fully con-
nected layer and realize the mapping between features and sentimental polarity. And the
traditional cross entropy function is taken as the loss function, as shown in Equation (9),
N is the number of training images, yi is the labels of images, and Pi is the probability of
prediction that 1 represents a positive sentiment and 0 means negative.

F = [Fd; Fg] (8)

L = − 1
N

N

∑
i=1

(yi ∗ logPi + (1 − yi) ∗ log(1 − Pi)) (9)
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Specifically, Pi is defined as Equation (10), where c is the number of classes. In this
work, c is defined as 2, and f j is the output of the last fully connected layer.

Pi =
e fi

∑c
j=1 e fj

(10)

4. Experiment Results

4.1. Datasets

We evaluate our framework on five public datasets: FI, Flickr [28], EmotionROI [25],
Twitter I [29], Twitter II [28]. Figure 5 shows examples of these datasets. FI dataset is
collected by querying with eight emotion categories (i.e., amusement, anger, awe, con-
tentment, disgust, excitement, fear, sadness) as keywords from Flickr and Instagram, and
ultimately gets 90,000 noisy images. The original dataset is further labeled by 225 Amazon
Mechanical Turk (AMT) workers and resulted in 23,308 images receiving at least three
agreements. The number of images in each emotion category is larger than 1000. Flickr con-
tains 484,258 images in total, and the corresponding ANP automatically labeled each image.
EmotionROI consists of 1980 images with six sentiment categories assembled from Flickr
and annotated with 15 regions that evoke sentiments. Twitter I and Twitter II datasets are
collected from social websites and labeled with two categories (i.e., positive and negative)
by AMT workers, consisting of 1296 and 603 images. Specifically, we conducted training
and testing on the three subsets of Twitter I: “Five agree”, “At least four agree” and “At
least three agree”, which are filtered according to the annotation. For example, “Five agree”
indicates that all the Five AMT workers rotate the same sentiment label for a given image.
As shown in Table 1.

EmotionROI TwitterI TwitterII

FI Flickr
Figure 5. Some examples in the five datasets.
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Table 1. Released and freely available datasets, where #Annotators respectively represent the number
of annotators.

Dataset Images Number Source #Annotators Emotion Model

FI 23,308 social media 225 Mikels
Flickr 484,258 social media - Ekman

TwitterI 1269 social media 5 Sentiment
TwitterII 603 social media 9 Sentiment

EmotionROI 1980 social media 432 Ekman

According to the affective model, the multi-label datasets EmotionROI and FI are
divided into two parts: positive and negative, to achieve the sentimental polarity classi-
fication. EmotionROI has six emotion categories: anger, disgust, fear, joy, sadness, and
surprise. Images with labels of anger, disgust, fear, sadness are relabeled as negative, and
those with joy and surprise are labeled as positive. In the FI dataset, we divided Mikel’s
eight emotion categories into binary labels based on [30], suggesting that amusement,
contentment, excitement, and awe are mapped to the positive category, and sadness, anger,
fear, and disgust are labeled as negative.

4.2. Implementation Details

Following previous works [9], we select VGGNet with 16 layers [25] as the backbone of
the visual feature extraction and initialize it with the weights pre-trained on ImageNet. At
the same time, we remove the last fully connected layer of the VGGNet. We randomly crop
and resize the input images into 224 × 224 with random horizontal flip for data enhance-
ment during the training. On FI, we select SGD as the optimizer and set Momentum to 0.9.
The initial learning rate is 0.01, which drops by a factor of 10 per 20 epoch. And Table 2
shows the specific training strategy on the five datasets. In the relational feature branch, we
use two GCN layers whose output dimensions are 1024 and 2048. 512-dimension vector
characterizes each input node feature in the graph model. We adopted the same split and
test method for the data set without specific division as Yang et al. [9]. For small-scale data
sets, we refer to the strategy of Yang et al. [9], take the model parameters trained on the FI
as initial weights, and fine-tune the model on the training set.

Table 2. Setting of training parameters on the dataset of FI, Flickr, EmotionROI, Twitter I, Twitter II.

Dataset Learning Rate Drop Factor Croped Size Momentum Optimizer

FI 0.01 20 224 × 224 0.9 SGD
Flickr 0.01 5 224 × 224 0.9 SGD

TwitterI 0.02 30 224 × 224 0.9 SGD
TwitterII 0.03 20 224 × 224 0.9 SGD

EmotionROI 0.03 30 224 × 224 0.9 SGD

4.3. Evaluation Settings

To demonstrate the validity of our proposed framework for sentiment analysis, we
evaluate the framework against several baseline methods, including methods using tradi-
tional features, CNN-based methods, and CNN-based methods combined with instance
segmentation.

• The global color histograms (GCH) consists of 64-bin RGB histogram, and the local
color histogram features (LCH) divide the image into 16 blocks and generate a 64-bin
RGB histogram for each block [31].

• Borth et al. [28] propose SentiBank to describe the sentiment concept by 1200 adjectives
noun pairs (ANPs), witch performs better for images with rich semantics.
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• DeepSentibank [32] utilizes CNNs to discover ANPs and realizes visual sentiment con-
cept classification. We apply the pre-trained DeepSentiBank to extract the 2089-dimension
features from the last fully connected layer and employ LIBSVM for classification.

• You et al. [29] propose to select a potentially cleaner training dataset and design the
PCNN, which is a progressive model based on CNNs.

• Yang et al. [9] employ object detection technique to produce the “Affective Regions”
and propose three fusion strategy to generate the final predictions.

• Wu et al. [8] utilize saliency detection to enhance the local features, improving the
classification performance to a large margin. And they adopt an ensemble strategy,
which may contribute to performance improvement.

4.4. Classification Performance

We evaluate the classification performance on five affective datasets. Table 3 shows
that the result of depth feature is higher than that of the hand-crafted feature and CNNs
outperform the traditional methods. The VGGNet achieves significant performance im-
provements over the traditional methods such as DeepSentibank and PCNN on FI datasets
of good quality and size. Simultaneously, due to the weak in annotation reliability, VGGNet
does not make such significant progress on the Flickr dataset, indicating the dependence
of the depth model on high-quality data annotation. Furthermore, our proposed method
performs well compared with single model methods. For example, we achieve about 1.7%
improvement on FI and 2.4% on EmotionROI dataset, which means that the sentimental
interaction features extracted by us can effectively complete the image sentiment classifica-
tion task. Besides, we adopt a simple ensemble strategy and achieve a better performance
than state-of-the-art method.

Table 3. Sentiment classification accuracy on FI, Flickr, Twitter I, Twitter II, EmotionROI. Results with bold indicate the best
results compared with other algorithms.

Method FI Flickr
Twitter I

Twitter II EmotionROI
Twitter I-5 Twitter I-4 Twitter I-3

GCH - - 67.91 97.20 65.41 77.68 66.53
LCH - - 70.18 68.54 65.93 75.98 64.29

SentiBank - - 71.32 68.28 66.63 65.93 66.18
DeepSentiBank 61.54 57.83 76.35 70.15 71.25 70.23 70.11
VGGNet [27] 70.64 61.28 83.44 78.67 75.49 71.79 72.25

PCNN 75.34 70.48 82.54 76.50 76.36 77.68 73.58
Yang [9] 86.35 71.13 88.65 85.10 81.06 80.48 81.26

Ours-single 88.12 72.31 89.24 85.19 81.25 80.59 83.62

Wu [8] 88.84 72.39 89.50 86.97 81.65 80.97 83.04
Ours-ensemble 88.71 73.11 89.65 84.48 81.72 82.68 84.29

4.5. the Role of Gcn Branch

As shown in Table 4, compared with the fine-tuned VGGNet, our method has an
average performance improvement of 4.2%, which suggests the effectiveness of sentimental
interaction characteristics in image emotion classification task.

Table 4. The model performance comparison across image datasets. Results with bold indicate the best results compared
with other algorithms.

Method FI Flickr
Twitter I

Twitter II EmotionROI
Twitter I-5 Twitter I-4 Twitter I-3

Fine-tuned VGGNet 83.05 70.12 84.35 82.26 76.75 76.99 77.02
Ours-single 88.12 72.31 89.24 85.19 81.25 80.59 83.62
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4.6. Effect of Panoptic Segmentation

As a critical step in graph model construction, information of objects obtained through
Detectron2 dramatically impacts the final performance. However, due to the lack of
annotation with emotions and object categories, we adopt the panoptic segmentation
model pre-trained on the COCO dataset, which contains a wide range of object categories.
This situation leads to specific noise existing in the image information. As shown in
Figure 6, the lefts are the original images from EmotionROI, and the detection results are
on the right. In detail, there are omission cases (Figure 6d) and misclassification (Figure 6f)
in detection results, which to a certain extent, affect the performance of the model, in
the end, believe that if we can overcome this gap, our proposed method can obtain a
better effect.

a b

c d

e f
Figure 6. Example of panoptic segmentation. Given the raw images (a,c,e), panoptic segmentation generates the accurate
result (b), category missing result (d) and misclassification result (f).

As stated above, some object information of images cannot be extracted by the panoptic
segmentation model. So we further analyze the result on emotionROI, of which each image
is annotated with emotion and attractive regions manually by 15 persons and forms with
the Emotion Stimuli Map. By comparing them with the Emotion Stimuli Map, our method
fails to detect the critical objects in 77 images of a total of 590 testing images, as shown
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in Figure 7 mainly caused by the inconsistent categories of the panoptic segmentation
model. A part of the EmotionROI images and the corresponding stimuli map is shown in
Figure 7a,b, these images in the process of classification using only a part or even no object
interaction information, but our method still predicts their categories correctly, indicating
that visual features still play an essential role in the classification, and the interaction
feature generated by GCN branch further improve the accuracy of the model.

a 

b 

c 
Figure 7. Some example images and corresponding Emotion Stimuli Maps whose object information is broken extracted by
panoptic segmentation model, but correctly predicted by our method. The lefts of (a–c) are the raw images, the middles are
the corresponding stimuli map and the rights are the visual results of segmentation.

5. Conclusions

This paper addresses the problem of visual sentiment analysis based on graph convo-
lutional networks and convolutional neural networks. Inspired by the principles of human
emotion and observation, we find that each type of interaction among objects in the image
has an essential impact on sentiment. We present a framework that consists of two branches
for sentimental interaction representations learning. First of all, we design an algorithm to
build a graph model on popular affective datasets without category information annotated
based on panoptic segmentation information. As an essential part of the graph model,
we define the objects in the images as nodes and calculate the edges between nodes in
the graph model according to sentimental value of each objects. According to the effect
of brightness on sentiment, we select brightness and texture features as node features. A
stacked GCN model is used to generate the relational features describing the interaction
results of objects and integrate them with the visual features extracted by VGGNet to
realize the classification of image sentiment. Experimental results show the effectiveness
of our method on five popular datasets. Furthermore, making more effective utilizing of
objects interaction information remains a challenging problem.
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Abstract: There are many studies that seek to enhance a low resolution image to a high resolution
image in the area of super-resolution. As deep learning technologies have recently shown impressive
results on the image interpolation and restoration field, recent studies are focusing on convolutional
neural network (CNN)-based super-resolution schemes to surpass the conventional pixel-wise
interpolation methods. In this paper, we propose two lightweight neural networks with a hybrid
residual and dense connection structure to improve the super-resolution performance. In order to
design the proposed networks, we extracted training images from the DIVerse 2K (DIV2K) image
dataset and investigated the trade-off between the quality enhancement performance and network
complexity under the proposed methods. The experimental results show that the proposed methods
can significantly reduce both the inference speed and the memory required to store parameters
and intermediate feature maps, while maintaining similar image quality compared to the previous
methods.

Keywords: deep learning; convolutional neural networks; lightweight neural network; single image
super-resolution; image enhancement; image restoration; residual dense networks

1. Introduction

While the resolution of images has been rapidly increasing in recent years with the
development of high-performance cameras, advanced image compression, and display
panels, the demands to generate high resolution images from pre-existing low-resolution
images are also increasing for rendering on high resolution displays. In the field of
computer vision, single image super-resolution (SISR) methods aim at recovering a high-
resolution image from a single low-resolution image. Since the low-resolution images
cannot represent the high-frequency information properly, most super-resolution (SR)
methods have focused on restoring high-frequency components. For this reason, SR
methods are used to restore the high-frequency components from quantized images at the
image and video post-processing stage [1–3].

Deep learning schemes such as convolutional neural network (CNN) and multi-layer
perceptron (MLP) are a branch of machine learning which aims to learn the correlations
between input and output data. In general, the output in the process of the convolution
operations is one pixel, which is a weighted sum between an input image block and a filter,
so an output image represents the spatial correlation of input image corresponding to the
filters used. As CNN-based deep learning technologies have recently shown impressive
results in the area of SISR, various CNN-based SR methods have been developed that
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surpass the conventional SR methods, such as image statistical methods and patch- based
methods [4,5]. In order to improve the quality of low-resolution images, CNN-based SR
networks tend to deploy more complicated schemes, which have deeper and denser CNN
structures and cause increases in the computational complexity like the required memory
to store network parameters, the number of convolution operations, and the inference
speed. We propose two SR-based lightweight neural networks (LNNs) with hybrid residual
and dense networks, which are the “inter-layered SR-LNN” and “simplified SR-LNN”,
respectively, which we denote in this paper as “SR-ILLNN” and “SR-SLNN”, respectively.
The proposed methods were designed to produce similar image quality while reducing the
number of networks parameters, compared to previous methods. Those SR technologies
can be applied to the pre-processing stages of face and gesture recognition [6–8].

The remainder of this paper is organized as follows: In Section 2, we review previous
studies related to CNN-based SISR methods. In Section 3, we describe the frameworks
of the proposed two SR-LNNs for SISR. Finally, experimental results and conclusions are
given in Sections 4 and 5, respectively.

2. Related Works

Deep learning-based SR methods have shown high potential in the field of image inter-
polation and restoration, compared to the conventional pixel-wise interpolation algorithms.
Dong et al. proposed a three-layer CNN structure called super-resolution convolutional
neural network (SR-CNN) [9], which learns an end-to-end mapping from a bi-cubic inter-
polated low-resolution image to a high-resolution image. Since the advent of SR-CNN,
a variety of CNN networks with deeper and denser network structure [10–13] have been
developed to improve the accuracy of SR.

In particular, He et al. proposed a ResNet [11] for image classification. Its key idea is
to learn residuals through global or local skip connection. It notes that ResNet can provide
a high-speed training process and prevent the gradient vanishing effects. In addition to
ResNet, Huang et al. proposed densely connected convolutional networks (DenseNet) [12]
to combine hierarchical feature maps available along the network depth for more flexible
and richer feature representations. Dong et al. proposed an artifacts reduction CNN
(AR-CNN) [14], which effectively reduces the various compression artifacts such as block
artifacts and ringing artifacts on Joint Photographic Experts Group (JPEG) compression
images.

Kim et al. proposed a super-resolution scheme with very deep convolutional networks
(VDSR) [15], which is connected with 20 convolutional layers and a global skip connection.
In particular, the importance of receptive field size and the residual learning was verified by
VDSR. Leding et al. proposed a SR-ResNet [16], which was designed with multiple residual
blocks and generative adversarial network (GAN) for improving visually subjective quality.
Here, a residual block is composed of multiple convolution layers, a batch normalization,
and a local skip connection. Lim et al. exploited enhanced deep super-resolution (EDSR)
and multi-scale deep super-resolution (MDSR) [17]. In particular, as these networks have
been modified in a way of removing the batch normalization, it can reduce graphics
processing unit (GPU) memory demand by about 40% compared with SR-ResNet.

Tong et al. proposed an image super-resolution using dense skip connections (SR-
DenseNet) [18] as shown in Figure 1. Because SR-DenseNet consists of eight dense blocks
and each dense block contains eight dense layers, this network has a total of 67 convolution
layers and two deconvolution layers. Because the feature maps of the previous convolu-
tional layer are concatenated with those of the current convolutional layer within a dense
block, total number of the feature map from the last dense block reaches up to 1040 and it
requires more memory capacity to store the massive network parameters and intermediate
feature maps.

On the other hand, the aforementioned deep learning-based SR methods are also
applied to compress raw video data. For example, Joint Video Experts Team (JVET) formed
the Adhoc Group (AhG) for deep neural networks based video coding (DNNVC) [19]
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in 2020, which aims at exploring the coding efficiency using the deep learning schemes.
Several studies [20–22] have shown better coding performance than the-state-of-the-art
video coding technologies.

 

Figure 1. The framework of SR-DenseNet [18].

3. Proposed Method

Although more complicated deep neural network models have demonstrated better
SR performance than conventional methods, it is difficult to implement them on low-
complexity, low-power, and low-memory devices, due to the massive network parameters
and convolution operations of deeper and denser networks. In case of SR-DenseNet, it is
difficult to implement this model to the applications for real-time processing even though
its SR performance is superior to that of other neural network models. To address this issue,
we considered two lightweight network structures at the expense of unnoticeable quality
degradation, compared to SR-DenseNet. The purpose of the proposed two lightweight
neural networks for SISR is to quadruple the input images the same as SR-DenseNet.
Firstly, SR-ILLNN learns the feature maps, which are derived from both low-resolution
and interpolated low-resolution images. Secondly, SR-SLNN is designed to use only low-
resolution feature maps of the SR-ILLNN for a few more reducing the network complexity.

3.1. Architecture of SR-ILLNN

Figure 2 shows the proposed SR-ILLNN, which consists of two inputs, 15 convolution
layers and two deconvolution layers. The two inputs are denoted as a low-resolution (LR)
image XLR and a bi-cubic interpolated low-resolution (ILR) image XILR where N and M
denote the width and height of the input image XLR, respectively. The reason why we
deployed the two inputs is to compensate the dense LR features of SR-DenseNet with
high-resolution (HR) features of XILR, while reducing the number of convolutional layers
as many as possible. As depicted in Figure 2, it consists of three parts, which are LR feature
layers from convolutional layer 1 (Conv1) to Conv8, HR feature layers from Conv9 to
Conv12, and shared feature layers from Conv13 to Conv15.

Each convolution is operated as in (1), where Wi, Bi, and ‘⊗’ represent the kernels,
biases, and convolution operation of the ith layer, respectively. In this paper, we notate a
kernel as [Fw × Fh × Fc], where Fw × Fh and Fc are the spatial size of filter and the number
of channels, respectively:

Fi(XLR) = max(0, Wi ⊗ Fi−1(XLR) + Bi), (1)
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Figure 2. The framework of the proposed SR-ILLNN.

In the process of convolution operation, we applied rectified linear unit (ReLU,
max(0, x)) on the filter responses and used a partial convolution-based padding scheme [23]
to avoid the loss of boundary information. The padding sizes is defined so that the feature
maps between different convolution layers can have the same spatial resolution as follows:

Padding Size = Floor(Fw/2), (2)

where Floor(x) means the rounding down operation. Note that the convolutional layers
of Conv1–4 and Conv9–12 of Figure 2 are conducted to generate output feature maps
with dense connections for more flexible and richer feature representations, which are
concatenated the feature maps of the previous layer with those of the current layer. So,
convolution operations with dense connections are calculated as in (3):

Fi(XLR) = max(0, Wi ⊗ [F1(XLR), . . . , Fi−1(XLR)] + Bi),
Fj(XILR) = max

(
0, Wj ⊗ [

F9(XILR), . . . , Fj−1(XILR)
]
+ Bj

) (3)

A ResNet scheme [11] with skip connections can provide a high-speed training and
prevent the gradient vanishing effect, so we deployed a local and a global skip connection
to train the residual at the output feature maps of Conv4 and Conv15. Because the output
feature maps F4 and XLR have the different number of channels in local skip connection,
XLR is copied up to the number of channels of F4 before operating Conv5.

It should be noted that the number of feature maps has a strong effect on the inference
speed. Therefore, the proposed SR-LNNs is designed to reduce the number of feature maps
from 192 to 32, before deconvolution operation. Then, Deconv1 and Deconv2 are operated
for image up-sampling as follows:

Fdeconv(XLR) = max(0, Wdeconv � Fi−1(XLR) + Bdeconv), (4)

where Wdeconv, Bdeconv are the kernels and biases of the deconvolution layer, respectively,
and the symbol ‘�’ denotes the deconvolution operation. As each deconvolution layer
has different kernel weights and biases, it is superior to the conventional SR methods like
pixel-wise interpolation methods.

In the stage of the shared feature layers, the output feature maps of the LR feature
layers F8(XLR) are concatenated with those of HR feature layers F12(XILR). Then, the
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concatenated feature maps [F8(XLR), F12(XILR)] are inputted to the shared feature layers
as in (5):

F13(X) = max(0, W13 ⊗ [F8(XLR), F12(XILR)] + B13) (5)

Note that the activation function (ReLU) is not applied to the last feature map when
the convolution operation is conducted in Conv15. Table 1 presents the structural analysis
of the network parameters in SR-ILLNN.

Table 1. Analysis of network parameters in SR-ILLNN.

Layer
Name

Kernel
Size

Num. of
Kernels

Padding
Size

Output Feature Map
(W × H × C)

Num. of
Parameters

Conv1 3 × 3 × 1 64 1 N × M × 64 640
Conv2 3 × 3 × 64 64 1 N × M × 64 36,928
Conv3 3 × 3 × 128 64 1 N × M × 64 73,792
Conv4 3 × 3 × 192 64 1 N × M × 64 110,656
Conv5 1 × 1 × 64 32 0 N × M × 32 2080

Deconv1 4 × 4 × 32 32 1 2N × 2M × 32 16,416
Conv6, 7 3 × 3 × 32 32 1 2N × 2M × 32 9248
Deconv2 4 × 4 × 32 32 1 4N × 4M × 32 16,416
Conv8 3 × 3 × 32 16 1 4N × 4M × 16 4624
Conv9 5 × 5 × 1 64 2 4N × 4M × 64 1664
Conv10 3 × 3 × 64 64 1 4N × 4M × 64 36,928
Conv11 3 × 3 × 128 64 1 4N × 4M × 64 73,792
Conv12 3 × 3 × 192 16 1 4N × 4M × 16 27,664

Conv13, 14 3 × 3 × 32 32 1 4N × 4M × 32 9248
Conv15 5 × 5 × 32 1 2 4N × 4M × 1 801

3.2. Architecture of SR-SLNN

Because SR-ILLNN has hierarchical network structure due to the two inputs, we
propose a SR-SLNN to reduce the network complexity of SR-ILLNN. As depicted in
Figure 3, the SR-SLNN was modified to remove the HR feature layers and the shared feature
layers of SR-ILLNN. In addition, it has seven convolution layers and two deconvolution
layers, where two convolution layers between deconvolution layers are also removed.
Table 2 presents the structural analysis of network parameters in SR-SLNN.

Figure 3. The framework of the proposed SR-SLNN.
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Table 2. Analysis of network parameters in SR-SLNN.

Layer
Name

Kernel
Size

Num. of
Kernels

Padding
Size

Output Feature Map
(W × H × C)

Num. of
Parameters

Conv1 5 × 5 × 1 64 2 N × M × 64 1664
Conv2 3 × 3 × 64 64 1 N × M × 64 36,928
Conv3 3 × 3 × 128 64 1 N × M × 64 73,792
Conv4 3 × 3 × 192 64 1 N × M × 64 110,656
Conv5 1 × 1 × 64 32 0 N × M × 32 2080

Deconv1 4 × 4 × 32 32 1 2N × 2M × 32 16,416
Deconv2 4 × 4 × 32 32 1 4N × 4M × 32 16,416
Conv6 3 × 3 × 32 16 1 4N × 4M × 16 4624
Conv7 5 × 5 × 16 1 2 4N × 4M × 1 401

3.3. Loss Function and Hyper-Parameters

We set hyper-parameters as presented in Table 3. In order to find the optimal parameter
θ = {Filter weights, Biases}, we defined mean square error (MSE) as the loss function (6),
where XHR, Y, and N are the final output image of SR-LNN, the corresponding label image,
and the batch size. Here, L(θ) is minimized by Adam optimizer using the back-propagation.
In particular, the number of epochs were set to 50 according to the Peak Signal-to-Nosie
Ratio (PSNR) variations of the validation set (Set5) and the learning rates were empirically
assigned to the intervals of epoch.

Since it is important to set the optimal number of network parameters in the design of
lightweight neural network, we investigated the relation between the number of parameters
and PSNR according to the various filter sizes. As measured in Table 4, we implemented the
most of convolution layers with 3x3 filter size, except for deconvolution layers to generate
the interpolated feature map that accurately corresponds to the scaling factor:

L(θ) =
1

N

N−1

∑
i=0

‖XHR

(
Xi
)
− Yi‖2

2 (6)

Table 3. Hyper-parameters of the proposed methods.

Optimizer Adam

Learning Rate 10−3 to 10−5

Activation function ReLU
Padding Mode Partial convolutional based padding [23]
Num. of epochs 50

Batch size 128
Initial weight Xavier

Table 4. Relation between the number of parameters and PSNR according to the various filter sizes.

Networks
Filter Size

(Width × Height)
Num. of

Parameters
PSNR
(dB)

SR-ILLNN

3 × 3 439,393 31.41
5 × 5 1,153,121 31.38
7 × 7 2,223,713 31.29
9 × 9 3,651,169 28.44

SR-SLNN

3 × 3 262,977 31.29
5 × 5 664,385 31.19
7 × 7 1,266,497 31.16
9 × 9 2,069,313 31.15
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4. Experimental Results

As shown in Figure 4, we used the DIVerse 2K (DIV2K) dataset [24] whose total
number is 800 images to train the proposed methods. In order to design SR-LNN capa-
ble of up-sampling input images four times, all training images with RGB components
are converted into YUV components and extracted only Y component with the size of
100 × 100 patch without overlap. In order to generate interpolated input images, the
patches are down-sampled and then up-sampled it again by bi-cubic interpolation.

Finally, we obtained three training datasets from DIV2K where the total number of
each training dataset is 210,048 images for original images, low-resolution images, and
interpolated low-resolution images, respectively. For testing our SR-LNN models, we
used Set5, Set14, Berkeley Segmentation Dataset 100 (BSD100), and Urban100 as depicted
in Figure 5, which are representatively used as testing datasets in most SR studies. For
reference, Set5 was also used as a validation dataset.

All experiments were run on an Intel Xeon Skylake (eight cores @ 2.59 GHz) having
128 GB RAM and two NVIDIA Tesla V100 GPUs under the experimental environment
described in Table 5. After setting a bicubic interpolation method as an anchor for perfor-
mance comparison, we compared the proposed two SR-LNN models with SR-CNN [9],
AR-CNN [14], and SR-DenseNet [18] in terms of image quality enhancement and network
complexity.

 

Figure 4. Training dataset. (DIV2K).

 

Figure 5. Test datasets. (Set5, Set14, BSD100, and Urban100).
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In order to evaluate the accuracy of SR, we used PSNR and the structural similarity
index measure (SSIM) [25,26] on the Y component as shown in Tables 6 and 7, respectively.
In general, PSNR has been commonly used as a fidelity measurement and it is the ratio
between the maximum possible power of an original signal and the power of corrupting
noise that affects the fidelity of its representation. In addition, SSIM is a measurement that
calculates a score using structural information of images and is evaluated as similar to
human perceptual scores. Compared with the anchor, the proposed SR-ILLNN and SR-
SLNN enhance PSNR by as many as 1.81 decibel (dB) and 1.71 dB, respectively. Similarly,
the proposed SR-LNNs show significant PSNR enhancement, compared to SR-CNN and
AR-CNN. In contrast to the results of the anchor, the proposed SR-ILLNN has similar PSNR
performance on most test datasets, compared with SR-DenseNet.

Table 5. Experimental environments.

Num. of Training Samples 210,048

Input size (XLR) 25 × 25 × 1
Interpolated input size (XILR) 100 × 100 × 1

Label size (YHR) 100 × 100 × 1
Linux version Ubuntu 16.04
CUDA version 10.1

Deep learning frameworks Pytorch 1.4.0

Table 6. Average results of PSNR (dB) on the test dataset.

Dataset Bicubic SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Set5 28.44 30.30 30.35 31.43 31.41 31.29
Set14 25.80 27.09 27.10 27.84 27.83 27.73

BSD100 25.99 26.86 26.86 27.34 27.33 27.28
Urban100 23.14 24.33 24.34 25.30 25.32 25.18
Average 24.73 25.80 25.81 26.53 26.54 26.44

Table 7. Average results of SSIM on the test dataset.

Dataset Bicubic SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Set5 0.8112 0.8599 0.8614 0.8844 0.8848 0.8827
Set14 0.7033 0.7495 0.7511 0.7708 0.7709 0.7689

BSD100 0.6699 0.7112 0.7126 0.7279 0.7275 0.7260
Urban100 0.6589 0.7158 0.7177 0.7584 0.7583 0.7532
Average 0.6702 0.7192 0.7208 0.7481 0.7479 0.7447

In addition, we conducted an experiment to verify the effectiveness of skip connections
and dense connections. In particular, the more dense connections are deployed in the
between convolution layers, the more network parameters are required in the process of
convolution operations. Table 8 shows the results of tool-off tests on the proposed methods.
As both skip connections and dense connections contribute to improve PSNR in the test
datasets, the proposed methods are deployed these schemes. Figure 6 shows MSE as well as
PSNR corresponding to the number of epochs and these experiments were evaluated from
all comparison methods (SR-CNN, AR-CNN, and SR-DenseNet), including the proposed
methods. It is confirmed that although SR-DenseNet has the highest reduction-rate in
terms of MSE, the proposed methods have an almost similar increase rate in terms of PSNR.
Figure 7 shows the comparisons of subjective quality between the proposed methods and
previous methods.
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Table 8. The results of tool-off tests.

Skip
Connections

Dense
Connections

Set5 (PSNR) Set14 (PSNR) BSD100 (PSNR) Urban100 (PSNR)

SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN SR-ILLNN SR-SLNN

Disable Disable 31.34 31.15 27.80 27.62 27.31 27.20 25.27 25.01
Enable Disable 31.35 31.21 27.81 27.68 27.33 27.26 25.31 25.13
Disable Enable 31.40 31.18 27.81 27.65 27.32 27.23 25.29 25.07
Enable Enable 31.41 31.29 27.83 27.73 27.33 27.28 25.32 25.18

Figure 6. PSNR and MSE corresponding to the number of epochs. (a) PSNR per epoch. (b) MSE per epoch.

Figure 7. Comparisons of subjective quality on test dataset. (a) Results on “monarch” of Set14. (b) Results on “zebra” of
Set14. (c) Results on “img028” of Urban100.
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In terms of the network complexity, we analyzed the number of parameters, parameter
size (MB), and total memory size (MB) where total memory size includes intermediate
feature maps as well as the parameter size. In general, both the total memory size and
the inference speed are proportional to the number of parameters. Table 9 presents the
number of parameters and total memory size. Compared with SR-DenseNet, the proposed
two SR-LNNs reduce the number of parameters by as low as 8.1% and 4.8%, respectively.
Similarly, the proposed two SR-LNNs reduce total memory size by as low as 35.9% and
16.1%, respectively. In addition, we evaluated the inference speed on BSD100 test images.
As shown in Figure 8, the inference speed of the proposed methods is much faster than that
of SR-DenseNet. Even though the proposed SR-SLNN is slower than SR-CNN and AR-
CNN, it is obviously superior to SR-CNN and AR-CNN in terms of PSNR improvements
as measured in Tables 6 and 7.

Table 9. Analysis of the number of parameters and memory size.

SR-CNN [9] AR-CNN [14] SR-DenseNet [18] SR-ILLNN SR-SLNN

Num. of parameters 57,281 106,564 5,452,449 439,393 262,977
Parameter size (MB) 0.22 0.41 20.80 1.68 1.00

Total memory size (MB) 14.98 17.61 224.81 80.83 36.21

Figure 8. Inference speed on BSD100.

5. Conclusions and Future Work

In this paper, we have proposed two SR-based lightweight neural networks (SR-
ILLNN and SR-SLNN) for single image super-resolution. We investigated the trade-offs
between the accuracy of SR (PSNR and SSIM) and the network complexity, such as the
number of parameters, memory capacity, and inference speed. Firstly, SR-ILLNN was
trained on both low-resolution and high-resolution images. Secondly, SR-SLNN was
designed to reduce the network complexity of SR-ILLNN. For training the proposed SR-
LNNs, we used the DIV2K image dataset and evaluated both the accuracy of SR and
the network complexity on Set5, Set14, BSD100, and Urban100 test image datasets. Our
experimental results show that the SR-ILLNN and SR-SLNN can significantly reduce the
number of parameters by 8.1% and 4.8%, respectively, while maintaining similar image
quality compared to the previous methods. As future work, we plan to extend the proposed
SR-LNNs to other color components as well as a luminance component for improving SR
performance on color images.
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Abstract: Scene or place classification is one of the important problems in image and video search
and recommendation systems. Humans can understand the scene they are located, but it is difficult
for machines to do it. Considering a scene image which has several objects, humans recognize
the scene based on these objects, especially background objects. According to this observation,
we propose an efficient scene classification algorithm for three different classes by detecting objects
in the scene. We use pre-trained semantic segmentation model to extract objects from an image.
After that, we construct a weight matrix to determine a scene class better. Finally, we classify an image
into one of three scene classes (i.e., indoor, nature, city) by using the designed weighting matrix.
The performance of our scheme outperforms several classification methods using convolutional
neural networks (CNNs), such as VGG, Inception, ResNet, ResNeXt, Wide-ResNet, DenseNet,
and MnasNet. The proposed model achieves 90.8% of verification accuracy and improves over
2.8% of the accuracy when comparing to the existing CNN-based methods.

Keywords: scene/place classification; semantic segmentation; deep learning; weighting matrix;
convolutional neural network

1. Introduction

The scene is an important information which can be used as a metadata in image and video search
or recommendation systems. This scene information can provide more detailed situation information
with time duration and character who appears in image and video contents.

While humans naturally perceive the scene they are located, it is a challenging work for machines
to recognize it. If the machines could understand the scene they are looking, this technology can be
used for robots to navigate, or searching a scene in video data. The main purpose of scene classification
is to classify name of scenes of given images.

In the early days, scene or place classification was carried out through traditional methods such
as Scale-Invariant Feature Transformation (SIFT) [1], Speed-Up Robust Features (SURF) [2], and Bag of
Words (BoW) [3]. In recent years, deep learning with the convolutional neural networks (CNNs) has
been widely used for image classification ever since AlexNet [4] won the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) in 2012.

There have been several approaches to classify scenes and dplaces. One approach is using
classification method such as k-nearest neighbor (KNN) classifier and other is based on the
convolutional neural networks (CNNs). Chowanda et al. [5] proposed a new dataset for image
classification and experimented with their dataset with CNNs such as VGG, GoogLeNet to classify
Indonesian regions. Raja et al. [6] proposed a method of classifying indoor and outdoor by using KNN
classifier. Viswanathan et al. [7] suggested an object-based approach. However, their methods could
classify only indoor scenes such as kitchen, bathroom, and so forth. Yiyi et al. [8] also proposed an
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object-based classification method combining CNN and semantic segmentation model and classified
five indoor scenes. Zheng et al. [9] suggested a method for aerial scene classification by using
pre-trained CNN and multi-scale pooling. Liu et al. [10] proposed a Siamese CNN for remote sensing
scene classification, which combined the identification and verification models of CNNs. Pires et al. [11]
analyzed a CNN model for aerial scene classification by transfer learning. These methods were focused
on verifying the aerial scene.

In this paper, we propose a method for classifying a scene and place image into one of three major
scene categories: indoor, city, and nature which is different from the previous works in that we classify
outdoor as well. There are many objects in the scene and place. It means that we are able to classify the
scene by utilizing the information of the existing objects. Also, when humans see a scene or place, they
recognize the scene or place based on objects, especially background objects. If there are mountains
and the sky in the scene, they would perceive it as a natural scene, and if the scene is full of buildings,
they would consider it as an urban scene. If there are ceiling and walls, they would recognize it as an
indoor environment.

In order to classify a scene or place image based on this human perception process, we first
conduct object segmentation using the image segmentation model pre-trained with MS COCO-stuff
dataset [12]. While MS COCO dataset [13] is for object detection, MS COCO-stuff dataset is for
segmentation. In this paper, we used DeepLab v2 [14] model which is semantic segmentation model
and can be trained with the background (stuff) objects. MS COCO-stuff dataset contains 171 kinds of
object classes which are suitable for our solution. To classify an image, we construct a weight matrix of
each object classes so that we can give more weight to objects that are more dominant on determining
a scene. Finally, we classify the scene by combining the weight matrix and detected objects in the scene
or place.

We organize the rest of this paper as follows: Section 2 highlights the details of the proposed
classification method. Section 3 presents the implementation of the experiment as well as the
experimental results. Finally, we draw the conclusions and suggest further research directions in
Section 4.

2. Proposed Classification Algorithm

The overall process of the proposed classification method is summarized in Figure 1. It contains
image segmentation stage and computing scene score of the image. Before carrying this process out,
we design the weight matrix with size 171 × 3. This matrix consists of 171 object classes, and each
object class has 3 scene labels. The details of constructing the weight matrix will be explained in the
following Section 2.2.

sky

mountain

cow

grass

Image 

Segmenta�on 

Model

object place indoor nature city

cow 0.25 0.7 0.05

mountain 0.05 0.6 0.35

sky 0.15 0.5 0.35
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Figure 1. Overall structure of the proposed scheme.
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2.1. Overall Structure

We define scene categories into three classes—indoor, city, and nature, which are the major
categories for representing some scenes. To classify a scene image into a scene class, we first feed
the image to the pre-trained image segmentation model. In this paper we used DeepLab v2 [14] to
get the objects in the scene. For instance, if we get ’sky’, ’mountain’, ’cow’, and ’grass’ as a result
of segmentation, we look for these object classes in the pre-constructed weight matrix. As humans
perceive the scene in a scene image more by background objects rather than thing (foreground) objects,
we want to focus more on the background classes by giving more weight on these classes. Therefore,
if detected objects are part of background classes, we multiply bias value of 1.4 which is determined
empirically.). We compute the scores of scene and place classes of the image by adding all weights
of objects in the image. The scene class with the highest score is determined as the final scene and
place class of the image. We determine objects in ground, solid, building in outdoor tree (Figure 2) as
background objects.

2.2. Design of Weighting Factors

We build the weight matrix shown in Figure 3 by using 2017 validation images from the
COCO-stuff dataset, including 5K images. These images are manually labeled as scene classes.
After preparing dataset for constructing the matrix, the images are fed to the pre-trained image
segmentation model one by one. We can get one or more objects as a result of segmentation.

