564 research outputs found

    Robust Branch-Cut-and-Price for the Capacitated Minimum Spanning Tree Problem over a Large Extended Formulation

    Get PDF
    This paper presents a robust branch-cut-and-price algorithm for the Capacitated Minimum Spanning Tree Problem (CMST). The variables are associated to q-arbs, a structure that arises from a relaxation of the capacitated prize-collecting arbores- cence problem in order to make it solvable in pseudo-polynomial time. Traditional inequalities over the arc formulation, like Capacity Cuts, are also used. Moreover, a novel feature is introduced in such kind of algorithms. Powerful new cuts expressed over a very large set of variables could be added, without increasing the complexity of the pricing subproblem or the size of the LPs that are actually solved. Computational results on benchmark instances from the OR-Library show very signi¯cant improvements over previous algorithms. Several open instances could be solved to optimalityNo keywords;

    A biased random-key genetic algorithm for the capacitated minimum spanning tree problem

    Get PDF
    This paper focuses on the capacitated minimum spanning tree(CMST)problem.Given a central processor and a set of remote terminals with specified demands for traffic that must flow between the central processor and terminals,the goal is to design a minimum cost network to carry this demand. Potential links exist between any pair of terminals and between the central processor and the terminals. Each potential link can be included in the design at a given cost.The CMST problem is to design a minimum-cost network connecting the terminals with the central processor so that the flow on any arc of the network is at most Q. A biased random-keygenetic algorithm(BRKGA)is a metaheuristic for combinatorial optimization which evolves a population of random vectors that encode solutions to the combinatorial optimization problem.This paper explores several solution encodings as well as different strategies for some steps of the algorithm and finally proposes a BRKGA heuristic for the CMST problem. Computational experiments are presented showing the effectivenes sof the approach:Seven newbest- known solutions are presented for the set of benchmark instances used in the experiments.Peer ReviewedPostprint (author’s final draft