The COCO-stuff dataset [12] includes 80 “thing” classes and 91 “stuff” classes, and stuff classes
are divided into two wide categories—indoor and outdoor. The outdoor classes contain various classes
representing background of an image such as building, mountain, and so forth (Figure 2).

The weight matrix W has size of M × N, M is the number of object classes, and N is the number
of scene classes. Since we use COCO-stuff dataset and three scene labels, it turns out to 171 × 3. It is
initialized with zeros at first.

As shown in Figure 3, assuming that we get classes of ’cow’, ’mountain’, ’sky’, and ’grass’ from an
image. The image has a nature scene, so add 1 to nature column in weight matrix for each object class
(cow, mountain, sky, and grass). After iteration of this process under 5 K images, the matrix would
be constructed with various numbers. Therefore, we normalize it for each row. In the Equation (1),
W ′ denotes the normalized weight matrix. In addition, m is m-th object class in the dataset and n is
n-th label in the place classes. The algorithm of constructing the weighting matrix is described in
Algorithm 1 and the inference process with the model is shown in Algorithm 2.

In the inference process, we perform semantic segmentation for each test image, and we compute
the scores of scene or place classes of the image by multiplying bias value to background object weights
and adding all of them of each scene or place class by using pre-constructed weight matrix as:

W ′
mn =

Wmn

∑N
n′=1 Wmn′

. (1)
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Figure 3. Construction of weight matrix W with a sample image.

Algorithm 1 Weighting Matrix W

Require: F: pre-trained semantic segmentation model
1: Inputs:

scene-labeled images {(x1, y1), (x2, y2), ..., (xn, yn)}
2: Initialize:

W[i][j] ← 0, i = 1, . . . , o, j = 1, . . . , p

o: # of object classes, p: # of scene classes

3: for t = 1 to n do
4: Ot ← F(xt)
5: for o ∈ Ot do
6: W[o][yt] ← W[o][yt] + 1
7: end for
8: end for
9: for i = 1 to o do

10: for j = 1 to p do
11: W[i][j] ← W[i][j]/(W[i][1] + . . . + W[i][p])
12: end for
13: end for

Algorithm 2 Inference Process

Require: F: pre-trained semantic segmentation model and W[i][j]: weight matrix
1: Inputs:

Test images {x1, x2, ..., xn}
2: Initialize:

V[i] ← 0, i = 1, . . . , p

o: # of object classes, p: # of scene classes

3: for t = 1 to n do
4: Ot ← F(xt)
5: for o ∈ Ot do
6: bias ← 1
7: if o is in Background then
8: bias ← 1.4
9: end if

10: V[t] ← V[t] + W[o]× bias
11: end for
12: end for
13: ŷ ← argmax(V[t])

3. Experimental Results and Discussion

In this section, we will show the results of our classification model and well-renowned
classification methods using CNNs. We implemented the proposed scheme by using PyTorch deep
learning framework, and used single GPU for training. We trained DeepLab v2 model with COCO-stuff

61



Appl. Sci. 2020, 10, 9069

dataset which contains total 164k images. As we mentioned it in Section 2.2, the reason why we use
COCO-stuff dataset is because its object classes are divided into indoor and outdoor categories.

In order to compare our method with CNN based classification models, we first built a custom
test dataset that consists of 500 images as shown in Table 1. We extracted them from Korean movies,
and the images were manually labeled into three scene classes (i.e., 0: indoor, 1: nature, 2: city) under
certain criteria. We set some criteria according to the logic that humans more focus on the background
objects rather than foreground objects. The criteria are described in Figure 4.

Start

Ceiling

Surrounding
Wall

Yes

No

Indoor

Yes

Indoor

No

Outdoor

Building

Pavement

No

No

Yes

City

Yes

City

Bush
Mountain
Sea
River

Yes

Nature

No

City

Figure 4. The criteria of labeling custom dataset. We first label the scene as either indoor or outdoor
according to the existence of ceiling and surrounding wall. Then city images are labeled by buildings
and pavements which are usually existing in urban area. Lastly, the scene is labeled as nature when
there is nature stuff such as bush, mountain, sea, or river.

The sample test images are shown in Figure 5. We used COCO-stuff validation 2017 dataset for
training the CNN models, which were also used for building the weight matrix. The test images were
used for measuring accuracy of the classification. We experimented various CNNs, such as VGG [15],
Inception [16,17], ResNet [18], ResNeXt [19], Wide-ResNet [20], DenseNet [21], and MnasNet [22] as
shown in Table 2.

To be more specific, we trained each model by using transfer learning scheme [23],
especially Feature Extraction [24,25]. The basic concept of feature extraction is represented in Figure 6.
Typical CNNs have convolutional layers for extracting good features and fully connected layers to
classify the feature. Feature extraction technique which trains only fully connected layers is used when
there are insufficient data for training.

PyTorch Deep Learning Framework was used again to implement all structures for the experiment.
The results of accuracy were computed after 200 iterations of training. We trained each model using
cross entropy loss, and Adam optimizer with a batch size 64, learning rate 0.001. Learning rate was
multiplied by 0.1 every 7 iteration.

In Table 2, we can observe the proposed scheme outperforms the existing well-known CNNs
which were trained using transfer learning. In terms of the accuracy, the proposed scheme achieved
90.8% of the accuracy.
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2: city 

0: indoor

1: nature

Figure 5. Samples of custom test dataset; each row represents each scene class.

Convolution

+

Pooling

Fully 

Connected

Input

Output

Frozen

Trained

Figure 6. Basic Concept of Feature Extraction. The white box represents convolution and pooling
layers in convolutional neural networks (CNNs), which are used for extracting features of an image.
This part is not trained during transfer learning process. The green box represents fully connected layer
in CNNs, which operates as classifier. This part is trained during whole training process.

Table 1. The number of images for each class in our custom dataset.

Indoor Nature City Total

305 106 89 500
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Table 2. Performance comparison with the existing CNNs on indoor/nature/city classes.

Models Accuracy (%)

VGG-19 [15] 79.6
VGG-19 (BN) [15] 88.0
GoogLeNet [16] 84.6
Inception-v3 [17] 86.2
ResNet-101 [18] 84.0

ResNeXt-101 [19] 88.0
Wide-ResNet [20] 85.2
DenseNet-121 [21] 84.0
DenseNet-161 [21] 83.6
DenseNet-201 [21] 85.2
MnasNet (0.5) [22] 76.6
MnasNet (1.0) [22] 79.8

Proposed Method 90.8

When compared with VGG-19 (BN) [15] and ResNeXt-101 [19], the proposed method could
improve 2.8% of the accuracy. Also, our scheme improved the performance over 13% comparing to
MnasNet (0.5) [16]. VGG-19 was tested with batch normalization (BN) and without BN. The float
values with MnasNet is the depth multiplier in Reference [22]. From this result, we can see that the
proposed scheme is very reliable and better to classify the scene.

Figure 7 represents the graph of the experiment on determining optimal bias value in terms of
test accuracy. It shows that the highest test accuracy when the bias is 1.4. This value is used in the
inference process when multiplying weights of background objects.

In addition, we measured test accuracy on COCO-Stuff test dataset. We adopted first 100 images
of the test images and labeled the images according to the criteria in Figure 4. We used same parameters
as the previous experiment while training CNNs and building weight matrix. The result is shown in
Table 3. The result shows that the proposed method outperforms the conventional CNNs and also
indicates that it achieves better performance when test images are taken in the same domain with
train images.
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Figure 7. Experiment on different bias values for multiplying weights of background objects
when inferencing.
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Table 3. Performance comparison with the existing CNNs using COCO-Stuff test set.

Models Accuracy (%)

VGG-19 [15] 91.0
VGG-19 (BN) [15] 85.0
GoogLeNet [16] 88.0
Inception-v3 [17] 86.0
ResNet-101 [18] 89.0

ResNeXt-101 [19] 89.0
Wide-ResNet [20] 88.0
DenseNet-121 [21] 82.0
DenseNet-161 [21] 86.0
DenseNet-201 [21] 90.0
MnasNet (0.5) [22] 87.0
MnasNet (1.0) [22] 85.0

Proposed Method 92.0

Lastly, we experimented on indoor classes and Table 4 shows the results. We used the subset of
MITPlaces dataset [26]. It contains categories of ’library’, ’bedroom’ and ’kitchen’ and 900 train images
and 100 test images per class. As previous experiment, train images are used for building weight matrix
and test images are used for measuring test accuracy in the proposed method. Classifying indoor
categories must be treated differently from classifying indoor and outdoor. Since all indoor scenes
have ceilings and walls, the bias value in Algorithm 2 must be given not by background objects,
but by foreground objects. In this experiment, we defined foreground objects as furniture categories in
Figure 2 and determined the value to be 3 empirically. Although the results shows that 7 of CNNs
outperforms our method by less than 4.6%, it shows that our method can be extendable to indoor
categorization problem.

Table 4. Performance comparison with the existing CNNs on library/bedroom/kitchen classes.

Models Accuracy (%)

VGG-19 [15] 92.0
VGG-19 (BN) [15] 94.0
GoogLeNet [16] 88.0
Inception-v3 [17] 93.7
ResNet-101 [18] 91.0

ResNeXt-101 [19] 95.3
Wide-ResNet [20] 88.0
DenseNet-121 [21] 93.0
DenseNet-161 [21] 94.3
DenseNet-201 [21] 90.3
MnasNet (0.5) [22] 89.7
MnasNet (1.0) [22] 90.0

Proposed Method 90.7

CNNs which showed the best performance tested with our custom dataset are VGG-19 (BN)
and ResNeXt-101. They both showed test accuracy of 88% and the proposed method showed 90.8%.
Table 5 represents the performance of three models on each of three scene classes. VGG-19 (BN)
predicted all images perfectly in indoor class and the proposed method is following. In nature class,
the proposed method showed the best accuracy. When it comes to city class, ResNext-101 showed the
best results. From this result, we can see that the proposed method is reliable for scene classification.
Source code is available at https://github.com/woonhahaha/place-classification.
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Table 5. Comparison between best CNNs and the proposed method. The correct number of images per
class in our custom dataset.

Indoor Nature City Total

VGG-19 (BN) 305 79 56 440
ResNeXt-101 282 88 70 440

Proposed Method 304 89 61 454

4. Conclusions

In this work, we have proposed an efficient scene and place classification scheme using
background objects and the designed weighting matrix. We designed this weighting matrix based
on the open dataset which is widely used in the scene and object classifications. Also, we evaluated
the proposed classification scheme which was based on semantic segmentation comparing to the
existing image classification methods such as VGG [15], Inception [16,17], ResNet [18], ResNeXt [19],
Wide-ResNet [20], DenseNet [21], and MnasNet [22]. The proposed scheme is the first approach
of object-based classification that can classify outdoor categories as well. We have built a custom
dataset of 500 images for testing which can help researchers who are dealing with scene classification.
We crawled frames from Korean movies and labeled each image manually. The images were labeled as
three major scene categories (i.e., indoor, nature, and city).

Experimental results showed that the proposed classification model outperformed several
well-known CNNs mainly used for image classification. In the experiment, our model achieved
90.8% of verification accuracy and improved over 2.8% of the accuracy when comparing to the
existing CNNs.

The Future work is to widen the scene classes to classify not just indoor (library, bedroom, kit)
and outdoor (city, nature), but also more subcategories. It would be helpful for searching in videos
with such semantic information.
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Abstract: In this study, an estimation method for human height is proposed using color and depth
information. Color images are used for deep learning by mask R-CNN to detect a human body and a
human head separately. If color images are not available for extracting the human body region due
to low light environment, then the human body region is extracted by comparing between current
frame in depth video and a pre-stored background depth image. The topmost point of the human
head region is extracted as the top of the head and the bottommost point of the human body region
as the bottom of the foot. The depth value of the head top-point is corrected to a pixel value that
has high similarity to a neighboring pixel. The position of the body bottom-point is corrected by
calculating a depth gradient between vertically adjacent pixels. Two head-top and foot-bottom points
are converted into 3D real-world coordinates using depth information. Two real-world coordinates
estimate human height by measuring a Euclidean distance. Estimation errors for human height are
corrected as the average of accumulated heights. In experiment results, we achieve that the estimated
errors of human height with a standing state are 0.7% and 2.2% when the human body region is
extracted by mask R-CNN and the background depth image, respectively.

Keywords: human-height estimation; depth video; depth 3D conversion; artificial intelligence;
convolutional neural networks

1. Introduction

The physical measurements of a person such as human height, body width and stride length are
important bases for identifying a person from video. For example, the height of the person captured
by a surveillance video is important evidence for identifying a suspect. Physical quantities are also
used as important information for continuously tracking a specific person in video surveillance system
consisting of multiple cameras [1]. A specific behavior such as falling down can be recognized by
detecting changes in human height. Various studies have been conducted to estimate human height
from color video. Human height is estimated by obtaining 3D information of the human body from
color video [2–6]. Both the position and the pose of the camera are required in order to obtain 3D
information of human body. Human height can also be estimated by calculating the ratio of the length
between human body and a reference object whose length is already known [7–12]. The estimation
methods of human height based on color video have a disadvantage in that the camera parameters or
information about a reference object are required.

Depth video stores depth values, meaning the distances between subjects and the camera.
The pixels of depth video are converted to 3D coordinates by the depth values. Object detection [13–15]
and behavior recognition [16–18] by depth video are possible by extracting the 3D features of the objects.
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Recently, smartphones recognize a human face through an equipped TOF sensor for recognizing the
identity of a person. Object lengths can be also measured from depth video without the additional
information, so the problems of the human-height estimation based on color video can be solved by
using depth video.

The field of artificial intelligence has made significant progress by researching neural network
structures which consist of multilayers. In particular, convolutional neural network (CNN) [19]
respectably improves object detection that categorizes the object and detects the boundary boxes and
pixels of the objects [20–26].

In this study, a human-height estimation method is proposed using depth and color information.
The human-height estimation is improved by extracting a human body and a human head from color
information and by measuring human height from depth information. The human body and the
human head of current frame in color video are extracted through mask R-CNN [26]. If color images are
not available due to a low light environment, then the human body region is extracted by comparing
between current frame in depth video and a pre-stored background depth image. The topmost point
of the human head region is extracted as a head-top and bottommost point of the human body region
as a foot-bottom. Two top head and foot-bottom points are converted to 3D real-world coordinates by
these image coordinates and depth pixel values. Human height is estimated by calculating a Euclidean
distance between two real-world coordinates.

The proposed method improves the human-height estimation by using both color and depth
information and by applying mask R-CNN which is an art-of-state algorithm for object detection.
In addition, the proposed method removes the need for the camera parameters or the length of other
object in the human-height estimation using depth information.

This study is organized as follows: In Section 2, the related works for object detection by CNN
and for the human-height estimation based on color or depth video are described. In Section 3,
the human-height estimation by depth and color videos is proposed. The experimental results of
the proposed method are presented in Section 4. Finally, a conclusion for this study is described in
Section 5.

2. Related Works

2.1. Object Detection from Color Information by Convolutional Neural Network

Object detection problems in color image can generally be classified into four categories:
classification, localization, detection and object segmentation. First, the classification determines an
object category for single object in the image. Second, the localization finds the boundary box for single
object in the image. Third, the detection finds the boundary boxes and determines object categories for
multiple objects. Finally, the object segmentation finds pixels where each object is. CNN can solve
whole categories of object detection problems. CNN replaces the weights of the neural networks with
kernels which are rectangular filters. Generally, object detection through CNN are classified as 1-stage
and 2-stage methods [27]. The 1-stage method performs both the location and the classification at once.
The 2-stage method performs the classification after the location. The 1-stage method is faster than the
2-stage method but is less accurate. R-CNN [20] is a first proposed method for the detection through
CNN. R-CNN applies a selective search algorithm to find the boundary box with a high probability
where an object exists. The selective search algorithm is the method of constructing the boundary
box by connecting adjacent pixels with similar texture, color and intensity. The object is classified
through SVM (support vector machine). The feature map of the boundary boxes is extracted through
AlexNet. R-CNN has disadvantages that the object detection is seriously slow and SVM should be
trained separately from CNN. Fast R-CNN [21] has higher performance than R-CNN. Fast R-CNN
applies a RoIPool algorithm and introduces a softmax classifier instead of SVM, so the feature map
extraction and the classification are integrated into one neural network. faster R-CNN [22] replaces the
selective search algorithm into a region proposal network (RPN) so whole processes of object detection
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are performed in one CNN. YOLO [23,24] is the 1-stage method for object detection. YOLO defines the
object detection problem as a regression problem. YOLO divides an input image into the grid cells of a
certain size. The boundary boxes and the reliability of the object are predicted for each cell at same
time. YOLO detects the objects more quickly than the 2-stage methods but is less accurate. SSD [25]
allows the various sizes of the grid cells in order to increase the accuracy of object detection. mask
R-CNN [26] is proposed for the object segmentation unlike other R-CNNs.

2.2. Object Length Measurement from Color or Depth Information

Length estimation methods based on color video are classified into length estimations by camera
parameters [2–6], by vanishing points [7–12], by prior statistical knowledge [28,29], by gaits [30,31]
and by neural networks [32,33]. The length estimation methods by the camera parameters generate an
image projection model into an color image by the focal length, the height and the poses of a camera.
The object length is estimated by converting the 2D coordinates in the pixels of the image into 3D
coordinates through the projection model. The length estimation methods by the camera parameters
have a disadvantage that the accurate camera parameters should be provided in advance. In order to
overcome this disadvantage, Liu [2] introduces an estimation method for the camera parameters using
prior knowledge about the distribution of relative human heights. Cho [6] proposes an estimation
method for the camera parameters by tracking the poses of human body from a sequence of frames.
The length estimation methods by the vanishing points use a principle that several parallel lines in 3D
space meet at one point in a 2D image. The vanishing point is found by detecting the straight lines in
the image. The length ratio between two objects can be calculated using the vanishing points. If the
length of one object is known in advance, then the length of another object can be calculated by the
length ratio. Criminisi [7] introduces a length estimation method by the given vanishing points of the
ground. Fernanda [8] proposes the detection method of the vanishing points by clustering the straight
lines iteratively without camera calibration. Jung [9] proposes the method of detecting the vanishing
points for color videos captured by multiple cameras. Viswanath [10] proposes an error model for
the human-height estimation by the vanishing points. The error of the human-height estimation is
corrected by the error model. Rother [11] detects the vanishing points by tracking specific object such
as traffic signs from a sequence of frames. Pribyl [12] estimates the object length by detecting the
specific objects. Human height can be also estimated by the prior statistical knowledge of human
anthropometry [28,29] or by the gaits [30,31]. In recent years, estimation studies in various fields
achieve great success by applying neural networks. The neural networks are also applied to the
human-height estimation. Gunel [32] proposes a neural network for predicting a relationship between
each proportion of human joints and human height. Sayed [33] estimates human height by CNN using
a length ratio between a human body width and a human head size.

Since depth video has distance information from the depth camera, the distance between two
points in a depth image can be measured without the camera parameters or the vanishing points.
Many studies [34–36] extract a skeleton, which is the connection structure of human body parts,
from the depth image for the human-height estimation. However, the human body region extraction is
some inaccurate due to noises in depth video.

3. Proposed Method

In this study, we propose a human-height estimation method using color and depth information.
It is assumed that a depth camera is fixed in a certain position. Color and depth videos are captured by
the depth camera. Then, a human body and a human head are extracted from current frame in color
or depth video. A head-top and a foot-bottom are found in the human head and the human body,
respectively. Two head-top and foot-bottom points are converted into 3D real-world coordinates by the
corresponding pixel values of the frame in depth video. Human height is estimated by calculating a
distance between two real-world coordinates. The flow of the proposed methods is shown in Figure 1.
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Figure 1. Flow of proposed method.

3.1. Human Body Region Extraction

It is important to accurately detect the human body region for estimating human height precisely.
Most frames in depth video have many noises, so it is difficult to extract the accurate human body
region from the depth frame. In contrast, color video allows to detect the human body region accurately
by CNN. In the proposed method, mask R-CNN [26] is applied to extract the accurate human body
region from current frame in color video. Then, the human body region is mapped to current frame in
depth video. If color video is not available for extracting the human body region, then the human body
region is extracted from current frame in depth video directly. In this case, the human body region
is extracted by comparing with current depth frame with a pre-captured background depth image.
Figure 2 shows the flow of extracting the human body region in the proposed method.

 
Figure 2. Flow of human body region extraction. (a) From color information; (b) from depth information.

3.1.1. Human Body Region Extraction Using Color Frames

Mask R-CNN [26] consists of three parts: a feature pyramid network (FPN) [37], a residual
network (ResNet) [38,39] and a RPN. A FPN detects the categories and the boundary boxes of objects
in color video. ResNet extracts an additional feature map from each boundary box. Figure 3 shows the
processes of extracting the human body and the human head using mask R-CNN.
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Figure 3. Processes of extracting human body and human head regions using mask R-CNN.

FPN condenses the scale of the input frame through bottom–up layers and expands the scale
through top–down layers. Various scale objects can be detected through FPN. ResNet introduces a
skip connection algorithm that the output value of each layer feeds into the next layer and directly into
the layers about more than 2 hops away. The skip connection algorithm reduces the amount of values
to be learned for weights of layers, so the learning efficiency of ResNet is improved. The feature map is
extracted from the frame through FPN and ResNet. RPN extracts the boundary boxes and the masks
which are object area in rectangle and in pixels, respectively. Comparing with faster R-CNN which
applies RoIPool, mask R-CNN extends RPN to extract not only the boundary box, but also the masks.
RoIPool rounds off the coordinates of the boundary box to integer. In contrast, RoIAlign allows the
floating coordinates. Therefore, the detection of the object areas of mask R-CNN is more precisely than
of faster R-CNN. Figure 4 shows an example for calculating the coordinates of the regions of interest
(RoIs) for detecting the boundary box and the masks by RoIPool and RoIAlign. Non-max-suppression
(NMS) removes overlapping areas between the boundary boxes. The size of the overlapping area is
calculated for each boundary box. Two boundary boxes are merged if the size of the overlapping area
is more than 70%.

Figure 4. Example of region of interest (RoI) coordinate calculation by RoIPool and RoIAlign. (a) RoIPool;
(b) RoIAlign.

Table 1 shows the performances of mask R-CNN when various types of backbones are applied to
mask R-CNN. When X-101-FPN is applied as the backbone of mask R-CNN, the average precision
of the boundary boxes (Box AP), which is a metric for detecting the boundary box, is the highest.
However, the times for a train and a detection are slowest. In consideration of a tradeoff between the
accuracy and the time for the detection, the proposed method applies ResNet-50 FPN which consists
of 50 CNNs as the backbone.
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Table 1. Performance of backbones for mask R-CNN. Bold represents the best performance.

Backbone Learn Rate Schedules Train Time (s/iter) Inference Time (s/im) Box AP (%)

R50-C4 1x 0.584 0.110 35.7
R50-DC5 1x 0.471 0.076 37.3
ResNet-50 FPN 1x 0.261 0.043 37.9
R50-C4 3x 0.575 0.111 38.4
R50-DC5 3x 0.470 0.076 39.0
ResNet-50 FPN 3x 0.261 0.043 40.2
R101-C4 3x 0.652 0.145 41.1
R101-DC5 3x 0.545 0.092 40.6
ResNet-101
FPN 3x 0.340 0.056 42.0

X-101-FPN 3x 0.690 0.103 43.0

The human body and the human head are detected by mask R-CNN. Mask R-CNN is trained
using 3000 images of COCO dataset [40] with information about the human body and the human head.
In the training mask R-CNN, a learn rate and epochs are set to 0.001 and 1000, respectively. A threshold
for detection of the human body and the human head is set to 0.7. If a detection accuracy for RoI is
more than the threshold, then corresponding RoI is detected as the human body or the human head.
The process of extracting the human body and human head regions through mask R-CNN is as follows.

1. Resizing a color image to a certain size
2. Extracting a feature map through FPN and ResNet50
3. Extracting RoI boundary boxes from feature map by RoIAlign
4. Boundary box regression and classification for boundary boxes through RPN
5. Generating boundary box candidates by projecting the boundary box regression results onto the

color frame
6. Detecting a boundary box for each object by non-max-suppression
7. Adjusting the boundary box area through RoIAlign
8. Finding pixels in boundary boxes to obtain a mask for each boundary box

3.1.2. Human Body Region Extraction Using Depth Frames

If the depth camera is fixed in a certain position, then the pixels of the human body region in
the depth frame have different values from the depth pixels of a background. Therefore, the body
region can be extracted by comparing depth pixels between the depth frame and the background
depth image which has depth information about background. In order to extract the human body
region accurately, the background depth image should be generated from several depth frames that
capture the background because the depth video includes temporary noises. A depth value at the
certain position of the background depth image is determined as a minimum value among pixels in
the corresponding position of the depth frames capturing the background.

The human body region is extracted by comparing the pixels between the depth frame and the
background depth image. A binarization image B is generated for the human body region extraction
as follows:

B(x, y) =
{

1, db(x, y) − d(x, y) > Tb
0, otherwise

, (1)

where db(x, y) and d(x, y) are the depth pixel values of the background depth image and the depth
frame at position of (x, y), respectively and Tb is a threshold for the binarization.

3.2. Extraction of Head Top and Foot Bottom Points

The topmost point of the human head region is extracted as the head-top, (xh, yh) and the
bottommost point of the human body region as the foot-bottom, (xf, yf). If horizontal continuous pixels
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exist as shown in Figure 5, then the head-top or the foot-bottom is extracted as a center point among
these pixels. If human stands with legs apart as shown in Figure 6, then two separate regions may be
found from the bottommost of the human body region. In this case, the center points of two regions
are the candidates of the foot-bottom. One candidate which has a depth value closer to the depth pixel
value of the head-top point is selected as the foot-bottom point.

 

Figure 5. Extracting the head-top and foot-bottom points.

Figure 6. Extracting the foot-bottom point in case of apart human legs.

3.3. Human Height Estimation

Human height is estimated by measuring a length in the 3D real world between the head-top
and foot-bottom points. In order to measure the length on the real world, 2D image coordinates of
two head-top and the foot-bottom are converted into 3D real-world coordinates by applying a pinhole
camera model [41] as follows:

X =
(x−W/2)

f d(x, y)

Y =
(y−H/2)

f d(x, y)

Z = d(x, y),

(2)

where X, Y, Z are the real-world coordinates, f is a focal length of the depth camera, which means
the parameter of the depth camera, and W and H are the horizontal and vertical resolutions of the
depth image, respectively. In (2), the origin of the image coordinate system is the top–left of the image,
but the origin of 3D camera coordinate system is the camera center. In order to compensate for the
difference in the position of the origin between two coordinate systems, the coordinates of the image
center are subtracted from the image coordinates. the real-world coordinates of the head-top (Xh, Yh,
Zh) and of the foot-bottom (Xf, Yf, Zf) are calculated by substituting the real-world coordinates and the
depth values of the head-top and the foot-bottom for (2), respectively, as follows:

Xh =
(xh−W/2)

f dh

Yh =
(yh−H/2)

f dh

Zh = dh,

(3)

X f =
(x f−W/2)

f d f

Y f =
(y f−H/2)

f d f

Z f = d f ,

(4)
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where dh and df are the depth values of the head-top and the foot-bottom, respectively. Human height
is estimated by calculating an Euclidean distance between the real-world coordinates of the head-top
and the foot-bottom as follows:

H =

√(
Xh −X f

)2
+
(
Yh −Y f

)2
+
(
Zh −Z f

)2
=

√((
xhdh − x f d f

)
/ f
)2
+
((

yhdh − y f d f
)
/ f
)2
+
(
dh − d f

)2
.

(5)

The unit of the estimated human height by (5) is same as the unit of the depth pixels. If the pixels
of the depth video store the distance as millimeters, then the unit of H is millimeter.

The estimated human height by (5) may have an error. One reason of the error is the noise of dh.
Generally, (xh, yh) may be in a hair area. The depth values in the hair area have large noises because the
hair causes the diffuse reflection of an infrared ray emitted by the depth camera. Therefore, dh should
be corrected as the depth value of a point which is close to the head top but is not on the hair area.
The depth value of the point which is not on the hair area has a high similarity to the depth values of
neighboring pixels. The similarity is obtained by calculating the variance of the pixels located within r
pixels to the left, right and bottom including the corresponding pixel as follows:

σ 2
r = 1

(r+1)(2r+1)

r∑
i=0

r∑
j=−r

(
d(x + i, y + j)2

)
−
⎛⎜⎜⎜⎜⎜⎜⎝ 1
(r+1)(2r+1)

r∑
i=0

r∑
j=−r

d(x + i, y + j)

⎞⎟⎟⎟⎟⎟⎟⎠
2

. (6)

If σ 2
r is smaller than Tσ, then the dh is corrected as the depth value of the corresponding pixel as

shown in Figure 7. Otherwise, the point is found between pixels below one pixel and the similarity of
the found point is calculated by (6). In (6), r is smaller as dh is larger because the width of an object is
larger as the distance from the camera is closer as follows [42]:

P1

P2
=

d2

d1
, (7)

where P1 and P2 are the pixel lengths of the object widths when the depth values are d1 and d2,
respectively. Therefore, r depended on the depth value is determined as follows:

r =
d0

dh
r0. (8)

In (8), d0 and r0 are constants so d0 × r0 can be regarded as a parameter. If d0 × r0 is represented as
γ, (6) is modified as follows:

σ 2
r = 1

(γ/dh+1)(2γ/dh+1)

γ/dh∑
i=0

γ/dh∑
j=−γ/dh

(
d(x + i, y + j)2

)

−
⎛⎜⎜⎜⎜⎜⎜⎝ 1
(γ/dh+1)(2γ/dh+1)

2γ/dh∑
i=0

2γ/dh∑
j=−2γ/dh

d(x + i, y + j)

⎞⎟⎟⎟⎟⎟⎟⎠
2

.

(9)
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Figure 7. Flow of correcting dh by calculating similarity to neighboring pixels.

Mask R-CNN occasionally detects slightly wider human body region than the actual region.
In particular, the region detection error in the lower part of human body may causes that a point on the
ground is extracted as the foot-bottom. Assuming the ground is flat, the difference in a depth gradient
is little between two vertically adjacent pixels that is in the ground area. The depth gradient of certain
pixel (x, y) is defined as follows:

g(x, y) = d(x + 1, y) − d(x, y). (10)

If certain point is on the ground, then the difference in the depth gradients is the same between the
point and one pixel down. In order to determine whether the extraction of the foot-bottom is correct,
two depth gradients are compared as follows:

D = g
(
x f − 1, y f

)
− g
(
x f , y f

)
=
(
d
(
x f , y f

)
− d
(
x f − 1, y f

))
−
(
d
(
x f + 1, y f

)
− d
(
x f , y f

))
= 2d

(
x f , y f

)
− d
(
x f − 1, y f

)
− d
(
x f + 1, y f

)
.

(11)

If D is 0, then the point is removed from the human body region. The comparison of the depth
gradients by (11) is applied to the bottommost pixels of the human body region in order to correct
the foot-bottom. If all of the bottommost pixels are removed, then this process is repeated for the
points of the human body region where is one pixel up. The foot-bottom is extracted as a center pixel
among the bottommost pixels which are not removed. Figure 8 shows correcting the position of the
foot-bottom point.

Figure 8. Foot bottom point correction.
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The noises of depth video may cause the temporary error of the human-height estimation.
The temporary error of the human height is corrected by the average of the estimated human heights
among a sequence of depth frames as follows:

H(n + 1) = 1
n+1

⎛⎜⎜⎜⎜⎜⎝
n+1∑

i

H(i)

⎞⎟⎟⎟⎟⎟⎠
= 1

n

⎛⎜⎜⎜⎜⎜⎝
n∑
i

H(i)

⎞⎟⎟⎟⎟⎟⎠× n
n+1 + 1

n+1 H(n + 1)

= n
n+1 H(n) + 1

n+1 H(n + 1),

(12)

where n is the order of the captured depth frames and H(n) and H(n) are the estimated and corrected
human heights in the nth frame order, respectively.

4. Experiment Results

Intel Realsense D435 is used as a depth camera for the experiments of the proposed method. A focal
length f and a frame rate of the depth camera are 325.8 mm and 30 Hz, respectively. The resolutions of
depth video are specified as 640 × 480. The threshold Tb for (1) and Tσ for (6) are set to 100 and 50,
respectively. The parameter γ in (9) is 4000, which means r is 2 when dh is 2000 mm.

Figures 9 and 10 show the extractions of the human body region through by mask R-CNN and
by the background depth image, respectively. Both methods of the human body region extraction
accurately extract the human body region at not only a standing state, but also a walking state.
In addition, the human body region is accurately extracted regardless of the states of the human body.
In Figure 9, areas painted in green and red are the human body and human head regions, respectively.
The human head regions are accurately found even though the position of the hand is above the head.
The human body region extraction by the background depth image extracts larger regions than by
mask R-CNN, so some part of the background is included in the human body region. In addition,
the bottom area of the human body is not included in the human body region because the depth values
of these area are similar to the depth value of the ground.

 
Figure 9. Extraction of human body region by mask R-CNN. (a) Standing toward front; (b) standing
backward; (c) standing sideways; (d) walking toward camera; (e) walking opposite to camera; (f) lateral
walking, (g) standing toward front and waving hand; (h) standing backward and waving hand.
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Figure 10. Extraction of human body region by background depth image. (a) Standing toward front;
(b) standing backward; (c) standing sideways; (d) walking toward camera; (e) walking opposite to
camera; (f) lateral walking.

Figure 11 shows the correction of human height by (12) when the body region is extracted by
mask R-CNN. The distributions of the estimated human height are large because of the noises of the
depth frame when the correction of human height is not applied. After applying the correction of
the human-height estimation by (12), the human heights are estimated as certain heights after about
20 frames.

Figure 11. Results of height estimation after correction through cumulative average for each
three persons.

Figure 12 shows the result of the human-height estimation depending on the methods of the human
body region extraction. The actual height of a person is 177 cm. In the human body region extraction
through the background depth image, first 50 frames are accumulated to generate the background
depth image. The human body keeps at a distance of 3.5 m from the camera. The body height is
estimated as 176.2 cm when the human body region is extracted by mask R-CNN. The body height is
estimated as 172.9 cm when the human body region is extracted by the background depth image.
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Figure 12. Results of height estimation depending on methods of human body region extraction.

Figure 13 shows the result of the human-height estimation according to the distance between
human body and the camera. The actual height of a person is 182 cm. The distances from the camera are
2.5 m, 3 m, 3.5 m, 4 m and 4.5 m. The averages of the human heights are estimated as 181.5 cm, 181.1 cm,
181.2 cm, 179.7 cm and 179.8 cm when the distances are 2.5 m, 3 m, 3.5 m, 4 m and 4.5 m, respectively.

Figure 13. Results of height estimation according to distance between camera and human body.

Figure 14 shows the result of the human-height estimation when a person whose height is 180 cm
is standing, walking toward the camera and lateral walking. Human body keeps at a distance of 2.5 m
from the camera when the human is standing and lateral walking. When the human is walking toward
the camera, the distance from the camera is in range of 2.5 m to 4 m. In the standing state, the human
height is estimated as 178.9 m. The human height is 177.1 cm and 174.9 cm in the lateral walking
and the walking toward the camera, respectively. The magnitude of the estimated error in the lateral
walking state is similar to in the standing state. The estimated error in walking toward the camera is
larger than the others. The reason is that the vertical length of the human body is reduced because
human knees are bent to a certain degree while walking.

Figure 14. Results of height estimation in standing and walking states.

Figure 15 shows the positions of dh and (xf, yf) before and after the correction of the head-top
and the foot-bottom, respectively. The green and red points in Figure 15 represent the head-top and
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foot-bottom points, respectively. In Figure 15a, the position of dh is on the hair area, so dh has some
error and the changes in dh are large as shown in Figure 16. After correcting dh, the changes is smaller.
The changes of the estimated human body height are reduced after correcting of the foot-bottom point
as shown in Figure 17. Two persons whose actual heights are 182 cm and 165 cm are estimated as
188.6 cm and 181.5 cm before correcting dh, respectively, as 172.2 cm and 163.3 cm after the correction
of the head-top point, respectively and as 181.5 cm and 163.1 cm after the correction of both head-top
and foot-bottom points, respectively.

 
Figure 15. Positions of dh and (xf, yf). (a) Before correction; (b) after correction.

Figure 16. Changes in dh according to frame order.

 
Figure 17. Result of height estimation after correction of dh and (xf, yf).

Figure 18 shows the results of the human-height estimation depending on r0 and Tσ, which are
the parameters for (8) and (9) when d0 is 2000. The estimated height drops sharply when r0 is less
than or equal to 2 and decreases smoothly when r0 is larger than 2. In addition, the estimated height
linearly increases when Tσ is less than or equal to 250 and slowly increases when Tσ is larger than 250.
Body height is estimated most accurately when r0 is 2 and Tσ is 125.
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Figure 18. Results of human-height estimation depending on parameters for (8) and (9). (a) r; (b) Tσ.

Tables 2–4 show the results of the human-height estimation depending on human body postures
for 10 persons. All of persons are captured within a range of 2.5 m to 4 m from the camera. Each person
is captured with 150 frames. The error of the human-height estimation is calculated as follows:

∣∣∣H −Hactual
∣∣∣

Hactual
, (13)

where H and Hactual are the average of the corrected human heights by (12) and an actual height for
a person, respectively. When the human body region is extracted by mask R-CNN, the errors of the
human-height estimation with standing, lateral walking and walking towards the camera are 0.7%,
1.3% and 1.8%, respectively. The accurate foot-bottom for the human-height estimation is the point
of a foot heel which is on the ground. However, the bottommost pixel of the body region which is
extracted as the foot-bottom point is usually a foot toe point in the proposed method. The position
difference between the foot heel and foot toe points may make the error of the human-height estimation.
The human-height estimation errors with standing, lateral walking, and walking towards the camera
are 2.2%, 2.9%, 4.6%, respectively, when the body region is extracted by the background depth image.
The human-height estimation using only depth frames has more error than using both color and
depth frames.

Table 2. Results of human-height estimation by proposed method while standing.

Person No.
Actual Height

(cm)

Extracting Human Body
by Mask R-CNN

Extracting Human Body
by Background Depth Image

Estimated
Height (cm)

Estimation
Error (%)

Estimated
Height (cm)

Estimation
Error (%)

1 177 179.6 1.5 172.1 2.8
2 183 182.1 0.5 176.5 3.6
3 165 164.2 0.5 161.3 2.2
4 178 176.5 0.8 173.9 2.3
5 182 180.9 0.6 177.7 2.4
6 173 174.6 0.9 175.2 1.3
7 175 174.4 0.3 171.3 2.1
8 170 169.2 0.5 167.1 1.7
9 168 167.3 0.4 165.6 1.4
10 181 178.9 0.6 177.4 1.4

Average error (%) 0.7 2.2
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Table 3. Results of human-height estimation by proposed method while lateral walking.

Person No.
Actual Height

(cm)

Extracting Human Body
by Mask R-CNN

Extracting Human Body
by Background Depth Image

Estimated
Height (cm)

Estimation
Error (%)

Estimated
Height (cm)

Estimation
Error (%)

1 177 176.1 0.5 171.5 3.1
2 183 180.7 1.3 175.9 3.9
3 165 163.0 1.2 160.1 3.0
4 178 175.2 1.6 174.1 2.2
5 182 179.6 1.3 176.6 3.0
6 173 170.7 1.3 168.1 2.8
7 175 172.6 1.4 170.7 2.5
8 170 167.5 1.5 166.1 2.3
9 168 166.2 1.1 162.8 3.1
10 181 177.1 1.6 174.8 2.9

Average error (%) 1.3 2.9

Table 4. Results of human-height estimation by proposed method while walking towards camera.

Person No.
Actual Height

(cm)

Extracting Human Body
by Mask R-CNN

Extracting Human Body
by Background Depth Image

Estimated
Height (cm)

Estimation
Error (%)

Estimated
Height (cm)

Estimation
Error (%)

1 177 174.1 1.6 167.5 5.4
2 183 178.7 2.3 172.9 5.5
3 165 161.0 2.4 157.1 4.8
4 178 173.8 2.4 172.1 3.3
5 182 178.4 2.0 173.6 4.6
6 173 169.7 1.9 164.1 5.1
7 175 171.2 2.2 168.7 3.6
8 170 166.4 2.1 163.1 4.1
9 168 165.2 1.7 158.8 5.5
10 181 174.9 2.8 171.8 4.6

Average error (%) 2.1 4.6

5. Conclusions

In this study, a human-height estimation method using color and depth information was proposed.
The human body region was extracted through the pre-trained mask R-CNN to color video. The human
body region extraction from depth video was also proposed by comparing with the background depth
image. Human height was estimated from depth information by converting two points of head-top
and foot-bottom into two 3D real-world coordinates and by measuring the Euclidean distance between
two 3D coordinates. Human height was accurately estimated even if the person is not in front or a
walking state. In the experiment results, the errors of the human-height estimation by the proposed
method with the standing state were 0.7% and 2.2% when the human body region was extracted by
mask-R CNN and by the background depth image, respectively. The proposed method significantly
improves the human-height estimation by combining color and depth information. The proposed
method can be applied to estimate not only the body height, but also the height of other object types
such as animals. The proposed method can also be applied to gesture recognition and body posture
estimation which require the types and the 3D information of objects.
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Abstract: Neural networks have achieved great results in sound recognition, and many different
kinds of acoustic features have been tried as the training input for the network. However, there is
still doubt about whether a neural network can efficiently extract features from the raw audio
signal input. This study improved the raw-signal-input network from other researches using deeper
network architectures. The raw signals could be better analyzed in the proposed network. We also
presented a discussion of several kinds of network settings, and with the spectrogram-like conversion,
our network could reach an accuracy of 73.55% in the open-audio-dataset “Dataset for Environmental
Sound Classification 50” (ESC50). This study also proposed a network architecture that could combine
different kinds of network feeds with different features. With the help of global pooling, a flexible
fusion way was integrated into the network. Our experiment successfully combined two different
networks with different audio feature inputs (a raw audio signal and the log-mel spectrum). Using the
above settings, the proposed ParallelNet finally reached the accuracy of 81.55% in ESC50, which also
reached the recognition level of human beings.

Keywords: deep neural network; convolutional neural network; environmental sound recognition;
feature combination

1. Introduction

We live in a world surrounded by various acoustic signals. People react from their sense of
hearing in situations like passing streets, finding someone in a building, or communicating with others.
The development of computer vision has given machines the ability to support our lives in many
ways. Hearing sense, as another important factor of our lives, is also an appropriate target to develop
with artificial intelligence. A machine assistance acoustic detection system could be applied in several
aspects, such as healthcare [1], monitoring [2], security [3] and multi-media applications [4].

In the artificial intelligence domain, neural networks have been a popular research field in recent
years. Many acoustic topics have been researched with this technique, such as speech recognition [5,6]
and music information retrieval (MIR) [7,8]. However, this kind of acoustic research only work for a
certain purpose. Unlike this kind of content, the general acoustic events in our lives might not have
periodicity or clear rhythms that can be detected, and the non-stationary properties of environmental
sound make this problem difficult and complex. To achieve a system that can deal with general
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acoustic cases, the first step might be to recognize the current environmental scene. Scenes such as
coffee shops, streets, and offices all have a unique event set; by adding the scene information into
the detection system, the system complexity could be reduced. This is why environmental sound
recognition techniques are important and essential.

This study attempted to provide an end-to-end solution for an environmental sound recognition
system. There were two major contributions from this research. First, we improved the performance of
the network feed with a raw audio signal. Second, we proposed a more flexible parallel network that
could combine several kinds of features together. The result showed that this kind of network could
combine raw audio signals and the log-mel spectrum efficiently.

The rest of this paper is organized as follows: In Section 2, we introduce the background of this
research, including the current research on environmental sound recognition and the fundamental
knowledgement of neural networks. In Section 3, a detailed description of our network and development
methods is introduced. In Section 4, we perform experiments to examine our network architecture and
the proposed development method, and we compare our results with those of other research, using a
number of public datasets. In Section 5, we present a conclusion of our work and provide suggestions
for further research.

2. Related Works

2.1. Environmental Sound Recognition

The intention of the study is to resolve the conditions around Environmental sound recognition
(ESR), which is also known as environmental sound classification. The study is not specifically intended
to detect the event trigger time precisely, but more important to understand what the acoustic scene is.
In past years, numerous methods, such as the Gaussian Mixture Model (GMM) [9], Hidden Markov
model (HMM) [10,11], random forest [12], and support vector machine [13], etc., have been used
to solve the ESR problem. However, none of these methods can reach the level of human beings.
Since 2012, neural networks have shown the great potential in computer vision [14]. Increasingly,
researchers have begun to apply neural networks in the ESR field.

For a neural network, it is important to choose a suitable feature to be the input value. In 2014,
Piczak [15] proposed a usable network structure using the log-mel spectrum and delta as the input
features, which was once considered state-of-art in the ESR field. The log-mel spectrum has been a
popular feature used in the ESR field in recent years. In Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE challenges) [16,17], most of the researchers still choose to take the
log-mel spectrum as one of the network inputs in acoustic scene classification tasks.

In 2015, Sainath et al. [6] used a raw audio wave as the network input to train for speech recognition
and had promising results. Raw signals seem to be one of the choices in the ESR field.

In 2016, Aytar et al. [18] proposed SoundNet, which is trained using both images and raw
audio. The image part is used to assist in the training, but the scene is still recognized according
to the raw audio signals. The result of the network was impressive. Although, the performance
might drop considerably, the network structure can still be trainable using the raw audio signal
only. In the same year, Dai et al. [19] proposed an 18-layer network that could also work with raw
audio signals, and the larger number of filters and a deeper structure provided a much better result
using raw audio signals. We could clearly see that network architecture has a huge effect with the
raw signal input when comparing these two works [18,19]. The depth and the filter numbers are
obviously worth further discussions. On the other hand, both the two works use the global pooling
strategy [20] to integrate the network output information, which has shown an outstanding effect on
dimension reduction. Global pooling has other benefits in structure integration, which is explained in
our method development.

In 2017, Tokozume and Harada [21] proposed EnvNet, which transforms a signal from a raw 1d
signal to a 2d spectrogram-like graph through the network. This is an interesting idea, because training

88



Appl. Sci. 2020, 10, 5965

with a spectrum might also be adapted to this kind of graph. In the same year, Tokozume et al. [22]
proposed another augmentation method that could be applied in the same kind of network, and the
results could even reach the level of human beings.

These related works reveal that the input features greatly influence the performance of a network.
Although many features have been tried on the network, a proper way to combine individual acoustic
features are lacking. Moreover, network architectures that use raw signals as the input also require
further discussion. Therefore, based on the existing research, this study focuses on improving the
above-mentioned aspects.

2.2. Review of Neural Networks

The concept of neural networks has been proposed for a long time [23]. However, it was
not considered useful due to the enormous computation requirements. The recent development
of computer hardware has given researchers new opportunities to apply the technique in various
problems, such computer vision [14] and speech recognition [5], etc. Neural networks show great
potential in these aspects. In the following sections, we introduce the fundamental concepts of a neural
network, as well as some techniques to tune up a network.

2.3. Feed-Forward Neural Network

The simplest feed-forward neural networks would be Single-layer perceptrons, which can be
built up to do a regression. Assume we would like to project a X ε Rn to Y ε Rm, the two variables
could be rewrite as two vectors X = [§1 · · · §n]

T and Y = [†1 ··· †m]
T, so we could simply try the

formula below:
Y = WX+ b. (1)

In (1), W ε Rm ×n and b ε Rm ×1, therefore, the main purpose to solve the equation is to find the
suitable w and b. If we already had a certain sample Si = (Xi,Yi), obviously, we make the result of
input Xi could be as close toYi as possible. There are several methods that can be used to retrieve the
correct value of w and b, such as the stochastic gradient descent (SGD) or Newton’s method. No matter
which method is applied, the equation will have a good result when X andY among all the samples
are linearly dependent. Inspired by the animal neuron system, the activation function ϕ was added to
improve Equation (1), and the new equations are listed as (2) and (3):

ν = WX+ b (2)

Y = ϕ(ν). (3)

The activation function provides a non-linear transform to filter out the weaker signal. For example,
the classic activation function sigmoid is:

sigmoid(x) =
1

1 + e−x . (4)

After passing Equation (4), every output value is straightly normalized to a range between 0 and
1, which is a superior non-linear transform. Equation (3) can now have the ability to make a regression
to the non-linear equation.

From Equation (3), it can be clearly seen that each element in Y is actually composed of every
element of X in different weights. Here, X form an input layer, and each node create an element ofY is
called a neuron in the network.

To enhance the network structure, a hidden layer can be added to improve the network performance.
The neuron numbers in the hidden layer needs to be decided by users, it usually setup to the value
bigger than both input and output dimensions. The hidden layer is used to project the input vector
into another dimension, resulting in a greater chance of finding a linear way to transform from a higher
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dimension to the output layers. Several non-linear transform also make the network hold greater
power to complete complex regression.

To obtain the correct weights of the feed-forward neural networks, the backpropagation method [24]
(BP) is widely used. By calculating the gradient from the loss function, the gradients can be backward
propagated to each of the weights.

It seems that the network would better be design deeper, more layers, or wider, more neurons
per layer, but actually both of the two methods all get some issues need to be deal with. The weight
number grows exponentially with the width of the network, which also leads to a large growth of the
computation times and also causes the network to face a serious overfitting condition. This also means
that the network might easily fit the training data but still result in poor performance while testing.
Deeper networks need to solve the gradient decent problem. When performing BP, the gradient travels
from the end of the network and gets thinner and thinner while arriving at the front, and it can even
vanish directly. A number of methods have been proposed to improve the vanishing gradient problem,
of which a deeper network is recommended to be built as a solution.

2.4. Convolutional Neural Networks

The convolutional neural network (CNN) is a special type of neural network used in image
recognition. LeNet [25] is considered to be the first complete CNN. It is composed of convolution layers,
activation layers, pooling layers, and fully connected layers. These layers all have special usages, which
are introduced later in the paper. CNN resembles the original input image into a series of feature maps,
by which each pixel in the feature map is actually a neuron. Unlike the way in which a normal neural
network acts, each neuron does not connect to all the neurons in the previous layer; the connections
only build up when these two neurons have a certain locality relationship. It makes sense because the
information revealed in a certain location intuitively has a little chance to be related to another distant
location. In this way, the total weight is reduced, which helps to improve the over-fitting condition.

2.5. Convolutional Layers

Each convolutional layer is composed of several graphic filters called kernels, it works just like
the way in image processing does. Through convolutions, the kernels enhance part of the image’s
characteristic and turn the image into an individual feature map. The feature maps are all the same
size and are bundled together to become a brand-new image. The convolutional layer provides
an example regarding what the new image will look like. Each map in the same image is called a
channel, and the number of channels becomes the depth of the image. When working through the
convolution layers, the kernel actually processes all the channels once at a time. Another important
aspect of the convolutional layer is parameter sharing. If we look back to the processing method of
MLP, we can discover that each pixel in the same image needs to be applied to different kernels.
However, in convolutional layers, the whole image shares the same kernel to create a feature map,
which gives CNN an important shift invariant characteristic. As the kernel can move all around the
image, the features correlated with the kernel can be detected anywhere, which gives CNN superior
performance in image recognition.

2.6. Activation Layers

As mentioned in the previous section, the main purpose of the activation layer is to provide a
non-linear transform. These functions need to be derivative. There are several types of activation
functions, including sigmoid (4), tanh (5) and rectified linear unit (ReLU) (6):

tanh(x) =
ex − e−x

ex + e−x (5)

ReLU(x) = max(x, 0). (6)
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Unfortunately, these activation functions all have some flaws. When using the gradient decent
methods, ReLU can be affected by gradient exploding, because ReLU does not change the range of the
output value from the input. Another problem cause by ReLU is the dead ReLU problem. When a relu
has a negative input value, it will give an output of 0, which will cause the whole chain of the input to not
update at that time, or even worse, never update until training is finished. On the other hand, sigmoid
and tanh are affected by the vanishing gradient problem, because the gradients BP from these functions
will at most only have 1/4 left. Comparing with these two groups of activation functions, we observe
that the problem of ReLU can be solved by adding a normalization layer, which also results in a faster
processing speed. For these reasons, ReLU is now the most commonly-used activation function.

2.7. Pooling Layers

Even though parameter sharing reduces the large number of parameters for CNN, for a large-scale
picture, it is still necessary to find a reasonable way to perform subsampling. Pooling layers can be
used to finish this job.

For a continuous signal (like an image), it is intuitive to perform downsampling by grouping a
fixed number of adjacent values and then picking up an output value from each group. The pickup
method could be based on the average, maximum, or minimum. Among these methods, maximum
pooling has shown the best result and is commonly used now.

However, care must be taken, as not all feature maps can take pooling as the down sampling
method. According to the previous description, each value in the same group needs to be adjacent,
which means these values actually have some spatial relationships, and each group also needs to have
the same spatial meaning. Therefore, pooling layers might not be suitable to in some cases using CNN,
such as in game maps [26].

2.8. Fully Connected Layers

Fully connected (FC) layers are similar to the typical MLP. The processing feature maps are
flattened before entering this layer and transform from several dimensions to a single vector. Most of
the parameters in a CNN are set in FC layers, and the size of the FC layer determines the capacity of
the network.

2.9. Loss Function

A neural network can be used for classification and regression, each of which needs a different
loss function, and these functions all need to be derivate:

Lossmse
(
y, t
)
=

1
2

(
y− t
)2

. (7)

Equation (7) is the mean square loss (MSE) function, which is often used in regression tasks.
It directly shows the difference between the output value and the target value. Another loss function
often used in classification is cross entropy, which usually works with the softmax logistic function.

In Equation (7), y =
[
y1 · · · yJ

]T
is the output vector coming from the FC layer and the J is the final class

number. Softmax tends to find the probability distribution of the classification result. After passing
through the function, the sum of output vector S becomes 1, and Sj represents the probability of the
input being classified as class j:

Sj
(
y
)
=

eyj∑J
k=1 eyk

(8)

Losscross entropy
(
y, t
)
= −

J∑
j=1

tjlogSj
(
y
)

(9)

Losscross entropy = −logSj
(
y
)
. (10)
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The purpose of cross entropy is to estimate the difference between two vectors by calculating the
log likely-hood function. The result is the same as that shown by Equation (9). In most classification
cases, the final result will be a one-hot vector, in which target j has a value of one and the other element
is zero, that is, only Sj has the value. Therefore, the loss function then be simplified to (10).

2.10. Model Initialization

In a network, there are numerous hyper parameters that need to be decided, it is normally to
consider a way to do the initialize. An ideal properly-initialized network could have the following
property: if we take a series of random inputs into the network, the output should be fairly distributed
in each of the classes, and there should not be any particular trends at the beginning. Obviously,
randomly initializing the parameters will not have this effect. Glorot and Bengio proposed normalized
initialization [27] to keep the various from the layer input to output.

W ∼ U

⎡⎢⎢⎢⎢⎣ −
√

6√
nj + nj+1

,

√
6√

nj + nj+1

⎤⎥⎥⎥⎥⎦ (11)

nj in Equation (11) means the number of inputs in layer j. Equation (11) performs well for linear layers,
but for nonlinear layers like ReLU, the equation needs to be adjusted.

He et al. proposed another method [28] to fix the formula, in which nj+1 in (11) can be simply
ignored. Our experiment used He’s method to initialize the network.

2.11. Batch Normalization

In the previous section, it was mentioned that ReLU needs a method to support it in arranging the
output value. The distribution of the output value also needs to be controlled. Sergey et al. proposed a
method called batch normalization [29]. The main concept of this method is to force the addition of a
linear transform before the nonlinear layer to make the variance and mean of the nonlinear layer input
X, Xε Ri × j ×k, i + j + k = m be in a certain range:

μβ ← 1
m

m∑
i=1

xi (12)

σ2
β ←

1
m

m∑
i=1

(
xi − μβ

)2
(13)

x̂i ←
xi − μβ√
σ2
β+ ∈

(14)

In Equations (12) and (13), the value of m is the total number of elements in the mini-batch and
channels. After Equation (14), the purpose is to find the current mean value μβ and current variance
σβ, and then adjust them to become 0 and 1:

yi ← γx̂i + β ≡ BNγ,β(xi). (15)

Other learnable transform parameters can be added into the formula, and the final result will
be similar to Equation (15). These two variables help the input values to do a little bit adjustment,
which helps to solve the dead ReLU problem. It is essential to take batch normalization in a
deep network.
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3. Method Development

3.1. Data Sets

In our experiments, we took two kinds of public data sets to evaluate our network structure
improvements: ESC50 [30] and ESC10 (Warsaw University of Technology, Warsaw, Poland).

ESC50 is a collection of environmental sound recordings that contains 50 classes, such as airplanes,
car horns, cats, humans laughing, and rain, etc. There are 2000 short clips in total, and each class has
40 files. Each clip is five seconds long, and there is a total length of 2.78 h. It was recommended to test
with the official 5-fold setting, as some of the files in the same class are extracted from the same source,
using the official fold could avoid some problems.

ESC10 is a subset of ESC50 that takes out 10 classes from ESC50, while other configurations remain
the same. It was beneficial to do a small-scale test in this dataset first.

3.2. Data Preprocessing

There are three kind of data put into our CNN such as the raw signal, the mel-spetrogram, and the
output of 1D network. The output of 1D network is that we input signal into the 2D network. For the
preprocessing, we first down-sampled the audio files to a sample rate of 16,000, averaged the stereo
audio to mono, and eliminated the empty segments at the front and the tail of the files. If the resulting
file was less than 1.5 s, we equally filled up the length with the 0 value at the beginning and end of
the files. In the training phase, based on the method in [22], we appended 750 ms of 0 to both sides
of the audio and then randomly cropped a 1.5 s clip, while the variance of the clip was 0. We then
continued to repeat the procedure. After cropping the file, the mean and variance of the clip were
normalized to 0 and 1. In the testing phase, we sequentially cropped 10 clips of 1.5 s each from the test
audio. Each clip overlapped for about 390 ms. We chose the majority of probability scheme to do the
final classification for each test file.

For the log spectrum, we transferred from the normalized clip with a sample rate of 16,000.
The frame size was set to 512 (about 30 ms) with a 50% overlap, and the resulting values were then put
through the log operation and mel-filters. This finally resulted in a 128-bin mel-spectrum. We did not
make further normalizations to the spectrum graph, and they were fed into the network directly.

3.3. Data Augmentation

Compared to image datasets [31,32], acoustic datasets are not very popular; the number of files is
insufficient, and there is a lack of diversity. Some researches [22,33] have revealed that data augmentation
can help to enhance the result of classification. Common acoustic augmentation methods include pitch
shifting and time stretching. Although CNN is shift invariant, these augmentation methods still have
an effect on network training, therefore we chose both of them to be our augmentation methods.

We performed another augmentation method, known as wave overlapping, which was inspired
by the study in [22] and their use of between class learning. We simplified the method to perform
augmentation for just for a signal class. We, first, randomly cropped two segments of the same size
from a single file, and then multiplied each of them by an individual random ratio from 0 to 1.
These two crops were then summed up together, and the mean and variance were normalized to 0 and
1. The difference of volume we create for the new segment riches the diversity of the data. It is a simple
method to enhance the dataset, and keeps the labels unchanged. The result shows that it is even better
than just provide two of the individual crops. The experiment is described in the following chapter.

3.4. Network Customization

CNN provides a flexible method to extract features from any kind of input.
Many researches [18,19,21,22] have shown that raw signals can be the input of a network. Inspired
by [21], we assumed that the concatenation of a 1d feature map would form a spectrum-like graph.
In fact, the 1d convolution along the time axis could actually fetch the frequency information from

93



Appl. Sci. 2020, 10, 5965

the raw signal. Each channel represents a set of frequencies, and the Y axis of the concatenation map
means the frequency sets the response at a certain moment. We believed that more features could be
extracted from this kind of map. Therefore one of our purposes was to optimize the extraction network.
As shown in Figure 1, we proposed a network structure feed with raw signals and output a feature
vector to entering a full connected layer to do the classification.

The network was composed of a 1D and 2D network. Just like the description above, the 1D
network was used to extract a spectrum-like map, and the 2D network was used to find detailed
features from the map.

Furthermore, the 2D network could not only be used in our network-organized map but could
also be applied in the mel filter bank spectrum. In the next chapter. We would show the result of
our network processing these two kinds of feature maps. Our network architectures are listed in
Tables 1 and 2.

Figure 1. Network structure for ESR classification. The 1D and 2D networks are serialized together but
could also work alone to be fit with different situations.

In Table 1, Conv refers to the convolutional layers and Pool refers to the max pooling layers.
All the Conv layers were appended with a batch normalization layer and a ReLU layer. The input
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tensor of the network was a 1d tensor of 1 × 24,000 (a 1.5 s clip under a sample rate of 16,000), and the
output tensor was a 2d tensor of 1 × 128 × 120.

Table 1. Architecture of the 1d network.

Layer Ksize Stride Padding #Filters

Input (1 × 24,000)
Conv1 13 1 same 32
Pool 2 2 0 –
Conv2 13 1 same 64
Conv3 15 3 same 128
Conv4 7 5 same 128
Conv5 11 8 same 128
Channel concatenation (1 × 128 × 100)

Table 2. Architecture of the 2D network and full connections.

Layer Ksize Stride #Filters

Input (1 ×M × N)
3 × Conv (1~3) (15, 1) (1, 1) (1, 1) (1, 1) 32
3 × Conv (4~6) (15, 1) (1, 1) (1, 1) (2, 1) 64
3 × Conv (7~9) (15, 1) (1, 1) (1, 1) (2, 1) 128
3 × Conv (10~12) (5, 5) (1, 1) (1, 2) (2, 2) 256
3 × Conv (13~15) (3, 3) (1, 1) (1, 1) (1, 1) 256
3 × Conv (16~18) (3, 3) (1, 1) (1, 1) (1, 1) 512
Conv19 (3, 3) (2, 2) 512
Conv20 (3, 3) (1, 1) 1024
Global max pooling (1024)
FC1 (2048)
FC2 (# classes)

In Table 2, the first six blocks contained three Conv layers each. These three Conv layers had the
same kernel size and filter number, but were constructed with different stride settings. All the Conv
layers were appended with a batch normalization layer and a ReLU layer. FC1 was also followed by a
batch normalization layer, a ReLU layer, and a drop out [34] for 50%. Padding was always applied on
Conv layers, and if there was no stride, the size of the output would be the same as the input of each
layer. The input size of this network was adjustable, but due to global pooling, the output size of the
max pooling layers could be controlled as the last channel number, which was 1024 in Conv 20.

3.5. Network Parallelization

One of the main purposes of our work was to find a suitable method to combine several features in
the network, we desired these features could eventually help adjust other networks during the training
procedure. Applying the idea to the features with high homogeneity is intuitive. Based on our 1D and
2D networks, we proposed a feature parallel network and took raw signals and the mel-spectrum as
examples. Figure 2 represents the concept of our method. In the last layer of the two-dimensional
(2D) network, we used the global max pooling [20] to extract the feature vector from different kinds of
feature maps. These extracted vectors could easily connect along the same axis whether their length
being the same or not. In our experiment, we tested the parallel features using the same vector size of
1024; therefore, the length of the 1d tensor entering the FC layer shown in Figure 2 was 2048.
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Figure 2. Parallel architecture of the network.

4. Results and Discussion

4.1. Experiment Setup

The neural network could be highly complex, but have only a few non-linear layers. The increasing
of the depth makes the network easier to fetch the abstract expression form the source. Our intention
of increasing the depth of the network allows the network to generate an effective acoustic filter,
like mel-filter from signal processing.

We were interested in some particular setting within the network, so we would like to try modify
some of these settings to examine what would they take effect. Our experiment focused on the
following topics:

• Signal length per frame in the 1d network
• Depth of the 1d network
• Channel numbers of the 1D network (the height of the generated map)
• Kernel shape in the 2d network
• The effect of pre-training before parallel
• The effect of the augmentation

We took ESC50 and ESC10 as our datasets, and used the official fold settings. The experiments
only consisted of training and testing, and we did not perform additional validations. Each experiment
ran for 350 epochs, and we used Nesterov’s accelerated gradient [35] as our network optimization
method. The momentum factor was set to 0.8. The initial learning rate was set to 0.005 and decayed
to 1/5 in the following epochs: 150 and 200. L2 regulation was also used and was set to 5 × 10−6.
Our models were built using PyTorch 0.2.0 and were trained on the machine with GTX1080Ti (NVIDIA,
Santa Clara, CA, USA). The audio wav files were extracted using PySoundFile 0.9, and LibROSA 0.6
was used to create the mel-spectrums.

4.2. Architecture of the 1D Network

To test the influence of the filter size in the 1D network, it was necessary to slightly modify the
network structure shown in Table 1.

The kernel sizes of Conv 4 and Conv 5 in the 1D network affected the frame length the most,
therefore we tried three kinds of combinations to reach 25 ms, 35 ms, and 45 ms per frame. Test accuracy
with the different frame lengths setting: the frame indicates the output unit of the 1D network.
The dataset used in this test was ESC50, as shown in Table 3.
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Table 3. Test accuracy with different frame length settings.

Frame Length ~25 ms ~35 ms ~45 ms

ksize of Conv4 7 15 21
ksize of Conv5 11 15 19

Avg. 73.55% 72.45% 72.55%
Std. dev. 2.89% 2.57% 1.54%

Clearly, the most stable result was found at a frame size of 25 ms; as the frame size increased,
the accuracy worsened. The result found at 25 ms showed the most generalizability.

4.3. Network Depth

In the depth test, the epochs times is 350, but the result always converged before the 350 epochs.
Increasing the depth of the network could enhance the non-linear transform ability of the network,
and it is known as to enrich the abstract expressiveness. Also, the non-linear transform could consider
as the processes to form the acoustic filter just like mel-filter, gammatone-filter, etc.

In this test, we inserted a certain number of layers before Conv 2–5. The settings of these layers
were ksize = 3 and strides = 1. Padding was introduced to maintain the input length, the filter
numbers were equal to the former Conv layer, and each of the insertion layers was followed by a
batch normalization layer and a ReLU layer. The distribution of these layers was considered to not
significantly affect the frame length. We get two kinds of setting, 12 or 24 additional layers, the location
means in front of where these layers would be put. The configuration is shown in Table 4, and the
result in Table 5.

Table 4. Configuration of the depth test.

Location
#Layers

Distribution of 12 Layers Distribution of 24 Layers

Conv2 6 10
Conv3 3 8
Conv4 2 5
Conv5 1 1

Table 5. Test accuracy with different depth settings of the 1d network.

Depth 12 + 5 24 + 5

Avg. 72.00% 66.95%
Std. 1.28% 2.62%

Although parameter numbers of the network increased slightly, we found that the network could
still converge within 350 epochs, so we kept it the same.

It was surprising that the depth of the 1D network did not significantly affect the result, or even
worse, the results going down while the network becomes deeper. The results were not consistent with
that of Dai et al. [19]. The main reason for this discrepancy may have been due to the frame size in
their experiment but not the depth of the network. More researches and experiments may be needed
to prove this argument.

4.4. Number of Filters

A sufficient number of filters was necessary to provide sufficient capacity for the network to load
the frequency information. Therefore, it could not be set too small. On the other hand, an excessively
large setting would cause a large graph to pass into the 2D network, which would slow down the
network processing but not provide a significant improvement in accuracy. We tried three different
settings: 64, 128, and 256, and the result is shown in Table 6.
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Table 6. Test accuracy using different filter numbers in the 1d network.

#Filters 64 128 256

Avg. 71.05% 73.55% 74.15%
Std. 2.05% 2.89% 3.16%

Although the setting of 256 had a slightly better result than 128, it required almost three times the
amount of training compared with the 128 filters model, we chose 128 filters as our final decision.

4.5. Architecture of the 2D Network

The kernel shape could affect the invariant shifting of CNN, and it is not desired for this kind of
invariant characteristic to show up in the frequency domain. In fact, a square kernel has been proven
to not be suitable for spectrum content. We tried three different shape settings to see which would the
best performer using our 1D-2D network by modified the size value of Conv (1~9). The test result is
shown in Table 7.

Table 7. Test accuracy using different kernel shapes in the 2D network.

Size (15,1) (15,15) (1,15)

Avg. 73.55% 67.25% 70.85%
Std. 2.89% 2.57% 2.75%

4.6. Parallel Network: The Effect of Pre-Training

To achieve the best performance of the parallel network, a pre-training procedure was required.
Our network was composed of a raw-signal-1D-2D network, a spectrogram-2D network, and a set
of fc layers. The pre-training procedure was built on the first two parts individually with their
own fc layers (see Figure 1), trained the network alone, and then took over the essentials part and
connected them into the parallel network. Likewise, we added an additional data source to improve
the network analysis capability. These two data sources with high homogeneity are chosen. The neural
network tends to ignore some information during the training, and our adding procedure is additional
information, the feature vector from another network, back to it after training. We tried two kinds of the
pre-training settings and compared them with the network before pre-training: Only pre-trained the
raw-signal-1D-2D network. Both the upper reaches were pre-trained. The result is shown in Table 8.

Table 8. Test accuracy.

Pre-Train Network Without Pre-Train Raw Signal Only Both Network

Avg. 78.20% 75.25% 81.55%
Std. 2.96% 2.18% 2.79%

The worst result occurred when the network was pre-trained only using the raw-signal-input
network; however, if we pre-trained both networks, we could then get the best result. This revealed
that the trained 1D-2D network could disturb the training procedure of the spectrogram network.

4.7. Data Augmentation

In this section, we test the augment method mentioned in the former paragraph. The wave-
overlapping method was used to insert two different crops into a single clip, and then three different kinds
of settings were applied. The original ESC50 had 1600 sets of training data in each fold. We randomly
picked up certain sets of data to make the additional training clips. Setting 1 took 800 original clips,
and Setting 2 took 400 clips. The wave overlapping created two crops from a single original source.
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Setting 3 caused these two crops to be pitch shifted or time stretched. We tested the result using a
partially pre-trained network and a fully pre-trained one. The results are shown in Tables 9 and 10.

Table 9. Test accuracy of augments applied in partial pre-pertained network.

Aug Type Original with Extra Overlap with Raw Overlap with PS/TS

Avg. 74.05% 76.95% 75.20%
Std. 3.55% 3.59% 2.65%

Table 10. Test accuracy of augments applied in full pre-trained network.

Aug Type Original with Extra Overlap with Raw

Avg. 81.40% 81.35%
Std. 3.04% 3.03%

4.8. Network Conclusion

The previous experiments found a network architecture with the most efficient settings. We next
compared our results with the networks with other researches based on raw signals or spectrograms
without augmentations, as shown in Table 11.

Table 11. Test result of different kinds of models with open-datasets.

Models Features
Accuracy

ESC50 ESC10

Piczak’s CNN [15] log-mel spectrogram 64.5% 81.0%

m18 [19] raw audio signal 68.5% [22] 81.8% [22]

EnvNet [21] *
raw audio signal
⊕
log-mel spectrogram

70.8% 87.2%

SoundNet (5 layers) [18] raw audio signal 65.0% 82.3%

AlexNet [36] spectrogram 69% 86%

GoogLeNet [36] spectrogram 73% 91%

EnvNet with BC [22] *
raw audio signal
⊕
log-mel spectrogram

75.9% 88.7%

EnvNet–v2 [22] raw audio signal 74.4% 85.8%

1D-2D network (ours) raw audio signal 73.55% 90.00%

ParallelNet (ours) raw audio signal
&log-mel spectrogram 81.55% 91.30%

Human accuracy [30] 81.3% 95.7%

* Result combined before softmax.

We summarized our experiment results as following:

• Our proposed method is an end to end system achieving 81.55% of accuracy in ESC50.
• Our proposed 1D-2D network could properly extract features from raw audio signal, compared

with the old works.
• Our proposed ParallelNet could efficiently raising the performance with multiple types of

input features.
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5. Conclusions and Perspectives

This study proposed a 1D-2D network to perform audio classification, using only the raw signal
input, as well as obtain the current best result in ESC50 among the networks using only the raw signal
input. In the 1D network, we showed that the frame size had the largest effect, and that a deeper
network might not be helpful when only using batch normalization. In addition, our parallel network
showed great potential in combining different audio features, and the result was better than that for
networks taking only one kind of feature individually. The final accuracy level corresponded to that of
a human being.

Although we found that different frame size and network depth settings could affect the
performance of a 1D network, the reasons causing these phenomena require more studies.
Much research [37–39] has proposed methods to show the response area in the input graphics
of CNN for the classification result or even for certain filters. The deep learning on sequential data
processing with Kolmogorov’s theorem is more and more important. Fine-grained visual classification
tasks, Zheng et al. [40] proposed a novel probability fusion decision framework (named as PFDM-Net)
for fine-grained visual classification. The authors in [41] proposed a novel device preprocessing of a
speech recognizer, leveraging the online noise tracking and deep learning of nonlinear interactions
between speech and noise. While, Osayamwen et al. [42] showed that such a supervisory loss of
function is not optimal in human activity recognition, and they improved the feature discriminative
power of the CNN models. These techniques could help find out hot spots in a spectrogram and
could also help to generate a highly response audio clip for certain layers, which could provide a good
direction for analyzing the true effect behind each kind of setting.

Most of our work focused on the arrangement of a 1D network, and there are still some topics
for a 2D network that need to be discussed, such as network depth, filter size, and layer placement.
These topics are all good targets for future work.

Our parallel network combined the raw audio input and log-mel spectrum successfully. More input
features could also be tried in the future, such as mel-frequency cepstral coefficients (MFCC) and
gammatone spectral coefficients (GTSC), etc. The feature vector ratio is also a good topic for future
discussion. With the help of global pooling, we could even combine different kinds of network
structures to perform the parallel test, just like the diverse fusion network structures used in computer
visual. Our parallel methods have excellent research potential.
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Abstract: Recently, generative adversarial networks (GANs) have been successfully applied to speech
enhancement. However, there still remain two issues that need to be addressed: (1) GAN-based
training is typically unstable due to its non-convex property, and (2) most of the conventional methods
do not fully take advantage of the speech characteristics, which could result in a sub-optimal solution.
In order to deal with these problems, we propose a progressive generator that can handle the speech
in a multi-resolution fashion. Additionally, we propose a multi-scale discriminator that discriminates
the real and generated speech at various sampling rates to stabilize GAN training. The proposed
structure was compared with the conventional GAN-based speech enhancement algorithms using
the VoiceBank-DEMAND dataset. Experimental results showed that the proposed approach can
make the training faster and more stable, which improves the performance on various metrics for
speech enhancement.

Keywords: speech enhancement; generative adversarial network; relativistic GAN; convolutional
neural network

1. Introduction

Speech enhancement is essential for various speech applications such as robust speech
recognition, hearing aids, and mobile communications [1–4]. The main objective of speech
enhancement is to improve the quality and intelligibility of the noisy speech by suppressing
the background noise or interferences.

In the early studies on speech enhancement, the minimum mean-square error (MMSE)-
based spectral amplitude estimator algorithms [5,6] were popular producing enhanced
signal with low residual noise. However, the MMSE-based methods have been reported
ineffective in non-stationary noise environments due to their stationarity assumption on
speech and noise. An effective way to deal with the non-stationary noise is to utilize a priori
information extracted from a speech or noise database (DB), called the template-based
speech enhancement techniques. One of the most well-known template-based schemes is
the non-negative matrix factorization (NMF)-based speech enhancement technique [7,8].
NMF is a latent factor analysis technique to discover the underlying part-based non-
negative representations of the given data. Since there is no strict assumption on the speech
and noise distributions, the NMF-based speech enhancement technique shows robustness
to non-stationary noise environments. Since, however, the NMF-based algorithm assumes
that all data is described as a linear combination of finite bases, it is known to suffer from
speech distortion not covered by this representational form.

In the past few years, deep neural network (DNN)-based speech enhancement has
received tremendous attention due to its ability to model complex mappings [9–12].
These methods map the noisy spectrogram to the clean spectrogram via the neural net-
works such as the convolutional neural network (CNN) [11] or recurrent neural network
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(RNN) [12]. Although the DNN-based speech enhancement techniques have shown promis-
ing performance, most of the techniques typically focus on modifying the magnitude
spectra. This could cause a phase mismatch between the clean and enhanced speech
since the DNN-based speech enhancement methods usually reuse the noisy phase for
waveform reconstruction. For this reason, there has been growing interest in phase-aware
speech enhancement [13–15] that exploits the phase information during the training and
reconstruction. To circumvent the difficulty of the phase estimation, end-to-end (E2E)
speech enhancement technique which directly enhances noisy speech waveform in the time
domain has been developed [16–18]. Since the E2E speech enhancement techniques are
performed in a waveform-to-waveform manner without any consideration of the spectra,
their performance is not dependant on the accuracy of the phase estimation.