    The capacitated minimum spanning tree problem

    Get PDF
    In this thesis we focus on the Capacitated Minimum Spanning Tree (CMST), an extension of the minimum spanning tree (MST) which considers a central or root vertex which receives and sends commodities (information, goods, etc) to a group of terminals. Such commodities flow through links which have capacities that limit the total flow they can accommodate. These capacity constraints over the links result of interest because in many applications the capacity limits are inherent. We find the applications of the CMST in the same areas as the applications of the MST; telecommunications network design, facility location planning, and vehicle routing. The CMST arises in telecommunications networks design when the presence of a central server is compulsory and the flow of information is limited by the capacity of either the server or the connection lines. Its study also results specially interesting in the context of the vehicle routing problem, due to the utility that spanning trees can have in constructive methods. By the simple fact of adding capacity constraints to the MST problem we move from a polynomially solvable problem to a non-polynomial one. In the first chapter we describe and define the problem, introduce some notation, and present a review of the existing literature. In such review we include formulations and exact methods as well as the most relevant heuristic approaches. In the second chapter two basic formulations and the most used valid inequalities are presented. In the third chapter we present two new formulations for the CMST which are based on the identification of subroots (vertices directly connected to the root). One way of characterizing CMST solutions is by identifying the subroots and the vertices assigned to them. Both formulations use binary decision variables y to identify the subroots. Additional decision variables x are used to represent the elements (arcs) of the tree. In the second formulation the set of x variables is extended to indicate the depth of the arcs in the tree. For each formulation we present families of valid inequalities and address the separation problem in each case. Also a solution algorithm is proposed. In the fourth chapter we present a biased random-key genetic algorithm (BRKGA) for the CMST. BRKGA is a population-based metaheuristic, that has been used for combinatorial optimization. Decoders, solution representation and exploring strategies are presented and discussed. A final algorithm to obtain upper bounds for the CMST is proposed. Numerical results for the BRKGA and two cutting plane algorithms based on the new formulations are presented in the fifth chapter . The above mentioned results are discussed and analyzed in this same chapter. The conclusion of this thesis are presented in the last chapter, in which we include the opportunity areas suitable for future research.En esta tesis nos enfocamos en el problema del Árbol de Expansión Capacitado de Coste Mínimo (CMST, por sus siglas en inglés), que es una extensión del problema del árbol de expansión de coste mínimo (MST, por sus siglas en inglés). El CMST considera un vértice raíz que funciona como servidor central y que envía y recibe bienes (información, objetos, etc) a un conjunto de vértices llamados terminales. Los bienes solo pueden fluir entre el servidor y las terminales a través de enlaces cuya capacidad es limitada. Dichas restricciones sobre los enlaces dan relevancia al problema, ya que existen muchas aplicaciones en que las restricciones de capacidad son de vital importancia. Dentro de las áreas de aplicación del CMST más importantes se encuentran las relacionadas con el diseño de redes de telecomunicación, el diseño de rutas de vehículos y problemas de localización. Dentro del diseño de redes de telecomunicación, el CMST está presente cuando se considera un servidor central, cuya capacidad de transmisión y envío está limitada por las características de los puertos del servidor o de las líneas de transmisión. Dentro del diseño de rutas de vehículos el CMST resulta relevante debido a la influencia que pueden tener los árboles en el proceso de construcción de soluciones. Por el simple de añadir las restricciones de capacidad, el problema pasa de resolverse de manera exacta en tiempo polinomial usando un algoritmo voraz, a un problema que es muy difícil de resolver de manera exacta. En el primer capítulo se describe y define el problema, se introduce notación y se presenta una revisión bibliográfica de la literatura existente. En dicha revisión bibliográfica se incluyen formulaciones, métodos exactos y los métodos heurísticos utilizados más importantes. En el siguiente capítulo se muestran dos formulaciones binarias existentes, así como las desigualdades válidas más usadas para resolver el CMST. Para cada una de las formulaciones propuestas, se describe un algoritmo de planos de corte. Dos nuevas formulaciones para el CMST se presentan en el tercer capítulo. Dichas formulaciones estás basadas en la identificación de un tipo de vértices especiales llamados subraíces. Los subraíces son aquellos vértices que se encuentran directamente conectados al raíz. Un forma de caracterizar las soluciones del CMST es a través de identificar los nodos subraíces y los nodos dependientes a ellos. Ambas formulaciones utilizan variables para identificar los subraices y variables adicionales para identificar los arcos que forman parte del árbol. Adicionalmente, las variables en la segunda formulación ayudan a identificar la profundidad con respecto al raíz a la que se encuentran dichos arcos. Para cada formulación se presentan desigualdades válidas y se plantean procedimientos para resolver el problema de su separación. En el cuarto capítulo se presenta un algoritmo genético llamado BRKGA para resolver el CMST. El BRKGA está basado en el uso de poblaciones generadas por secuencias de números aleatorios, que posteriormente evolucionan. Diferentes decodificadores, un método de búsqueda local, espacios de búsqueda y estrategias de exploración son presentados y analizados. El capítulo termina presentando un algoritmo final que permite la obtención de cotas superiores para el CMST. Los resultados computacionales para el BRKGA y los dos algoritmos de planos de corte basados en las formulaciones propuestas se muestran en el quinto capítulo. Dichos resultados son analizados y discutidos en dicho capítulo. La tesis termina presentando las conclusiones derivadas del desarrollo del trabajo de investigación, así como las áreas de oportunidad sobre las que es posible realizar futuras investigaciones

    Efficient routing of snow removal vehicles

    Get PDF
    This research addresses the problem of finding a minimum cost set of routes for vehicles in a road network subject to some constraints. Extensions, such as multiple service requirements, and mixed networks have been considered. Variations of this problem exist in many practical applications such as snow removal, refuse collection, mail delivery, etc. An exact algorithm was developed using integer programming to solve small size problems. Since the problem is NP-hard, a heuristic algorithm needs to be developed. An algorithm was developed based on the Greedy Randomized Adaptive Search Procedure (GRASP) heuristic, in which each replication consists of applying a construction heuristic to find feasible and good quality solutions, followed by a local search heuristic. A simulated annealing heuristic was developed to improve the solutions obtained from the construction heuristic. The best overall solution was selected from the results of several replications. The heuristic was tested on four sets of problem instances (total of 115 instances) obtained from the literature. The simulated annealing heuristic was able to achieve average improvements of up to 26.36% over the construction results on these problem instances. The results obtained with the developed heuristic were compared to the results obtained with recent heuristics developed by other authors. The developed heuristic improved the best-known solution found by other authors on 18 of the 115 instances and matched the results on 89 of those instances. It worked specially better with larger problems. The average deviations to known lower bounds for all four datasets were found to range between 0.21 and 2.61%