The E2E approaches, however, rely on a distance-based loss functions between the
time-domain waveforms. Since these distance-based costs do not take human perception
into account, the E2E approaches are not guaranteed to achieve good human-perception-
related metrics, e.g., the perceptual evaluation of speech quality (PESQ) [19], short-time
objective intelligibility (STOI) [20], and etc. Recently, generative adversarial network
(GAN) [21]-based speech enhancement techniques have been developed to overcome the
limitation of the distance-based costs [22–26]. Adversarial losses of GAN provide an alterna-
tive objective function to reflect the human auditory property, which can make the distribu-
tion of the enhanced speech close to that of the clean speech. To our knowledge, SEGAN [22]
was the first attempt to apply GAN to the speech enhancement task, which used the
noisy speech as a conditional information for a conditional GAN (cGAN) [27]. In [26],
an approach to replace a vanilla GAN with advanced GAN, such as Wasserstein GAN
(WGAN) [28] or relativistic standard GAN (RSGAN) [29] was proposed based on the
SEGAN framework.

Even though the GAN-based speech enhancement techniques have been found suc-
cessful, there still remain two important issues: (1) training instability and (2) a lack in
considering various speech characteristics. Since GAN aims at finding the Nash equi-
librium to solve a mini-max problem, it has been known that the training is usually
unstable. A number of efforts have been devoted to stabilize the GAN training in im-
age processing, by modifying the loss function [28] or the generator and discriminator
structures [30,31]. However, in speech processing, this problem has not been extensively
studied yet. Moreover, since most of the GAN-based speech enhancement techniques
directly employ the models used in image generation, it is necessary to modify them to
suit the inherent nature of speech. For instance, the GAN-based speech enhancement
techniques [22,24,26] commonly used U-Net generator originated from image processing
tasks. Since the U-net generator consisted of multiple CNN layers, it was insufficient to
reflect the temporal information of speech signal. In regression-based speech enhancement,
the modified U-net structure adding RNN layers to capture the temporal information of
speech showed prominent performances [32]. In [33] for the speech synthesis, an alterna-
tive loss function depended on multiple sizes of window length and fast Fourier transform
(FFT) was proposed and generated a good quality of speech, which also considered speech
characteristics in frequency domain.

In this paper, we propose novel generator and discriminator structures for the GAN-
based speech enhancement which reflect the speech characteristics while ensuring stable
training. The conventional generator is trained to find a mapping function from the noisy
speech to the clean speech by using sequential convolution layers, which is considered
an ineffective approach especially for speech data. In contrast, the proposed generator
progressively estimates the wide frequency range of the clean speech via a novel up-
sampling layer.

In the early stage of GAN training, it is too easy for the conventional discriminator to
differentiate real samples from fake samples for high-dimensional data. This often lets GAN
fail to reach the equilibrium point due to vanishing gradient [30]. To address this issue,
we propose a multi-scale discriminator that is composed of multiple sub-discriminators

104



Appl. Sci. 2021, 11, 721

processing speech samples at different sampling rates. Even if the training is in the early
stage, the sub-discriminators at low-sampling rates can not easily differentiate the real
samples from the fake, which contributes to stabilize the training. Empirical results showed
that the proposed generator and discriminator were successful in stabilizing GAN training
and outperformed the conventional GAN-based speech enhancement techniques. The main
contributions of this paper are summarized as follows:

• We propose a progressive generator to reflect the multi-resolution characteristics of speech.
• We propose a multi-scale discriminator to stabilize the GAN training without addi-

tional complex training techniques.
• The experimental results showed that the multi-scale structure is an effective solution

for both deterministic and GAN-based models, outperforming the conventional GAN-
based speech enhancement techniques.

The rest of the paper is organized as follows: In Section 2, we introduce GAN-based
speech enhancement. In Section 3, we present the progressive generator and multi-scale dis-
criminator. Section 4 describes the experimental settings and performance measurements.
In Section 5, we analyze the experimental results. We draw conclusions in Section 6.

2. GAN-Based Speech Enhancement

An adversarial network models the complex distribution of the real data via a two-
player mini-max game between a generator and a discriminator. Specifically, the generator
takes a randomly sampled noise vector z as input and produces a fake sample G(z) to fool
the discriminator. On the other hand, the discriminator is a binary classifier that decides
whether an input sample is real or fake. In order to generate a realistic sample, the generator
is trained to deceive the discriminator, while the discriminator is trained to distinguish
between the real sample and G(z). In an adversarial training process, the generator and the
discriminator are alternatively trained to minimize their respective loss functions. The loss
functions for the standard GAN can be defined as follows:

LG = Ez∼Pz(z)[log(1 − D(G(z)))], (1)

LD = −Ex∼Pclean(x)[log(D(x))]−Ez∼Pz(z)[log(1 − D(G(z)))] (2)

where z is a randomly sampled vector from Pz(z) which is usually a normal distribution,
and Pclean(x) is the distribution of the clean speech in the training dataset.

Since GAN was initially proposed for unconditional image generation that has no
exact target, it is inadequate to directly apply GAN to speech enhancement which is a
regression task to estimate the clean target corresponding to the noisy input. For this
reason, GAN-based speech enhancement employs a conditional generation framework [27]
where both the generator and discriminator are conditioned on the noisy waveform c that
has the clean waveform x as the target. By concatenating the noisy waveform c with the
randomly sampled vector z, the generator G can produce a sample that is closer to the
clean waveform x. The training process of the cGAN-based speech enhancement is shown
in Figure 1a, and the loss functions of the cGAN-based speech enhancement are

LG = Ez∼Pz(z),c∼Pnoisy(c)[log(1 − D(G(z, c), c))], (3)

LD = −Ex∼Pclean(x),c∼Pnoisy(c)[logD(x, c)]−Ez∼Pz(z),c∼Pnoisy(c)[log(1 − D(G(z, c), c))] (4)

where Pclean(x) and Pnoisy(c) are respectively the distributions of the clean and noisy speech
in the training dataset.
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(a) cGAN-based speech enhancement (b) RSGAN-based speech enhancement

Figure 1. Illustration of the conventional GAN-based speech enhancements. In the training of
cGAN-based speech enhancement, the updates for generator and discriminator are alternated over
several epochs. During the update of the discriminator, the target of discriminator is 0 for the clean
speech and 1 for the enhanced speech. For the update of the generator, the target of discriminator is 1
with freezing discriminator parameters. In contrast, the RSGAN-based speech enhancement trains
the discriminator to measure a relativism score of the real sample Dreal and generator to increase that
of the fake sample Df ake with fixed discriminator parameters.

In the conventional training of the cGAN, both the probabilities that a sample is from
the real data D(x, c) and generated data D(G(z, c), c) should reach the ideal equilibrium
point 0.5. However, unlike the expected ideal equilibrium point, they both have a tendency
to become 1 because the generator can not influence the probability of the real sample
D(x, c). In order to alleviate this problem, RSGAN [29] proposed a discriminator to
estimate the probability that the real sample is more realistic than the generated sample.
The proposed discriminator makes the probability of the generated sample D(G(z, c), c)
increase when that of the real sample D(x, c) decreases so that both the probabilities
could stably reach the Nash equilibrium state. In [26], the experimental results showed
that, compared to other conventional GAN-based speech enhancements, the RSGAN-
based speech enhancement technique improved the stability of training and enhanced the
speech quality. The training process of the RSGAN-based speech enhancement is given in
Figure 1b, and the loss functions of RSGAN-based speech enhancement can be written as:

LG = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(x f )− C(xr)))], (5)

LD = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(xr)− C(x f )))] (6)

where the real and fake data-pairs are defined as xr � (x, c) ∼ Pr and x f � (G(z, c), c) ∼ P f ,
and C(x) is the output of the last layer in discriminator before the sigmoid activation func-
tion σ(·), i.e., D(x) = σ(C(x)).

In order to stabilize GAN training, there are two penalties commonly used: A gradient
penalty for discriminator [28] and L1 loss penalty for generator [24]. First, the gradient
penalty regularization for discriminator is used to prevent exploding or vanishing gradients.
This regularization penalizes the model if the L2 norm of the discriminator gradient moves
away from 1 to satisfy the Lipschitz constraint. The modified discriminator loss functions
with the gradient penalty are as follows:
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LGP(D) = Ex̃,c∼P̃

[
(|| �x̃,c C(x̃, c))||2 − 1)2

]
, (7)

LD−GP(D) = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(xr)− C(x f )))] + λGPLGP(D) (8)

where P̃ is the joint distribution of c and x̃ = εx + (1 − ε)x̂, ε is sampled from a uniform
distribution in [0, 1], and x̂ is the sample from G(z, c). λGP is the hyper-parameter that
controls the gradient penalty loss and the adversarial loss of the discriminator.

Second, several prior studies [22–24] found that it is effective to use an additional
loss term that minimizes the L1 loss between the clean speech x and the generated speech
G(z, c) for the generator training. The modified generator loss with the L1 loss is defined as

L1(G) = ‖G(z, c)− x‖1, (9)

LG−L1(G) = −E(xr ,x f )∼(Pr ,P f )
[log(σ(C(x f )− C(xr)))] + λL1 L1(G) (10)

where ‖·‖1 is L1 norm, and λL1 is a hyper-parameter for balancing the L1 loss and the
adversarial loss of the generator.

3. Multi-Resolution Approach for Speech Enhancement

In this section, we propose a novel GAN-based speech enhancement model which
consists of a progressive generator and a multi-scale discriminator. The overall architecture
of the proposed model is shown in Figure 2, and the details of the progressive generator
and the multi-scale discriminator are given in Figure 3.

Figure 2. Overall architecture of the proposed GAN-based speech enhancement. The up-sampling
block and the multiple discriminators Dn are newly added, and the rest of the architecture is the
same as that of [26]. The components within the dashed line will be addressed in Figure 3.
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Figure 3. Illustration of the progressive generator and the multi-scale discriminator. Sub-
discriminators calculate the relativism score Dn(Gn, xn) = σ(Cn(xrn ) − Cn(x fn )) at each layer.
The figure is the case when p, q = 4k, but it can be extended for any p and q. In our experiment,
we covered that p and q were from 1k to 16k.

3.1. Progressive Generator

Conventionally, GAN-based speech enhancement systems adopt U-Net generator [22]
which is composed of two components: An encoder Genc and a decoder Gdec. The encoder
Genc consists of repeated convolutional layers to produce compressed latent vectors from
a noisy speech, and the decoder Gdec contains multiple transposed convolutional layers
to restore the clean speech from the compressed latent vectors. These transposed con-
volutional layers in Gdec are known to be able to generate low-resolution data from the
compressed latent vectors, however, the capability to generate a high-resolution data is
severely limited [30]. Especially in the case of speech data, it is difficult for the transposed
convolutional layers to generate the speech with a high-sampling rate because it should
cover a wide frequency range.

Motivated from the progressive GAN, which starts with generating low-resolution
images and then progressively increases the resolution [30,31], we propose a novel gen-
erator that can incrementally widen the frequency band of the speech by applying an
up-sampling block to the decoder Gdec. As shown in Figure 3, the proposed up-sampling
block consists of 1D-convolution layers, element-wise addition, and liner interpolation lay-
ers. The up-sampling block yields the intermediate enhanced speech Gn(z, c) at each layer
through the 1D convolution layer and element-wise addition so that the wide frequency
band of the clean speech is progressively estimated. Since a sampling rate is increased
through the linear interpolation layer, it is possible to generate the intermediate enhanced
speech at the higher layer while maintaining estimated frequency components at the lower
layer. This incremental process is repeated until the sampling rate reaches the target sam-
pling rate which is 16kHz in our experiment. Finally, we exploit the down-sampled clean
speech xn processed by low-pass filtering and decimation as the target for each layer to
provide multi-resolution loss functions. We define the real and fake data-pairs at different

108



Appl. Sci. 2021, 11, 721

sampling rates as xrn � (xn, cn) ∼ Prn and x fn � (Gn(z, c), cn) ∼ P fn , and the proposed
multi-resolution loss functions with L1 loss are given as follows:

LG(p) = ∑
n≥p

n∈NG

LGn + λL1 L1(Gn), NG ∈ {1k, 2k, 4k, 8k, 16k},

= ∑
n≥p

n∈NG

−E(xrn ,x fn )∼(Prn ,P fn )
[log(σ(Cn(x fn )− Cn(xrn )))] + λL1‖Gn(z, c)− xn‖1

(11)

where NG is the possible set of n for the proposed generator, and p is the sampling rate at
which the intermediate enhanced speech is firstly obtained.

3.2. Multi-Scale Discriminator

When generating high-resolution image and speech data in the early stage of training,
it is hard for the generator to produce a realistic sample due to the insufficient model
capacity. Therefore, the discriminator can easily differentiate the generated samples from
the real samples, which means that the real and fake data distributions do not have substan-
tial overlap. This problem often causes training instability and even mode collapses [30].
For the stabilization of the training, we propose a multi-scale discriminator that consists of
multiple sub-discriminators treating speech samples at different sampling rates.

As presented in Figure 3, the intermediate enhanced speech Gn(z, c) at each layer
restores the down-sampled clean speech xn. Based on this, we can utilize the intermediate
enhanced speech and down-sampled clean speech as the input to each sub-discriminator
Dn. Since each sub-discriminator can only access limited frequency information depending
on the sampling rate, we can make each sub-discriminator solve different levels of dis-
crimination tasks. For example, discriminating the real from the generated speech is more
difficult at the lower sampling rate than at the higher rate. The sub-discriminator at a lower
sampling rate plays an important role in stabilizing the early stage of the training. As the
training progresses, the role shifts upwards to the sub-discriminators at higher sampling
rates. Finally, the proposed multi-scale loss for discriminator with gradient penalty is
given by

LD(q) = ∑
n≥q

n∈ND

LDn + λGPLGP(Dn), ND ∈ {1k, 2k, 4k, 8k, 16k},

= ∑
n≥q

n∈ND

−E(xrn ,x fn )∼(Prn ,P fn )
[log(σ(Cn(xrn)− C(x fn)))] + λGPEx̃n ,cn∼P̃n

[(|| �x̃n ,cn C(x̃n, cn))||2 − 1)2]
(12)

where P̃n is the joint distribution of the down-sampled noisy speech cn and
x̃n = εxn + (1 − ε)x̂n, ε is sampled from a uniform distribution in [0, 1], xn is the down-
sampled clean speech, and x̂n is the sample from Gn(z, c). ND is the possible set of n for
the proposed discriminator, and q is the minimum sampling rate at which the interme-
diate enhanced output was utilized as the input to a sub-discriminator for the first time.
The adversarial losses LDn are equally weighted.

4. Experimental Settings

4.1. Dataset

We used a publicly available dataset in [34] for evaluating the performance of the
proposed speech enhancement technique. The dataset consists of 30 speakers from the
Voice Bank corpus [35], and used 28 speakers (14 male and 14 female) for the training set
(11572 utterances) and 2 speakers (one male and one female) for the test set (824 utterances).
The training set simulated a total of 40 noisy conditions with 10 different noise sources
(2 artificial and 8 from the DEMAND database [36]) at signal-to-noise ratios (SNRs) of 0,
5, 10, and 15 dB. The test set was created using 5 noise sources (living room, office, bus,
cafeteria, and public square noise from the DEMAND database), which were different from
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the training noises, added at SNRs 2.5, 7.5, 12.5, and 17.5 dB. The training and test sets
were down-sampled from 48 kHz to 16 kHz.

4.2. Network Structure

The configuration of the proposed generator is described in Table 1. We used the U-Net
structure with 11 convolutional layers for the encoder Genc and the decoder Gdec as in [22,26].
Output shapes at each layer were represented by the number of temporal dimensions
and feature maps. Conv1D in the encoder denotes a one-dimensional convolutional layer,
and TrConv in the decoder means a transposed convolutional layer. We used approximately
1 s of speech (16384 samples) as the input to the encoder. The last output of the encoder
was concatenated with a noise which had the shape of 8 × 1024 randomly sampled from
the standard normal distribution N(0, 1). In [27], it was reported that the generator usually
learns to ignore the noise prior z in the CGAN, and we also observed a similar tendency in
our experiments. For this reason, we removed the noise from the input, and the shape of
the latent vector became 8 × 1024. The architecture of Gdec was a mirroring of Genc with
the same number and width of the filters per layer. However, skip connections from Genc
made the number of feature maps in every layer to be doubled. The proposed up-sampling
block Gup consisted of 1D convolution layers, element-wise addition operations, and linear
interpolation layers.

Table 1. Architecture of the proposed generator. Output shape represented temporal dimension and feature maps.

Block Operation Output Shape

Input 16, 384 × 1

Encoder Conv1D
(filterlength = 31, stide = 2)

8192 × 16

4096 × 32

2048 × 32

1024 × 64

512 × 64

256 × 128

128 × 128

64 × 256

32 × 256

16 × 512

Latent vector 8 × 1024

Decoder

Trconv
(filterlength = 31, stide = 2)

16 × 1024

32 × 512

64 × 512

128 × 256

256 × 256

512 × 128

Trconv
(filterlength = 31, stide = 2)

Conv1D
(filterlength = 17, stide = 1)

Element-wise addition
Linear interpolation layer

1024 × 128 1024 × 1

2048 × 64 2048 × 1

4096 × 64 4096 × 1

8192 × 32 8192 × 1

16, 384 × 1
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In this experiment, the proposed discriminator had the same serial convolutional lay-
ers as Genc. The input to the discriminator had two channels of 16,384 samples, which were
the clean speech and enhanced speech. The rest of the temporal dimension and feature-
maps were the same as those of Genc. In addition, we used LeakyReLU activation function
without a normalization technique. After the last convolutional layers, there were a
1 × 1 convolution, and its output was fed to a fully-connected layer. To construct the
proposed multi-scale discriminator, we used 5 different sub-discriminators, which were
D16k, D8k, D4k, D2k, andD1k trained according to in Equation (12). Each sub-discriminator
had a different input dimension depending on the sampling rate.

The model was trained using the Adam optimizer [37] for 80 epochs with 0.0002
learning rate for both the generator and discriminator. The batch size was 50 with 1-s audio
signals that were sliced using windows of length 16,384 with 8192 overlaps. We also applied
a pre-emphasis filter with impulse response [−0.95, 1] to all training samples. For inference,
the enhanced signals were reconstructed through overlap-add. The hyper-parameters
to balance the penalty terms were set as λL1 = 200 and λGP = 10 such that they could
match the dynamic range of magnitude with respect to the generator and discriminator
losses. Note that we gave the same weight to the adversarial losses, LGn and LDn , for all
n ∈ {1k, 2k, 4k, 8k, 16k}. We implemented all the networks using Keras with Tensorflow [38]
back-end using the public code (The SERGAN framework is available at https://github
.com/deepakbaby/se_relativisticgan). All training was performed on single Titan RTX
24 GB GPU, and it took around 2 days.

4.3. Evaluation Methods
4.3.1. Objective Evaluation

The quality of the enhanced speech was evaluated using the following objective metrics:

• PESQ: Perceptual evaluation of speech quality defined in the ITU-T P.862 standard [19]
(from −0.5 to 4.5),

• STOI: Short-time objective intelligibility [20] (from 0 to 1),
• CSIG: Mean opinion score (MOS) prediction of the signal distortion attending only to

the speech signal [39] (from 1 to 5),
• CBAK: MOS prediction of the intrusiveness of background noise [39] (from 1 to 5),
• COVL: MOS prediction of the overall effect [39] (from 1 to 5).

4.3.2. Subjective Evaluation

To compare the subjective quality of the enhanced speech by baseline and proposed
methods, we conducted two pairs of AB preference tests: AECNN versus the progressive
generator and SERGAN versus the progressive generator with the multi-scale discriminator.
Two speech in each pair were given in arbitrary order. For each listening test, 14 listeners
participated, and 50 pairs of the speech were randomly selected. Listeners could listen to
the speech pairs as many times as they wanted and were instructed to choose the speech
with better perceptual quality. If the quality of the two samples was indistinguishable,
listeners could select no preference.

5. Experiments and Results

In order to investigate the individual effect of the proposed generator and discrim-
inator, we experimented on the progressive generator with and without the multi-scale
discriminator. Furthermore, we plotted L1 losses at each layer L1(Gn) to show that the
proposed model makes training fast and stable. Finally, the performance of the proposed
model is compared with that of the other GAN-based speech enhancement techniques.

5.1. Performance of Progressive Generator
5.1.1. Objective Results

The purpose of these experiments is to show the effectiveness of the progressive
generator. Table 2 presents the performance of the proposed generator when we minimized
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only the L1(Gn) in Equation (11). In order to better understand the influence of the
progressive structure on the PESQ score, we conducted an ablation study with different p in
∑n≥p L1(Gn). As illustrated in Table 2, compared to the auto-encoder CNN (AECNN) [26]
that is the conventional U-net generator minimizing the L1 loss only, the PESQ score of
the progressive generator improved from 2.5873 to 2.6516. Furthermore, for the smaller
p, we got a better PESQ score, and the best PESQ score was achieved when p was the
lowest, i.e., 1k. For enhancing high-resolution speech, we verified that it is very useful
to progressively generate intermediate enhanced speech while maintaining the estimated
information obtained at lower sampling rate. We used the best generator p = 1k in Table 2
for the subsequent experiments.

Table 2. Comparison of results between different architectures of the progressive generator. The best
model is shown in bold type.

Model ∑n≥p L1(Gn) PESQ

AECNN [26] p = 16k 2.5873

Proposed

p = 8k 2.6257
p = 4k 2.6335
p = 2k 2.6407
p = 1k 2.6516

5.1.2. Subjective Results

The preference score of AECNN and the progressive generator was shown in Figure 4a.
The progressive generator was preferred to AECNN in 43.08% of the cases, while the
opposite preference was 25.38% (no preference in 31.54% of the cases). From the results,
we verified that the proposed generator could produce the speech with not only higher
objective measurements but also better perceptual quality.

(a) AECNN versus Progressive generator (b) SERGAN versus Proposed method

Figure 4. Results of AB preference test. A subset of test samples used in the evaluation is accessible
on a webpage https://multi-resolution-SE-example.github.io.

5.2. Performance of Multi-Scale Discriminator
5.2.1. Objective Results

The goal of these experiments is to show the efficiency of the multi-scale discriminator
compared to the conventional single discriminator. As shown in Table 3, we evaluated
the performance of the multi-scale discriminator while varying q of the multi-scale loss
LD(q) in Equation (12), which means varying the number of sub-discriminators. Compared
to the baseline proposed in [26], the progressive generator with the single discriminator
showed an improved PESQ score from 2.5898 to 2.6514. The multi-scale discriminators
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outperformed the single discriminators, and the best PESQ score of 2.7077 was obtained
when q = 4k. Interestingly, we could observe that the performance was degraded when
the q became below 4k. One possible explanation for this phenomenon would be that since
the progressive generator faithfully generated the speech below the 4 kHz sampling rate,
it was difficult for the discriminator to differentiate the fake from the real speech. This let
the additional sub-discriminators a little bit useless for performance improvement.

Table 3. Comparison of results between different architectures of the multi-scale discriminator.
Except for the SERGAN, the generator of all architectures used the best model in Table 2. The best
model is shown in bold type.

Model Generator Discriminator LD(q) PESQ RTF

SERGAN [26] U-net Single q = 16k 2.5898 0.008

Proposed

Progressive Single q = 16k 2.6514

0.010
Progressive Multi-scale

q = 8k 2.6541
q = 4k 2.7077
q = 2k 2.6664
q = 1k 2.6700

5.2.2. Subjective Results

The preference scores of SERGAN and the progressive generator with multi-scale
discriminator were shown in Figure 4b. The proposed method was preferred over SERGAN
in 42.00% of the cases, while SERGAN was preferred in 26.31% of the cases (no preference
in 31.69% of the cases). These results showed that the proposed method could enhance the
speech with better objective metrics and subjective perceptual scores.

5.2.3. Real-Time Feasibility

SERGAN and the proposed method were evaluated in terms of the real-time fac-
tor(RTF) to verify the real-time feasibility, which is defined as the ratio of the time taken to
enhance the speech to the duration of the speech (small factors indicate faster processing).
CPU and graphic card used for the experiment were Intel Xeon Silver 4214 CPU 2.20 GHz
and single Nvidia Titan RTX 24 GB. Since the generator of AECNN and SERGAN is the
same, their RTF has the same value. Therefore, we only compared the RTF of SERGAN
and the proposed method in Table 3. As the input window length was about 1 s of speech
(16,384 samples), and the overlap was 0.5 s of speech (8192 samples), the total processing
delay of all models can be computed by the sum of the 0.5 s and the actual processing
time of the algorithm. In Table 3, we observed that the RTF of SERGAN and the proposed
model was small enough for the semi-real-time applications. The similar value of the RTF
for SEGAN and the proposed model also verified that adding the up-sampling network
did not significantly increase the computational complexity.

5.3. Analysis and Comparison of Spectorgrams

An example of the spectrograms of clean speech, noisy speech, and the enhanced
speech by different models are shown in Figure 5. First, we focused on the black box to
verify the effectiveness of the progressive generator. Before 0.6 s, a non-speech period,
we could observe that the noise containing wide-band frequencies was considerably re-
duced since the progressive generator incrementally estimated the wide frequency range of
the clean speech. Second, when we compared spectrograms of the multi-scale discriminator
and that of the single discriminator, the different pattern was presented in the red box.
The multi-scale discriminator was able to suppress more noise than the single discriminator
in the non-speech period. We could confirm that the multi-scale discriminator selectively
reduced high-frequency noise in a speech period as the sub-discriminators in multi-scale
discriminator differentiate the real and fake speech at the different sampling rates.
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Figure 5. Spectrograms from the top to the bottom correspond to clean speech, noisy speech,
enhanced speech by AECNN, SERGAN, progressive generator, progressive generator with multi-
scale discriminator, respectively.

5.4. Fast and Stable Training of Proposed Model

To analyze the learning behavior of the proposed model in more depth, we plotted
L1(Gn) in Equation (11) obtained from the best model in Table 3 and SERGAN [26] during
the whole training periods. As the clean speech was progressively estimated by the
intermediate enhanced speech, the stable convergence behavior of L1(Gn) was shown in
Figure 6. With the help of L1(Gn) at low layers (n = 1, 2, 4, 8), L1(G16k) for the proposed
model decreased faster and more stable than that of SERGAN. From the results, we can
convince that the proposed model accelerates and stabilizes the GAN training.

5.5. Comparison with Conventional GAN-Based Speech Enhancement Techniques

Table 4 shows the comparison with other GAN-based speech enhancement methods
that have the E2E structure. The GAN-based enhancement techniques which were evalu-
ated in this experiment are as follows: SEGAN [22] has the U-net structure with conditional
GAN. Similar to the structure of SEGAN, AECNN [26] is trained to only minimize L1 loss,
and SERGAN [26] is based on relativistic GAN. CP-GAN [40] has modified the generator
and discriminator of SERGAN to utilize contextual information of the speech. The pro-
gressive generator without adversarial training even showed better results than CP-GAN
on PESQ and CBAK. Finally, the progressive generator with the multi-scale discriminator
outperformed the other GAN-based speech enhancement methods for three metrics.
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Figure 6. Illustration of L1(Gn) as a function of training steps.

Table 4. Comparison of results between different GAN-based speech enhancement Techniques. The best result is highlighted
in bold type.

Model PESQ CSIG CBAK COVL STOI

Noisy 1.97 3.35 2.44 2.63 0.91
SEGAN [24] 2.16 3.48 2.68 2.67 0.93
AECNN [26] 2.59 3.82 3.30 3.20 0.94
SERGAN [26] 2.59 3.82 3.28 3.20 0.94
CP-GAN [38] 2.64 3.93 3.29 3.28 0.94

The progressive generator without adversarial training 2.65 3.90 3.30 3.27 0.94
The progressive generator with the multi-scale discriminator 2.71 3.97 3.26 3.33 0.94

6. Conclusions

In this paper, we proposed a novel GAN-based speech enhancement technique utiliz-
ing the progressive generator and multi-scale discriminator. In order to reflect the speech
characteristic, we introduced a progressive generator which can progressively estimate the
wide frequency range of the speech by incorporating an up-sampling layer. Furthermore,
for accelerating and stabilizing the training, we proposed a multi-scale discriminator which
consists of a number of sub-discriminators operating at different sampling rates.

For performance evaluation of the proposed methods, we conducted a set of speech
enhancement experiments using the VoiceBank-DEMAND dataset. From the results,
it was shown that the proposed technique provides a more stable GAN training while
showing consistent performance improvement on objective and subjective measures for
speech enhancement. We also checked the semi-real-time feasibility by observing a small
increment of RTF between the baseline generator and the progressive generator.

As the proposed network mainly focused on the multi-resolution attribute of speech
in the time domain, one possible future study is to expand the proposed network to utilize
the multi-scale attribute of speech in the frequency domain. Since the progressive generator
and multi-scale discriminator can also be applied to the GAN-based speech reconstruction
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models such as neural vocoder for speech synthesis and codec, we will study the effects of
the proposed methods.
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Abstract: This paper addresses an automatic proficiency evaluation and speech recognition for
second language (L2) speech. The proposed method recognizes the speech uttered by the L2 speaker,
measures a variety of fluency scores, and evaluates the proficiency of the speaker’s spoken English.
Stress and rhythm scores are one of the important factors used to evaluate fluency in spoken English
and are computed by comparing the stress patterns and the rhythm distributions to those of native
speakers. In order to compute the stress and rhythm scores even when the phonemic sequence of
the L2 speaker’s English sentence is different from the native speaker’s one, we align the phonemic
sequences based on a dynamic time-warping approach. We also improve the performance of the
speech recognition system for non-native speakers and compute fluency features more accurately
by augmenting the non-native training dataset and training an acoustic model with the augmented
dataset. In this work, we augment the non-native speech by converting some speech signal charac-
teristics (style) while preserving its linguistic information. The proposed variational autoencoder
(VAE)-based speech conversion network trains the conversion model by decomposing the spectral
features of the speech into a speaker-invariant content factor and a speaker-specific style factor to
estimate diverse and robust speech styles. Experimental results show that the proposed method
effectively measures the fluency scores and generates diverse output signals. Also, in the proficiency
evaluation and speech recognition tests, the proposed method improves the proficiency score perfor-
mance and speech recognition accuracy for all proficiency areas compared to a method employing
conventional acoustic models.

Keywords: fluency evaluation; speech recognition; data augmentation; variational autoencoder;
speech conversion

1. Introduction

As the demand for untact technology in various fields increases and machine learn-
ing technologies advance, the need for computer-assisted second language (L2) learning
contents has increased [1–4]. The widely used method for learning a second language
is to practice listening, repeating, and speaking language. A GenieTutor, one of the sec-
ond language (English at present) systems, plays the role of a language tutor by asking
questions to the learners, recognizing their speech, which is answered in second language,
checking grammatical errors, evaluating the learners’ spoken English proficiency, and
providing feedbacks to help L2 learners practice their English proficiency. The system
comprises several topics, and the learners can select a topic to have communication with
the system based on the role-play scenarios. After the learner finishes the speaking of
each sentence, the system measures various fluency factors such as pronunciation score,
word score, grammar error, stress pattern, and intonation curve, and provides feedback to
learners about them compared with the fluency factors of the native speakers [5–7].

The stress and rhythm scores are one of the important factors for fluency evaluation in
English speaking, and they are computed by comparing the stress pattern and the rhythm
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distribution of the L2 speaker with those of native speakers. However, in some cases,
the phonemic sequences of speeches uttered by the L2 speaker and the native speaker
are recognized differently according to the pronunciation of the learner. Learners may
mispronounce or pronounce different words from the referred one. In such cases, the
stress and rhythm scores cannot be computed using the previous pattern comparison
methods [8–14].

In order to solve this problem, we proposed a dynamic time-warping (DTW)-based
stress and rhythm scores measurement method. We aligned the learner’s phonemic se-
quence with the native speaker’s phonemic sequence by using the DTW approach, and
then computed the stress patterns and rhythm distributions from the aligned phonemic
sequences [15–19]. By using the aligned phonemic sequences, we detected the learner’s
pronunciation error phonemes and computed an error-tagged stress pattern and scores
which are deducted by the presence of error phonemes if there is an erroneous phoneme.
We computed two stress scores: a word stress score and a sentence stress score. The word
stress score is measured by comparing the stress patterns of the content words, and the sen-
tence stress score was computed for the entire sentence. The rhythm scores are measured
by computing the mean and standard deviation of the time distances between stressed
phonemes. Two stress scores and rhythm scores are used to evaluate the English-speaking
proficiency of the learner with other fluency features.

The proposed method uses an automatic speech recognition (ASR) system to recog-
nize the speech uttered by the L2 learner and perform a forced-alignment to obtain the
time-aligned phonemic sequences. Deep learning has been applied successfully to ASR
systems by relying on hierarchical representations that are commonly learned with a large
amount of training data. However, non-native speakers’ speech significantly degrades the
performance of the ASR due to the pronunciation variability in non-native speech, and it
is difficult to collect enough non-native data to train. For better performance of the ASR
for non-native speakers, we augment the non-native training speech dataset by using a
variational autoencoder-based speech conversion model and train an acoustic model (AM)
with the augmented training dataset. Data augmentation has been proposed as a method
to generate additional training data, increase the quantity of training data, and reduce
overfitting for ASR systems [20–25].

The speech conversion (SC) technique is to convert the speech signal from a source
domain to that of a target domain, while preserving its linguistic content information.
Variational autoencoder (VAE) is a widely used method for speech modeling and con-
version. In the VAE framework, the spectral features of the speech are encoded to a
speaker-independent latent variable space. After sampling from the latent variable space,
sampled features are decoded back to the speaker-dependent spectral features. A condi-
tional VAE, one of the VAE-based speech conversion methods, employs speaker identity
information to feed the decoder with the sampled features. With this conditional decoder,
the VAE framework can reconstruct or convert input speech by choosing speaker identity
information [26–33]. Recently, generative adversarial networks (GANs)-based SC and some
frameworks that jointly train a VAE and GAN were proposed [34–44]. However, most
conversion frameworks usually assume and learn a deterministic or unimodal mapping,
so their significant limitation is the lack of diversity in the converted outputs.

We build up the proposed conversion model based on the VAE, due to its potential in
employing latent space to represent hidden aspects of speech signal. In order to improve
speech conversion without conditional information and learn more meaningful speaker
characteristic information, we proposed a VAE-based multimodal unsupervised speech
conversion method. In the proposed method, we assume that the spectral features of
speech are divided into a speaker-invariant content factor (phonetic information in speech)
and a speaker-specific style factor [45–47]. We employ a single shared content encoder
network and an individual style encoder network for each speaker to train the encoder
models robustly. The encoded content factor is fed into a decoder with a target style factor
to generate converted spectral features. By sampling different style factors, the proposed
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model is able to generate diverse and multimodal outputs. In addition, we train our speech
conversion model from nonparallel data because parallel data of the source and target
speakers are not available in most practical applications and it is difficult to collect such
data. By transferring some speech characteristics and converting the speech, we generate
additional training data with nonparallel data and train the AM with the augmented
training dataset.

We evaluated the proposed method on the corpus of English read speech for the
spoken English proficiency assessment [48]. In our experiments, we evaluated the fluency
scoring ability of the proposed method by measuring fluency scores and comparing them
with the fluency scores of native speakers, and the results demonstrate that the proposed
DTW-based fluency scoring method can compute stress patterns and measure stress and
rhythm scores effectively even if there are pronunciation errors in the learner’s utterances.
The spectral feature-related outputs demonstrate that the proposed conversion model can
efficiently generate diverse signals while keeping the linguistic information of the original
signal. Proficiency evaluation test and speech recognition results with and without an
augmented speech dataset also show that the data augmentation with the proposed speech
conversion model contributed to improving speech recognition accuracy and proficiency
evaluation performance compared to a method employing conventional AMs.

The remainder of this paper is organized as follows. Section 2 briefly describes the
second language learning system used in this work. Section 3 describes a description of
the proposed DTW-based fluency scoring and VAE-based nonparallel speech conversion
method. In Section 4, experimental results are reported, and finally, we conclude and
discuss this paper in Section 5.

2. Previous Work

GenieTutor is a computer-assisted second language (English at present) learning
system. In order to help learners practice their English proficiency, the system recognizes
the learners’ spoken English responses for given questions, checks content properness,
automatically checks and corrects grammatical errors, evaluates spoken English proficiency,
and provides educational feedback to learners. Figure 1 shows the schematic diagram of
the system [7].

 

Figure 1. Schematic diagram of the GenieTutor system.

The system comprises two learning stages: Think&Talk and Look&Talk. The Think&Talk
stage has various subjects, and each subject comprises several fixed role-play dialogues.
In this stage, an English learner can select a study topic and a preferred scenario, and
then talk with the system based on the selected role-play scenario. After the learner’s
spoken English response for each given question is completed, the system computes an
intonation curve, a sentence stress pattern, and word pronunciation scores. The learner’s
and a native speaker’s intonation curve patterns are plotted as a graph, and the stress
patterns of the learner and native speaker are plotted by circles with different sizes below
the corresponding word to represent the intensity of each word at a sentence stress level.
Once the learner has finished all conversations on the selected subject or all descriptions of
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the selected picture, the system semantically and grammatically evaluates the responses,
and provides overall feedback.

Figure 2 shows an example of a role-play scenario and educational overall feedback
with the system. In the Look&Talk stage, the English learner can select a picture and then
describe the selected picture to the system.

  
(a) (b) 

Figure 2. Example of a role-play scenario and the overall feedback. (a) Example of a role-play dialogue exercise and
intonation feedback of the learner with the native speaker. (b) Overall feedback of the role-play dialogue exercise.

3. Proposed Fluency Scoring and Automatic Proficiency Evaluation Method

Proficiency evaluation with the proposed method consists of fluency features extrac-
tion for scoring each proficiency area, proficiency evaluation model training with fluency
features, and automatic evaluation of pronunciation proficiency. The proposed method
computes various acoustic features, such as speech rate, intonation, and segmental features,
from spoken English uttered by non-native speakers according to a rubric designed to eval-
uate pronunciation proficiency. In order to compute the fluency features, speech signals are
recognized using the automatic speech recognition system and time-aligned sequences of
words and phonemes are computed using a forced-alignment algorithm. Each time-aligned
sequence contains start and end times for each word and phoneme and acoustic scores.
Using the time-aligned sequences, the fluency features are extracted in various aspects of
each word and sentence. Proficiency evaluation models are trained using the extracted
fluency features and scores from human expert raters, and proficiency scores are computed
using the fluency features and scoring models. Figure 3 shows a block diagram of the
proficiency evaluation model training and evaluating system for automatic proficiency
evaluation.

3.1. DTW-Based Feature Extraction for Fluency Scoring

Most language learning systems evaluate and score the learners’ spoken English
compared to the native speaker’s one. However, in realistic speaking situations, a learner’s
English pronunciation often differs from that of native speakers. For example, learners
may pronounce given words incorrectly or pronounce different words from the referred
one. In such cases, some fluency features, especially stress and rhythm scores, cannot
be measured using previous pattern comparison methods. To solve this problem and
measure more meaningful scores, the proposed method aligns the phonemic sequence of
the sentence uttered by the learner with the native speaker’s phonemic sequence through
dynamic time-warping (DTW) alignment and computes the stress patterns, stress scores,
and rhythm scores from the aligned phonemic sequences. Figure 4 shows a block diagram
of the proposed DTW-based stress and rhythm scoring method.
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(a) (b) 

Figure 3. Block diagram of the proficiency evaluation model training and evaluating system for
automatic proficiency evaluation. (a) Flow of the proficiency evaluation model training. (b) Flow of
the automatic proficiency evaluation.

 

Figure 4. Block diagram of the proposed dynamic time-warping (DTW)-based stress and rhythm
scoring method.

3.1.1. DTW-Based Phoneme Alignment

Dynamic time-warping is a well-known technique for finding an optimal alignment
between two time-dependent sequences by comparing them [15]. To compare and align
two phonemic sequences uttered by learner and native speaker (reference), we compute a
local cost matrix of two phonemic sequences defined by the Euclidean distance. Typically,
if a learner and a native speaker are similar to each other, the local cost matrix is small, and
otherwise, the local cost matrix is large. The total cost of an alignment path between the
learner’s and native speaker’s phonemic sequences is obtained by summing the local cost
measurement values for each pair of elements in two sequences. An optimal alignment path
is the alignment path having minimal total cost among all possible alignment paths, and
the goal is to find the optimal alignment path and align between two phonemic sequences
with the minimal overall cost.

Figure 5 shows an example of DTW-based phonemic sequence alignment and stress
patterns’ computation results. Error phonemes caused by phoneme mismatch are marked
in red, and the stress value of error phonemes was set to 3, which is not a standard stress
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value indicated by 0 (no stress), 1 (secondary stress), or 2 (primary stress) in order to
compute the deducted stress score according to the presence of the phonemic errors. By
tagging error phonemes, the proposed method evaluates the learner’s utterance more
accurately and helps L2 learners practice their English pronunciation.

 
(a) 

 
(b) 

Figure 5. Example of DTW-based phonemic sequence alignment in sentence “I am still very sick.
I need to take some pills.” (a) Aligned alignment path of the phonemic sequences. (b) Aligned
phonemic sequence and stress values.

3.1.2. Stress and Rhythm Scoring

Given the aligned phonemic sequences, the proposed method computes the word
stress score, sentence stress score, and rhythm scores. In order to measure the word and
sentence stress scores, word stress patterns are computed for each content word in the
given sentence, and sentence stress patterns are computed for the entire sentence. Then,
the word and sentence stress scores are measured by computing the similarity between the
learner’s stress patterns and the native speaker’s stress patterns.

The rhythm scores are measured by computing the mean and standard deviation of
the time intervals between the stressed phonemes. An example of computing the rhythm
score in the sentence “I am still very sick. I need to take some pills.” is as follows:

• Compute the stress patterns from the aligned phonemic sequences. Table 1 shows
an example of the sentence stress pattern. The start times of the stressed phonemes,
including the start and end times of the sentence, are highlighted (bold in Table 1) to
compute the rhythm features.

• Select the stressed phonemes (highlighted point in Table 1), and compute the mean
and standard deviation of the time intervals between them:

(1) Mean time interval: (0.2 + 0.2 + 0.6 + 0.5 + 1.5)/5 = 0.6
(2) Standard deviation of the time interval: (0.16 + 0.16 + 0.0 + 0.01 + 0.81)/5 = 0.23
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Table 1. Sentence stress pattern in the sentence “I am still very sick. I need to take some pills.”

Word Start Time End Time Stress Value

I 0.0 0.2 1
am 0.2 0.4 1
still 0.4 0.8 2
very 0.8 1.0 0
sick 1.0 1.3 1

I 1.4 1.5 0
need 1.5 1.8 1

to 1.8 2.0 0
take 2.0 2.2 0
some 2.2 2.5 0
pills 2.5 3.0 0

Table 2 shows an example of the mean values of the mean time interval and the
standard deviation of the time interval for each pronunciation proficiency level evaluated
by human raters. Proficiency scores 1, 2, 3, 4, and 5 indicate very poor, poor, acceptable,
good, and perfect, respectively. As shown in Table 2, the lower the proficiency level, the
greater the mean and standard deviation values of the time intervals between the stressed
phonemes. Two stress scores and rhythm scores are used for spoken English proficiency
evaluation with other features.

Table 2. Example of the mean rhythm scores.

Proficiency Score Mean Time Interval Standard Deviation of the Time Interval

1 1.12 0.62
2 0.82 0.42
3 0.68 0.34
4 058 0.32
5 0.56 0.31

3.2. Automatic Proficiency Evaluation with Data Augmentation

The speech recognition system is optimized for non-native speakers as well as natives
for educational purposes and smooth interaction. Speech features for computing fluency
scores are extracted and decoded into time-aligned sequences by forced-alignment using
the non-native acoustic model (AM). In addition, multiple AM scores are used to evaluate
proficiency. In order to improve speech recognition accuracy and time-alignment perfor-
mance, and to compute AM scores more accurately and meaningfully, we augment the
training speech dataset and train non-native AM using the augmented training dataset.

In this work, we convert some speech characteristics (style) to generate speech data
for augmentation. In the proposed speech conversion model, we assume that each spectral
feature of the speech signal is decomposed into a speaker-independent content factor
desired to be maintained and each speaker-specific style factor we want to change in latent
space. After extracting the content factor from the source speech signal, the proposed
conversion model converts the source speech to the desired speech style by extracting the
style factor of target speech and recombining it with the extracted content factor. By simply
choosing the style factor for this recombination as a source style factor or target style factor,
the conversion model can reconstruct or convert speech:

x̂s→s = D(Ec(xs), Es
s(xs)), (1)

x̂s→t = D
(
Ec(xs), Et

s(xt)
)
, (2)

where x̂s→s and x̂s→t are the reconstructed and converted spectra, xs and xt are the source
and target speech spectra, D is the decoder, and Ec, Es

s , and Et
s denote the content encoder,

source style encoder, and target style encoder, respectively. The content encoder network
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is shared across both speakers, and the style encoder networks are domain-specific net-
works for individual speakers. Figure 6 shows a block diagram of the proposed speech
conversion method.

 

Figure 6. Flow of the proposed variational autoencoder (VAE)-based nonparallel speech conversion
method. Each of the decoder networks are shared. The arrows indicate flow of the proposed method
related to the source spectra or common elements (e.g., source style factor, content factor), and the
dashed arrows indicate the flow of the method belonging to the target spectra (e.g., target spectra,
target style factor).

As shown in Figure 6, the content encoder network extracts the content factor and
is shared across all domains. All convolutional layers of the content encoder were fol-
lowed by instance normalization (IN) to remove the speech style information and learn
domain-independent content information (phoneme in speech). The style encoder network
computes the domain-specific style factor for each domain and is composed of multiple
separate style encoders (source style encoder and target style encoder in Figure 6) for
individual domains. In the style encoders, IN was not used, because it removes the speech
style information.

We jointly train the encoders and decoder with multiple losses. To keep encoder and
decoder as inverse operations and ensure the proposed system should be able to reconstruct
the input spectral features after encoding and decoding, we consider reconstruction loss
as follows:

Lrecons = Es∼p(s)[‖D(Ec(xs), Es
s(xs))− xs‖1]. (3)

For the content factor and style factors, we apply a semi-cycle loss in latent variable
→ speech spectra → latent variable coding direction as the latent space is partially shared.
Here, a content reconstruction loss encourages the translated content latent factor to pre-
serve the semantic content information of input spectral features, and a style reconstruction
loss encourages style latent factors to extract and change speaker-specific speaking style
information. Two semi-cycle losses for source speech are computed as follows:

Lc
recons = Ec∼p(c),st∼q(st)[‖Ec(D(c, st))− c‖], (4)

Ls
recons = Ec∼p(c),st∼q(st)

[‖Et
s(D(c, st))− st‖

]
, (5)

where c denotes the content factor, and st and ss denote the target style factor and source
style factor, respectively. The losses for target speech are similarly computed. The full
loss of the proposed speech conversion method is the weighted sum of all losses, which is
defined as follows:

LVAE = λ1(Lrecons + Lrecont) + λ2
(

Lc
recons + Lc

recont

)
+ λ3

(
Ls

recons + Ls
recont

)
, (6)

where λ1, λ2, and λ3 control the weights of the components.
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4. Experimental Results

4.1. Dialogue Exercise Result

To validate the effectiveness of the proposed method, we performed computer-assisted
fluency scoring experiments with spoken English sentences collected in dialogue scenarios
of the GenieTutor system. Figure 7 shows an example of a role-play scenario and fluency
scores feedback with the proposed method. Once the learner completes a sentence utter-
ance, the system computes several aspects of pronunciation evaluation and displays them
in diagram forms. Learners can check their fluency scores by selecting the sentences they
want to check. Learners are provided with overall feedback after finishing all conversations.
As shown in Figure 7, the proposed method can efficiently compute the intonation curves
and stress patterns of the sentences uttered by the learner even when pronunciation errors
occur. In addition, the error words are marked in red, so the learner can see the error parts.

 
(a) 

(b) 

Figure 7. Example of dialogue exercise and fluency scores of the learner and the native speaker with
the proposed method: (a) example of a role-play dialogue exercise, (b) fluency scores feedback.
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4.2. Proficiency Evaluation Test
4.2.1. Speech Database

We also performed the proficiency evaluation test using the rhythm and stress scores
with other fluency features. A speech dataset was selected from the English read speech
dataset read by non-native and native speakers for the spoken proficiency assessment. The
dataset is a corpus of English speech sounds spoken by Koreans and 7 American English
native speakers (references) for experimental phonetics, phonology, and English education,
and is designed to see Korean speakers’ intonation and rhythmic patterns in English
connected speech and the errors which Korean speakers are apt to make in pronunciation
of segments. Each utterance was scored by human expert raters on a scale of 1 to 5. In
this study, the gender and spoken language proficiency levels were evenly distributed
among the speakers. Table 3 shows scripts samples. The speech dataset comprised 100
non-native speakers, and for each speaker, 80 sentences were used for training and another
20 sentences, not included in the training dataset, were used for testing.

Table 3. Samples of the scripts.

No. Sentence

1 My pet bird sleeps in the cage.
2 I eat fruits when I am hungry.
3 Miss Henry drank a cup of coffee.

. . .
100 They suspect that the suspect killed Ted.

For speech conversion and augmentation, an additional 7 American English native
speakers (3 males and 4 females), and for each speaker, 100 sentences, were used, and
frame alignment of the dataset was not performed. We used the WORLD package [49] to
perform speech analysis. The sampling rate of all speech signals reported in this paper was
16 kHz. The frame shift length was 5 ms and the number of fast Fourier transform (FFT)
points was 1024. For each extracted spectral sequence, 80 Mel-cepstral coefficients (MCEPs)
were derived.

4.2.2. Human Expert Rater

Each spoken English sentence uttered by non-native learners was annotated by four
human expert raters who have English teaching experience or are currently English teachers.
Each non-native utterance was rated for five proficiency area scores: holistic impression of
proficiency, intonation, stress and rhythm, speech rate and pause, and segmental accuracy.
In addition, each proficiency score was measured on a fluency level scale of 1–5. A holistic
score for each utterance is calculated as an average of all proficiency scores and used for
proficiency evaluation in this paper. Table 4 shows a mean of the correlation between
human expert raters’ holistic scores.

Table 4. Inter-rater correlation.

Rater 2 3 4

1 0.79 0.75 0.80
2 - 0.81 0.83
3 - - 0.80

4.2.3. Data Augmentation

The proposed VAE-based speech conversion model consisted of a content encoder,
style encoders, and a joint decoder. The content encoder comprised two dilated convolu-
tional layers and a gated recurrent unit (GRU) based on a recurrent neural network. In
order to remove the speech style information, all convolutional layers were followed by in-
stance normalization (IN) [50]. The style encoder comprised a global average pooling layer,
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3-layer multi-layer perceptron (MLP), and a fully connected layer. In the style encoder,
IN was not used because it removes the original feature mean and variance that represent
speech style information. Then, content and style factors were fed into the decoder to
reconstruct or convert the speech. The decoder comprised two dilated convolutional layers
and the recurrent neural network-based GRU. All convolutional layers were used with an
Adaptive Instance Normalization layer generated by the MLP from the style factor [50].

AdaIN(z, s) = σ(s)
(

z − μ(z)
σ(z)

)
+ μ(s), (7)

where z is the activation of the previous convolutional layer, and μ(.) and σ(.) denote the
mean and variance, respectively.

Figure 8 shows an example of Mel-spectrograms obtained by the proposed method.
Comparing the decoding results, we confirmed that the proposed method reconstructs and
converts the spectral features efficiently.

  
(a) (b) 

  
(c) (d) 

Figure 8. Waveform and Mel-spectrograms. (a) Waveform of the input signal, (b) Mel-spectrogram
of the input signal, (c) reconstructed Mel-spectrogram, and (d) converted Mel-spectrogram.

We performed the perception test to compare the sound quality and speaker similarity
of converted speech between the proposed VAE-based speech conversion method and the
conventional conditional VAE-based speech conversion (CVAE-SC) method [29], which is
one of the most common speech conversion methods. We conducted an AB test and an ABX
test. “A” and “B” were outputs from the proposed method and the CVAE, and “X” was a
real speech sample. To eliminate bias in the order, “A” and “B” were presented in random
orders. In the AB test, each listener was presented with “A” and “B” audios at a time,
and was asked to select “A”, “B”, or “fair” by considering both speech naturalness and
intelligibility. In the ABX test, each listener was presented with two audios and a reference
audio “X”, and then, was asked to select a preferred audio or “fair” by considering the one
closer to the reference. We used 24 utterance pairs for the AB test and another 24 utterance
pairs, not included in the AB test, for the ABX test. The number of listeners was 20. Figure 9
shows the results, and we confirmed that the proposed method outperforms the baseline
in both sound quality and speaker similarity terms.
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Figure 9. Results of the AB test and the ABX test.

We also performed the speech recognition test to validate that the spectral features
were converted meaningfully using the English read speech dataset. We used the ESP-
net [51] for an end-to-end ASR system. We trained the AM using only the training dataset
(“Train database only” in Table 5) and evaluated the test dataset, and we compared the
recognition results to those obtained by evaluating the same test dataset using the AM
trained with the augmented dataset (“Augmentation” in Table 5). Table 5 shows the
word error rate (WER) results. For comparison, SpecAugment [21], speed perturbation
method [20], and CVAE-SC were used as a reference. As shown in Table 5, we confirmed
that the data augmentation with the proposed method improves the speech recognition
accuracy for all proficiency score levels compared to a method employing conventional
AM and the other augmentation methods. By sampling different style factors, the proposed
speech conversion method is able to generate diverse outputs, but the computational
complexity is higher than that of other methods.

Table 5. Speech augmentation and word error rate (%) results.

Proficiency Level Applied Method 1 2 3 4 5

Train database only - 57.3 53.4 30.1 23.4 22.7
Augmentation SpecAugment 52.1 45.4 27.2 21.9 20.6

Speed perturbation 51.3 44.9 27.0 21.8 20.7
CVAE-SC 49.3 43.1 26.0 21.5 20.4
Proposed method 40.9 37.7 24.5 20.5 19.1

4.2.4. Features for Proficiency Scoring

All features for proficiency scoring are computed based on the time-aligned phone
sequence and its time information [11,12,14]. Table 6 shows the proficiency scoring feature
list used to train the automatic proficiency scoring models in this work.

Table 6. Features for the proficiency scoring modeling.

Feature Name Description

Genie_pron Pronunciation score
SLLR Sentence-level log-likelihood ratio
amscore0/amscore1 Acoustic model (AM) score/anti-model-based AM score
Uttsegdur Duration of entire transcribed segment but without inter-utterance pauses
Globsegdur Duration of entire transcribed segment, including all pauses
wpsec/wpsecutt Speech articulation rate/words per second in utterance
Silpwd/Silpsec Number of silences per word/second
Numsil Number of silences
Silmean/Silmeandev/Silstddev Mean/mean deviation/standard deviation of silence duration in second
Longpfreq/Longpwd Frequency/number of long pauses per word (0.495 s ≤ duration)
Longpmn/Longpmeandev/Longpstddev Mean/mean deviation/standard deviation of long pauses
Wdpchk/Secpchk Average speech chunk length in words/seconds
Wdpchkmeandev/Secpchkmeandev Mean deviation of chunks in words/seconds
Repfeq Number of repetitions divided by number of words
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Table 6. Cont.

Feature Name Description

Tpsec Types (unique words) per second
Tpsecutt Types normalized by speech duration
Wdstress/Uttstress Word/sentence stress score
Rhymean/Rhystddev Mean/standard deviation of rhythm score
FlucMean/Flucstddev Mean/standard deviation of the range of fluctuation
propV Vocalic segment duration ratio in sentence
deltaV/deltaC Standard deviation of vocalic/consonantal segment duration
varcoV/varcoC Standard deviation of vocalic/consonantal segment duration normalized by speech rate
Genie_amscoreK0/Genie_amscoreK1 AM score/anti-model AM score reflecting Korean pronunciation characteristics of English
Numdff Number of disfluencies
Dpsec Disfluencies per second

4.2.5. Proficiency Scoring Model

We used two modeling methods: (1) multiple linear regression (MLR) and (2) deep
neural network, to train scoring models with high agreement with human expert raters.
MLR is simple and has been used for a long time for automatic proficiency scoring purposes.
Based on the MLR scoring model, the proficiency score is computed as follows:

Score = ∑
i

αi · fi + β, (8)

where i is the index of each feature, αi is the weight associated with each scoring feature fi,
and β is a constant intercept.

We also used a neural network to train the proficiency scoring model nonlinearly and
more accurately. The neural network comprised a convolutional layer with 1 hidden layer
and 3 hidden units and a fully connected layer. Given 41 features, the neural network
trains the proficiency scoring model.

4.2.6. Proficiency Evaluation Results

In order to validate that the proposed automatic proficiency evaluation system mea-
sured the proficiency scores effectively and meaningfully, we computed and compared a
Pearson’s correlation coefficient between the proficiency scores of the proposed system and
those of human raters. The Pearson’s correlation coefficient is a commonly used metric
for evaluating the performance of proficiency assessment methods [52–54]. Tables 7 and 8
show the proficiency evaluation results obtained by the proposed method with and without
data augmentation. For comparison, the range of correlation coefficients of the inter-rater
scores (“Human” in Tables 7 and 8) were used as a reference. As shown in Tables 7 and 8,
we confirmed that the proposed automatic proficiency evaluation method measures profi-
ciency scores efficiently for all proficiency area scores. In addition, we confirmed that data
augmentation for AM training with the proposed speech conversion method improves the
averaged correlation performance for all proficiency area scores compared to the method
employing conventional AM trained without data augmentation. By automatically evaluat-
ing the proficiency of the L2 speaker’s utterance, the proposed proficiency scoring system
is able to perform fast and consistent evaluation in various environments.

Table 7. Correlation between human rater and proposed proficiency scoring system without data
augmentation.

Rater Human MLR Neural Network

Holistic 0.68~0.79 0.78 0.82
Intonation 0.64~0.72 0.73 0.77

Stress and rhythm 0.71~0.74 0.75 0.78
Speech rate and pause 0.71~0.75 0.75 0.77

Segmental features 0.59~0.67 0.69 0.73
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Table 8. Correlation between human rater and proposed proficiency scoring system with data
augmentation.

Rater Human MLR Neural Network

Holistic 0.68~0.79 0.83 0.84
Intonation 0.64~0.72 0.78 0.80

Stress and rhythm 0.71~0.74 0.78 0.79
Speech rate and pause 0.71~0.75 0.81 0.82

Segmental features 0.59~0.67 0.73 0.76

5. Conclusions and Future Work

We proposed an automatic proficiency evaluation method for L2 learners in spoken
English. In the proposed method, we augmented the training dataset using the VAE-based
speech conversion model and trained the acoustic model (AM) with an augmented training
dataset to improve the speech recognition accuracy and time-alignment performance for
non-native speakers. After recognizing the speech uttered by the learner, the proposed
method measured various fluency features and evaluated the proficiency. In order to
compute the stress and rhythm scores even when the phonemic sequence errors occur in
the learner’s speech, the proposed method aligned the phonemic sequences of the spoken
English sentences by using the DTW, and then computed the error-tagged stress patterns
and the stress and rhythm scores. In computer experiments with the English read speech
dataset, we showed that the proposed method effectively computed the error-tagged stress
patterns, stress scores, and rhythm scores. Moreover, we showed that the proposed method
efficiently measured proficiency scores and improved the averaged correlation between
human expert raters and the proposed method for all proficiency areas compared to the
method employing conventional AM trained without data augmentation.

The proposed method can also be used for most signal processing and generation
problems, such as sound conversion between instruments or generation of various images.
However, the current style conversion framework has a limitation that the conversion
model learns the domain-level style factors and generates the converted speech signal
rather than diverse pronunciation styles of multiple speakers included in each domain.
In order to learn more meaningful and diverse style factors and perform many-to-many
speech conversion, we plan to address the issues of automatic speaker label estimation and
expansion to each speaker-specific style encoder in the future work.
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Abstract: Sign language is a visual language for communication used by hearing-impaired people
with the help of hand and finger movements. Indian Sign Language (ISL) is a well-developed and
standard way of communication for hearing-impaired people living in India. However, other people
who use spoken language always face difficulty while communicating with a hearing-impaired
person due to lack of sign language knowledge. In this study, we have developed a 3D avatar-
based sign language learning system that converts the input speech/text into corresponding sign
movements for ISL. The system consists of three modules. Initially, the input speech is converted
into an English sentence. Then, that English sentence is converted into the corresponding ISL
sentence using the Natural Language Processing (NLP) technique. Finally, the motion of the 3D
avatar is defined based on the ISL sentence. The translation module achieves a 10.50 SER (Sign Error
Rate) score.

Keywords: Indian Sign Language (ISL); natural language processing; avatar; sign movement; context-
free grammar

1. Introduction

A sign is a sequential or parallel construction of its manual and non-manual com-
ponents. A manual component can be defined by hand shape, orientation, position,
and movements, whereas non-manual components are defined by facial expressions, eye
gaze, and head/body posture [1–5]. Hearing-impaired people use sign language for their
communication. Every country has its sign language based on its vocabulary and syntax.
Therefore, sign translation from speech/text is specific to the particular targeted country.
Indian Sign Language (ISL) is one of the sign languages that can be efficiently translated
from English. Moreover, ISL is recognized as a widely accepted natural language for
its well-defined grammar, syntax, phonetics, and morphology structure over others [6].
ISL is a visual–spatial language that provides linguistic information using the hands, arms,
face, and head/body postures. The ISL open lexicon can be categorized into three parts:
(i) Signs whose place of articulation is fixed, (ii) signs whose place of articulation can
change, and (iii) directional signs, where there is a movement between two points in
space [7]. However, people who use English as a spoken language do not understand
the ISL. Therefore, an English to ISL sign movement translation system is required for
assistance and learning purposes.

In India, more than 1.5 million people are hearing-impaired who use ISL as their
primary means of communication [8]. Some studies [6,8,9] implemented ISL videos for sign
representation from English text. To generate a robust sign language learning system from
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English to ISL, output sign representation should be efficient, such as being able to generate
proper signs without delay for complete sentences. However, sign language translation
from ISL video recordings requires notable processing time [6]. By contrast, the sign
representations using a 3D avatar require minimum computational time, and the avatar
can be easily reproduced as per the translation system [10]. Moreover, most of the existing
studies [11,12] have not considered complete sentences for sign language conversion. To
overcome these shortcomings, in this paper, we propose a 3D avatar-based ISL learning
model that can perform sign movements not only for isolated words but also for complete
sentences through input text or speech. The flow diagram of such an assisting system is
depicted in Figure 1, where the input to the system is either English speech or text, which
is then processed using a text processing technique to obtain ISL representation. Next,
a gesture model is used to perform the sign movement corresponding to ISL with the help
of an avatar. The main contributions of the work are defined as follows.

• Our first contribution is the development of a 3D avatar model for Indian Sign Lan-
guage (ISL).

• The proposed 3D avatar model can generate sign movements from three different
inputs, namely speech, text, and complete sentences. The complete sentence obtained
is made up of continuous signs corresponding to a sentence of spoken language.

Speech/Text Text 
Processing 

Gesture 
Model 

Sign 
Dataset 

Figure 1. An assistive model for generating sign movements using the 3D avatar from English
speech/text.

The rest of the paper is organized as follows. The related work of sign language
translation is discussed in Section 2. In Section 3, we describe the proposed model of
speech to sign movement for ISL sentences. In Section 4, we analyze each module of our
proposed model. Finally, Section 5 presents the conclusion of this paper.

2. Related Work

This section consists of two subsections: sign language translation systems and perfor-
mance analysis of the sign language translation systems. A detailed description of each
module is given below.

2.1. Sign Language Translation Systems

Sign movement can be effectively generated from input speech. In [13], the authors
have designed a speech–sign translation system for Spanish Sign Language (SSL) using
a speech recognizer, a natural language translator, and a 3D avatar animation module.
In [11,14], the authors have implemented the conversion of Arabic Sign Language (ArSL)
from Arabic text using an Arabic text-to-sign translation system. The translation system
uses the set of translation rules and linguistic language models for detecting different signs
from the text. An American Sign Language (ASL)-based animation sequence has been
proposed in [15]. The authors’ system converts all of the hand symbols and associated
movements of the ASL sign box. A speech-to-sign movement translation based on Spanish
Sign Language (SSL) has been proposed in [12]. The authors used two types of translation
techniques (rule-based and statistical) of the Natural Language Processing (NLP) toolbox
to generate SSL. A linguistic model-based 3D avatar (for British Sign Language) has been
proposed for implementing the visual realization of sign language [16]. A web-based
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interpreter from text to sign language was developed in [17]. The interpreter tool has
been created from a large dictionary of ISL such that it can be shared among multilingual
communities. An android app-based translation system has been designed to convert sign
movements from hand gestures of ISL [18]. In [19], the authors designed a Malayalam
text to ISL translation system using a synthetic animation approach. Their model has been
used to promote sign language education among the common people of Kerala, India.
A Hindi text to the ISL conversion system has been implemented in [20]. Their model
used the dependency parser and Part-of-Speech (PoS) tagger, which correctly categorize
the input words into their syntactic forms. An interactive 3D avatar-based math learning
system of American Sign Language (ASL) has been proposed in [21]. The math-learner
model can increase the effectiveness of parents of hearing-impaired children in teaching
mathematics to their children. A brief description of existing sign language learning
systems is presented in Table 1. It can be observed that some sign language translation
models work on speech-to-sign conversion, whereas some models translate the text to
signs and represent the signs using a 3D avatar. Our proposed model successfully converts
the input speech to corresponding text and then renders the signs movements using
the 3D avatar.

Table 1. Brief description of previous studies of sign language learning systems. Note: Arabic Sign Language (ArSL), Chinese Sign
Language (CSL), Spanish Sign Language (SSL), American Sign Language (ASL), and Indian Sign Language (ISL). “Sentence-wise sign”
represents the continuous signs corresponding to a sentence in its correspondent spoken language.

Study Sign Language
Input:

Speech
Input: Text 3D Avatar Sentence-Wise Sign

Al-Barahamtoshy, O.H. et al. [11] ArSL � � � �

Li et al. [22] CSL � � � �

Halawani et al. [14] ArSL � � � �

Lopez-Ludena et al. [23] SSL � � � �

Bouzid,Y. et al. [24] ASL � � � �

Dasgupta et al. [8] ISL � � � �

Nair et al. [19] ISL � � � �

Vij et al. [20] ISL � � � �

Krishnaraj et al. [6] ISL � � � �

Duarte et al. [25] ASL � � � �

Patel et al. [26] ISL � � � �

Proposed ISL � � � �

2.2. Performance Analysis of the Sign Language Translation System

This section discussed the effectiveness of the different sign language translation
systems based on different evaluation metrics such as Sign Error Rate (SER), Bilingual
Evaluation Understudy (BLEU), and the National Institute of Standards and Technology
(NIST). In [27], the authors have designed an avatar-based model that can generate sign
movements from spoken language sentences. They achieved a 15.26 BLEU score with
a Recurrent Neural Network (RNN)-based model. In [28,29], the authors have proposed
a “HamNoSys” system that converts the input words to corresponding gestures of ISL.
“HamNoSys” represents the syntactic representation of each sign using some symbols,
which can be converted into the respective gestures (hand movement, palm orientation).
Apart from “HamNoSys”, Signing Gesture Markup Language (SiGML) [30] also has been
used for transforming sign visual representations into a symbolic design. In [31], the au-
thors have used BLEU and the NIST score, which are relevant for performance analysis
of language translation. Speech to SSL translation has been implemented with two types
of natural language-based translations (rule-based and statistical) [12]. The authors have
identified that rule-based translation outperforms statistical translation with a 31.6 SER
score and a 0.5780 BLEU score.
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3. Materials and Methods

This section illustrates the framework of the proposed sign language learning system
for ISL. The proposed model is subdivided into three modules, as depicted in Figure 2.
The first module corresponds to the conversion of speech to an English sentence, which is
then processed using NLP to obtain the corresponding ISL sentence. Lastly, we feed
the extracted ISL sentence to the avatar model to produce the respective sign language.
We discuss the detailed description of each module in Sections 3.1–3.3.

Input 
Speech/Text 

Speech Recognition 
(Speech to Text 

Service) 

English text 

NLP 

Indian Sign Language 

Avatar model 
(Blender) Sign Dataset 

Sign Movements 

Figure 2. Framework of the proposed sign language learning system using text/speech. NLP:
Natural Language Processing.

3.1. Speech to English Sentence Conversion

We used the IBM-Watson service ( available online: https://cloud.ibm.com/apidocs/
speech-to-text (accessed on 20 December 2020)). to convert the input speech into text.
The service is classified into three phases, i.e., input features, interfaces, and output fea-
tures. The first phase illustrates the input audio format (.wav, .flac, .mp3, etc.) and
settings (sampling rate, number of communication channels) of the speech signal. Next,
an HTTP request is generated for each speech signal. The input speech signal interacts with
the speech-to-text service using various interfaces (web socket interface, HTTP interface,
and asynchronous HTTP interface) using the communication channel. Finally, in the third
phase, the output text is constructed based on the keyword spotting and word confidence
metrics. The confidence metrics indicate how much of the transcribed text is correctly
converted from input speech based on the acoustic evidence [32,33].

3.2. Translation of ISL Sentence from English Sentence

This section provides the details of the conversion process from English text to its
corresponding ISL text. The words in the ISL sentence have been identified to generate
corresponding sign movements. For the conversion from English to ISL, we use the
Natural Language Toolkit (NLTK) [34]. The model of converting the ISL sentence from an
English sentence is plotted in Figure 3. A detailed discussion of the translation process is
presented below.
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PoS 
Lexicon

Text 
tokenizer

Input English 
Sentence

Syntactic parser
Lexicon Rule 
base & CFG

Logical structure

Derivation tree with selected PoS 

Script  Generator

Leaves of the derivation tree
(from left-right)

ISL Sentence

Preprocessing

Word 
exists in 

vocabulary
Edit distance 

function

Classified words from 
sentence with 
respective PoS

Yes

No

Equivalent valid word

Figure 3. Model of ISL sentence generation from English sentence. PoS: Part-of-Speech; CFG:
Context-Free Grammar.

3.2.1. Preprocessing of Input Text Using Regular Expression

If a user mistakenly enters an invalid/misspelled word, the “edit distance” function is
used to obtain an equivalent valid word. A few examples of the misspelled words, along
with the corresponding valid words, are presented in Table 2.

Table 2. Mapping of misspelled/invalid word into equivalent valid word.

Misspelled/Invalid Word Equivalent Valid Word

“Hellllo” “Hello”
“Halo” “Hello”

“Hapyyyy” “Happy”
“Happppyyy” “Happy”
“Noooooooo” “No”

The edit distance function takes two strings (source and target) and modifies the source
string such that both source and target strings become equal. NLTK divides the English
sentence into separate word–PoS pairs using the text tokenizer. The regular expression
identifies the meaningful English sentence using the lexicon rule. During the preprocessing
of input text, we define the regular expression (1) using the PoS tokens of the NLTK module.
The regular expression starts with at least one verb phrase (VP) and is terminated with one
noun phrase (NP). In the middle part, the regular expression can take zero or more number
of any words that match PoS tokens (preposition (PP) or a pronoun (PRP) or adjective
(JJ)). In a regular expression, + refers to one or more symbols, whereas ∗ refers to zero
or more symbols. Therefore (VP)+ represents one or more verb phrases. For example,
our first sentence, “Come to my home”, starts with the verb phrase (“come”), followed by
a preposition (“to”), pronoun (“my”), and ends with a noun phrase (“home”).

(VP)+(PP|PRP|J J)∗(NP) (1)

where VP ∈ (VB,VBN), NP ∈ (NN), VB ∈ (“hello”,“Thank”,“Please”), VBN ∈ (“come”), PP
∈ (“to”,“with”), PRP ∈ (“my”,“you”,“me”), JJ ∈ (“Good”), NN ∈ (“home”, “morning”).
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3.2.2. Syntactic Parsing and Logical Structure

After the preprocessing step, the NLTK module returns the parse tree based on
the grammatical tokens (VP, PP, NP, etc.). Then, we construct the derivation tree of
the Context-Free Grammar (CFG), which is similar to the parse tree of the NLTK module.
CFG consists of variable/nonterminal symbols, terminal symbols, and a set of production
rules. The nonterminal symbols generally appear on the left-hand side of the production
rules, though they can also be introduced on the right-hand side. The terminal symbols
appear on the right-hand side of the rules. The production rule generates the terminal
string from the nonterminal symbol. The derivation tree can represent the derivation of
the terminal string from the nonterminal symbol. In the derivation tree, terminal and non-
terminal symbols refer to the leaves and intermediate nodes of the tree. Each meaningful
ISL sentence has its own derivation tree. After the creation of the derivation tree, the leaves
of the tree are combined to make a logical structure for the sign language. We have plotted
the different derivation trees for a few sentences in Figure 4A–D.

Context-free grammar

S→VP PP NP|VP NP|VP VP PP NP
VP→VB|VBN
PP→“to”|“with”
NP→PRP NN|JJ NN|PRP
VB→“hello”|“Thank”|“please”
VBN→“Come”
PRP→“my”|“you”|“me”
JJ→“Good”
NN→“home”|“morning”
where (“hello”, “Thank”, “please”, “Come”, “my”, “you”, “me”, “Good”, “morning”,
“to”, “with”, “home”) ∈ terminals and (VP, PP, NP, VB, VBN, PRP, NN, JJ)
∈ nonterminals of the context-free grammar.

(A) (B)

(C)
(D)

Figure 4. Derivation tree for the sentences: (A) Come to my home, (B) Hello good morning, (C) Thank
you, (D) Please come with me. Note: terminal symbols are represented in red, whereas green and
blue refer to the nonterminal symbols of the derivation tree (generated from the above CFG). The start
symbol (often represented as S) is a special nonterminal symbol of the grammar.

3.2.3. Script Generator and ISL Sentence

The script generator creates a script for generating an ISL sentence from the English
sentence. The script takes a valid English sentence (after semantic parsing) as input and
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generates the sequence tree, where each node of the tree is related to different gestures
that are associated with the avatar movement. The sequence tree maintains the order of
the motion performed by the avatar model.

The structures of the English and ISL sentences are quite different. The representation
of ISL from the English sentences is done using Lexical Functional Grammar (LFG). The f-
structure of LFG encodes the grammatical relation, like a subject, object, and tense of an
input sentence. ISL follows the word order “Subject–Object–Verb”, whereas the English
language follows the word order “Subject–Verb–Object” [35]. Moreover, the ISL sentence
does not consider any conjunction and preposition in the sentence [36]. Some examples of
mapping from English to ISL sentences are represented in Table 3.

Table 3. English sentence–ISL sentence mapping.

English Sentence ISL Sentence

I have a pen. I pen have.
The child is playing. Child playing.
The woman is blind. Woman blind.
It is cloudy outside. Outside cloudy.

I see a dog. I dog see.

3.3. Generation of Sign Movement

The generation of sign movements based on the input text is accomplished with
the help of an animation tool called Blender [37]. The tool is popularly used for designing
games, 3D animation, etc. The game logic and game object are the key components of
the Blender game engine. We developed the 3D avatar by determining its geometric shape.
The whole process for creating the avatar is divided into three steps. First, the skeleton and
face of the avatar are created. In the second step, we define the viewpoint or orientation
of the model. In the third step, we define the movement joints and facial expressions
of the avatar. Next, we provide the sequence of frames that determine the movement
of the avatar over the given sequence of words over time. Finally, motion (movement
like walking, showing figures, moving hands, etc.) is defined by giving solid animation.
The game engine was written from scratch in C++ as a mostly independent part and
includes support for features such as Python scripting and OpenAI 3D sound. In this
third module, we generate sign movements for the ISL sentence (generated in the second
module). The entire framework of the movement generation of the avatar from the ISL
sentence is described in Figure 5. For the generation of sign movement from ISL, initially,
the animation parameters are extracted from the ISL sentence. Once the animation pa-
rameters are identified, the motion-list of each sign is performed using a 3D avatar model.
In the proposed 3D avatar model, each movement is associated with several motions,
and all such motions are listed in the “motionlist” file. A counter variable is initialized for
tracking current motion. Each motion has its timestamps mentioning how long the action
of different gestures will be performed. Each motion is generated by a specific motion
actuator when some sensor event has occurred. The controller acts as a linker between
the sensor and actuator. The conditional loop checks the maximum bounds of the number
of motions, and it performs the motion one by one using a specific actuator (e.g., the actua-
tor[counter]). The next valid motion is performed by incrementing the counter variable.
If the value of the counter variable exceeds the number of motions in the “motionlist” file,
then the counter variable along with the “motionlist” is reset to the default value, and the
next movement will be performed.
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Figure 5. Movement generation of avatar from ISL sentence.