    A Design Methodology to Optimize Supply Chain Network Performance

    Get PDF
    Organizations are constantly looking for new ways to reduce costs while still providing high customer service levels to face stringent competitive environments and the ever- increasing market globalization. An alternative these organizations can pursue to respond to these challenges and to gain a competitive differentiation is to optimize their supply chain network (SCN). This research aims to develop an effective SCN design strategy to locate facilities (i.e., plants and distribution centers) and to balance the allocation of customers to these facilities to satisfy capacity limitations and customer demands with minimum total cost and maximum level of service. It is anticipated that the results of this research will improve the strategic decision making of a manufacturing firm when locating facilities or redesigning the SCN and allow decision makers to determine tradeoffs among the organization’s conflicting criteria

    Casting Light on the Hidden Bilevel Combinatorial Structure of the Capacitated Vertex Separator Problem

    Get PDF
    Given an undirected graph, we study the capacitated vertex separator problem that asks to find a subset of vertices of minimum cardinality, the removal of which induces a graph having a bounded number of pairwise disconnected shores (subsets of vertices) of limited cardinality. The problem is of great importance in the analysis and protection of communication or social networks against possible viral attacks and for matrix decomposition algorithms. In this article, we provide a new bilevel interpretation of the problem and model it as a two-player Stackelberg game in which the leader interdicts the vertices (i.e., decides on the subset of vertices to remove), and the follower solves a combinatorial optimization problem on the resulting graph. This approach allows us to develop a computational framework based on an integer programming formulation in the natural space of the variables. Thanks to this bilevel interpretation, we derive three different families of strengthening inequalities and show that they can be separated in polynomial time. We also show how to extend these results to a min-max version of the problem. Our extensive computational study conducted on available benchmark instances from the literature reveals that our new exact method is competitive against the state-of-the-art algorithms for the capacitated vertex separator problem and is able to improve the best-known results for several difficult classes of instances. The ideas exploited in our framework can also be extended to other vertex/edge deletion/ insertion problems or graph partitioning problems by modeling them as two-player Stackel- berg games and solving them through bilevel optimization

    Reformulation and decomposition of integer programs

    Get PDF
    In this survey we examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column generation and the resulting branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss in detail extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.Integer program, Lagrangean relaxation, column generation, branch-and-price, extended formulation, Benders' algorithm

    Network Flows

    Get PDF
    Not Availabl

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    Models and algorithms for decomposition problems

    Get PDF
    This thesis deals with the decomposition both as a solution method and as a problem itself. A decomposition approach can be very effective for mathematical problems presenting a specific structure in which the associated matrix of coefficients is sparse and it is diagonalizable in blocks. But, this kind of structure may not be evident from the most natural formulation of the problem. Thus, its coefficient matrix may be preprocessed by solving a structure detection problem in order to understand if a decomposition method can successfully be applied. So, this thesis deals with the k-Vertex Cut problem, that is the problem of finding the minimum subset of nodes whose removal disconnects a graph into at least k components, and it models relevant applications in matrix decomposition for solving systems of equations by parallel computing. The capacitated k-Vertex Separator problem, instead, asks to find a subset of vertices of minimum cardinality the deletion of which disconnects a given graph in at most k shores and the size of each shore must not be larger than a given capacity value. Also this problem is of great importance for matrix decomposition algorithms. This thesis also addresses the Chance-Constrained Mathematical Program that represents a significant example in which decomposition techniques can be successfully applied. This is a class of stochastic optimization problems in which the feasible region depends on the realization of a random variable and the solution must optimize a given objective function while belonging to the feasible region with a probability that must be above a given value. In this thesis, a decomposition approach for this problem is introduced. The thesis also addresses the Fractional Knapsack Problem with Penalties, a variant of the knapsack problem in which items can be split at the expense of a penalty depending on the fractional quantity
    corecore