4. Results

Here, we present a detailed analysis of the proposed sign language learning sys-
tem using the 3D Avatar model. This section consists of four sections, namely: sign
database (Section 4.1), speech recognition results (Section 4.2), results of translation process
(Section 4.3), and generation of sign movement from ISL sentence (Section 4.4).

4.1. Sign Database

We created a sign language database that contains sentences based on 50 daily used
ISL words (e.g., I, my, come, home, welcome, sorry, rain, you, baby, wind, man, woman,
etc.) and other dialogues between different users. We create 150 sentences that contain
763 different words, including the most used words in ISL. For each word, the sign move-
ments were defined in the blender toolkit. The description of the sign database is depicted
in Table 4. The vocabulary items were created based on the unique words in ISL. For better
understanding, we represented four animation sequences of each word. For the sake of
simplicity, we present some example sequences of sign movement (Table 5) using two
animated series. The table shows the sign movements along with their actual words in
English. All such sign movements were defined with the help of a sign language expert
from a hearing-impaired school (’Anushruti’) in the Indian Institute of Technology Roorkee.

Table 4. Dataset description.

Total Sentences Total Words Vocabulary Running Words

150 763 365 50
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Table 5. English word to sign movements (each sign movement consists of 2 sequential motions).

English Word Sign Movement English Word Sign Movement

Home Night

Morning Work

Welcome Bye

Rain Baby

Please Sorry

4.2. Speech Recognition Results

The speech recognition is performed using the “IBM-Watson speech to text” service
that converts English audio recordings or audio files into the respective text. The ser-
vice takes a speech or audio file (.wav, .flac, or .mp3 format) with a different sampling
frequency and converts the resulting text as output. The sampling frequency of our au-
dio files is 16 KHz. The results of the speech recognition module for both isolated words
(discrete speech) and complete sentences (continuous speech) are presented in Table 6.
The X-axis denotes the time in seconds, and the Y-axis represents the amplitude of the sig-
nal. For the sake of simplicity, we take two discrete and two continuous speech signals
for conversion.
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Table 6. Mapping of the speech signal to text for different types of speech.

Speech Type Speech Signal Output Text (Using IBM-Watson Service)

Discrete Hello

Discrete Come

Continuous Do you like it?

Continuous Thank you

4.3. Results of Translation Process

This section illustrates the translation process of the proposed model. The translation
process includes English to ISL sentence conversion and ISL sentence-to-sign representation.
The evaluation of the proposed system was performed by dividing the generated sentences
into a 80:20 ratio between the training and testing sets, respectively, and the Word Error
Rate (WER) of the input word was recorded. The result of the text processing system is
presented in Table 7, where the WER metric is derived from Levenshtein distance (edit
distance function). Here we compare the word from the reference sentence and the output
sentence. The distance calculates the number of edits/changes (insertion/deletion and
modifications) required to convert the input text to the correct reference text. In Table 7,
Ins, Del, and Sub refer to the number of insertion, deletion, and modification/substitution
operations for converting source text to the proper target text, respectively.

Table 7. Text processing results based on Word Error Rate (WER).

WER (%) Ins (%) Del (%) Sub (%)

25.2 3.3 7.1 14.8

For evaluating the performance of the translation system, some metrics have been
considered: SER, BLEU, and NIST. SER computes the sign error rate during the generation
of each sign from the ISL sentence. In this work, we recorded SERs of 10.50 on the test data.
This error occurred due to WER happening during text entry input, which resulted into
wrong sign generation by the avatar. BLEU and NIST are used for evaluating the quality
of text during the translation from English (source language) to ISL (target language).
The translation is done based on the multiple reference text (used from the vocabulary),
and it calculates the precision score based on the unigram, bigram, . . . , n-gram model
where n is the number of words in the reference text.

BLEU assigns equal weights to all n-grams, whereas NIST gives more importance
to the rare words and small weights to the frequently used words in the sentence, so
the overall score of NIST is better than BLEU. The result of the rule-based translation
process is presented in Table 8. From Table 8, it can be concluded that the NIST score
outperforms the BLEU score.
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Table 8. Performance analysis of proposed translation system. SER: Sign Error Rate; BLEU: Bilingual
Evaluation Understudy; MIST: National Institute of Standards and Technology.

SER BLEU NIST

10.50 82.30 86.80

4.4. Generation of Sign Movement from ISL Sentence

After converting the ISL sentence from the English sentence in module 2 (Section 3.2),
we proceeded to generate the sign movement for the ISL sentence. The avatar generates
animated sign movements for each meaningful word. Here, we have used the avatar
using blender software. We have plotted all the movements of ISL corresponding to
English sentences. Figure 6A describes the actions (action 1, action 2, and action 3) of sign
language representation for the English sentence “Come to my home”. Figure 6B depicts
the sign language representation of the English sentence “Hello, Good morning” (action
1, action 2, and action 3), and Figure 6C describes the sign language representation of the
English sentence “Bye baby” (action 1, action 2). Figure 6D represents the sign language
representation (action 1, action 2) of the English sentence “Please come”.

Come to my home Hello Good morning

(A) (B)

Baby
(C)

Please come
(D)

Bye

Figure 6. Sign language representations of English sentences: (A) Come to my home, (B) Hello,
good morning, (C) Bye baby, (D) Please come.

The quality of the proposed system was evaluated by adopting the Absolute Category
Rating (ACR) [38] scheme. The ratings presented to the users are sorted by quality in
decreasing order: Excellent, Good, Fair, Poor, and Bad. The performance is measured based
on the output sign movements produced using various input speech or text. A majority
rating of “Good” was recorded among the rater population of 25. A prototype video
representation of the system was also made (available online: https://www.youtube.
com/watch?v=jTtRi8PG0cs&ab_channel=PradeepKumar (accessed on 22 December 2020))
on Youtube.

5. Conclusions

In this work, we developed a 3D avatar-based sign language learning system that
converts the English speech or text into corresponding ISL movements. Initially, the input
speech is converted into an equivalent English sentence using the IBM-Watson service.
The converted English text is further translated into the corresponding ISL sentence using
regular expression and script generator. Finally, each word of the ISL sentence is trans-
formed into an equivalent sign movement, represented by a 3D avatar. The translation
method (English–ISL and ISL–sign movement) has been evaluated by the SER, BLEU,
and NIST metrics. The proposed model achieved an 82.30% BLEU score that represents
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the translation accuracy from English to ISL sentences. The text-to-sign translation model
(from ISL sentence to sign movement) achieved a 10.50 SER score, which signifies that
89.50% of signs were correctly generated by the 3D avatar model for the respective ISL
sentence. It may be noted that the proposed system has been developed for a limited
corpus, and no facial expressions were included, which can be considered as an important
part of any sign language system. The transition between the signs while performing a sign
sentence can be improved further by learning specific transitions based on hand positions
while signing. Moreover, the sign language recognition system that converts a sign to
text/speech is significantly more difficult to develop. Such a system can be added within
the proposed framework to build a complete sign language interpretation system.
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Abstract: Technological advancement, in addition to the pandemic, has given rise to an explosive
increase in the consumption and creation of multimedia content worldwide. This has motivated
people to enrich and publish their content in a way that enhances the experience of the user. In this
paper, we propose a context-based structure mining pipeline that not only attempts to enrich the
content, but also simultaneously splits it into shots and logical story units (LSU). Subsequently, this
paper extends the structure mining pipeline to re-ID objects in broadcast videos such as SOAPs. We
hypothesise the object re-ID problem of SOAP-type content to be equivalent to the identification of
reoccurring contexts, since these contexts normally have a unique spatio-temporal similarity within
the content structure. By implementing pre-trained models for object and place detection, the pipeline
was evaluated using metrics for shot and scene detection on benchmark datasets, such as RAI. The
object re-ID methodology was also evaluated on 20 randomly selected episodes from broadcast SOAP
shows New Girl and Friends. We demonstrate, quantitatively, that the pipeline outperforms existing
state-of-the-art methods for shot boundary detection, scene detection, and re-identification tasks.

Keywords: object detection; logical story unit detection (LSU); object re-ID

1. Introduction

Due to advances in storage and digital media technology, videos have become the
main source of visual information. The recording and accumulation of a large number of
videos has also become very easy, and many popular websites, including YouTube, Yahoo
Video, Facebook, Flickr, and Instagram, allow users to share and upload video content
globally. Today, we have arrived at the point where the volume of video that arrives on
the internet increases exponentially on a daily basis. Apart from this, there are very many
broadcast channels with enormous amounts of video content—shot and stored every sec-
ond. With such large collections of videos, it is very difficult to locate the appropriate video
files and extract information from them effectively. Moreover, with such a vast quantity of
data, even the suggestion list expands tremendously; thus, it is even more difficult to make
an efficient and informed decision. Large file sizes, the temporal nature of the content, and
the lack of proper indexing methods to leverage non-textual features, creates difficulty
in cataloguing and retrieving videos efficiently [1]. To address these challenges, efforts
are being made—in every direction—to bridge the gap between low-level binary video
representations and high-level text-based video descriptions (e.g., video categories, types or
genre) [2–7]. Due to the absence of structured intermediate representations, powerful video
processing methodologies which can utilise scene, object, person, or event information do
not yet exist. In this paper, we address this problem by proposing a framework involving
an improved semantic content mining approach, which obtains frame-level location and
object information across the video. The proposed architecture extracts semantic tags such
as objects, actions and locations from the videos, using them not only to obtain scene/shot
boundaries, but also to re-ID objects from the video.
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Since this paper deals with several video features/aspects, it is important to clearly
state the definitions for the various structures and components of a video as used in this
paper. Any video can essentially be broken down into several units. First, a video is a
collection of successive images; specific frames shown at a particular speed. Each frame
is one of the many still images that make up the video. Next, a group of uninterrupted
and coherent frames constitute a shot. Every frame belongs to a shot, which lasts for
a minimum of 1 s and is based on the frame rate of the broadcast video (which can be
anywhere between 20 to 60 frames per second). Enriching every frame of a video would be
computationally expensive and practically inefficient. Thus, we find it logical to consider a
shot as the fundamental unit of the video. Based upon these shots, the entire video can be
iteratively enriched with data, such as scene types, actions and events.

Humans, on the other hand, tend to remember specific events or scenarios from a
video that they view during a video-retrieval process. Such an event could be a dialogue, an
action scene, or any series of shots unified by location or a dramatic incident [8]. Therefore,
it is events themselves which should be treated as an elementary retrieval unit in future
advanced video retrieval systems. Various terms denoting temporal video segments on a
level above shots, but below sequences, appear in the literature [9]. These include scenes,
logical units, logical story units, and topic units. The flow diagram on Figure 1 shows how
this space could be well-defined [10]. A logical story unit (LSU) could thus be a scene or
a topic unit, depending on the type of content. Our proposed pipeline can automatically
segment videos into logical story units.

Figure 1. Pictorial representation of the structure of video, detailing the position and definition of a
logical story unit (LSU). As shown in the flow diagram, an LSU can either be a scene or a topic unit.
This paper predominately focuses on normal scene- and topic-unit-type videos.

Researchers often address semantic mining and structure mining problems separately,
because they were historically applied to different domains. However, during the last
decade, image recognition algorithms have improved exponentially, and deep learning
models, together with GPU/TPU computational hardware, allow very accurate real-time
detectors to be trained and served. This has paved the way to complex pipelines that can
be defined and reused across multiple domains. We have made use of these technological
advancements in defining a versatile semantic extraction pipeline that proves to address
multiple video analytic problems simultaneously. In summary, the main contributions of
this paper can be listed as follows:

1. We propose a flexible pipeline that can derive high-level features from detection
algorithms and semantically enrich a video by performing automatic video struc-
ture mining. This pipeline consolidates the frame-level place and object tags using
time-efficient deep neural networks in such a way that it could be used for further
enrichment tasks, such as re-ID.

2. Within the pipeline, we have implemented a novel boundary-detection algorithm to
cluster the temporally coherent, semantically closer segments into shots and LSUs.

3. We also propose a novel multi-object re-ID algorithm-based on context similarity in
SOAP and broadcast content to generate object timelines.
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The remainder of this paper is organised as follows. Section 2 reviews related work.
Subsequently, Section 3 presents our methodology, which explains, in detail, the algorithms
used for semantic extraction, boundary prediction and object re-ID. The experimental set
up and model selection are presented in Section 4. Section 5 discusses the results, while
Section 6 concludes this paper and discusses the future work.

2. Related Work

This work elaborates the role of semantics in video analysis tasks such as video
structure mining and re-ID. Spatial semantics includes the objects and persons in, as well as
the location of, a frame. Temporal semantics includes actions, events, and their interactions
across the video. For a system to understand a video, therefore, the system requires the
ability to automatically comprehend such spatio-temporal relationships. In the following
subsections, we discuss various approaches for semantic extraction, LSU/shot boundary
detection and re-ID methodologies.

2.1. Semantic Extraction
2.1.1. Image Classification and Localization

Image classification and object recognition tasks have been investigated for a long time.
Yet, for much of this period, there were no suitable general solutions available. This was
mainly attributed to the quality of training data and accessible computational hardware.
Moreover, the classification accuracy when using a smaller, rather than a larger, number
of classes was observed to be greater [11]. However, performance in image-classification
tasks has been exponentially improved in open competitions, such as the Large Scale Visual
Recognition Challenge (ILSVRC) and MIT-Places-365. These competitions encouraged the
development of region proposal network (RPN)-based deep neural networks, including
AlexNet, GoogleNet and Vision Geometry Group (VGG). These networks have revolu-
tionised image classification and have opened doors, in all directions, for classification
and annotation. We use the VGG-16 network trained on MIT-Places-365 for obtaining
the place/location of a frame, because it is very generalised and the architecture could be
reused for further tasks, including the Dense Captioning of a frame that also has VGG-16
as its base architecture.

In addition to classification tasks, the success of the above-mentioned challenges has
also fuelled research on localisation and detection tasks. Speed and accuracy have been
the major areas of focus and, based on these, there are two major types of object detection
models: (1) region-based convolution models, such as R-CNN and Faster RCNN, that split
the image into a number of sub-images, and (2) convolution models, such as Single Shot
Detector (SSD) and You Only Look Once (YOLO), that detect objects in a single run [12].
Even though the Faster RCNN have slightly higher accuracy, the latest version of YOLO
(YOLOv3 [12]) detects objects up to 20 times faster while retaining similar/acceptable
accuracy. Thus, our pipeline has a pre-trained YOLOv3 model that has been used for
detecting objects and persons in a frame.

2.1.2. Video Annotation

There has also been research pertaining to video annotation. [13] proposed an event-
based approach to create text annotations, which infers high-level textual descriptions of
events. This method does not take into account the temporal flow or correlations between
different events in the same video. Thus, the approach does not have the ability to interact
or fuse multiple events into scenes or activities. As explained in the previous section, it is
important to search for and retrieve continuous blocks of video, often referred to as scenes
or story units.

Stanislav Protasov et al. [14] proposed a pipeline with keyframe-based annotation of
scene descriptions, while [15] proposed a sentence-generation pipeline which provides de-
scriptions for keyframes based on the semantic information. Even though the techniques
produced acceptable results, the annotations still lacked information and faced information
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losses. Torralba et al. [16], on the other hand, proposed a solution for semantic video anno-
tation that consists of per-frame annotations of scene tags. The per-frame annotations are
computationally expensive and often redundant. Therefore, we incorporated a pipeline that
takes into account the drawbacks of these previous methodologies. The pipeline obtains all
possible spatial information, ranging from the location to objects and persons, in the form
of textual descriptions for every nth frame of the video. This n depends on the frame rate
of the video and is adjusted so that textual descriptions are obtained for a minimum of
4 frames per second.

2.2. Boundary Detection

Shot and scene detection is one of the long-studied problems in video structure mining.
There have been a lot of different approaches based on the different features used and the
different clustering methods available. In this subsection we discuss the latest approaches
for shot and LSU detection.

In the existing works for shot boundary detection, there a prevailing and striking pattern
of similarities. We have come to the conclusion that boundary detection is performed by calcu-
lating or learning the deviation of features over adjacent frames. Widely used features include
RGB, HSV, or LUV colour histograms [17], background similarity [4], motion features [18], edge
ratio change and SIFT [19], and spectral features. Ref. [17] uses a spectral clustering algorithm
to cluster shots, while [18] proposes a new adaptive scene-segmentation algorithm that uses
the adaptive weighting of colour and motion similarity to distinguish between two shots. They
also propose an improved overlapping-links scheme to reduce shot grouping time. Recently,
deep features, extracted using CNN, were employed to obtain significant state-of-the-art re-
sults [20]. This team used an end-to-end trainable CNN model that was trained using a cross
entropy loss to detect shot transitions. In this work, we employ frame-level object-, person- and
location-type semantic descriptions as features to estimate shot boundaries.

For scene detection, Stanislav Protasov et al. [14] proposed a pipeline that utilises
scene descriptions for keyframes of shots, while [15] proposed a pipeline that generates
sentences or captions based on objects in a keyframe. The former utilises a scene transition
graph to cluster similar shots to scenes, while the latter proposes to use Jaccard-similarity
for obtaining similarity between shots. As per survey [21], the LSU-detection task is
understood as a three-stage problem. In the first step, frames are grouped into shots. In the
second step, location, person and object descriptions are consolidated to obtain shot-level
descriptions. In the third stage, shot-level descriptions are used to cluster the shots into
story units, using a similarity metric and assumptions about the film structure. For shot
boundary detection, we have proposed and utilised the shot-detection algorithm defined
in our methodology.

3. Methodology

Based on the motivations explained in Section 1, we propose a pipeline that utilises
semantic descriptions and their co-occurrences across a video to address the fundamental
video processing challenges pertaining to structure mining and object re-ID tasks. The proposed
pipeline is shown in Figure 2. We follow a step-wise approach to explain the implementation
of the pipeline:

1. Semantic Extraction
2. Structure Mining
3. Similarity Estimation
4. Object Re-Identification

3.1. Semantic Extraction: Recognizing Objects, Places and Their Relations

In order to work with the high-level semantic features, it is important to have thorough
information regarding the composition of each frame (e.g., objects, persons, and places in
the frame). Since broadcast videos do not carry that much frame-level semantic information,
it is necessary for our pipeline to have a good model that can predict, with high accuracy,
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the objects and places in a frame. As seen in Figure 2, frame-level semantic extraction is a
common step for all the tasks dealt with in the paper—from shot/LSU boundary prediction
to object timeline generation.

Figure 2. Overview of the proposed pipeline. Given the input video, the framework extracts visual
features to obtain frame-level semantics. The enriched semantic information can then be used
for search and retrieval of video segments, predict shot and scene boundaries, and also to create
object timelines.

Feature Extraction

We make use of low-level and mid-level visual information for predicting the high-
level features that are necessary to determine the semantic composition of a logical story
unit. In our approach we use object, person and location tags as high-level features for
detecting the LSU boundaries. To obtain the object and person annotations, the latest
version of the YOLO object detector [12], pre-trained on the COCO dataset [22], is used.
COCO stands for Common Objects in Context. The dataset comprises of 1.5 million object
instances covering 80 object classes. Along with the object detector, the place or the location
of the scenes are predicted using the ResNet-50 CNN architecture, pretrained on the places-
365 dataset [11]. This dataset contains more than 10 million images in total, comprising
400+ unique scene categories [23].

3.2. Structure Mining: Shot Boundary Detection

Once we extract the visual features of the video frames, we utilise them to estimate the
similarity between frames. This, in turn, is used to predict the overall structure of the video
as shown in Figure 3. Broadcast videos generally have a frame rate of 24 fps. We process
every sixth frame of our video for computational advantage (4 frames/s). Furthermore, we
cluster temporally similar frames to form shot and story units.

Figure 3. Overview of the framework for Shot Detection. Shot is defined as a group of continuous
frames without a cut. To predict shot boundaries, the framework utilises only frame-level visual
features from the given input video.

Spatio-Temporal Visual Similarity Modelling

In contrast to other approaches that use clustering for boundary detection, we con-
struct a similarity matrix that jointly describes spatial similarity and temporal proxim-
ity. The generic element Sij defines the similarity between frames i and j, as shown in
Equation (1).

Sij = exp

(
−d2

1(ψ(xi), ψ(xj)) + α · d2
2(xi, xj)

2σ2

)
(1)

where, ψ(xi) and ψ(xj) are the list of visual tags for the ith and jth frame, respectively. d2
1 is

the cosine distance between frame xi and xj, while d2
2 is the normalised temporal distance

between frame xi and frame xj. The parameter α tunes the relative importance of semantic
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similarity and temporal distance. The effect of alpha on the similarity matrix is shown in
Figure 4.

Figure 4. Effect of α (from left to right 0, 5, and 10) on similarity matrix Sij. Higher values of α enforce
temporal connections between nearby frames and increase the quality of the detected shots.

As shown in Figure 4, the effect of applying increasing values of α to the similarity
matrix is to raise the similarities of adjacent frames, thereby boosting the temporal correla-
tions of frames in the neighbourhood. At the same time, too high values of α would lead to
the boosting of the temporal correlation of very close neighbouring frames, thereby failing
to capture gradual shot changes. The final boundaries are created between frames that do
not belong to the same cluster. An experiment was conducted with the videos of the RAI
dataset, where values from 1 to 10 were provided for α, and its effect was studied. We found
that an α value of 5 performed well on average, for both gradual and sharp shot changes.
Therefore, we use an α value of 5 for our shot boundary detection experiments, since it
provides the right amount of local temporal similarity for the prediction of boundaries.

As seen in Equation (1), semantic composition-based frame-similarity estimation is
composed of the following two sub parts:

• Semantic similarity scoring scheme
• Temporal model analysis

3.2.1. Semantic Similarity Scoring Scheme

We use the cosine similarity principle to measure inter-frame similarity; that is, we
measure the cosine angle between the two frame vectors of interest. The cosine similarity
between the ith and the jth frame is calculated by taking the normalised dot product
as follows:

sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| (2)

where, ψ(xi) is the normalised vector based on the list of visual tags for frame xi. This
results in a spatial similarity matrix. The similarity measure is converted into a distance
measure based on the following Equation:

d2
1(ψ(xi), ψ(xj)) = 1 − sim(xi, xj) (3)

An example of utilising the spatial similarity matrix to retrieve the top four similar
frames from a video is shown in Figure 5.

Figure 5. An example of utilising the spatial similarity matrix to retrieve top four similar frames from
a video. The video used is Season 5 Episode 21 of FRIENDS show.
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3.2.2. Temporal Model Analysis

As per Equation (1) the temporal proximity is modelled using d2
2, which is the nor-

malised temporal distance between frames xi and xj. The normalised temporal distance
can be defined by Equation (4)

d2
2(xi, xj) =

| fi − f j|
l

(4)

where fi and f j are the index of frame xi and xj, respectively, and l is the total number of
frames in the video.

3.2.3. Boundary Prediction

Based on Equation (1), the lower the value of Sij, the more dissimilar frames xi and
xj are. Thus, we calculate the shot boundary by thresholding Sij. In our experiments, 0.4
was used as the threshold value. The entire shot boundary detection algorithm is shown in
Algorithm 1.

Algorithm 1: Shot boundary detection
Input: List of frame-level objects and places tags
Output: Shot boundaries

1 shots = []
2 for i =1:n do
3 for j = 1:n do
4 place_sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| // ψ(xi) = normalised vector

of place tags for frame xi
5 obj_sim(xi, xj) = ||ψ(xi)|| · ||ψ(xj)|| // ψ(xi) = normalised vector of

object tags for frame xi

6 sim(xi, xj) =
w1(place_sim) + w2(obj_sim)

w1+w2

7 d2
1(ψ(xi), ψ(xj)) = 1 − sim(xi, xj)

8 Sij = exp
(
− d2

1(ψ(xi),ψ(xj))+α . d2
2(xi ,xj)

2σ2

)
9 for i = 1:n do

10 if Si,i+1 < threshold then
11 shots.append(i)

3.3. Similarity Estimation: Context Based Logical Story Unit Detection

Based on our experiments, we have deduced that normal broadcast content, such as
a SOAP episode or the news, often make use of multiple angles pertaining to the same
story unit.In more than 90% of the cases, these angles recur multiple times throughout the
video. Therefore, as shown in Figure 6, the context-based similarity estimation begins with
shot detection. Progressing from these estimated shot boundaries, frame-level semantic
descriptions are merged as follows:

Lij =
w1(place_sim) + w2(obj_sim)

w1 + w2
(5)

where w1 and w2 are the weights for place and object descriptions. In our experiments,
we have given more importance to place descriptions than to object descriptions, mainly
because the state-of-the-art object detection models do not have the ability to predict all the
objects in a frame. Moreover, the pre-trained place-detection model has the ability to cap-
ture the overall context of the shot location, and therefore has been deemed more important.
Thus we have maintained w1 and w2 as 2 and 1, respectively, in all our experiments.
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The shot-level similarity measure is calculated based on the joint similarity estimated
using Equation (5). An example of the similarity matrix of a video from RAI is shown in
Figure 7. The final similarity matrix is used along with the re-identification algorithm to
generate object timelines.

Figure 6. Overview of the LSU-detection module. Given the input video, the framework extracts
audio–visual features to predict logical story unit boundaries based on semantic similarity between
temporally coherent shots. The final decision boundary is based on thresholding the distance between
consecutive shots.

Figure 7. Estimated shot similarity for RAI video 23353. The figure also shows key frames of a
selected LSU (red box).

3.4. Object Re-Identification

We propose an algorithm that formulates unique object IDs using LSUs and frame-
level object detections, such that re-occurring objects are provided with the same ID. The
algorithm we propose is based on the following hypothesis:

Hypothesis 1. If two shots Sa and Sb are similar, then the objects present in Sa and Sb are also similar.

3.4.1. Explanation

Multimedia broadcast content, such as SOAP, news, or talk shows, often reuse loca-
tions that conserve the objects that they contain. Then, based on the above hypothesis, the
objects are the same if they are present in the same location. For example, in Figure 8, Image
1 is frame 26070 of the video and image 2 is frame 27604. Although they are approximately
1500 frames apart, they both pertain to the same location, and thus the objects in them are
the same. An important point to note is that the hypothesis holds only for stationary/static
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objects; if there are dynamic objects present in the shots (e.g., persons) the hypothesis will
fail. Our approach focuses only on static object re-identification—thus, the current paper
will only address problems of this kind.

Figure 8. Example of multiple instance object class. This example is taken from the Season 4 Episode 16
of New Girl TV SOAP show. In the left side image (frame 26070) there are three different objects of the
class (vase) detected, while in the right image (frame 27604), there are two objects of this class detected.

Based on the number of occurrences of a same class object in the same frame, the re-ID
algorithm is composed of two sub-parts:

• Single instance
• Multiple instance

3.4.2. Single Instance

If there is just a single occurrence of the object in every frame it appears in throughout the
video, then by Hypothesis 1, the id for object O at frame n is given by Equation (6) as follows:

On
id =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

id = 1, n = 0

Oa
id, Sn

a > threshold,

id + 1, Sn
a < threshold,

where (a = 1:n − 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6)

where in On
id is the object id at frame n, and Sn

a is the context-similarity measure between
the frame a and n as calculated in Equation (5).

3.4.3. Multiple Instance

If there are multiple occurrences of the object, we propose a graph-based approach to
correctly localise the object in the frame. An example of this problem is shown in Figure 8.
In such cases, where multiple objects of the same class exist, it is not only important to know
whether shot/LSU of the frames are similar, but also to know the spatial position/location
of the object in the frame, so that the object can be re-IDed correctly.

Therefore, based on the bounding box co-ordinates of the detected objects, a location
graph is estimated using spatial distances between the objects, as shown in Figure 9. The idea
here is to generate and compare the graphs such that the IDs of the objects can be matched.

Spatial Distance Estimation

Although, the 2-D Euclidean distance measure works well between frames with similar
angles across similar LSUs, there are cases where the angle and zoom changes across
similar LSUs. The topological information contained within the frame is also lost, making
it impossible to obtain a realistic distance estimation. To compensate for the topological
information, we propose to use depth maps, in combination with the location graph, to
estimate a more realistic spatial distance between the objects in a frame. To obtain depth
information, we use Dense Depth [24], pre-trained on NYU Depth V2 dataset [25]. The
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estimated depth is used as a third dimension, and thereby the Euclidean measure is re-
calculated as shown in Figure 10.

Figure 9. Spatial location graph generated for a frame using the centre of the bounding box co-
ordinates and Euclidean distance between them.

Figure 10. Comparison of frame 26070 with its estimated depth. Using the depth and distance measures,
the actual distance between the two objects can be estimated.

Let x and y be the centre points of the objects Ox and Oy, respectively, in a frame. Then
the distance between them is given by:

distance = |x − y| (7)

The estimated depth has a range of values that are clipped between 10 and 1000,
where 10 is the closest and 1000 is the farthest. If the depth values at points x and y can be
represented as δ(x) and δ(y), the depth between the objects can be estimated by:

depth = |δ(x)− δ(y)| (8)

Finally, from Equations (7) and (8), the actual distance between the objects can be
calculated as follows:

Dy
x =

√
(distance)2 + (depth)2 (9)

Spatial Location Graph

For every frame with multiple instance objects, the spatial location graph is estimated
based upon the pairwise distance between the objects in the frame, using Equation (9). Let
Gi(O, D) and Gj(O, D) be the graphs with objects as nodes and their distances as edges for
two similar frames i and j. The objects in frame j are matched with the objects in i, based
on comparing the distances between the objects in j and i such that the difference between
the distances is always minimal. For instance, if frame i has 4 objects, Oi1, Oi2, Oi3, Oi4, of
which Oi1 and Oi2 belong to the same class, and D12

i , D13
i denotes the distance between

objects, then to re-identify objects O1 in frame j, the sub-graph distances of Gi[O
′
1] and

Gi[O
′
2] are compared with Gi[O

′
1]. Oj1 is deduced to be the same as the object in i for which

the difference between distances is minimal. The overall object re-ID algorithm is shown in
Algorithm 2 while the complete re-ID pipeline is shown in Figure 11.
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Algorithm 2: Multi-object re-ID.
Input: Objects_list per frame, shot boundary and LSU similarity
Output: Object IDs per frame

1 shots = []
2 for object = object_list[0]:object_list[len(object_list)] do
3 if count(objects) in all_frames <= 1 then
4 single_instance.append(object)

5 else
6 multi_instance.append(object)

7 for object = single_instance[0]:single_instance[len(single_instance)] do
8 id = 1
9 for i = 1:class do

10 for i = 1:n do
11 if i==0 then
12 objectid = id
13 id = id + 1

14 else
15 if similarity( f ramen, 1 : f ramen−1 > threshold, then
16 Let frame a be the frame most similar to frame n
17 objectid = Oa

id

18 else
19 objectid = id
20 id = id + 1

21 for object = multiple_instance[0]:multiple_instance[len(multiple_instance)] do
22 id = 1
23 for i = 1:class do
24 for i = 1:n do
25 if i==0 then
26 objectid = id
27 id = id + 1

28 else
29 if similarity( f ramen, 1 : f ramen−1 > threshold, then
30 Let frame a be the frame most similar to frame n
31 object_list = graph_compare(Gn[O

′
class], Ga[O

′
class])

32 for object_id in object_list do
33 objectid = object_id

34 else
35 objectid = id
36 id = id + 1
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Figure 11. Proposed pipeline for multi-object re-ID. Given the input video, we estimate LSU and
objects per frame for the video. Based on the number of occurrences of the object in a frame, the
objects are categorised as single- and multi-instance objects. Subsequently using the inter-frame
similarity and graph-based algorithms, object IDs are created and visualised.

4. Experiments

To provide a comprehensive overview of the strengths of the pipeline, it was separately
evaluated on benchmark task-specific datasets. All the experiments were performed on a
Linux Intel(R) Core(TM) i5-7440HQ CPU system with a RAM capacity of GB; the GPU was
an NVidia GeForce 980 with 4 GB memory; and the operating system was Ubuntu version
16.04. The entire pipeline was implemented in Python 3.6 with the Pytorch deep learning
library. The datasets and evaluation metrics used for evaluating our pipeline are explained
in the following sections.

4.1. Dataset

In this work, a thorough, objective, and accurate performance evaluation has been
carried out to evaluate the pipeline for shot boundary detection, LSU boundary detection
and object re-ID.

To evaluate the proposed approach for shot and LSU boundary detection, we tested
the pipeline on the benchmark RAI dataset. This dataset is a collection of ten challenging
broadcasting videos from the Rai Scuola video archive, ranging from documentaries to talk
shows constituted by both simple and complex transitions.

We evaluate our approach for object re-ID on randomly selected SOAP episodes. For
fair evaluation, we chose to validate our approach on two different sets of SOAP broadcast
content; namely, New Girl and Friends. We selected 10 episodes from Season 4 of New Girl
and 10 episodes from Season 3 of Friends as our final dataset for object re-ID.

4.2. Evaluation Metrics

We evaluated the pipeline based on three tasks: (1) accuracy of the shot boundary detection;
(2) accuracy of the LSU boundary detection; and (3) accuracy of the object re-ID algorithm.

For all the experiments, we use the precision, recall, and f1-score for the evaluation of
our results. Precision, recall, and f1-score are computed based on the matched shots/LSU
with the ground truth. Furthermore, the results were graphically visualised and analysed
to promote insight.

The precision measure refers to the fraction of rightly predicted boundaries from
total predictions, whereas recall measure denotes the fraction of boundaries rightly re-
trieved. If groundtruth refers to the list of ground-truth values and prediction refers to
the list of automatically predicted values, then precision and recall can be expressed as in
Equation (10).

precision =
|groundtruth ∩ prediction|

|prediction|
recall =

|groundtruth ∩ prediction|
|groundtruth|

(10)
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F-score, on the other hand, combines precision and recall measures; it is the harmonic
mean of the two. Traditional Fshot can be defined as follows:

Fshot = 2 · precision · recall
precision + recall

(11)

As mentioned in earlier sections, the precision, recall, and f1 measure would not
suffice to validate the accuracy of the LSU boundary detection algorithm. The reason
for this is that humans and algorithms employ different ways of perceiving story units.
Humans can relate changes in time and location to discontinuities in meaning, whereas an
algorithm solely depends on visual dissimilarity to identify discontinuities. This semantic
gap makes it impossible for algorithms to achieve fully correct detection results. Therefore,
as suggested in [9], we use coverage and overflow metrics to measure how well our LSU
boundary detection algorithm performs with respect to human labelled LSUs, using visual
features. That is, in addition to the precision, recall, and f1 measures, we propose to use
coverage and over f low measures to evaluate the number of frames that were correctly
clustered together.

Coverage C measures the quantity of frames belonging to the same scene correctly
grouped together, while Overflow O evaluates to what extent frames not belonging to the
same scene are erroneously grouped together. Formally, given the set of automatically
detected scenes s = [s1, s2, ..., sm], and the ground truth g = [s1, s2, ..., sn], where each element
of s and g is a set of shot indexes, the coverage of scene s is proportional to the longest
overlap between si and gt:

coverage =
maxi=1 ... n#(si ∩ gt)

#(gt)
(12)

over f low =
∑m

i=1 #(si/gt) · min(1, (si ∩ gt))

#(gt−1) + #(gt+1)
(13)

Fscene combines the coverage and overflow measures and is the harmonic mean of the
two. For coverage, values closer to 1 indicate better performance, and for overflow, values
closer to 0 indicate better; thus we use 1 − over f low for calculating Fscene:

Fscene = 2 · coverage × (1 − over f low)

coverage + (1 − over f low)
(14)

For the experiments pertaining to object re-ID, we make use of Accuracy metrics.
Accuracy is the most intuitive performance measure; it is simply the ratio of correctly
predicted observations to total observations. In our scenario, the predicted observations are
labelled as True if they are correctly predicted, and False otherwise. Therefore, if the total
number True samples is denoted by True, and total number of False samples is denoted by
False, then Accuracy can be calculated as follows:

Accuracy =
True

True + False
(15)

5. Results and Discussion

5.1. Quantitative Results
5.1.1. Shot Boundary Detection

In this study, to evaluate shot boundary detection, we have compared our framework
with state-of-the-art CNN-based fast shot boundary detection[20]. We have used 10 random
Internet Archive videos from the RAI dataset. Table 1 compares the precision, recall, and F-
score of our pipeline with this state-of-the-art algorithm. These experimental results show that
the state-of-the-art model performs extremely well on normal transitions, while performing
comparatively poorly on complex transitions. Our approach, on the other hand, has obtained
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similar precision values for both complex and normal transitions. On average, our approach
has outperformed the state-of-the-art with an f1 measure of 0.92.

5.1.2. LSU Boundary Detection

In this study, we also evaluated LSU boundary detection by comparing the results
against two different algorithms for scene detection: [26], which uses a variety of visual and
audio features that are integrated in a Shot Transition Graph (STG); and [27], which uses a
spectral clustering algorithm and Deep Siamese network-based model to detect scenes. We
used the same 10 videos from the RAI dataset for validation. Table 2 tabulates the coverage
and overflow measures calculated based on the above methods. Our experimental results
indicate that the model in [26] has the highest coverage value of 0.8—but it also has a very
high overflow measure. Ref. [27] provides a comparatively better overflow result and overall
performance than [26]. Although our approach achieved a lower coverage measure, it has
obtained a very good overflow measure, which has resulted in a higher Fscore. Our approach,
with an average Fscore of 0.74, outperformed the other methods by more than 10%.

Table 1. Performance comparison for shot detection using boundary-level metrics.

Gygli et al. [20] Our Approach

Video Precision Recall Fshot Precision Recall Fshot

23353 0.95 0.99 0.96 0.877 0.99 0.945
23357 0.91 0.97 0.939 0.874 0.99 0.940
23358 0.92 0.99 0.954 0.775 0.99 0.873
25008 0.94 0.94 0.94 0.849 0.99 0.918
25009 0.97 0.96 0.965 0.726 0.98 0.841
25010 0.93 0.94 0.935 0.955 0.99 0.977
25011 0.62 0.9 0.734 0.863 0.99 0.927
25012 0.66 0.89 0.758 0.890 0.890 0.89

Average 0.853 0.948 0.899 0.861 0.986 0.912

Table 2. Performance comparison for LSU detection using frame-level metrics.

Lorenzo et al. [27] Sidiropoulos et al. [26] Our Approach

Video Coverage Overflow Fscene Coverage Overflow Fscene Coverage Overflow Fscene

23553 0.82 0.40 0.69 0.63 0.20 0.70 0.66 0.0083 0.79
23557 0.77 0.24 0.76 0.73 0.47 0.61 0.65 0.2016 0.72
23558 0.77 0.37 0.69 0.89 0.64 0.51 0.73 0.1346 0.80
25008 0.42 0.06 0.58 0.72 0.24 0.74 0.41 0.0100 0.58
25009 0.95 0.76 0.39 0.69 0.53 0.56 0.67 0.124 0.76
25010 0.66 0.40 0.63 0.89 0.92 0.15 0.66 0.012 0.79
25011 0.70 0.14 0.77 0.94 0.92 0.15 0.61 0.048 0.74
25012 0.53 0.15 0.65 0.93 0.94 0.11 0.63 0.0400 0.76

Average 0.70 0.30 0.66 0.8 0.63 0.43 0.63 0.074 0.74

5.1.3. Object re-ID

In this study, to evaluate object re-ID, we have applied the algorithm on 10 random
episodes from Season 4 of New Girl and 10 random episodes from Season 3 of Friends TV
shows. The dataset does not possess ground truth labels. Thus, the approach was manually
validated—if the object was re-IDed correctly it was marked True; else it was marked False.
The True and False values were consolidated per object class for all episodes of New Girl
and Friends separately, and the object classes that had a minimum of 20 occurrences in all
the episodes of SOAP put together were chosen to estimate the accuracy. The accuracy was
then calculated for each SOAP separately. Table 3 shows the accuracy results for the object
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re-ID applied on the two SOAP series. These experimental results show that our object
re-ID algorithm performs at an average accuracy of 0.87.

Table 3. Performance evaluation of object re-ID.

New Girl (10 episodes) Friends (10 episodes)

Class True False True False

bed 29 0 152 0
bottle 604 153 51 14

refrigerator 23 0 56 0
sofa 76 0 306 13

dining table 202 11 87 12
vase 43 8 143 45
bowl 59 0 78 39

tv - - 51 0
cup - - 69 20
car 74 13 - -

handbag 61 0 - -
potted plant 20 0 - -

Count 1212 187 993 143

Accuracy 0.866 0.874

5.2. Ablation Study

In order to evaluate the importance of depth information in spatial distance estimation,
tests were conducted by selecting random frames of different angles from similar LSUs,
and distance was estimated with and without depth information. For example, as shown
Figure 12, distance and depth were measured for two different frames. Depth-based distance
using Equation (9) and normal Euclidean distance between the person object and the vase
object were estimated. On comparing the depth-based distance and Euclidean distance
between the two frames, it was seen that the error of the depth-based distance metric is
much less than the error of the Euclidean distance metric. The experiment was repeated for
10 different scenarios from 10 different episodes; depth-based distance error was estimated
to be at least six times smaller than the Euclidean distance error, on average.

Figure 12. An example of ablation experiment to study the effect of depth in spatial distance estimation.
Depth-based distance is found to be more comparable and less erroneous.

6. Conclusions and Future Work

We have proposed and presented a flexible pipeline for the annotation, structure
mining, and re-ID of objects in broadcast videos by exploring the semantic composition
of this pipeline. The high-level features extracted from low- and mid-level visual features
provided useful information about various aspects of the analysed videos. A video-mining
approach was used to infer high-level semantic concepts from the low-level features
extracted from the videos. The results of this video data mining were further improved
by exploiting temporal correlations within the video and constructing new features from
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them. Boundary prediction algorithms were proposed, which clustered and segmented
each video based on its structure. Furthermore, object re-ID was explored and adapted to
re-ID static objects in the videos. This helped us to create object timelines, which could
be interesting for a variety of applications. Our experiments show that our approach is
general enough for all broadcast videos, including different genres and languages. Upon
inspecting the failure cases, it was found that the selection of similarity threshold played
a vital role in the overall accuracy of the pipeline. Therefore, for future work, we would
look into adapting the similarity threshold automatically, which would further improve the
efficiency of the pipeline. Moreover, multi-modal features and effective methods to fuse
multi-modal information will be investigated. In addition, we would also further optimise
the spatial location graph to include dynamic/moving objects. Finally, the framework must
be evaluated on a large scale and the models should be improved accordingly.
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Abstract: Content curation social networks (CCSNs), such as Pinterest and Huaban, are interest
driven and content centric. On CCSNs, user interests are represented by a set of boards, and
a board is composed of various pins. A pin is an image with a description. All entities,
such as users, boards, and categories, can be represented as a set of pins. Therefore, it is
possible to implement entity representation and the corresponding recommendations on a uniform
representation space from pins. Furthermore, lots of pins are re-pinned from others and the
pin’s re-pin sequences are recorded on CCSNs. In this paper, a framework which can learn
the multimodal joint representation of pins, including text representation, image representation,
and multimodal fusion, is proposed. Image representations are extracted from a multilabel
convolutional neural network. The multiple labels of pins are automatically obtained by the
category distributions in the re-pin sequences, which benefits from the network architecture.
Text representations are obtained with the word2vec tool. Two modalities are fused with a multimodal
deep Boltzmann machine. On the basis of the pin representation, different recommendation tasks
are implemented, including recommending pins or boards to users, recommending thumbnails to
boards, and recommending categories to boards. Experimental results on a dataset from Huaban
demonstrate that the multimodal joint representation of pins contains the information of user interests.
Furthermore, the proposed multimodal joint representation outperformed unimodal representation
in different recommendation tasks. Experiments were also performed to validate the effectiveness of
the proposed recommendation methods.

Keywords: multimodal joint representation; content curation social networks; different recommend
tasks; content based recommend systems

1. Introduction

Content curation social networks (CCSNs) are booming social networks where users demonstrate,
collect, and organize their multimedia contents. Pinterest is a typical CCSN. Since its inception in
March 2010, Pinterest developed fast, broke through the 10 million user barrier [1] in January 2012,
and CCSNs have gone on to become a very popular social network worldwide. In China, there are
many Pinterest-like networks such as Huaban, Meilishuo, Mogu Street, and Duitang online from
2010–2012. The rapid growth of CCSNs has attracted much attention from multiple research fields,
such as network characteristic analysis [1,2], user behavior research [3–5], social influence analysis [6],
link analysis [7], word embedding [8], search engines [9], user modeling [10–12], and recommender
systems [13–25].
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As is well known, CCSNs are content-centric social networks [10]. Different from user-centric
social networks, users on CCSNs pay more attention to the contents that users collect, which are
not only communication carriers but also carriers of user interests. Taking one of the best known
CCSNs, Pinterest, as an example, a “pin” is an image with a brief text description supplied by the
users. A “board” is a collection of some similar style pins. In other words, the pins are curated into
“boards” by categories [19]. On CCSNs, the collection of a user is composed of several boards, and a
board is composed of pins. The relationships between users, boards, categories, and pins are shown
in Figure 1. A “user” represents the users on CCSNs. A “board” represents a container of pins and is
organized into different categories. A “category” is the category of the board, which is given by the
user. A “pin”, which is created by a user, is the basic unit, composed of an image and a corresponding
brief text description. Users on CCSNs can “follow” the users they are interested in like on Twitter or
Facebook. “Re-pin” is an action like a “repost” or a “retweet”, whereby users can re-save pins and
re-organize them with new descriptions and new categories to their own board. “Create” is similar to
“post” on Twitter or Weibo, allowing users to post their original contents on CCSNs. From the figure,
we can see that the pin is the basic unit in CCSNs.

Figure 1. Items on content curation social networks (CCSNs) and their relationships.

Besides the content collections, there are also abundant social behaviors on CCSNs. Users can
follow other users or other users’ boards, users can also re-pin other users’ pins and collect them
into their own board. Furthermore, the re-pin path is recorded in CCSNs. All the users who have
re-pinned a pin can be connected using a re-pin path. All users of the same re-pin path have collected
the same image, but they have organized them into different boards and different categories. As shown
in Figure 2.

On content-centric CCSNs, most user activities are related to the pins. Liu et al. [25] found that
only 30% of pins are re-pinned from their followers by statistics on Huaban. Furthermore, users do not
follow the users from whose boards they re-pin the pins [4]. A non-trivial number of pins are collected
from non-followees [5], and those from native followees are more than those from cross-domain
followees [3]. These observations suggest that social relationships are not the main motivation of
content discovery on CCSNs. On the contrary, user interests represented by pins play an important
role in user behaviors on CCSNs. It is possible that content-based recommender algorithms will be
more effective than social behavior-based algorithms such as collaborative filtering. Inspired by this,
we managed to implement recommendations for different tasks based on identical representations
of pins. The problem can be broken down into two questions: how to represent a given pin effectively;
and how to implement the different tasks with the obtained representation.
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Figure 2. Illustration of a re-pin tree composed of some re-pin paths. Each star represents a pin and the
Ci next to it is the category given by the corresponding user. Note that all pins in the same re-pin tree
have an identical image.

As shown in Figure 3, a pin is an image with its text description, hence it is obvious that
both modalities should be utilized for complete representations. In order to fully utilize two
modalities, we propose a framework that can learn the multimodal joint representation of pins.
Image representations and text representations are obtained separately by deep models and are then
fused to form multimodal joint representations. An intermediate layer of a convolutional neural
network (CNN) is used to extract image representations. In order to establish the relation between
image representations and user interests, some chosen images are annotated with their category
distributions, which are the statistics of selections of users, to fine-tune the CNN. Text representations
are means of word vectors in a word2vec model trained on public text corpora. Then, a multimodal
deep Boltzmann machine (DBM) is trained with two modalities as inputs and the activation
probabilities of the top layer are extracted as the final representation of pins.

(a) (b)

Figure 3. Examples of pins on CCSNs: (a) Pinterest; (b) Huaban.
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Recommendation tasks include recommending pins to users, recommending thumbnails to
boards, recommending categories to boards, and recommending boards to users. On the basis of the
representation of pins, pin recommendation becomes a problem of similarity measurement in the
representation space, which can be solved by ranking the similarities between the candidates and
the target pin. A board thumbnail consists of representative pins that can be selected by clustering
pins in the board. The board category, which is the coarse interest selected by its owner, is considered
to be the accumulation of the category distribution of its pins, and the category distribution can be
obtained with a trained multidimensional logistic regression (LR). Boards and users are treated as pin
collections, modeled as the Fisher vector (FV) of all their pin representations, and recommended to
target users, similar to the pin recommendation method.

This paper makes the following contributions:

• On the basis of the characteristics of CCSNs, an easy-to-accomplish annotation method is
proposed to automatically label the images by the category distributions on the re-pin tree of the
corresponding pins. On the basis of the image and the corresponding labels, a multilabel CNN
Network was fine-tuned, which significantly enhances the capability of image representation;

• We designed a framework which combines deep features of images and texts into a joint
representation to maintain both consistent information and specific characteristic of different
modalities. On this basis, a uniform recommendation scheme was designed for different tasks
on CCSNs;

• The experimental results demonstrate that the proposed multimodal representation is more
effective than representations learned from unimodal information. Furthermore, the proposed
method performs better than existing multimodal representation learning methods on multiple
recommendation tasks.

2. Related Work

With the rise of CCSNs, several studies have been performed, of which search engine,
user modeling, and recommender systems are the most relevant. Most prior work only studied
monomodal data. Yang et al. [16] recommended boards re-ranked with image representations based
on boards with the text representations model. Liu et al. [22] recommended pins with two unimodal
representations separately. Cinar et al. [11] predicted categories of pins with two kinds of unimodal
representations and fused the two modality results using decision fusion. All the models are late
fusion models that do not concern multimodal joint representations.

Multimodal joint representation includes unimodal representation models and multimodal fusion
schemes. For image representation, CNNs have achieved remarkable performance in the field of
computer vision. Creating a large labelled dataset is the key to train CNNs. Cinar et al. [11] and
You et al. [12] directly used a pin’s category as its label. However, this label may not be absolutely
correct since the same image may have different categories selected by different users. Geng et al. [10]
trained a multitask CNN with ontological concepts, but the ontology was constructed in the fashion
domain and was difficult to extend to all other domains. Zhai et al. [21] extracted more detailed labels
on Pinterest by taking top text search queries, but the quality and consumption of this annotation
highly depends on the search engine. Inspired by the fact that the predefined categories on CCSNs
are not independent objects but related notions, labels formed by statistics category distributions are
used and a CNN is fine-tuned as a multilabel regressor. With regard to text representation, one-hot
representations [13,16] and distributed representations, such as the word2vec tool [11], have been used.
From the practical point of view, the word2vec tool [26], which can capture syntactic and semantic
relationships between words in the corpus, is more scalable. In addition, mean vectors [27] of the
word2vec tool can obtain usable text representation without further learning.

Several multimodal fusion studies are being performed on classification and retrieval. Except for
directly concatenating modalities, most existing schemes are designed based on models such as
CNNs [28] and recurrent neural networks [8]. These models mainly learn the consistency between
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multiple modalities and cannot deal with missing input modalities well. On the generative side,
latent Dirichlet allocations (LDAs) [29], restricted Bolzmann machines (RBMs) [30], deep autoencoders
(DAEs) [31], and deep Boltzmann machines (DBMs) [32] have been proven to be feasible methods
for learning the consistency and complementarity between modalities and can easily deal with some
missing modalities. However, limited studies have focused on fusing features obtained from these deep
learning models. Zhang et al. [33] used a DAE for fusing the textual features extracted by training the
Word2Vec tool [26] and visual features generated by the 6-th layer of AlexNet [34]. However, there are
no existing studies that have used information from all modalities from CCSNs for recommendation
tasks. In this paper, we trained a multimodal DBM to handle a situation in which the data from CCSNs
are unlabeled and some modality inputs are missing, and we used features obtained by deep learning
as the input to make our multimodal representation more accurate and compact.

Compared to pin and board category recommendation, few studies have been performed on
board and user recommendations. Kamath et al. and Wu et al. [13,23] model boards and users,
respectively, with text data and some collaborative filtering methods [15,20,25] to recommend users
with user behaviors, but they do not take images, which are the essential content on CCSNs,
into account. Yang et al. [17] represent boards by sparse coding the descriptors of images, but similarly
to Yang et al. [16] as mentioned above, their methods require cross-domain information. Moreover,
the information loss of the sparse code based on a cluster dictionary is more than the FV based on a
Gaussian mixed model (GMM). Furthermore, no studies on board thumbnails have been published.

Existing research only focuses on one recommendation task, while the method in this paper uses
identical pin representation to accomplish different recommendations such that the problems are
simplified and resource saving.

3. Multimodal Joint Representation of Pins

A pin, that is, an image with text descriptions, is the basic item and the carrier of user interests on
CCSNs. The purpose of this section is to learn the representation of pins from both modalities. As the
foundation of further applications, the representation should contain the information of user interests.

The proposed framework of learning multimodal joint representation of pins is shown in Figure 4.
The proposed process can be divided into three parts: image representation learning, text representation
learning, and the multimodal fusion. For an input pin, the image representation of the pin is extracted
by our modified CNN and the text representation is generated by the pre-trained Word2Vec model.
Finally, we can obtain the joint representation by fusing both the image and text representations with a
modified multimodal DBM model. The whole process comprises three parts: the image representation,
the text representation, and the multimodal fusion. For given pins, their images are loaded by a CNN
that is fine-tuned on an image dataset that is annotated automatically, and one of the intermediate
layers of the CNN is extracted as image representations. Meanwhile, text representations are computed
by applying mean pooling on word vectors derived from the word2vec tool, which are trained on
some text corpora. Then, a multimodal DBM is trained on both image and text representations.
Finally, the activation probabilities of the last hidden layer of the multimodal DBM are inferred as the
expected multimodal joint representation of pins.
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Figure 4. Framework of learning multimodal joint representation of pins (CNN: convolutional
neural network).

3.1. Image Representation

Image representation aims to learn image features which not only maintain intrinsic characteristics,
but also reflect user interests on CCSNs. CNNs have become the dominant approach in computer
vision. Top layers of CNNs can extract high-level image features interpreted as color, material, scene,
texture, object, and so on by various means. Intermediate layers of CNNs, especially fully connected
(FC) layers, are often used for image representation and for further applications. As supervised learning
models, CNNs can capture the relationships between user interests and images if user interests are
trained as labels during the training process.

As a typical deep learning framework, a CNN requires a training set with large number of images
with corresponding labels. Social networks are good sources for collecting the images, but noisy labels
are always a primary problem. On CCSNs, all of the pins are collected by users and the categories
are assigned by users, therefore the categories can be seen as labels with a high level of confidence.
Users can create boards, and then create or collect pins into the boards to exhibit their interests. When a
user creates a board, he is asked to choose one of the predefined categories on CCSNs, and the chosen
category is the category of all the pins on the board. This is to say, every pin has a user-selected category.
Since the category can reflect the theme of the board and the pin, it can describe coarse-grained user
interests and can be trained as the label of an image.

On CCSNs, different users may select different categories for the same image. For example, the pin
in Figure 3a is re-pinned by 50 users. Because the image is a poster of the video game NBA 2K12,
26 users categorized the pin into category ‘sports’, 16 users categorized it into category ‘entertainments’,
and the other eight users categorized it into ‘design’. On the basis of the statistical distribution of
predefined categories given by users, the category distribution of pins can be computed as

InterestI =

⎛⎜⎜⎜⎝pCi =
fCi

NC
∑

i=1
fCi

⎞⎟⎟⎟⎠ ∈ [0, 1]NC , (1)

where fCi denotes the i-th category (Ci) frequency, and NC is the total number of predefined categories.
As a result of the fact that the minority opinion is sometimes hard to understand and spammers exist,
in practice, before the computation of category distribution, we set

fCi = 0 if fCi <

MC
∑

i=1
fCi

MC
, (2)
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where MC is the total number of chosen categories that appear in the re-pin tree of I, to remove
spam and make the sequence represent the majority opinion. Using the proposed annotation
method, we were able to acquire labels of collected images without any additional human labor.
Furthermore, compared to expensive human-labeled data, we believe the category distribution
contributed by the collective user intelligence from re-pin trees is more suitable as the label of
a pin. In contrast to existing image representation learning methods, which rely on high-quality
label supervision, our category distribution of pins is acquired by mining the rich re-pin relationships
from inexhaustible CCSN contents.

We then fine-tuned a pretrained CNN model to accelerate the training process. A deeper and
wider architecture commonly performs better, while it is usually more time and space consuming.
Thus, AlexNet [34] was chosen as a basis. The core visual deep model could be replaced by any of
the other state-of-the-art models, such as GoogLeNet and ResNet. AlexNet, with weights pretrained
by ImageNet [35], is commonly used to classify independent objects, though we needed a multilabel
regressor model. Accordingly, the loss layer from softmax was changed from a logarithmic loss layer
to a sigmoid with a cross entropy loss layer. We define loss function as

E = −
NC

∑
i=1

[
pCi ln p̂Ci +

(
1 − pCi

)
ln
(
1 − p̂Ci

)]
, (3)

where pCi denotes the percentage in Equation (1), and p̂Ci is the corresponding sigmoid output.
After fine-tuning the CNN, its weights are stored for feature extraction. Then, the image representations
are the activation values of the FC layer.

3.2. Text Representation

The text description is an important personalized supplement to the image representation.
Similar to the image representation, we generate the text representation for the purpose of discovering
the relationships between the descriptions and categories of the pins. Contrary to the case of images,
descriptions of the same pin may be different. Therefore, it is not easy to build a large high-quality
labelled dataset on CCSNs.

Since words used on CCSNs have no obvious difference with those in common situations,
we trained a word2vec [26] model on some public corpora for encoding words. The efficient shallow
model was designed for studying word representations. The learned word vectors capture a large
amount of syntactic word relationships and meaningful semantic relationships. The training dictionary
should include words from the category words and the text description to represent the relationships
between the text representation and the categories. In addition, word vectors, which encode words
into compact vector spaces, are more scalable than one-hot representations, because the vocabulary
of natural language is extremely wide. Both the training speed and the quality of the vectors could
be improved by several extensions including the hierarchical softmax, negative sampling, noise
contrastive estimation, and subsampling of frequent words [36]. For details of the Word2Vec model,
please refer to the original paper.

Because of the diverse lengths of the texts, it is necessary to generate vectors with a constant
dimension from a set of word vectors to represent a complete text. Some pooling methods,
such as mean pooling [27], have been proven feasible in solving this problem. For a text
T =

{
Word1, Word2 · · · , WordMT

}
, we compute the mean vector in Equation 4 as its text representation,

VT =
1

MT

MT

∑
i=1

KeyedVectorWordi
, (4)

where KeyedVectorWordi
denotes the i-th word (Wordi) vector, and MT is the text length.
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3.3. Multimodal Fusion

Different modalities can provide both consistent and complementary information, while their
distinct statistical properties make it difficult to combine them into a joint representation that maintains
their specific characteristics using a shallow architecture. A multimodal DBM [32] can effectively
model a joint distribution over modalities, which adds a shared hidden layer on top of DBMs to
combine them.

As illustrated in Figure 5, a multimodal DBM is an undirected graphical model with fully bipartite
connections between adjacent layers. Each pathway of it is a DBM, which is structured by stacking
two restricted Bolzmann machines (RBMs) in a hierarchical manner. All layers, except the two bottom
layers, use standard binary units. An RBM with hidden units H =

(
hj
) ∈ {0, 1}F and visible units

V = (vi) ∈ {0, 1}D defines the energy function as follows:

E (V, H; θ) = −
D

∑
i=1

F

∑
j=1

viwijhj −
D

∑
i=1

aivi −
F

∑
j=1

bjhj, (5)

where θ =
{(

wij
) ∈ R

D×F, (ai) ∈ R
D,
(
bj
) ∈ R

F} are model parameters comprising the symmetric
interaction term wij between the hidden unit and the visible unit, the visible unit bias term
ai, and the hidden unit bias term bj. RBMs can be considered autoencoders, and one of their
applications is dimensionality reduction by reducing F. Both bottom layers of our model change to
Gaussian–Bernoulli RBMs which use Gaussian distribution to model real-valued inputs. The energy
function of a Gaussian–Bernoulli RBM with visible variables V = (vi) ∈ R

D and hidden variables
H =

(
hj
) ∈ {0, 1}F is defined as

E (V, H; θ) =
D

∑
i=1

(vi − ai)
2

2σi
2 −

D

∑
i=1

F

∑
j=1

vi
σi

wijhj −
F

∑
j=1

bjhj, (6)

where σi denotes the standard deviation of the i-th visible unit and θ ={(
wij

) ∈ R
D×F, (ai) ∈ R

D,
(
bj
) ∈ R

F, (σi) ∈ R
D}. During the unsupervised pretraining process of the

multimodal DBM, modalities can be thought of as labels for each other. Each of the multimodal DBM
layers has a small contribution to eliminating modality-specific correlations. Therefore, in contrast to
the modality-full input layers, the top layer can learn representations that are relatively modality free.
The joint representation of the image and text inputs can be represented as follows:

P (VI , VT ; θ) = ∑
HI2,HT2,H3

P (HI2, HT2, H3)

(
∑
HI1

P (VI , HI1, HI2)

)(
∑
HT1

P (VT , HT1, HT2)

)
, (7)

where θ denotes all model parameters. The reader may refer to the original paper for more details of
multimodal DBMs.

Figure 5. Architecture of a multimodal deep Boltzmann machine (DBM) for fusing image and
text representations.
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An advantage of multimodal DBMs is that they can deal with the absence of some modalities.
After training our multimodal DBM, even though some pins may have no descriptions, the activation
probabilities of H3, which are used as our final multimodal joint representation of pins, could be
inferred from different conditional distributions with the standard Gibbs sampler. In addition,
the multimodal DBMs are used to generate the missing text representation in a similar manner.
Moreover, multimodal DBMs can be trained supervised by connecting additional label layers on top
of them.

4. Implementation of Recommendations for Different Tasks

Once the representations of pins were obtained, we then aimed to apply them to the recommender
system. According to the practical applications on CCSNs, there are four recommendation tasks:
recommending pins or boards to users, recommending thumbnails to boards, and recommending
board categories to boards. All the recommendation methods are content-based.

4.1. Pin Recommendation

Pin recommendation is a crucial function for content discovery on CCSNs. It can be inferred that
pins with similar interests are close in the representation vector space. Considering that the different
boards a user collects have different characteristics, accordingly, given a target user, the similarity
between pins in a board and the candidate pins is computed in the vector space, and the pins are
ranked by similarities in descending order. For different boards, different pins are recommended.
Most similarity metrics can be used; cosine similarities were computed in our work. Pins are ranked
according to the similarity score and the most similar pins are selected as candidates.

4.2. Board Thumbnail Recommendation

Boards are displayed as thumbnails on all public and personal home pages. A thumbnail includes
a cover and two/three small images or just six small images. A well-designed thumbnail can attract
other users to access the board. Both Pinterest and Huaban allow users to select a cover from pins
of the board, but they do not recommend candidates to users. As illustrated in Figure 6a, if a cover
is selected, the small images will automatically be selected from the two latest pins. If the user has
not selected an image for the cover, the thumbnail will be composed of the six latest pins. It is
difficult for a user to select a suitable image to represent the board without any recommendation.
Furthermore, the thumbnail consists of the latest pins possible that could not represent the boards.
Boards like the bottom two have such wide interests that images in the thumbnail cannot fully express
them. Similarly, thumbnails on Huaban, one of which consists of the cover and the three latest pins,
have same drawbacks, as respectively shown in Figure 6b,c.

In view of the above, we defined a new task for recommending board thumbnails. The mean
vector of pins in the board are computed, which is the center of the boards. The pins nearest to the
center of the board are selected as the cover candidates. Then, we implement clustering, and the closest
images with respect to the cluster centers are selected as substitutions for the latest pins.
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(a)

Follow

(b)

Follow

(c)

Figure 6. Examples of board thumbnail examples on CCSNs: (a) includes examples from Pinterest;
(b,c) are from Huaban.

4.3. Board Category Recommendation

On CCSNs, every board should be assigned a category, though some boards with no category
were created before the constraint of the forced-choice approach. However, it is illogical because even
if it is difficult to choose a board category from different user interests, users can select the category
“other”. Board category recommendation is convenient for category choice, not only in terms of first
selection but also for further editing.

As mentioned in Section 3.1, interests associated with an image can be spread over the categories
which occur in the re-pin tree. The only way to estimate the user preference on one image is to analyze
its description and category. Because individual understanding of certain notions differs, even if
manual analyzing cannot determine which single category the user intends to describe, it is common
sense in this condition. We consider that personalization on CCSNs is mainly formed by the way
the user organizes his or her boards. Hence, similarly to how user interests are reflected by pins,
user interests reflected by boards should be more than one category. With the increasing number
of pins, the category preference of the board in the majority opinion is reinforced. A board interest
distribution B can be calculated by the average of all its pin interest distributions as

InterestB =
1

NB

NB

∑
i

InterestIi =

(
1

NB

NB

∑
i

piCj

)
∈ [0, 1]NC , (8)

where NB denotes the pin count of B, InterestIi =
(

piCj

)
∈ [0, 1]N is the interest distribution of the i-th

pin Ii. In order to infer InterestIi , we trained a multidimensional LR between the representation
of pins and the labels obtained in Equation (1). The generated InterestB should be normalized
immediately. The recommended category is the category which is the highest number in terms
of the board interest distribution.

This method can also be used for computing the interest distribution of a user. As an important
part of the user profile, the interest distribution of a user can be intuitively represented by normalizing a
frequency distribution of categories of boards or pins. However, this distribution has many limitations.
First, it cannot deal with the absence of some categories, however, this does not mean that the user is
not interested in those categories. Secondly, the ratio between categories may not be accurate, not only
because categories are related, but also because images related to certain fine-grained interests are
rarer than others and the user cannot collect enough pins related to these interests. Thirdly, it cannot
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be used to represent the interests of a board, as the categories of pins in it are the same. Our interest
distribution of a target user U is computed as

InterestU =
1

NU

NU

∑
i

InterestXi =

(
1

NU

NU

∑
i

piCj

)
∈ [0, 1]NC , (9)

where NU denotes the pin count of U. Because InterestIi actually spreads over all the categories,
InterestU does not suffer from the absence of some categories. In addition, to some extent, the ratio
error, which is caused by the imbalance between pin counts of boards, is reduced, since the strong
categories have faster accumulation processes than the weak categories.

4.4. Board and User Recommendation

As the pins are assembled, the theme of a board emerges. Users can easily collect pins with
well-organized boards. For this reason, board recommendation is another important function for
content discovery on CCSNs. In this section, we discuss how to model boards and users using the
acquired multimodal joint representations of pins.

There is an analogy between user contents on CCSNs and articles, as user contents consist
of boards which consist of pins, while articles are composed of paragraphs or sentences that are
composed of words. One clear difference between them is that the order of pins or boards may
not be that important. Therefore, the loss of order information is not an issue when modeling.
Inspired by this, we consider that applying pooling methods to transform a different number of pins
into a constant dimension vector, as we mentioned in Section 3.2, is reasonable for board and user
modeling. Among pooling methods, the Fisher vector (FV) was chosen as our solution for board and
user modeling.

The FV [37] was designed for encoding patch descriptors of an image into a high-dimensional
vector. Since boards and users are image collections, a pin can be treated as a descriptor of them.
A common method to encode a set of descriptors is to assign them into a visual dictionary, which is
composed of prototypical elements such as cluster centers, while the FV approximates the distribution
of descriptors with a GMM, whose Gaussian distributions can be treated as a universal probabilistic
visual dictionary. As for representation of pins VXi =

(
vij
) ∈ R

J , the GMM is defined as

GMM (VX) =
K

∑
k=1

ωknormk (VX), (10)

where normk denotes the k-th multivariate normal distribution, ωk is the weight of the k-th mixture

component and is subject to the following constraints: ∀k : ωk ≥ 0 and
K
∑

k=1
ωk = 1; and K is the number

of mixture components. The parameters of the GMM also include (μkj) ∈ R
J and Σk, which are

the mean vector and covariance matrix of the k-th mixture component, respectively. The FV first
computes the partial derivatives with respect to the parameters of the logarithm of the GMM, and then
it normalizes them with the Fisher information matrix. The simplified normalized partial derivatives
of a board B are given by
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gωk =
1

NB
√

ωk

NB

∑
i=1

(γik − ωk), (11)

gμk =

(
1

NB
√

ωk

NB

∑
i=1

γik

(
vij − μkj

σkj

))
∈ R

J , (12)

gσk =
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NB

√
2ωk

NB

∑
i=1

γik
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(

vij − μkj

)2

σ2
kj

− 1

⎤⎥⎦
⎞⎟⎠ ∈ R

J , (13)

where σkj denotes the standard deviation of the j-th dimension of the k-th mixture component, and γik
is the soft assignment of VPi to the k-th mixture component, which is written as

γik =
ωknormk

(
VXi

)
K
∑

k=1
ωknormk

(
VXi

) =
ωknormk

(
VXi

)
GMM

(
VXi

) , (14)

and is also known as the posterior probability or responsibility. All partial derivatives are concatenated
to compose the FV. Since one of ωk is redundant because of the constraints, the dimension of the FV is
(2J + 1)K − 1. Power normalization and L2-normalization [38] are applied to improve the quality of
the FV as follows:

gi ← sgn (gi) |gi|ρ, (15)

gi ← gi√
(2J+1)K−1

∑
i

gi
2

, (16)

where ρ ∈ [0, 1] is the normalization parameter. The FV of a user can be computed in the same manner.
Please refer to the original paper for more details regarding the FV.

In essence, the FV is the gradient of the log-likelihood of a board. Notice that the computations of
Equations (11)–(13) can be simplified with

S0
k =

NB

∑
i

γik, (17)

S1
k =

(
NB

∑
i

γikvij

)
∈ R

J , (18)

S2
k =

(
NB

∑
i

γikv2
ij

)
∈ R

J , (19)

where S0
k , S1

k , and S2
k are the zeroth order, first order, and second order statistics of the board,

respectively. Accordingly, the FV preserves more information than other pooling methods, such as the
vector of aggregate locally descriptor and sparse coding, with the same dictionary capacity. It actually
measures not only which words in the visual dictionary the pins belong to, but also the differences
between the mean vectors of the GMM and the board or user. On the other hand, the FV uses a relatively
small dictionary to generate the same dimension vector as the others, such that the computational
complexity is lower. In addition, the FV is interpretable. If we consider the mean vectors as the center
of interests, improving K will make the FV more fine-grained, while the curse of dimensionality is
a significant limitation of the FV. For the sake of large-scale applications, the FV could be lossless
compressed by sparsity encoding with product quantization [39].

After modeling, boards can be recommended according to the similarity metrics between them and
the target board. Because users can be considered image collections with wider interests than boards,
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user recommendation done in this same manner is also helpful for content discovery, although users
on CCSNs are not very interested in following.

5. Experiments and Results

In this section, the datasets and implementation details are firstly introduced. Then, the performance
of our representation of pins are evaluated in an interest analysis. Thereafter, the results of
experiments on real-world datasets are presented to verify the feasibility and effectiveness of our
recommendation methods.

5.1. Datasets and Implementation Details

We crawled data used in experiments from Huaban, a typical Chinese CCSN. Huaban provides
certain applications similar to those in Pinterest, while the main differences between the two
networks are as follows: There are “like” pins or board operations on Huaban but not on Pinterest;
Huaban records both users and the paths in a re-pin tree, while Pinterest only records all the users and
the initially created user.

We first crawled the pins of 5957 users without images, and then sampled 88 users according
to board categories and pin counts. Some extremely active and cold-start users had been confirmed
among them to make our dataset diverse and to take the influence of pin counts into account. We then
crawled all images of the sampled users and all their “like” pins. In addition, we crawled the top
1000 pins recommended by the system of each category to fine-tune AlexNet and their re-pin paths for
automatic annotation. The dataset for recommendation included 151,631 pins, which were categorized
into 33 categories from 1694 boards, and the number of unique images for both fine-tuning and
recommendation was 167,747. All pins were used as supplement elements for obtaining distributions
of the recommended pin categories. The average re-pin path length was 47.57.

After a little manual label balancing, labelled images were split into 80% for training and validating
and the remaining 20% for testing. Because the input dimension of AlexNet should be constant, every
image was firstly rescaled so that the shorter side was 256 pixels, and then the central 256 × 256 patch
of the processed image was cropped out. The loss layer of our AlexNet was replaced. As a comparison,
the most frequent category was used as the label to fine-tune a multiclass AlexNet. The dimensions of
the FC8 layers of both Alexnets were changed to 33. Image representations were generated from the
FC7 layer of the multilabel Alexnet.

We trained our Word2Vec model on Wikipedia dumps (https://dumps.wikimedia.org/)
and Sougou Lab dataset (http://www.sogou.com/labs/resource/list_news.php) with the CBOW
(Continuous Bag of Words) model and negative sampling. In addition, the vector dimension was 300.
The words with a frequency lower than five were ignored. Word preprocessing, such as removing
punctuation, traditional and simplified Chinese conversion, word tokenization, machine translation,
and removing stop words, was applied on pin descriptions.

All image and text representations were exploited for the multimodal DBM training.
The dimensions of HT1, HT2 and HV1 were the same as their corresponding visible inputs,
and dimensions of HV2 and H3 were set to 2048 to compress the vectors, as the FV would increase
the dimension. Each layer was pretrained using a contrastive divergence strategy to accelerate the
training of the DBM. Then, missing text representations were extracted using Gibbs sampler and the
multimodal joint representation of pins was inferred.

K in Equation (10) was set to 1 such that the dimension of the FV of a board was twice that of the
pin vector. α in Equation (15) was set to 0.5.

To evaluate the effectiveness of the proposed model, we compared it with the following
multimodal deep architectures: the Multimodal Autoencoder (MAE), which was proposed in [31]
and connects two deep autoencoders of multimodalities by a shared hidden layer; and ICMAE,
which imposes Independent Component Analysis (ICA) constraints in the MAE architecture to
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de-correlate the relationships among the variables. All the baseline methods had the same number of
layers, and we used the same features as inputs to ensure that the comparisons were fair.

5.2. Analysis of Interests Represented by Pins

Analysis of interests based on pins is the prerequisite of analysis of interests based on boards and
users. As mentioned above, it is hard to measure the interest distribution of one pin. Hence, we treated
the interest distribution of its image as an approximation, even though some categories would be
improved by its text description.

Multidimensional LRs were trained on the dataset to fine-tune for all unimodal representations
and multimodal representations. Table 1 illustrates the results, together with those of the multiclass
classification with softmax. The mean nonzero error was the average error between all nonzero
categories and corresponding predictions. The accuracy of the dominant category checks the
consistency of the most frequent category between labels and predictions. The comparison of multiclass
and multilabel CNNs shows that our method with multilabel annotation improves the accuracy
significantly. This is not only because the interference of related categories could be eliminated by
category distributions, but also because more information from the users’ collective intelligence was
provided for learning. Although the performance of text representations and image representations
was not comparable, the performance of the multimodal joint model was better than that of image
representations that are complementary between two modalities.

Table 1. Comparison of Pin Category Prediction(MAE: Multimodal Autoencoder).

Model Dimension Dominant Category Accuracy Mean Nonzero Error Mean Error

Multiclass 4096 45.85% — —
Multilabel 4096 82.71% 0.1320 0.0141
Word2Vec 300 42.88% 0.3249 0.0415

MAE 1778 83.02% 0.1307 0.0136
ICMAE 1898 83.96% 0.1223 0.0128

Ours 2048 84.13% 0.1181 0.0119

From the results, we can see that our method had the best performance because all unimodal and
multimodal representations contained information about user interests and our joint representation
contains richer information than other methods. Our method could also analyze interests of images on
other networks. The comparison of MAE/ICMAE shows that the joint representation of pins learned
by our method has a higher correlation with their categories.

5.3. Pin Recommendation

We invited 10 users to engage in the evaluation of pin recommendation. Each user was given
200 randomly selected target images and corresponding recommendation results of different methods.
They were required to decide whether to pin some images of three candidates, but not if they
were the owner of the target pin. Table 2 shows the precision of recommendations. A simple
content-based filtering, which randomly selects an image with the same category as the target
image, was implemented as a reference. All other methods achieved higher accuracies than the
category-based method, simply because they utilized more information to reduce the affect of related
categories. Object-based and interest-based methods used the probability layer from the original
AlexNet and multilabel AlexNet, respectively. The results of those two methods were comparable,
while interest distributions were more compact than object distributions. This indicates that even
coarse-grained interests of an image were a little more important than what this image was on CCSNs.
The other methods computed cosine similarity between representations. We note that using only
dominant categories as the label to fine-tune AlexNet led to a decline, which may have been caused
by confusion of similar images with different categories. Notice that the performance of multimodal
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features was worse than that of image features. We believe that the descriptions could not completely
describe all the interests and characteristics that images have. Our text representations were clearly
not as effective as our image representations, therefore, image representations were more suitable for
image recommendation.

Table 2. Comparison of image recommendation.

Model Dimension Top-1 Top-2 Top-3

Category Based 1 8.75% 9.30% 9.67%

Object Based 1000 46.55% 40.80% 37.00%
Interest Based 33 47.20% 39.95% 35.67%

AlexNet 4096 81.30% 75.33% 72.57%
Fine-tuned AlexNet 4096 78.55% 72.65% 69.60%

Multilabel 4096 88.50% 86.40% 85.67%
Text 300 52.00% 49.45% 47.63%
MAE 1778 80.21% 77.36% 73.58%

ICMAE 1898 83.17% 82.68% 79.95%
Ours 2048 85.90% 85.08% 82.27%

Figure 7 illustrates 10 images and their recommendation results. Obviously, intrinsic
characteristics such as background, scene, pattern, texture, color, object, material, and so forth are
maintained in the image representation and usually had an effect on the recommendation, especially
for images in the left panel. Images in the right panel show that some abstract notions, for example,
style and user interest, influenced the results. All these high-level image features learned from CNNs
could significantly improve the accuracy and diversity of recommendations.

Figure 7. Examples of recommendation results based on image representation. Images with red borders
are the target images.

From the recommendation results, we can clearly see that our model recommended similar styles
and types of images. This means that our model could achieve a good recommendation effect in
terms of content-based recommendations. This further illustrates that the features extracted by our
multimodal joint representation model were effective. The recommendation data were different from
the training data, which proves that our model had a good generalization ability.

5.4. Board Thumbnail Recommendation

In this experiment, we recommended the board thumbnail according to the interest distributions
of pins and the representation of pins. Because Huaban does not yet offer the function of editing
thumbnails, we manually re-pinned all pins from the original board and changed the orders of the
pins to display our results.
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Figure 8a,b are the recommendation results in Figure 6b regarding narrow interests. As shown
in Figure 6b, pins from the board are album covers of a music group. Four pins in the original
thumbnail were all from the same album. Strong categories for this board were “file music book”
(20.87%), “design” (16.24%), and “architecture” (11.50%), while those for the cover in Figure 8a are
“film music books” (20.44%), “design” (14.15%), and “architecture” (10.81%). Three clusters, whose
centers mainly belonged to “photography” (15.72%), “film music books” (80.93%), and “architecture”
(47.19%), contained 30, 7, and 4 pins, respectively. This indicates that the recommendation results
are consistent with the target board thumbnail. On the other hand, those four components of the
thumbnail were from different albums. Similar to the result generated with interest distributions,
the result generated with image featured comprise pins from different albums, partly owing to the
fact that image representations were also related to interests. Our results also indicated that even
narrow interests could be divided. It is obvious that recommending thumbnails for a board about
wide interests was easier, the recommendations for Figure 6c are shown in Figure 8c,d. We believe that
our recommended thumbnails, which depicted more interests, were more attractive.

Follow

(a)

Follow

(b)

Follow

(c)

Follow

(d)

Figure 8. Results of the board thumbnail recommendation: (a,c) are generated with interest
distributions of pins; (b,d) are generated with representation of pins.

5.5. Board Category Recommendation

The ground truth of board category recommendation is the crawled board category.
The performance metric of the experiment was mean reciprocal rank (MRR). We only give the top MRR
because there was only one accurate selection of the board category recommendation. The results are
shown in Table 3.

From the table, we can see that our model had the highest MRR. Because the board category
recommendation results were based on different features but the same classifier, the best result meant
the best features. Our best recommendation results illustrate that multimodal representations with the
benefit of personalized text representations had a better performance than other baselines.

Table 3. Comparison of board category recommendation (MRR: mean reciprocal rank).

Model Top-1 MRR MRR

Random 3.03% 12.39%

Text + Cosine Similarity 25.65% 38.78%

Image + Multidimensional LR 60.10% 73.43%
Text + Multidimensional LR 38.00% 54.30%
MAE + Multidimensional LR 60.89% 73.86%

ICMAE + Multidimensional LR 61.76% 74.62%
Ours + MultidimensionalLR 63.41% 76.13%
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5.6. Board Recommendation

Every board was divided into two parts based on the order of pins. One part must be similar to
the other part. The user of each half part should be interested in another and naturally further like or
follows or re-pin from it. Depending on this fact, half of the board was treated as the only accurate
recommendation result, and we retrieved the index in the similarity sequence. Because there were five
pins in the top row exhibited on Huaban with common resolution screens, the top five MRR was also
demonstrated. Table 4 shows the experimental results.

Table 4. Comparison of board recommendation.

Model Dimension Top-5 MRR MRR

Category Based 1 2.12% 3.85%

Image + LR 33 16.08% 18.61%
Text + LR 33 15.93% 17.95%
MAE + LR 33 16.85% 19.39%

ICMAE + LR 33 17.62% 20.27%
Ours + LR 33 17.58% 20.13%

Image + Mean Vector 4096 33.66% 35.97%
Text + Mean Vector 300 25.93% 27.49%
MAE + Mean Vector 1778 34.31% 36.48%

ICMAE + Mean Vector 1898 35.02% 37.23%
Ours + Mean Vector 2048 35.76% 37.88%

Image + FV 8192 35.19% 37.50%
Text + FV 600 24.39% 25.64%
MAE + FV 3556 35.81% 37.97%

ICMAE + FV 3796 37.76% 39.84%
Ours + FV 4096 38.97% 41.22%

From the table we can see two things. Firstly, the same feature encoded with FV performed the best.
For example, the method with pin vectors, except for text vectors encoded with the FV, performed better
than that with the corresponding pin vectors combined with the mean vector. The better performance
is due to the utilization of higher order statistics. Secondly, our representation demonstrated the best
performance when different features were encoded with the same method. The results also illustrate
that multimodal joint representations have a better board modeling performance than the unimodal
representations with lower dimensions.

6. Conclusions

We propose a framework for multimodal joint representation learning of pins on CCSNs.
The obtained representation contains the information of user interests, which is useful for recommender
systems and user modeling. We modeled boards and users with the FV and propose a series of
recommendation methods for different recommendation tasks, including a novel board thumbnail
recommendation defined by us and based on our pin recommendation. The experimental results
show that the obtained representations perform better in terms of interpreting pin-level interests
than unimodal representations with lower dimensions, and our recommendation methods based
on our multimodal representation are effective in terms of recommending pins, board thumbnails,
board categories, and boards.
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Abstract: This paper puts forward a 1-D convolutional neural network (CNN) that exploits a novel
analysis of the correlation between the two leads of the noisy electrocardiogram (ECG) to classify
heartbeats. The proposed method is one-dimensional, enabling complex structures while maintaining
a reasonable computational complexity. It is based on the combination of elementary handcrafted
time domain features, frequency domain features through spectrograms and the use of autoregressive
modeling. On the MIT-BIH database, a 95.52% overall accuracy is obtained by classifying 15 types,
whereas a 95.70% overall accuracy is reached when classifying 7 types from the INCART database.

Keywords: heartbeat classification; convolutional neural network (CNN); canonical correlation
analysis (CCA)

1. Introduction and Related Work

Cardiovascular diseases are the first cause of death in the world, with an estimated
17.9 million deaths each year. Among them, heart arrhythmia qualifies as an abnormal
heart rhythm that can result in serious complications such as stroke or cardiac deaths. Early
detection of arrhythmia is a major challenge for our society.

With electrocardiograms (ECGs), heartbeats can be visually labelled according to
several classes such as Normal beat, Supraventricular escape beat, etc. An ECG is a graph
of voltage versus time of the electrical activity of the heart using electrodes placed on the
skin. To assess the condition of the heart from different angles, an ECG has several leads,
each of them being the signal generated by a pair of electrodes.

In the last decades, researchers employed machine learning methods for the automatic
classification of heartbeats contained in long-duration recordings of human ECGs [1,2]. A
traditional heartbeat classification pipeline includes data preprocessing, data segmentation,
feature extraction, feature selection, and classification [3].

Data preprocessing is used to remove noise from the ECG raw signal. The most used
techniques are median filters [4], discrete wavelet transform (DWT) [5,6], adaptive filters [4,7],
and frequency selective filters [8–10].

Data segmentation is used to isolate heartbeats from the whole ECG recording. Once
a time segment including the heartbeat is available, time domain [11–16] or frequency do-
main [13,16–18] or morphological [11–13,15,16] or statistical [13,19] or neural features [20]
are extracted.

Feature selection is used to reduce the number of features used by the classifier thus
reducing the complexity and time required for computation. Several approaches have been
adopted: principal and independent component analysis [5,6,21,22], linear discriminant
analysis [6], and genetic algorithm [23].

Random forest [24,25], support vector machines (SVMs) [13–16,18,19], neural networks
(NNs) [5,6] or deep neural networks (DNNs) [2,26–32] are employed to classify extracted
features in one of the heartbeat classes.
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As discussed above, ECGs can be recorded in different locations of the body thus
obtaining the so-called multilead ECGs. Up to 12 leads can be recorded and each lead
represents a specific characteristic of the heart. Multilead ECGs better reflect the state of
the heart compared with single lead ECGs. Taking into account multi leads may bring
performance improvement. Existing literature is mainly focused on the processing of single
lead ECGs [20].

In this paper, we focus on two-lead ECGs: we use lead V1, that is a chest lead, and
lead II, that is a limb lead. We propose the combination of hand-crafted features with
a canonical correlation analysis network (CCANet) and SVMs for two-lead heartbeats
classification. The analysis of the correlation between two leads of the ECG is exploited
to increase heartbeat classification performance [20]. Proposed CCANet is a 1-D variant
of the original 2-D CCANet proposed by Yang et al. [20] that allows to explore a deeper
CCANet while maintaining a reasonable computational complexity and providing better
results. CCANet has been originally proposed by Yang et al. [33] for the processing of
two-view images in 2017. Compared to one-view image-based PCANet and RandNet,
CCANet demonstrated to perform better [33]. CCANet has also been employed in other
computer vision tasks such as remote sensing scene classification [34] as well as ECG
interpretation [20].

There are two types of CNNs that are commonly used for ECG classification: the 1-D
CNN and 2-D CNN [35]. 2-D CNNs usually operate on transformed ECG data, such as
spectrograms, gray-level co-occurrence matrices, combined features and others. 1-D CNNs
operate directly on the raw ECG signal. Our one-dimensional variant takes as input a
combination of elementary hand crafted time domain features, frequency domain features
through spectrograms, and the use of autoregressive modeling.

For the sake of comparison, we evaluate a suitable implemented 1-D convolutional
neural network (CNN) solution based on residual networks (ResNet) [36]. ResNet demon-
strated to be one of the most performing CNN for visual recognition [37]. The proposed
method outperforms the state of the art on both the MIT-BIH and INCART arrhyth-
mia databases.

Our Contribution

The main novel contributions of this paper are summarized as follows:

• We have designed a novel one-dimensional canonical correlation analysis network
(1-D CCANet) to exploit two-lead ECGs for automatic classification of heartbeats that
outperforms the state of the art;

• We have explored the use of handcrafted features in combination with a 1-D CCANet
for ECG classification;

• Our proposal outperforms a solution based on a suitable one-dimensional ResNet
that we have implemented for the sake of comparison.

2. Materials

2.1. MIT-BIH Database

The MIT-BIH database contains 48 sets of two-lead ECG signals (lead II and mostly
V1). Each signal is approximately 30 min long, has been collected at a 360 Hz sampling
frequency, and has been independently annotated by at least two cardiologists. Annotations
include the 15 types listed in Table 1. In our study, we use the signals for which both II and
V1 leads are available (see PhysioBank for further details).

2.2. INCART Database

The St. Petersburg Institute of Cardiological Techniques 12-lead arrhythmia database
(INCART) contains 75 sets of 12-lead ECG signals (leads I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5, V6). Each signal is approximately 30 min long and has been collected at a 257 Hz
sampling frequency. We only consider leads II and V1 of each record. Annotations include
the 7 types listed in Table 2.
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Table 1. Details of the categories for MIT-BIH database.

Type Name Quantity

r Rhythm change 200
N Normal beat 1000
A Atrial premature beat 200
V Premature ventricular 200
P Paced beat 200
x Non-conducted P-wave 100
F Fusion of ventricular contraction 200
j Nodal (junction) escape beat 200
L Left bundle branch block beat 200
a Aberrated atrial premature beat 100
J Nodal (junction) premature beat 50
R Left bundle branch block beat 200
! Ventricular flutter 200
E Ventricular escape beat 100
f Fusion of paced and normal beat 200

Tot 3350

Table 2. Details of the categories for INCART database.

Type Name Quantity

N Normal beat 500
A Atrial premature beat 200
V Premature ventricular 500
n Supraventricular escape beat 30
F Fusion of ventricular contraction 200
j Nodal (junction) escape beat 90
R Left bundle branch block beat 200

Tot 1720

3. Proposed Method

The input of the proposed method is a two-channel ECG segment obtained after a
preliminary segmentation that consists in the isolation of heartbeats in each record. Given
the R-peak positions, any heartbeat is isolated by retaining T1 and T2 samples to the left
and to the right of the R-peak, respectively. For each of the two leads, a vector denoted as
xh (h = 1, 2) is built with the values of the ECG (in Volts), of size (T2 + T1). The values of
T1 and T2 are 160–200 and 120–136 for MIT-BIH and INCART, respectively. These values
are given in Table 3, and are similar to the one used in [20].

Table 3. Sampling rates, values of T1 and T2 for both MIT-BIH and INCART databases.

Database Sampling Rate (Hz) T1 T2

MIT-BIH 360 160 200
INCART 257 120 136

The architecture of the whole process is shown Figure 1a,b. The first stage is feature
extraction. The input of the process is, for each lead, a vector xh (with h = 1, 2) containing
raw values of the segmented heartbeat. Each lead xh (h = 1, 2) is normalized (see the
“Normalization” module in Figure 1a by using a rescaling procedure so that the resulting
vector xh,norm has an intensity that ranges from 0 to 1, as per equation:

xh,norm =
xh − min(xh)

max(xh)− min(xh)
. (1)
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At the same time, hand-crafted features are extracted from each lead xh (h = 1, 2):
frequency-domain features xh,spec, and autoregression features xh,ar. A single time-domain
features vector xtime is also computed for both leads. Frequency-domain features, autore-
gression features and the normalized segmented heartbeat xh,norm are concatenated to
obtain the vector xh,cat = [xh,ar xh,spec xh,norm] (see Figure 1a). The xh,cat (h = 1, 2) vector is
processed by the neural module to produce a single output vector fneur for the two leads
(see Figure 1b). The vector fneur is then reduced in dimensions by using Principal Compo-
nent Analysis (PCA) thus obtaining the vector fpca. The concatenation of the time-domain
features xtime and fpca is the input of a Support Vector Machine classifier. The output of the
classifier is the predicted heartbeat class. In the following subsections the feature extraction
and neural module are discussed more in detail.

(a)

(b)

Figure 1. Classification processing pipeline of our method. (a) Feature extraction: for each of the two leads xh (h = 1, 2),
hand-crafted features are extracted to build xh,cat (h = 1, 2) while xtime, a vector of time-domain features, is built for both
leads. (b) Part of these features, xh,cat (h = 1, 2), feeds the 1-D CCANet-SVD module, which first outputs the neural features
fneur and then a reduced version of the neural features fpca. The concatenation of xtime and fpca feeds the classification
module. The output is the predicted heartbeat class.

3.1. Hand-Crafted Feature Extraction

Given an isolated heartbeat xh (h = 1, 2), hand-crafted features are extracted with
three different methods: frequency-domain, time-domain, autoregressive modeling.

3.1.1. One-Dimensional Spectrogram

For the frequency domain, we use a one-dimensional spectrogram, which is a repre-
sentation of the spectrum of frequencies of a signal as it varies with time. It is built through
a short-time Fourier transform (STFT) of each of the two non-normalized leads xh (h = 1, 2).
A window slides through the signal (with potential overlapping) and computes at each step
the squared magnitudes of the STFT of the portion of the signal belonging to the window.
The Hamming windowing is used for this process. The spectrogram is then obtained by
concatenating, along the time axis, the squared magnitudes acquired for each window. The
squared magnitudes obtained for each frequency (up to half of the sampling rate) at each
time step can be reported in a matrix where axis 0 and 1 are the frequency and time axis,
respectively. Since the range of the squared magnitudes varies significantly, the resulting
matrix is rescaled to [0, 1] to yield Xh,spec (h = 1, 2).
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A weighted average along the frequency axis is performed thus turning the Xh,spec
matrix into a one-dimensional vector, xh,spec. The equation used is the following (2):

xh,spec =
1

S(n) ∑
k

1
kn Xh,spec[k], (2)

where S(n) = ∑
k

1
kn .

This feature extraction method requires three parameters: the number of samples
in the window of the STFT (Nwind = 64 and 46 for MIT-BIH and INCART respectively),
the number of samples in the overlap between two consecutive steps (Noverlap= 32 and 23
for MIT-BIH and INCART respectively) and n (0.25 for both MIT-BIH and INCART), the
weight parameter in Equation (2). Suitable parameters are found with a greedy search. The
feature vector xh,spec is of size 10.

3.1.2. Autoregressive Modeling

Autoregressive (AR) modeling specifies that a time series value depends linearly on
its own previous values and a stochastic term, as per Equation (3):

Xt =
p+1

∑
i=2

ϕiXt−i+1 + ε(t), (3)

where Xt is the time series, ϕi are the AR coefficients computed with Yule-Walker’s method
and p is the order of the AR model. Since the choice of the order p depends highly on the
sampling rate, non-normalized ECGs from both databases are resampled to 360 Hz [38]. The
order was then chosen by performing best parameter search on the training data for both
the MIT-BIH and INCART databases. We chose the order that maximized the average of our
performance metrics (accuracy, specificity, sensitivity, ppv) on a validation set. Figure 2 shows
that for the INCART data, the best order is 2 while the best order is 3 for the MIT-BIH data.
Since the performance for MIT-BIH is quite comparable for orders 2 and 3, we chose an order
equal to 2 for both datasets. We preferred a lower order to reduce the computational cost. The
vector of AR coefficients obtained for each lead of one heartbeat, xh (h = 1, 2), is denoted as
xh,ar and is of size 2.

Figure 2. Mean performance for different AR orders on validation sets for MIT-BIH signals (red) and
INCART signals (blue).

3.1.3. Time-Domain Features

For each of the two leads xh (h = 1, 2) of one segmented heartbeat, we compute the
following time-domain features: the median value of xh, its fourth order and fifth order
central moments and the kurtosis of xh. Finally, for both leads, we build a single vector of
time-domain features including the previous features for each lead and the heartbeat rate
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of the patient to whom the heartbeat belongs. The resulting vector is denoted as xtime and
is of size 9.

3.2. Neural Feature Extraction

To exploit the correlation between two ECG leads, we use a one-dimensional variant
of the canonical correlation analysis network (CCANet). First introduced in the field of
image recognition by Yang et al. [33], CCANet has been employed in two-view image
recognition tasks. Recently, CCANets, which are intrinsically two-dimensional, have
been successfully employed in the signal processing field for the classification of two and
three lead heartbeats [20]. A CCANet is usually composed of two cascaded convolutional
layers and an output layer: (1) in the convolutional layers, the CCA technique is used to
extract dual-lead filter banks; (2) in the output layer, the features extracted from the second
convolutional layer are mapped into the final feature vector [20].

In this paper, with the aim of increasing performance, we design a new 1-D canonical
correlation analysis network that is composed of four 1-D convolutional layers and an
output layer. Contrary to CCANet, the filters are found by combining a CCA with a
singular value decomposition (SVD), and features are extracted after each layer. The use
of 1-D convolutions instead of 2-D permits to limit computational cost, thus allowing to
increase the number of layers from two to four and, consequently, to increase performance.

The processing pipeline is shown in Figure 3. The input of the proposed 1-D CCANet-
SVD is the concatenation of autoregressive features, spectrogram features, and the original
normalized heartbeat, resulting in the following vector xh,cat = [xh,ar xh,spec xh,norm] ∈ R

m,
h = 1, 2. The 1-D CCANet-SVD is trained with N two-lead heartbeats and then used as
neural feature extractor in combination with a linear SVM for heartbeat classification. The
network is trained separately for the MIT-BIH and INCART databases.

Figure 3. Proposed 1-D CCANet-SVD.

3.2.1. First Convolutional Layer

We denote x(i)h,cat the i-th element (i ∈ {1, . . . , m}) of an input vector xh,cat. We selected

a series of segments of size k centered on each value x(i)h,cat, to obtain the m following
segments, bh,1, . . . , bh,m ∈ R

k. The latter are then zero-centered and concatenated to build
a matrix of the segments [bh,1, . . . , bh,m] ∈ R

k×m. This procedure is performed on each of
the N training heartbeats and the resulting matrices of segments are finally concatenated
to obtain Xh ∈ R

k×Nm, h = 1, 2. Note that our network is simultaneously fed with all the
training heartbeats in order to build the two matrices X1 and X2.

Let us address the filter extraction stage. In [20], the filters are found with a CCA, thus
by maximizing the correlation between pairs of projected variables. The first projection
direction can be obtained by optimizing Equation (4):

max ρ(a1, b1) = aT
1 S12b1 (4)
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with the constraints aT
1 S11a1 = 1, bT

1 S22b1 = 1, where Shh′ = (Xh)(Xh′)
T , and a1 and b1 are

the first canonical vectors for each of the two leads. The Lagrange multiplier technique
shows that a1 and b1 are eigenvectors of M1 = S−1

11 S12S−1
22 S21 and M2 = S−1

22 S21S−1
11 S12,

respectively. Given the first l − 1 directions, the l-th projection direction can be calculated
by solving problem (4) with the additional constraints aT

i S11al = bT
i S22bl = 0, (i < l). In

the end, the L1 filters for the first lead are built by taking the L1 primary eigenvectors of
M1 (i.e., associated with the L1 biggest eigenvalues), whereas the L1 filters for the second
lead are built by considering the L1 primary eigenvectors of M2.

In this paper, we use a slightly different approach, referred to as the CCA-SVD filter
extraction technique. We perform an SVD of both M1, and M2, as per M1 = U1D1VT

1 and
M2 = U2D2VT

2 , where the U and V matrices are unitary, and the D matrices are diagonal
with singular values on the diagonals. Using an SVD allows to retrieve the directions,
which explain the most the variance of M1 and M2. Since these two matrices derive
from the CCA, they capture the correlations between the two leads. Therefore, we use
the directions found by performing an SVD on them to have the best explanation of the
correlation between the two leads. Consequently, the L1 filters for the first lead are built
by taking the columns of U1 that are associated with the L1 biggest singular values of D1,
whereas the L1 filters for the second lead are built by considering the columns of U2 that
are associated with the L1 biggest singular values of D2. Such an approach yields better
results than the traditional CCA filter extraction technique (see Experiments). We denote
as W1,l and W2,l , l = 1, . . . , L1, the L1 filters of size k corresponding to the first and second
lead, respectively.

As for the convolutions, for each lead h, each input signal xh,cat yields L1 outputs
xh,cat,l = xh,cat ∗ Wh,l , l = 1, . . . , L1. The length of the input and output signal were kept
identical, thanks to a zero-padding of the input.

3.2.2. First Extraction Stage

The extraction stage follows the same steps as in [20]. First, for each heartbeat, the
output of the first convolution is converted to a decimal one-dimensional signal as per
T = ∑L1

l=1 2l−1H([x1,cat,l , x2,cat,l ]) ∈ R
2m, where H is the Heaviside step function. Therefore,

the range of each component of T is [0, 2L1 − 1]. T is then divided in B blocks of size
u1. Each block can overlap with its neighbor, according to R1 ∈ [0, 1], an overlapping
proportion parameter. For each of these blocks, a histogram with 2L1 bins is built. The
values of the resulting histogram for each block is embedded in a 2L1 -long vector and the
vectors provided by each block are then concatenated to obtain Bhist(T) ∈ R

2L1 B. The first
feature vector, for the heartbeat, is f 1 = Bhist(T).

3.2.3. Second Convolution Layer and Extraction Stage

The second layer is identical to the previous one, except for the fact that the input is
different. Indeed, before the first convolution, each lead of a heartbeat was represented by
a single vector of length m. After the first convolution, each lead is now represented by L1
vectors of length m. Let’s walk through the second layer with the notations used so far.

The xh,cat,l = xh,cat ∗ Wh,l , l = 1, . . . , L1 produced after the first convolutional layer are
the input of the second layer. Since we initially considered N training heartbeats, it means
that this layer has a total number of N × L1 input vectors corresponding to lead 1 and
N × L1 input vectors corresponding to lead 2. The same segmentation and zero-centering
process as in the first layer gives Yh ∈ R

k×mNL1 (h = 1, 2), the matrices of the concatenated
segments for all the input vectors, for each lead.

Applying the CCA-SVD filter extraction technique with S̃hh′ = (Yh)(Yh′)
T leads us to

perform the SVD of M̃1 = S̃−1
11 S̃12S̃−1

22 S̃21 and M̃2 = S̃−1
22 S̃21S̃−1

11 S̃12, for the first and second
lead, respectively. The filters are then found exactly as in the first convolutional layer and
we denote as W̃1,� and W̃2,�, � = 1, . . . , L2, the L2 filters of size k extracted for the first and
second lead, respectively.
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As for the convolutions, for each initial lead h = 1, 2 and channel l ∈ {1, . . . , L1}, the
signal xh,cat,l yields L2 outputs xh,cat,l,� = xh,cat,l ∗ W̃h,�, � = 1, . . . , L2. At this stage, each
initial lead of a heartbeat is now represented by L1 × L2 vectors of size m.

The second extraction step is the same as after the first convolutional layer ex-
cept for a few points. First, for each heartbeat, the output of the second convolutional
layer is converted to a decimal signal as per T̃l = ∑L2

�=1 2�−1H([x1,cat,l,�, x2,cat,l,�]) ∈ R
2m,

l ∈ {1, . . . , L1}. The second feature vector for the heartbeat is obtained as per f 2 =
[Bhist(T̃1), Bhist(T̃2), . . . , Bhist(T̃L1)]. The Bhist are built with a block size and an overlap-
ping parameter equal to u2 and R2, respectively.

The third and fourth convolutional layers are built similarly. f 3 and f 4 refer to the third
and fourth feature vectors extracted for a heartbeat after each layer. We denote as L3 and
L4, the number of filters for the third and fourth layers, respectively. u3 and u4 are the block
sizes for the construction of Bhist after the third and fourth convolutional layers, respectively.
Finally, we denote as R3 and R4, the overlapping parameters for the last two layers.

3.2.4. Final Output and PCA

For a given heartbeat, the final output of the network is obtained by concatenating
the four feature vectors, as per fneur = [ f 1, f 2, f 3, f 4]. Given the significant size of the final
feature vector, a PCA is carried out to reduce dimensionality. The number of components
is chosen such that the explained variance is over 99.99% thus obtaining fpca. The final
feature vector F is obtained by concatenating this vector to the vector of time-domain
features corresponding to the heartbeat. F = [ fpca, xtime] is a vector of size 1382 or 3020,
for INCART or MIT-BIH heartbeats, respectively.

The classification step is performed by a linear SVM, with a regularization parameter
C = 1.

4. Experiments

4.1. Experimental Setup

To assess the performance of our method, we classified 15 and 7 different types of
heartbeats from the MIT-BIH and INCART databases, respectively. One major obstacle
of our databases is that they are not well balanced. For instance, the normal types are
over-represented while the supraventricular escape beats from INCART have few samples
in comparison. To address this issue, we randomly sampled (without repetition), as in [20],
3350 heartbeats from the MIT-BIH database and 1720 heartbeats from INCART, in the
proportions given by Tables 1 and 2 respectively.

We used k-fold cross validation on the resampled heartbeats to fit the parameters of
1-D CCANet-SVD. The parameters are shown in Table 4.

Table 4. Parameters for 1-D CCANet-SVD.

Layer 1 Layer 2 Layer 3 Layer 4

k = 7

L1 = 2 L2 = 3 L3 = 3 L4 = 5

u1 = 35 u2 = 35 u3 = 35 u4 = 50

R1 = 0.5 R2 = 0.4 R3 = 0.4 R4 = 0.3

The results provided in the Results and discussion subsection derive from an overall
confusion matrix obtained after summing the k confusion matrices given after each fold.
As in [20], we performed 10 and 5-cross validation for the data from the MIT-BIH and
INCART databases, respectively.

The code is written in Python 3.7 and we ran all the experiments on a personal
computer equipped with Ubuntu 18.04. The hardware specifications of the computer are
the following: 16 GB RAM, and i7-7700 CPU with a clock speed of 3.60 GHz.
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1-D ResNet

To further validate our approach, we added a one-dimensional residual network (1-D
ResNet) to our experiments. The input is the same as for 1-D CCANet-SVD. The 1-D
ResNet has been implemented as follows:

• Initial layer: the input of the network undergoes an initial convolution with 2 input
channels (one for each lead) and 16 output channels. This convolution is followed by
a max-pooling step. This initial layer is followed by 4 identical residual blocks.

• Residual blocks: each of them contains two convolutional layers and, for each block,
the output of the second convolutional layer is finally added to the block’s input. For
each block, the first convolution doubles the number of channels, while the second
convolution has the same number of input and output channels. Consequently, the
last convolution has 256 output channels. The output of the last block then undergoes
average-pooling to obtain the feature vector.

• Classification layer: the feature vector, of size 256 serves as the input of a fully connected
neural network. The classification is then performed thanks to the Softmax function.
The loss used is the cross-entropy.

During the feature extraction process, Batch-Normalization is performed after each
convolution and the Rectified Linear Unit (ReLU) is used as the activation function. Table 5
shows the architecture of the network and the various parameters fitted for each layer.
All the parameters, including the number of layers, residual blocks and the number of
channels for the convolutions were found through cross-validation.

Table 5. Architecture of 1-D ResNet with the parameters for the initial layer and the convolutions of
each residual block.

Output Size Layers

MIT-BIH INCART Initial Layer

Conv (kernel size = 7, stride = 1, padding = 3)
BatchNorm
ReLU

184 × 16 132 × 16 MaxPool (kernel size = 5, stride = 2, padding = 0)

184 × 32 132 × 32 ResBlock (kernel size = 5, stride = 1, padding = 2)

184 × 64 132 × 64 ResBlock (kernel size = 5, stride = 1, padding = 2)

184 × 128 132 × 128 ResBlock (kernel size = 5, stride = 1, padding = 2)

184 × 256 132 × 256 ResBlock (kernel size = 5, stride = 1, padding = 2)

1 × 256 1 × 256 AvgPool

15 7 Fully Connected Network

4.2. Evaluation Metrics

Several measures have been employed for the evaluation of the goodness of the pro-
posed approach: (1) Overall Accuracy (OACC) defined as (TP + TN)/(TP + TN + FP + FN);
(2) Mean Accuracy (MACC) defined as the average of the class accuracies; (3) Specificity
(SPE) defined as TN/(TN + FP); (4) Sensitivity (SENS) defined as TP/(TP + FN); (5) Posi-
tive Predictive Values (PPV) defined as TP/(TP + FP). TP, TN, FP, FN are the number of
True Positive, True Negative, False Positive and False Negative, respectively. Note that in
Table 6, the values of SPE, SENS, and PPV are averaged across the classes.

4.3. Results and Discussion

Table 6 shows the results obtained for various classification methods. It includes
the previously described model, variations of it (e.g., without adding the time-domain
features), the 1-D ResNet and the best dual-leads method in the state of the art [20].
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Table 6. Results for various methods (%). For each method, first line reports results for the MIT-BIH
database while the second line reports for the INCART database. OACC stands for Overall Accuracy;
MACC for Mean Accuracy; SPE for Specificity; SENS for Sensitivity; PPV for Positive Predictive
Values; AVG is the Average of the first 5 columns of the table. Best results are highlighted in boldface.

Method OACC MACC SPE SENS PPV AVG

DL-CCANet [20] 95.25 99.40 99.60 94.60 96.30 97.03
94.01 98.31 98.85 90.89 94.11 95.23

1-D ResNet 91.88 98.92 99.36 90.11 90.14 94.08
86.25 96.07 97.55 85.05 80.66 89.12

1-D CCANet-SVD 94.75 99.30 99.57 93.77 95.81 96.64
(w/o SVD) 93.60 98.17 98.80 90.63 93.33 94.91

1-D CCANet-SVD 95.40 99.39 99.62 94.43 96.54 97.08
(w/o time-domain feat.) 95.35 98.67 99.11 93.26 96.22 96.52

1-D CCANet-SVD 95.22 99.36 99.6 94.03 96.61 96.96
(w/o 1D-spec) 94.77 98.50 99.02 92.66 94.59 95.91

1-D CCANet-SVD 95.43 99.39 99.62 94.53 96.73 97.14
(w/o ar) 95.12 98.60 99.09 93.68 95.13 96.32

1-D CCANet-SVD 94.99 99.33 99.59 93.85 96.21 96.79
(w/o stack) 94.83 98.52 99.03 92.43 94.95 95.95

1-D CCANet-SVD 95.52 99.40 99.63 94.60 96.65 97.16
(proposed) 95.70 98.77 99.19 93.78 95.89 96.67

Our method and [20] demonstrated comparable performances on the MIT-BIH database,
though our overall accuracy and mean ppv were better by around 0.3%. As for the INCART
database, our results proved to be better, especially the overall accuracy (+1.69%), mean
sensitivity (+2.89%), and mean ppv (+1.78%). Contrary to [20], our approach is purely one-
dimensional, allowing to explore a more complex version of CCANet while maintaining a
reasonable computational complexity and providing better results: we opted for 4 layers
and stacking features extracted after each convolution gave better results than without doing
so (see seventh method of Table 6), especially increasing the sensitivity. Using frequency
features with the one-dimensional spectrogram helped obtain a better classification by notably
increasing the sensitivity (+1.12% for INCART) and the ppv (+1.3% for INCART). The addition
of the AR coefficients and the time-domain features contributed to slightly increase the
performance of our model. The performances were significantly better when using our
CCA-SVD filter extraction technique instead of the CCA technique described in [20], with
a sensitivity gaining more than 3% for INCART (see the third method of Table 6). Finally,
our method provided significantly better results than the 1-D ResNet approach (+3.64% for
overall ACC for MIT-BIH, +9.45% for INCART). Our analysis of the correlations of the two
leads, using SVD, proved to be a good way of recognizing the various types of heartbeats.

Tables 7 and 8 show the comparison between the best of our proposals and similar
works in the state of the art for MIT-BIH and INCART databases respectively. In the
case of MIT-BIH, Table 7 confirms that the use of dual-leads-based approaches brings
improvements in performance (more than 1%). Also in the case of INCART we see an
improvement with respect to single-lead-based method (more than 3%). Here, the proposed
approach is slightly better than a variant of the work by Yang et al. [20] that uses three leads.
Although our approach explores more complex structures with respect to Yang et al. [20], it
remains comparable, in terms of computational cost, with it. The inference time for each
heart beat classification is about 0.05 s while in the case of Yang et al. [20], it is about 0.02 s.
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Table 7. Results for various methods on the MIT-BIH database.

Authors Year Method Type #Samples Ov. ACC

Plawiak et al. [13] 2018 Evol.Neural (1 lead) 15 1000 91.00%
Lee et al. [39] 2018 PCANet (1 lead) 15 3350 94.59%
Yang et al. [20] 2019 RandNet (1 lead) 15 3350 94.39%
Yang et al. [20] 2019 DL-CCANet (2 lead) 15 3350 95.25%
Proposed method 2021 1-D CCANet-SVD (2 lead) 15 3350 95.52%

Table 8. Results for various methods on the INCART database.

Authors Year Method Type #Samples Ov. ACC

Lee et al. [39] 2018 PCANet (1 lead) 7 1720 93.72%
Yang et al. [20] 2019 RandNet (1 lead) 7 1720 92.91%
Yang et al. [20] 2019 DL-CCANet (2 lead) 7 1720 94.01%
Yang et al. [20] 2019 TL-CCANet (3 lead) 7 1720 95.52%
Proposed method 2021 1-D CCANet-SVD (2 lead) 7 1720 95.70%

Our method presents a few limitations. First, the CCANet technique requires the
network to be fed simultaneously with all the training data, in order to determine the filters
and this may cause a growth in the computational cost as the size of the training data
increases. This limitation is common to all the CCANet-based architectures. In our study,
we only considered 2-lead signals as input, it could be interesting to include more leads
with the hope of increasing the performance, especially for classes with fewer samples.
Following the work by Yang et al. [20], our approach can be quite naturally extended to
3-lead signals. The number of layers might need to be reduced to compensate for the
additional cost added by the addition of a third lead. Another interesting perspective
would be to include some of the techniques we have used in our study in the original two-
dimensional CCANet developed by Yang et al. [20]. Indeed, Table 6 shows that the use of
the SVD significantly increases the performance, without adding additional computational
cost compared to the original method. Therefore, we could also expect promising results
when using SVD in the original 2-D CCANet. Likewise, it could be interesting to analyze
how the spectrogram features influence the performance of the 2-D CCANet and allow to
make significant improvement in the field of abnormal heartbeat recognition.

5. Conclusions

In this paper, we propose a novel heartbeat classification method based mainly on
a new approach to the study of the correlation between the two ECG leads, to extract
complex features. Our method also employ elementary hand-crafted time domain fea-
tures, frequency domain features with a one-dimensional approach to spectrograms, and
autoregressive coefficients. Our method is one-dimensional, allowing to explore a more
complex neural architecture while maintaining a reasonable computational complexity,
and providing better results. Our final model has an optimal structure and performs
the classification of 15 and 7 heartbeat types for the MIT-BIH and INCART databases,
respectively. Finally, our method outperforms [20] with a slightly better overall accuracy
and mean ppv on the MIT-BIH database and a notably higher overall accuracy (+1.69%),
mean sensitivity (+2.89%), and mean ppv (+1.78%) on the INCART database.
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